Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-25
... 1117-AA66 Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process... phosphorus, white phosphorus (also known as yellow phosphorus), or hypophosphorous acid and its salts (hereinafter ``regulated phosphorus'') that shall automatically qualify for exemption from the Controlled...
Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs.
Wang, Guoping; Yu, Xiaofei; Bao, Kunshan; Xing, Wei; Gao, Chuanyu; Lin, Qianxin; Lu, Xianguo
2015-01-01
The effect of burning Sphagnum moss and peat on phosphorus forms was studied with controlled combustion in the laboratory. Two fire treatments, a light fire (250 °C) and a severe fire (600 °C), were performed in a muffle furnace with 1-h residence time to simulate the effects of different forest fire conditions. The results showed that fire burning Sphagnum moss and peat soils resulted in losses of organic phosphorus (Po), while inorganic phosphorus (Pi) concentrations increased. Burning significantly changed detailed phosphorus composition and availability, with severe fires destroying over 90% of organic phosphorus and increasing the availability of inorganic P by more than twofold. Our study suggest that, while decomposition processes in ombrotrophic bogs occur very slowly, rapid changes in the form and availability of phosphorus in vegetation and litter may occur as the result of forest fires on peat soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Jian-Hua; Yu, Xing-Xiu; Liu, Qian-Jin; Wu, Yuan-Zhi
2012-12-01
Taking the typical land use type, sloping Arachis hypogaea land, in Yimeng mountainous area of Shandong as study object, an in-situ fixed-point field experiment was conducted to study the characteristics of soil and water losses and phosphorus output at the places between ridges in the sloping land under different planting modes (Arachis hypogaea + Cynodon dactylon, I; A. hypogae + Melilotus officinalis, II; A. hypogaea + Lolium multiflorum, III; A. hypogaea + Trifolium repens, IV; A. hypogaea + blank control, V). Planting grasses at the places between ridges could effectively decrease the soil and water losses. The runoff was 55.1%-61.3% of the control, and decreased in the order of II > I > IV> III. The sediment loss was 3.4% -32.3% of the control, and decreased in the order of IV > II > I > 11. A. hypogaea + L. multiflorum was effective in storing water and retaining sediment. During the early period of planting L. multiflorum, the sediment loss was more affected by rainfall and presented a fluctuated variation, but in late period, the sediment loss decreased continuously and performed more stable, and accordingly, the sediment retention increased continuously. Planting grasses effectively decreased the output of phosphorus, with the decrease of total phosphorus (TP) output being 52.8%-75.3% of the control, and was in the order of I > II > IV > III. As compared with the control, planting grasses decreased 27.5% -67.0% of the output of particle phosphorus (PP), but relatively increased the output of dissolvable phosphorus (DP). A. hypogaea + L. multiflorum had the best effect in decreasing the output of phosphorus, with the outputs of TP and PP being 58.4% and 27.5% of the control, respectively. In the growth period of the vegetations, the losses of different phosphorus forms differed, and the dissolvable inorganic phosphorus was the main form of the output of DP during whole rain season. After the peanut harvested, the output of different phosphorus forms in the first rainfall was much higher than that in the maximum intensity rainfall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, M.; Singh, N.
1979-05-01
The effects of forms of selenium on the accumulation of sulfur, selenium, and forms of nitrogen and phosphorus in cowpea (Vigna sinensis) were studied in pots in the greenhouse at Haryana Agricultural University, Hissar, India. The soil used was sandy, and forms of selenium added were Na/sub 2/SeO/sub 4/ 10H/sub 2/O, Na/sub 2/SeO/sub 3/ 5H/sub 2/O, H/sub 2/SeO/sub 3/, and elemental selenium at the rate of 0, 1, 2.5 and 5 ppM. Dry matter yield and sulfur content decreased with increased selenium application. This inhibition in plants, attributable to applied selenium, was in the order SeO/sub 4/ > H/sub 2/SeO/submore » 3/ > SeO/sub 3/ > elemental selenium. Plant selenium increased with increasing application of all forms of selenium. The highest plant selenium (11.58 ppM) was in the plants treated with SeO/sub 4/, followed by the plants treated with H/sub 2/SeO/sub 3/, SeO/sub 3/, and elemental selenium. The total plant phosphorus increased with increased selenium application in any form, but maximum phosphorus occurred in SeO/sub 3/-treated plants. The inorganic phosphorus increased similarly, the largest amount occurring in SeO/sub 4/-treated plants. Organic phosphorus decreased with selenium application; minimum concentration was recorded in SeO/sub 4/-treated plants. Soluble nitrogen decreased, relative to the control, with applications of 2.5 and 5 ppM selenium. This decrease was minimal for elemental selenium and maximum for SeO/sub 4/. Soluble nitrogen, in the case of SeO/sub 3/ was higher than for H/sub 2/SeO/sub 3/. Total plant nitrogen and protein also decreased. Amino N, amide N, and ammoniacal and nitrate N increased, compared to the control. The largest amount of all these forms was noted in SeO/sub 4/-treated plants. Overall, among the forms of selenium normally reported in soils, the SeO/sub 4/ form showed the highest inhibition, whereas SeO/sub 3/ showed less than both SeO/sub 4/ and H/sub 2/SeO/sub 3/.« less
The persistent environmental relevance of soil phosphorus sorption saturation
USDA-ARS?s Scientific Manuscript database
Controlling phosphorus (P) loss from agricultural soils remains a priority pollution concern in much of the world. Dissolved forms of P loss are amongst the most difficult to manage. The concept of soil P sorption saturation emerged from the Netherlands in the 1990s and has broad appeal as an enviro...
Wang, Chao; Zou, Li-Min; Wang, Pei-Fang; Lin, Zhi-Ping
2008-05-01
The forms of phosphorus in the surface sediments were extracted and determined sequentially with ethylene dinitrilo tetracetic acid (EDTA) technique in three urban shallow lakes: Lake Xuanwu, Lake Mochou and Lake Daming. The results showed that the iron and calcium-bound phosphate, about accounting for 80%, were the main forms of total phosphorus. The contents of iron bound phosphate in Lake Xuanwu and Lake Mochou were higher than that of Lake Daming, reaching 30%-40%. The organic phosphorus existed mainly in the form of alkali extractable phosphorus, while the contents of acid extractable organic phosphorus were low. However, the proportion of acid extractable organic phosphorus to the total phosphorus can indicate the degree of lake eutrophication.
Estimation of phosphorus flux in rivers during flooding.
Chen, Yen-Chang; Liu, Jih-Hung; Kuo, Jan-Tai; Lin, Cheng-Fang
2013-07-01
Reservoirs in Taiwan are inundated with nutrients that result in algal growth, and thus also reservoir eutrophication. Controlling the phosphorus load has always been the most crucial issue for maintaining reservoir water quality. Numerous agricultural activities, especially the production of tea in riparian areas, are conducted in watersheds in Taiwan. Nutrients from such activities, including phosphorus, are typically flushed into rivers during flooding, when over 90% of the yearly total amount of phosphorous enters reservoirs. Excessive or enhanced soil erosion from rainstorms can dramatically increase the river sediment load and the amount of particulate phosphorus flushed into rivers. When flow rates are high, particulate phosphorus is the dominant form of phosphorus, but sediment and discharge measurements are difficult during flooding, which makes estimating phosphorus flux in rivers difficult. This study determines total amounts of phosphorus transport by measuring flood discharge and phosphorous levels during flooding. Changes in particulate phosphorus, dissolved phosphorus, and their adsorption behavior during a 24-h period are analyzed owing to the fact that the time for particulate phosphorus adsorption and desorption approaching equilibrium is about 16 h. Erosion of the reservoir watershed was caused by adsorption and desorption of suspended solids in the river, a process which can be summarily described using the Lagmuir isotherm. A method for estimating the phosphorus flux in the Daiyujay Creek during Typhoon Bilis in 2006 is presented in this study. Both sediment and phosphorus are affected by the drastic discharge during flooding. Water quality data were collected during two flood events, flood in June 9, 2006 and Typhoon Bilis, to show the concentrations of suspended solids and total phosphorus during floods are much higher than normal stages. Therefore, the drastic changes of total phosphorus, particulate phosphorus, and dissolved phosphorus in rivers during flooding should be monitored to evaluate the loading of phosphorus more precisely. The results show that monitoring and controlling phosphorus transport during flooding can help prevent the eutrophication of a reservoir.
Effects of four different phosphorus-locking materials on sediment and water quality in Xi'an moat.
Wang, Guanbai; Wang, Yi; Guo, Yu; Peng, Dangcong
2017-01-01
To lower phosphorus concentration in Xi'an moat, four different phosphorus-locking materials, namely, calcium nitrate, sponge-iron, fly ash, and silica alumina clay, were selected in this experiment to study their effects on water quality and sediment. Results of the continuous 68-day experiment showed that calcium nitrate was the most effective for controlling phosphorus concentration in overlying and interstitial water, where the efficiency of locking phosphorus was >97 and 90 %, respectively. Meanwhile, the addition of calcium nitrate caused Fe/Al-bound phosphorus (Fe/Al-P) content in sediment declining but Ca-bound phosphorus (Ca-P) and organic phosphorus (OP) content ascending. The phosphorus-locking efficiency of sponge-iron in overlying and interstitial water was >72 and 66 %, respectively. Meanwhile, the total phosphorus (TP), OP, Fe/Al-P, and Ca-P content in sediment increased by 33.8, 7.7, 23.1, and 23.1 %, respectively, implying that under the action of sponge-iron, the locked phosphorus in sediment was mainly inorganic form and the phosphorus-locking efficiency of sponge-iron could be stable and persistent. In addition, the phosphorus-locking efficiency of fly ash was transient and limited, let alone silica alumina clay had almost no capacity for phosphorus-locking efficiency. Therefore, calcium nitrate and sponge-iron were excellent phosphorus-locking agents to repair the seriously polluted water derived from an internal source.
Effect of MgO and MnO on Phosphorus Utilization in P-Bearing Steelmaking Slag
NASA Astrophysics Data System (ADS)
Lin, Lu; Bao, Yan-Ping; Wang, Min; Li, Xiang
2016-04-01
In order to recycle the phosphorus in P-bearing converter slag and make it used as slag phosphate fertilizer, the effect of MgO and MnO in P-bearing steelmaking slag on phosphorus existence form, P2O5 solubility and magnetic separation behavior were researched systematically. The results show that the phosphorus in slag is mainly in the form of n2CaO · SiO2-3CaO · P2O5 (for short nC2S-C3P) solid solution in the P-rich phase for CaO-SiO2-FetO-P2O5-X (X stands for MgO and MnO, respectively). And the increasing of MgO and MnO content has no influence on precipitation of nC2S-C3P solid solution in slag, MnO and MgO mainly enter into RO phase and base phase to form MnFe2O4 and MgFe2O4, which has little effect on the P2O5 content of P-rich phase, so which has little effect on the degree of phosphorus enrichment and phosphorus occurrence form of the P-bearing slag. And adding MgO and MnO into CaO-SiO2-P2O5-Fe2O3 slag system can break the complex net structure formed by Si-O on certain degree, and also hinder the precipitation of β-Ca3(PO4)2 crystal with low citric acid solubility during the melting-cooling process. Therefore, adding appropriate MgO and MnO content into slag can improve the slag P2O5 solubility, but the effect of different amounts of MgO and MnO on the P2O5 solubility has little difference. Meanwhile, adding MgO and MnO into slag can improve the metallization of slag and magnetism of iron-rich phase, make the magnetic substances content increase and separation of phosphorus and iron incomplete, so it is adverse to phosphorus resources recovery from P-bearing slag by magnetic separation method. In order to recycle the phosphorus in P-bearing converter slag, the MgO and MnO content in the P-bearing slag should be controlled in the steelmaking process.
Hypoparathyroidism: what is the best calcium carbonate supplementation intake form?
Gollino, Loraine; Biagioni, Maria Fernanda Giovanetti; Sabatini, Nathalia Regina; Tagliarini, José Vicente; Corrente, José Eduardo; Paiva, Sérgio Alberto Rupp de; Mazeto, Gláucia Maria Ferreira da Silva
2017-11-15
In hypoparathyroidism, calcium supplementation using calcium carbonate is necessary for the hypocalcemia control. The best calcium carbonate intake form is unknown, be it associated with feeding, juice or in fasting. The objective was to evaluate the calcium, phosphorus and Calcium×Phosphorus product serum levels of hypoparathyroidism women after total thyroidectomy, following calcium carbonate intake in three different forms. A crossover study was carried out with patients presenting definitive hypoparathyroidism, assessed in different situations (fasting, with water, orange juice, breakfast with a one-week washout). Through the review of clinical data records of tertiary hospital patients from 1994 to 2010, 12 adult women (18 50 years old) were identified and diagnosed with definitive post-thyroidectomy hypoparathyroidism. The laboratory results of calcium and phosphorus serum levels dosed before and every 30min were assessed, for 5h, after calcium carbonate intake (elementary calcium 500mg). The maximum peak average values for calcium, phosphorus and Calcium×Phosphorus product were 8.63mg/dL (water), 8.77mg/dL (orange juice) and 8.95mg/dL (breakfast); 4.04mg/dL (water), 4.03mg/dL (orange juice) and 4.12mg/dL (breakfast); 34.3mg 2 /dL 2 (water), 35.8mg 2 /dL 2 (orange juice) and 34.5mg 2 /dL 2 (breakfast), respectively, and the area under the curve 2433mg/dLmin (water), 2577mg/dLmin (orange juice) and 2506mg/dLmin (breakfast), 1203mg/dLmin (water), 1052mg/dLmin (orange juice) and 1128mg/dLmin (breakfast), respectively. There was no significant difference among the three different tests (p>0.05). The calcium, phosphorus and Calcium×Phosphorus product serum levels evolved in a similar fashion in the three calcium carbonate intake forms. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Do soils loose phosphorus with dissolved organic matter?
NASA Astrophysics Data System (ADS)
Kaiser, K.; Brödlin, D.; Hagedorn, F.
2014-12-01
During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... 1117-AA66 Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process... establish those chemical mixtures containing red phosphorus or hypophosphorous acid and its salts (hereinafter ``regulated phosphorus'') that shall automatically qualify for exemption from the [[Page 31825...
NASA Astrophysics Data System (ADS)
Doan, Phuong; Berry, Sandra; Markovic, Stefan; Watson, Sue; Mugalingam, Shan; Dittrich, Maria
2016-04-01
Phosphorus (P) is an important macronutrient that can limit aquatic primary production and the risk of harmful algal blooms. Although there is considerable evidence that P release from sediments can represent a significant source of P and burial in sediments returns P to the geological sink; these processes have been poorly characterised. In this study, we applied a non-steady state reactive transport diagenetic model to gain insights into the dynamics of phosphorus binding forms in sediments and the phosphorus cycling of the Bay of Quinte, an embayment of Lake Ontario, Canada. The three basins of the bay (Belleville, Hay Bay and Napanee) that we investigated had differences in their phosphorus binding forms and phosphorus release, reflecting the distinct spatial temporal patterns of land use and urbanization levels in the watershed. Sediment cores from the three stations were collected during summer and under ice cover in 2013-14. Oxygen, pH and redox potential were monitored by microsensors; porewater and sediment solid matter were analyzed for P content, and a sequential extraction was used to analyze P binding forms. In the reaction-transport model, total phosphorus was divided into adsorbed phosphorus, phosphorus bound with aluminium, organic phosphorus, redox sensitive and apatite phosphorus. Using the fluxes of organic and inorganic matter as dynamic boundary conditions, we simulated the depth profiles of solute and solid components. The model closely reproduced the fractionation data of phosphorus binding forms and soluble reactive phosphorus. The past and present P fluxes were calculated and estimated; they related to geochemical conditions, and P binding forms in sediments. Our results show that P release from sediments is dominated by the redox-sentive P fraction accounting for higher percentage at Napanee station. The main P binding form that can be immobilized through diagenesis is apatite P contributing highest P retention at HayBay station. The mass balance of P was closed by our model.
Phosphorus Speciation of Sequential Extracts of Organic Amendments using NMR Spectroscopy
NASA Astrophysics Data System (ADS)
Akinremi, O.
2009-04-01
O.O. 1Akinremi Babasola Ajiboye and Donald N. Flaten 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2NT, Canada We carried out this study in order to determine the forms of phosphorus in various organic amendments using state-of-the art spectroscopic technique. Anaerobically digested biosolids (BIO), hog (HOG), dairy (DAIRY), beef (BEEF) and poultry (POULTRY) manures were subjected to sequential extraction. The extracts were analyzed by solution 31P nuclear magnetic resonance (NMR) spectroscopy. Most of the total P analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) in the sequential extracts of organic amendments were orthophosphate, except POULTRY, which was dominated by organic P. The labile P fraction in all the organic amendments, excluding POULTRY, was mainly orthophosphate P from readily soluble calcium and some aluminum phosphates. In the poultry litter, however, Ca phytate was the main P species controlling P solubility. Such knowledge of the differences in the chemical forms of phosphorus in organic amendments are essential for proper management of these amendments for agro-environmental purposes Key words: organic amendments, solution NMR, sequential fractionation, labile phosphorus
Joson, Cherriday G; Henry, Shayna L; Kim, Sue; Cheung, Mandy Y; Parab, Prajakta; Abcar, Antoine C; Jacobsen, Steven J; Morisky, Donald E; Sim, John J
2016-05-01
The purpose of this study was to determine the influence of patient-reported medication adherence and phosphorus-related knowledge on phosphorus control and pharmacy-reported adherence to phosphorus binding medication among patients on maintenance hemodialysis. Retrospective, cross-sectional cohort study. Seventy-nine hemodialysis patients (mean age 64.2 years, SD = 14 years; 46.8% female) in a stand-alone hemodialysis unit within an integrated learning healthcare system. Ten percent (10%) of subjects were Caucasian, 42% Latino, 19% African American, and 29% Asian. Forty-eight percent had diabetes; 72% had BMI ≥ 30. Inclusion criteria included the provision of survey data and having medication refill data available in the pharmacy system. 77.2% had mean phosphorus levels ≤ 5.5 mg/dL; 22.8% had mean phosphorus levels > 5.5 mg/dL. Subjects were administered the 8-item Morisky Medication Adherence Scale (MMAS-8) and also reported on their phosphorus-related knowledge. Phosphorus levels within an adequate range. The mean serum phosphorus level was 4.96 mg/dL (SD = 1.21). In the well-controlled group, mean phosphorus was 4.44 mg/dL (SD = 0.76). In the poorly controlled group, mean phosphorus was 6.69 mg/dL (SD = 0.74). A total of 61% of patients reported at least some unintentional medication nonadherence, and 48% reported intentional medication nonadherence. Phosphorus-specific knowledge was low, with just under half of patients reporting that they could not name two high-phosphorus foods or identify a phosphorus-related health risk. Phosphorus binder-related nonadherence was substantially higher in the uncontrolled than the controlled group. Adjusting for age, individuals with poorer self-reported binder adherence were less likely to have controlled phosphorus levels (odds ratio = 0.71, P = .06). Phosphorus-related non-adherence, but not low phosphorus-specific knowledge, was associated with poorer phosphorus control. Such findings provide important information for the development of evidence-based strategies for improving phosphorus control among patients on dialysis. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheets, Erik J.; Stach, Eric A.; Yang, Wei -Chang
2015-09-20
The search for alternative earth abundant semiconducting nanocrystals for sustainable energy applications has brought forth the need for nanoscale syntheses beyond bulk synthesis routes. Of particular interest are metal phosphides and derivative I-V-VI chalcogenides including copper phosphide (Cu 3P) and copper thiophosphate (Cu 3PS 4). Herein, we report a one-pot, solution-based synthesis of Cu 3P nanocrystals utilizing an in-situ phosphorus source: phosphorus pentasulfide (P 2S 5) in trioctylphosphine (TOP). By injecting this phosphorus source into a copper solution in oleylamine (OLA), uniform and size controlled Cu 3P nanocrystals with a phosphorous-rich surface are synthesized. The subsequent reaction of the Cumore » 3P nanocrystals with decomposing thiourea forms nanoscale Cu 3PS 4 particles having p-type conductivity and an effective optical band gap of 2.36 eV.« less
Stewart, S R; Emerick, R J; Pritchard, R H
1990-02-01
Sheep were used to study factors previously found to promote silica urolithiasis in a rat model. In addition to high silica, these dietary factors included elevated calcium, a high calcium to phosphorus ratio and alkali-forming effects. Wether lambs had ad libitum access to a diet of 50% of grass hay and 50% ground oats plus supplement. Diet analysis was 3.4% total SiO2, .29% calcium, .25% phosphorus, 11.3% CP and 28% ADF. Treatments (40 lambs/treatment) consisted of a control (C), limestone to increase dietary calcium to .6% (L), L + 1% sodium bicarbonate (LS) and L + 1% ammonium chloride (LA). After a 91-d experimental period followed by a 56-d postexperimental finishing period, silica kidney deposits were found in all treatments, and SiO2 made up 74% to 97% of the urolithic ash. Kidney urolith incidences in the four treatments were C, 7/40; L, 12/40; LS, 20/40; and LA, 9/40. A higher urolith incidence in LS (LS vs C, P less than .05) and a trend toward a higher incidence in L (L vs C, P less than .2), accompanied by elevated urine pH (L = LS greater than C greater than LA, P less than .01), lend support to the concept that high-silica diets having high calcium to phosphorus ratios and alkali-forming potentials contribute to silica urolithiasis.
Moonrungsee, Nuntaporn; Pencharee, Somkid; Jakmunee, Jaroon
2015-05-01
A field deployable colorimetric analyzer based on an "Android mobile phone" was developed for the determination of available phosphorus content in soil. An inexpensive mobile phone embedded with digital camera was used for taking photograph of the chemical solution under test. The method involved a reaction of the phosphorus (orthophosphate form), ammonium molybdate and potassium antimonyl tartrate to form phosphomolybdic acid which was reduced by ascorbic acid to produce the intense colored molybdenum blue. The software program was developed to use with the phone for recording and analyzing RGB color of the picture. A light tight box with LED light to control illumination was fabricated to improve precision and accuracy of the measurement. Under the optimum conditions, the calibration graph was created by measuring blue color intensity of a series of standard phosphorus solution (0.0-1.0mgPL(-1)), then, the calibration equation obtained was retained by the program for the analysis of sample solution. The results obtained from the proposed method agreed well with the spectrophotometric method, with a detection limit of 0.01mgPL(-1) and a sample throughput about 40h(-1) was achieved. The developed system provided good accuracy (RE<5%) and precision (RSD<2%, intra- and inter-day), fast and cheap analysis, and especially convenient to use in crop field for soil analysis of phosphorus nutrient. Copyright © 2015 Elsevier B.V. All rights reserved.
[Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban].
Fan, Hui-hui; Li, Ru-zhong; Pei, Ting-ting; Zhang, Rui-gang
2016-01-15
To investigate the soil phosphorus forms and leaching risk in a typically agricultural catchment of Ershibu River in Hefei Suburban, Chaohu Lake basin, 132 surface soil samples were collected from the catchment area. The spatial distribution of total phosphorus (TP) and bio-available phosphorus (Bio-P), and the spatial variability of soil available phosphorus (Olsen-P) and easy desorption phosphorus (CaCl2-P) were analyzed using the Kriging technology of AreGIS after speciation analysis of soil phosphorus. Moreover, the enrichment level of soil phosphorus was studied, and the phosphorus leaching risk was evaluated through determining the leaching threshold value of soil phosphorus. The results showed that the samples with high contents of TP and Bio-P mainly located in the upstream of the left tributary and on the right side of local area where two tributaries converged. The enrichment rates of soil phosphorus forms were arranged as follows: Ca-P (15.01) > OP (4.16) > TP (3. 42) > IP (2.94) > Ex-P (2.76) > Fe/Al-P (2.43) > Olsen-P (2.34). The critical value of Olsen-P leaching was 18.388 mg x kg(-1), and the leaching samples with values higher than the threshold value accounted for 16.6% of total samples. Generally, the high-risk areas mainly occurred in the upstream of the left tributary, the middle of the right tributary and the local area of the downstream of the area where two tributaries converged.
Phosphorus Control in DRI-EAF Steelmaking: Thermodynamics, Effect of Alumina, and Process Modeling
NASA Astrophysics Data System (ADS)
Tayeb, Mohammed A.
Flexibility in raw materials, the lower natural gas prices, and the increased use of nonconventional Electric Arc Furnace (EAF) steelmaking using up to 100% Direct Reduced Iron (DRI) have prompted a renewed interest in better control of phosphorus. Iron ore and DRI have higher phosphorus and silica compared to scrap. Although significant work has been done on understanding the partitioning of phosphorus between slag and metal for slags with chemistries relevant to those used in the Basic Oxygen Furnace (BOF), there is little reported work on slag chemistries corresponding to that in the EAF when DRI is used (EAF-DRI). In the current research, phosphorus equilibria between molten Fe-P alloys and CaO-SiO2-Al2O3-P 2O5-FeO-MgOsaturated slag system were investigated. An equilibrium correlation for phosphorus partition as a function of slag composition and temperature has been developed and resulted in better predictions compared with those proposed by earlier workers. As well, it is suitable for both BOF and EAF slags and includes coefficients for silica and alumina, unlike previous correlations. Low amounts of Al2O3 are present in EAF and BOF slags, but no appreciable work has been carried out to study the effect of alumina on the phosphorus partition. When DRI is used, the Al2O 3 contents can also be much higher. The data from this work indicates that there is significant reduction in Lp as the alumina fraction in the slag increases. The observed effect of alumina is attributed to its acidity, which contributes to the reduction of the phosphorus capacity of the slag by lowering the activities of iron oxide and calcium oxide. This in turn lowers the activity of oxygen and oxygen ions needed for phosphorus partition to the slag phase. Alumina in such situation is believed to elongate the silicate slag structure by forming [AlO45-]-tetrahedra. However, it is apparent that for higher alumina, lower silica slags the behavior of alumina changes and dephosphorization would improve. Alumina becomes less acidic acting as a diluting agent and probably forming [AlO6 9-]-octahedra according to which alumina is hypothesized to behave amphoterically. While understanding the equilibrium and kinetics of the phosphorus reaction is important in order to improve the ability to remove phosphorus from the melt, practical use of this understanding in industry is limited. Modeling the phosphorus reaction in steelmaking, however, would result in a better and easier use of conceptual understanding by operators and engineers in plants. This work describes dynamic process models for phosphorus and sulfur reactions when using DRI, scrap, and pig iron in EAF steelmaking. The present models are based on the assumption that thermodynamic equilibrium is locally established at the steel-slag interface, the bulk liquid steel and slag remain homogeneous throughout the reaction, and the rate is predominantly controlled by the mass transfer of phosphorus in the metal and slag boundary layers. The models, which consist of a series of rate and mass balance equations, were converted into a Python code and are capable of predicting trajectories of steel and slag phosphorus and sulfur levels as well as slag chemistry and slag liquid and solid phases. The effect of operating variables on the final phosphorus and sulfur contents, for instance the effect of DRI and pig iron P and S concentrations, oxygen use, temperature, melting rates, and flux addition were tested. The results imply that dephosphorization could be improved by maintaining lower bath temperatures for period of time. Additionally, dephosphorization and desulfurization were improved by higher flux addition.
Dissolved organic phosphorus (DOP) and its potential role for ecosystem nutrition
NASA Astrophysics Data System (ADS)
Brödlin, Dominik; Hagedorn, Frank; Kaiser, Klaus
2016-04-01
During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known about the fluxes of dissolved organic phosphorus (DOP) forms and their role in the P cycle. However, there is evidence that DOP is composed of some plant-derived organic phosphorus compounds, such as phytate, which are less mobile and prone to be sorbed to mineral surfaces, whereas microbial-derived compounds like nucleic acids and simple phospho-monoester may represent more mobile forms of soil phosphorus. In our study, we estimated fluxes, composition, and bioavailability of DOP along a gradient in phosphorus availability at five sites on silicate bedrock across Germany (Bad Brückenau, Conventwald, Vessertal, Mitterfels and Lüss) and at a calcareous site in Switzerland (Schänis). Soil solution was collected at 0 down to 60 to 150 cm soil depth at different intervals. Since most solutions had very low P concentrations (<0.05 mg total dissolved P/L), soil solutions had to be concentrated by freeze-drying for the enzymatic characterization of DOP. In order to test the potential bioavailability, we used an enzyme assay distinguishing between phytate-like P (phytate), diester-like P (nucleic acids), monoester-like P (glucose-6-phosphate), and pyrophosphate of bulk molybdate unreactive phosphorus (MUP). First results from the enzymatic assay indicated that monoester-like P and diester-like P were the most prominent form of the hydrolysable DOP constituents. In leachates from the organic layer, there was a high enzymatic activity for monoester-like P, indicating high recycling efficiency and rapid hydrolysis of labile DOP constituents. DOP was the dominating P form in soil solution at some of the sites, with a greater contribution to total dissolved P in winter than in summer. Concentrations of DOP decreased along the phosphorus availability gradient from less to the more developed forest ecosystems.
Zhao, Yaqi; Huang, Lei; Chen, Yucheng
2018-07-01
Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.
NASA Astrophysics Data System (ADS)
Pu, X.; An, R.; Li, R.; Huang, W.; Li, J.
2017-12-01
The objectives of the current study are to investigate the spatial, temperal variation of phisphorus (P) fraction in middle reaches of the Yarlung Zangbo River of China. Samples were collected in April (dry season), August (wet season), and Octber (normal season) along with the middle reaches from Lazi site to Nuxia sitewhich which is about 1000km long. Sequential extraction were applied to determine the forms of phosphorus in suspended particles and to assess the potential bioavailability of particulate P. The results indicated that the distribution of suspended particle size inflenced not only the total phosphorus concentration, but also the proportions of different forms of phosphorus. The exchangeable phosphorus (Ex-P), Fe-bound-P, Ca-bound-P were the most aboundant forms and the highest proportions of total P. The total P concentrations were closely relative to the concentration of suspended particles. According to the characteristics of suspended particles in the Yarlung Zangbo River, the relationship between the suspended particles size and species of phosphorus was established though statistical analysis. The Ex-P increased with the decreasing of suspended particulate size. The content of bioavailable particulate phosphorus varied greatly with the proportions of particulate size. In genral, the higher the proportion of smaller particle size, the higher the content of bioavailable phosphorus. The main factors which affect the phosphorus transportation in Yarlung Zangbo River had also been discussed.
Hou, Jin-Zhi; Wei, Quan; Gao, Li; Sun, Wei-Ming
2013-06-01
Sediments were sampled in the dominated zone of Cladophora sp. in Rongcheng Swan Lake, and cultivated with algae in the laboratory to reveal the influence of Cladophora decomposition on concentrations and forms of phosphorus in the overlying water. Concentrations of total phosphorus (TP), dissolved total phosphorus (DTP), soluble reactive phosphorus (SRP), particulate phosphorus (PP) and dissolved organic phosphorus (DOP) in overlying water were investigated, and some physicochemical parameters, such as dissolved oxygen (DO), pH and conductivity were monitored during the experiment. In addition, the influence of algae decomposition on P release from sediments was analyzed. Due to the decomposition of Cladophora, DO concentration in the overlying water declined remarkably and reached the anoxic condition (0-0.17 mg x L(-1)). The pH value of different treatments also decreased, and treatments with algae reduced by about 1 unit. Concentrations of TP and different P forms all increased obviously, and the increasing extent was larger with the adding algae amount. TP concentrations of different treatments varied from 0.04 mg x L(-1) to 1.34 mg x L(-1). DOP and PP were the main P forms in the overlying water in algae without sediments treatments, but SRP concentrations became much higher in algae with sediments treatments. The result showed that P forms released from decomposing Cladophora were mainly DOP and PP, and the Cladophora decomposition could also promote the sediments to release P into the overlying water.
Phosphorus Equilibria Among Mafic Silicate Phases
NASA Technical Reports Server (NTRS)
Berlin, Jana; Xirouchakis, Dimitris
2002-01-01
Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The data also indicate that DXVliQP2O5 decrease in the same order, but DOVLiQP2O5 and DOpx/LiQP205 are likely constant, respectively equal to 0.08(3) and 0.007(4), in contrast, DG1ILiQP205 increases from 0.15(3) to 0.36(10) as garnet becomes majoritic, thus silica-enriched, and may also depend on liquid composition (SiO2, P2O5 and Na2O wt%).
Yang, Xiao-Li; Song, Hai-Liang; Chen, Ming; Cheng, Bing
2011-10-01
The effect of polymeric ferric chloride (PFC) addition on phosphorus removal and membrane fouling were investigated in an anoxic/oxic submerged membrane bioreactor. The total phosphorus concentration in effluent averaged at 0.26 mg/L with PFC addition of 10-15 mg/L, while the rate of membrane fouling increased 1.6 times over the control MBR (without PFC addition). Three-dimensional excitation-emission matrix fluorescence spectroscopy and Gel Filtration Chromatography analysis indicated that soluble microbial byproduct-like materials and large molecules (M(W)>100 kDa) were one of the main contributors of biofouling. Fourier transform infrared spectrum confirmed that the major components of the cake layer were proteins and polysaccharides materials. Scanning electron microscopy demonstrated that membrane surfaces were covered with compact gel layer formed by organic substances and Energy Dispersive X-ray analysis indicated that ferric metals were the most important inorganic pollutants. Consequently, soluble organic substances and dose of PFC should be controlled to minimize membrane fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Phosphorus-defect interactions during thermal annealing of ion implanted silicon
NASA Astrophysics Data System (ADS)
Keys, Patrick Henry
Ion implantation of dopant atoms into silicon generates nonequilibrium levels of crystal defects that can lead to the detrimental effects of transient enhanced diffusion (TED), incomplete dopant activation, and p-n junction leakage. In order to control these effects, it is vital to have a clear understanding of dopant-defect interactions and develop models that account for these interactions. This research focuses on experimentally investigating and modeling the clustering of phosphorus dopant atoms with silicon interstitials. Damage recovery of 40keV Si+ implants in phosphorus doped wells is experimentally analyzed. The effects of background phosphorus concentration, self implant dose, and anneal temperature are investigated. Phosphorus concentrations ranging from 2.0 x 1017 to 4.0 x 1019 cm-3 and Si+ doses ranging from 5.0 x 1013 cm-2 to 2.0 x 1014 cm-2 are studied during 650-800°C anneals. A dramatic reduction in the number of interstitials bound in {311} defects with increasing phosphorus background concentration is observed. It is suggested that the reduction of interstitials in {311} defects at high phosphorus concentrations is due to the formation of phosphorus-interstitial clusters (PICs). The critical concentration for clustering (approximately 1.0 x 1019 cm-3 at 750°C) is strongly temperature dependent and in close agreement with the kink concentration of phosphorus diffusion. Information gained from these "well experiments" is applied to the study of direct phosphorus implantation. An experimental study is conducted on 40keV phosphorus implanted to a dose of 1.0 x 1014 cm-2 during 650-800°C anneals. Electrically inactive PICs are shown to form at concentrations below the solid solubility limit due to high interstitial supersaturations. Data useful for developing a model to accurately predict phosphorus diffusion under nonequilibrium conditions are extracted from the experimental results. A cluster-mediated diffusion model is developed using the Florida Object Oriented Process Simulator (FLOOPS). The nucleation of defects is controlled by the diffusion-limited competition for excess interstitials between PICs and {311} clusters. The release of interstitials is driven by cluster dissolution. Modeling results show a strong correlation to those experimentally observed over a wide temporal and thermal domain using a single set of parameters. Improvements in process simulator accuracy are demonstrated with respect to dopant activation, TED, and dose loss.
Speciation of phosphorus in the continental shelf sediments in the Eastern Arabian Sea
NASA Astrophysics Data System (ADS)
Acharya, Shiba Shankar; Panigrahi, Mruganka Kumar; Kurian, John; Gupta, Anil Kumar; Tripathy, Subhasish
2016-03-01
The distributions of various forms of phosphorus (P) and their relation with sediment geochemistry in two core sediments near Karwar and Mangalore offshore have been studied through the modified SEDEX procedure (Ruttenberg et al., 2009) and bulk chemical analysis. The present study provides the first quantitative analysis of complete phosphorus speciation in the core sediments of the Eastern Arabian shelf. The chemical index of alteration (CIA), chemical Index of Weathering (CIW) and Al-Ti-Zr ternary diagram suggest low to moderate source area weathering of granodioritic to tonalitic source rock composition, despite the intense orographic rainfall in the source area. Due to the presence of same source rock and identical oxic depositional environment, the studied sediments show the same range of variation of total phosphorus (24 to 83 μmol/g) with a down-depth depleting trend. Organic bound P and detrital P are the two major chemical forms followed by iron-bound P, exchangeable/loosely bound P and authigenic P. The authigenic P content in the sediments near Mangalore coast varies linearly with calcium (r=0.88) unlike that of Karwar coast. The different reactive-phosphorus pools exhibit identical depleting trend with depth. This indicates that the phosphorus released from the organic matter and Fe bound fractions are prevented from precipitating as authigenic phosphates in the deeper parts of the sediment column. The low concentration of total P, dominance of detrital non-reactive fraction of P and inhibition of formation of authigenic phosphate result in the absence of active phosphatization in the Eastern Arabian Shelf in the studied region. High sedimentation rate (35-58 cm/kyr) and absence of winnowing effect appear to be the dominant factor controlling the P-speciation in the studied sediments.
Mohsin, Samreen; Maqbool, Asma; Ashraf, Mehwish; Malik, Kauser Abdulla
2017-08-01
A significant portion of organic phosphorus comprises of phytates which are not available to wheat for uptake. Hence for enabling wheat to utilize organic phosphorus in form of phytate, transgenic wheat expressing phytase from Aspergillus japonicus under barley root-specific promoter was developed. Transgenic events were initially screened via selection media containing BASTA, followed by PCR and BASTA leaf paint assay after hardening. Out of 138 successfully regenerated T o events, only 12 had complete constructs and thus further analyzed. Positive T1 transgenic plants, grown in sand, exhibited 0.08-1.77, 0.02-0.67 and 0.44-2.14 fold increase in phytase activity in root extracts, intact roots and external root solution, respectively, after 4 weeks of phosphorus stress. Based on these results, T2 generation of four best transgenic events was further analyzed which showed up to 1.32, 56.89, and 15.40 fold increase in phytase activity in root extracts, intact roots and external root solution, respectively, while in case of real-time PCR, maximum fold increase of 19.8 in gene expression was observed. Transgenic lines showed 0.01-1.18 fold increase in phosphorus efficiency along with higher phosphorus content when supplied phytate or inorganic phosphorus than control plants. Thus, this transgenic wheat may aid in reducing fertilizer utilization and enhancing wheat yield.
Land-use impact on selected forms of arsenic and phosphorus in soils of different functions
NASA Astrophysics Data System (ADS)
Plak, Andrzej; Bartmiński, Piotr; Dębicki, Ryszard
2017-10-01
The aim of the study was to assess the impact of technosols and geomechanically unchanged soils of the Lublin agglomeration on the concentrations of arsenic and phosphorus, and on selected forms of these elements. Arsenic and phosphorus concentrations were determined in the urban soils of Lublin (Poland), and the relationship between their degree of contamination and different types of land use was estimated. The samples collected were subjected to sequential analysis, using ammonium sulphate, acid ammonium phosphate, oxalate buffer (also with ascorbic acid) and aqua regia for arsenic, and ammonium chloride, sodium hydroxide, hydrochloric acid and aqua regia for phosphorus. The influence of the land use forms was observed in the study. The greatest amount of arsenic (19.62 mg kg-1) was found in the industrial soils of Lublin, while the greatest amount of phosphorus (580.4 mg kg-1) was observed in non-anthropogenic soils (mainly due to the natural accumulation processes of this element). Fractions of arsenic and phosphorus obtained during analysis showed strong differentiation. Amorphic and crystalline fractions of arsenic, bound with iron oxides, proved to have the highest share in the total arsenic pool. The same situation was noted for phosphorus.
NASA Astrophysics Data System (ADS)
Atlas, Z. D.; Pasek, M. A.; Sampson, J.
2014-12-01
Phosphorus is a geologically important element making up approximately 0.12 % of the Earth's crust. It is commonly found as relatively insoluble apatite and this causes phosphorus to be a limiting nutrient in biologic processes. Despite this, phosphorus is a key element in DNA, RNA and other cellular materials. Recent works suggest that reduced phosphorus played a substantial role in the development of life on the early Earth. Reduced phosphorus is considerably more soluble than oxidized phosphorus, and reduced phosphorus may continue to play a role in biologic productivity. This study examines a new methodology for quantification of reduced phosphorus separated by coupled HPLC - ICP-MS. We show that phosphorus species (P1+, P3+ and P5+) are cleanly separated in the HPLC and coupled with the ICP-MS reaction cell (using O2 gas) effectively convert elemental P to P-O producing lower background and flatter baseline chromatography. Results suggest very low detection limits (0.05 mM) for P species analyzed as P-O at M/Z = 47. Additionally this technique has potential to speciate at least 5 other metastable forms of phosphorus. We verified this method on numerous materials including leached Archean rocks to suburban retention pond waters and many samples show small but detectible levels of reduced phosphorus. These data highlight a significant role of redox processing of phosphorus throughout the history of the Earth, with the reduced oxidation state phosphorus compounds, phosphite and hypophosphite, potentially acting as significant constituents in the anaerobic environment.
Galeone, Daniel G.
1996-01-01
The U.S. Geological Survey and the Bureau of Land and Water Conservation of the Pennsylvania Department of Environmental Protection conducted a cooperative study to determine the effects of manure application and antecedent soil-phosphorus concentrations on the transport of phosphorus from the soil of a typical farm site in Lancaster County, Pa., from September 1992 to March 1995. The relation between concentrations of soil phosphorus and phosphorus transport needs to be identified because excessive phosphorus concentrations in surface-water bodies promote eutrophication.The objective of the study was to quantify and determine the significance of chemical, physical, and hydrologic factors that affected phosphorus transport. Three study plots less than 1 acre in size were tilled and planted in silage corn. Phosphorus in the form of liquid swine and dairy manure was injected to a depth of 6-8 inches on two of the three study plots in May 1993 and May 1994. Plot 1 received no inputs of phosphorus from manure while plots 2 and 3 received an average of 56 and 126 kilograms of phosphorus per acre, respectively, from the two manure applications. No other fertilizer was applied to any of the study plots. From March 30, 1993, through December 31, 1993, and March 10, 1994, through August 31, 1994 (the study period), phosphorus and selected cations were measured in precipitation, manure, soil, surface runoff, subsurface flow (at 18 inches below land surface), and corn plants before harvest. All storm events that yielded surface runoff and subsurface flow were sampled. Surface runoff was analyzed for dissolved (filtered through a 0.45-micron filter) and total concentrations. Subsurface flow was only analyzed for dissolved constituents. Laboratory soil-flask experiments and geochemical modeling were conducted to determine the maximum phosphate retention capacity of sampled soils after manure applications and primary mineralogic controls in the soils that affect phosphate equilibrium processes.Physical characteristics, such as particle-size distributions in soil, the suspended sediment and particle-size distribution in surface runoff, and surface topography, were quantified. Hydrologic characteristics, such as precipitation intensity and duration, volumes of surface runoff, and infiltration rates of soil, were also monitored during the study period. Volumes of surface runoff differed by plot.Volumes of surface runoff measured during the study period from plots 1 (0.43 acres), 2 (0.23 acres), and 3 (0.28 acres) were 350,000, 350,000, and 750,000 liters per acre, respectively. About 90 percent of the volume of surface runoff occurred after October 1993 because of the lack of intense precipitation from March 30, 1993, through November 30, 1993. For any one precipitation amount, volumes of surface runoff increased with an increase in the maximum intensity of precipitation and decreased with an increase in storm duration. The significantly higher volume of surface runoff for plot 3 relative to plots 1 and 2 was probably caused by lower infiltration rates on plot 3.Soil concentrations of plant-available phosphorus (PAP) for each study plot were high (31-60 parts per million) to excessive (greater than 60 parts per million) for each depth interval (0-6, 6-12, and 12- 24 inches) and sampling period except for some samples collected at depths of 12-24 inches. The high levels of PAP before manure applications made it difficult to detect any changes in the concentration of soil PAP caused by manure applications. Manure applications to the study area prior to this study resulted in relatively high concentrations of soil PAP; however, the manure applications to plot 3 during the study period did cause an increase in the soil concentration of PAP after the second manure application. The percentages of total phosphorus in plant-available and inorganic forms were about 5 and 80 percent, respectively, in the 0-24--inch depth interval of soil on the study plots. Concentrations of total phosphorus on sand, silt, and clay particles from soil were 700, 1,000, and 3,400 parts per million, respectively. About 70 percent of the total mass of phosphorus in soil to a depth of 24 inches was associated with silt and clay particles.Soil-flask experiments indicated that soils from the study plots were not saturated with respect to phosphorus. Soils had the capacity to retain 694 to 1,160 milligrams of phosphorus per kilogram of soil. The measured retention capacity probably exceeded the actual retention capacity of soil because laboratory conditions optimized the contact time between soil and test solutions.Geochemical modeling indicated that the primary mineralogical controls on the concentration of dissolved phosphorus in surface runoff and subsurface flow were aluminum and iron oxides and strengite (if it exists). Aluminum and iron oxides bind phosphate in solution and strengite is an iron-phosphate mineral. The mineralization of organic phosphorus into dissolved inorganic forms could also supply phosphorus to surface runoff and subsurface flow.Phosphorus inputs to the plots during the study period were from precipitation and manure. Phosphorus inputs from precipitation were negligible. The loads of phosphorus to the plots from manure applications in May 1993 and May 1994 were 112 and 251 kilograms per acre for plots 2 and 3, respectively; about 60 percent of the load occurred in 1994.Phosphorus outputs in surface runoff differed between study plots. The cumulative yields of total phosphorus during the study period for plots 1, 2, and 3 were 1.12, 1.24, and 1.69 kilograms per acre, respectively. Differences between plots were primarily evident for dissolved yields of phosphorus. The percentage of the total phosphorus output in surface runoff that was in the dissolved phase varied from 6 percent for plot 1 to 26 percent for plot 3.The cumulative yields of dissolved phosphorus from plots 2 and 3 were 135 and 500 percent greater, respectively, than the dissolved yield from plot 1. Even though volumes of surface runoff were different on the plots, the primary cause of the difference between plots in the yield of dissolved phosphorus in surface runoff was differences in the concentration of dissolved phosphorus. After the second manure application, concentrations of dissolved phosphorus in surface runoff on plots 2 and 3 were significantly higher than the concentration for plot 1.An increase in the concentration of dissolved phosphorus in subsurface flow from plots 2 and 3 was measured after manure applications. The mean concentrations of dissolved phosphorus in subsurface flow after the first manure application were 0.29, 0.57, and 1.45 milligrams per liter of phosphorus for plots 1, 2, and 3, respectively.The loss of dissolved phosphorus in surface runoff was related to the soil concentration of PAP. The model relating dissolved phosphorus in surface runoff to soil PAP indicated that concentrations of dissolved phosphorus in surface runoff would exceed 0.1 milligram per liter if soil concentrations of PAP exceeded 9 parts per million; this PAP concentration was exceeded by each study plot. Over 50 percent of the variation of dissolved phosphorus in surface runoff was explained by soil concentrations of PAP in the 0-6-inch depth interval.The loss of suspended phosphorus in surface runoff was primarily affected by the particle-size distribution of suspended sediment in surface runoff. Surface runoff was enriched with fines relative to the soil matrix. Generally, over 90 percent of sediment in runoff was comprised of silt and clay particles; only 50-60 percent of particle sizes from the intact soil matrix were in the silt- to clay-size range. Concentrations of suspended phosphorus in surface runoff were not significantly related to soil concentrations of total phosphorus in the 0-6-inch depth interval.Concentrations of dissolved phosphorus in subsurface flow were also related to soil concentrations of PAP. The relation indicated that dissolved concentrations of phosphorus in subsurface flow would exceed 0.1 milligram per liter if soil concentrations of PAP in the 0-6-inch depth interval of soil were greater than 49 parts per million; this PAP concentration was exceeded by each study plot.The significant relation of high concentrations of dissolved phosphorus in water to soil concentrations of PAP indicated that soils with comparable concentrations of soil PAP would be potential sources of dissolved phosphorus to surface water and subsurface water tables. The percentage of the total phosphorus lost from a system in the dissolved form increased as soil concentrations of PAP increased. This indicates that best-management practices to reduce phosphorus losses from this system not only need to target suspended forms of phosphorus but also dissolved forms. Practices aimed at reducing the loss of dissolved phosphorus from the system increase in importance with an increase in soil concentrations of PAP.
Yuan, Min; Wen, Shi-Lin; Xu, Ming-Gang; Dong, Chun-Hua; Qin, Lin; Zhang, Lu
2013-11-01
Taking a large standard runoff plot on a red soil slope in Qiyang County, southern Hunan Province as a case, this paper studied the surface soil phosphorus loss characteristics in the hilly red soil regions of southern Hunan under eight ecological planting patterns. The phosphorus loss from wasteland (T1) was most serious, followed by that from natural sloped cropping patterns (T2 and T3), while the phosphorus loss amount from terrace cropping patterns (T4-T8) was the least, only occupying 9.9%, 37%, 0.7%, 2.3%, and 1.9% of T1, respectively. The ecological planting patterns directly affected the forms of surface-lost soil phosphorus, with the particulate phosphorus (PP) as the main lost form. Under the condition of rainstorm (daily rainfall > 50 mm), rainfall had lesser effects on the phosphorus loss among different planting patterns. However, the phosphorus loss increased with increasing rain intensity. The surface soil phosphorus loss mainly occurred from June to September. Both the rainfall and the rain intensity were the factors directly affected the time distribution of surface soil phosphorus loss in hilly red soil regions of southern Hunan.
NASA Astrophysics Data System (ADS)
Aykol, Muratahan; Doak, Jeff W.; Wolverton, C.
2017-06-01
We evaluate the energetic stabilities of white, red, and black allotropes of phosphorus using density functional theory (DFT) and hybrid functional methods, van der Waals (vdW) corrections (DFT+vdW and hybrid+vdW), vdW density functionals, and random phase approximation (RPA). We find that stability of black phosphorus over red-V (i.e., the violet form) is not ubiquitous among these methods, and the calculated enthalpies for the reaction phosphorus (red-V)→phosphorus (black) are scattered between -20 and 40 meV/atom. With local density and generalized gradient approximations, and hybrid functionals, mean absolute errors (MAEs) in densities of P allotropes relative to experiments are found to be around 10%-25%, whereas with vdW-inclusive methods, MAEs in densities drop below ˜5 %. While the inconsistency among the density functional methods could not shed light on the stability puzzle of black versus red phosphorus, comparison of their accuracy in predicting densities and the supplementary RPA results on relative stabilities indicate that opposite to the common belief, black and red phosphorus are almost degenerate, or the red-V (violet) form of phosphorus might even be the ground state.
The availability of dissolved organic phosphorus compounds to marine phytoplankton
NASA Astrophysics Data System (ADS)
Hua-Sheng, Hong; Hai-Li, Wang; Bang-Qin, Huang
1995-06-01
The availability of three dissolved organic phosphorus (DOP) compounds as nutrient sources for experimental culture of three algae was studied. Results indicated that these compounds could be utilized by algae, and that dissolved inorganic phosphorus (DIP) was first to be uptaken when various forms of phosphorus (DIP and DOP) co-existed. Dicrateria zhanjiangensis' uptake of sodium glycerophosphate was faster than that of D-ribose-5-phosphate. The increase of sodium glycerophosphate had little effect on the maximum uptake rate( V max) of Chlorella sp., but increased the semisaturation constant( K s) remarkably; the photosynthesis rates(PR) of Dicrateria zhanjiangensis and Chlorella sp. were rarely affected by using various forms of phosphorus in the culture experiments. The possible DOP pathways utilized by algae are discussed.
Phosphorus content in three physical fractions of typical Chernozem
NASA Astrophysics Data System (ADS)
Kotelnikova, Anna; Egorova, Zoya; Sushkov, Nikolai; Matveeva, Natalia; Fastovets, Ilya; Rogova, Olga; Volkov, Dmitriy
2017-04-01
The widespread use of fertilizers makes it necessary to study not only the content but also the forms of occurrence of nutrients in soil, as well as the phase in which nutrients are transferred. These characteristics determine the availability of chemical elements for plants, but remain insufficiently studied. In this work we attempted to gain insight into the distribution of organo-mineral fractions in agriculturally used Chernozem from Voronezh (Russia) and the distribution of phosphorus - one of the most important nutrient elements - in this type of soil. We compared the distributions of phosphorus in physical fractions of the soil in 3 experimental groups: the control group (without fertilizers), the group fertilized with 1 dose of NPK, and the group fertilized with 2 doses of NPK. The soil was sampled during the period of treatment with fertilizers and during the period of aftereffect (4 years after the last application of fertilizers). In order to analyze organo-mineral fractions, we used size-density fractionation to separate the soil samples into three physical fractions: clay-associated fraction with particle size < 1μm (CF), light fraction with particle density < 2.0 g cm-3 (LF), and residual fraction > 2.0 g cm-3 (RF). Total phosphorus content (TPC) in the fractions was determined with Agilent 5100 ICP-AES spectrometer. To compare groups, simultaneous confidence intervals were computed from pooled variance estimators in ANOVA, and Fisher's LSD test was used. We showed that during the period of treatment with fertilizers LF increased proportionally to the dose of fertilizers, and a simultaneous reduction in RF was observed. During the period of aftereffect, the content of these fractions tended to the control value. The increase of LF may indicate increasing availability of nutrients, since this fraction is likely to participate in biological cycles. The analysis of TPC in fractions suggested that during the period of treatment with fertilizers most of phosphorus accumulates in CF. In the group with double dose of fertilizers TPC in CF was more than 1.5 times higher than in the control, while for LF the increase in TPC was not significant, and RF TPC was practically the same as in the control. Association of phosphorus predominantly with CF suggests that phosphorus was mainly adsorbed to the surface of clay particles rather than to organic components. Therefore, despite the increase in CF TPC as a consequence of treatment with fertilizers, the increase in availability of phosphorus is questionable. In the aftereffect period no significant differences in TPC were found. In conclusion, we showed that availability of fertilizers may be dependent on fractional composition of soil. Under our experimental conditions, phosphorus tended to bind predominantly to clay particles. However, in the aftereffect period, fractionation of TPC was similar to the control, indicating the need to further investigate the fate of phosphorus in soils.
Conjugate and method for forming aminomethyl phosphorus conjugates
Katti, Kattesh V.; Berning, Douglas E.; Volkert, Wynn A.; Ketring, Alan R.; Churchill, Robert
1999-01-01
A method of forming phosphine-amine conjugates includes reacting a hydroxymethyl phosphine group of an amine-free first molecule with at least one free amine group of a second molecule to covalently bond the first molecule with the second molecule through an aminomethyl phosphorus linkage and the conjugates formed thereby.
Colman, John A.
2005-01-01
Surface-water resources in Massachusetts often are affected by eutrophication, excessive plant growth, which has resulted in impaired use for a majority of the freshwater ponds and lakes and a substantial number of river-miles in the State. Because supply of phosphorus usually is limiting to plant growth in freshwater systems, control of phosphorus input to surface waters is critical to solving the impairment problem. Wastewater is a substantial source of phosphorus for surface water, and removal of phosphorus before disposal may be necessary. Wastewater disposed onland by infiltration loses phosphorus from the dissolved phase during transport through the subsurface and may be an effective disposal method; quantification of the phosphorus loss can be simulated to determine disposal feasibility. In 2003, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated a project to simulate distance of phosphorus transport in the subsurface for plausible conditions of onland wastewater disposal and subsurface properties. A coupled one-dimensional unsaturated-zone and three-dimensional saturated-zone reactive-solute-transport model (PHAST) was used to simulate lengths of phosphorus plumes. Knowledge of phosphorus plume length could facilitate estimates of setback distances for wastewater-infiltration sites from surface water that would be sufficient to protect the surface water from eutrophication caused by phosphorus transport through the subsurface and ultimate discharge to surface water. The reactive-solute-transport model PHAST was used to simulate ground-water flow, solute transport, equilibrium chemistry for dissolved and sorbed species, and kinetic regulation of organic carbon decomposition and phosphate mineral formation. The phosphorus plume length was defined for the simulations as the maximum extent of the contour for the 0.015 milligram-per-liter concentration of dissolved phosphorus downgradient from the infiltration bed after disposal cessation. Duration of disposal before cessation was assumed to be 50 years into an infiltration bed of 20,000 square feet at the rate of 3 gallons per square foot per day. Time for the maximum extent of the phosphorus plume to develop is on the order of 100 years after disposal cessation. Simulations indicated that phosphorus transport beyond the extent of the 0.015 milligram-per-liter concentration contour was never more than 0.18 kilogram per year, an amount that would likely not alter the ecology of most surface water. Simulations of phosphorus plume lengths were summarized in a series of response curves. Simulated plume lengths ranged from 200 feet for low phosphorus-concentration effluents (0.25 milligram per liter) and thick (50 feet) unsaturated zones to 3,400 feet for high phosphorus-concentration effluents (14 milligrams per liter) discharged directly into the aquifer (unsaturated-zone thickness of 0 feet). Plume length was nearly independent of unsaturated-zone thickness at phosphorus concentrations in the wastewater that were less than 2 milligrams per liter because little or no phosphorus mineral formed at low phosphorus concentrations. For effluents of high phosphorus concentration, plume length varied from 3,400 feet for unsaturated-zone thickness of 0 to 2,550 feet for unsaturated-zone thickness of 50 feet. Model treatments of flow and equilibrium-controlled chemistry likely were more accurate than rates of kinetically controlled reactions, notably precipitation of iron-phosphate minerals; the kinetics of such reactions are less well known and thus less well defined in the model. Sensitivity analysis indicated that many chemical and physical aquifer properties, such as hydraulic gradient and model width, did not affect the simulated plume length appreciably, but duration of discharge, size of infiltration bed, amount of dispersion, and number of sorption sites on the aquifer sediments did affect plume length ap
Ryder, Christopher R; Wood, Joshua D; Wells, Spencer A; Yang, Yang; Jariwala, Deep; Marks, Tobin J; Schatz, George C; Hersam, Mark C
2016-06-01
Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)-a layered two-dimensional semiconductor-exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure. This chemical modification scheme spontaneously forms phosphorus-carbon bonds, has a reaction rate sensitive to the aryl diazonium substituent and alters the electronic properties of exfoliated BP, ultimately yielding a strong, tunable p-type doping that simultaneously improves the field-effect transistor mobility and on/off current ratio. This chemical functionalization pathway controllably modifies the properties of exfoliated BP, and thus improves its prospects for nanoelectronic applications.
NASA Astrophysics Data System (ADS)
Ryder, Christopher R.; Wood, Joshua D.; Wells, Spencer A.; Yang, Yang; Jariwala, Deep; Marks, Tobin J.; Schatz, George C.; Hersam, Mark C.
2016-06-01
Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)—a layered two-dimensional semiconductor—exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure. This chemical modification scheme spontaneously forms phosphorus-carbon bonds, has a reaction rate sensitive to the aryl diazonium substituent and alters the electronic properties of exfoliated BP, ultimately yielding a strong, tunable p-type doping that simultaneously improves the field-effect transistor mobility and on/off current ratio. This chemical functionalization pathway controllably modifies the properties of exfoliated BP, and thus improves its prospects for nanoelectronic applications.
Hydrologic and biogeochemical controls on phosphorus export from western Lake Erie tributaries
USDA-ARS?s Scientific Manuscript database
Understanding the processes controlling phosphorus (P) export from agricultural watersheds is essential for predicting and mitigating adverse environmental impacts. In this study, discharge, dissolved reactive phosphorus load, and total phosphorus load time series data (1975-2014) from two Lake Erie...
Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato
2001-01-01
A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.
Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato
2001-01-01
A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.
2012-01-01
The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich PS layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700°C and 950°C under a controlled O2 atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus-doped PS layer. The effect of this gettering procedure was investigated by means of internal quantum efficiency and the dark current–voltage (I-V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark I-V curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved with regard to the ungettered one, which proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells. PMID:22846070
Sullivan, Catherine; Sayre, Srilekha S; Leon, Janeen B; Machekano, Rhoderick; Love, Thomas E; Porter, David; Marbury, Marquisha; Sehgal, Ashwini R
2009-02-11
High dietary phosphorus intake has deleterious consequences for renal patients and is possibly harmful for the general public as well. To prevent hyperphosphatemia, patients with end-stage renal disease limit their intake of foods that are naturally high in phosphorus. However, phosphorus-containing additives are increasingly being added to processed and fast foods. The effect of such additives on serum phosphorus levels is unclear. To determine the effect of limiting the intake of phosphorus-containing food additives on serum phosphorus levels among patients with end-stage renal disease. Cluster randomized controlled trial at 14 long-term hemodialysis facilities in northeast Ohio. Two hundred seventy-nine patients with elevated baseline serum phosphorus levels (>5.5 mg/dL) were recruited between May and October 2007. Two shifts at each of 12 large facilities and 1 shift at each of 2 small facilities were randomly assigned to an intervention or control group. Intervention participants (n=145) received education on avoiding foods with phosphorus additives when purchasing groceries or visiting fast food restaurants. Control participants (n=134) continued to receive usual care. Change in serum phosphorus level after 3 months. At baseline, there was no significant difference in serum phosphorus levels between the 2 groups. After 3 months, the decline in serum phosphorus levels was 0.6 mg/dL larger among intervention vs control participants (95% confidence interval, -1.0 to -0.1 mg/dL). Intervention participants also had statistically significant increases in reading ingredient lists (P<.001) and nutrition facts labels (P = .04) but no significant increase in food knowledge scores (P = .13). Educating end-stage renal disease patients to avoid phosphorus-containing food additives resulted in modest improvements in hyperphosphatemia. clinicaltrials.gov Identifier: NCT00583570.
NASA Astrophysics Data System (ADS)
Mahaffey, C.; Reynolds, S.; Davis, C. E.; Lohan, M. C.
2016-02-01
Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low in the surface ocean and limit biological activity. In response to phosphate limitation, organisms produce phosphohydrolytic enzymes, such as alkaline phosphatases (AP), that enable them to utilize the more replete dissolved organic phosphorus (DOP) pool to meet their cellular phosphorus demands. Synthesis of data from the surface ocean from 14 open ocean studies reveals an inverse hyperbolic relationship between phosphate and AP, where AP is significantly induced at phosphate concentrations below 50 nM and DOP concentrations decrease as AP increases. AP activity was significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM). While the phosphate concentration may have a first order control on the rates of AP, we demonstrate that other factors influence AP activity. AP are metalloenzymes and zinc and iron are co-factors of the AP proteins PhoA and PhoX, respectively. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increases the rate of AP. To our knowledge, our results are the first direct field-based evidence that AP activity is limited by zinc in the subtropical ocean. In colonies of nitrogen fixer, Trichodesmium, we found enhanced expression of the phoA gene in a region of elevated zinc concentrations and enhanced expression of the phoX gene in a region of elevated iron concentrations around the intertropical convergence zone. Our study highlights the potential link between the phosphorus cycle and trace metals, specifically zinc and iron, and implies that there is potential for zinc-phosphorus and iron-phosphorus co-limitation in the ocean via AP.
NMR and mass spectrometry of phosphorus in wetlands
El-Rifai, H.; Heerboth, M.; Gedris, T.E.; Newman, S.; Orem, W.; Cooper, W.T.
2008-01-01
There is at present little information on the long-term stability of phosphorus sequestered in wetlands. Phosphorus sequestered during high loading periods may be relatively unstable and easily remobilized following changes in nutrient status or hydrological regime, but the chemical forms of sequestered phosphorus that do remobilize are largely unknown at this time. A lack of suitable analytical techniques has contributed to this dearth of knowledge regarding the stability of soil organic phosphorus. We analysed phosphorus in soils from the 'head' of Rescue Strand tree island and an adjacent marsh in the Florida Everglades by 31P nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Tree islands are important areas of biodiversity within the Everglades and offer a unique opportunity to study phosphorus sequestration because they are exposed to large phosphorus loads and appear to be natural nutrient sinks. The 31P NMR profiling of extracts from surface and sediment samples in the tree island indicates that phosphorus input to Rescue Strand tree island soils is mostly in the form of inorganic ortho-phosphate and is either refractory when deposited or rapidly recycled by the native vegetation into a stable phosphorus pool largely resistant to re-utilization by plants or microbes. Mass spectrometry revealed the presence of inositol hexakisphosphate, a common organic monophosphate ester not previously observed in Everglades' soils. ?? 2008 The Authors.
Three years experience of operating and selling recovered struvite from full-scale plant.
Ueno, Y; Fujii, M
2001-11-01
The adoption of phosphorus removal at sewage treatment works (STW) creates two main problems. Firstly large amounts of sludge are produced and secondly the quantity of the effluent deteriorates due to the increase in the phosphorus load of the sidestream. Furthermore, these processes do not remove phosphorus in a form that would enable it to be recycled. Therefore in order to control these process difficulties and produce a recyclable phosphorus product a sidestream struvite crystallisation reactor was developed. The struvite was produced in a fluidised bed reactor using dewatered filtrate from anaerobic sludge digestion. Magnesium hydroxide was added in a magnesium to phosphate ratio of 1:1 and the pH was adjusted to between 8.2-8.8 with the addition of sodium hydroxide. A retention time of 10 days alowed the growth of pellets between 0.5-1.0 mm in size. The recovered struvite contained only minute traces of toxic substances and was sold to fertiliser companies for 27,000 yen tonne(-1). It is used to enhance existing fertilisers, which are widely used on paddy rice, vegetables and flowers.
Controlled doping by self-assembled dendrimer-like macromolecules
NASA Astrophysics Data System (ADS)
Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping
2017-02-01
Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 1017 cm-3. Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon.
Gering, Kevin L; Stewart, Frederick F; Wilson, Aaron D; Stone, Mark L
2014-10-28
An electrode comprising a polyphosphazene cyclomatrix and particles within pores of the polyphosphazene cyclomatrix. The polyphosphazene cyclomatrix comprises a plurality of phosphazene compounds and a plurality of cross-linkages. Each phosphazene compound of the plurality of phosphazene compounds comprises a plurality of phosphorus-nitrogen units, and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. Each phosphorus-nitrogen unit is bonded to an adjacent phosphorus-nitrogen unit. Each cross-linkage of the plurality of cross-linkages bonds at least one pendant group of one phosphazene compound of the plurality of phosphazene compounds with the at least one pendant group of another phosphazene compound of the plurality of phosphazene compounds. A method of forming a negative electrode and an electrochemical cell are also described.
NASA Astrophysics Data System (ADS)
Tregulov, V. V.; Litvinov, V. G.; Ermachikhin, A. V.
2018-01-01
Temperature dependences of current-voltage characteristics of the photoelectric converter with an antireflective film of porous silicon and an n + -p-junction formed by thermal diffusion of phosphorus from a porous film is studied. The porous silicon film was saturated with phosphorus during its growing by electrochemical method. It is shown that the current flow processes in the structure under study are significantly influenced by traps.
Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects
NASA Astrophysics Data System (ADS)
Kaur, Parvinder; Satyanarayana, T.
The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.
Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.
Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E
2009-05-01
Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.
First-principles study of the effect of phosphorus on nickel grain boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenguan; Ren, Cuilan; Han, Han, E-mail: hanhan@sinap.ac.cn, E-mail: xuhongjie@sinap.ac.cn
2014-01-28
Based on first-principles quantum-mechanical calculations, the impurity-dopant effects of phosphorus on Σ5(012) symmetrical tilt grain boundary in nickel have been studied. The calculated binding energy suggests that phosphorus has a strong tendency to segregate to the grain boundary. Phosphorus forms strong and covalent-like bonding with nickel, which is beneficial to the grain boundary cohesion. However, a too high phosphorus content can result in a thin and fragile zone in the grain boundary, due to the repulsion between phosphorus atoms. As the concentration of phosphorus increases, the strength of the grain boundary increases first and then decreases. Obviously, there exists anmore » optimum concentration for phosphorus segregation, which is consistent with observed segregation behaviors of phosphorus in the grain boundary of nickel. This work is very helpful to understand the comprehensive effects of phosphorus.« less
The distribution of soil phosphorus for global biogeochemical modeling
Yang, Xiaojuan; Post, Wilfred M.; Thornton, Peter E.; ...
2013-04-16
We discuss that phosphorus (P) is a major element required for biological activity in terrestrial ecosystems. Although the total P content in most soils can be large, only a small fraction is available or in an organic form for biological utilization because it is bound either in incompletely weathered mineral particles, adsorbed on mineral surfaces, or, over the time of soil formation, made unavailable by secondary mineral formation (occluded). In order to adequately represent phosphorus availability in global biogeochemistry–climate models, a representation of the amount and form of P in soils globally is required. We develop an approach that buildsmore » on existing knowledge of soil P processes and databases of parent material and soil P measurements to provide spatially explicit estimates of different forms of naturally occurring soil P on the global scale. We assembled data on the various forms of phosphorus in soils globally, chronosequence information, and several global spatial databases to develop a map of total soil P and the distribution among mineral bound, labile, organic, occluded, and secondary P forms in soils globally. The amount of P, to 50cm soil depth, in soil labile, organic, occluded, and secondary pools is 3.6 ± 3, 8.6 ± 6, 12.2 ± 8, and 3.2 ± 2 Pg P (Petagrams of P, 1 Pg = 1 × 10 15g) respectively. The amount in soil mineral particles to the same depth is estimated at 13.0 ± 8 Pg P for a global soil total of 40.6 ± 18 Pg P. The large uncertainty in our estimates reflects our limited understanding of the processes controlling soil P transformations during pedogenesis and a deficiency in the number of soil P measurements. In spite of the large uncertainty, the estimated global spatial variation and distribution of different soil P forms presented in this study will be useful for global biogeochemistry models that include P as a limiting element in biological production by providing initial estimates of the available soil P for plant uptake and microbial utilization.« less
Effects of poultry manure on phosphorus availability to perennial ryegrass
USDA-ARS?s Scientific Manuscript database
Soil phosphorus (P) exists in numerous forms that differ in plant availability. High-P organic fertilizers, including poultry manure (PM), can alter the balance of these soil P forms and may affect plant nutrient status. To investigate the effects of PM on soil P distribution and plant utilization...
Method of removing and detoxifying a phosphorus-based substance
Vandegrift, G.F.; Steindler, M.J.
1985-05-21
A method of removing a phosphorus-based poisonous substance from water contaminated is presented. In addition, the toxicity of the phosphorus-based substance is also subsequently destroyed. A water-immiscible organic solvent is first immobilized on a supported liquid membrane before the contaminated water is contacted with one side of the supported liquid membrane to absorb the phosphorus-based substance in the organic solvent. The other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react with phosphorus-based solvated species to form a non-toxic product.
[Research advances in mechanism of high phosphorus use efficiency of plants].
Ma, Xiangqing; Liang, Xia
2004-04-01
Phosphorus deficiency is one of the main factors influencing agricultural and forestry productions. Fertilization and soil improvement are the major measures to meet the demand of phosphorus for crops in traditional agriculture and forestry management. Recently, the plants with high phosphorus use efficiency have been discovered to replace the traditional measures to improve phosphorus use efficiency of crops. This paper reviewed the research advances in the morphological, physiological and genetics mechanisms of plants with high phosphorus use efficiency. There were three mechanisms for the plants with high phosphorus use efficiency to grow under phosphorus stress: (1) under low phosphorus stress, the root morphology would change (root system grew fast, root axes became small, the number and density of lateral root increased) and more photosynthesis products would transport from the crown to the root, (2) under low phosphorus stress, plant root exudation increased, mycorrhizae invaded into root system, the feature of root absorption kinetics changed, and the internal phosphorus cycling of plant reinforced to tolerate phosphorus deficiency, and (3) under long selection stress of low phosphorus, some plants would form the genetic properties of phosphorus nutrition that could exploit the hardly soluble phosphorus in the soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degtyarenko, N. N.; Mazur, E. A., E-mail: eugen-mazur@mail.ru
The structural, electronic, phonon, and other characteristics of the normal phases of phosphorus hydrides with stoichiometry PH{sub k} are analyzed. The properties of the initial substance, namely, diphosphine are calculated. In contrast to phosphorus hydrides with stoichiometry PH{sub 3}, a quasi-two-dimensional phosphorus-stabilized lattice of metallic hydrogen can be formed in this substance during hydrostatic compression at a high pressure. The formed structure with H–P–H elements is shown to be locally stable in phonon spectrum, i.e., to be metastable. The properties of diphosphine are compared with the properties of similar structures of sulfur hydrides.
Cheng, Ting-Yin; Tarng, Der-Cherng; Liao, Yuan-Mei; Lin, Pi-Chu
2017-02-01
To investigate the effectiveness of systematic nursing instruction on a low-phosphorus diet, serum phosphorus level and pruritus of haemodialysis patients. A high number of end-stage renal disease patients on haemodialysis are bothered by pruritus. Hyperphosphataemia was reported to be related to pruritus. An experimental design was applied. Ninety-four patients who received haemodialysis between September 2013 and December 2013 at a medical centre in Taipei, Taiwan, were recruited. An experimental group received individual systematic nursing instruction by the investigator through a nursing instruction pamphlet and reminder card for taking medication. A control group received traditional nursing instruction. The pruritus, blood phosphorus level and five-day diet records were evaluated before and after intervention. The experimental group had a low-phosphorus diet intake compared with the control group (p < 0·001). A significant difference in serum phosphorus level was observed between the experimental and control groups (p = 0·002). Incidence of pruritus was lower in the experimental group than in the control group (p < 0·001). A systematic nursing instruction included using a pamphlet, pictures and reminder cards, the patients' blood phosphorus levels decreased, the patients consumed more low-phosphorus food, and pruritus decreased. This study recommends that clinical nursing staff include systematic nursing instruction as a routine practice for dialysis patients. © 2016 John Wiley & Sons Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-14
... in this rulemaking. Entities discharging nitrogen or phosphorus to lakes and flowing waters of... nitrogen and phosphorus pollution in Florida's waters may be indirectly affected through implementation of... criteria in the form of total nitrogen, total phosphorus, nitrate+nitrite, and chlorophyll a for the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... Florida may be interested in this rulemaking. Entities discharging nitrogen or phosphorus to lakes and..., such as nonpoint source contributors to nitrogen/phosphorus pollution in Florida's waters may be... numeric nutrient criteria in the form of total nitrogen, total phosphorus, nitrate+nitrite, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
... quality in Florida may be interested in this rulemaking. Entities discharging nitrogen or phosphorus to.../phosphorus pollution in Florida's waters may be affected through implementation of Florida's water quality... inland waters rule established numeric nutrient criteria in the form of total nitrogen, total phosphorus...
Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua
2015-12-01
The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Hierarchical Phosphorus Nanobarbed Nanowire Hybrid: Its Structure and Electrochemical Properties.
Zhao, Dan; Li, Beibei; Zhang, Jinying; Li, Xin; Xiao, Dingbin; Fu, Chengcheng; Zhang, Lihui; Li, Zhihui; Li, Jun; Cao, Daxian; Niu, Chunming
2017-06-14
Nanostructured phosphorus-carbon composites are promising materials for Li-ion and Na-ion battery anodes. A hierarchical phosphorus hybrid, SiC@graphene@P, has been synthesized by the chemical vapor deposition of phosphorus on the surfaces of barbed nanowires, where the barbs are vertically grown graphene nanosheets and the cores are SiC nanowires. A temperature-gradient vaporization-condensation method has been used to remove the unhybridized phosphorus particles formed by homogeneous nucleation. The vertically grown barb shaped graphene nanosheets and a high concentration of edge carbon atoms induced a fibrous red phosphorus (f-RP) growth with its {001} planes in parallel to {002} planes of nanographene sheets and led to a strong interpenetrated interface interaction between phosphorus and the surfaces of graphene nanosheets. This hybridization has been demonstrated to significantly enhance the electrochemical performances of phosphorus.
Energy and phosphorus recovery from black water.
de Graaff, M S; Temmink, H; Zeeman, G; Buisman, C J N
2011-01-01
Source-separated black water (BW) (toilet water) containing 38% of the organic material and 68% of the phosphorus in the total household waste (water) stream including kitchen waste, is a potential source for energy and phosphorus recovery. The energy recovered, in the form of electricity and heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. The phosphorus balance of an upflow anaerobic sludge blanket reactor treating concentrated BW showed a phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial phosphorus fertiliser production in the world. The remaining part of the phosphorus ended up in the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a phosphorus-enriched organic fertiliser, provided that it is safe regarding heavy metals, pathogens and micro-pollutants.
Review of Phosphorus Control Measures in the United States and Their Effects on Water Quality
Litke, David W.
1999-01-01
Historical information on phosphorus loadings to the environment and the effect on water quality are summarized in this report, which was produced as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. Phosphorus is a water-quality constituent of concern because it is often the limiting nutrient responsible for accelerated eutrophication in water bodies. Phosphorus inputs to the environment have increased since 1950 as the use of phosphate fertilizer, manure, and phosphate laundry detergent increased; however, the manufacture of phosphate detergent for household laundry was ended voluntarily in about 1994 after many States had established phosphate detergent bans. Total phosphorus concentrations in raw wastewater effluent contained about 3 milligrams per liter of total phosphorus during the 1940's, increased to about 11 milligrams per liter at the height of phosphate detergent use (1970), and have currently declined to about 5 milligrams per liter. However, in some cases, tertiary wastewater treatment still is needed to effectively improve water quality of streams. Downward trends in phosphorus concentrations since 1970 have been identified in many streams, but median total phosphorus concentrations still exceed the recommended limit of 0.1 milligram per liter across much of the Nation. Data from the NAWQA Program are representative of a variety of phosphorus-control measures, and, therefore, may be used to evaluate the effects of various control strategies. Current areas of concern include: evaluation of the effects of increased manure loadings of phosphorus on soil phosphorus and, subsequently, on ground water and subsurface runoff; determination of point-source and nonpoint-source components of phosphorus loads by geographic modeling and hydrologic separation techniques; and development of methods or indices to evaluate nutrient impairment in streams and rivers to serve as a basis for developing phosphorus criteria or standards.
D'Alessandro, Claudia; Piccoli, Giorgina B; Cupisti, Adamasco
2015-01-20
Phosphorus retention plays a pivotal role in the onset of mineral and bone disorders (MBD) in chronic kidney disease (CKD). Phosphorus retention commonly occurs as a result of net intestinal absorption exceeding renal excretion or dialysis removal. The dietary phosphorus load is crucial since the early stages of CKD, throughout the whole course of the disease, up to dialysis-dependent end-stage renal disease.Agreement exits regarding the need for dietary phosphate control, but it is quite challenging in the real-life setting. Effective strategies to control dietary phosphorus intake include restricting phosphorus-rich foods, preferring phosphorus sourced from plant origin, boiling as the preferred cooking procedure and avoiding foods with phosphorus-containing additives. Nutritional education is crucial in this regard.Based on the existing literature, we developed the "phosphorus pyramid", namely a novel, visual, user-friendly tool for the nutritional education of patients and health-care professionals. The pyramid consists of six levels in which foods are arranged on the basis of their phosphorus content, phosphorus to protein ratio and phosphorus bioavailability. Each has a colored edge (from green to red) that corresponds to recommended intake frequency, ranging from "unrestricted" to "avoid as much as possible".The aim of the phosphorus pyramid is to support dietary counseling in order to reduce the phosphorus load, a crucial aspect of integrated CKD-MBD management.
Phosphorus, a key to life on the primitive earth
NASA Technical Reports Server (NTRS)
Griffith, E. J.; Ponnamperuma, C.; Gabel, N. W.
1977-01-01
The phosphorus of the primitive earth was present as phosphates. It is strongly probable that a portion of the phosphate was present as condensed phosphates. The primitive earth was highly deficient in the total available phosphorus until a sufficient quantity of phosphorus weathered from the igneous rocks in which it was entrapped. Approximately three billion years were required for the seas to become saturated. Until this time passed the seas acted as a giant sink for phosphorus, diluting it to the extent that all forms of life were deprived of the vital nutrient. When the seas became saturated, the rate of turnover of the phosphorus increased rapidly. As the seas pulsated, they left the excess precipitate phosphorus as sedimentary rock in locally rich deposits on which life could thrive.
USDA-ARS?s Scientific Manuscript database
Tillage management practices have a direct effect on the behavior and availability of soil nutrients. Phosphorus (P) is an essential element in crop growth which can be growth-limiting or an environmental contaminant, if present in excess. Sorption and availability of various soil P forms were eva...
USDA-ARS?s Scientific Manuscript database
Increased information on forms and lability of phosphorus (P) in aquatic macrophytes and algae is crucial for better understanding of P biogeochemical cycling in eutrophic lakes. In this work, solution 31P nuclear magnetic resonance (NMR) spectroscopy coupled with enzymatic hydrolysis (EH) was used ...
USDA-ARS?s Scientific Manuscript database
Aquatic macrophytes and algae are important sources of phosphorus (P) in the lake environment that cause blooms of algae under certain biogeochemical conditions. However, the knowledge of forms of P in these plants and algae and their contribution to internal loads of lake P is very limited. Witho...
Forms and Lability of Phosphorus in Humic Acid Fractions of Hord Silt Loam Soil
USDA-ARS?s Scientific Manuscript database
Phosphorus (P) has long been known to be present in soil humic fractions, but little is known about specific P forms in humic fractions, or their lability. We extracted the mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fractions from a Nebraska Hord silt loam soil under continuous c...
Possibility of High Phosphorus Pig Iron as Sacrificial Anode
NASA Astrophysics Data System (ADS)
Prasad, Nisheeth Kr.; Pathak, A. S.; Kundu, S.; Mondal, K.
2018-05-01
Cathodic protection is an effective method to control the corrosion of underground pipelines and submerged structures. In the present work, high phosphorus containing pig iron was utilized as sacrificial anode for cathodic protection of underground mild steel plates and the results were compared with that of a commercially pure magnesium sacrificial anode. Driving potential and current between the galvanically coupled sacrificial anodes and mild steel plates were continuously monitored in real time for one month. Microstructure and morphology of the corrosion products formed on the surface of pig iron, magnesium sacrificial anodes and mild steel plates were observed with the help of optical microscope and scanning electron microscopy, and phase identification were performed using x-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The distribution of phosphorus in the pig iron matrix and soluble rust formation on the surface of pig iron under buried condition were critical from the point of sacrificial effect, indicating the possible scientific reasons for high phosphorous pig iron to be used as sacrificial anode.
2013-01-01
In 2 experiments, 48 weanling (initial BW: 13.5 ± 2.4 kg, Exp. 1) and 24 growing pigs (initial BW: 36.2 ± 4.0 kg, Exp. 2) were used to determine effects of a novel bacterial 6-phytase expressed in Aspergillus oryzae on the apparent total tract digestibility (ATTD) of phosphorus and calcium in corn-soybean meal diets fed to weanling and growing pigs. In Exp. 1 and 2, pigs were randomly allotted to 6 dietary treatments using a randomized complete block design and a balanced 2 period changeover design, respectively. In both experiments, 6 diets were formulated. The positive control diet was a corn-soybean meal diet with added inorganic phosphorus (Exp. 1: 0.42 and 0.86% standardized total tract digestible phosphorus and total calcium, respectively; Exp. 2: 0.32 and 0.79% standardized total tract digestible phosphorus and total calcium, respectively). A negative control diet and 4 diets with the novel phytase (Ronozyme HiPhos, DSM Nutritional Products Inc., Parsippany, NJ) added to the negative control diet at levels of 500, 1,000, 2,000, and 4,000 phytase units (FYT)/kg were also formulated. In Exp. 1, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (60.5%) than for the negative control diet (40.5%), but increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (40.5% vs. 61.6%, 65.1%, 68.7%, and 68.0%). The breakpoint for the ATTD of phosphorus (68.4%) was reached at a phytase inclusion level of 1,016 FYT/kg. In Exp. 2, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (59.4%) than for the negative control diet (39.8%) and increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (39.8% vs. 58.1%, 65.4%, 69.1%, and 72.8%). The breakpoint for the ATTD of phosphorus (69.1%) was reached at a phytase inclusion level of 801 FYT/kg. In conclusion, the novel bacterial 6-phytase improved the ATTD of phosphorus and calcium in both weanling and growing pigs. The optimum level of inclusion for this phytase is 800 to 1,000 FYT/kg of complete feed to maximize ATTD of phosphorus and calcium in weanling and growing pigs. PMID:23497607
Almeida, Ferdinando Nielsen; Sulabo, Rommel Casilda; Stein, Hans Henrik
2013-03-05
In 2 experiments, 48 weanling (initial BW: 13.5 ± 2.4 kg, Exp. 1) and 24 growing pigs (initial BW: 36.2 ± 4.0 kg, Exp. 2) were used to determine effects of a novel bacterial 6-phytase expressed in Aspergillus oryzae on the apparent total tract digestibility (ATTD) of phosphorus and calcium in corn-soybean meal diets fed to weanling and growing pigs. In Exp. 1 and 2, pigs were randomly allotted to 6 dietary treatments using a randomized complete block design and a balanced 2 period changeover design, respectively. In both experiments, 6 diets were formulated. The positive control diet was a corn-soybean meal diet with added inorganic phosphorus (Exp. 1: 0.42 and 0.86% standardized total tract digestible phosphorus and total calcium, respectively; Exp. 2: 0.32 and 0.79% standardized total tract digestible phosphorus and total calcium, respectively). A negative control diet and 4 diets with the novel phytase (Ronozyme HiPhos, DSM Nutritional Products Inc., Parsippany, NJ) added to the negative control diet at levels of 500, 1,000, 2,000, and 4,000 phytase units (FYT)/kg were also formulated. In Exp. 1, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (60.5%) than for the negative control diet (40.5%), but increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (40.5% vs. 61.6%, 65.1%, 68.7%, and 68.0%). The breakpoint for the ATTD of phosphorus (68.4%) was reached at a phytase inclusion level of 1,016 FYT/kg. In Exp. 2, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (59.4%) than for the negative control diet (39.8%) and increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (39.8% vs. 58.1%, 65.4%, 69.1%, and 72.8%). The breakpoint for the ATTD of phosphorus (69.1%) was reached at a phytase inclusion level of 801 FYT/kg. In conclusion, the novel bacterial 6-phytase improved the ATTD of phosphorus and calcium in both weanling and growing pigs. The optimum level of inclusion for this phytase is 800 to 1,000 FYT/kg of complete feed to maximize ATTD of phosphorus and calcium in weanling and growing pigs.
Metabolism of nonparticulate phosphorus in an acid bog lake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koenings, J. P.
1977-01-01
In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied.
Sung, Kijune; Lee, Geun-Joo; Munster, Clyde
2015-01-01
Wetland plants are important components that influence the biogeochemistry of wetland ecosystems. Therefore, remediation performance in wetlands can differ depending on the growth forms of plants. In this study, the effects of Eichhornia crassipes (floating plant) and Ceratophyllum demersum (submerged plant) on the wetland soil and water environments were investigated using a microcosm study with simulated hydrology of retention-type wetlands between rainfall events. The C. demersum microcosm (SP) showed the fastest recovery with a diel fluctuation pattern of dissolved oxygen, pH, and oxidation-reduction potential (ORP) from the impacts of nutrient inflow. Moreover, SP exhibited the lowest decrease in sediment ORP, the highest dehydrogenase activity, and more organic forms of nitrogen and phosphorus. E. crassipes microcosms exhibited the lowest water temperature, and efficiently controlled algae. In the presence of plants, the total nitrogen and phosphorus concentrations in water rapidly decreased, and the composition of organic and inorganic nutrient forms was altered along with a decrease in concentration. The results indicate that wetland plants help retain nutrients in the system, but the effects varied based on the wetland plant growth forms.
Zagaroli, A M; Zimmer, S M; Bowes, J M; Hartley, K S
1995-01-01
We wanted continuous ambulatory peritoneal dialysis (CAPD) and continuous cycling peritoneal dialysis (CCPD) patients to become more cognitive of the complications of high-serum phosphorus levels (> 6.0 mg/dL). The phosphorus self-monitoring program was designed to encourage patients to be more responsible for preventing the complications of renal osteodystrophy. Patients' phosphorus levels were graphed monthly on a poster in the exam room. Additional posters discussed their responsibilities to control phosphorus and the complications associated with hyperphosphatemia. All patients received an informative letter regarding the inception of the program in March 1994 and also were assured total anonymity of their laboratory results. At monthly clinic appointments, they received additional written information on phosphorus and discussed their phosphorus levels. Our teaching method proved effective in our CAPD/CCPD population. In March 1994, 31% of our patients had a phosphorus level greater than 6.0 mg/dL versus 10% in September 1994. The ability of patients to see their monthly progress and the comparison with other patients encouraged much interest and questions regarding phosphorus control.
Soil Phosphorus and the Ecology of Tropical Forests
NASA Astrophysics Data System (ADS)
Turner, B. L.
2016-12-01
Phosphorus availability is commonly assumed to limit forest productivity on strongly weathered soils in the lowland tropics, but experimental evidence is scarce and equivocal. In this presentation I will explore the extent to which phosphorus influences the productivity and distribution of tree species in tropical forests. I will highlight the range of soils that occur in tropical forests and the associated variation in the amounts and forms of soil phosphorus. I will draw on data from a regional-scale network of forest dynamics plots in Panama to show that tree species distributions are determined primarily by dry season intensity and soil phosphorus availability. Finally, I will demonstrate that phosphorus limitation of tropical tree growth is widespread at the level of individual species, but is not observed at the community level in diverse forests due to species turnover across phosphorus gradients.
Van Mooy, B A S; Krupke, A; Dyhrman, S T; Fredricks, H F; Frischkorn, K R; Ossolinski, J E; Repeta, D J; Rouco, M; Seewald, J D; Sylva, S P
2015-05-15
Phosphorus in the +5 oxidation state (i.e., phosphate) is the most abundant form of phosphorus in the global ocean. An enigmatic pool of dissolved phosphonate molecules, with phosphorus in the +3 oxidation state, is also ubiquitous; however, cycling of phosphorus between oxidation states has remained poorly constrained. Using simple incubation and chromatography approaches, we measured the rate of the chemical reduction of phosphate to P(III) compounds in the western tropical North Atlantic Ocean. Colonial nitrogen-fixing cyanobacteria in surface waters played a critical role in phosphate reduction, but other classes of plankton, including potentially deep-water archaea, were also involved. These data are consistent with marine geochemical evidence and microbial genomic information, which together suggest the existence of a vast oceanic phosphorus redox cycle. Copyright © 2015, American Association for the Advancement of Science.
Phosphorus as a potential guide in the search for extinct life on Mars.
Weckwerth, G; Schidlowski, M
1995-03-01
In contrast to the search for extant organisms, the quest for fossil remains of life on Mars need not be guided by the presence of water and organic compounds on the present surface. An appropriate tracer might be the element phosphorus which is a common constituent of living systems. Utilizing terrestrial analogues, it should preferentially exist in the form of sedimentary calcium phosphate (phosphorites), which would have readily resisted changing conditions on Mars. Moreover, higher ratios of P/Th in phosphorites in comparison to calcium phosphates from magmatic rocks give us the possibility to distinguish them from inorganically formed phosphorus deposits at or close to the Martian surface. Identification of anomalous phosphorus enrichments by remote sensing or in situ analysis could be promising approaches for selecting areas preferentially composed of rocks with remains of extinct life.
Xu, Peng; Xiao, Enrong; Xu, Dan; Li, Juan; Zhang, Yi; Dai, Zhigang; Zhou, Qiaohong; Wu, Zhenbin
2018-05-01
The phosphorus reduction in water column was attempted by integrating sediment microbial fuel cells (SMFCs) with the submerged macrophyte Vallisneria spiralis. A comparative study was conducted to treat simulated water rich in phosphate with a control and three treatments: SMFC alone (SMFC), submerged macrophytes alone (macophyte), and combined macrophytes and fuel cells (M-SMFC). All treatments promoted phosphorus flux from the water column to sediments. Maximum phosphorus reduction was obtained in proportion to the highest stable phosphorus level in sediments in M-SMFC. For the initial phosphate concentrations of 0.2, 1, 2, and 4 mg/L, average phosphate values in the overlying water during four phases decreased by 33.3% (25.0%, 8.3%), 30.8% (5.1%, 17.9%), 36.5% (27.8%, 15.7%), and 36.2% (0.7%, 22.1%) for M-SMFC (macrophyte, SMFC), compared with the control. With macrophyte treatment, the obvious phosphorus release from sediments was observed during the declining period. However, such phenomenon was significantly inhibited with M-SMFC. The electrogenesis bacteria achieved stronger phosphorus adsorption and assimilation was significantly enriched on the closed-circuit anodes. The higher abundance of Geobacter and Pseudomonas in M-SMFC might in part explain the highest phosphorus reduction in the water column. M-SMFC treatment could be promising to control the phosphorus in eutrophic water bodies.
Re-examining the phosphorus-protein dilemma: Does phosphorus restriction compromise protein status?
St-Jules, David E; Woolf, Kathleen; Pompeii, Mary-Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann
2015-01-01
Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis (HD) patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in HD patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Further, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives; (2) food preparation method; and (3) bioavailability of phosphorus; which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally-equivalent foods that are lower in bioavailable phosphorus. PMID:26873260
NASA Astrophysics Data System (ADS)
Hashimoto, S.; Yamaguchi, K. E.; Takahashi, K.
2012-12-01
The modern Arctic Ocean plays crucial roles in controlling global climate system with the driving force of global thermohaline circulation through the formation of dense deep water and high albedo due to the presence of perennial sea-ice. However, the Arctic sea-ice has not always existed in the past. Integrated Ocean Drilling Program (IODP) Expedition 302 Arctic Coring Expedition (ACEX) has clarified that global warming (water temperature: ca. 14~16○C) during 48~49 Ma Azolla Event induced the loss of sea-ice and desalination of surface ocean, and that sea-ice formed again some million years later (45 Ma). In the Arctic Ocean, warming and cooling events repeated over and over (e.g., Brinkhuis et al., 2006; Moran et al., 2006; März et al., 2010). Large variations in the extent of thermohaline circulation through time often caused stagnation of seawater and appearance of anaerobic environment where hydrogen sulfide was produced by bacterial sulfate reduction. Ogawa et al. (2009) confirmed occurrence of framboidal pyrite in the ACEX sediments, and suggested that the Arctic Ocean at the time was anoxic, analogous to the modern Black Sea, mainly based on sulfur isotope analysis. To further clarify the variations in the nutrient status of the Arctic Ocean, we focus on the geochemical cycle of phosphorus. We performed sequential extraction analysis of sedimentary phosphorus in the ACEX sediments, using the method that we improvped based on the original SEDEX method by Ruttenberg (1992) and Schenau et al. (2000). In our method, phosphorus fractions are divided into five forms; (1) absorbed P, (2) Feoxide-P, (4) carbonate fluorapatite (CFAP) + CaCO3-P + hydroxylapatite (HAP), (4) detrital P, and (5) organic P. Schenau et al. (2000) divided the (3) fraction into non-biological CFAP and biological HAP and CaCO3-P. When the Arctic Ocean was closed and in its warming period, the water mass was most likely stratified and an anaerobic condition would have prevailed where bacterial sulfate reduction was active. In this case, most of the phosphorus in sediment was stored as organic P, which was originally derived as sinking particles of detrital plankton from the surface ocean. Increased rainfalls during such a warming period would have enhanced continental weathering and delivery of phosphorus to the surface ocean, and biological activity using increased amounts of phosphorus supply would also have increased. Feoxide-P is considered to be less important as a sink for phosphorus because of the likely formation of pyrite through the reductive dissolution of Fe oxide. CFAP could be a sink for phosphorus, because the formation of CFAP tends to increase with increasing age and depth.
2014-01-01
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n+ emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion. PMID:25520602
Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo
2014-01-01
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.
Effects of Land Use on Concentrations and Chemical Forms of Phosphorus in Different-Size Aggregates
NASA Astrophysics Data System (ADS)
Ahmad, E. H.; Demisie, W.; Zhang, M.
2017-12-01
Land use has been recognized as an important driver of environmental change on all spatial and temporal scales. This study was conducted to determine the effects of land uses on phosphorus concentration in bulk soil and in water-stable aggregates in different soils. The study was conducted on three soil types (Ferrosols, Cambosols, and Primosols), which were collected from three different locations from southeast China and under three land uses (Uncultivated, Vegetable and forest land) the region is characterized as a hill and plain area. Accordingly, a total of 24 soil samples were collected. The results showed that average contents of total P were 0.55-1.55 g/kg, 0.28-1.03 g/kg and 0.14-0.8 g/kg for the soils: Cambosols, Ferrosols and Primosols respectively. Vegetable and forest land led to higher total phosphorus contents in these soils than in the uncultivated land. An aggregate fraction of >2 mm under forest land made up the largest percentage (30 up to 70%), whereas the size fraction <0.106 mm made the least contribution (5 up to 20%) in all soil types. Vegetable land increased the total phosphorus, organic phosphorus and Olsen P and phosphorus forms in the soils. It implies that the conversion of natural ecosystem to vegetable land increased the phosphorus proportion in the soils, which could have negative impact on the environmental quality.
NASA Astrophysics Data System (ADS)
Wu, Xuan; Zhao, Wei; Wang, Hong; Qi, Xiujun; Xing, Zheng; Zhuang, Quanchao; Ju, Zhicheng
2018-02-01
Potassium-ion batteries are attracting great attention as a promising alternative to lithium-ion batteries due to the abundance and low price of potassium. Herein, the phosphorus/carbon composite, obtained by a simple ball-milling of 20 wt% commercial red phosphorus and 80 wt% graphite, is studied as a novel anode for potassium-ion batteries. Considering the high theoretical specific capacity of phosphorus and formation of stable phosphorus-carbon bond, which can alleviate the volume expansion efficiently, the phosphorus/carbon composite exhibits a high charge capacity of 323.5 mA h g-1 after 50 cycles at a current density of 50 mA g-1 with moderate rate capability and cycling stability. By the X-ray diffraction analysis, the alloying-dealloying mechanism of phosphorus is proposed to form a KP phase. Meanwhile, prepotassiation treatment is conducted to improve the low initial coulomb efficiency.
Major role of planktonic phosphate reduction in the marine phosphorus redox cycle
NASA Astrophysics Data System (ADS)
Van Mooy, B. A. S.; Krupke, A.; Dyhrman, S. T.; Fredricks, H. F.; Frischkorn, K. R.; Ossolinski, J. E.; Repeta, D. J.; Rouco, M.; Seewald, J. D.; Sylva, S. P.
2015-05-01
Phosphorus in the +5 oxidation state (i.e., phosphate) is the most abundant form of phosphorus in the global ocean. An enigmatic pool of dissolved phosphonate molecules, with phosphorus in the +3 oxidation state, is also ubiquitous; however, cycling of phosphorus between oxidation states has remained poorly constrained. Using simple incubation and chromatography approaches, we measured the rate of the chemical reduction of phosphate to P(III) compounds in the western tropical North Atlantic Ocean. Colonial nitrogen-fixing cyanobacteria in surface waters played a critical role in phosphate reduction, but other classes of plankton, including potentially deep-water archaea, were also involved. These data are consistent with marine geochemical evidence and microbial genomic information, which together suggest the existence of a vast oceanic phosphorus redox cycle.
Impact of Fish Farming on Phosphorus in Reservoir Sediments
Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How
2015-01-01
Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation. PMID:26577441
Chu, Fei-Fei; Chu, Pei-Na; Shen, Xiao-Fei; Lam, Paul K S; Zeng, Raymond J
2014-01-01
In order to study the effect of phosphorus on biodiesel production from Scenedesmus obliquus especially under nitrogen deficiency conditions, six types of media with combinations of nitrogen repletion/depletion and phosphorus repletion/limitation/depletion were investigated in this study. It was found that nitrogen starvation compared to nitrogen repletion enhanced biodiesel productivity. Moreover, biodiesel productivity was further strengthened by varying the supply level of phosphorus from depletion, limitation, through to repletion. The maximum FAMEs productivity of 24.2 mg/L/day was obtained in nitrogen depletion with phosphorus repletion, which was two times higher than that in nutrient complete medium. More phosphorus was accumulated in cells under the nitrogen starvation with sufficient phosphorus condition, but no polyphosphate was formed. This study indicated that nitrogen starvation plus sufficient P supply might be the real "lipid trigger". Furthermore, results of the current study suggest a potential application for utilizing microalgae to combine phosphorus removal from wastewater with biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Meng; Zheng, Ping; Abbas, Ghulam; Chen, Xiaoguang
2014-02-01
Phosphorus pollution control and phosphorus recycling, simultaneously, are focus of attention in the wastewater treatment. In this work, a novel reactor named partitionable-space enhanced coagulation (PEC) was invented for phosphorus control. The working performance and process mechanism of PEC reactor were investigated. The results showed that the PEC technology was highly efficient and cost-effective. The volumetric removal rate (VRR) reached up to 2.86 ± 0.04 kg P/(m(3) d) with a phosphorus removal rate of over 97%. The precipitant consumption was reduced to 2.60-2.76 kg Fe(II)/kg P with low operational cost of $ 0.632-0.673/kg P. The peak phosphorus content in precipitate was up to 30.44% by P2O5, which reveal the benefit of the recycling phosphorus resource. The excellent performance of PEC technology was mainly attributed to the partitionable-space and 'flocculation filter'. The partition limited the trans-regional back-mixing of reagents along the reactor, which promoted the precipitation reaction. The 'flocculation filter' retained the microflocs, enhancing the flocculation process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Li, Xiaolin; Peng, Huisheng; Wang, Donghai
2015-12-22
Maintaining structural stability is a great challenge for high-capacity conversion electrodes with large volume change but is necessary for the development of high-energy-density, long-cycling batteries. Here, we report a stable phosphorus anode for sodium ion batteries by the synergistic use of chemically bonded phosphorus-carbon nanotube (P-CNT) hybrid and cross-linked polymer binder. The P-CNT hybrid was synthesized through ball-milling of red phosphorus and carboxylic group functionalized carbon nanotubes. The P-O-C bonds formed in this process help maintain contact between phosphorus and CNTs, leading to a durable hybrid. In addition, cross-linked carboxymethyl cellulose-citric acid binder was used to form a robust electrode. As a result, this anode delivers a stable cycling capacity of 1586.2 mAh/g after 100 cycles, along with high initial Coulombic efficiency of 84.7% and subsequent cycling efficiency of ∼99%. The unique electrode framework through chemical bonding strategy reported here is potentially inspirable for other electrode materials with large volume change in use.
Optimization of single keV ion implantation for the construction of single P-donor devices
NASA Astrophysics Data System (ADS)
Yang, Changyi; Jamieson, David N.; Hopf, Toby; Andresen, Soren E.; Hearne, Sean M.; Hudson, Fay E.; Pakes, Christopher I.; Mitic, Mladen; Gauja, Eric; Tamanyan, Grigori; Dzurak, Andrew S.; Prawer, Steven; Clark, Robert G.
2005-02-01
We report recent progress in single keV ion implantation and online detection for the controlled implantation of single donors in silicon. When integrated with silicon nanofabrication technology this forms the "top down" strategy for the construction of prototype solid state quantum computer devices based on phosphorus donors in silicon. We have developed a method of single ion implantation and online registration that employs detector electrodes adjacent to the area into which the donors are to be implanted. The implantation sites are positioned with nanometer accuracy using an electron beam lithography patterned PMMA mask. Control of the implantation depth of 20 nm is achieved by tuning the phosphorus ion energy to 14 keV. The counting of single ion implantation in each site is achieved by the detection of e-/h+ pairs produced by the implanted phosphorus ion in the substrate. The system is calibrated by use of Mn K-line x-rays (5.9 and 6.4 keV) and we find the ionization energy of the 14 keV phosphorus ions in silicon to be about 3.5-4.0 keV for implants through a 5 nm SiO2 surface layer. This paper describes the development of an improved PIN detector structure that provides more reliable performance of the earlier MOS structure. With the new structure, the energy noise threshold has been minimized to 1 keV or less. Unambiguous detection/counting of single keV ion implantation events were achieved with a confidence level greater than 98% with a reliable and reproducible fabrication process.
Reexamining the Phosphorus-Protein Dilemma: Does Phosphorus Restriction Compromise Protein Status?
St-Jules, David E; Woolf, Kathleen; Pompeii, Mary Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann
2016-05-01
Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in hemodialysis patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Furthermore, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives, (2) food preparation method, and (3) bioavailability of phosphorus, which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally equivalent foods that are lower in bioavailable phosphorus. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Zhang, Ming-kui; Ahmed Elgodah; Bao, Chen-yan
2014-12-01
Although a series of process techniques for treating wastewater from livestock and poultry breeding have been developed in China and overseas, it is still common in China's rural areas for utilization of the untreated wastewater to irrigate farmland directly because of economic reasons. The impact of untreated wastewater irrigation on accumulation and vertical migration of nitrogen and phosphorus in paddy soil is concerned. Consequently, four representative paddy fields with different histories of livestock farm wastewater irrigation (0, 4, 7, 13 years) were selected for collecting profile soil samples to study the effects of long-term irrigation of untreated livestock farm wastewater on various forms of nitrogen and phosphorus in the soils at different vertical depths. As compared with control field without any irrigation of wastewater, long-term irrigation of untreated livestock farm wastewater significantly increased the accumulation of N and P in the soils with increasing the irrigation year, and the increment of total P in the soil was greater than that of total N. Total P content in surface soil from fields with 4, 7, and 13 years irrigation was increased by 43.6%, 95.2%, and 148.4%, while total N increased by 7.6%, 16.9%, and 28.4%, respectively. Different forms of soil N were increased in order of NH4+ -N, NO3- -N > acid hydrolyzable N > non-acid hydrolyzable N, and soil available P changed much more than total P. Long-term irrigation of untreated livestock farm wastewater could promote vertical migration of soil nitrogen and phosphorus, and increase the pollution risk for groundwater.
Zhang, Lei; Qin, Yanwen; Han, Chaonan; Cao, Wei; Ma, Yingqun; Shi, Yao; Liu, Zhichao; Yang, Chenchen
2016-08-01
The transport and storage of phosphorus in estuary is a complex biogeochemical process as the result of the convergence of fresh and saline water. The objective of the current study is to investigate the spatial-temporal variations of phosphorus fractions in surface water and suspended particles of Daliao River Estuary, China. Samples were collected in August (wet season) and November (dry season), 2013. The results showed that total particulate phosphorus (TPP) in water accounted for more than 50 % of the total phosphorus (TP). Meanwhile, in suspended particles, more than 62 % of particulate phosphorus was in the form of bioavailable phosphorus, including exchangeable phosphorus (Exc-P), extractable organic phosphorus (Exo-P), and iron-bound phosphorus (Fe-P), which meant that the potential impacts of bioavailable phosphorus in suspended particles on estuarine water environment cannot be ignored. There were significantly seasonal variations of phosphorus fractions in the Daliao River Estuary. The concentrations of phosphorus fractions in water in wet season were much lower than that in dry season because of the dilution effect of larger rainfall in wet season. In addition, spatial distribution characteristics of phosphorus fractions were also obvious. Due to terrigenous phosphorus input from the upstream of tidal reach and seawater dilution effect in coastal estuary, total dissolved phosphorus (TDP) concentrations in water gradually decreased from tidal reach to coastal estuary. However, the concentrations of TPP and TP in water and Exo-P in suspended particles presented spatial fluctuation, and these were greatly attributed to sediment re-suspension in coastal estuary.
Walter, Donald A.; Rea, Brigid A.; Stollenwerk, Kenneth G.; Savoie, Jennifer G.
1996-01-01
Currently (1993), about 170 kg/yr of phosphorus discharges into Ashumet Pond on Cape Cod from a plume of sewage-contaminated ground water. Phosphorus in the plume is mobile in two distinct geochemical environments--an anoxic zone containing dissolved iron and a suboxic zone containing dissolved oxygen. Phosphorus mobility in the suboxic zone is due to saturation of available sorption sites. Phosphorus loading to Ashumet Pond may increase significantly after sewage disposal is stopped due to phosphorus desorption from sediment surfaces.
Wierl, Judy A.; Giddings, Elise M.P.; Bannerman, Roger T.
1998-01-01
Control of phosphorus from rural nonpoint sources is a major focus of current efforts to improve and protect water resources in Wisconsin and is recommended in almost every priority watershed plan prepared for the State's Nonpoint Source (NFS) Program. Barnyards and crop- lands usually are identified as the primary rural sources of phosphorus. Numerous questions have arisen about which of these two sources to control and about the method currently being used by the NFS program to compare phosphorus loads from barnyards and croplands. To evaluate the method, the U.S. Geological Survey (USGS). in cooperation with the Wisconsin Department of Natural Resources, used phosphorus-load and sediment-load data from streams and phosphorus concentrations in soils from the Otter Creek Watershed (located in the Sheboygan River Basin: fig. 1) in conjunction with two computer-based models.
[Studies of on-site night soil and kitchen garbage treatment].
Chen, Zhu-Lei; Zhou, Lei; Jiang, Juan; Xiong, Shang-Ling; Huang, Liang; Sun, Wei-Min; Lu, Zhi-Zhong; Liao, Bo
2005-09-01
The biological treatment technique of collection at source and disposition on-site of night soil and kitchen garbage were presented. By design project of overall technics, the lab-scale experiments were performed. It was revealed that water consumption of vacuum closestool was about 1 L/time. It consumed 0.4- 0.6L water to shred 1 kg kitchen garbage. Night soil covered 40%, kitchen garbage covered 60% in the influent. Water was controlled at about 93%, the C:N ratio was about 25:1, pH was between 6.2 and 7.3, the optical blend frequency was 6h/d and the overall solid retention time was 28 days in anaerobic digestion reactor. The COD removal rate of mixed supernatant was 91% in anaerobic baffled reactor. It was identified that these phosphorus strains and potassium strains were Bacillus. sp, and biological activated fertilizer was obtained by mixed these strains with digestion sludge which had been dehydrated and deodorized. These strains ability of forming phosphorus and potassium were determined, and the concentration of phosphorus increased 67.5%, potassium increased 33.4%.
Cai, Kun; Shi, Jiao; Liu, Ling-Nan; Qin, Qing-Hua
2017-09-13
A string of fullerenes is used for generating a nanotube by self-assembly of a black phosphorus (BP) nanoribbon at a temperature of 8 K. Among the fullerenes in the string, there are at least two fixed fullerenes placed along the edge of the BP ribbon for keeping its configuration stability during winding. By way of molecular dynamics simulations, it is found that successful generation of a BP nanotube depends on the bending stiffness of the ribbon and the attraction between the fullerenes and the ribbon. When the attraction is strong enough, the two edges (along the zigzag direction) of the BP ribbon will be able to bond covalently to form a nanotube. By the molecular dynamics approach, the maximum width of the BP ribbon capable of forming a nanotube with a perfect length is investigated in three typical models. The maximum width of the BP ribbon becomes larger with the string containing more fullerenes. This finding reveals a way to control the width of the BP ribbon which forms a nanotube. It provides guidance for fabricating a BP nanotube with a specified length, the same as to the width of the ribbon.
Güngör, Kerem; Karthikeyan, K G
2008-01-01
The effect of anaerobic digestion on phosphorus (P) forms and water P extractability was investigated using dairy manure samples from six full-scale on-farm anaerobic digesters in Wisconsin, USA. On an average, total dissolved P (TDP) constituted 12 +/- 4% of total P (TP) in the influent to the anaerobic digesters. Only 7 +/- 2% of the effluent was in a dissolved form. Dissolved unreactive P (DUP), comprising polyphosphates and organic P, dominated the dissolved P component in both the influent and effluent. In most cases, it appeared that the fraction of DUP mineralized during anaerobic digestion became subsequently associated with particulate-bound solids. Geochemical equilibrium modeling with Mineql+ indicated that dicalcium phosphate dihydrate, dicalcium phosphate anhydrous, octacalcium phosphate, newberyite, and struvite were the probable solid phases in both the digester influent and effluent samples. The water-extractable P (WEP) fraction in undigested manure ranged from 45% to 70% of TP, which reduced substantially after anaerobic digestion to 25% to 45% of TP. Anaerobic digestion of dairy manure appears capable of reducing the fraction of P that is immediately available by increasing the stability of the solid phases controlling P solubility.
Hu, Xiaojia; Roberts, Daniel P; Xie, Lihua; Maul, Jude E; Yu, Changbing; Li, Yinshui; Zhang, Shujie; Liao, Xing
2013-04-01
Sustainable methods with diminished impact on the environment need to be developed for the production of oilseed rape in China and other regions of the world. A biological fertilizer consisting of Bacillus megaterium A6 cultured on oilseed rape meal improved oilseed rape seed yield (P < 0.0001) relative to the nontreated control in 2 greenhouse pot experiments using natural soil. This treatment resulted in slightly greater yield than oilseed rape meal without strain A6 in 1 of 2 experiments, suggesting a role for strain A6 in improving yield. Strain A6 was capable of solubilizing phosphorus from rock phosphate in liquid culture and produced enzymes capable of mineralizing organic phosphorus (acid phosphatase, phytase) in liquid culture and in the biological fertilizer. The biologically based fertilizer, containing strain A6, improved plant phosphorus nutrition in greenhouse pot experiments resulting in significantly greater available phosphorus in natural soil and in significantly greater plant phosphorus content relative to the nontreated control. Seed yield and available phosphorus in natural soil were significantly greater with a synthetic chemical fertilizer treatment, reduced in phosphorus content, than the biological fertilizer treatment, but a treatment containing the biological fertilizer combined with the synthetic fertilizer provided the significantly greatest seed yield, available phosphorus in natural soil, and plant phosphorus content. These results suggest that the biological fertilizer was capable of improving oilseed rape seed yield, at least in part, through the phosphorus-solubilizing activity of B. megaterium A6.
Yang, Jie; Lin, Feng K; Yang, Lei; Hua, Dan Y
2015-01-01
The effects of oxygen-releasing compound (ORC) on the control of phosphorus (P) release as well as the spatial and temporal distribution of P fractions in sediment were studied through a bench-scale test. An ORC with an extended oxygen-releasing capacity was prepared. The results of the oxygen-releasing test showed that the ORC provided a prolonged period of oxygen release with a highly effective oxygen content of 60.6% when compared with powdery CaO2. In the bench-scale test, an ORC dose of 180 g·m(-2) provided a higher inhibition efficiency for P release within 50 days. With the application of the ORC, the dissolved oxygen (DO) concentration and redox potential (ORP) of the overlying water were notably improved, and the dissolved total phosphorus (DTP) was maintained below 0.689 mg·L(-1) compared to 2.906 mg·L(-1) without the ORC treatment. According to the P fractions distribution, the summation of all detectable P fractions in each sediment layer exhibited an enhanced accumulation tendency with the application of ORC. Higher phosphorus retention efficiencies were observed in the second and third layers of sediment from days 10 to 20 with the ORC. Phosphorus was trapped mainly in the form of iron bound P (Fe-P) and organically bound P (O-P) in sediment with the ORC, whereas the effects of the ORC on exchangeable P (EX-P), apatite-associated P (A-P) and detrital P (De-P) in the sediment sample were not significant. The microbial activities of the sediment samples demonstrated that both the dehydrogenase activity (DHA) and alkaline phosphatase activity (APA) in the upper sediment layer increased with the ORC treatment, which indicated that the mineralization of P was accelerated and the microbial biomass was increased. As the accumulation of P suppressed the release of P, the sediment exhibited an increased P retention efficiency with the application of the ORC.
The development of a phosphite-mediated fertilization and weed control system for rice.
Manna, Mrinalini; Achary, V Mohan M; Islam, Tahmina; Agrawal, Pawan K; Reddy, Malireddy K
2016-04-25
Fertilizers and herbicides are two vital components of modern agriculture. The imminent danger of phosphate reserve depletion and multiple herbicide tolerance casts doubt on agricultural sustainability in the future. Phosphite, a reduced form of phosphorus, has been proposed as an alternative fertilizer and herbicide that would address the above problems to a considerable extent. To assess the suitability of a phosphite-based fertilization and weed control system for rice, we engineered rice plants with a codon-optimized ptxD gene from Pseudomonas stutzeri. Ectopic expression of this gene led to improved root growth, physiology and overall phenotype in addition to normal yield in transgenic plants in the presence of phosphite. Phosphite functioned as a translocative, non-selective, pre- and post-emergent herbicide. Phosphite use as a dual fertilizer and herbicide may mitigate the overuse of phosphorus fertilizers and reduce eutrophication and the development of herbicide resistance, which in turn will improve the sustainability of agriculture.
The development of a phosphite-mediated fertilization and weed control system for rice
Manna, Mrinalini; Achary, V. Mohan M.; Islam, Tahmina; Agrawal, Pawan K.; Reddy, Malireddy K.
2016-01-01
Fertilizers and herbicides are two vital components of modern agriculture. The imminent danger of phosphate reserve depletion and multiple herbicide tolerance casts doubt on agricultural sustainability in the future. Phosphite, a reduced form of phosphorus, has been proposed as an alternative fertilizer and herbicide that would address the above problems to a considerable extent. To assess the suitability of a phosphite-based fertilization and weed control system for rice, we engineered rice plants with a codon-optimized ptxD gene from Pseudomonas stutzeri. Ectopic expression of this gene led to improved root growth, physiology and overall phenotype in addition to normal yield in transgenic plants in the presence of phosphite. Phosphite functioned as a translocative, non-selective, pre- and post-emergent herbicide. Phosphite use as a dual fertilizer and herbicide may mitigate the overuse of phosphorus fertilizers and reduce eutrophication and the development of herbicide resistance, which in turn will improve the sustainability of agriculture. PMID:27109389
Nutrient Control Design Manual–State of the Technology Review Report
This EPA document is an interim product in the development of revised design guidance for nitrogen and phosphorus control at municipal WWTPs. This document presents findings from an extensive review of nitrogen and phosphorus control technologies and techniques currently applied...
Rethinking early Earth phosphorus geochemistry
Pasek, Matthew A.
2008-01-01
Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373
Rethinking early Earth phosphorus geochemistry.
Pasek, Matthew A
2008-01-22
Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO(3)(2-)), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks.
Ferric Citrate Controls Phosphorus and Delivers Iron in Patients on Dialysis
Sika, Mohammed; Koury, Mark J.; Chuang, Peale; Schulman, Gerald; Smith, Mark T.; Whittier, Frederick C.; Linfert, Douglas R.; Galphin, Claude M.; Athreya, Balaji P.; Nossuli, A. Kaldun Kaldun; Chang, Ingrid J.; Blumenthal, Samuel S.; Manley, John; Zeig, Steven; Kant, Kotagal S.; Olivero, Juan Jose; Greene, Tom; Dwyer, Jamie P.
2015-01-01
Patients on dialysis require phosphorus binders to prevent hyperphosphatemia and are iron deficient. We studied ferric citrate as a phosphorus binder and iron source. In this sequential, randomized trial, 441 subjects on dialysis were randomized to ferric citrate or active control in a 52-week active control period followed by a 4-week placebo control period, in which subjects on ferric citrate who completed the active control period were rerandomized to ferric citrate or placebo. The primary analysis compared the mean change in phosphorus between ferric citrate and placebo during the placebo control period. A sequential gatekeeping strategy controlled study-wise type 1 error for serum ferritin, transferrin saturation, and intravenous iron and erythropoietin-stimulating agent usage as prespecified secondary outcomes in the active control period. Ferric citrate controlled phosphorus compared with placebo, with a mean treatment difference of −2.2±0.2 mg/dl (mean±SEM) (P<0.001). Active control period phosphorus was similar between ferric citrate and active control, with comparable safety profiles. Subjects on ferric citrate achieved higher mean iron parameters (ferritin=899±488 ng/ml [mean±SD]; transferrin saturation=39%±17%) versus subjects on active control (ferritin=628±367 ng/ml [mean±SD]; transferrin saturation=30%±12%; P<0.001 for both). Subjects on ferric citrate received less intravenous elemental iron (median=12.95 mg/wk ferric citrate; 26.88 mg/wk active control; P<0.001) and less erythropoietin-stimulating agent (median epoetin-equivalent units per week: 5306 units/wk ferric citrate; 6951 units/wk active control; P=0.04). Hemoglobin levels were statistically higher on ferric citrate. Thus, ferric citrate is an efficacious and safe phosphate binder that increases iron stores and reduces intravenous iron and erythropoietin-stimulating agent use while maintaining hemoglobin. PMID:25060056
Chen, X; Fujiwara, T; Ohtoshi, K; Inamori, S; Nakamachi, K; Tsuno, H
2010-01-01
A novel oxidation ditch system using anaerobic tanks and innovative dual dissolved oxygen (DO) control technology is proposed for biological nitrogen and phosphorus removal from domestic sewage. A continuous bench-scale experiment running for more than 300 days was performed to evaluate the system. Monitoring and controlling the airflow and recirculation flow rate independently using DO values at two points along the ditch permitted maintenance of aerobic and anoxic zone ratios of around 0.30 and 0.50, respectively. The ability to optimize aerobic and anoxic zone ratios using the dual DO control technology meant that a total nitrogen removal efficiency of 83.2-92.9% could be maintained. This remarkable nitrogen removal performance minimized the nitrate recycle to anaerobic tanks inhibiting the phosphorus release. Hence, the total phosphorus removal efficiency was also improved and ranged within 72.6-88.0%. These results demonstrated that stabilization of the aerobic and anoxic zone ratio by dual DO control technology not only resulted in a marked improvement of nitrogen removal, but it also enhanced phosphorus removal.
Cabugao, Kristine Grace M.; Timm, Collin M.; Carrell, Alyssa A.; ...
2017-10-30
Climatic conditions in tropical forests combined with the immobility of phosphorus due to sorption on mineral surfaces or result in soils typically lacking in the form of phosphorus (orthophosphate) most easily metabolized by plants and microbes. In these soils, mineralization of organic phosphorus can be the major source for labile inorganic P available for uptake. Both plants and microbes encode for phosphatase enzymes capable of mineralizing a range of organic phosphorus compounds. However, the activity of these enzymes depends on several edaphic factors including P availability and tree or microbial species. Thus, phosphatase activity in both roots and the rootmore » microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. We measured phosphatase activity in roots and bacterial isolates from the microbial community of six tree species from three forest sites differing in phosphorus availability in the Luquillo Mountains of Puerto Rico. Root and microbial phosphatase activity were both influenced by tree identity and soil phosphorus availability. However, tree identity had a larger effect on phosphatase activity (effect size = 0.12) than soil phosphorus availability (effect size = 0.07). In addition, lower amounts of P availability corresponded with higher levels of enzyme activity. In contrast, ANOSIM analysis of the weighted UniFrac distance matrix indicates that microbial community composition was more strongly controlled by soil P availability (P value < 0.05). These results indicate that root and rhizosphere microbial phosphatase activity are similarly expressed despite the slightly stronger influence of tree identity on root function and the stronger influence of P availability on microbial community composition. The low levels of orthophosphate in tropical forests, rather than prohibiting growth, have encouraged a variety of functions to adapt to minimal levels of an essential nutrient. Phosphatase activity is one such mechanism that varies in both roots and microbial community members. A thorough understanding of phosphatase activity provides insight into P mineralization in tropical forests, providing not only perspective on ecosystem function of tropical trees and microbial communities, but also in advancing efforts to improve representations of tropical forests in future climates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabugao, Kristine Grace M.; Timm, Collin M.; Carrell, Alyssa A.
Climatic conditions in tropical forests combined with the immobility of phosphorus due to sorption on mineral surfaces or result in soils typically lacking in the form of phosphorus (orthophosphate) most easily metabolized by plants and microbes. In these soils, mineralization of organic phosphorus can be the major source for labile inorganic P available for uptake. Both plants and microbes encode for phosphatase enzymes capable of mineralizing a range of organic phosphorus compounds. However, the activity of these enzymes depends on several edaphic factors including P availability and tree or microbial species. Thus, phosphatase activity in both roots and the rootmore » microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. We measured phosphatase activity in roots and bacterial isolates from the microbial community of six tree species from three forest sites differing in phosphorus availability in the Luquillo Mountains of Puerto Rico. Root and microbial phosphatase activity were both influenced by tree identity and soil phosphorus availability. However, tree identity had a larger effect on phosphatase activity (effect size = 0.12) than soil phosphorus availability (effect size = 0.07). In addition, lower amounts of P availability corresponded with higher levels of enzyme activity. In contrast, ANOSIM analysis of the weighted UniFrac distance matrix indicates that microbial community composition was more strongly controlled by soil P availability (P value < 0.05). These results indicate that root and rhizosphere microbial phosphatase activity are similarly expressed despite the slightly stronger influence of tree identity on root function and the stronger influence of P availability on microbial community composition. The low levels of orthophosphate in tropical forests, rather than prohibiting growth, have encouraged a variety of functions to adapt to minimal levels of an essential nutrient. Phosphatase activity is one such mechanism that varies in both roots and microbial community members. A thorough understanding of phosphatase activity provides insight into P mineralization in tropical forests, providing not only perspective on ecosystem function of tropical trees and microbial communities, but also in advancing efforts to improve representations of tropical forests in future climates.« less
Phosphorus Fate and Dynamics in Greywater Biofiltration Systems.
Fowdar, Harsha S; Hatt, Belinda E; Cresswell, Tom; Harrison, Jennifer J; Cook, Perran L M; Deletic, Ana
2017-02-21
Phosphorus, a critical environmental pollutant, is effectively removed from stormwater by biofiltration systems, mainly via sedimentation and straining. However, the fate of dissolved inflow phosphorus concentrations in these systems is unknown. Given the growing interest in using biofiltration systems to treat other polluted waters, for example greywater, such an understanding is imperative to optimize designs for successful long-term performance. A mass balance method and a radiotracer, 32 P (as H 3 PO 4 ), were used to investigate the partitioning of phosphorus (concentrations of 2.5-3.5 mg/L, >80% was in dissolved inorganic form) between the various biofilter components at the laboratory scale. Planted columns maintained a phosphorus removal efficiency of >95% over the 15-week study period. Plant storage was found to be the dominant phosphorus sink (64% on average). Approximately 60% of the phosphorus retained in the filter media was recovered in the top 0-6 cm. The 32 P tracer results indicate that adsorption is the immediate primary fate of dissolved phosphorus in the system (up to 57% of input P). Plant assimilation occurs at other times, potentially liberating sorption sites for processing of subsequent incoming phosphorus. Plants with high nutrient uptake capacities and the ability to efficiently extract soil phosphorus, for example Carex appressa, are, thus, recommended for use in greywater biofilters.
High-temperature protection of steel goods from gas corrosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerasimov, V.V.; Porfir`eva, R.T.; Peskov, A.V.
The feasibility of using phosphorus-containing compounds to activate the thermal diffusion impregnation of steels with aluminum was explored and substantiated by experiment. Volatile phosphorus formed from the thermal destruction of the phosphorus-containing substances and the resulting Al/P-type complexes, which provide a gas-transportation medium to take the aluminum to the article surface, were instrumental in the mechanism. The resultant thermal diffusion coatings enabled steel to be safely protected from gas corrosion at a temperature of 950{degrees}C. As a result of research on the structure of the protective layer using electron microscopy and X-ray phase analysis, coatings formed using a mixture containingmore » 1 wt.% iron glycerophosphate exhibited the optimum operating characteristics.« less
Steckling, S de M; Ribeiro, N D; Arns, F D; Mezzomo, H C; Possobom, M T D F
2017-03-22
The development of common bean cultivars with high technological quality that are biofortified with minerals, is required to meet the demand for food with health benefits. The objectives of this study were to evaluate whether common bean genotypes differ in terms of technological and mineral biofortification traits, to study the correlations between these characters, to analyze the genetic dissimilarity of common bean genotypes, and to select superior lines for these traits. For this, 14 common bean genotypes were evaluated in experiments conducted in three growing seasons in the Rio Grande do Sul State, Brazil. A significant genotype x environment interaction was observed for technological quality (mass of 100 grains and cooking time) and biofortification traits (concentration of potassium, phosphorus, calcium, iron, zinc, and copper). Positive correlation estimates were obtained between phosphorus and potassium (r = 0.575), iron and zinc (r = 0.641), copper and iron (r = 0.729), and copper and phosphorus (r = 0.533). In the main component cluster analysis, four groups of genotypes were formed. The following lines are recommended for selection: LP 11-363 for fast-cooking, CNFC 11 948 for high iron concentration, and LEC 03-14 for high potassium, phosphorus, and calcium concentrations in grains. Common bean lines with high phosphorus and iron concentrations in grains can be indirectly selected based on higher potassium, copper, and zinc concentrations. Controlled crossings between LP 11-363 x CNFC 11 948 and LP 11-363 x LEC 03-14 are recommended to obtain segregating lines that are fast-cooking and biofortified with minerals.
Edmundson, S.; Huesemann, M.; Kruk, R.; ...
2017-07-25
Phosphorus and nitrogen are essential components of microalgal growth media. Critical to a wide range of biochemical processes, they commonly limit primary productivity. Recycling elemental phosphorus and fixed nitrogen after fuel conversion via hydrothermal liquefaction (HTL) of algae biomass reduces the need for mined phosphorus and synthetic nitrogen resources. We used scenedesmus obliquus DOE 0152.Z and Chlorella sorokiniana DOE1412 as test organisms in assessing nutrient recycle of phosphorus from filtered solids collected downstream of the HTL reactor and nitrogen collected from the aqueous phase after gravimetric biocrude separation. Maximum specific growth rates were measured in growth media using HTL wastemore » as the sole source of either phosphorus or nitrogen and were compared to an algal growth medium control (BG-11). The maximum specific growth rate of both organisms in the recycled phosphorus medium were nearly identical to rates observed in the control medium. Both organisms showed significantly reduced growth rates in the recycled nitrogen medium. C. sorokiniana DOE1412 adapted after several days of exposure whereas S. obliquus DOE0152.Z exhibited poor adaptability to the recycled nitrogen medium. After adaptation, growth rates observed with C. sorokiniana DOE1412 in the recycled nitrogen medium were 3.02 (± 0.13) day -1, 89% of the control medium (3.40 ± 0.21). We further tested maximum specific growth rates of C. sorokiniana DOE1412 in a medium derived entirely from HTL byproducts, completely replacing all components including nitrogen and phosphorus. In this medium we observed rates of 2.70 ± 0.05 day -1, 79% of the control. By adding trace metals to this recycled medium we improved growth rates significantly to 3.10 ± 0.10, 91% of the control, which indicates a critical element is lost in the conversion process. Recycling elemental resources such as phosphorus and nitrogen from the HTL biofuel conversion process can provide a significant reduction in media cost and improves the prospects for industrial scale, algae-based biofuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmundson, S.; Huesemann, M.; Kruk, R.
Phosphorus and nitrogen are essential components of microalgal growth media. Critical to a wide range of biochemical processes, they commonly limit primary productivity. Recycling elemental phosphorus and fixed nitrogen after fuel conversion via hydrothermal liquefaction (HTL) of algae biomass reduces the need for mined phosphorus and synthetic nitrogen resources. We used scenedesmus obliquus DOE 0152.Z and Chlorella sorokiniana DOE1412 as test organisms in assessing nutrient recycle of phosphorus from filtered solids collected downstream of the HTL reactor and nitrogen collected from the aqueous phase after gravimetric biocrude separation. Maximum specific growth rates were measured in growth media using HTL wastemore » as the sole source of either phosphorus or nitrogen and were compared to an algal growth medium control (BG-11). The maximum specific growth rate of both organisms in the recycled phosphorus medium were nearly identical to rates observed in the control medium. Both organisms showed significantly reduced growth rates in the recycled nitrogen medium. C. sorokiniana DOE1412 adapted after several days of exposure whereas S. obliquus DOE0152.Z exhibited poor adaptability to the recycled nitrogen medium. After adaptation, growth rates observed with C. sorokiniana DOE1412 in the recycled nitrogen medium were 3.02 (± 0.13) day -1, 89% of the control medium (3.40 ± 0.21). We further tested maximum specific growth rates of C. sorokiniana DOE1412 in a medium derived entirely from HTL byproducts, completely replacing all components including nitrogen and phosphorus. In this medium we observed rates of 2.70 ± 0.05 day -1, 79% of the control. By adding trace metals to this recycled medium we improved growth rates significantly to 3.10 ± 0.10, 91% of the control, which indicates a critical element is lost in the conversion process. Recycling elemental resources such as phosphorus and nitrogen from the HTL biofuel conversion process can provide a significant reduction in media cost and improves the prospects for industrial scale, algae-based biofuels.« less
Changes in total phosphorus concentration in the Red River of the North Basin, 1970-2012
Ryberg, Karen R.; Akyüz, F. Adnan; Lin, Wei
2015-01-01
The Red River of the North drains much of eastern North Dakota and northwestern Minnesota and flows north into Manitoba, Canada, ultimately into Lake Winnipeg; therefore, water quality is an International concern. With increased runoff in the past few decades, phosphorus flux (the amount of phosphorus transported by the river) has increased. This is a concern, especially with respect to Lake Winnipeg, an important inland fishery and recreational destination. There is pressure at the State and International levels to reduce phosphorus flux, an expensive proposition. Depending on the method (controlling sources, settling ponds, buffer strips), control of phosphorus flux is not always effective during spring runoff. This work represents a first step in developing a causal model for phosphorus flux by examining available data and changes in concentration over time. Total phosphorus concentration data for the Red River at Emerson, Manitoba, and at Fargo, North Dakota-Moorhead, Minnesota, were summarized and then analyzed using WRTDS (Weighted Regressions on Time, Discharge, and Season) to describe total phosphorus changes over time in two analysis periods: 1970-1993 and 1993-2012. Total phosphorus concentration increased in the first period at Emerson, Manitoba, indicating phosphorus was likely being transported to streams during runoff events. A very different pattern occurred at Fargo-Moorhead with declines in concentration, except at high discharge. While concentration continually changes, during the second period it decreased during spring runoff at Emerson and Fargo-Moorhead and during the growing season at Fargo-Moorhead, perhaps because of improved agricultural practices and declines in some uses of phosphorus.
Dephosphorization of Levitated Silicon-Iron Droplets for Production of Solar-Grade Silicon
NASA Astrophysics Data System (ADS)
Le, Katherine; Yang, Yindong; Barati, Mansoor; McLean, Alexander
2018-05-01
The treatment of relatively inexpensive silicon-iron alloys is a potential refining route in order to generate solar-grade silicon. Phosphorus is one of the more difficult impurity elements to remove by conventional processing. In this study, electromagnetic levitation was used to investigate phosphorus behavior in silicon-iron alloy droplets exposed to H2-Ar gas mixtures under various experimental conditions including, refining time, temperature (1723 K to 1993 K), gas flow rate, iron content, and initial phosphorus concentration in the alloy. Thermodynamic modeling of the dephosphorization reaction permitted prediction of the various gaseous products and indicated that diatomic phosphorus is the dominant species formed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-16
... control of elevated serum phosphorus in chronic kidney disease patients on dialysis. The proposed rule... carbonate, is a phosphate binder indicated for the control of serum phosphorus in patients with chronic...
Phosphorus Balance in Adolescent Girls and the Effect of Supplemental Dietary Calcium.
Vorland, Colby J; Martin, Berdine R; Weaver, Connie M; Peacock, Munro; Gallant, Kathleen M Hill
2018-03-01
There are limited data on phosphorus balance and the effect of dietary calcium supplements on phosphorus balance in adolescents. The purpose of this study was to determine phosphorus balance and the effect of increasing dietary calcium intake with a supplement on net phosphorus absorption and balance in healthy adolescent girls. This study utilized stored urine, fecal, and diet samples from a previously conducted study that focused on calcium balance. Eleven healthy girls ages 11 to 14 years participated in a randomized crossover study, which consisted of two 3-week periods of a controlled diet with low (817 ± 19.5 mg/d) or high (1418 ± 11.1 mg/d) calcium, separated by a 1-week washout period. Phosphorus intake was controlled at the same level during both placebo and calcium supplementation (1435 ± 23.5 and 1453 ± 28.0 mg/d, respectively, p = 0.611). Mean phosphorus balance was positive by about 200 mg/d and was unaffected by the calcium supplement ( p = 0.826). Urinary phosphorus excretion was lower with the calcium supplement (535 ± 42 versus 649 ± 41 mg/d, p = 0.013), but fecal phosphorus and net phosphorus absorption were not significantly different between placebo and calcium supplement (553 ± 60 versus 678 ± 63 versus mg/d, p = 0.143; 876 ± 62 versus 774 ± 64 mg/d, p = 0.231, respectively). Dietary phosphorus underestimates using a nutrient database compared with the content measured chemically from meal composites by ~40%. These results show that phosphorus balance is positive in girls during adolescent growth and that a calcium dietary supplement to near the current recommended level does not affect phosphorus balance when phosphorus intake is at 1400 mg/d, a typical US intake level. © 2017 American Society for Bone and Mineral Research.
Method of removing and detoxifying a phosphorus-based substance
Vandegrift, George F.; Steindler, Martin J.
1989-01-01
A method of removing organic phosphorus-based poisonous substances from water contaminated therewith and of subsequently destroying the toxicity of the substance is disclosed. Initially, a water-immiscible organic is immobilized on a supported liquid membrane. Thereafter, the contaminated water is contacted with one side of the supported liquid membrane to selectively dissolve the phosphorus-based substance in the organic extractant. At the same time, the other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react the phosphorus-based substance dissolved by the organic extractant with a hydroxy ion. This forms a non-toxic reaction product in the base. The organic extractant can be a water-insoluble trialkyl amine, such as trilauryl amine. The phosphorus-based substance can be phosphoryl or a thiophosphoryl.
Kaufman, Matthew I.; Dysart, J.E.
1978-01-01
Water samples were collected during spring and autumn 1972 from about 100 surface-water sites in Florida. The samples were analyzed for the plant nutrients, nitrogen and phosphorus. In most waters, nitrogen concentrations are less than 2.0 milligrams per liter as nitrogen, and organic nitrogen is dominant. Median total nitrogen concentration for Florida surface waters is between 1.2 and 2.0 milligrams per liter as nitrogen. In samples from 85 percent of the sites, total nitrogen exceeded 0.6 milligrams per liter. Median total phosphorus concentration as phosphorus for Florida surface waters is between 0.05 and 0.1 milligrams per liter. The information will form a base useful to agencies concerned with setting concentration limits for nitrogen and phosphorus in industrial and sewage plant outfalls. (Woodard-USGS)
St-Jules, David E; Jagannathan, Ram; Gutekunst, Lisa; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann
2016-01-01
Phosphorus bioavailability is an emerging topic of interest in the field of renal nutrition that has important research and clinical implications. Estimates of phosphorus bioavailability, based on digestibility, indicate that bioavailability of phosphorus increases from plants to animals to food additives. In this commentary, we examined the proportion of dietary phosphorus from plants, animals and food additives excreted in urine from four controlled feeding studies conducted in healthy adults and patients with chronic kidney disease. As expected, a smaller proportion of phosphorus from plant foods was excreted in urine compared to animal foods. However, contrary to expectations, phosphorus from food additives appeared to be incompletely absorbed. The apparent discrepancy between digestibility of phosphorus additives and the proportion excreted in urine suggests a need for human balance studies to determine the bioavailability of different sources of phosphorus. PMID:27810171
St-Jules, David E; Jagannathan, Ram; Gutekunst, Lisa; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann
2017-03-01
Phosphorus bioavailability is an emerging topic of interest in the field of renal nutrition that has important research and clinical implications. Estimates of phosphorus bioavailability, based on digestibility, indicate that bioavailability of phosphorus increases from plants to animals to food additives. In this commentary, we examined the proportion of dietary phosphorus from plants, animals, and food additives excreted in urine from four controlled-feeding studies conducted in healthy adults and patients with chronic kidney disease. As expected, a smaller proportion of phosphorus from plant foods was excreted in urine compared to animal foods. However, contrary to expectations, phosphorus from food additives appeared to be incompletely absorbed. The apparent discrepancy between digestibility of phosphorus additives and the proportion excreted in urine suggests a need for human balance studies to determine the bioavailability of different sources of phosphorus. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Antibody to fibroblast growth factor 23-peptide reduces excreta phosphorus of laying hens.
Ren, Zhouzheng; Ebrahimi, Marziyeh; Bütz, Daniel E; Sand, Jordan M; Zhang, Keying; Cook, Mark E
2017-01-01
Novel strategies to minimize the excretion of phosphorus in swine and poultry are critical in minimizing environmental degradation. We have developed a synthetic peptide vaccine to produce autoantibodies to fibroblast growth factor 23 (FGF-23), a bone-derived hormone that blocks kidney phosphate resorption and indirectly reduces intestinal phosphate absorption. Single Comb White Leghorn laying hens, fed a standard diet (inorganic phosphorus, Pi = 0.4%), were immunized over the course of 4 weeks with either a FGF-23 peptide vaccine or adjuvant control (without FGF-23 peptide). At peak antibody titer to the peptide (week 5), 24-h excreta were collected and hens were blood sampled (represents 0.4% Pi treatment). Hens were then fed a 0.8% Pi diet and blood was sampled at 24 and 72 h and 24-h excreta were collected at 12 to 36 and 60 to 84 h (represents 0.8% Pi treatment). Increasing Pi from 0.4 to 0.8% increased (P < 0.05) percent excreta phosphorus, total 24-h phosphorus excretion, and plasma levels of FGF-23 and phosphate in either control or FGF-23 peptide vaccinated hens as early as the first sampling period. FGF-23 peptide vaccinated hens fed 0.4% Pi had reduced (P < 0.05) percent excreta phosphorus, total 24 h phosphorus excretion, and plasma levels of FGF-23 and iPTH, and increased (P < 0.05) plasma levels of phosphate and 1,25(OH) 2 D 3 when compared to control vaccinated hens fed 0.4% Pi. In the first collection period post 0.8% Pi feeding, FGF-23 peptide vaccinated hens had reduced (P < 0.05) plasma levels of FGF-23 and iPTH, and increased (P < 0.05) plasma levels of phosphate and 1,25(OH) 2 D 3 , and tended to have reduced percent excreta phosphorus (P = 0.085) and total 24 h phosphorus excretion (P = 0.078) when compared to control vaccinated hens. Results during the second collection period post 0.8% Pi feeding were similar to that at the first collection period. These results are the first to show that the inhibition of FGF-23 action by a peptide vaccine (via neutralizing antibody) reduced phosphorus excretion. The approach presented provides new information on phosphorus metabolism in the laying hen. © 2016 Poultry Science Association Inc.
Semiconductor Grade, Solar Silicon Purification Project. [photovoltaic solar energy conversion
NASA Technical Reports Server (NTRS)
Ingle, W. M.; Rosler, R. S.; Thompson, S. W.; Chaney, R. E.
1979-01-01
A low cost by-product, SiF4, is reacted with mg silicon to form SiF2 gas which is polymerized. The (SiF2)x polymer is heated forming volatile SixFy homologues which disproportionate on a silicon particle bed forming silicon and SiF4. The silicon analysis procedure relied heavily on mass spectroscopic and emission spectroscopic analysis. These analyses demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). However, electrical analysis via crystal growth reveal that the product contains compensated phosphorus and boron.
Neelam, Kumari; Thakur, Shiwali; Neha; Yadav, Inderjit S.; Kumar, Kishor; Dhaliwal, Salwinder S.; Singh, Kuldeep
2017-01-01
Limited phosphorus availability in the soil is one of the major constraints to the growth and productivity of rice across Asian, African and South American countries, where 50% of the rice is grown under rain-fed systems on poor and problematic soils. With an aim to determine novel alleles for enhanced phosphorus uptake efficiency in wild species germplasm of rice Oryza rufipogon, we investigated phosphorus uptake1 (Pup1) locus with 11 previously reported SSR markers and sequence characterized the phosphorus-starvation tolerance 1 (PSTOL1) gene. In the present study, we screened 182 accessions of O. rufipogon along with Vandana as a positive control with SSR markers. From the analysis, it was inferred that all of the O. rufipogon accessions undertaken in this study had an insertion of 90 kb region, including Pup1-K46, a diagnostic marker for PSTOL1, however, it was absent among O. sativa cv. PR114, PR121, and PR122. The complete PSTOL1 gene was also sequenced in 67 representative accessions of O. rufipogon and Vandana as a positive control. From comparative sequence analysis, 53 mutations (52 SNPs and 1 nonsense mutation) were found in the PSTOL1 coding region, of which 28 were missense mutations and 10 corresponded to changes in the amino acid polarity. These 53 mutations correspond to 17 haplotypes, of these 6 were shared and 11 were scored only once. A major shared haplotype was observed among 44 accessions of O. rufipogon along with Vandana and Kasalath. Out of 17 haplotypes, accessions representing 8 haplotypes were grown under the phosphorus-deficient conditions in hydroponics for 60 days. Significant differences were observed in the root length and weight among all the genotypes when grown under phosphorus deficiency conditions as compared to the phosphorus sufficient conditions. The O. rufipogon accession IRGC 106506 from Laos performed significantly better, with 2.5 times higher root weight and phosphorus content as compared to the positive control Vandana. In terms of phosphorus uptake efficiency, the O. rufipogon accessions IRGC 104639, 104712, and 105569 also showed nearly two times higher phosphorus content than Vandana. Thus, these O. rufipogon accessions could be used as the potential donor for improving phosphorus uptake efficiency of elite rice cultivars. PMID:28443109
Neelam, Kumari; Thakur, Shiwali; Neha; Yadav, Inderjit S; Kumar, Kishor; Dhaliwal, Salwinder S; Singh, Kuldeep
2017-01-01
Limited phosphorus availability in the soil is one of the major constraints to the growth and productivity of rice across Asian, African and South American countries, where 50% of the rice is grown under rain-fed systems on poor and problematic soils. With an aim to determine novel alleles for enhanced phosphorus uptake efficiency in wild species germplasm of rice Oryza rufipogon , we investigated phosphorus uptake1 ( Pup1 ) locus with 11 previously reported SSR markers and sequence characterized the phosphorus-starvation tolerance 1 ( PSTOL1 ) gene. In the present study, we screened 182 accessions of O. rufipogon along with Vandana as a positive control with SSR markers. From the analysis, it was inferred that all of the O. rufipogon accessions undertaken in this study had an insertion of 90 kb region, including Pup1 -K46, a diagnostic marker for PSTOL1 , however, it was absent among O. sativa cv. PR114, PR121, and PR122. The complete PSTOL1 gene was also sequenced in 67 representative accessions of O. rufipogon and Vandana as a positive control. From comparative sequence analysis, 53 mutations (52 SNPs and 1 nonsense mutation) were found in the PSTOL1 coding region, of which 28 were missense mutations and 10 corresponded to changes in the amino acid polarity. These 53 mutations correspond to 17 haplotypes, of these 6 were shared and 11 were scored only once. A major shared haplotype was observed among 44 accessions of O. rufipogon along with Vandana and Kasalath. Out of 17 haplotypes, accessions representing 8 haplotypes were grown under the phosphorus-deficient conditions in hydroponics for 60 days. Significant differences were observed in the root length and weight among all the genotypes when grown under phosphorus deficiency conditions as compared to the phosphorus sufficient conditions. The O. rufipogon accession IRGC 106506 from Laos performed significantly better, with 2.5 times higher root weight and phosphorus content as compared to the positive control Vandana. In terms of phosphorus uptake efficiency, the O. rufipogon accessions IRGC 104639, 104712, and 105569 also showed nearly two times higher phosphorus content than Vandana. Thus, these O. rufipogon accessions could be used as the potential donor for improving phosphorus uptake efficiency of elite rice cultivars.
Modeling of phosphorus fluxes produced by wild fires at watershed scales.
NASA Astrophysics Data System (ADS)
Matyjasik, M.; Hernandez, M.; Shaw, N.; Baker, M.; Fowles, M. T.; Cisney, T. A.; Jex, A. P.; Moisen, G.
2017-12-01
River runoff is one of the controlling processes in the terrestrial phosphorus cycle. Phosphorus is often a limiting factor in fresh water. One of the factors that has not been studied and modeled in detail is phosporus flux produced from forest wild fires. Phosphate released by weathering is quickly absorbed in soils. Forest wild fires expose barren soils to intensive erosion, thus releasing relatively large fluxes of phosphorus. Measurements from three control burn sites were used to correlate erosion with phosphorus fluxes. These results were used to model phosphorus fluxes from burned watersheds during a five year long period after fires occurred. Erosion in our model is simulated using a combination of two models: the WEPP (USDA Water Erosion Prediction Project) and the GeoWEPP (GIS-based Water Erosion Prediction Project). Erosion produced from forest disturbances is predicted for any watershed using hydrologic, soil, and meteorological data unique to the individual watersheds or individual slopes. The erosion results are modified for different textural soil classes and slope angles to model fluxes of phosphorus. The results of these models are calibrated using measured concentrations of phosphorus for three watersheds located in the Interior Western United States. The results will help the United States Forest Service manage phosporus fluxes in national forests.
NASA Technical Reports Server (NTRS)
Frigo, Sean P.; McNulty,Ian; Richmond, Robert C.; Ehret, Charles F.
2003-01-01
We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include red phosphorus, hydrated sodium phosphate (Na3PO4 12 H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position, where each is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B.meguterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition, the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.
NASA Technical Reports Server (NTRS)
Frigo, Sean P.; McNulty, Ian; Richmond, Robert C.; Ehret, Charles F.
2002-01-01
We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include elemental red phosphorus, hydrated sodium phosphate (Na3PO4.12H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Elemental red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position. Each spectrum for these substances is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for elemental red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B. megaterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition,the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.
Utilization of microbes to improve crop production
USDA-ARS?s Scientific Manuscript database
Phosphorus is one of the three macro nutrients that are essential for plant growth and development. Inorganic phosphorus (P), which can make up to 70% of the total P content in soils, can form complexes with calcium, aluminum, or iron that render the P unavailable for plant use. In these cases, min...
Phosphorus cycling in the Early Aptian
NASA Astrophysics Data System (ADS)
Oakes, R.; Dittrich, M.; Wortmann, U. G.
2012-12-01
Phosphorus is an essential nutrient for living organisms. It is vital for the formation of ATP, the energy store in cells, and is needed for DNA synthesis. Seawater phosphorus concentration therefore plays a critical role in controlling marine productivity on geological timescales. The majority of research on the P cycle focuses on modern lacustrine and marine settings. This follows the necessity to gain a further understanding on the effects of agricultural fertilisers on nutrient cycling; in particular on the mechanisms which lead to eutrophication. These studies use sequential extraction to determine the speciation of P. The results suggest that bottom sediments can act as both a source and a sink of phosphorus; the role they assume depends on range of factors including bottom water oxygen concentrations, sedimentation rate and the concentration of iron. This study applies a sequential extraction method developed in modern sediments to sediments from the Early Cretaceous, specifically the Early Aptian. During this time, globally synchronous oceanic anoxic events (OAE's) appear in the rock record. It has been suggested that these events represent an increase in marine productivity combined with bottom water anoxia. Our study investigates whether the speciation of sedimentary phosphorus can be used to reconstruct P cycling at this time. Our samples are taken from pre-, syn- and post-OAE1a but are not from the organic matter rich layers. Our results show that the original fractions of phosphorus have been altered during diagenesis with the majority of phosphorus now being preserved as either apatite (Ca-P) or phosphorus in organic matter (Porg). The dominance of Ca-P is expected as it is thought that redox-sensitive forms of P undergo 'sink switching' during diagenesis and are preserved as Ca-P. The high concentration of Porg however, differs from previous studies which generally find that Ca-P or iron (oxyhydr)oxide associated phosphorus (Fe-P) are dominant depending on deposition conditions. We find that during the anoxic event Ca-P preservation is enhanced, a trend which is not mirrored by an increase in total phosphorus concentration. This suggests that the formation of authigenic apatite via sink switching may have been enhanced during OAE1a. This agrees with the findings of a modern field and lab based study which proposes that more P is fixed than regenerated under anoxic conditions but contradicts earlier studies which suggest that more P will be refluxed from sediments under anoxic bottom-water conditions.
Dietary egg whites for phosphorus control in maintenance haemodialysis patients: a pilot study.
Taylor, Lynn M; Kalantar-Zadeh, Kamyar; Markewich, Theodore; Colman, Sara; Benner, Debbie; Sim, John J; Kovesdy, Csaba P
2011-03-01
High dietary protein intake is associated with greater survival in maintenance haemodialysis (MHD) patients. High-protein foods may increase dietary phosphorus burden, which is associated with increased mortality in these patients. Hypothesis is: an egg white based diet with low phosphorus to protein ratio (<1.4 mg/g) will lower serum phosphorus without deteriorating the nutritional status in MHD patients. We assessed serum phosphorus and albumin levels in MHD patients who agreed to ingest one meal per day with pasteurised liquid egg whites without phosphorus additives, as principal protein source. Thirteen otherwise stable MHD patients with serum phosphorus >4.0 mg/dl agreed to consume eight ounces (225 g) of pasteurised liquid egg whites one meal per day for six weeks. Recipes were suggested to improve diet variety. Thirteen participating patients included seven women, three African Americans and five diabetics. Twelve patients exhibited drop in serum phosphorus. Mean population fall in serum phosphorus was 0.94 mg/dl, i.e. from 5.58 ± 1.34 (mean ± SD) to 4.63 ± 1.18 (p = 0.003). Serum albumin showed an increase by 0.19 g/dl, i.e. from 4.02 ± 0.29 to 4.21 ± 0.36 g/dl (p = 0.014). Changes in phosphorus pill count were not statistically significant (p = 0.88). The egg white diet was well tolerated, and recipe variety appreciated. Pasteurised liquid egg whites may be an effective diet component lowering serum phosphorus without risking malnutrition. Controlled trials are indicated to examine egg white based dietary interventions in MHD patients at home or during haemodialysis treatment. © 2011 European Dialysis and Transplant Nurses Association/European Renal Care Association.
USDA-ARS?s Scientific Manuscript database
Phosphorus site assessment is used nationally and internationally to assess the vulnerability of agricultural fields to phosphorus (P) loss and identify “critical source areas” controlling watershed P export. Current efforts to update P site assessment tools must ensure that the tools are representa...
NASA Astrophysics Data System (ADS)
Lemang, M.; Rodriguez, Ph.; Nemouchi, F.; Juhel, M.; Grégoire, M.; Mangelinck, D.
2018-02-01
Phosphorus diffusion and its distribution during the solid-state reactions between Ni0.9Pt0.1 and implanted Si substrates are studied. Silicidation is achieved through a first rapid thermal annealing followed by a selective etching and a direct surface annealing. The redistribution of phosphorus in silicide layers is investigated after the first annealing for different temperatures and after the second annealing. Phosphorus concentration profiles obtained thanks to time of flight secondary ion mass spectrometry and atom probe tomography characterizations for partial and total reactions of the deposited 7 nm thick Ni0.9Pt0.1 film are presented. Phosphorus segregation is observed at the Ni0.9Pt0.1 surface and at Ni2Si interfaces during Ni2Si formation and at the NiSi surface and the NiSi/Si interface after NiSi formation. The phosphorus is evidenced in low concentrations in the Ni2Si and NiSi layers. Once NiSi is formed, a bump in the phosphorus concentration is highlighted in the NiSi layer before the NiSi/Si interface. Based on these profiles, a model for the phosphorus redistribution is proposed to match this bump to the former Ni2Si/Si interface. It also aims to bind the phosphorus segregation and its low concentration in different silicides to a low solubility of phosphorus in Ni2Si and in NiSi and a fast diffusion of phosphorus at their grain boundaries. This model is also substantiated by a simulation using a finite difference method in one dimension.
Liu, Wei; Ji, Hongli; Kerr, Philip; Wu, Yonghong; Fang, Yanming
2015-11-01
The loss of phosphorus from agricultural intensive areas can cause ecological problems such as eutrophication in downstream surface waters. Therefore, the purpose of this study is to control the phosphorus loss using environmentally benign soil amendments, viz, ferrous sulfate (FES), aluminum sulfate (ALS), and polyacrylamide (PAM). The phosphorus concentration changes in soil and leaching solution, the morphological index of plant (including stem and root), and root activity and quality (represented by chlorophyll and soluble sugar) at different growth stages of cabbage (Brassica oleracea L. var. capitata L.) were monitored in a pilot experiment. Phosphorus contents in soil and runoff were also investigated in field experiments cultivated with corn (Zea mays L.). The results show that the application of these amendments improved the phosphorus uptake by cabbage and corn, resulting in the enhanced morphologies of root and stem as well as the root activity at the early and middle stages of cabbage growth. The soil total phosphorus and available phosphorus in soils treated with FES, ALS, and PAM declined, resulting in lower concentrations of phosphorus in the leachate and the soil runoff. During the use of the soil amendments, the cabbage quality measures, determined as chlorophyll and soluble sugar in leaves, were not significantly different from those in the control. It is suggested that the application of these soil amendments is safe for cabbage production under single season cropping conditions, and the use of these three amendments is a promising measure to reduce phosphorus loss in intensive agricultural areas.
Vivianite as an important iron phosphate precipitate in sewage treatment plants.
Wilfert, P; Mandalidis, A; Dugulan, A I; Goubitz, K; Korving, L; Temmink, H; Witkamp, G J; Van Loosdrecht, M C M
2016-11-01
Iron is an important element for modern sewage treatment, inter alia to remove phosphorus from sewage. However, phosphorus recovery from iron phosphorus containing sewage sludge, without incineration, is not yet economical. We believe, increasing the knowledge about iron-phosphorus speciation in sewage sludge can help to identify new routes for phosphorus recovery. Surplus and digested sludge of two sewage treatment plants was investigated. The plants relied either solely on iron based phosphorus removal or on biological phosphorus removal supported by iron dosing. Mössbauer spectroscopy showed that vivianite and pyrite were the dominating iron compounds in the surplus and anaerobically digested sludge solids in both plants. Mössbauer spectroscopy and XRD suggested that vivianite bound phosphorus made up between 10 and 30% (in the plant relying mainly on biological removal) and between 40 and 50% of total phosphorus (in the plant that relies on iron based phosphorus removal). Furthermore, Mössbauer spectroscopy indicated that none of the samples contained a significant amount of Fe(III), even though aerated treatment stages existed and although besides Fe(II) also Fe(III) was dosed. We hypothesize that chemical/microbial Fe(III) reduction in the treatment lines is relatively quick and triggers vivianite formation. Once formed, vivianite may endure oxygenated treatment zones due to slow oxidation kinetics and due to oxygen diffusion limitations into sludge flocs. These results indicate that vivianite is the major iron phosphorus compound in sewage treatment plants with moderate iron dosing. We hypothesize that vivianite is dominating in most plants where iron is dosed for phosphorus removal which could offer new routes for phosphorus recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
A surface code quantum computer in silicon
Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.
2015-01-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310
A surface code quantum computer in silicon.
Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L
2015-10-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.
From sea to land: assessment of the bio-transport of phosphorus by penguins in Antarctica
NASA Astrophysics Data System (ADS)
Qin, Xianyan; Sun, Liguang; Blais, Jules M.; Wang, Yuhong; Huang, Tao; Huang, Wen; Xie, Zhouqing
2014-01-01
In Antarctica, the marine ecosystem is dynamically interrelated with the terrestrial ecosystem. An example of the link between these two ecosystems is the biogeochemical cycle of phosphorus. Biovectors, such as penguins, transport phosphorus from sea to land, play a key role in this cycle. In this paper, we selected three colonies of penguins, the most important seabirds in Antarctica, and computed the annual quantity of phosphorus transferred from sea to land by these birds. Our results show that adult penguins from colonies at Ardley Island, the Vestfold Hills, and Ross Island could transfer phosphorus in the form of guano at up to 12 349, 167 036, and 97 841 kg/a, respectively, over their breeding period. These quantities are equivalent to an annual input of 3.96×109-1.63×1010 kg of seawater to the land of Antarctica. Finally, we discuss the impact of phosphorus on the ice-free areas of the Antarctica.
Seagrass-Mediated Phosphorus and Iron Solubilization in Tropical Sediments
2017-01-01
Tropical seagrasses are nutrient-limited owing to the strong phosphorus fixation capacity of carbonate-rich sediments, yet they form densely vegetated, multispecies meadows in oligotrophic tropical waters. Using a novel combination of high-resolution, two-dimensional chemical imaging of O2, pH, iron, sulfide, calcium, and phosphorus, we found that tropical seagrasses are able to mobilize the essential nutrients iron and phosphorus in their rhizosphere via multiple biogeochemical pathways. We show that tropical seagrasses mobilize phosphorus and iron within their rhizosphere via plant-induced local acidification, leading to dissolution of carbonates and release of phosphate, and via local stimulation of microbial sulfide production, causing reduction of insoluble Fe(III) oxyhydroxides to dissolved Fe(II) with concomitant phosphate release into the rhizosphere porewater. These nutrient mobilization mechanisms have a direct link to seagrass-derived radial O2 loss and secretion of dissolved organic carbon from the below-ground tissue into the rhizosphere. Our demonstration of seagrass-derived rhizospheric phosphorus and iron mobilization explains why seagrasses are widely distributed in oligotrophic tropical waters. PMID:29149570
Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro
2014-01-01
Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder. PMID:23254903
Li, Hongmei; Zhang, Yongyu; Han, Xiurong; Shi, Xiaoyong; Rivkin, Richard B.; Legendre, Louis
2016-01-01
The marine macrophyte Ulva prolifera is the dominant green-tide-forming seaweed in the southern Yellow Sea, China. Here we assessed, in the laboratory, the growth rate and nutrient uptake responses of U. prolifera to different nutrient treatments. The growth rates were enhanced in incubations with added organic and inorganic nitrogen [i.e. nitrate (NO3−), ammonium (NH4+), urea and glycine] and phosphorus [i.e. phosphate (PO43−), adenosine triphosphate (ATP) and glucose 6-phosphate (G-6-P)], relative to the control. The relative growth rates of U. prolifera were higher when enriched with dissolved organic nitrogen (urea and glycine) and phosphorus (ATP and G-6-P) than inorganic nitrogen (NO3− and NH4+) and phosphorus (PO43−). In contrast, the affinity was higher for inorganic than organic nutrients. Field data in the southern Yellow Sea showed significant inverse correlations between macroalgal biomass and dissolved organic nutrients. Our laboratory and field results indicated that organic nutrients such as urea, glycine and ATP, may contribute to the development of macroalgal blooms in the southern Yellow Sea. PMID:27199215
Phosphorus ionization in silicon doped by self-assembled macromolecular monolayers
NASA Astrophysics Data System (ADS)
Wu, Haigang; Li, Ke; Gao, Xuejiao; Dan, Yaping
2017-10-01
Individual dopant atoms can be potentially controlled at large scale by the self-assembly of macromolecular dopant carriers. However, low concentration phosphorus dopants often suffer from a low ionization rate due to defects and impurities introduced by the carrier molecules. In this work, we demonstrated a nitrogen-free macromolecule doping technique and investigated the phosphorus ionization process by low temperature Hall effect measurements. It was found that the phosphorus dopants diffused into the silicon bulk are in nearly full ionization. However, the electrons ionized from the phosphorus dopants are mostly trapped by deep level defects that are likely carbon interstitials.
Zhang, Xin; Gu, Hui Yan; Chen, Xiang Wei
2018-02-01
In order to clarify the effects of selective cutting on soil phosphorus availability in Korean pine broad-leaved forest, surface soil (0-10 cm) samples from original Korean pine broad-leaved forest and natural forests with mild, medium and intensive cutting disturbances were collected. The Sui modified Hedley phosphorus fractionation method was used to continuously extract soil samples and analyzed the differences and changes of soil phosphorus fractions from different experimental stands. The results showed that the soil total phosphorus content of Korean pine broad-leaved forest varied from 1.09 to 1.66 g·kg -1 , with the original stand and intensive cutting disturbance stand being the maximum and minimum one, respectively. The differences of soil total phosphorus content among cutting disturbance levels were significant. The Olsen phosphorus and phosphorus activation coefficients changed with an amplitude of 7.26-17.79 mg·kg -1 and 0.67%-1.07%, respectively. Both of them significantly decreased with the increase of selective cutting disturbance level. The concentrations of all P fractions except HCl-P o , i.e., H 2 O-P i , NaHCO 3 -P, NaOH-P, HCl-P i , Residual-P, decreased with increasing cutting disturbance levels compared with original forest. The correlation coefficient between H 2 O-P i and soil Olsen phosphorus was the highest (0.98), though it only accounted for 1.5%-2.2% of the total phosphorus. NaOH-P content contributed to more than 48.0% of the total phosphorus, acknowledged as the potential source of soil phosphorus. In conclusion, selective cutting disturbance could constrain phosphorus storage and soil phosphorus availabi-lity of the Korean pine broad-leaved forests by significantly reducing the content of soil inorganic phosphorus and NaOH-P o , and such trends were positively dependent on the intensity of selective cutting.
Zhang, S L; Xu, J S; Yang, S; Bai, Y L; Zhang, J X; Cui, L W; Yu, Q Y
2016-06-24
To observe the role of TRAM-34 (1-((2-chlorophenyl)diphenylmethyl)-1H-pyrazole), the blocker of intermediate conductance calcium-activated potassium channel (KCa3.1), on β-glycerophosphate induced vascular calcification in vitro. Vascular smooth muscle cells(VSMCs) were obtained from rat thoracic aorta, and VSMCs after the fourth passage and aortic rings were divided into control group (cultured in DMEM with 10% fetal bovine serum), high phosphorus group (cultured in DMEM with 10% fetal bovine serum and 10% β-glycerophosphate) and TRAM-34 group(20 nmol/L TRAM-34 was added into high phosphorus DMEM). Calcium deposition of VSMCs and aortic rings were measured by o-cresolphthalein complexone method.Calcium influx of VSMCs was measured by immunofluorescence probe Fluo-3 AM.The expression of runt-related transcription factor 2(Runx2)was detected by RT-PCR and Western blot for cells and immunohistochemistry for aortic rings.ALP activity was measured by alkaline phosphatase activity detection kit. (1) Compared with control group, calcification was significantly increased in high phosphorus group ((121.67±6.17) mg/g vs. (84.38±8.17) mg/g, P<0.05) and this effect could be attenuated by TRAM-34 ((93.31±11.36) mg/g, P<0.05 vs. high phosphorus group) after 12 days culture. Similar results were found in aortic rings cultured for 12 days-high phosphorus group: (7.17±0.57) mg/g vs. (1.18±0.13) mg/g (P<0.05) and TRAM-34: (4.71±0.42) mg/g, P<0.05 vs. high phosphorus group.(2) Compared with control group, the calcium influx was higher in high phosphorus group (349.22±40.47 vs. 151.67±16.94, P<0.05) and reduced in TRAM-34 group (194.67±22.21, P<0.05 vs. high phosphorus group) in VSMCs simulated for 4 days. (3) Both mRNA and protein expressions of Runx2 in high phosphorus groups were higher than in control group (0.630±0.033 vs.0.340±0.058 and 0.865±0.031 vs.0.414±0.011, both P<0.05) and lower in TRAM-34 group (0.399±0.023 and 0.575±0.014, both P<0.05 vs. high phosphorus group) in VSMCs simulated for 4 days.Besides, compared with high phosphorus group, the expression of Runx2 was decreased in control group(0.113±0.010 vs.0.067±0.008, P<0.05) and TRAM-34 group (0.069±0.006, P<0.05) after aortic rings were cultured for 4 days. (4) Compared with control group, the activity of ALP was significantly increased in high phosphorus group (96.56±9.84 vs.46.92±4.60, P<0.05) and decreased in TRAM-34 group(70.20±8.41, P<0.05 vs. high phosphorus group) in VSMCs simulated for 12 days. KCa3.1 blocker TRAM-34 can inhibit β-glycerophosphate induced VSMCs and aortic ring calcification through inhibiting calcium influx, downregulating Runx2 expression and attenuating osteogenic differentiation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... control is necessary based on wasteload allocations in the Lower Charles River Phosphorus TMDL (``the TMDL... management plan and a phosphorus reduction plan, as the mechanisms to achieve the required pollutant... Consistent with the wasteload allocation of the Lower Charles River Phosphorus TMDL, Part IV and Appendix D...
USDA-ARS?s Scientific Manuscript database
Bioavailability of phosphorus (P) in aquatic macrophytes and algae on lake eutrophication was studied by evaluation their P forms and quantities in their water suspensions and impact by alkaline phosphatase hydrolysis. using solution 31P-nuclear magnetic resonance (NMR). The laboratory suspension an...
USDA-ARS?s Scientific Manuscript database
Conservation and recovery of nitrogen (N) and phosphorus (P) from animal wastes is important in agriculture because of the high cost of commercial fertilizers and for environmental reasons. The objective of this work was to develop new technology for simultaneous N and P recovery suitable for anaero...
Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test
USDA-ARS?s Scientific Manuscript database
Phosphorus (P) can limit crop production in many soils, but P loss from soils may impair water quality; soil testing can guide fertilizer recommendations to optimize crop growth while minimizing P loss. The Mehlich III (M3) soil test is widely used in North America, followed by colorimetric analysis...
USDA-ARS?s Scientific Manuscript database
White lupin (Lupinus albus) forms specialized cluster roots characterized by exudation of organic anions under phosphorus (P) deficiency. Here, we evaluated the role of nitric oxide (NO) in P deficiency-induced cluster-root formation and citrate exudation in white lupin. Plants were treated with NO ...
Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth
USDA-ARS?s Scientific Manuscript database
Phosphorus is one of the three macronutrients that are essential for plant growth and development. Inorganic phosphorus (P), which can make up to 70% of the total P content in soils, can exist in calcium-, aluminum-, or iron-complexed forms that are unavailable for plant use. As a result, mineral ph...
Strength and stability analysis of a single-walled black phosphorus tube under axial compression
NASA Astrophysics Data System (ADS)
Cai, Kun; Wan, Jing; Wei, Ning; Qin, Qing H.
2016-07-01
Few-layered black phosphorus materials currently attract much attention due to their special electronic properties. As a consequence, a single-layer black phosphorus (SLBP) nanotube has been theoretically built. The corresponding electronic properties of such a black phosphorus nanotube (BPNT) were also evaluated numerically. However, unlike graphene formed with 2sp2 covalent carbon atoms, SLBP is formed with 3sp3 bonded atoms. It means that the structure from SLBP will possess lower Young’s modulus and mechanical strength than those of carbon nanotubes. In this study, molecular dynamics simulation is performed to investigate the strength and stability of BPNTs affected by the factors of diameter, length, loading speed and temperature. Results are fundamental for investigating the other physical properties of a BPNT acting as a component in a nanodevice. For example, buckling of the BPNT happens earlier than fracture, before which the nanostructure has very small axial strain. For the same BPNT, a higher load speed results in lower critical axial strain and a nanotube with lower axial strain can still be stable at a higher temperature.
Morton, Siyuan C; Zhang, Yan; Edwards, Marc A
2005-08-01
Control of microbial regrowth in iron pipes is a major challenge for water utilities. This work examines the inter-relationship between iron corrosion and bacterial regrowth, with a special focus on the potential of iron pipe to serve as a source of phosphorus. Under some circumstances, corroding iron and steel may serve as a source for all macronutrients necessary for bacterial regrowth including fixed carbon, fixed nitrogen and phosphorus. Conceptual models and experimental data illustrate that levels of phosphorus released from corroding iron are significant relative to that necessary to sustain high levels of biofilm bacteria. Consequently, it may not be possible to control regrowth on iron surfaces by limiting phosphorus in the bulk water.
Periphytic biofilms: A promising nutrient utilization regulator in wetlands.
Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R
2018-01-01
Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-Motivation Is Associated With Phosphorus Control in End-Stage Renal Disease.
Umeukeje, Ebele M; Merighi, Joseph R; Browne, Teri; Victoroff, Jacquelyn N; Umanath, Kausik; Lewis, Julia B; Ikizler, T Alp; Wallston, Kenneth A; Cavanaugh, Kerri
2015-09-01
Hyperphosphatemia is common in end-stage renal disease and associates with mortality. Phosphate binders reduce serum phosphorus levels; however, adherence is often poor. This pilot study aims to assess patients' self-motivation to adhere to phosphate binders, its association with phosphorus control, and potential differences by race. Cross sectional design. Subjects were enrolled from one academic medical center dialysis practice from July to November 2012. Self-motivation to adhere to phosphate binders was assessed with the autonomous regulation (AR) scale (range: 1-7) and self-reported medication adherence with the Morisky Medication Adherence Scale. Linear regression models adjusting for age, sex, health literacy, and medication adherence were applied to determine associations with serum phosphorus level, including any evidence of interaction by race. Among 100 participants, mean age was 51 years (±15 years), 53% were male, 72% were non-white, 89% received hemodialysis, and mean serum phosphorus level was 5.7 ± 1.6 mg/dL. More than half (57%) reported the maximum AR score (7). Higher AR scores were noted in those reporting better health overall (P = .001) and those with higher health literacy (P = .01). AR score correlated with better medication adherence (r = 0.22; P = .02), and medication adherence was negatively associated with serum phosphorus (r = -0.40; P < .001). In subgroup analysis among non-whites, higher AR scores correlated with lower serum phosphorus (high vs lower AR score: 5.55 [1.5] vs 6.96 [2.2]; P = .01). Associations between AR score (β 95% confidence interval: -0.37 [-0.73 to -0.01]; P = .04), medication adherence (β 95% confidence interval: -0.25 [-0.42 to -0.07]; P = .01), and serum phosphorus persisted in adjusted analyses. Self-motivation was associated with phosphate binder adherence and phosphorus control, and this differed by race. Additional research is needed to determine if personalized, culturally sensitive strategies to understand and overcome motivational barriers may optimize mineral bone health in end-stage renal disease. Published by Elsevier Inc.
Simulation of Nitrogen and Phosphorus Losses in Loess Landforms of Northern Iran
NASA Astrophysics Data System (ADS)
Kiani, F.; Behtarinejad, B.; Najafinejad, A.; Kaboli, R.
2018-02-01
Population growth, urban expansion and intensive agriculture and thus increased use of fertilizers aimed at increasing the production capacity cause extensive loss of nutrients such as nitrogen and phosphorus and lead to reduced quality of soil and water. Therefore, identification of nutrients in the soil and their potential are essential. The aim of this study was to evaluate the capability of the SWAT model in simulating runoff, sediment, and nitrogen and phosphorus losses in Tamer catchment. Runoff and sediment measured at Tamar gauging station were used to calibrate and validate the model. Simulated values were generally consistent with the data observed during calibration and validation period (0.6 < R 2 and 0.5 < NS). In the case of nitrogen loss, the model performed an almost good simulation (0.6 < R 2 and 0.47 < NS), but phosphorus simulation yielded better results (0.76 < R 2 and 0.66 < NS). The results showed that cultivated lands had higher loss of nitrogen and phosphorus than other types of land use. Among the various forms of nitrogen and phosphorus, the loss of organic nitrogen and nitrate and soluble phosphorus and mineral phosphorus attached to the sediments showed the greatest sensitivity to the type of land use. Results also showed that the average nutrient loss caused by erosion in this catchment, was 6.99 kg/ha for nitrogen, 0.35 kg/ha for nitrate, 1.3 kg/ha for organic phosphorus, 0.015 kg/ha for soluble phosphorus, and 0.45 kg/ha for mineral phosphorus.
Cao, Xin; Wang, Yiqi; He, Jian; Luo, Xingzhang; Zheng, Zheng
2016-12-01
This study was focused on the phosphorus mobility among sediments, water and cyanobacteria in eutrophic Lake Dianchi. Four conditions lake water, water and algae, water and sediments, and three objects together were conducted to investigate the effects of cyanobacteria growth on the migration and transformation of phosphorus. Results showed a persistent correlation between the development of cyanobacterial blooms and the increase of soluble reactive phosphorus (SRP) in the lake water under the condition of three objects together. Time-course assays measuring different forms of phosphorus in sediments indicated that inorganic phosphorus (IP) and NaOH-P were relatively more easier to migrate out of sediment to the water and cyanobacteria. Further studies on phosphorus mobility showed that up to 70.2% of the released phosphorus could be absorbed by cyanobacteria, indicating that sediment is a major source of phosphorus when external loading is reduced. Time-course assays also showed that the development of cyanobacterial blooms promoted an increase in pH and a decrease in the redox potential of the lake water. The structure of the microbial communities in sediments was also significantly changed, revealed a great impaction of cyanobacterial blooms on the microbial communities in sediments, which may contribute to phosphorus release. Our study simulated the cyanobacterial blooms of Lake Dianchi and revealed that the cyanobacterial blooms is a driving force for phosphorus mobility among sediments, water and cyanobacteria. The outbreak of algal blooms caused deterioration in water quality. The P in the sediments represented a significant supply for the growth of cyanobacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Mengya; Muralidharan, Nitin; Moyer, Kathleen; Pint, Cary L
2018-06-07
Here we demonstrate the broad capability to exploit interactions at different length scales in 2D materials to prepare macroscopic functional materials containing hybrid black phosphorus/graphene (BP/G) heterostructured building blocks. First, heterostructured 2D building blocks are self-assembled during co-exfoliation in the solution phase based on electrostatic attraction of different 2D materials. Second, electrophoretic deposition is used as a tool to assemble these building blocks into macroscopic films containing these self-assembled 2D heterostructures. Characterization of deposits formed using this technique elucidates the presence of stacked and sandwiched 2D heterostructures, and zeta potential measurements confirm the mechanistic interactions driving this assembly. Building on the exceptional sodium alloying capacity of BP, these materials were demonstrated as superior binder-free and additive-free anodes for sodium batteries with specific discharge capacity of 2365 mA h gP-1 and long stable cycling duration. This study demonstrates how controllable co-processing of 2D materials can enable material control for stacking and building block assembly relevant to broad future applications of 2D materials.
Recent studies have shown that stormwater control measures (SCMs) are less effective at retaining phosphorus (P) than nitrogen. We compared P retention between two urban/suburban SCMs and their adjacent restored stream reaches at the Baltimore Long-Term Ecological Study (LTER) s...
NASA Astrophysics Data System (ADS)
Arbuzov, V. L.; Berger, I. F.; Bobrovskii, V. I.; Voronin, V. I.; Danilov, S. E.; Kazantsev, V. A.; Kataev, N. V.; Sagaradze, V. V.
2018-04-01
Structural and microstructural changes that arise in the course of the heat treatment of Cr-Ni-Mo austenitic stainless steels with different concentrations of titanium and phosphorus have been studied. It has been found that the alloying with phosphorus decreases the lattice parameter of these steels. The phosphorus contribution to this effect is 0.015 ± 0.002 Å/at %. Aging at a temperature of 670 K for about 20 h leads to the precipitation of dispersed needle-like particles, which are most likely to be iron phosphides. In the temperature range of 700-800 K, in austenitic steels, the atomic separation of the solid solution occurs, the intensity of which decreases upon alloying with titanium or phosphorus at concentrations of 1.0 and 0.1 wt %, respectively. At higher temperatures (about 950 K), the formed precipitates of the Ni3Ti (γ') phase increase in size to 7-10 nm.
Fernandes, S M; Lima, J L; Rangel, A O
2000-01-01
A flow injection system for the automatic determination of total phosphorus in beer is described. The developed manifold uses a two-stage photooxidation/thermal digestion procedure together with oxidizing and hydrolyzing reagents to convert all forms of phosphorus compounds to orthophosphate. Polyphosphates are hydrolyzed by acid and heat, and organo-phosphates are digested by UV-catalyzed peroxodisulfate oxidation. The orthophosphate formed is then spectrophotometrically determined by the phosphomolybdenum blue reaction, using stannous chloride as reducing agent. The results obtained for a set of 19 beer samples (with concentrations from 120 to 735 mg P/L) were in good agreement with the reference method, the maximum relative deviation found being 4.7%. Relative standard deviations for ten consecutive determinations were lower than 1.5%, and a detection limit of 1 mg P/L was achieved.
NASA Astrophysics Data System (ADS)
Stockton, M.; Rojas, C.; Regan, J. M.; Saia, S. M.; Buda, A. R.; Carrick, H. J.; Walter, M. T.
2016-12-01
Excessive application of phosphorus-containing fertilizer along with incomplete knowledge about the factors affecting phosphorus transport and mobility has allowed for a growing number of cases of eutrophication in water bodies. Previous research on enhanced biological phosphorus removal (EBPR) systems used in wastewater treatment plants (WWTPs) has identified polyphosphate-accumulating organisms (PAOs) that are known to accumulate and release phosphorus depending on aerobic/anaerobic conditions. Under anaerobic conditions, intracellular polyphosphate (poly-P) bodies are hydrolyzed releasing phosphate, while under aerobic conditions phosphate is taken up and poly-P inclusions are reformed. The presence of PAOs outside of WWTPs has been shown, but their potential impact on phosphorus mobility in other contexts is not as well known. To study that potential impact, sand columns were subjected to alternating cycles of saturation and unsaturation to mimic variably saturated soils and the resultant anaerobic and aerobic conditions that select for PAOs in a WWTP. Pore water samples collected from sterile control columns and columns inoculated with PAOs from a WWTP were compared during each cycle to monitor changes in dissolved inorganic phosphate and total phosphorus concentrations. In addition, continuous redox data were collected to confirm reducing conditions developed during periods of saturation. Sand particles will be subjected to FISH and DAPI staining to visualize PAOs using probes developed for PAOs in EBPR processes and to determine if changes in intracellular poly-P are detectable between the two cycles in the inoculated columns. Studying the effects of PAOs on phosphorus mobility in these controlled column experiments can contribute to understanding phosphorus retention and release by naturally occurring PAOs in terrestrial system, which ultimately can improve the development of management practices that mitigate phosphorus pollution of water bodies.
Senosy, W; Kassab, A Y; Hamdon, H A; Mohammed, A A
2018-05-07
The effect of organic phosphorus on metabolic, haematological and hormonal status, restoration of ovarian functions and conception rate in anoestrous Farafra ewes in subtropics were evaluated. Anoestrous Farafra ewes (n = 24; 34.72 ± 0.52 kg body weight) were allocated into two equal groups: control and phosphorus groups. The ewes of phosphorus group were treated with sodium 4-dimethylamino-2-methyl-phenyl-phosphonate as an organic bound phosphorous twice a week for successive 3 weeks. Ovarian follicle development and corpora lutea were checked three times a week till occurrence of oestrus using ultrasonography while pregnancy was confirmed at 30 days post-service. Plasma metabolites, reproductive hormones, thyroid hormones and minerals were detected at weeks -2, -1, 0 (mating day) and + 4 weeks post-oestrus. Phosphorus group had significantly (p < .05) short interval to oestrous resumption if compared to control ewes (2.1 ± 0.8 weeks vs. 4.6 ± 1.1 weeks). In addition, phosphorous supplementation significantly (p < .05) increased the number of antral follicles (developed and their sizes in addition to sizes of corpora lutea (8.72 ± 0.3 mm vs. 7.46 ± 0.9 mm) as well. Number of services per conception (2.6 vs. 1.4; p < .01) was higher in control group than that of phosphorus group. Pregnancy rate (80 vs. 50%) was significantly (p < .01) higher in phosphorus group when compared to control. White blood cells in treated ewes (10.8 ± 0.44; p < .05) and monocytes (2.93 ± 0.13; p < .01) were higher than that of control group (white blood cells; 9.53 ± 0.50 and monocytes; 2.24 ± 0.14). Metabolic parameters did not differ between phosphorus and control groups during different times of treatment. It could be concluded that phosphorous administration to anoestrous Farafra ewes in subtropics could improve reproductive performance and restore ovarian activity at the end of spring and early summer. © 2018 Blackwell Verlag GmbH.
Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi
2018-05-01
Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our results provide the underlying insights needed to guide the control of nitrogen and phosphorus loss on loess hills.
Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida
Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier
2014-01-01
Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi. PMID:24608923
Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.
Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier
2014-01-01
Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.
Multiple myeloma on polycythemia vera following radioactive phosphorus therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, W.O.
1976-11-01
A 74-year-old white man with established polycythemia vera was treated with radioactive phosphorus after phlebotomies alone failed to control his disease. About 2/sup 3///sub 4/ years later he died of multiple myeloma. The mutagenic effect of radioactive phosphorus may have caused or possibly accelerated preexisting myeloma. Basic nonmalignant disease deserves careful consideration before radiation or radiomimetic agents are used. One might consider a probably less mutagenic drug such as hydroxyurea in patients with polycythemia vera when phlebotomy alone does not give good control of red cell mass and thrombocytosis.
County-level estimates of nitrogen and phosphorus fertilizer use in the United States, 1945 to 1985
Alexander, Richard B.; Smith, Richard A.
1990-01-01
Estimates of nitrogen and phosphorus fertilizer use were made for counties in the United States for the period 1945 to 1985. County fertilizer use estimates were obtained through the disaggregation of state-level fertilizer use in proportion to the amount of state fertilized acreage reported to exist in counties. Numerical values of nitrogen and phosphorus fertilizer use by county are not presented in the text of this report because of the size of the data file, but are available in machine-readable form upon request. Graphical summaries of national, state, and county nitrogen and phosphorus fertilizer use are presented to briefly describe the spatial and temporal variability that exist in the data.
Pappenheimer, A. M.; McCann, G. F.; Zucker, T. F.
1922-01-01
1. Casein phosphorus does not completely prevent the development of rickets when substituted in Diet 84 in amount equivalent to a protective dose of basic potassium phosphate. 2. The protection given by lecithin is equivalent to its phosphorus content. 3. The protection given by yeast is at least proportional to its phosphorus content. An amount carrying sufficient vitamine B to promote growth, but insufficient to provide adequate phosphorus, does not prevent rickets. 4. Vitamine A, in the form of butter or butter fat to the amount of 10 per cent of the diet, neither prevents nor cures rickets. 5. The substitution of 10 per cent of egg albumin in Diet 84 improves the nutrition, but does not prevent rickets. 6. The addition of meat to Diet 84, thereby supplying an abundance of phosphorus, promotes normal growth and normal bone formation. A diet consisting solely of meat and flour is inadequate for proper growth, and leads to changes in the bones comparable with those observed on a diet low in calcium, but rich in phosphorus. 7. A diet has been found which contains the necessary food elements for approximately normal growth, and in which the only known deficiency is phosphorus. This leads regularly to the production of rickets. PMID:19868618
Phosphorus in the Interstellar Medium: The Missing Prebiotic Element
NASA Astrophysics Data System (ADS)
Rivilla, Victor M.
2017-11-01
Phosphorus (P) is a crucial element for prebiotic chemistry and for the development of life in the Universe. It is one of the key components of deoxyri- bonucleic acid (DNA), phospholipids (the structural components of all cellular membranes) and the adenosine triphosphate (ATP) molecule, from which all forms of life assume energy. The Chemistry Nobel Prize Sir Alexander Todd remarked the astrobiological importance of P when he said: 'Where there's life, there's phosphorus'. For these reasons, the study of interstellar phosphorus is generating increasing interest in the last years. It is mandatory its study in star-forming regions, where stars, planets (and eventually life) are expected to arise. However, our knowledge about P in the interstellar medium is still very poor. For this, our group started several observational and theoretical projects to study P-bearing species in star-forming regions. In my talk I will present the the first detections of P-O - key chemical bond to build-up the DNA double helix - towards two star-forming regions, and multiple detections of PN towards a large sample of massive dense cores. The observed molecular abundances indicates that P is significantly more abundant in star-forming regions than previously thought. I will also show the results of recent ALMA and IRAM 30m telescope observations of selected massive cores in the Galactic Disk and several clouds in the Galactic Center, which suggest that shocks may have a key role to sputtering P from grain mantles and to explain the observed abundances of P-bearing molecules in the gas-phase. All these findings are helping us to attain a much better understanding about the unknown chemistry of P in space.
USDA-ARS?s Scientific Manuscript database
Adding alum (aluminum sulfate) to poultry litter is a best management practice (BMP) used to stabilize phosphorus (P) in less soluble forms, reducing non-point source P runoff. However, little research has been conducted on the effects of alum-treated poultry litter on P leaching. The objective of...
Molecular mechanisms in response to phosphate starvation in rice.
Panigrahy, Madhusmita; Rao, D Nageswara; Sarla, N
2009-01-01
Phosphorus is one of the most important elements that significantly affect plant growth and metabolism. Among the macro-nutrients, phosphorus is the least available to the plants as major phosphorus content of the fertiliser is sorbed by soil particles. An increased knowledge of the regulatory mechanisms controlling plant's phosphorus status is vital for improving phosphorus uptake and P-use efficiency and for reducing excessive input of fertilisers, while maintaining an acceptable yield. Phosphorus use efficiency has been studied using forward and reverse genetic analyses of mutants, quantitative genomic approaches and whole plant physiology but all these studies need to be integrated for a clearer understanding. We provide a critical overview on the molecular mechanisms and the components involved in the plant during phosphorus starvation. Then we summarize the information available on the genes and QTLs involved in phosphorus signalling and also the methods to estimate total phosphate in plant tissue. Also, an effort is made to build a comprehensive picture of phosphorus uptake, homeostasis, assimilation, remobilization, its deposition in the grain and its interaction with other micro- and macro-nutrients as well as phytohormones.
Phosphorus dynamics in lake sediments: Insights from field study and reactive-transport modeling
NASA Astrophysics Data System (ADS)
Dittrich, Maria; Markovic, Stefan; Cadena, Sandra; Doan, Phuong T. K.; Watson, Sue; Mugalingam, Shan
2016-04-01
Phosphorus is an indispensable nutrient for organisms in aquatic systems and its availability often controls primary productivity. At the sediment-water interface, intensive microbiological, geochemical and physical processes determine the fraction of organic matter, nutrients and pollutants released into the overlying water. Therefore, detailed understanding of the processes occurring in the top centimeters of the sediment is essential for the assessment of water quality and the management of surface waters. In cases where measurements are impossible or expensive, diagenetic modelling is required to investigate the interplay among the processes, verify concepts and predict potential system behavior. The main aims of this study are to identify and predict the dynamics of phosphorus (P) in sediments and gain insight into the mechanism of P release from sediments under varying environmental conditions. We measured redox, O2 and pH profiles with micro-sensors at the sediment-water interface; analyzed phosphate and metals (Fe, Mn, Al, Ca) content in pore waters collected using in situ samplers, so called "peepers"; determined P binding forms using sequential extraction and analyzed metals associated with each fraction. Following the sediment analysis, P binding forms were divided in five groups: inert, carbonate-bound, organic, redox-sensitive, and labile P. Using the flux of organic and inorganic matter as dynamic boundary conditions, the diagenetic model simulates P internal loading and predicts P retention. This presentation will discuss the results of two years studies on P dynamics at the sediment-water interface in three different lakes ranging from heavy-polluted Hamilton Harbor and Bay of Quinte to pristine Georgian Bay in Ontario, Canada.
Phosphorus loading to McGrath and Ellis ponds, Kennebec County, Maine
Nichols, Wallace J.; Sowles, J.W.; Lobao, J.J.
1984-01-01
McGrath and Ellis Ponds in south-central Maine have been identified as having nuisance algae blooms. In 1978, a cooperative study between the U.S. Geological Survey and the Maine Department Environmental Protection was begun to evaluate areas in which restoration effort would best improve water quality of the ponds. Streamflow and phosphorus data were collected from 28 tributaries to the ponds, April 1 through September 30, 1978 and 1979. Phosphorus yields from each tributary watershed were compared to determine their relative importance to the phosphorus budgets of the ponds. Three tributaries to the ponds were estimated to contribute 44 percent of the phosphorus load, yet drain only 22 percent of the watershed. Phosphorus input to the ponds likely would be most easily reduced by instituting phosphorus control practices in parts of the basin drained by the three tributaries. (USGS)
Rose, William J.; Robertson, Dale M.; Mergener, Elizabeth A.
2004-01-01
Simulations using water-quality models within the Wisconsin Lake Model Suite (WiLMS) indicated Pike Lake's response to 13 different phosphorus-loading scenarios. These scenarios included a base 'normal' year (2000) for which lake water quality and loading were known, six different percentage increases or decreases in phosphorus loading from controllable sources, and six different loading scenarios corresponding to specific management actions. Model simulations indicate that a 50-percent reduction in controllable loading sources would be needed to achieve a mesotrophic classification with respect to phosphorus, chlorophyll a, and Secchi depth (an index of water clarity). Model simulations indicated that short-circuiting of phosphorus from the inlet to the outlet was the main reason the water quality of the lake is good relative to the amount of loading from the Rubicon River and that changes in the percentage of inlet-to-outlet short-circuiting have a significant influence on the water quality of the lake.
Liu, Yan; Zhu, Yuanyuan; Qiao, Xiaocui; Chang, Sheng; Fu, Qing
2018-01-01
As part of the efforts to ensure adequate supply of quality water from Danjiangkou Reservoir to Beijing, surface water samples were taken from the tributaries of Danjiangkou Reservoir in the normal (May), flood (August) and dry (December) seasons of 2014, and characterized for nitrogen and phosphorus contents as specified in the applicable standards. Test results indicated that (i) the organic pollution in the Sihe and Shendinghe rivers was more serious than those in other tributaries, and the concentrations of nitrogen and phosphorus favoured the growth of most algae; (ii) total phosphorus (TP), total nitrogen (TN) and dissolved inorganic nitrogen (DIN) were in the forms of dissolved phosphorus (DTP), dissolved nitrogen (DTN) and nitrate nitrogen (NO3−-N), respectively, in these seasons; (iii) compared with nitrogen, phosphorus was more likely to block an overrun of phytoplankton; (iv) TN, TP, permanganate index (CODMn) and other ions were positively correlated. These findings are helpful for the government to develop effective measures to protect the source water in Danjingkou Reservoir from pollution. PMID:29410793
Patient education for phosphorus management in chronic kidney disease
Kalantar-Zadeh, Kamyar
2013-01-01
Objectives: This review explores the challenges and solutions in educating patients with chronic kidney disease (CKD) to lower serum phosphorus while avoiding protein insufficiency and hypercalcemia. Methods: A literature search including terms “hyperphosphatemia,” “patient education,” “food fatigue,” “hypercalcemia,” and “phosphorus–protein ratio” was undertaken using PubMed. Results: Hyperphosphatemia is a strong predictor of mortality in advanced CKD and is remediated via diet, phosphorus binders, and dialysis. Dietary counseling should encourage the consumption of foods with the least amount of inorganic or absorbable phosphorus, low phosphorus-to-protein ratios, and adequate protein content, and discourage excessive calcium intake in high-risk patients. Emerging educational initiatives include food labeling using a “traffic light” scheme, motivational interviewing techniques, and the Phosphate Education Program – whereby patients no longer have to memorize the phosphorus content of each individual food component, but only a “phosphorus unit” value for a limited number of food groups. Phosphorus binders are associated with a clear survival advantage in CKD patients, overcome the limitations associated with dietary phosphorus restriction, and permit a more flexible approach to achieving normalization of phosphorus levels. Conclusion: Patient education on phosphorus and calcium management can improve concordance and adherence and empower patients to collaborate actively for optimal control of mineral metabolism. PMID:23667310
NASA Astrophysics Data System (ADS)
Atlas, Zachary; Pasek, Matthew; Sampson, Jacqueline
2015-04-01
Phosphorus is a geologically important minor element in the Earth's crust commonly found as relatively insoluble apatite. This constraint causes phosphorus to be a key limiting nutrient in biologic processes. Despite this, phosphorus plays a direct role in the formation of DNA, RNA and other cellular materials. Recent works suggest that since reduced phosphorus is considerably more soluble than oxidized phosphorus that it was integrally involved in the development of life on the early Earth and may continue to play a role in biologic productivity to this day. This work examines a new method for quantification and identification of reduced phosphorus as well as applications to the speciation of organo-phosphates separated by coupled HPLC - ICP-MS. We show that reduced phosphorus species (P1+, P3+ and P5+) are cleanly separated in the HPLC and coupled with the ICPMS reaction cell, using oxygen as a reaction gas to effectively convert elemental P to P-O. Analysis at M/Z= 47 producing lower background and flatter baseline chromatography than analyses performed at M/Z = 31. Results suggest very low detection limits (0.05 μM) for P species analyzed as P-O. Additionally we show that this technique has potential to speciate at least 5 other forms of phosphorus compounds. We verified the efficacy of method on numerous materials including leached Archean rocks, suburban retention pond waters, blood and urine samples and most samples show small but detectible levels of reduced phosphorus and or organo-phaospates. This finding in nearly all substances analyzed supports the assumption that the redox processing of phosphorus has played a significant role throughout the history of the Earth and it's presence in the present environment is nearly ubiquitous with the reduced oxidation state phosphorus compounds, phosphite and hypophosphite, potentially acting as significant constituents in the anaerobic environment.
High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.
Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y
A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal.
Band Structure of the IV-VI Black Phosphorus Analog and Thermoelectric SnSe
NASA Astrophysics Data System (ADS)
Pletikosić, I.; von Rohr, F.; Pervan, P.; Das, P. K.; Vobornik, I.; Cava, R. J.; Valla, T.
2018-04-01
The success of black phosphorus in fast electronic and photonic devices is hindered by its rapid degradation in the presence of oxygen. Orthorhombic tin selenide is a representative of group IV-VI binary compounds that are robust and isoelectronic and share the same structure with black phosphorus. We measure the band structure of SnSe and find highly anisotropic valence bands that form several valleys having fast dispersion within the layers and negligible dispersion across. This is exactly the band structure desired for efficient thermoelectric generation where SnSe has shown great promise.
Band Structure of the IV-VI Black Phosphorus Analog and Thermoelectric SnSe
Pletikosic, Ivo; von Rohr, F.; Pervan, P.; ...
2018-04-10
Here, the success of black phosphorus in fast electronic and photonic devices is hindered by its rapid degradation in the presence of oxygen. Orthorhombic tin selenide is a representative of group IV-VI binary compounds that are robust and isoelectronic and share the same structure with black phosphorus. We measure the band structure of SnSe and find highly anisotropic valence bands that form several valleys having fast dispersion within the layers and negligible dispersion across. This is exactly the band structure desired for efficient thermoelectric generation where SnSe has shown great promise.
Band Structure of the IV-VI Black Phosphorus Analog and Thermoelectric SnSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pletikosic, Ivo; von Rohr, F.; Pervan, P.
Here, the success of black phosphorus in fast electronic and photonic devices is hindered by its rapid degradation in the presence of oxygen. Orthorhombic tin selenide is a representative of group IV-VI binary compounds that are robust and isoelectronic and share the same structure with black phosphorus. We measure the band structure of SnSe and find highly anisotropic valence bands that form several valleys having fast dispersion within the layers and negligible dispersion across. This is exactly the band structure desired for efficient thermoelectric generation where SnSe has shown great promise.
Assessment of Dephosphorization During Vanadium Extraction Process in Converter
NASA Astrophysics Data System (ADS)
Chen, Lian; Diao, Jiang; Wang, Guang; Xie, Bing
2018-06-01
Dephosphorization during the vanadium extraction process in the converter was studied. The effects of the slag basicity and FeO content on the dephosphorization and the mineral phases in the phosphorus-containing vanadium slag are discussed. The results show that removal of phosphorus from the hot metal during the vanadium extraction process can be achieved by adding lime into the vanadium extraction converter. The highest dephosphorization rate was obtained at slag basicity of 1.93. The phosphorus distribution ratio increased with increasing FeO content up to 16-18% but decreased thereafter. Vanadium was present in the slag only as spinels rather than calcium vanadate. Phosphorus was still present in the form of calcium phosphate eutectic in calcium silicate. The present work proves that the vanadium extraction and dephosphorization processes are nonconflicting reactions.
Oxidation of white phosphorus by peroxides in water
NASA Astrophysics Data System (ADS)
Abdreimova, R. R.; Akbaeva, D. N.; Polimbetova, G. S.
2017-10-01
A mixture of hypophosphorous, phosphorous, and phosphoric acids is formed during the anaerobic oxidation of white phosphorus by peroxides [ROOH; R = H, 3-ClC6H4CO, (CH3)3C] in water. The rate of reactions grows considerably upon adding nonpolar organic solvents. The activity series of peroxides and solvents are determined experimentally. NMR spectroscopy shows that the main product of the reaction is phosphorous acid, regardless of the nature of the peroxide and solvent. A radical mechanism of oxidation of white phosphorus by peroxides in water is proposed. It is initiated by the homolysis of peroxide with the formation of HO• radicals that are responsible for the homolytic opening of phosphoric tetrahedrons. Further oxidation and stages of the hydrolysis of intermediate phosphorus-containing compounds yield products of the reaction.
Chen, Zhang; Chen, Wenlu; Li, Chengjun; Pu, Yanpin; Sun, Haifeng
2016-06-01
Erosion of denuded steep rocky slopes causes increasing losses of nitrogen and phosphorus, which is a severe problem in rocky slope protection. Thus, it is important to determine the appropriate materials that can reduce the erodibility and losses of nitrogen and phosphorus of the soil. In this paper, twenty-seven simulated rainfall events were carried out in a greenhouse, in which the substrate material was artificial soil; nine types of anionic polyacrylamide (PAM) were studied, which consisted of three molecular weight (6, 12, and 18 Mg mol(-1)) and three charge density (10, 20, and 30%) formulations in a 3 by 3 factorial design. The results showed that: (1) Polyacrylamide application reduced total nitrogen losses by 35.3% to 50.0% and total phosphorus losses by 34.9% to 48.0% relative to the control group. (2) The losses of total nitrogen and total phosphorus had significant correlation with the molecular weight. Besides, the losses of total phosphorus, particulate-bound phosphorus and inorganic nitrogen (NH4-N) were significantly correlated with their molecular weight and charge density. However, the losses of dissolved organic nitrogen, inorganic nitrogen (NO3-N), dissolved organic phosphorus, inorganic phosphorus (PO4-P) were non-significantly correlated with molecular weight and charge density. (3) Particulate-bound nitrogen and phosphorus were responsible for the losses of nitrogen and phosphorus during runoff events, where particulate-bound nitrogen made up 71.7% to 73.2% of total nitrogen losses, and particulate-bound phosphorus made up 82.3% to 85.2% of total phosphorus losses. (4) Polyacrylamide treatments increased water-stable aggregates content by 32.3% to 59.1%, total porosity by 11.3% to 49.0%, final infiltrative rate by 41.3% to 72.5%, and reduced soil erosion by 18.9% to 39.8% compared with the control group. Overall, the results of this study indicated that polyacrylamide application in the steep rocky slope stabilization projects could significantly reduce nutrient losses and soil erosion of substrate material. Copyright © 2016 Elsevier B.V. All rights reserved.
High pressure chemistry of red phosphorus by photoactivated simple molecules
NASA Astrophysics Data System (ADS)
Ceppatelli, Matteo; Bini, Roberto; Fanetti, Samuele; Caporali, Maria; Peruzzini, Maurizio
2013-06-01
High pressure (HP) is very effective in reducing intermolecular distances and inducing unexpected chemical reactions. In particular the photoactivation of the reactants in HP conditions can lead to very efficient and selective processes. The chemistry of phosphorus is currently based on the white molecular form. The red polymeric allotrope, despite more stable and much less toxic, has not attracted much attention so far. However, switching from the white to the red form would benefit any industrial procedure, especially from an environmental point of view. On the other side, water and ethanol are renewable, environmental friendly and largely available molecules, usable as reactants and photoactivators in HP conditions. Here we report a study on the HP photoinduced reactivity of red phosphorus with water and ethanol, showing the possibility of very efficient and selective processes, leading to molecular hydrogen and valuable phosphorus compounds. The reactions have been studied by means of FTIR and Raman spectroscopy and pressure has been generated using DAC and SAC. HP reactivity has been activated by the two-photon absorption of near-UV wavelengths and occured in total absence of solvents, catalysts and radical initiators, at room T and mild pressure conditions (0.2-1.5 GPa).
Ni, Zhaokui; Wang, Shengrui
2015-12-01
China has been confronted with serious water quality deterioration concurrent with rapid socioeconomic progress during the past 40 years. Consequently, knowledge about economic growth and lake water quality dynamics is important to understand eutrophication processes. Objectives were to (i) reconstruct historical nutrient accumulation and the basin economic progress on burial flux (BF); (ii) determine forms and structures of nitrogen (N) and phosphorus (P) in sediment and water using six cores in three of the most severely eutrophic lake areas in China (i.e., Eastern Plain, Yunnan-Guizhou Plain, and Inner Mongolia-Xinjiang regions). Results suggest that BFs of total nitrogen (TN) continued to increase in sediment, whereas total phosphorus (TP) levels were consistent or only slightly increased, except in highly polluted lakes during the past decades. Similar results were observed for concentrations of nutrients in water (i.e., increased N/P). This historical distribution pattern was correlated to long-term fertilization practices of farmers in the watershed (N fertilization exceeds that of P) and was contingent upon pollution control policies (e.g., emphasized P whereas N was ignored). Vertical profiles of BFs indicated that lake nutrient accumulation included three stages in China. Nutrient accumulation started in the 1980s, accelerated from the 1990s, and then declined after 2000. Before the 1980s, nutrients were relatively low and stable, with nutrient inputs being controlled by natural processes. Thereafter, N- and P-bound sediments dramatically increased due to the increasing influence of anthropogenic processes. Nutrients were primarily derived from industries and domestic sewage. After 2000, BFs of nutrients were steady and even decreased, owing to implementation of watershed load reduction policies. The decreasing NaOH-extracted P (Fe/Al-P) and increasing organic phosphorus (OP) indicated that the source of exogenous pollution underwent a shift. Inputs of nutrients were predominantly from agricultural and domestic sewage, whereas industrial pollution has been gradually controlled in most of the watersheds. Historical nutrient dynamics suggest that the economy of China is growing at the expense of its aquatic ecological environments. Therefore, more attention to nutrient export to groundwater resulting from economic development is important for further aquatic ecosystem deterioration and eutrophication in China.
Nutritional evaluation of low-phytate peas (Pisum sativum L.) for young broiler chicks.
Thacker, Philip; Deep, Aman; Petri, Daniel; Warkentin, Thomas
2013-02-01
This experiment determined the effects of including normal and low-phytate peas in diets fed to young broiler chickens on performance, phosphorus availability and bone strength. A total of 180, day-old, male broilers (Ross-308 line) were assigned to six treatments. The control was based on corn and soybean meal while two additional corn-based diets were formulated containing 30% of either normal or low-phytate pea providing 0.45% available phosphorus. For each of these three diets, a similar diet was formulated by reducing the amount of dicalcium phosphate to produce a diet with 0.3% available phosphorus. The total tract apparent availability (TTAA) of phosphorus was higher (p = 0.02) for broilers fed the low-phytate pea than for birds fed the normal pea diets. Birds fed diets containing the lower level of phosphorus had a higher TTAA of phosphorus (50.64 vs. 46.68%) than broilers fed diets adequate in phosphorus. Protein source had no effect on weight gain, feed intake or feed conversion. Broilers fed the low phosphorus diets had lower weight gain (p = 0.04) and feed intake (p < 0.01) than broilers fed the higher phosphorus level. Bone strength was higher (p < 0.01) for broilers fed diets based on low-phytate pea than for those fed diets based on normal pea or soybean meal. Increasing the availability of the phosphorus in peas could mean that less inorganic phosphorus would be required in order to meet the nutritional requirements of broilers. Since inorganic phosphorus sources tend to be expensive, a reduction in their use would lower ration costs. In addition, increased availability of phosphorus would reduce the amount of phosphorus excreted thus reducing the amount of phosphorus that can potentially pollute the environment.
USDA-ARS?s Scientific Manuscript database
To evaluate the response of CO2 assimilation (PN) and various chlorophyll fluorescence (CF) parameters to phosphorus (P) nutrition soybean plants were grown in controlled environment growth chambers with sufficient (0.50 mM) and deficient (0.10 and 0.01 mM) P supply under ambient and elevated CO2 (a...
Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Goddard, Gerald L.; Horwatich, Judy A.
2006-01-01
Nagawicka Lake is a 986-acre, usually mesotrophic, calcareous lake in southeastern Wisconsin. Because of concern over potential water-quality degradation of the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 2002 to 2006 to describe the water quality and hydrology of the lake; quantify sources of phosphorus, including those associated with urban development; and determine the effects of past and future changes in phosphorus loading on the water quality of the lake. All major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake. The Bark River, near-lake surface inflow, precipitation, and ground water contributed 74, 8, 12, and 6 percent of the inflow, respectively. Water leaves the lake primarily through the Bark River outlet (88 percent) or by evaporation (11 percent). The water quality of Nagawicka Lake has improved dramatically since 1980 as a result of decreasing the historical loading of phosphorus to the lake. Total input of phosphorus to the lake was about 3,000 pounds in monitoring year (MY) 2003 and 6,700 pounds in MY 2004. The largest source of phosphorus entering the lake was the Bark River, which delivered about 56 percent of the total phosphorus input, compared with about 74 percent of the total water input. The next largest contributions were from the urbanized near-lake drainage area, which disproportionately accounted for 37 percent of the total phosphorus input but only about 5 percent of the total water input. Simulations with water-quality models within the Wisconsin Lakes Modeling Suite (WiLMS) indicated the response of Nagawicka Lake to 10 phosphorus-loading scenarios. These scenarios included historical (1970s) and current (base) years (MY 2003-04) for which lake water quality and loading were known, six scenarios with percentage increases or decreases in phosphorus loading from controllable sources relative to the base years 2003-04, and two scenarios corresponding to specific management actions. Because of the lake's calcareous character, the average simulated summer concentration of total phosphorus for Nagawicka Lake was about 2 times that measured in the lake. The models likely over-predict because they do not account for coprecipitation of phosphorus and dissolved organic matter with calcite, negligible release of phosphorus from the deep sediments, and external phosphorus loading with abnormally high amounts of nonavailable phosphorus. After adjusting the simulated results for the overestimation of the models, a 50-percent reduction in phosphorus loading resulted in an average predicted phosphorus concentration of 0.008 milligrams per liter (mg/L) (a decrease of 46 percent). With a 50-percent increase in phosphorus loading, the average predicted concentration was 0.020 mg/L (an increase of 45 percent). With the changes in land use under the assumed future full development conditions, the average summer total phosphorus concentration should remain similar to that measured in MY 2003-04 (approximately 0.014 mg/L). However, if stormwater and nonpoint controls are added to achieve a 50-percent reduction in loading from the urbanized near-lake drainage area, the average summer total phosphorus concentration should decrease from the present conditions (MY 2003-04) to 0.011 mg/L. Slightly more than a 25-percent reduction in phosphorus loading from that measured in MY 2003-04 would be required for the lake to be classified as oligotrophic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozasa, M.; Ichikawa, S.; Kohara, R.
1963-01-01
The filament of high-wattage electric lamps using red phosphorus as getter has a tendency to down at the end parts. According to the metallurgical study, the phenomenon seems to be caused by phosphorus. Hence an attempt was made to trace the behavior of a smail amount of phosphorus on the filament with the aid of radioactive red phosphorus, P/sup 32/, in order to make clear the role of phosphorus in the weakening phenomenon by comparing the results with the metallurgical observation. Radioactive red phosphorus obtained as an irradiated unit was refined chemically, powdered, and spread on the filaments in themore » form of an alcoholic suspension. The test lamps using these filaments were raade and then running tests were carried out under several conditions. After running tests the filaments were taken out and the phosphorus remaining on the fllaments was determined by beta counting. The distribution of phosphorus on the filaments was observed by autoradiography. Before running tests, 247 plus or minus 57 mu g of phosphorus existed over a whole filament, although its distribution was not necessarily uniform. Most of the phosphorus vaporized from the filament during the running test. However, 0.05 to 0.5 mu g of phosphorus remained at the end parts of the filament even after 600 min of running time. The remaining phosphorus is due to the temperature of the end parts of the filament, which is about 1000 deg C lower than that of the central part (about 2500 deg C). In addition, it was confirmed by microautoradiography that phosphorus diffused into the filament at those parts. According to the metallurgical study, reductive non- metallic elements such as phosphorus affect the recrystallization of tungsten crystals by reducing the doping materials. From the microphotographic observation of those parts, it was found that the fiber structure changed completely to the block structure after running, which fact causes the filament to weaken. Further experimental results show that such a structure appears at a temperature higher than 1200 deg C when the filament contacts with phosphorus. It is thus presumed that the weakening phenomenon at the end parts of the filament will be caused by phosphorus remaining at those parts. Therefore, when phosphorus is spread only near the central part of the filament, where the temperature is high enough to vaporize phosphorus rapidly, phosphorus was not found anywhere on the filament after running, and the change of crystal structure was not recognized. (JAIF)« less
Risk evaluation of available phosphorus loss in agricultural land based on remote sensing and GIS
NASA Astrophysics Data System (ADS)
Ding, Xiaodong; Zhou, Bin; Xu, Junfeng; Liu, Ting; Xie, Bin
2010-09-01
The surplus of phosphorus leads to water eutrophication. Huge input of fertilizers in agricultural activities enriches nutrition in soil. The superfluous nutrient moves easily to riparian water by rainfall and surface runoff; leads to water eutrophication of riparian wetlands and downstream water; and consequently affects ecological balance. Thus it is significant to investigate the risk of phosphorus loss in agricultural land, to identify high concentration areas and guide the management of nutrition loss. This study was implemented mainly in the area of agricultural use in southern Western Australia, where a three-year period preliminary monitoring of water quality showed that the concentration of different forms of phosphorus in water had far exceeded the standard. Due to the large scale surface runoff caused by occasional storms in Western Australia, soil erosion was selected as the main driving factor for the loss of phosphorus. Remote sensing and ground truth data were used to reflect the seasonal changes of plants. The spatial distribution of available phosphorus was then predicted and combined with the evaluation matrix to evaluate the loss risk of phosphorus. This evaluation was based on quantitative rather than qualitative data to make better precision. It could help making decision support for monitoring water quality of rivers and riparian wetlands.
Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer
2018-01-01
Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.
Gao, Xuejiao; Guan, Bin; Mesli, Abdelmadjid; Chen, Kaixiang; Dan, Yaping
2018-01-09
It is known that self-assembled molecular monolayer doping technique has the advantages of forming ultra-shallow junctions and introducing minimal defects in semiconductors. In this paper, we report however the formation of carbon-related defects in the molecular monolayer-doped silicon as detected by deep-level transient spectroscopy and low-temperature Hall measurements. The molecular monolayer doping process is performed by modifying silicon substrate with phosphorus-containing molecules and annealing at high temperature. The subsequent rapid thermal annealing drives phosphorus dopants along with carbon contaminants into the silicon substrate, resulting in a dramatic decrease of sheet resistance for the intrinsic silicon substrate. Low-temperature Hall measurements and secondary ion mass spectrometry indicate that phosphorus is the only electrically active dopant after the molecular monolayer doping. However, during this process, at least 20% of the phosphorus dopants are electrically deactivated. The deep-level transient spectroscopy shows that carbon-related defects are responsible for such deactivation.
Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas.
Wykoff, D D; Grossman, A R; Weeks, D P; Usuda, H; Shimogawara, K
1999-12-21
Understanding the ways in which phosphorus metabolism is regulated in photosynthetic eukaryotes is critical for optimizing crop productivity and managing aquatic ecosystems in which phosphorus can be a major source of pollution. Here we describe a gene encoding a regulator of phosphorus metabolism, designated Psr1 (phosphorus starvation response), from a photosynthetic eukaryote. The Psr1 protein is critical for acclimation of the unicellular green alga Chlamydomonas reinhardtii to phosphorus starvation. The N-terminal half of Psr1 contains a region similar to myb DNA-binding domains and the C-terminal half possesses glutamine-rich sequences characteristic of transcriptional activators. The level of Psr1 increases at least 10-fold upon phosphate starvation, and immunocytochemical studies demonstrate that this protein is nuclear-localized under both nutrient-replete and phosphorus-starvation conditions. Finally, Psr1 and angiosperm proteins have domains that are similar, suggesting a possible role for Psr1 homologs in the control of phosphorus metabolism in vascular plants. With the identification of regulators such as Psr1 it may become possible to engineer photosynthetic organisms for more efficient utilization of phosphorus and to establish better practices for the management of agricultural lands and natural ecosystems.
Phosphorus geochemistry of recent sediments in the South Basin of Lake Winnipeg
Mayer, T.; Simpson, S.L.; Thorleifson, L.H.; Lockhart, W.L.; Wilkinson, Philip M.
2006-01-01
Lake Winnipeg supports the largest commercial fishery on Canadian Prairies. It has been influenced by a variety of environmental forces and anthropogenic activities. To gain a better understanding of recent changes in nutrient status of the lake, it is important to reconstruct its previous history from sedimentary records. Lacustrine sediments are known to be an important sink of many dissolved and suspended substances, including phosphorus, hence, they provide a permanent historical record of changes occurring in the lake. These changes may be induced by natural factors or by anthropogenic activities in the watershed. Phosphorus profiles from dated sediment cores collected in 1999 and 1994 from the South Basin of Lake Winnipeg were investigated to determine phosphorus enrichment in recent sediments. To interpret the nutrient status and depositional conditions responsible for the trends in total phosphorus, three operationally defined forms of phosphorus (P) were determined: non-apatite inorganic P, apatite P, and organic P. Significant increases in sediment phosphorus concentrations were observed in the uppermost 20 cm of the cores and several anomalies were observed at depth. A doubling in total phosphorus relative to aluminum over the last fifty years is largely due to increases in the non-apatite inorganic fraction, suggesting that much of sedimentary phosphorus increase is attributable to changes in the nutrient status of the water column related to anthropogenic inputs. Organic phosphorus exhibits a subtle increase in the upper 20 cm of the gravity cores, likely due to increases in the primary productivity of the lake. Except for the slight increase in deeper sediments, apatite phosphorus, which is thought to be of detrital origin, remained fairly constant over the length of the cores. Anomalous spikes in phosphorus concentrations deeper in the cores, comprised mainly of the non-apatite inorganic phosphorus fraction, likely resulted from natural variation in local oxidizing conditions, possibly induced by changes in water circulation and/or changes in sediment deposition rates due to climatic variation. The results of this investigation contribute to increased understanding of the depositional history of phosphorus in the lake over the last millennium.
[Removal of nitrogen and phosphorus in eutrophic water by Jussiaea stipulacea Ohwi].
Wang, Chao; Zhang, Wen-ming; Wang, Pei-fang; Hou, Jun
2007-05-01
Jussiaea stipulacea Ohwi, a native kind of floating vegetation resembling Alternanthera philoxeroides (Mart.) Griseb., is widespread in ditches, ponds and rivers of Taihu Lake Basin. Its growth habits indicate its potential use in aquatic ecological restoration in Taihu Lake Basin. The removal effects of Jussiaea stipulacea Ohwi on nitrogen and phosphorus in eutrophic water were further studied in indoor experiment, as well as in field observation. The results of indoor experiment show that in summer, the removal rate for total nitrogen was 60%, which is 1.6, 1.9 and 2.8 times greater than that of Eichhornia crassipes (Mart.) Solms., Alternanthera philoxeroides (Mart.) Griseb., and control, respectively, and the removal rate for total phosphorus was about 25%, which is 0.3 times lower than that of Eichhornia crassipes (Mart.) Solms., but 0.9 and 4 times higher than that of Alternanthera philoxeroides (Mart.) Griseb., and control, in winter, the removal rates for total nitrogen and total phosphorus were 23% and 20%, 2.3 and 1 times higher than that of control; Jussiaea stipulacea Ohwi also has good removal effects for ammonia and nitrite. And the results of field observation in Linzhuanggang River, Yixing City, show that the removal rates of total nitrogen and total phosphorus in July to October were 10.2%-19.6% and 23.4%-41.6% in the reach with Jussiaea stipulacea Ohwi, while only 0.1%-1.6% and 3.7%-5.6% in control reach. Based on its good purifying effect on nitrogen and phosphorus in indoor experiment and field observation, the indigene Jussiaea stipulacea Ohwi is recommended as one species of aquatic vegetation in phytoremediation for eutrophic water in rivers of Tailu Lake Basin.
Moisander, Pia H; Paerl, Hans W
2000-08-26
Nodularia is a halotolerant, filamentous, dinitrogen-fixing cyanobacterium that forms massive blooms in some coastal oceans, estuaries, and saline lakes worldwide. Although the genus is globally distributed, its blooms are sporadic and appear to be confined to certain water bodies. Blooms are frequently associated with phosphorus enrichment; therefore Nodularia may benefit from increased anthropogenic nutrient loading to coastal waters. We studied the potential for Nodularia to grow in the nitrogen-limited Neuse River Estuary (North Carolina, U.S.A.) with laboratory growth experiments in Neuse River Estuary water and by examining physico-chemical data from the estuary. Analysis of nutrients (nitrogen and phosphorus), salinity, and temperature data from the Neuse River Estuary between 1994 and 1998 revealed that suitable conditions for Nodularia prevailed during the summer of each of these years for time spans ranging from 1.5 to 5 months. Growth of two laboratory strains in Neuse River Estuary water was as fast or slightly slower than in artificial growth medium, as long as the culture inoculum had phosphorus reserves. Phosphorus addition did not stimulate growth of already phosphorus-sufficient inocula. Phosphorus starvation of the inoculum before the experiment decreased growth rates in the estuarine water unless additional phosphorus was supplied. Although phosphorus addition had a stimulatory effect on dinitrogen fixation and productivity, the effect differed for the two Nodularia strains. Results suggest that growth of Nodularia in North Carolinian estuaries is possible, and that such growth would be phosphorus-limited at times. Phosphorus availability may determine the times and locations for potential establishment of Nodularia in this and similar estuarine ecosystems.
Efficacy of alum and coal combustion by-products in stabilizing manure phosphorus.
Dou, Z; Zhang, G Y; Stout, W L; Toth, J D; Ferguson, J D
2003-01-01
Animal manures contain large amounts of soluble phosphorus (P), which is prone to runoff losses when manure is surface-applied. Here we report the efficacy of alum and three coal combustion by-products in reducing P solubility when added to dairy, swine, or broiler litter manures in a laboratory incubation study. Compared with unamended controls, alum effectively reduced readily soluble P, determined in water extracts of moist manure samples with 1 h of shaking, for all three manures. The reduction ranged from 80 to 99% at treatment rates of 100 to 250 g alum kg(-1) manure dry matter. The fluidized bed combustion fly ash (FBC) reduced readily soluble P by 50 to 60% at a rate of 400 g kg(-1) for all three manures. Flue gas desulfurization by-product (FGD) reduced readily soluble P by nearly 80% when added to swine manure and broiler litter at 150 and 250 g kg(-1). Another by-product, anthracite refuse fly ash (ANT), was ineffective for all three manures. In all cases, reduction in readily soluble P is primarily associated with inorganic phosphorus (P(i)) with little change in organic phosphorus (P(o)). Sequential extraction results indicate that the by-product treatments shifted manure P from H2O-P into a less vulnerable fraction, NaHCO3 - P, while the alum treatment shifted the P into even more stable forms, mostly NaOH-P. Such shifts in P fractions would have little influence on P availability for crops over the long-term but would retard and reduce potential losses of P following manure applications.
75 FR 54651 - Notice of Lodging of Proposed Consent Decree Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... contaminants of concern (including phosphorus) at or near Simplot's phosphoric acid plant; the development and implementation of a verifiable plan to control the sources of phosphorus and other contaminants of concern within...
Doan, Phuong T K; Watson, Sue B; Markovic, Stefan; Liang, Anqi; Guo, Jay; Mugalingam, Shan; Stokes, Jonathan; Morley, Andrew; Zhang, Weitao; Arhonditsis, George B; Dittrich, Maria
2018-04-24
Internal phosphorus (P) loading significantly contributes to hysteresis in ecosystem response to nutrient remediation, but the dynamics of sediment P transformations are often poorly characterized. Here, we applied a reaction-transport diagenetic model to investigate sediment P dynamics in the Bay of Quinte, a polymictic, spatially complex embayment of Lake Ontario, (Canada). We quantified spatial and temporal variability of sediment P binding forms and estimated P diffusive fluxes and sediment P retention in different parts of the bay. Our model supports the notion that diagenetic recycling of redox sensitive and organic bound P forms drive sediment P release. In the recent years, summer sediment P diffusive fluxes varied in the range of 3.2-3.6 mg P m -2 d -1 in the upper bay compared to 1.5 mg P m -2 d -1 in the middle-lower bay. Meanwhile sediment P retention ranged between 71% and 75% in the upper and middle-lower bay, respectively. The reconstruction of temporal trends of internal P loading in the past century, suggests that against the backdrop of reduced external P inputs, sediment P exerts growing control over the lake nutrient budget. Higher sediment P diffusive fluxes since mid-20th century with particular increase in the past 20 years in the shallower upper basins, emphasize limited sediment P retention potential and suggest prolonged ecosystem recovery, highlighting the importance of ongoing P control measures. Copyright © 2018 Elsevier B.V. All rights reserved.
Qi, Yudong; Li, Yan; Bunker, Shana P.; Costeux, Stephane; Morgan, Ted A.
2017-12-12
Polymer foam bodies are made from phosphorus-containing thermoplastic random copolymers of a dialkyl (meth)acryloyloxyalkyl phosph(on)ate. Foam bodies made from these copolymers exhibit increased limiting oxygen indices and surprisingly have good properties. In certain embodiments, the phosphorus-containing thermoplastic copolymer is blended with one or more other polymers and formed into nanofoams.
Improved CVD Techniques for Depositing Passivation Layers of ICs
1975-10-01
Calculations .......................... 228 4. Precision ........... ....... ........................ 229 5. Optional Measurements of Dense Oxide and Aluminum 4...47. Typical measurements of phosphorus K. net radiation intensity as a function of the calculated phosphorus concentrations • * • 124 48. Effect of... calculated by measuring the de- formation of a substrate, usually in the form of a beam, or a circular disc. "In the beam bending method, stress is
Comparison of phosphorus forms in three extracts of dairy feces by solution 31P NMR analysis
USDA-ARS?s Scientific Manuscript database
Using solution 31P NMR spectroscopy, we compared three extractants, deionized water, sodium acetate buffer (pH 5.0) with fresh sodium dithionite (NaAc-SD), and 0.25 M NaOH-0.05 M EDTA (NaOH-EDTA), for the profile of P compounds in two dairy fecal samples. Phosphorus extracted was 35% for water, and...
Gurbir Singh; Keith W. Goyne; John M. Kabrick
2015-01-01
Phosphorus is an important nutrient limiting forest growth in many parts of world, and soil P forms and concentrations may be associated with a host of soil and environmental attributes in a complex soil landscape. The objective of this study was to identify key environmental and soil properties influencing total and available soil P concentrations in a mixed oak (
Nutritional status and survival of maintenance hemodialysis patients receiving lanthanum carbonate.
Komaba, Hirotaka; Kakuta, Takatoshi; Wada, Takehiko; Hida, Miho; Suga, Takao; Fukagawa, Masafumi
2018-04-16
Hyperphosphatemia and poor nutritional status are associated with increased mortality. Lanthanum carbonate is an effective, calcium-free phosphate binder, but little is known about the long-term impact on mineral metabolism, nutritional status and survival. We extended the follow-up period of a historical cohort of 2292 maintenance hemodialysis patients that was formed in late 2008. We examined 7-year all-cause mortality according to the serum phosphate levels and nutritional indicators in the entire cohort and then compared the mortality rate of the 562 patients who initiated lanthanum with that of the 562 propensity score-matched patients who were not treated with lanthanum. During a mean ± SD follow-up of 4.9 ± 2.3 years, 679 patients died in the entire cohort. Higher serum phosphorus levels and lower nutritional indicators (body mass index, albumin and creatinine) were each independently associated with an increased risk of death. In the propensity score-matched analysis, patients who initiated lanthanum had a 23% lower risk for mortality compared with the matched controls. During the follow-up period, the serum phosphorus levels tended to decrease comparably in both groups, but the lanthanum group maintained a better nutritional status than the control group. The survival benefit associated with lanthanum was unchanged after adjustment for time-varying phosphorus or other mineral metabolism parameters, but was attenuated by adjustments for time-varying indicators of nutritional status. Treatment with lanthanum is associated with improved survival in hemodialysis patients. This effect may be partially mediated by relaxation of dietary phosphate restriction and improved nutritional status.
Mayer, S.W.
1962-11-13
This invention relates to a nuciear reactor fuel composition comprising (1) from about 0.01 to about 50 wt.% based on the total weight of said composition of at least one element selected from the class consisting of uranium, thorium, and plutonium, wherein said eiement is present in the form of at least one component selected from the class consisting of oxides, halides, and salts of oxygenated anions, with components comprising (2) at least one member selected from the class consisting of (a) sulfur, wherein the sulfur is in the form of at least one entity selected irom the class consisting of oxides of sulfur, metal sulfates, metal sulfites, metal halosulfonates, and acids of sulfur, (b) halogen, wherein said halogen is in the form of at least one compound selected from the class of metal halides, metal halosulfonates, and metal halophosphates, (c) phosphorus, wherein said phosphorus is in the form of at least one constituent selected from the class consisting of oxides of phosphorus, metal phosphates, metal phosphites, and metal halophosphates, (d) at least one oxide of a member selected from the class consisting of a metal and a metalloid wherein said oxide is free from an oxide of said element in (1); wherein the amount of at least one member selected from the class consisting of halogen and sulfur is at least about one at.% based on the amount of the sum of said sulfur, halogen, and phosphorus atom in said composition; and wherein the amount of said 2(a), 2(b) and 2(c) components in said composition which are free from said elements of uranium, thorium, arid plutonium, is at least about 60 wt.% based on the combined weight of the components of said composition which are free from said elements of uranium, thorium, and plutonium. (AEC)
Phosphorus speciation and its bioavailability in sediments of the Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Kang, Xuming; Song, Jinming; Yuan, Huamao; Shi, Xin; Yang, Weifeng; Li, Xuegang; Li, Ning; Duan, Liqin
2017-03-01
Phosphorus (P) is an important macronutrient that can limit primary productivity in coastal marine ecosystems. In this study, four sediment cores were collected in the Jiaozhou Bay to study the phosphorus forms and their bioavailability, including exchangeable or loosely sorbed P (Ex-P), iron-bound P (Fe-P), authigenic P (Ca-P), detrital P (De-P) and organic P (OP), which were separated and quantified using a sequential extraction method (SEDEX). The results showed that the concentration of total P (TP) in core sediments ranged from 6.23 to 10.46 μmol/g, and inorganic P (IP) was the dominated P form. Fe-P and De-P were the main chemical forms of IP in core sediments. The profile variation of OP presented the most significant among the phosphorus forms. Whereas the concentrations of Ex-P, Fe-P, and Ca-P varied slightly with depth, indicating that the transformation of Ex-P, Fe-P, Ca-P, and OP could occur during sedimentary P burial. Moreover, the distribution of P species was influenced by many factors, including terrigenous input, biological processes, organic matter degradation and increasing human activities. High total organic carbon (TOC)/OP ratio occurred in the Jiaozhou Bay, ranging from 73 to 472 (average, 180 ± 81) in core sediments, which was caused by the increasing terrestrial organic matter. The ratio of TOC/Preactive ranged from 24 to 101 (average 46 ± 15) in core sediments (lower than the Redfield ratio), implying a surplus of sedimentary reactive P compared with TOC. Potential bioavailable P (BAP) accounted for about 28.2-60.8% (average, 47.1 ± 7.4%) of TP in core sediments, and presented an increasing trend since 1980s, which might be responsible for the shift of phytoplankton community composition during these decades.
Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode.
Deng, Yexin; Luo, Zhe; Conrad, Nathan J; Liu, Han; Gong, Yongji; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Xu, Xianfan; Ye, Peide D
2014-08-26
Phosphorene, a elemental 2D material, which is the monolayer of black phosphorus, has been mechanically exfoliated recently. In its bulk form, black phosphorus shows high carrier mobility (∼10,000 cm(2)/V·s) and a ∼0.3 eV direct band gap. Well-behaved p-type field-effect transistors with mobilities of up to 1000 cm(2)/V·s, as well as phototransistors, have been demonstrated on few-layer black phosphorus, showing its promise for electronics and optoelectronics applications due to its high hole mobility and thickness-dependent direct band gap. However, p–n junctions, the basic building blocks of modern electronic and optoelectronic devices, have not yet been realized based on black phosphorus. In this paper, we demonstrate a gate-tunable p–n diode based on a p-type black phosphorus/n-type monolayer MoS2 van der Waals p–n heterojunction. Upon illumination, these ultrathin p–n diodes show a maximum photodetection responsivity of 418 mA/W at the wavelength of 633 nm and photovoltaic energy conversion with an external quantum efficiency of 0.3%. These p–n diodes show promise for broad-band photodetection and solar energy harvesting.
Yang, Y. Y.; Fan, Y. F.; Cao, Y. H.; Guo, P. P.; Dong, B.; Ma, Y. X.
2017-01-01
Objective Two experiments were conducted to determine the effects of adding exogenous phytase and xylanase, individually or in combination, as well as pelleting on nutrient digestibility, available energy content of wheat and the performance of growing pigs fed wheat-based diets. Methods In Experiment 1, forty-eight barrows with an initial body weight of 35.9±0.6 kg were randomly assigned to a 2×4 factorial experiment with the main effects being feed form (pellet vs meal) and enzyme supplementation (none, 10,000 U/kg phytase, 4,000 U/kg xylanase or 10,000 U/kg phytase plus 4,000 U/kg xylanase). The basal diet contained 97.8% wheat. Pigs were placed in metabolic cages for a 7-d adaptation period followed by a 5-d total collection of feces and urine. Nutrient digestibility and available energy content were determined. Experiment 2 was conducted to evaluate the effects of pelleting and enzymes on performance of wheat for growing pigs. In this experiment, 180 growing pigs (35.2±9.0 kg BW) were allocated to 1 of 6 treatments according to a 2×3 factorial treatment arrangement with the main effects being feed form (meal vs pellet) and enzyme supplementation (0, 2,500 or 5,000 U/kg xylanase). Results In Experiment 1, there were no interactions between feed form and enzyme supplementation. Pelleting reduced the digestibility of acid detergent fiber (ADF) by 6.4 percentage units (p<0.01), increased the digestibility of energy by 0.6 percentage units (p<0.05), and tended to improve the digestibility of crude protein by 0.5 percentage units (p = 0.07) compared with diets in mash form. The addition of phytase improved the digestibility of phosphorus (p<0.01) and calcium (p<0.01) by 6.9 and 7.6 percentage units respectively compared with control group. Adding xylanase tended to increase the digestibility of crude protein by 1.0 percentage units (p = 0.09) and increased the digestibility of neutral detergent fiber (NDF) (p<0.01) compared with control group. Supplementation of the xylanase-phytase combination improved the digestibility of phosphorus (p<0.01) but impaired NDF digestibility (p<0.05) compared with adding xylanase alone. In Experiment 2, adding xylanase increased average daily gain (p<0.01) and linearly improved the feed:gain ratio (p<0.01) compared with control group. Conclusion Pelleting improved energy digestibility but decreased ADF digestibility. Adding xylanase increased crude protein digestibility and pig performance. Phytase increased the apparent total tract digestibility of phosphorus and calcium. The combination of phytase-xylanase supplementation impaired the effects of xylanase on NDF digestibility. PMID:27004820
Yang, Y Y; Fan, Y F; Cao, Y H; Guo, P P; Dong, B; Ma, Y X
2017-01-01
Two experiments were conducted to determine the effects of adding exogenous phytase and xylanase, individually or in combination, as well as pelleting on nutrient digestibility, available energy content of wheat and the performance of growing pigs fed wheat-based diets. In Experiment 1, forty-eight barrows with an initial body weight of 35.9±0.6 kg were randomly assigned to a 2×4 factorial experiment with the main effects being feed form (pellet vs meal) and enzyme supplementation (none, 10,000 U/kg phytase, 4,000 U/kg xylanase or 10,000 U/kg phytase plus 4,000 U/kg xylanase). The basal diet contained 97.8% wheat. Pigs were placed in metabolic cages for a 7-d adaptation period followed by a 5-d total collection of feces and urine. Nutrient digestibility and available energy content were determined. Experiment 2 was conducted to evaluate the effects of pelleting and enzymes on performance of wheat for growing pigs. In this experiment, 180 growing pigs (35.2±9.0 kg BW) were allocated to 1 of 6 treatments according to a 2×3 factorial treatment arrangement with the main effects being feed form (meal vs pellet) and enzyme supplementation (0, 2,500 or 5,000 U/kg xylanase). In Experiment 1, there were no interactions between feed form and enzyme supplementation. Pelleting reduced the digestibility of acid detergent fiber (ADF) by 6.4 percentage units (p<0.01), increased the digestibility of energy by 0.6 percentage units (p<0.05), and tended to improve the digestibility of crude protein by 0.5 percentage units (p = 0.07) compared with diets in mash form. The addition of phytase improved the digestibility of phosphorus (p<0.01) and calcium (p<0.01) by 6.9 and 7.6 percentage units respectively compared with control group. Adding xylanase tended to increase the digestibility of crude protein by 1.0 percentage units (p = 0.09) and increased the digestibility of neutral detergent fiber (NDF) (p<0.01) compared with control group. Supplementation of the xylanase-phytase combination improved the digestibility of phosphorus (p<0.01) but impaired NDF digestibility (p<0.05) compared with adding xylanase alone. In Experiment 2, adding xylanase increased average daily gain (p<0.01) and linearly improved the feed:gain ratio (p<0.01) compared with control group. Pelleting improved energy digestibility but decreased ADF digestibility. Adding xylanase increased crude protein digestibility and pig performance. Phytase increased the apparent total tract digestibility of phosphorus and calcium. The combination of phytase-xylanase supplementation impaired the effects of xylanase on NDF digestibility.
The formation of prebiotic molecules in star-forming regions
NASA Astrophysics Data System (ADS)
Rivilla, V. M.
New sensitive observations using the current generation of (sub)millimeter telescopes have revealed in several star-forming regions molecular species of different chemical families (e.g. sugars, esters, isocyanates, phosphorus-bearing species) that may play an important role in prebiotic chemistry, and eventually in the origin of life. The observed molecular abundances of complex organic molecules (glycolaldehyde, ethylene glycol and ethyl formate) are better explained by surface-phase chemistry on dust grains, although gas-phase reactions can also play an important role, as in the case of methyl isocyanate. The PO molecule - a basic chemical bond to build-up the backbone of the DNA - has been detected for the first time in star-forming regions. These new observations indicate that phosphorus, a key element for the development of life, is much more abundant in star-forming regions than previously thought.
Suyama, Tatsuya; Okada, Shinji; Ishijima, Tomoko; Iida, Kota; Abe, Keiko; Nakai, Yuji
2012-01-01
The mechanism by which phosphorus levels are maintained in the body was investigated by analyzing changes in gene expression in the rat kidney following administration of a high phosphorus (HP) diet. Male Wistar rats were divided into two groups and fed a diet containing 0.3% (control) or 1.2% (HP) phosphorous for 24 days. Phosphorous retention was not significantly increased in HP rats, but fractional excretion of phosphorus was significantly increased in the HP group compared to controls, with an excessive amount of the ingested phosphorus being passed through the body. DNA microarray analysis of kidney tissue from both groups revealed changes in gene expression profile induced by a HP diet. Among the genes that were upregulated, Gene Ontology (GO) terms related to ossification, collagen fibril organization, and inflammation and immune response were significantly enriched. In particular, there was significant upregulation of type IIb sodium-dependent phosphate transporter (NaPi-IIb) in the HP rat kidney compared to control rats. This upregulation was confirmed by in situ hybridization. Distinct signals for NaPi-IIb in both the cortex and medulla of the kidney were apparent in the HP group, while the corresponding signals were much weaker in the control group. Immunohistochemical analysis showed that NaPi-IIb localized to the basolateral side of kidney epithelial cells surrounding the urinary duct in HP rats but not in control animals. These data suggest that NaPi-IIb is upregulated in the kidney in response to the active excretion of phosphate in HP diet-fed rats.
Infrared fingerprints of few-layer black phosphorus.
Zhang, Guowei; Huang, Shenyang; Chaves, Andrey; Song, Chaoyu; Özçelik, V Ongun; Low, Tony; Yan, Hugen
2017-01-06
Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thickness ranging from 2 to 15 layers and photon energy spanning from 0.25 to 1.36 eV. Each few-layer black phosphorus exhibits a thickness-dependent unique infrared spectrum with a series of absorption resonances, which reveals the underlying electronic structure evolution and serves as its infrared fingerprints. Surprisingly, unexpected absorption features, which are associated with the forbidden optical transitions, have been observed. Furthermore, we unambiguously demonstrate that controllable uniaxial strain can be used as a convenient and effective approach to tune the electronic structure of few-layer black phosphorus. Our study paves the way for black phosphorus applications in infrared photonics and optoelectronics.
Effects of white phosphorus on mallard reproduction
Vann, S.I.; Sparling, D.W.; Ottinger, M.A.
2000-01-01
Extensive waterfowl mortality involving thousands of ducks, geese, and swans has occurred annually at Eagle River Flats, Alaska since at least 1982. The primary agent for this mortality has been identified as white phosphorus. Although acute and subacute lethality have been described, sublethal effects are less well known. This study reports on the effects of white phosphorus on reproductive function in the mallard (Anas platyrhynchos) in captivity. Fertility, hatching success, teratogenicity, and egg laying frequency were examined in 70 adult female mallards who received up to 7 daily doses of 0, 0.5, 1.0, and 2.0 mg/kg of white phosphorus. Measurements of fertility and hatchability were reduced by the white phosphorus. Teratogenic effects were observed in embryos from hens dosed at all treatment levels. Egg laying frequency was reduced even at the lowest treatment level; treated hens required a greater number of days to lay a clutch of 12 eggs than control hens. After two doses at 2.0 mg/kg, all females stopped laying completely for a minimum of 10 days and laying frequency was depressed for at least 45 days. Fertility of 10 adult male mallards dosed with 1.0 mg/kg of white phosphorus did not differ from 10 controls, but plasma testosterone levels were significantly (p < 0.05) reduced in the treated males 1 day after dosing ended. These results provide evidence that productivity of free-ranging mallards may be impaired if they are exposed to white phosphorus at typical field levels.
Hill, Kathleen M; Martin, Berdine R; Wastney, Meryl E; McCabe, George P; Moe, Sharon M; Weaver, Connie M; Peacock, Munro
2013-05-01
Patients with chronic kidney disease (CKD) are given calcium carbonate to bind dietary phosphorus, reduce phosphorus retention, and prevent negative calcium balance; however, data are limited on calcium and phosphorus balance during CKD to support this. Here, we studied eight patients with stage 3 or 4 CKD (mean estimated glomerular filtration rate 36 ml/min) who received a controlled diet with or without a calcium carbonate supplement (1500 mg/day calcium) during two 3-week balance periods in a randomized placebo-controlled cross-over design. All feces and urine were collected during weeks 2 and 3 of each balance period and fasting blood, and urine was collected at baseline and at the end of each week. Calcium kinetics were determined using oral and intravenous (45)calcium. Patients were found to be in neutral calcium and phosphorus balance while on the placebo. Calcium carbonate supplementation produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance, suggesting soft-tissue deposition. Fasting blood and urine biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. Thus, the positive calcium balance produced by calcium carbonate treatment within 3 weeks cautions against its use as a phosphate binder in patients with stage 3 or 4 CKD, if these findings can be extrapolated to long-term therapy.
USDA-ARS?s Scientific Manuscript database
Concentrations of ammonium, nitrate, and phosphorus in irrigation leachate were measured weekly over a 47-week period from a high-fertility, neutral-pH substrate into which four types of 12-month controlled-release fertilizers (Osmocote, Nutricote, Polyon, or Multicote) were incorporated. Containers...
USDA-ARS?s Scientific Manuscript database
Concentrations of ammonium, nitrate, and phosphorus in irrigation leachate were measured weekly over a 47-week period from a low-fertility, acid-based substrate into which four types of 12-month controlled-release fertilizers (Osmocote, Nutricote, Polyon, or Multicote) were incorporated. Containers ...
Wang, Yi; Ye, Xiangsheng; Ding, Guangda; Xu, Fangsen
2013-01-01
Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg–1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals. PMID:23573285
Zimmerman, Marc J.; Savoie, Jennifer G.
2013-01-01
Wastewater discharges to the Assabet River contribute substantial amounts of phosphorus, which support accumulations of nuisance aquatic plants that are most evident in the river’s impounded reaches during the growing season. To restore the Assabet River’s water quality and aesthetics, the U.S. Environmental Protection Agency required the major wastewater-treatment plants in the drainage basin to reduce the amount of phosphorus discharged to the river by 2012. From October 2008 to December 2010, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection and in support of the requirements of the Total Maximum Daily Load for Phosphorus, collected weekly flow-proportional, composite samples for analysis of concentrations of total phosphorus and orthophosphorus upstream and downstream from each of the Assabet River’s two largest impoundments: Hudson and Ben Smith. The purpose of this monitoring effort was to evaluate conditions in the river before enhanced treatment-plant technologies had effected reductions in phosphorus loads, thereby defining baseline conditions for comparison with conditions following the mandated load reductions. The locations of sampling sites with respect to the impoundments enabled examination of the impoundments’ effects on phosphorus sequestration and on the transformation of phosphorus between particulate and dissolved forms. The study evaluated the differences between loads upstream and downstream from the impoundments throughout the sampling period and compared differences during two seasonal periods of relevance to aquatic plants: April 1 through October 31, the growing season, and November 1 through March 31, the nongrowing season, when existing permit limits allowed average monthly wastewater-treatment-plant-effluent concentrations of 0.75 milligram per liter (growing season) or 1.0 milligram per liter (nongrowing season) for total phosphorus. At the four sampling sites during the growing season, median weekly total phosphorus loads ranged from 110 to 190 kilograms (kg) and median weekly orthophosphorus loads ranged from 17 to 41 kg. During the nongrowing season, median weekly total phosphorus loads ranged from 240 to 280 kg and median weekly orthophosphorus loads ranged from 56 to 66 kg. During periods of low and moderate streamflow, estimated loads of total phosphorus upstream from the Hudson impoundment generally exceeded those downstream during the same sampling periods throughout the study; orthophosphorus loads downstream from the impoundment were typically larger than those upstream. When storm runoff substantially increased the streamflow, loads of total phosphorus and orthophosphorus both tended to be larger downstream than upstream. At the Ben Smith impoundment, both total phosphorus and orthophosphorus loads were generally larger downstream than upstream during low and moderate streamflow, but the differences were not as pronounced as they were at the Hudson impoundment. High flows were also associated with substantially larger total phosphorus and orthophosphorus loads downstream than those entering the impoundment from upstream. In comparing periods of growing- and nongrowing-season loads, the same patterns of loads entering and leaving were observed at both impoundments. That is, at the Hudson impoundment, total phosphorus loads entering the impoundment were greater than those leaving it, and orthophosphorus loads leaving the impoundment were greater than those entering it. At the Ben Smith impoundment, both total phosphorus and orthophosphorus loads leaving the impoundment were greater than those entering it. However, the loads were greater during the nongrowing seasons than during the growing seasons, and the net differences between upstream and downstream loads were about the same. The results indicate that some of the particulate fraction of the total phosphorus loads is sequestered in the Hudson impoundment, where particulate phosphorus probably undergoes some physical and biogeochemical transformations to the dissolved form orthophosphorus. The orthophosphorus may be taken up by aquatic plants or transported out of the impoundments. The results for the Ben Smith impoundment are less clear and suggest net export of total phosphorus and orthophosphorus. Differences between results from the two impoundments may be attributable in part to differences in their sizes, morphology, unmonitored tributaries, riparian land use, and processes within the impoundments that have not been quantified for this study.
Hydrology and phosphorus transport simulation in a lowland polder by a coupled modeling system.
Yan, Renhua; Huang, Jiacong; Li, Lingling; Gao, Junfeng
2017-08-01
Modeling the rain-runoff processes and phosphorus transport processes in lowland polders is critical in finding reasonable measures to alleviate the eutrophication problem of downstream rivers and lakes. This study develops a lowland Polder Hydrology and Phosphorus modeling System (PHPS) by coupling the WALRUS-paddy model and an improved phosphorus module of a Phosphorus Dynamic model for lowland Polder systems (PDP). It considers some important hydrological characteristics, such as groundwater-unsaturated zone coupling, groundwater-surface water feedback, human-controlled irrigation and discharge, and detailed physical and biochemical cycles of phosphorus in surface water. The application of the model in the Jianwei polder shows that the simulated phosphorus matches well with the measured values. The high precision of this model combined with its low input data requirement and efficient computation make it practical and easy to the water resources management of Chinese polders. Parameter sensitivity analysis demonstrates that K uptake , c Q2 , c W1 , and c Q1 exert a significant effect on the modeled results, whereas K resuspensionMax , K settling , and K mineralization have little effect on the modeled total phosphorus. Among the three types of uncertainties (i.e., parameter, initial condition, and forcing uncertainties), forcing uncertainty produces the strongest effect on the simulated phosphorus. Based on the analysis result of annual phosphorus balance when considering the high import from irrigation and fertilization, lowland polder is capable of retaining phosphorus and reducing phosphorus export to surrounding aquatic ecosystems because of their special hydrological regulation regime. Copyright © 2016 Elsevier Ltd. All rights reserved.
The New Nordic Diet: phosphorus content and absorption.
Salomo, Louise; Poulsen, Sanne K; Rix, Marianne; Kamper, Anne-Lise; Larsen, Thomas M; Astrup, Arne
2016-04-01
High phosphorus content in the diet may have adverse effect on cardiovascular health. We investigated whether the New Nordic Diet (NND), based mainly on local, organic and less processed food and large amounts of fruit, vegetables, wholegrain and fish, versus an Average Danish Diet (ADD) would reduce the phosphorus load due to less phosphorus-containing food additives, animal protein and more plant-based proteins. Phosphorus and creatinine were measured in plasma and urine at baseline, week 12 and week 26 in 132 centrally obese subjects with normal renal function as part of a post hoc analysis of data acquired from a 26-week controlled trial. We used the fractional phosphorus excretion as a measurement of phosphorus absorption. Mean baseline fractional phosphorus excretion was 20.9 ± 6.6 % in the NND group (n = 82) and 20.8 ± 5.5 % in the ADD group (n = 50) and was decreased by 2.8 ± 5.1 and 3.1 ± 5.4 %, respectively, (p = 0.6) at week 26. At week 26, the mean change in plasma phosphorus was 0.04 ± 0.12 mmol/L in the NND group and -0.03 ± 0.13 mmol/L in the ADD group (p = 0.001). Mean baseline phosphorus intake was 1950 ± 16 mg/10 MJ in the NND group and 1968 ± 22 mg/10 MJ in the ADD group and decreased less in the NND compared to the ADD (67 ± 36 mg/10 MJ and -266 ± 45 mg/day, respectively, p < 0.298). Contrary to expectations, the NND had a high phosphorus intake and did not decrease the fractional phosphorus excretion compared with ADD. Further modifications of the diet are needed in order to make this food concept beneficial regarding phosphorus absorption.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... including, but not limited to, nitrogen, phosphorus, and sediment in the Chesapeake Bay Watershed; requiring... specificity of the minimum control measures could include considerations for nitrogen, phosphorus and sediment...
Vogel, Christian; Adam, Christian; Sekine, Ryo; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don
2013-10-01
The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate.
Comprehensive Utilization of Iron and Phosphorus from High-Phosphorus Refractory Iron Ore
NASA Astrophysics Data System (ADS)
Sun, Yongsheng; Zhang, Qi; Han, Yuexin; Gao, Peng; Li, Guofeng
2018-02-01
An innovative process of coal-based reduction followed by magnetic separation and dephosphorization was developed to simultaneously recover iron and phosphorus from one typical high-phosphorus refractory iron ore. The experimental results showed that the iron minerals in iron ore were reduced to metallic iron during the coal-based reduction and the phosphorus was enriched in the metallic iron phase. The CaO-SiO2-FeO-Al2O3 slag system was used in the dephosphorization of metallic iron. A hot metal of 99.17% Fe and 0.10% P was produced with Fe recovery of 84.41%. Meanwhile, a dephosphorization slag of 5.72% P was obtained with P recovery of 67.23%. The contents of impurities in hot metal were very low, and it could be used as feedstock for steelmaking after a secondary refining. Phosphorus in the dephosphorization slag mainly existed in the form of a 5CaO·P2O5·SiO2 solid solution where the P2O5 content is 13.10%. At a slag particle size of 20.7 μm (90% passing), 94.54% of the P2O5 could be solubilized in citric acid, indicating the slag met the feedstock requirements in phosphate fertilizer production. Consequently, the proposed process achieved simultaneous Fe and P recovery, paving the way to comprehensive utilization of high-phosphorus refractory iron ore.
NASA Astrophysics Data System (ADS)
Kok, Dirk-Jan Daniel; Pande, Saket; Renata Cordeiro Ortigara, Angela; Savenije, Hubert; Uhlenbrook, Stefan
2018-02-01
Despite Africa controlling the vast majority of the global phosphate it also faces the greatest food shortages - partially due to a lack of access to the fertilizer market. A more accessible source of phosphorus comes from wastewater flows, which is currently lost through the discharge to open surface waters. Analysing the potential phosphorus production of urban and livestock wastewater in meeting partial agricultural demand for phosphorus can improve food security, reduce consumption of unrenewable phosphorus, reduce pollution, and aid the transitioning to a circular economy. In this study, a global overview is provided where a selection of P-production and P-consumption sites have been determined using global spatial data. Distances, investment costs and associated carbon footprints are then considered in modelling a simple, alternative trade network of struvite phosphorus flows. The network reveals potential for increasing the phosphorus security through phosphorus recycling in particularly the South Africa, Lake Victoria and Nigeria regions. Given Africa's rapid urbanization, phosphorus recovery from wastewater will prove an important step in creating sustainable communities, protecting the environment while improving food security, and so contributing to the United Nations 2030 Agenda for Sustainable Development.
Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui
2017-12-01
Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.
High pressure chemistry of red phosphorus by photo-activated simple molecules
NASA Astrophysics Data System (ADS)
Ceppatelli, M.; Fanetti, S.; Bini, R.; Caporali, M.; Peruzzini, M.
2014-05-01
High pressure (HP) is very effective in reducing intermolecular distances and inducing unexpected chemical reactions. In addition the photo-activation of the reactants in HP conditions can lead to very efficient and selective processes. The chemistry of phosphorus is currently based on the white molecular form. The red polymeric allotrope, despite more stable and much less toxic, has not attracted much attention so far. However, switching from the white to the red form would benefit any industrial procedure, especially from an environmental point of view. On the other side, water and ethanol are renewable, environmental friendly and largely available molecules, usable as reactants and photo-activators in HP conditions. Here we report a study on the HP photo-induced reactivity of red phosphorus with water and ethanol, showing the possibility of very efficient and selective processes, leading to molecular hydrogen and valuable phosphorus compounds. The reactions have been studied by means of FTIR and Raman spectroscopy and pressure has been generated using membrane Diamond (DAC) and Sapphire (SAC) anvil cells. HP reactivity has been activated by the two-photon absorption of near-UV wavelengths and occurred in total absence of solvents, catalysts and radical initiators, at room T and mild pressure conditions (0.2-1.5 GPa).
Spreadsheet WATERSHED modeling for nonpoint-source pollution management in a Wisconsin basin
Walker, J.F.; Pickard, S.A.; Sonzogni, W.C.
1989-01-01
Although several sophisticated nonpoint pollution models exist, few are available that are easy to use, cover a variety of conditions, and integrate a wide range of information to allow managers and planners to assess different control strategies. Here, a straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.A straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.
Nutrient Loading and Algal Response in West Thompson Lake, Thompson, Connecticut, 2003-2005
Morrison, Jonathan; Colombo, Michael J.
2008-01-01
Water quality and nutrient loads were characterized for parts of the Quinebaug River and West Thompson Lake in northeastern Connecticut during 2003 to 2005. The West Thompson Lake watershed is a mainly forested watershed that receives treated municipal wastewater from several point sources in Massachusetts. The lake is a flood-control reservoir formed in 1966 by impoundment of the Quinebaug River. Median concentrations of total phosphorus in two inflow (upstream) and one outflow (downstream) sampling stations on the Quinebaug River were higher than the nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) for rivers and streams in aggregate Ecoregion XIV. In general, concentrations of total phosphorus in West Thompson Lake also were above the nutrient criteria recommended by USEPA for lakes and impoundments in aggregate Ecoregion XIV. The trophic status of West Thompson Lake has changed since 1995 from a hypereutrophic lake to a eutrophic lake; however, the lake still has large algal blooms. These blooms are predominated by blue-green algae, with chlorophyll-a concentrations of more than 30 micrograms per liter and algal cell counts as high as 73,000 cells/mL. Water samples collected during the summer of 2005 identified phosphorus as the primary limiting nutrient early in the season, but algal growth is probably co-limited by phosphorus and nitrogen later in the season. Lake-bottom sediments were collected from several areas throughout the lake and ranged in thickness from less than 1 foot (ft) to more than 3 ft. Concentrations of phosphorus in sediments differed throughout the lake; the highest values were found in the middle of the lake. Concentrations of total phosphorus also increased from an average 1,800 milligrams per kilogram (mg/kg) in the upper layers of sediment to more than 6,000 mg/kg at depth in the sediment. Annual, seasonal, and monthly loads and yields of nutrients were calculated for the three sampling locations on the Quinebaug River to develop a nutrient mass-balance model (budget) for West Thompson Lake. The average annual yields of total phosphorus during 2000 to 2005 were 115 pounds per square mile per year (lb/mi2/yr) at Quinebaug (inflow station), 116 lb/mi2/yr at Red Bridge Road (inflow station), and 97.9 lb/mi2/yr at West Thompson (outflow station). The 18-percent decrease in the average annual yield of total phosphorus between the inflow station at Red Bridge Road and the outlet of West Thompson Lake at West Thompson indicates that a significant part of the phosphorus load is retained in the lake. Annual yields of total phosphorus at Quinebaug have decreased significantly since the 1980s, from 362 lb/mi2/yr (for 1981-1990) to 115 lb/mi2/yr (1996-2005). The annual net export of phosphorus in West Thompson Lake during water years 2000 to 2005 ranged from -36 percent (2005) to 1 percent (2002) of the incoming load. Seasonal mass-balance data for total phosphorus during the summers of 2000 to 2003, when streamflow was at or lower than normal, indicated a net export of phosphorus that ranged from 3.4 percent (2003) to 30.7 percent (2002) of the incoming load. During the summer of 2004, however, streamflows were much higher than normal, and there was a negative export of phosphorus in West Thompson Lake of -3.9 percent. The annual net export of nitrogen in West Thompson Lake during water years 2000 to 2005 ranged from -5 percent (2002) to 4 percent (2001) of the incoming load. No clear pattern was evident to relate total nitrogen export to seasonal variables or runoff. Removal of phosphorus during the summer by wastewater-treatment plants (WWTPs) in Massachusetts reduces the concentration and load of total phosphorus entering West Thompson Lake in the summer; however, the large amount of phosphorus retained in the lake during the other seasons, in addition to the phosphorus stored in the lake-bottom sediments, may become available to fuel algal blooms in the lake
Gu, April Z; Saunders, A; Neethling, J B; Stensel, H D; Blackall, L L
2008-08-01
The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis.
Ge, Huoqing; Batstone, Damien J; Keller, Jürg
2015-02-01
Recent increases in global phosphorus costs, together with the need to remove phosphorus from wastewater to comply with water discharge regulations, make phosphorus recovery from wastewater economically and environmentally attractive. Biological phosphorus (Bio-P) removal process can effectively capture the phosphorus from wastewater and concentrate it in a form that is easily amendable for recovery in contrast to traditional (chemical) phosphorus removal processes. However, Bio-P removal processes have historically been operated at medium to long solids retention times (SRTs, 10-20 days typically), which inherently increases the energy consumption while reducing the recoverable carbon fraction and hence makes it incompatible with the drive towards energy self-sufficient wastewater treatment plants. In this study, a novel high-rate Bio-P removal process has been developed as an energy efficient alternative for phosphorus removal from wastewater through operation at an SRT of less than 4 days. The process was most effective at an SRT of 2-2.5 days, achieving >90% phosphate removal. Further reducing the SRT to 1.7 days resulted in a loss of Bio-P activity. 16S pyrotag sequencing showed the community changed considerably with changes in the SRT, but that Comamonadaceae was consistently abundant when the Bio-P activity was evident. FISH analysis combined with DAPI staining confirmed that bacterial cells of Comamonadaceae arranged in tetrads contained polyphosphate, identifying them as the key polyphosphate accumulating organisms at these low SRT conditions. Overall, this paper demonstrates a novel, high-rate phosphorus removal process that can be effectively integrated with short SRT, energy-efficient carbon removal and recovery processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kok, Dirk-Jan; Pande, Saket; Renata Cordeiro Ortigara, Angela; Savenije, Hubert; Uhlenbrook, Stefan
2017-04-01
Phosphorus is an element necessary for the development of organic tissue as it forms a key, structural component of DNA and RNA. Currently, much of this unrenewable resource is being wasted to the ocean through the discharge of untreated or partially treated wastewater from urban areas and livestock industries. Analysing the potential phosphorus production of these two sectors in possibly meeting the partial demand of the agricultural sector, will be an important tool in tackling both phosphorus depletion from natural sources as well as phosphorus pollution of water sources . In this study, a global overview is provided where a selection of P-production nodes and P-consumption nodes have been determined using global spatial data. Distances, investment costs and associated carbon footprints are then considered in modelling a simple, alternative trade network of struvite precipitant, phosphorus flows. The network is then optimized to maximum trade flow after which an international, free-market P-commodity price is determined. Carrot-stick policy measures such as subsidies and carbon taxes are evaluated in their benefits to supporting sustainable phosphorus consumption over the non-sustainable counterpart. Preliminary results have revealed that there exists a total anthropogenic production potential of 3.3 MtP for 2005. Very crudely, but in accordance to results by Milhelcic et al. (2011) who reported 22%, approximately 20% of the reported global fertilizer consumption could then be satisfied by recovering urban phosphorus. Phosphorus recovery from wastewater for secondary utilization will prove an important step in creating sustainable communities through closed circle economic development. It is also a step towards prolonging our phosphate rock reserves, granting more time to revise our current phosphorus throughput cycle before the depletion of the remaining reserves.
Okumoto, Sakiko; Versaw, Wayne
2017-10-01
Nitrogen and phosphorus are macronutrients indispensable for plant growth. The acquisition and reallocation of both elements require a multitude of dedicated transporters that specifically recognize inorganic and organic forms of nitrogen and phosphorous. Although many transporters have been discovered through elegant screening processes and sequence homology, many remain uncharacterized for their functions in planta. Genetically encoded sensors for nitrogen and phosphorous molecules offer a unique opportunity for studying transport mechanisms that were previously inaccessible. In the past few years, sensors for some of the key nitrogen molecules became available, and many improvements have been made for existing sensors for phosphorus molecules. Methodologies for detailed in vivo analysis also improved. We summarize the recent improvements in genetically encoded sensors for nitrogen and phosphorus molecules, and the discoveries made by using such sensors. Copyright © 2017. Published by Elsevier Ltd.
Nakao, Satoshi; Nishio, Takayuki; Kanjo, Yoshinori
2017-10-01
Bench-scale experiments were performed to investigate simultaneous recovery of phosphorus and potassium from synthetic sewage sludge effluent as crystals of magnesium potassium phosphate (MPP or struvite-(K), MgKPO 4 ·6H 2 O). The optimal pH of MPP formation was 11.5. A phosphorus level of at least 3 mM and K:P molar ratio over 3 were necessary to form MPP, which showed higher content rate of phosphorus and potassium in precipitate. MPP crystallization was confirmed by analysing the precipitates using a scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) apparatus and an X-ray Diffractometer (XRD). Inhibition of MPP crystallization by iron and aluminium was confirmed by precipitation experiments and SEM-EDX analysis. Potassium ratio against magnesium in precipitate decreased for iron concentrations greater than over 0.2 mM and aluminium concentrations over 0.05 mM.
Brennan, R B; Fenton, O; Grant, J; Healy, M G
2011-11-01
Emerging remediation technologies such as chemical amendment of dairy cattle slurry have the potential to reduce phosphorus (P) solubility and consequently reduce P losses arising from land application of dairy cattle slurry. The aim of this study was to determine the effectiveness of chemical amendment of slurry to reduce incidental losses of P and suspended sediment (SS) from grassland following application of dairy cattle slurry and to examine the effect of amendments on metal concentrations in runoff water. Intact grassed-soil samples were placed in two laboratory runoff boxes, each 200-cm-long by 22.5-cm-wide by 5-cm-deep, before being amended with dairy cattle slurry (the study control) and slurry amended with either: (i) alum, comprising 8% aluminium oxide (Al(2)O(3)) (1.11:1 aluminium (Al):total phosphorus (TP) of slurry) (ii) poly-aluminium chloride hydroxide (PAC) comprising 10% Al(2)O(3) (0.93:1 Al:TP) (iii) analytical grade ferric chloride (FeCl(2)) (2:1 Fe:TP), (iv) and lime (Ca(OH)(2)) (10:1 Ca:TP). When compared with the study control, PAC was the most effective amendment, reducing dissolved reactive phosphorus (DRP) by up to 86% while alum was most effective in reducing SS (88%), TP (94%), particulate phosphorus (PP) (95%), total dissolved phosphorus (TDP) (81%), and dissolved unreactive phosphorus (DUP) (86%). Chemical amendment of slurry did not appear to significantly increase losses of Al and Fe compared to the study control, while all amendments increased Ca loss compared to control and grass-only treatment. While chemical amendments were effective, the reductions in incidental P losses observed in this study were similar to those observed in other studies where the time from slurry application to the first rainfall event was increased. Timing of slurry application may therefore be a much more feasible way to reduce incidental P losses. Future work must examine the long-term effects of amendments on P loss to runoff and not only incidental losses. Copyright © 2011 Elsevier B.V. All rights reserved.
Nephrogenic systemic fibrosis is associated with hypophosphataemia: a case-control study.
Bernstein, Elana J; Isakova, Tamara; Sullivan, Mary E; Chibnik, Lori B; Wolf, Myles; Kay, Jonathan
2014-09-01
Nephrogenic systemic fibrosis (NSF) is an iatrogenic fibrosing disorder that primarily affects individuals with chronic kidney disease (CKD) following exposure to gadolinium-based contrast agents (GBCAs). Derangements of calcium and phosphorus have been reported in patients with NSF. The aim of this study was to investigate potential factors in addition to GBCA exposure that may be involved in the pathogenesis of NSF. We hypothesized that patients with stage 5 CKD and NSF would manifest greater alterations in calcium, phosphorus and fibroblast growth factor 23 (FGF23) levels than those who do not have NSF. Levels of phosphorus, calcium, FGF23 and 25-hydroxy-vitamin D were measured in 10 patients with stage 5 CKD and biopsy-proven NSF and in 19 patients with stage 5 CKD without NSF. Statistical analyses were performed using Fisher's exact test for categorical variables and the Kruskal-Wallis test for continuous variables. Patients with NSF had significantly lower phosphorus levels compared with controls (P = 0.01). There were no significant differences between NSF patients and controls in calcium, 25-hydroxy-vitamin D, intact parathyroid hormone or FGF23 levels. Differences in phosphorus metabolism may exist between patients with stage 5 CKD and NSF compared with patients with stage 5 CKD without NSF. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sun, Liying; Li, Bo; Ma, Yuchun; Wang, Jinyang; Xiong, Zhengqin
2013-06-01
The dry deposition of ammonium, nitrate, and total phosphorus (TP) to both water (DW) and land (DD) surfaces, along with wet deposition, were simultaneously monitored from March 2009 to February 2011 in Nanjing, China. Results showed that wet deposition of total phosphorus was 1.1 kg phosphorus ha (-1)yr(-1), and inorganic nitrogen was 28.7 kg nitrogen ha (-1)yr(-1), with 43% being ammonium nitrogen. Dry deposition of ammonium, nitrate, and total phosphorus, measured by the DW/DD method, was 7.5/2.2 kg nitrogen ha (-1)yr(-1), 6.3/ 4.9 kg nitrogen ha (-1)yr(-1), and 1.9/0.4 kg phosphorus ha (-1)yr(-1), respectively. Significant differences between the DW and DD methods indicated that both methods should be employed simultaneously when analyzing deposition to aquatic and terrestrial ecosystems in watershed areas. The dry deposition of ammonium, nitrate, and total phosphorus contributed 38%, 28%, and 63%, respectively, to the total deposition in the simulated aquatic ecosystem; this has significance for the field of water eutrophication control.
Optimisation of Noosa BNR plant to improve performance and reduce operating costs.
Thomas, M; Wright, P; Blackall, L; Urbain, V; Keller, J
2003-01-01
Noosa WWTP is publicly owned and privately operated by Australian Water Services. The process includes primary sedimentation, raw sludge fermentation, biological nutrient removal (BNR), sand filtration and ultraviolet (UV) disinfection. An innovative feature of the plant is the supplementary carbon dosing facility to avoid the use of metal salts (alum or ferric) for phosphorus removal. The average flow treated during 2000 was 9.0 ML/d. The annual 50 percentile effluent quality requirements for nutrients are total N < 5 mg/L and total P < 1 mg/L. The objectives of this project were to: determine the cause of variability in phosphorus removal; develop a strategy to control the variability in phosphorus removal; and minimise the operating cost of supplementary carbon dosing while achieving the effluent quality requirements. An investigation of chemical and microbiological parameters was implemented and it was concluded that there were several factors causing variability in phosphorus removal, rather than a single cause. The following four major causes were identified, and the control strategies that were adopted resulted in the plant achieving annual 50 percentile effluent total P = 0.37 mg/L and total N = 3.0 mg/L during 2001. First, phosphorus removal was limited by the available VFA supply due to consumption of VFA by other organisms competing with phosphate accumulating organisms (PAO), and due to diurnal variations in the sewage VFA and phosphate concentrations. Therefore, supplementary carbon dosing was essential to make allowance for competing reactions. Second, increasing the fermenter VFA yield via supplementary carbon dosing with molasses was found to be an effective and economic way of ensuring reliable phosphorus removal. Third, nitrate in the RAS resulted in consumption of VFA by denitrifying bacteria, particularly with process configurations where the RAS was recycled directly into the anaerobic zone. Incorporating a RAS denitrification zone into the process rectified this problem. Finally, glycogen accumulating organisms (GAO) were observed in BNR sludge samples, and consumption of VFA by GAO appeared to cause decreased phosphorus removal. Better phosphorus removal was obtained using VFA derived from the fermenter than dosing an equivalent amount of acetic acid. It was hypothesized that GAO have a competitive advantage to use acetate and PAO have a competitive advantage to use propionate, butyrate or some other soluble COD compound in the fermenter effluent. Contrary to popular belief, acetate may not be the optimum VFA for biological phosphorus removal. The competition between PAO and GAO for different VFA species under anaerobic conditions requires further investigation in order to control the growth of GAO and thereby improve reliability of biological phosphorus removal processes.
Effects of dietary calcium, phosphorus and magnesium on intranephronic calculosis in rats.
Woodward, J C; Jee, W S
1984-12-01
The effects of varying dietary levels of calcium, phosphorus and magnesium on the incidence and severity of intranephronic calculosis were studied. Renal calculi were induced by feeding female rats the AIN-76TM semipurified diet for 4 weeks. During this time period, dietary levels of 350, 450 or 550 mg calcium per 100 g diet did not influence the occurrence of urolithiasis. Increasing dietary magnesium levels from 50 to 350 mg was beneficial in preventing the occurrence of calculi if the diet contained 400 mg or less phosphorus. The protective effects of dietary magnesium were counteracted when dietary phosphorus levels were increased from 400 mg to 550 or 700 mg. If the dietary content of phosphorus and magnesium permitted the formation of renal calculi, the severity of the condition was also influenced by the dietary level of calcium. Some animal groups fed semipurified diets did not have microscopic or radiographic evidence of renal calculi but were found to have significantly elevated renal calcium values. It was suggested that these animals might be in a precalculus-forming state.
Exotic Physics and Chemistry of Two-Dimensional Phosphorus: Phosphorene.
Chowdhury, Chandra; Datta, Ayan
2017-07-06
Phosphorene, the monolayer form of black phosphorus, is the most recent addition to graphene-like van der Waals two-dimensional (2D) systems. Due to its several interesting properties, namely its tunable direct band gap, high carrier mobility, and unique in-plane anisotropy, it has emerged as a promising candidate for electronic and optoelectronic devices. Phosphorene (Pn) reveals a much richer phase diagram than graphene, and it comprises the two forms namely the stapler-clip like (black Pn, α form) and chairlike (blue Pn, β form) structures. Regardless of its favorable properties, black Pn suffers from instability in oxygen and water, which limits its successful applications in electronic devices. In this Perspective, the cause of structural diversity of Pn, which leads to different properties of both black and blue Pn, is discussed. We provide possible solutions for protecting phosphorene from chemical degradation and its applications in the field of energy storage namely for Li and Na ion batteries.
Harrison, A F
The distribution of phosphorus capital and net annual transfers of phosphorus between the major components of two unfertilized phosphorus-deficient UK ecosystems, an oak--ash woodland in the Lake District and an Agrostis-Festuca grassland in Snowdonia (both on acid brown-earth soils), have been estimted in terms of kg P ha--1. In both ecosystems less than 3% of the phosphorus, totalling 1890 kg P ha--1 and 3040 kg P ha--1 for the woodland and grassland, respectively, is contained in the living biomass and half that is below ground level. Nearly all the phosphorus is in the soil matrix. Although the biomass phosphorus is mostly in the vegetation, the soil fauna and vegetation is slower (25%) than in the grassland vegetatation (208%). More than 85% of the net annual vegetation uptake of phosphorus from the soil is returned to the soil, mainly in organic debris, which in the grassland ecosystem is more than twice as rich in phosphorus (0.125% P) as in the woodland ecosystem (0.053% P). These concentrations are related to the rates of turnover (input/P content) of phosphorus in the litter layer on the soil surface; it is faster in the grassland (460%) than in the woodland (144%). In both cycles plant uptake of phosphorus largely depends on the release of phosphorus through decomposition of the organic matter returned to soil. In both the woodland and the grassland, the amount of cycling phosphorus is potentially reduced by its immobilization in tree and sheep production and in undecomposed organic matter accumulating in soil. It is assumed that the reductions are counterbalanced by the replenishment of cycling phosphorus by (i) some mineralization of organically bound phosphorus in the mineral soil, (ii) the income in rainfall and aerosols not being effectively lost in soil drainage waters and (iii) rock weathering. The effects of the growth of conifers and sheep grazing on the balance between decomposition and accumulation of organic matter returned to soil are considered in relation to the rate of phosphorus cycling and the pedogenetic changes in soil phosphorus condition leading to reduced fertility. Although controlled sheep grazing speeds up phosphorus cycling and may reverse the pedogenetic trend in favour of soil improvement, conifers may slow down phosphorus cycling and promote the pedogenetic trend towards infertility.
Mehrotra, Rajnish; Martin, Kevin J.; Fishbane, Steven; Sprague, Stuart M.; Zeig, Steven; Anger, Michael
2008-01-01
Background and objectives: Management of hyperphosphatemia, a predictor of mortality in chronic kidney disease, is challenging. Nonadherence to dietary phosphate binders, in part, contributes to uncontrolled serum phosphorus levels. This phase IIIb trial assessed the efficacy of increased dosages (3000 to 4500 mg/d) of reformulated lanthanum carbonate (500-, 750-, and 1000-mg tablets) in nonresponders to dosages of up to 3000 mg/d. Design, setting, participants, & measurements: This 8-wk study with a 4-mo open-label extension enrolled 513 patients who were undergoing maintenance hemodialysis. Patients who achieved serum phosphorus control at week 4 with ≤3000 mg/d lanthanum carbonate entered cohort A; nonresponders were randomly assigned to receive 3000, 3750, or 4500 mg/d (cohort B). The primary outcome measure was the control rate for predialysis serum phosphorus levels at the end of week 8, among patients in cohort B. Results: At the end of week 4, 54% of patients achieved serum phosphorus control at dosages ≤3000 mg/d administered as one tablet per meal. Among patients who entered cohort B, control rates of 25, 38, and 32% for patients who were randomly assigned to 3000, 3750, or 4500 mg/d lanthanum carbonate, respectively, were achieved, with no increase in adverse events. Patients and physicians reported significantly higher levels of satisfaction with reformulated lanthanum carbonate compared with previous phosphate binders, partly because of reduced tablet burden with higher dosage strengths. Physicians and patients also expressed a preference for lanthanum carbonate over previous medication. Conclusions: Reformulated lanthanum carbonate is an effective phosphate binder that may reduce daily tablet burden. PMID:18579668
Iwai, Toru; Takahashi, Michiko; Oda, Koshiro; Terada, Yasuko; Yoshida, Kaoru T
2012-12-01
Phytic acid (inositol hexakisphosphate [InsP(6)]) is the storage compound of phosphorus in seeds. As phytic acid binds strongly to metallic cations, it also acts as a storage compound of metals. To understand the mechanisms underlying metal accumulation and localization in relation to phytic acid storage, we applied synchrotron-based x-ray microfluorescence imaging analysis to characterize the simultaneous subcellular distribution of some mineral elements (phosphorus, calcium, potassium, iron, zinc, and copper) in immature and mature rice (Oryza sativa) seeds. This fine-imaging method can reveal whether these elements colocalize. We also determined their accumulation patterns and the changes in phosphate and InsP(6) contents during seed development. While the InsP(6) content in the outer parts of seeds rapidly increased during seed development, the phosphate contents of both the outer and inner parts of seeds remained low. Phosphorus, calcium, potassium, and iron were most abundant in the aleurone layer, and they colocalized throughout seed development. Zinc was broadly distributed from the aleurone layer to the inner endosperm. Copper localized outside the aleurone layer and did not colocalize with phosphorus. From these results, we suggest that phosphorus translocated from source organs was immediately converted to InsP(6) and accumulated in aleurone layer cells and that calcium, potassium, and iron accumulated as phytic acid salt (phytate) in the aleurone layer, whereas zinc bound loosely to InsP(6) and accumulated not only in phytate but also in another storage form. Copper accumulated in the endosperm and may exhibit a storage form other than phytate.
Shashvatt, Utsav; Benoit, Josh; Aris, Hannah; Blaney, Lee
2018-06-18
Phosphorus recovery from industrialized poultry operations is necessary to ensure sustainable waste management and resource consumption. To realize these goals, an innovative, two-stage process chemistry has been developed to extract nutrients from poultry litter and recover value-added products. Over 75% phosphorus extraction was achieved by bubbling carbon dioxide into poultry litter slurries and adding strong acid to reach pH 4.5-5.5. After separating the nutrient-deficient poultry litter solids and the nutrient-rich liquid, the extract pH was increased through aeration and strong base addition. Over 95% of the extracted phosphorus was recovered as solid precipitate at pH 8.5-9.0. High-purity struvite and potassium struvite products were selectively recovered through pH control, introduction of a calcium-complexing agent, and addition of magnesium chloride. The nitrogen-to-phosphorus-to-potassium (NPK) ratio of the recovered solids was controlled through aeration and pH adjustment. Precipitation at pH 8.5-9.0 and 10.5-11.0 resulted in NPK ratios of 2.0:1.0:0.1 and 0.9:1.0:0.2, respectively. The process effluent was effectively recycled as makeup water for the subsequent batch of poultry litter, thereby decreasing water consumption and increasing overall nutrient recovery. Sequencing batch operation yielded greater than 70% phosphorus recovery within a 45-min process, demonstrating the potential for this technology to alleviate nutrient pollution in agricultural settings and generate an alternative supply of phosphorus fertilizers. Copyright © 2018. Published by Elsevier Ltd.
Du, Hui-ying; Feng, Jie; Guo, Hai-gang; Wang, Feng; Zhang, Ke-qiang
2015-08-01
Field experiments of winter wheat-summer maize rotation were conducted in North China Plain irrigation area to explore the effects of wheat season irrigation with dairy effluent on grain yield, phosphorus uptake, accumulative phosphorus usage efficiency and phosphorus accumulation in soil. The results showed that the irrigation with dairy effluent significantly improved the yields of winter wheat and summer maize. With the increasing of P2O5 carried by dairy effluent into soil, winter wheat yield increased at first and then decreased. When the P2O5 increased 137 kg · hm(-2), winter wheat yield increased to the maximum (7646.4 kg · hm(-2)) and the phosphorus utilization rate was the highest (24.8%). But excessive phosphorus decreased the winter wheat yield and phosphorus utilization efficiency. Summer maize yield and phosphorus uptake increased with the increase of P2O5 carried by dairy effluent. The summer maize yield increased by 2222.4-2628.6 kg · hm(-2) and the phosphorus uptake increased by 13.9-21.1 kg · hm(-2) in contrast to the control (CK). Under conventional phosphorus fertilization at 88 kg · hm(-2), and the summer maize yield increased by 2235.0 kg · hm(-2) compared with CK. As the time of irrigation with dairy effluent increasing, the grain yield increased more significantly. The cumulative phosphorus utilization in this rotation system increased year by year. After six seasons of crop harvest, the cumulative phosphorus utilization rate increased into 40.0%-47.7%. Under the experimental condition, two times of irrigation with the dairy effluents in the winter wheat-summer maize rotation system was the best operating mode.
La Camera, R. J.; Browning, S.B.
1988-01-01
Selected hydrologic data were collected from August 1984 through July 1985 at three sites on the lower part of Edgewood Creek, and at a recently constructed sediment-catchment basin that captures and retains runoff from developed areas in the lower Edgewood Creek drainage. The data were collected to quantify the discharge of selected constituents downstream from recent and planned watershed restoration projects, and to Lake Tahoe. Contained in this report are the results of quantitative analyses of 39 water samples for: total and dissolved ammonium, organic nitrogen, nitrite, nitrate, phosphorus, and orthophosphorus; suspended sediment; total iron, manganese, and zinc; and dissolved temperature, specific conductance, pH, and dissolved oxygen; summary statistics (means and standard deviations), and computations of instantaneous loads. On the basis of mean values, about 80% of the total nitrogen load at each of the three Edgewood Creek sites is in the form of organic nitrogen, 12% is in the form of nitrate nitrogen, 7% is in the form of ammonium nitrogen, and 1% is in the form of nitrite nitrogen. The percentage of total phosphorus load in the form of orthophosphorus at the three stream sites varies somewhat with time, but is generally greater at the two downstream sites than at the upstream site. In addition, the percentage of the total phosphorus load that is present in the dissolved state generally is greater at the two downstream sites than at the upstream site. (Lantz-PTT)
The physical and chemical factors controlling sediment release and water column cycling of phosphorus and other nutrients (internal loading) are discussed within a 'systems' framework. Applying the systems approach, time-dependent nutrient storage within identified compartments, ...
An, Shaorong; Niu, Xiaojun; Chen, Weiyi; Sheng, Hong; Lai, Senchao; Yang, Zhiquan; Gu, Xiaohong; Zhou, Shaoqi
2018-04-12
To explore the effect of elevated CO 2 concentrations ([CO 2 ]) on phosphine formation in paddy fields, the matrix-bound phosphine (MBP) content, different phosphorus fractions and various carbon forms in soil samples from rice cultivation under varying CO 2 concentrations of 400 ppm, 550 ppm and 700 ppm by indoor simulation experiment were determined. This study showed that MBP concentration did not increase significantly with elevated [CO 2 ] over four-week cultivation periods of rice seedlings, regardless of soil layers. MBP had a significant positive correlation with total phosphorus (TP) and inorganic phosphorus (IP), and multiple stepwise linear regression analysis further indicated that MBP preservation in neutral paddy soils with depths of 0-20 cm may have been due to conversion from FeP and CaP. Based on redundancy analysis and forward selection analysis, speculated that the formation of MBP in the neutral paddy soils as the response to atmospheric elevated [CO 2 ] was due to two processes: (i) FeP transformation affected by the changes of soil respiration (SCO 2 ) and TOC was the main precursor for the production of MBP; and (ii) CaP transformation resulting from variation in HCO 3 - was the secondary MBP source. The complex combination of these two processes is simultaneously controlled by SCO 2 . In a word, the soil environment in the condition of elevated [CO 2 ] was in favor of MBP storage in neutral paddy soils. The results of our study imply that atmospheric CO 2 participates in and has a certain impact on the global biogeochemical cycle of phosphorus. Copyright © 2018 Elsevier Ltd. All rights reserved.
Phosphorus removal characteristics in hydroxyapatite crystallization using converter slag.
Kim, Eung-Ho; Hwang, Hwan-Kook; Yim, Soo-Bin
2006-01-01
This study was performed to investigate the phosphorus removal characteristics in hydroxyapatite (HAP) crystallization using converter slag as a seed crystal and the usefulness of a slag column reactor system. The effects of alkalinity, and the isomorphic-substitutable presence of ionic magnesium, fluoride, and iron on HAP crystallization seeded with converter slag, were examined using a batch reactor system. The phosphorus removal efficiencies of the batch reactor system were found to increase with increases in the iron and fluoride ion concentrations, and to decrease with increases in the alkalinity and magnesium ion concentration. A column reactor system for HAP crystallization using converter slag was found to achieve high, stable levels of phosphorus elimination: the average PO4-P removal efficiency over 414 days of operation was 90.4%, in which the effluent phosphorus concentration was maintained at less than 0.5 mg/L under the appropriate phosphorus crystallization conditions. The X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra of the crystalline material deposited on the seed particles exhibited peaks consistent with HAP. Scanning electron micrograph (SEM) images showed that finely distributed crystalline material was formed on the surfaces of the seed particles. Energy dispersive X-ray spectroscopy (EDS) mapping analysis revealed that the molar Ca/P composition ratio of the crystalline material was 1.72.
Coastal eutrophication thresholds: a matter of sediment microbial processes.
Lehtoranta, Jouni; Ekholm, Petri; Pitkänen, Heikki
2009-09-01
In marine sediments, the major anaerobic mineralization processes are Fe(III) oxide reduction and sulfate reduction. In this article, we propose that the two alternative microbial mineralization pathways in sediments exert decisively different impacts on aquatic ecosystems. In systems where iron reduction dominates in the recently deposited sediment layers, the fraction of Fe(III) oxides that is dissolved to Fe(II) upon reduction will ultimately be transported to the oxic layer, where it will be reoxidized. Phosphorus, which is released from Fe(III) oxides and decomposing organic matter from the sediment, will be largely trapped by this newly formed Fe(III) oxide layer. Consequently, there are low concentrations of phosphorus in near-bottom and productive water layers and primary production tends to be limited by phosphorus (State 1). By contrast, in systems where sulfate reduction dominates, Fe(III) oxides are reduced by sulfides. This chemical reduction leads to the formation and permanent burial of iron as solid iron sulfides that are unable to capture phosphorus. In addition, the cycling of iron is blocked, and phosphorus is released to overlying water. Owing to the enrichment of phosphorus in water, the nitrogen : phosphorus ratio is lowered and nitrogen tends to limit algal growth, giving an advantage to nitrogen-fixing blue-green algae (State 2). A major factor causing a shift from State 1 to State 2 is an increase in the flux of labile organic carbon to the bottom sediments; upon accelerating eutrophication a critical point will be reached when the availability of Fe(III) oxides in sediments will be exhausted and sulfate reduction will become dominant. Because the reserves of Fe(III) oxides are replenished only slowly, reversal to State 1 may markedly exceed the time needed to reduce the flux of organic carbon to the sediment. A key factor affecting the sensitivity of a coastal system to such a regime shift is formed by the hydrodynamic alterations that decrease the transport of O2 to the near-bottom water, e.g., due to variations in salinity and temperature stratification.
Li, Bao; Wang, Zhi-Qi; Wang, Qian-Suo; Cuan, Jing-Bo
2013-06-01
By using cylindrical sediment sampler and Peeper' s interstitial water sampler, the intact sediment and interstitial water were collected from different zones of Nansi Lake in Shandong Province in summer and winter. The distribution characteristics of the sediment phosphorus forms and of the phosphate (PO4(3-)-P) in interstitial water were analyzed, and their correlations were discussed. In the sediments of Nansi Lake, phosphorus was richer, and had a significant spatial differentiation, with an overall decreasing trend from north to south, which was related to the seriously polluted Northern Nansi Lake near Jining City. Among the phosphorous forms, inorganic phosphorus (IP) had the highest concentration, accounting for 52.3%-87.2% and 60.6%-88.3% of the total phosphorus (TP) in summer and winter, respectively. The TP concentrations in 5 cm surface sediment of four sub-lakes were all higher in summer than in winter, which could be related to the human activities such as exuberant aquaculture, more chemical fertilizers application around lake, and frequent tourism activities, etc. in summer. In vertical direction, the PO4(3-)-P concentration in interstitial water decreased after an initial increase in summer and winter, and was obviously higher in summer than in winter, suggesting that the phosphorous in sediment had a higher potential to release to the overlying water in summer. The organic phosphorus (OP) and IP in sediment had a significant correlation in summer but less correlation in winter, indicating that the transformation between sediment IP and OP was more active in summer than in winter. The iron and aluminum bound phosphorus (Fe/Al-P) and IP in sediment were significantly positively correlated with the PO4(3-)-P in interstitial water. In summer and winter, the average PO4(3-)-P concentration in interstitial water collected by Peeper' s interstitial water sampler was about 20%-50% higher than that collected by the conventional centrifugal method, suggesting that using Peeper' s interstitial water sampler could be more precise.
VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo
2015-01-01
Golden alga (Prymnesium parvum) is a harmful alga that has caused ecological and economic harm in freshwater and marine systems worldwide. In inland systems of North America, toxic blooms have nearly eliminated fish populations in some systems. Modifying nutrient profiles through alterations to land or water use may be a viable alternative for golden alga control in reservoirs. The main objective of this study was to improve our understanding of the nutrient dynamics that influence golden alga bloom formation and toxicity in west Texas reservoirs. We examined eight sites in the Upper Colorado River basin, Texas: three impacted reservoirs that have experienced repeated golden alga blooms; two reference reservoirs where golden alga is present but nontoxic; and three confluence sites downstream of the impacted and reference sites. Total, inorganic, and organic nitrogen and phosphorus and their ratios were quantified monthly along with golden alga abundance and ichthyotoxicity between December 2010 and July 2011. Blooms persisted for several months at the impacted sites, which were characterized by high organic nitrogen and low inorganic nitrogen. At impacted sites, abundance was positively associated with inorganic phosphorus and bloom termination coincided with increases in inorganic nitrogen and decreases in inorganic phosphorus in late spring. Management of both inorganic and organic forms of nutrients may create conditions in reservoirs unfavorable to golden alga.
Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.
2016-01-01
Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.
García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory
2016-07-05
Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.
Infrared fingerprints of few-layer black phosphorus
Zhang, Guowei; Huang, Shenyang; Chaves, Andrey; Song, Chaoyu; Özçelik, V. Ongun; Low, Tony; Yan, Hugen
2017-01-01
Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thickness ranging from 2 to 15 layers and photon energy spanning from 0.25 to 1.36 eV. Each few-layer black phosphorus exhibits a thickness-dependent unique infrared spectrum with a series of absorption resonances, which reveals the underlying electronic structure evolution and serves as its infrared fingerprints. Surprisingly, unexpected absorption features, which are associated with the forbidden optical transitions, have been observed. Furthermore, we unambiguously demonstrate that controllable uniaxial strain can be used as a convenient and effective approach to tune the electronic structure of few-layer black phosphorus. Our study paves the way for black phosphorus applications in infrared photonics and optoelectronics. PMID:28059084
Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic
Browning, T. J.; Achterberg, E. P.; Yong, J. C.; Rapp, I.; Utermann, C.; Engel, A.; Moore, C. M.
2017-01-01
In certain regions of the predominantly nitrogen limited ocean, microbes can become co-limited by phosphorus. Within such regions, a proportion of the dissolved organic phosphorus pool can be accessed by microbes employing a variety of alkaline phosphatase (APase) enzymes. In contrast to the PhoA family of APases that utilize zinc as a cofactor, the recent discovery of iron as a cofactor in the more widespread PhoX and PhoD implies the potential for a biochemically dependant interplay between oceanic zinc, iron and phosphorus cycles. Here we demonstrate enhanced natural community APase activity following iron amendment within the low zinc and moderately low iron Western North Atlantic. In contrast we find no evidence for trace metal limitation of APase activity beneath the Saharan dust plume in the Eastern Atlantic. Such intermittent iron limitation of microbial phosphorus acquisition provides an additional facet in the argument for iron controlling the coupling between oceanic nitrogen and phosphorus cycles. PMID:28524880
Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms.
Koenig, Steven P; Doganov, Rostislav A; Seixas, Leandro; Carvalho, Alexandra; Tan, Jun You; Watanabe, Kenji; Taniguchi, Takashi; Yakovlev, Nikolai; Castro Neto, Antonio H; Özyilmaz, Barbaros
2016-04-13
Few-layer black phosphorus is a monatomic two-dimensional crystal with a direct band gap that has high carrier mobility for both holes and electrons. Similarly to other layered atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is sensitive to surface impurities, adsorbates, and adatoms. Here we study the effect of Cu adatoms onto few-layer black phosphorus by characterizing few-layer black phosphorus field effect devices and by performing first-principles calculations. We find that the addition of Cu adatoms can be used to controllably n-dope few layer black phosphorus, thereby lowering the threshold voltage for n-type conduction without degrading the transport properties. We demonstrate a scalable 2D material-based complementary inverter which utilizes a boron nitride gate dielectric, a graphite gate, and a single bP crystal for both the p- and n-channels. The inverter operates at matched input and output voltages, exhibits a gain of 46, and does not require different contact metals or local electrostatic gating.
NASA Astrophysics Data System (ADS)
Han, Dong-Suk; Moon, Yeon-Keon; Lee, Sih; Kim, Kyung-Taek; Moon, Dae-Yong; Lee, Sang-Ho; Kim, Woong-Sun; Park, Jong-Wan
2012-09-01
In this study, we fabricated phosphorus-doped zinc oxide-based thin-film transistors (TFTs) using direct current (DC) magnetron sputtering at a relatively low temperature of 100°C. To improve the TFT device performance, including field-effect mobility and bias stress stability, phosphorus dopants were employed to suppress the generation of intrinsic defects in the ZnO-based semiconductor. The positive and negative bias stress stabilities were dramatically improved by introducing the phosphorus dopants, which could prevent turn-on voltage ( V ON) shift in the TFTs caused by charge trapping within the active channel layer. The study showed that phosphorus doping in ZnO was an effective method to control the electrical properties of the active channel layers and improve the bias stress stability of oxide-based TFTs.
USDA-ARS?s Scientific Manuscript database
Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble phosphates in the soil solution. Multiple competing reactions control the solution-phase concentration and the cycling of phosphorus-containing organic substrates and the re...
Huang, Jiacong; Gao, Junfeng; Yan, Renhua
2016-08-15
Phosphorus (P) export from lowland polders has caused severe water pollution. Numerical models are an important resource that help water managers control P export. This study coupled three models, i.e., Phosphorus Dynamic model for Polders (PDP), Integrated Catchments model of Phosphorus dynamics (INCA-P) and Universal Soil Loss Equation (USLE), to describe the P dynamics in polders. Based on the coupled models and a dataset collected from Polder Jian in China, sensitivity analysis were carried out to analyze the cause-effect relationships between environmental factors and P export from Polder Jian. The sensitivity analysis results showed that P export from Polder Jian were strongly affected by air temperature, precipitation and fertilization. Proper fertilization management should be a strategic priority for reducing P export from Polder Jian. This study demonstrated the success of model coupling, and its application in investigating potential strategies to support pollution control in polder systems. Copyright © 2016. Published by Elsevier B.V.
Yun, Yupan; Zhou, Xiaoqin; Li, Zifu; Uddin, Sayed Mohammad Nazim; Bai, Xiaofeng
2015-01-01
This research mainly focused on the phosphorus removal performance of pilot-scale vertical flow constructed wetlands with steel slag (SS) and modified steel slag (MSS). First, bench-scale experiments were conducted to evaluate the phosphorus adsorption capacity. Results showed that the Langmuir model could better describe the adsorption characteristics of the two materials; the maximum adsorption of MSS reached 12.7 mg/g, increasing by 34% compared to SS (9.5 mg/g). Moreover, pilot-scale constructed wetlands with SS and MSS were set up outdoors. Then, the influence of hydraulic retention time (HRT) and phosphorus concentration in phosphorus removal for two wetlands were investigated. Results revealed that better performance of the two systems could be achieved with an HRT of 2 d and phosphorus concentration in the range of 3-4.5 mg/L; the system with MSS had a better removal efficiency than the one with SS in the same control operation. Finally, the study implied that MSS could be used as a promising substrate for wetlands to treat wastewater with a high phosphorus concentration. However, considering energy consumption, SS could be regarded as a better alternative for substrate when treating sewage with a low phosphorus concentration.
Characterization of retrieved orthodontic miniscrew implants.
Eliades, Theodore; Zinelis, Spiros; Papadopoulos, Moschos A; Eliades, George
2009-01-01
The purposes of this study were to characterize the morphologic, structural, and compositional alterations and to assess any hardness changes in used orthodontic miniscrew implants. Eleven miniscrew implants (Aarhus Anchorage System, Medicon eG, Tuttlingen, Germany) placed in 5 patients were retrieved after successful service of 3.5 to 17.5 months; none showed signs of mobility or failure. These implants, and brand-, type-, and size-matched specimens as controls, were subjected to multi-technique characterization. Optical microscopy indicated loss of gloss with variable discoloration. Scanning electron microscopy and x-ray microanalysis showed morphologic alteration of the miniscrew implant surfaces with integuments formed on the surface. The materials precipitated on the surfaces were sodium, potassium, chlorine, iron, calcium, and phosphorus from the contact of the implant with biologic fluids such as blood and exudates, forming sodium chloride, potassium chloride, and calcium-phosphorus precipitates. The composition of the implant was similar to that of a titanium alloy. X-ray microtomography analysis showed no bulk structure alterations. Vickers microhardness testing showed no increased bulk or surface hardness of the retrieved specimens compared with the controls, excluding the possibility of strain-hardening phenomena as a result of self-tapping and self-drilling placement and related loading conditions. Used titanium-alloy miniscrew implants have morphologic and surface structural alterations including adsorption of an integument that is calcified as a result of contact of the implants with biologic fluids. Randomly organized osseointegration islets on these smooth titanium-alloy miniscrew surfaces might be enhanced by the extended period of retention in alveolar bone in spite of the smooth surface and immediate loading pattern of these implants.
The dilemma of controlling cultural eutrophication of lakes
Schindler, David W.
2012-01-01
The management of eutrophication has been impeded by reliance on short-term experimental additions of nutrients to bottles and mesocosms. These measures of proximate nutrient limitation fail to account for the gradual changes in biogeochemical nutrient cycles and nutrient fluxes from sediments, and succession of communities that are important components of whole-ecosystem responses. Erroneous assumptions about ecosystem processes and lack of accounting for hysteresis during lake recovery have further confused management of eutrophication. I conclude that long-term, whole-ecosystem experiments and case histories of lake recovery provide the only reliable evidence for policies to reduce eutrophication. The only method that has had proven success in reducing the eutrophication of lakes is reducing input of phosphorus. There are no case histories or long-term ecosystem-scale experiments to support recent claims that to reduce eutrophication of lakes, nitrogen must be controlled instead of or in addition to phosphorus. Before expensive policies to reduce nitrogen input are implemented, they require ecosystem-scale verification. The recent claim that the ‘phosphorus paradigm’ for recovering lakes from eutrophication has been ‘eroded’ has no basis. Instead, the case for phosphorus control has been strengthened by numerous case histories and large-scale experiments spanning several decades. PMID:22915669
Benthic phosphorus regeneration in the Potomac River Estuary
Callender, E.
1982-01-01
The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980. ?? 1982 Dr W. Junk Publishers.
Takeda, Eiji; Yamamoto, Hironori; Yamanaka-Okumura, Hisami; Taketani, Yutaka
2014-01-01
It is important to consider whether habitual high phosphorus intake adversely affects bone health, because phosphorus intake has been increasing, whereas calcium intake has been decreasing in dietary patterns. A higher total habitual dietary phosphorus intake has been associated with higher serum parathyroid hormone (PTH) and lower serum calcium concentrations in healthy individuals. Higher serum PTH concentrations have been shown in those who consume foods with phosphorus additives. These findings suggest that long-term dietary phosphorus loads and long-term hyperphosphatemia may have important negative effects on bone health. In contrast, PTH concentrations did not increase as a result of high dietary phosphorus intake when phosphorus was provided with adequate amounts of calcium. Intake of foods with a ratio of calcium to phosphorus close to that found in dairy products led to positive effects on bone health. Several randomized controlled trials have shown positive relations between dairy intake and bone mineral density. In our loading test with a low-calcium, high-phosphorus lunch provided to healthy young men, serum PTH concentrations showed peaks at 1 and 6 h, and serum fibroblast growth factor 23 (FGF23) concentrations increased significantly at 8 h after the meal. In contrast, the high-calcium, high-phosphorus meal suppressed the second PTH and FGF23 elevations until 8 h after the meal. This implies that adequate dietary calcium intake is needed to overcome the interfering effects of high phosphorus intake on PTH and FGF23 secretion. FGF23 acts on the parathyroid gland to decrease PTH mRNA and PTH secretion in rats with normal kidney function. However, increased serum FGF23 is an early alteration of mineral metabolism in chronic kidney disease, causing secondary hyperthyroidism, and implying resistance of the parathyroid gland to the action of FGF23 in chronic kidney disease. These findings suggest that long-term high-phosphorus diets may impair bone health mediated by FGF23 resistance both in chronic kidney disease patients and in the healthy population.
FATE AND EFFECTS OF PHOSPHORUS ADDITIONS IN SOILS UNDER N2-FIXING RED ALDER
Soil phosphorus (P) dynamics are controlled by the interaction of geochemical, biochemical and biological processes, and changing species composition or management may alter the relative importance of these processes. We examined the role of these processes in two plantations of...
USDA-ARS?s Scientific Manuscript database
Land application of manure is a cost-effective method for recycling nutrients from livestock operations. Increasingly, there has been interest in promoting alternative methods of manure application that minimize nonpoint source phosphorus pollution. Watershed and nutrient trading programs rely upon ...
Lapik, I A; Sokol'nikov, A A; Sharafetdinov, Kh Kh; Sentsova, T B; Plotnikova, O A
2014-01-01
The influence of diet inclusion of vitamin and mineral complex (VMC), potassium and magnesium in the form of asparaginate on micronutrient status, body composition and biochemical parameters in patients with diabetes mellitus type 2 (DM2) has been investigated. 120 female patients with DM2 and obesity of I-III degree (mean age - 58 +/- 6 years) have been included in the study. The patients were divided into two groups: main group (n = 60) and control group (n = 60). For 3 weeks patients of both groups received a low-calorie diet (1600 kcal/day). Patients of the main group received VMC, providing an additional intake of vitamins C and E (100-120% RDA), beta-carotene (40% RDA), nicotinamide (38% RDA), pantothenic acid and biotin (60% RDA), vitamins B12, B2 and folic acid (75-83% RDA), vitamins B1 and B6 (160-300% RDA), zinc (100% RDA) and chromium (400% RDA), and also received magnesium (17.7% RDA) and potassium (9.4% RDA) in the form of asparaginate. Body composition, biochemical parameters and micronutrient status (blood serum level of vitamins C, D, B6, B12, folate, potassium, calcium, magnesium, zinc, phosphorus) were evaluated in all patients before and after the 3-week course of diet therapy. After the low-calorie diet therapy average body weight reduction was 4.2 +/- 0.2 kg in the main group, and 4.4 +/- 0.1 kg in the control group, without statistically significant differences between groups. Statistically significant decrease of total cholesterol, triglycerides, and glucose concentration in blood serum was registered in both groups. It should be noted that in the control group glycemia decreased on 1.2 +/- 0.1 mmol/l, while the main group showed a decrease on 1.8 +/- 0.1 (p < 0.05) to normal values (5.4 +/- 0.1 mmol/l). Initial assessment of vitamin and mineral status revealed that most patients were optimal supplied with vitamins and minerals. After the dietotherapy significant increase of vitamin C, 25-hydroxyvitamin D, vitamin B6, folate, vitamin B12, potassium, magnesium, calcium, zinc and phosphorus concentration in blood serum was observed in patients receiving VMC. While in the control group statistically significant decrease of vitamin C, magnesium, zinc and phosphorus concentration in blood serum after the treatment was revealed. The obtained data shows the necessity of addition of the vitamin-mineral complex to the diet of patients with DM2 and obesity.
NASA Astrophysics Data System (ADS)
Zaragüeta, Mikel; Acebes, Pablo
2017-04-01
Increased nutrient enrichment in Mediterranean standing waters has enhanced the risk of being affected by cyanobacterial blooms. Because phosphorus abatement is shaped as a crucial strategy for controlling eutrophication, this study introduces a structural thinking, experiential learning laboratory with animation dynamic model elaborated for Cazalegas Reservoir (Spain) to assess the feasibility of implementing a set of internal and external control measures and hydromorphological adjustments to meet the goal of oligotrophication. This shallow reservoir is another case where recurrent eutrophication has led to reach annual mean total phosphorus concentrations (0.16 ± 0.08 mg total phosphorus/L) over the threshold of current water policies, triggering cyanobacterial growth up to undesirable levels in summer time (approximately 50,000 cells/mL). Modeling results showed that (i) after upgrading water treatment in the main tributary, (ii) applying a lanthanum-modified bentonite into the water column and sediment, and (iii) increasing reservoir water level, in-lake P concentrations and cyanobacterial abundance decreased in an 88% (below 0.01 mg total phosphorus/L) and 84% (below 6000 cells/mL), respectively in the most critical periods. However, the constraints of the proposed management strategies are associated with their costs of implementation and the time span for a stable trophic recovery of the reservoir. In that end, integrated management approaches are aimed to be adopted by water managers to reach adequate ecological status of freshwater bodies.
Jing, Yan; Chen, Xiao-min; Liu, Zu-xiang; Huang, Qian-ru; LiI, Qiu-xia; Chen, Chen; Lu, Shao-shan
2013-04-01
Aiming at the low content of available phosphorus in upland red soil of Southern China, this paper studied the effects of combined application of biochar and inorganic fertilizers on the available phosphorus and organic carbon contents and the pH of this soil. With the combined application of biochar and inorganic fertilizers, the soil physical and chemical properties improved to different degrees. As compared with the control, the soil pH and the soil organic carbon and available phosphorus contents at different growth stages of oil rape after the combined application of biochar and inorganic fertilizers all had an improvement, with the increments at bolting stage, flowering stage, and ripening stage being 16%, 24% and 26%, 23%, 34% and 38%, and 100%, 191% and 317% , respectively. The soil pH and the soil organic carbon and available phosphorus contents were increased with the increasing amount of applied biochar. Under-the application of biochar, the soil available phosphorus had a significant correlation with the soil pH and soil organic carbon content. This study could provide scientific basis to improve the phosphorus deficiency and the physical and chemical properties of upland red soil.
Chen, Tianwu; Zhao, Peng; Guo, Xu; Zhang, Sulin
2017-04-12
Phosphorus represents a promising anode material for sodium ion batteries owing to its extremely high theoretical capacity. Recent in situ transmission electron microscopy studies evidenced anisotropic swelling in sodiated black phosphorus, which may find an origin from the two intrinsic anisotropic properties inherent to the layered structure of black phosphorus: sodium diffusional directionality and insertion strain anisotropy. To understand the morphological evolution and stress generation in sodiated black phosphorus, we develop a chemo-mechanical model by incorporating the intrinsic anisotropic properties into the large elasto-plastic deformation. Our modeling results reveal that the apparent morphological evolution in sodiated black phosphorus is critically controlled by the coupled effect of the two intrinsic anisotropic properties. In particular, sodium diffusional directionality generates sharp interphases along the [010] and [001] directions, which constrain anisotropic development of the insertion strain. The coupled effect renders distinctive stress-generation and fracture mechanisms when sodiation starts from different crystal facets. In addition to providing a powerful modeling framework for sodiation and lithiation of layered structures, our findings shed significant light on the sodiation-induced chemo-mechanical degradation of black phosphorus as a promising anode for the next-generation sodium ion batteries.
High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries
NASA Astrophysics Data System (ADS)
Dahbi, Mouad; Fukunishi, Mika; Horiba, Tatsuo; Yabuuchi, Naoaki; Yasuno, Satoshi; Komaba, Shinichi
2017-09-01
Electrochemical performance of the red phosphorus electrode was examined in ionic-liquid electrolyte, 0.25 mol dm-3 sodium bisfluorosulfonylamide (NaFSA) dissolved N-methyl-N-propylpyridinium-bisfluorosulfonylamide (MPPFSA), at room temperature. We compared its electrochemical performance to conventional EC/PC/DEC, EC/DEC, and PC solutions containing 1 mol dm-3 NaPF6. The electrode in NaFSA/MPPFSA demonstrated a reversible capacity of 1480 mAh g-1 and excellent capacity retention of 93% over 80 cycles, which is much better than those in the conventional electrolytes. The difference in capacity retention for the electrolytes correlates to the different solid electrolyte interphase (SEI) layer formed on the phosphorus electrode. To understand the SEI formation in NaFSA/MPPFSA and its evolution during cycling, we investigate the surface layer of the red phosphorus electrodes with hard X-ray photoelectron spectroscopy (HAXPES) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). A detailed analysis of HAXPES spectra demonstrates that SEI layer consists of major inorganic and minor organic species, originating from decomposition of MPP+ and FSA-. Homogenous surface layer is formed during the first cycle in NaFSA/MPPFSA while in alkyl carbonate ester electrolytes, continuous growth of surface film up to the 20th cycle is observed. Possibility of red phosphorous electrode for battery applications with pure ionic liquid is discussed.
2014-01-01
Background Highly adapted plant species are able to alter their root architecture to improve nutrient uptake and thrive in environments with limited nutrient supply. Cluster roots (CRs) are specialised structures of dense lateral roots formed by several plant species for the effective mining of nutrient rich soil patches through a combination of increased surface area and exudation of carboxylates. White lupin is becoming a model-species allowing for the discovery of gene networks involved in CR development. A greater understanding of the underlying molecular mechanisms driving these developmental processes is important for the generation of smarter plants for a world with diminishing resources to improve food security. Results RNA-seq analyses for three developmental stages of the CR formed under phosphorus-limited conditions and two of non-cluster roots have been performed for white lupin. In total 133,045,174 high-quality paired-end reads were used for a de novo assembly of the root transcriptome and merged with LAGI01 (Lupinus albus gene index) to generate an improved LAGI02 with 65,097 functionally annotated contigs. This was followed by comparative gene expression analysis. We show marked differences in the transcriptional response across the various cluster root stages to adjust to phosphate limitation by increasing uptake capacity and adjusting metabolic pathways. Several transcription factors such as PLT, SCR, PHB, PHV or AUX/IAA with a known role in the control of meristem activity and developmental processes show an increased expression in the tip of the CR. Genes involved in hormonal responses (PIN, LAX, YUC) and cell cycle control (CYCA/B, CDK) are also differentially expressed. In addition, we identify primary transcripts of miRNAs with established function in the root meristem. Conclusions Our gene expression analysis shows an intricate network of transcription factors and plant hormones controlling CR initiation and formation. In addition, functional differences between the different CR developmental stages in the acclimation to phosphorus starvation have been identified. PMID:24666749
Yan, Mang; Yu, Liufang; Zhang, Liang; Guo, Yuexia; Dai, Kewei; Chen, Yuru
2014-11-01
Orthophosphate is an essential but limiting macronutrient for plant growth. About 67% cropland in China lacks sufficient phosphorus, especially that with red soil. Extensive soil phosphorus reserves exist in the form of organic phosphorus, which is unavailable for root uptake unless hydrolyzed by secretory acid phosphatases. Thus, many microorganisms with the ability to produce phosphatase have been exploited. In this work, the activity of an extracellular acid phosphatase and yeast biomass from Candida mycoderma was measured under different culture conditions, such as pH, temperature, and carbon source. A maximal phosphatase activity of 8.47×10(5)±0.11×10(5)U/g was achieved by C. Mycoderma in 36 hr under the optimal conditions. The extracellular acid phosphatase has high activity over a wide pH tolerance range from 2.5 to 5.0 (optimum pH3.5). The effects of different phosphorus compounds on the acid phosphatase production were also studied. The presence of phytin, lecithin or calcium phosphate reduced the phosphatase activity and biomass yield significantly. In addition, the pH of the culture medium was reduced significantly by lecithin. The efficiency of the strain in releasing orthophosphate from organic phosphorus was studied in red soil (used in planting trees) and rice soil (originating as red soil). The available phosphorus content was increased by 230% after inoculating 20 days in rice soil and decreased by 50% after inoculating 10 days in red soil. This work indicates that the yeast strain C. mycoderma has potential application for enhancing phosphorus utilization in plants that grow in rice soil. Copyright © 2014. Published by Elsevier B.V.
Phosphorus doping a semiconductor particle
Stevens, G.D.; Reynolds, J.S.
1999-07-20
A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.
NASA Astrophysics Data System (ADS)
Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.
2017-10-01
The bloating behavior of metal droplets and the dephosphorization behavior of bloated droplets at 1853 K (1580 °C) were investigated using X-ray fluoroscopy coupled with constant volume pressure change measurements and chemical analysis of quenched samples. The effect of sulfur content on dephosphorization kinetics was studied during the decarburization period. The slag foamed during the reaction forming a foamy layer over a dense layer. After a short incubation period, the droplets became bloated due to internal decarburization. The bloated droplets floated from the dense slag into the foamy slag. The behavioral changes are directly related to the effect of sulfur on the incubation time for swelling. The dephosphorization reaction was very fast; droplets with low sulfur contents experienced phosphorus reversion shortly after entering the foamy slag, while those with higher sulfur content took a longer time to swell and went through reversion before they entered the foam. The dephosphorization rate and maximum phosphorus partition were higher at lower CO evolution rates because the dynamic interfacial oxygen potential increased with the decreasing oxygen consumption rate. The rate controlling step for dephosphorization was initially a combination of mass transport in both the metal and the slag. As the iron oxide in the slag was depleted, the rate control shifted to mass transport in slag.
Sliem, Hamdy; Tawfik, Gamal; Moustafa, Fadia; Zaki, Heba
2011-01-01
Introduction: Secondary hyperparathyroidism (SHPT) is an insidious disease that develops early in the course of chronic kidney disease (CKD) and increases in severity as the glomerular filtration rate deteriorates. Recent studies have identified fibroblast growth factor-23 (FGF23) as a new protein with phosphaturic activity. It is mainly secreted by osteoblasts and is now considered the most important factor for regulation of phosphorus homeostasis. It is not yet proven if there is any direct relation between parathyroid hormone (PTH) and FGF23. The present study aims to evaluate the relation between serum FGF23, phosphorus, and PTH in end-stage renal disease in patients with SHPT on regular hemodialysis. Materials and Methods: Forty-six consecutive CKD adult patients (case group) and 20 healthy adults (control group) were included in the study. All patients had SHPT and were on regular hemodialysis. Both groups were subjected to full medical history, clinical examination and biochemical studies. Serum phosphorus, calcium, ferritin, hemoglobin level, blood urea, creatinine, PTH, and FGF23 were analyzed. Results: Levels of FGF23 were significantly higher in the case group in comparison with those in the control group, viz., 4-fold, and positively correlated with PTH. Phosphorus levels in the case group were significantly high in spite of the increasing levels of FGF23. Both PTH and FGF23 were positively correlated with phosphorus and negatively with hemoglobin levels. Conclusion: SHPT and FGF23 may have a partial role in the development of anemia in patients with CKD. FGF23 could be a central factor in the pathogenesis of SHPT. Its role in controlling hyperphosphatemia in CKD is vague. PMID:21731867
A review of phosphorus removal structures: How to assess and compare their performance
USDA-ARS?s Scientific Manuscript database
Controlling dissolved phosphorus (P) losses to surface waters is challenging as most conservation practices are only effective at preventing particulate P losses. As a result, P removal structures were developed to filter dissolved P from drainage water before reaching a water body. While many P rem...
Mixing rare earth elements with manures to control phosphorus loss in runoff and track manure fate
USDA-ARS?s Scientific Manuscript database
Concern over the enrichment of agricultural runoff with phosphorus (P) from land applied livestock manures has prompted the development of manure amendments that minimize P solubility. We evaluated the effect of mixing two rare earth chlorides, lanthanum chloride and ytterbium chloride, with poultr...
Improving models for describing phosphorus cycling in agricultural soils
USDA-ARS?s Scientific Manuscript database
The mobility of phosphorus in the environment is controlled to a large extent by its sorption to soil. Therefore, an important component of all P loss models is how the model describes the biogeochemical processes governing P sorption and desorption to soils. The most common approach to modeling P c...
Phosphorus retention by fly-ash amended filter media in aged bioretention cells
USDA-ARS?s Scientific Manuscript database
Bioretention cells (BRCs) have shown potential for stormwater quantity and quality control. However, the phosphorus (P) removal in BRC has been variable due to differences of soil properties in filter media. The objectives of this research were to identify and evaluate P accumulation in filter media...
Plant Growth and Phosphorus Uptake of Three Riparian Grass Species
USDA-ARS?s Scientific Manuscript database
Riparian buffers can significantly reduce sediment-bound phosphorus (P) entering surface water, but control of dissolved P inputs is more challenging. Because plant roots remove P from soil solution, it follows that plant uptake will reduce dissolved P losses. We evaluated P uptake of smooth bromegr...
NASA Astrophysics Data System (ADS)
Soo, Chen-Lin; Ling, Teck-Yee; Lee, Nyanti; Apun, Kasing
2016-03-01
The concentrations of nutrients (nitrogen and phosphorus), total metals, and fecal coliform (FC) coupling with chlorophyll- a (chl- a), 5-day biochemical oxygen demand (BOD5) and other general environmental parameters were evaluated at the sub-surface and near-bottom water columns of 13 stations in the Sibu Laut River during low and high slack waters. The results indicated that inorganic nitrogen (mainly nitrate) was the primary form of nitrogen whereas organic phosphorus was the major form of phosphorus. The abundance of total heavy metals in Sibu Laut River and its tributaries was in the order of Pb < Cu < Zn < Cd. Fecal coliform concentration was relatively low along Sibu Laut River. The shrimp farm effluents contributed a substantial amount of chl- a, BOD5, nutrients, and FC to the receiving creek except for total metals. Nevertheless, the influence was merely noticeable in the intake creek and amended rapidly along Selang Sibu River and brought minimal effects on the Sibu Laut River. Besides, the domestic sewage effluents from villages nearby also contributed a substantial amount of pollutants.
NASA Astrophysics Data System (ADS)
Glindemann, Dietmar; Edwards, Marc; Schrems, Otto
Phosphine (PH 3), was recently found worldwide even in the remote atmosphere (Naturwissenschaften83(1996a)131; Atmos. Environ. 37(2003)24 29). It is of interest to find natural mechanisms which could produce phosphine gas and drive a volatile link of the atmospheric phosphorus cycle and the formation of phosphoric acid as possible condensation nuclei for clouds. Here, we report on simulated lightning exposing sodium phosphate in a reducing medium (methane model atmosphere or organic matter) for 5 s to a spark induced by microwave. The gas product analyzed by gas chromatography contained phosphine (yield up to 0.6 g kg -1 phosphate P) and methylphosphine (CH 3)PH 2 (yield up to 0.02 g kg -1 phosphate P). We suggest a plasma-chemical formation mechanism where organic compounds or methane or secondary hydrogen thereof reduce phosphate to phosphine of which a small fraction can subsequently react with methyl radicals to form methylphosphine. A small yield of 6 mg phosphine per kg phosphate P was even obtained in methane free medium, by simple plasmatic recombination of inorganic phosphorus. We believe that methane and hydrogen are useful model substances of pyrolytic gases with high reducing power which may form if lightning strikes biomass, soil and aerosol. These results suggest evidence that phosphine and methylphosphine (detectable in the field by intense garlic odor) are produced when atmospheric lightning strikes the ground or aerosol which is containing oxidized forms of phosphorus and chemical reductants. Additional reviewed data show that laboratory lightning was able to reduce a much more significant portion of phosphate to phosphite (up to 25% yield), methylphosphonic acid (up to 8.5% yield) and traces of hypophosphite in a matter of seconds.
NASA Astrophysics Data System (ADS)
Popendorf, K.; Duhamel, S.
2016-02-01
Phosphorus is the least abundant of the three major macronutrients that define the canonical Redfield ratio, but its place in the backbone of nucleic acids and as an energy trafficking molecule lays a lower bound of cellular phosphorus content that is essential for all life. In addition to forming DNA, RNA, and adenosine triphosphate (ATP), significant amounts of cellular phosphorus may also be allocated to the production of phospholipids and polyphosphate. These latter two biochemicals in particular may occur in significant but highly variable amounts across different microbial groups, and the variation in cellular allocation to these biochemicals may be a contributing factor in defining the elemental stoichiometry of microbes. We investigated this variation in cellular phosphorus allocation across the most abundant microbial groups in the P-depleted Sargasso Sea: Prochlorococcus, Synechococcus, and heterotrophic bacteria. By coupling radioisotope tracing of phosphate and ATP with cell sorting flow cytometry and subsequent biochemical extractions, we made novel measurements of the P allocation to DNA, phospholipids, and polyphosphate in individual microbial groups from environmental populations. These results provide new insights into the cellular mechanisms of variation in stoichiometry and different microbial strategies for adaptation to low-P environments.
Marchi, A; Geerts, S; Weemaes, M; Schiettecatte, W; Wim, S; Vanhoof, C; Christine, V
2015-01-01
To date, phosphorus recovery as struvite in wastewater treatment plants has been mainly implemented on water phases resulting from dewatering processes of the sludge line. However, it is possible to recover struvite directly from sludge phases. Besides minimising the return loads of phosphorus from the sludge line to the water line, placing such a process within the sludge line is claimed to offer advantages such as a higher recovery potential, enhanced dewaterability of the treated sludge, and reduced speed of scaling in pipes and dewatering devices. In the wastewater treatment plant at Leuven (Belgium), a full-scale struvite recovery process from digested sludge has been tested for 1 year. Several monitoring campaigns and experiments provided indications of the efficiency of the process for recovery. The load of phosphorus from the sludge line returning to the water line as centrate accounted for 15% of the P-load of the plant in the reference situation. Data indicated that the process divides this phosphorus load by two. An improved dewaterability of 1.5% of dry solids content was achieved, provided a proper tuning of the installation. Quality analyses showed that the formed struvite was quite pure.
Ren, Zhouzheng; Bütz, Daniel E; Sand, Jordan M; Cook, Mark E
2017-04-01
Novel means to reduce phosphate input into poultry feeds and increase its retention would preserve world phosphate reserves and reduce environmental impact of poultry production. Here we show that a maternally derived antibody to a fibroblast growth factor-23 (FGF-23) peptide (GMNPPPYS) alleviated phosphorus deficiency in chicks fed low non-phytate phosphorus (nPP) diets. White Leghorn laying hens were vaccinated with either an adjuvant control or the synthetic FGF-23 peptide, and chicks with control or anti-FGF-23 maternal antibodies were fed a diet containing either 0.13 or 0.45% nPP (experiment 1), and 0.20 or 0.45% nPP (experiment 2) for 14 d. In both experiments, decreasing nPP from 0.45 to 0.13 or 0.20% decreased BW gain, G:F, excreta phosphorus, plasma phosphate, and plasma FGF-23 at all time periods examined (nPP main effect, P < 0.05). In experiment 1, chicks with maternal anti-FGF-23 antibody had increased tibiotarsi ash (d 14), and decreased excreta phosphate (d 7, 14) and plasma intact parathyroid hormone (d 7) when compared to chicks with control antibody (antibody main effect, P < 0.05). Mortality (d 7 to 14, 1 to 14), posture scores (d 7, 14) and bone lesion scores (d 14) decreased and plasma phosphate (d 14) increased in anti-FGF-23 chicks fed 0.13% nPP, compared to those with control antibody on the same diet (P < 0.05). In experiment 2, chicks with maternal anti-FGF-23 antibody had increased tibiotarsi ash (d 14), and plasma phosphate (d 14) and 1,25(OH)2D3 (d 14) levels, compared to chicks with control antibody (antibody main effect, P < 0.05). BW gain and G:F were increased in chicks with anti-FGF-23 antibody fed 0.20% nPP, compared to control antibody chicks on the same diet, at all time periods examined (P < 0.05). In conclusion, maternally-derived anti-FGF-23 antibody increased phosphorus retention in chicks fed diets containing either 0.13 or 0.20% nPP and thereby, reduced signs of phosphorus deficiency. © 2016 Poultry Science Association Inc.
Elliott, John O; Ortman, Carl; Almaani, Salem; Lee, Yun Hui; Jordan, Kim
2015-03-01
Hyperphosphatemia in end-stage renal disease is associated with significant morbidity and mortality. Because phosphorus is not effectively dialyzed, dietary adherence remains a significant problem. Previous studies have examined the health belief model, but none have looked at stages of change and dietary adherence in patients undergoing hemodialysis (HD). Cross-sectional survey. Three dialysis centers in Columbus, Ohio, between August 2012 and March 2013. English-speaking patients age 18 or older on HD without dementia or developmental delay. None. Associations between dietary adherence based on the Precaution Adoption Process Model (stages of change) and serum phosphorus levels via a conceptual model incorporating modifying factors and individual health beliefs. Ninety-five patients completed the survey; 59 (62%) endorsed adherence to a low-phosphorus diet and 32 (34%) had phosphorus values ≤5.5 mg/dL. Modifying factors associated with diet adherence included nonminority status odds ratio (OR), 95%CI 8.99 (1.08-74.60), greater level of education OR 18.23 (1.62-205.00), better quality of life OR 9.28 (1.35-63.71), and time on dialysis OR 1.04 (1.01-1.07). Individual health beliefs associated with diet adherence included perceived benefits OR 3.18 (1.47-6.88) and self-efficacy OR 1.22 (1.09-1.38). Modifying factors associated with phosphorus control included: age OR 0.94 (0.90-0.99), minority status OR 0.11 (0.02-0.68), greater level of education OR 6.60 (1.41-31.04), knowledge about chronic kidney disease OR 1.48 (1.03-2.13), and time on dialysis OR 0.98 (0.96-0.99). Individual health beliefs associated with phosphorus control included self-efficacy OR 1.08 (1.01-1.16). HD clinicians and educators may obtain better results with dietary adherence and phosphorus control if they focus not only toward disease and dietary education but also on understanding modifying factors and individual health beliefs. Assessing where the patient is with regard to stages of change may assist health care providers in better matching interventions that build patients' self-efficacy. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Quantum Monte Carlo Studies of Bulk and Few- or Single-Layer Black Phosphorus
NASA Astrophysics Data System (ADS)
Shulenburger, Luke; Baczewski, Andrew; Zhu, Zhen; Guan, Jie; Tomanek, David
2015-03-01
The electronic and optical properties of phosphorus depend strongly on the structural properties of the material. Given the limited experimental information on the structure of phosphorene, it is natural to turn to electronic structure calculations to provide this information. Unfortunately, given phosphorus' propensity to form layered structures bound by van der Waals interactions, standard density functional theory methods provide results of uncertain accuracy. Recently, it has been demonstrated that Quantum Monte Carlo (QMC) methods achieve high accuracy when applied to solids in which van der Waals forces play a significant role. In this talk, we will present QMC results from our recent calculations on black phosphorus, focusing on the structural and energetic properties of monolayers, bilayers and bulk structures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Effect of cross-linked chitosan iron (III) on vascular calcification in uremic rats.
de Castro, Barbara Bruna Abreu; do Carmo, Wander Barros; de Albuquerque Suassuna, Paulo Giovani; Carminatti, Moises; Brito, Julia Bianchi; Dominguez, Wagner Vasques; de Oliveira, Ivone Braga; Jorgetti, Vanda; Custodio, Melani Ribeiro; Sanders-Pinheiro, Helady
2018-05-01
Cross-linked chitosan iron (III) is a chitin-derived polymer with a chelating effect on phosphorus, but it is untested in vascular calcification. We evaluated this compound's ability to reduce hyperphosphatemia and its effect on vascular calcification in uremic rats using an adenine-based, phosphorus-rich diet for seven weeks. We used a control group to characterize the uremia. Uremic rats were divided according the treatment into chronic kidney disease, CKD-Ch-Fe(III)CL (CKD-Ch), CKD-calcium carbonate, or CKD-sevelamer groups. We measured creatinine, phosphorus, calcium, alkaline phosphatase, phosphorus excretion fraction, parathyroid hormone, and fibroblast growth factor 23. Vascular calcification was assessed using the aortic calcium content, and a semi-quantitative analysis was performed using Von Kossa and hematoxylin-eosin staining. At week seven, rats in the chronic kidney disease group had higher creatinine, phosphorus, phosphorus excretion fraction, calcium, alkaline phosphatase, fibroblast growth factor 23, and aortic calcium content than those in the Control group. Treatments with cross-linked chitosan iron (III) and calcium carbonate prevented phosphorus increase (20%-30% reduction). The aortic calcium content was lowered by 88% and 85% in the CKD-Ch and CKD-sevelamer groups, respectively. The prevalence of vascular changes was higher in the chronic kidney disease and CKD-calcium carbonate (62.5%) groups than in the CKD-Ch group (37.5%). In conclusion, cross-linked chitosan iron (III) had a phosphorus chelating effect similar to calcium carbonate already available for clinical use, and prevented calcium accumulation in the aorta. Impact statement Vascular calcification (VC) is a common complication due to CKD-related bone and mineral disorder (BMD) and is characterized by deposition of calcium in vessels. Effective therapies are not yet available but new phosphorus chelators can prevent complications from CV. We tested the effect of chitosan, a new phosphorus chelator, on the VC of uremic animals. It has recently been proposed that chitosan treatment may be effective in the treatment of hyperphosphataemia. However, its action on vascular calcification has not been investigated yet. In this study, we demonstrated that chitosan reduced the calcium content in the aorta, suggesting that this may be a therapeutic approach in the treatment of hyperphosphatemia by preventing CV.
Defect chemistry and characterization of Hg sub 1x Cd sub x Te
NASA Technical Reports Server (NTRS)
Vydyanath, H. R.
1982-01-01
Single crystal samples of undoped and doped Hg sub 1-x Cd sub x Te were annealed at varying temperatures and partial pressures of Hg. Hall effect and mobility measurements were carried out on these samples after quenching to room temperature. Based on the variation of the carrier concentration and the carrier mobility as a function of the partial pressure of Hg temperature, and dopant concentration, defect models were established for the doped and the undoped crystals. These models indicate that the native acceptor defects in both Hg0.8Cd0.2Te and Hg0.6Cd0.4Te doubly ionized and the native donor defects are negligible in concentration, implying that p to n conversion in these alloys occurs due only to residual donors. Incorporation mechanism of copper, indium, iodine, and phosphorus were investigated. A large concentration of indium is found to be paired with the native acceptor defects. Results on crystals doped with phosphorus indicate that phosphorus behaves amphoterically, acting as a donor on Hg lattice sites and as an acceptor intersitially on Te lattice sites. A majority of the phosphorus is found to be present as neutral species formed from the pairing reaction between phosphorus on Hg lattice sites and phosphorus in interstitial sites. Equilibrium constants for the intrinsic excitation reaction, as well as for the incorporation of the different dopants and the native acceptor defects were established.
Phosphorous availability influences the dissolution of apatite by soil fungi
NASA Astrophysics Data System (ADS)
Rosling, A.; Suttle, K. B.; Johansson, E.; van Hees, P. W.; Banfield, J. F.
2007-12-01
We conducted mineral dissolution experiments using fungi isolated from a grassland soil in northern California to determine the response of fungi to different levels of phosphorus availability and to identify pathways of apatite dissolution by fungal exudates. Fluorapatite dissolution experiments were performed either with fungi present or under abiotic conditions using cell-free liquid media conditioned by fungal growth at different phosphorus and calcium availabilities. Among biogeochemically active soil fungal isolates apatite dissolution was either active in response to phosphorus limiting growth conditions or passive as a result of mycelial growth. Zygomycete isolates in the order of Mucorales acidify their growth media substrate in the presence of phosphorus, mainly through production of oxalic acid. Cell-free exudates induced fluorapatite dissolution at a rate of 10 -0.9 ± 0.14 and 10 -1.2 ± 0.22 mmol P/m2/s. The Ascomycete isolate, in the family Trichocomaceae, induced fluorapatite dissolution at a rate of 10 - 1.1 ± 0.05 mmol P/m2/s by lowering the pH of the media under phosphorus-limited conditions, without producing significant amounts of low molecular weight organic acids (LMWOAs). Oxalate strongly etches fluorapatite along channels parallel to [001], forming needle like features, while exudates from Trichocomaceae induced surface rounding. We conclude that while LMWOAs are well-studied weathering agents these does not appear to be produced by fungi in response to phosphorus limiting growth conditions.
Kim, Eung-Ho; Yim, Soo-Bin; Jung, Ho-Chan; Lee, Eok-Jae
2006-08-25
A system for recovering phosphorus from membrane-filtrate from a sludge reduction process containing high phosphorus concentrations was developed. In this system, referred to as the completely mixed phosphorus crystallization reactor, powdered converter slag was used as a seed material. In a preliminary experiment, the optimal pH range for metastable crystallization of phosphorus from membrane-filtrate containing about 100mg/L PO(4)-P was found to be 6.6-7.0. The laboratory scale completely mixed phosphorus crystallization reactor, actually operated in pH range of 6.8-7.6 for influent 72.9 mg/L PO(4)-P, achieved an average efficiency of phosphorus removal from the membrane-filtrate of 52.4% during a 30-day experiment. Mixed-liquor suspended solids (MLSS) measurements revealed that, out of 0.24 kg PO(4)-P in the original membrane-filtrate fed into the reactor, 0.12 kg PO(4)-P was recovered on the seed particles after 30 days. X-ray diffraction (XRD) pattern and Fourier transform infrared (FT-IR) spectra of the crystalline material deposited on the seed particles showed peaks consistent with hydroxyapatite. Scanning electron micrograph (SEM) images exhibited that finely distributed crystalline material was formed on the surfaces of seed particles. Energy dispersive X-ray spectroscopy (EDS) mapping analysis revealed that the molar composition ratio of Ca/P of the crystalline material was 1.84. The Ca/P molar ratio>1.67 for crystalline substance might result from the presence of CaCO(3) on the crystalline surfaces. A particle size distribution analysis showed that the average particle size increased from 22 microm for the original converter slag seed particles, to 94 microm after 30 days of phosphorus crystallization. Collectively, the present results suggest that the proposed phosphorus crystallization recovery system is an effective tool for recycling phosphorus from phosphate solution.
Effectiveness of organo-phosphorus insecticides against houseflies and mosquitos
Lindquist, A. W.
1957-01-01
The paper describes the research being undertaken on organo-phosphorus insecticides for the control of houseflies and mosquitos. The information obtained from laboratory and field tests indicates that these insecticides are at present effective substitutes for DDT and other chlorinated-hydrocarbon insecticides for use against resistant houseflies and culicine mosquitos, but the residual applications are not as long lasting as those of DDT and therefore will probably not be as efficient in anopheline control. PMID:13413645
Changes in atmospheric CO2 - Influence of the marine biota at high latitude
NASA Technical Reports Server (NTRS)
Knox, F.; Mcelroy, M. B.
1984-01-01
Approximately half of the nitrogen and phosphorus entering deep waters of the contemporary ocean are transported from the surface in inorganic form as preformed nutrients. A simple model for ocean chemistry is presented and shown to account for the present level of atmospheric CO2. Fluctuations in preformed nutrients, modulated by changes in insolation and circulation at high latitudes, can result in significant variations in CO2. It is suggested that these changes may account for the apparent control on climate exercised by secular variations in the orbital parameters of the earth.
Electronic and Vibrational Spectra of InP Quantum Dots Formed by Sequential Ion Implantation
NASA Technical Reports Server (NTRS)
Hall, C.; Mu, R.; Tung, Y. S.; Ueda, A.; Henderson, D. O.; White, C. W.
1997-01-01
We have performed sequential ion implantation of indium and phosphorus into silica combined with controlled thermal annealing to fabricate InP quantum dots in a dielectric host. Electronic and vibrational spectra were measured for the as-implanted and annealed samples. The annealed samples show a peak in the infrared spectra near 320/cm which is attributed to a surface phonon mode and is in good agreement with the value calculated from Frolich's theory of surface phonon polaritons. The electronic spectra show the development of a band near 390 nm that is attributed to quantum confined InP.
Black phosphorus saturable absorber for ultrashort pulse generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M.
Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation.more » The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.« less
Domagalski, Joseph L.; Saleh, Dina
2015-01-01
The SPARROW (SPAtially Referenced Regression on Watershed attributes) model was used to simulate annual phosphorus loads and concentrations in unmonitored stream reaches in California, U.S., and portions of Nevada and Oregon. The model was calibrated using de-trended streamflow and phosphorus concentration data at 80 locations. The model explained 91% of the variability in loads and 51% of the variability in yields for a base year of 2002. Point sources, geological background, and cultivated land were significant sources. Variables used to explain delivery of phosphorus from land to water were precipitation and soil clay content. Aquatic loss of phosphorus was significant in streams of all sizes, with the greatest decay predicted in small- and intermediate-sized streams. Geological sources, including volcanic rocks and shales, were the principal control on concentrations and loads in many regions. Some localized formations such as the Monterey shale of southern California are important sources of phosphorus and may contribute to elevated stream concentrations. Many of the larger point source facilities were located in downstream areas, near the ocean, and do not affect inland streams except for a few locations. Large areas of cultivated land result in phosphorus load increases, but do not necessarily increase the loads above those of geological background in some cases because of local hydrology, which limits the potential of phosphorus transport from land to streams.
Benini, Omar; D'Alessandro, Claudia; Gianfaldoni, Daniela; Cupisti, Adamasco
2011-07-01
Restriction of dietary phosphorus is a major aspect of patient care in those with renal disease. Restriction of dietary phosphorus is necessary to control for phosphate balance during both conservative therapy and dialysis treatment. The extra amount of phosphorus which is consumed as a result of phosphate-containing food additives is a real challenge for patients with renal disease and for dieticians because it represents a "hidden" phosphate load. The objective of this study was to measure phosphorus content in foods, common protein sources in particular, and comprised both those which included a listing of phosphate additives and those which did not. Determinations of dry matter, nitrogen, total and soluble phosphate ions were carried out in 60 samples of foods, namely cooked ham, roast breast turkey, and roast breast chicken, of which, 30 were with declared phosphate additives and the other 30 similar items were without additives. Total phosphorus (290 ± 40 mg/100 g vs. 185 ± 23 mg/100 g, P < .001) and soluble phosphorus (164 ± 25 mg/100 g vs. 100 ± 19 mg/100 g, P < .001) content were higher in products containing additives than in foods without additives. No difference was detected between the 2 groups regarding dry matter (27.2 ± 2.0 g/100 g vs. 26.7 ± 1.9 g/100 g) or total nitrogen (3.15 ± 0.40 g/100 g vs. 3.19 ± 0.40 g/100 g). Consequently, phosphorus intake per gram of protein was much greater in the foods containing phosphorus additives (15.0 ± 3.1 mg/g vs. 9.3 ± 0.7 mg/g, P < .001). Our results show that those foods which contain phosphate additives have a phosphorus content nearly 70% higher than the samples which did not contain additives. This creates a special concern because this extra amount of phosphorus is almost completely absorbed by the intestinal tract. These hidden phosphates worsen phosphate balance control and increase the need for phosphate binders and related costs. Information and educational programs are essential to make patients with renal disease aware of the existence of foods with phosphate additives. Moreover, these facts highlight the need for national and international authorities to devote more attention to food labels which should clearly report the amount of natural or added phosphorus. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Terrio, Paul J.
2006-01-01
Concentrations, spatial and temporal variations, and fluxes of nitrogen, phosphorus, and suspended sediment were determined for 16 streams in the Illinois River Basin, Illinois from October 1996 through September 2000. Water samples were collected through the National Water-Quality Assessment's Lower Illinois River Basin (LIRB) and Upper Illinois River Basin (UIRB) Study Units on a monthly to weekly frequency from watersheds representing predominantly agricultural and urban land, as well as areas of mixed land-use. Streams in agricultural watersheds had high concentrations and fluxes of nitrate nitrogen, whereas streams in predominantly urban watersheds had high concentrations (above background levels) of ammonia nitrogen, organic nitrogen, and phosphorus. Median concentrations of nitrate nitrogen and total phosphorus were similar at the two Illinois River sampling stations (Illinois River at Ottawa, Ill. and Illinois River at Valley City, Ill.) that represented the downstream points of the UIRB and LIRB Study Units, respectively, and integrated multiple land-use areas. Concentrations of nitrogen were typically highest in the spring and lowest in the fall in agricultural watersheds, but highest in the winter in urban watersheds. Phosphorus concentrations in urban watersheds were highest in the fall and winter, but there was minimal seasonal variation in phosphorus concentrations in agricultural watersheds. Concentrations of nitrate and total nitrogen were affected primarily by non-point sources and hydrologic factors such as streamflow, storm intensity, watershed configuration, and soil permeability, whereas concentrations of phosphorus were affected largely by point-source contributions that typically have little seasonal variation. Seasonal variation in hydrologic conditions was an important factor for seasonal variation in nutrient concentration. Fluxes and yields of nitrogen and phosphorus forms varied substantially throughout the Illinois River Basin, and yields of specific nutrient forms were determined primarily by upstream land uses. Yields of nitrate nitrogen were highest in predominantly agricultural watersheds, whereas yields of phosphorus and ammonia nitrogen were highest in urban watersheds with wastewater effluent contributions. Yields of both total nitrogen and total phosphorus were similar at the two Illinois River stations representing the integrated UIRB and LIRB Study Units. Concentrations of suspended sediment ranged from 1 to 3,110 milligrams per liter (mg/L), with median concentrations generally higher in the UIRB. Suspended-sediment concentrations were highest and most variable in the LaMoine River Basin. The median concentration of suspended sediment in the Illinois River at Valley City, Ill. (155 mg/L) was twice as high as that at Ottawa, Ill. (80 mg/L). Fluxes of suspended sediment generally corresponded to watershed size and yields from agricultural watersheds were larger than yields from urban watersheds. The flux in the Illinois River at Valley City, Ill. (4,880,000 tons per year) was approximately four times the flux in the Illinois River at Ottawa, Ill. (1,060,000 tons per year).
2004-09-01
for agricultural land-use practices that promoted P subsidies to the soils. In particular, Reddy et al. (1978) found that manure amendments...highest from this land-use practice versus the other land uses. Woodlots did not receive agricultural N subsidies in the form of manure or fertilizer...L. G., Andraski, T. W., and Powell, J. M. (2001) “Management practice effects on phosphorus losses in runoff on corn production systems,” J
He, Wanling; Shohag, M J I; Wei, Yanyan; Feng, Ying; Yang, Xiaoe
2013-12-15
The present study compared the effects of four different forms of foliar iron (Fe) fertilizers on Fe concentration, bioavailability and nutritional quality of polished rice. The results showed that foliar fertilisation at the anthesis stage was an effective way to promote Fe concentration and bioavailability of polished rice, especially in case of DTPA-Fe. Compared to the control, foliar application of DTPA-Fe increased sulphur concentration and the nutrition promoter cysteine content, whereas decreased phosphorus concentration and the antinutrient phytic acid content of polished rice, as a result increased 67.2% ferrtin formation in Caco-2 cell. Moreover, foliar DTPA-Fe application could maintain amylase, protein and minerals quality of polished rice. According to the current study, DTPA-Fe is recommended as an excellent foliar Fe form for Fe biofortification program. Copyright © 2013 Elsevier Ltd. All rights reserved.
Technical evaluation of a total maximum daily load model for Upper Klamath and Agency Lakes, Oregon
Wood, Tamara M.; Wherry, Susan A.; Carter, James L.; Kuwabara, James S.; Simon, Nancy S.; Rounds, Stewart A.
2013-01-01
We reviewed a mass balance model developed in 2001 that guided establishment of the phosphorus total maximum daily load (TMDL) for Upper Klamath and Agency Lakes, Oregon. The purpose of the review was to evaluate the strengths and weaknesses of the model and to determine whether improvements could be made using information derived from studies since the model was first developed. The new data have contributed to the understanding of processes in the lakes, particularly internal loading of phosphorus from sediment, and include measurements of diffusive fluxes of phosphorus from the bottom sediments, groundwater advection, desorption from iron oxides at high pH in a laboratory setting, and estimates of fluxes of phosphorus bound to iron and aluminum oxides. None of these processes in isolation, however, is large enough to account for the episodically high values of whole-lake internal loading calculated from a mass balance, which can range from 10 to 20 milligrams per square meter per day for short periods. The possible role of benthic invertebrates in lake sediments in the internal loading of phosphorus in the lake has become apparent since the development of the TMDL model. Benthic invertebrates can increase diffusive fluxes several-fold through bioturbation and biodiffusion, and, if the invertebrates are bottom feeders, they can recycle phosphorus to the water column through metabolic excretion. These organisms have high densities (1,822–62,178 individuals per square meter) in Upper Klamath Lake. Conversion of the mean density of tubificid worms (Oligochaeta) and chironomid midges (Diptera), two of the dominant taxa, to an areal flux rate based on laboratory measurements of metabolic excretion of two abundant species suggested that excretion by benthic invertebrates is at least as important as any of the other identified processes for internal loading to the water column. Data from sediment cores collected around Upper Klamath Lake since the development of the TMDL model also contributed to this review. Cores were sequentially extracted to determine the distribution of phosphorus associated with several matrices in the sediment (freely exchangeable, metal-oxides, acid-soluble minerals, and residual). The concentrations of phosphorus in these fractions varied around the lake in patterns that reflect transport processes in the lake and the ultimate deposition of organic and inorganic forms of phosphorus from the water column. Both organic and inorganic phosphorus had higher concentrations in the northern part of the lake, in and just west of Goose Bay. At the time that these cores were collected, prior to restoration of the Williamson River Delta, this area was close to the shoreline of the lake and east of the Williamson River mouth. This contrasts with erosional inputs, which, in addition to being high to the east of the pre-restoration Williamson River mouth, were higher in the middle of the lake than at the northern end. Organic forms of phosphorus had particularly high concentrations in the northern bays. When these cores were used to calculate a new estimate of the whole-lake-averaged concentration of total phosphorus in the top 10 centimeters of the lake sediments, the estimate was about one-third of the best estimate available when the TMDL model was developed.
Inhibition of phosphorus sorption on calcite by dairy manure-sourced DOC.
Weyers, Eva; Strawn, Daniel G; Peak, Derek; Baker, Leslie L
2017-10-01
In confined animal feeding operations, such as dairies, manure is amended to soils at high rates leading to increases in P and organic matter in the soils. Phosphorus reacts with soil-Ca to form Ca-P minerals, which controls P availability for leaching and transport through the watershed. In this research, the effects of manure sourced dissolved organic matter (DOM) on P sorption on calcite were measured at different reaction times and concentrations. Reactions were monitored in 1% and 10% manure-to-water extract solutions spiked with P. When manure-DOM was present, a significant reduction in P sorption occurred (2-90% absolute decrease) compared to samples without manure-DOM. The greatest decrease occurred in the samples reacted in the 10% manure solution. XANES spectroscopic analysis showed that at 1% manure solution, a Ca-P phase similar to hydroxyapatite formed. In the calcite samples reacted in the 10% manure solution, K-edge XANES spectroscopy revealed that P occurred as a Ca-Mg-P phase instead of the less soluble hydroxyapatite-like phase. Results from this study suggest that in manure-amended calcareous soils, increased DOM from manure will decrease P sorption capacity and increase the overall P concentration in solution, which will increase the mobility of P and subsequently pose greater risks for impairment of surface water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jiang, Li-Guo; Liang, Bing; Xue, Qiang; Yin, Cheng-Wei
2016-05-01
Phosphate mining waste rocks dumped in the Xiangxi River (XXR) bay, which is the largest backwater zone of the Three Gorges Reservoir (TGR), are treated as Type I industry solid wastes by the Chinese government. To evaluate the potential pollution risk of phosphorus leaching from phosphate waste rocks, the phosphorus leaching behaviors of six phosphate waste rock samples with different weathering degrees under both neutral and acidic conditions were investigated using a series of column leaching experiments, following the Method 1314 standard of the US EPA. The results indicate that the phosphorus release mechanism is solubility-controlled. Phosphorus release from waste rocks increases as pH decreases. The phosphorus leaching concentration and cumulative phosphorus released in acidic leaching conditions were found to be one order of magnitude greater than that in neutral leaching conditions. In addition, the phosphorus was released faster during the period when environmental pH turned from weak alkalinity to slight acidity, with this accelerated release period appearing when L/S was in the range of 0.5-2.0 mL/g. In both neutral and acidic conditions, the average values of Total Phosphorus (TP), including orthophosphates, polyphosphates and organic phosphate, leaching concentration exceed the availability by regulatory (0.5 mg/L) in the whole L/S range, suggesting that the phosphate waste rocks stacked within the XXR watershed should be considered as Type II industry solid wastes. Therefore, the phosphate waste rocks deposited within the study area should be considered as phosphorus point pollution sources, which could threaten the adjacent surface-water environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phosphorus forms in Alabama decatur silt loam with upland cotton production
USDA-ARS?s Scientific Manuscript database
Alabama was historically known as "The Cotton State." It ranks 4th with 10.1% of U.S. cotton production. We assessed the forms and labile P in the Alabama Decatur silt loam cotton soils, and evaluated the impact of management practices on the soil P forms. We observed that manure and inorganic ferti...
Method utilizing laser-processing for the growth of epitaxial p-n junctions
Young, R.T.; Narayan, J.; Wood, R.F.
1979-11-23
This invention is a new method for the formation of epitaxial p-n junctions in silicon. The method is relatively simple, rapid, and reliable. It produces doped epitaxial layers which are of well-controlled thickness and whose electrical properties are satisfactory. An illustrative form of the method comprises co-depositing a selected dopant and amorphous silicon on a crystalline silicon substrate to form a doped layer of amorphous silicon thereon. This layer then is irradiated with at least one laser pulse to generate a melt front which moves through the layer, into the silicon body to a depth effecting melting of virginal silicon, and back to the surface of the layer. The method may be conducted with dopants (e.g., boron and phosphorus) whose distribution coefficients approximate unity.
Forest disturbances trigger erosion controlled fluxes of nitrogen, phosphorus and dissolved carbon
Marek Matyjasik; Gretchen Moisen; Todd A. Schroeder; Tracy Frescino; Michael Hernandez
2015-01-01
The initial phase of the research that addressed correlation between annual forest disturbance maps produced from LANDSAT images and water quality and flow data indicate that forest disturbances in conjunction with intense atmospheric precipitation commonly trigger fluxes of several chemical constituents, such as nitrogen, phosphorus carbon. These fluxes appear to be...
USDA-ARS?s Scientific Manuscript database
Phosphorus (P) is often a limiting nutrient in freshwater ecosystems and excessive inputs can lead to eutrophication. In-stream cycling of P involves complex biological, chemical, and physical processes that are not fully understood. Microbial metabolisms are suspected to control oxygen-dependent up...
NASA Astrophysics Data System (ADS)
Tong, X. X.; Hu, B.; Xu, W. S.; Liu, J. G.; Zhang, P. C.
2017-12-01
In this paper, Three Gorges Reservoir Area (TGRA) was chosen to be the study area, the export coefficients of different land-use type were calculated through the observation experiments and literature consultation, and then the load of non-point source (NPS) nitrogen and phosphorus of different pollution sources such as farmland pollution sources, decentralized livestock and poultry breeding pollution sources and domestic pollution sources were estimated. The results show as follows: the pollution load of dry land is the main source of farmland pollution. The order of total nitrogen load of different pollution sources from high to low is livestock breeding pollution, domestic pollution, land use pollution, while the order of phosphorus load of different pollution sources from high to low is land use pollution, livestock breeding pollution, domestic pollution, Therefore, reasonable farmland management, effective control methods of dry land fertilization and sewage discharge of livestock breeding are the keys to the prevention and control of NPS nitrogen and phosphorus in TGRA.
Van Buren, Peter N.; Lewis, Julia B.; Dwyer, Jamie P.; Greene, Tom; Middleton, John; Sika, Mohammed; Umanath, Kausik; Abraham, Josephine D.; Arfeen, Shahabul S.; Bowline, Isai G.; Chernin, Gil; Fadem, Stephen Z.; Goral, Simin; Koury, Mark; Sinsakul, Marvin V.; Weiner, Daniel E.
2016-01-01
Background Phosphate binders are the cornerstone of hyperphosphatemia management in dialysis patients. Ferric citrate is an iron-based oral phosphate binder that effectively lowers serum phosphorus levels. Study Design 52-week, open-label, phase 3, randomized, controlled trial for safety-profile assessment. Setting & Participants Maintenance dialysis patients with serum phosphorus levels ≥6.0 mg/dL after washout of prior phosphate binders. Intervention 2:1 randomization to ferric citrate or active control (sevelamer carbonate and/or calcium acetate). Outcomes Changes in mineral bone disease, protein-energy wasting/inflammation, and occurrence of adverse events after 1 year. Measurements Serum calcium, intact parathyroid hormone, phosphorus, aluminum, white blood cell count, percentage of lymphocytes, serum urea nitrogen, and bicarbonate. Results There were 292 participants randomly assigned to ferric citrate, and 149, to active control. Groups were well matched. For mean changes from baseline, phosphorus levels decreased similarly in the ferric citrate and active control groups (−2.04 ± 1.99 [SD] vs −2.18 ± 2.25 mg/dL, respectively; P = 0.9); serum calcium levels increased similarly in the ferric citrate and active control groups (0.22 ± 0.90 vs 0.31 ± 0.95 mg/dL; P = 0.2). Hypercalcemia occurred in 4 participants receiving calcium acetate. Parathyroid hormone levels decreased similarly in the ferric citrate and active control groups (−167.1 ± 399.8 vs −152.7 ± 392.1 pg/mL; P = 0.8). Serum albumin, bicarbonate, serum urea nitrogen, white blood cell count and percentage of lymphocytes, and aluminum values were similar between ferric citrate and active control. Total and low-density lipoprotein cholesterol levels were lower in participants receiving sevelamer than those receiving ferric citrate and calcium acetate. Fewer participants randomly assigned to ferric citrate had serious adverse events compared with active control. Limitations Open-label study, few peritoneal dialysis patients. Conclusions Ferric citrate was associated with similar phosphorus control compared to active control, with similar effects on markers of bone and mineral metabolism in dialysis patients. There was no evidence of protein-energy wasting/inflammation or aluminum toxicity, and fewer participants randomly assigned to ferric citrate had serious adverse events. Ferric citrate is an effective phosphate binder with a safety profile comparable to sevelamer and calcium acetate. PMID:25958079
Goodson, Christopher C; Schwartz, Gregory; Amrhein, Christopher
2006-01-01
External loading of phosphorus (P) from agricultural surface discharge (tailwater) is the main cause of excessive algae growth and the eutrophication of the Salton Sea, California. Continuous polyacrylamide (PAM) applications to agricultural irrigation water inflows were evaluated as a means of reducing sediment and P in tailwater. Zero (control) and 1 mg L(-1) PAM (PAM1) treatments were compared at 17 Imperial Valley field sites. Five and 10 mg L(-1) PAM treatments (PAM5, PAM10) were conducted at one site. The particulate phosphorus (Pp) fraction was determined as the difference between total phosphorus (Pt) and the soluble phosphorus (Ps) fraction. We observed 73, 82, and 98% turbidity reduction with PAM1, PAM5, and PAM10 treatments. Although eight field sites had control tailwater sediment concentrations above the New River total maximum daily loads (TMDL), all but one were made compliant during their paired PAM1 treatments. While PAM1 and PAM10 reduced tail water Pp by 31 and 78%, none of the treatments tested reduced Ps. This may have been caused by high irrigation water Na concentrations which would reduce Ca adsorption and Ca-phosphate bridging on the PAM. The PAM1 treatments resulted in <0.5 mg L(-1) drain water polyacrylamide concentrations 1.6 km downstream of PAM addition, while PAM5 and PAM10 treatments produced > 2 mg L(-1) drain water polyacrylamide concentrations. We concluded that, although PAM practically eliminates Imperial Valley tailwater sediment loads, it does not effectively reduce tailwater Ps, the P fraction most responsible for the eutrophication of the Salton Sea.
Significance of serum levels of vitamin D and some related minerals in breast cancer patients
Abdelgawad, Iman A; El-Mously, Rawya H; Saber, Magdy M; Mansour, Ossama A; Shouman, Samia A
2015-01-01
Vitamin D and calcium are involved in a wide range of proliferation, apoptosis and cell signaling activities in the body. Suboptimal concentrations may lead to cancer development. The role of phosphate in cancer metabolism is particularly relevant in breast cancer while, magnesium deficiency favors DNA mutations leading to carcinogenesis. Objectives: To determine serum levels of vitamin D, calcium, phosphorus, magnesium, and parathormone in female breast cancer patients and to assess their association with some prognostic factors in breast cancer. Design and methods: This study is done on 98 newly diagnosed female breast cancer patients and 49 age matched apparently healthy female volunteers as controls. Serum samples from all patients and controls were subjected to 25-OH Vit D, calcium, phosphorus, magnesium, and parathormone measurements. Results: In the breast cancer group, the median serum levels of 25-OH Vit D were 15 ng/ml, while it was 21 ng/ml in the control group. Levels of 25-OH Vit D and other tested minerals were significantly lower while calcium:magnesium (Ca:Mg) ratio, and calcium:phosphorus (Ca:P) ratio were significantly higher in the breast cancer group. Significant negative correlation was detected between phosphorus and calcium, ionized calcium , calcium magnesium ratio, and calcium phosphorus ratio. Conclusion: It is not only the deficient levels of Vit D and other related minerals, but the combination of the abnormal levels of all the studied parameters that might contribute to the development of cancer. Further studies with larger number of patient are needed. PMID:26097595
Daverede, I C; Kravchenko, A N; Hoeft, R G; Nafziger, E D; Bullock, D G; Warren, J J; Gonzini, L C
2004-01-01
Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.
Mazouri, Ali; Khosravi, Nastaran; Bordbar, Arash; Khalesi, Nasrin; Saboute, Maryam; Taherifard, Pegah; Mirzababaee, Marjan; Ebrahimi, Mehran
2017-06-01
The use of parenteral nutritional supplementation of phosphorus may lead to exhibit higher plasma phosphate concentrations and less radiological features in premature neonates susceptible to osteopenia. The present study aimed to assess the beneficial effects of adding intravenous phosphorus to total parenteral nutrition (TPN) on calcium and phosphorus metabolism in preterm neonates by measuring bone mineral content. This open-labeled randomized clinical trial was conducted on premature neonates who were hospitalized at NICU. The neonates were randomly assigned to two groups received TPN with intravenous sodium glycerophosphate or Glycophos (1.5 mmol/kg/day) or TPN without sodium glycerophosphate. At the end of the four weeks of treatment, the presence of osteopenia was examined using DEXA Scan. After completing treatment protocols, the group received TPN with intravenous Glycophos had significantly lower serum alkaline phosphatase (360±60 versus 762±71, P<0.001), as well as higher serum calcium to creatinine ratio (1.6±0.3 versus 0.44±0.13, P<0.001) compared to the control group received TPN without Glycophos. Those who received TPN with intravenous Glycophos experienced more increase in bone mineral density than those in control group (0.13±0.01 versus 0.10±0.02, P<0.001). There was no significant difference in serum calcium and serum vitamin D between the case and control groups. Adding intravenous sodium glycerophosphate to TPN in premature neonates can compensate the lack of bone mineral content and help to prevent osteopenia.
Osteopenia - premature infants
Neonatal rickets; Brittle bones - premature infants; Weak bones - premature infants; Osteopenia of prematurity ... of calcium and phosphorus needed to form strong bones. While in the womb, fetal activity increases during ...
Azmat, Rafia; Hamid, Neelofer; Moin, Sumeira; Saleem, Ailyan
2016-01-01
Dual symbiosis played an effective role in drought condition and temperature. Furthermore, performed services in absorption of water and solubilization of chief nutrients specially phosphorus for growth of plants. Phosphorous is essential for plant growth in any climatic condition because of central constituent of ATP providing chemical energy for all metabolic reactions of plants. The goal of this work was to monitor the growth of plant under three climatic conditions in comparison to control plant under Glomus fasciculatum inoculation related with adequate supply of phosphorous. Results demonstrated that Glomus fasciculatum (VAM) activates the solubilization of P into the anionic form H2PO4(-) which is highly consumable form by the plants. Minerals including P in soil most regularly solubilized for fixing in plants and continuously changed to highly soluble forms by reaction with inorganic or organic constituents of the soil which are activated in the presence of fungi for continuous availability. Experimental facts and nonstop growth of plants recommended that VAM fungi act as a bio-convertor and bio-activator of soil nutrients, especially of P and their hyphal interaction absorbs soil nutrients and activates insoluble P to soluble one for plant development. Continuous growth of 18 months old Conocarpus erectus L plant in dual symbiosis supports the proposed idea that phosphorus cycle exists during VAM inoculations, where soil reaction altered in presence of spores that help to solubilize the P which strengthens the plant, activates photo-biological activity and demonstrates the new function of VAM as a recycler for continues growth.
Takeda, Eiji; Yamamoto, Hironori; Yamanaka-Okumura, Hisami; Taketani, Yutaka
2014-01-01
It is important to consider whether habitual high phosphorus intake adversely affects bone health, because phosphorus intake has been increasing, whereas calcium intake has been decreasing in dietary patterns. A higher total habitual dietary phosphorus intake has been associated with higher serum parathyroid hormone (PTH) and lower serum calcium concentrations in healthy individuals. Higher serum PTH concentrations have been shown in those who consume foods with phosphorus additives. These findings suggest that long-term dietary phosphorus loads and long-term hyperphosphatemia may have important negative effects on bone health. In contrast, PTH concentrations did not increase as a result of high dietary phosphorus intake when phosphorus was provided with adequate amounts of calcium. Intake of foods with a ratio of calcium to phosphorus close to that found in dairy products led to positive effects on bone health. Several randomized controlled trials have shown positive relations between dairy intake and bone mineral density. In our loading test with a low-calcium, high-phosphorus lunch provided to healthy young men, serum PTH concentrations showed peaks at 1 and 6 h, and serum fibroblast growth factor 23 (FGF23) concentrations increased significantly at 8 h after the meal. In contrast, the high-calcium, high-phosphorus meal suppressed the second PTH and FGF23 elevations until 8 h after the meal. This implies that adequate dietary calcium intake is needed to overcome the interfering effects of high phosphorus intake on PTH and FGF23 secretion. FGF23 acts on the parathyroid gland to decrease PTH mRNA and PTH secretion in rats with normal kidney function. However, increased serum FGF23 is an early alteration of mineral metabolism in chronic kidney disease, causing secondary hyperthyroidism, and implying resistance of the parathyroid gland to the action of FGF23 in chronic kidney disease. These findings suggest that long-term high-phosphorus diets may impair bone health mediated by FGF23 resistance both in chronic kidney disease patients and in the healthy population. PMID:24425727
Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.
2007-10-23
An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.
NASA Astrophysics Data System (ADS)
Cai, Kun; Shi, Jiao; Liu, Lingnan; Qin, Qing H.
2017-09-01
As a low dimensional material, black phosphorus (BP) continues to attract much attention from researchers due to its excellent electric properties. In particular, the one-dimensional material, in the form of a ring or tube formed from BP, has been extensively studied and found to be a perfect semiconductor. But the BP ring has never been reported in laboratories. To form an ideal ring from a rectangular BP ribbon, we choose a carbon nanotube (CNT) bundle to attract the ribbon and move one or more CNTs in the bundle to induce the unsaturated ends of the BP ribbon to become covalently bonded. Numerical experiments are applied to BP ribbons with lengths either equal to, shorter, or longer than the perimeter of the CNT bundle, to investigate the formation of a BP ring. Experiments show that if one end of the BP ribbon is attracted by a CNT, moving the other CNTs away endows the ribbon with high probability of forming an ideal ring. The conclusions drawn from these results will benefit future in situ experiments involving forming a ring from a BP ribbon.
de Francisco, Angel L M; Leidig, Michael; Covic, Adrian C; Ketteler, Markus; Benedyk-Lorens, Ewa; Mircescu, Gabriel M; Scholz, Caecilia; Ponce, Pedro; Passlick-Deetjen, Jutta
2010-11-01
Phosphate binders are required to control serum phosphorus in dialysis patients. A phosphate binder combining calcium and magnesium offers an interesting therapeutic option. This controlled randomized, investigator-masked, multicentre trial investigated the effect of calcium acetate/magnesium carbonate (CaMg) on serum phosphorus levels compared with sevelamer hydrochloride (HCl). The study aim was to show non-inferiority of CaMg in lowering serum phosphorus levels into Kidney Disease Outcome Quality Initiative (K/DOQI) target level range after 24 weeks. Three hundred and twenty-six patients from five European countries were included. After a phosphate binder washout period, 255 patients were randomized in a 1:1 fashion. Two hundred and four patients completed the study per protocol (CaMg, N = 105; dropouts N = 18; sevelamer-HCl, N = 99; dropouts N = 34). Patient baseline characteristics were similar in both groups. Serum phosphorus levels had decreased significantly with both drugs at week 25, and the study hypothesis of CaMg not being inferior to sevelamer-HCl was confirmed. The area under the curve for serum phosphorus (P = 0.0042) and the number of visits above K/DOQI (≤1.78 mmol/L, P = 0.0198) and Kidney disease: Improving global outcomes (KDIGO) targets (≤1.45 mmol/L, P = 0.0067) were significantly lower with CaMg. Ionized serum calcium did not differ between groups; total serum calcium increased in the CaMg group (treatment difference 0.0477 mmol/L; P = 0.0032) but was not associated with a higher risk of hypercalcaemia. An asymptomatic increase in serum magnesium occurred in CaMg-treated patients (treatment difference 0.2597 mmol/L, P < 0.0001). There was no difference in the number of patients with adverse events. CaMg was non-inferior to the comparator at controlling serum phosphorus levels at Week 25. There was no change in ionized calcium; there was minimal increase in total serum calcium and a small increase in serum magnesium. It had a good tolerability profile and thus may represent an effective treatment of hyperphosphataemia.
NASA Astrophysics Data System (ADS)
Feddes, B.; Wolke, J. G. C.; Jansen, J. A.; Vredenberg, A. M.
2003-03-01
Calcium phosphate (CaP) coatings can be applied to improve the biological performance of polymeric medical implants. A strong interfacial bond between ceramic and polymer is required for clinical applications. Because the chemical structure of an interface plays an important role in the adhesion of a coating, we studied the formation of the interface between CaP and polystyrene (PS) and polytetrafluoroethylene (PTFE). The coating was deposited in a radio frequency (rf) magnetron sputtering deposition system. Prior to the deposition, some samples received an oxygen plasma pretreatment. We found that the two substrates show a strongly different reactivity towards CaP. On PS a phosphorus and oxygen enrichment is present at the interface. This is understood from POx complexes that are able to bind to the PS. The effects of the plasma pretreatment are overruled by the deposition process itself. On PTFE, a calcium enrichment and an absence of phosphorus is found at the interface. The former is the result of CaF2-like material being formed at the interface. The latter may be the result of phosphorus reacting with escaping fluorine to a PF3 molecule, which than escapes from the material as a gas molecule. We found that the final structure of the interface is mostly controlled by the bombardment of energetic particles escaping either from the plasma or from the sputtering target. The work described here can be used to understand and improve the adhesion of CaP coatings deposited on medical substrates.
Phosphorus geochemistry in a Brazilian semiarid mangrove soil affected by shrimp farm effluents.
Nóbrega, G N; Otero, X L; Macías, F; Ferreira, T O
2014-09-01
Wastewater discharge from shrimp farming is one of the main causes of eutrophication in mangrove ecosystems. We investigated the phosphorus (P) geochemistry in mangrove soils affected by shrimp farming effluents by carrying out a seasonal study of two mangrove forests (a control site (CS); a site affected by shrimp farm effluents (SF)). We determined the soil pH, redox potential (Eh), total organic carbon (TOC), total phosphorus (TP), and dissolved P. We also carried out sequential extraction of the P-solid phases. In SF, the effluents affected the soil physicochemical conditions, resulting in lower Eh and higher pH, as well as lower TOC and higher TP than in CS. Organic P forms were dominant in both sites and seasons, although to a lesser extent in SF. The lower TOC in SF was related to the increased microbial activity and organic matter decomposition caused by fertilization. The higher amounts of P oxides in SF suggest that the effluents alter the dominance of iron and sulfate reduction in mangrove soils, generating more reactive Fe that is available for bonding to phosphates. Strong TP losses were recorded in both sites during the dry season, in association with increased amounts of exchangeable and dissolved P. The higher bioavailability of P during the dry season may be attributed to increased mineralization of organic matter and dissolution of Ca-P in response to more oxidizing and acidic conditions. The P loss has significant environmental implications regarding eutrophication and marine productivity.
NASA Astrophysics Data System (ADS)
Samanta, Arup; Muruganathan, Manoharan; Hori, Masahiro; Ono, Yukinori; Mizuta, Hiroshi; Tabe, Michiharu; Moraru, Daniel
2017-02-01
Quantum dots formed by donor-atoms in Si nanodevices can provide a breakthrough for functionality at the atomic level with one-by-one control of electrons. However, single-electron effects in donor-atom devices have only been observed at low temperatures mainly due to the low tunnel barriers. If a few donor-atoms are closely coupled as a molecule to form a quantum dot, the ground-state energy level is significantly deepened, leading to higher tunnel barriers. Here, we demonstrate that such an a-few-donor quantum dot, formed by selective conventional doping of phosphorus (P) donors in a Si nano-channel, sustains Coulomb blockade behavior even at room temperature. In this work, such a quantum dot is formed by 3 P-donors located near the center of the selectively-doped area, which is consistent with a statistical analysis. This finding demonstrates practical conditions for atomic- and molecular-level electronics based on donor-atoms in silicon nanodevices.
Jawitz, James W.; Munoz-Carpena, Rafael; Muller, Stuart; Grace, Kevin A.; James, Andrew I.
2008-01-01
Alterations to the predevelopment delivery of water and nutrients into the Everglades of southern Florida have been occurring for nearly a century. Major regional drainage projects, large-scale agricultural development, and changes to the hydrology of the Kissimmee River-Lake Okeechobee watershed have resulted in substantial phosphorus transport increases by surface waters. Excess phosphorus has accumulated in the soils of northern Everglades marshes to levels that have impaired the natural resources of the region. Regulations now limit the amount of phosphorous that enters the Everglades through an extensive network of water-control structures. This study involved the development and application of water-quality modeling components that may be applied to existing hydrologic models of southern Florida to evaluate the effects of different management scenarios. The result of this work is a spatially distributed water-quality model for phosphorus transport and cycling in wetlands. The model solves the advection-dispersion equation on an unstructured triangular mesh and incorporates a wide range of user-selectable mechanisms for phosphorus uptake and release parameters. In general, the phosphorus model contains transfers between stores; examples of stores that can be included are soil, water column (solutes), pore water, macrophytes, suspended solids (plankton), and biofilm. Examples of transfers are growth, senescence, settling, diffusion, and so forth, described with first order, second order, and Monod types of transformations. Local water depths and velocities are determined from an existing two-dimensional, overland-flow hydrologic model. The South Florida Water Management District Regional Simulation Model was used in this study. The model is applied to three case studies: intact cores of wetland soils with water, outdoor mesocosoms, and a large constructed wetland; namely, Cell 4 of Stormwater Treatment Area 1 West (STA-1W Cell 4). Different levels of complexity in the phosphorus cycling mechanisms were simulated in these case studies using different combinations of phosphorus reaction equations. Changes in water column phosphorus concentrations observed under the controlled conditions of laboratory incubations, and mesocosm studies were reproduced with model simulations. Short-term phosphorus flux rates and changes in phosphorus storages were within the range of values reported in the literature, whereas unknown rate constants were used to calibrate the model output. In STA-1W Cell 4, the dominant mechanism for phosphorus flow and transport is overland flow. Over many life cycles of the biological components, however, soils accrue and become enriched in phosphorus. Inflow total phosphorus concentrations and flow rates for the period between 1995 and 2000 were used to simulate Cell 4 phosphorus removal, outflow concentrations, and soil phosphorus enrichment over time. This full-scale application of the model successfully incorporated parameter values derived from the literature and short-term experiments, and reproduced the observed long-term outflow phosphorus concentrations and increased soil phosphorus storage within the system. A global sensitivity and uncertainty analysis of the model was performed using modern techniques such as a qualitative screening tool (Morris method) and the quantitative, variance-based, Fourier Amplitude Sensitivity Test (FAST) method. These techniques allowed an in-depth exploration of the effect of model complexity and flow velocity on model outputs. Three increasingly complex levels of possible application to southern Florida were studied corresponding to a simple soil pore-water and surface-water system (level 1), the addition of plankton (level 2), and of macrophytes (level 3). In the analysis for each complexity level, three surface-water velocities were considered that each correspond to residence times for the selected area (1-kilometer long) of 2, 10, and 20
Nocturnal eating disturbs phosphorus excretion in young subjects: a randomized crossover trial.
Sakuma, Masae; Noda, Saaya; Morimoto, Yuuka; Suzuki, Akitsu; Nishino, Kanaho; Ando, Sakiko; Umeda, Minako; Ishikawa, Makoto; Arai, Hidekazu
2015-10-08
Nocturnal eating have recently increased. Serum phosphorus levels and regulators of phosphorus have circadian variations, so it is suggested that the timing of eating may be important in controlling serum phosphorus levels. However, there have been no reports on the effects of nocturnal eating on phosphorus metabolism. The objective was to evaluate the effects of nocturnal eating on phosphorus metabolism. Fourteen healthy men participated in two experimental protocols with differing dinner times. The design of this study was a crossover study. The subjects were served test meals three times (breakfast; 07:30 h, lunch; 12:30 h, dinner; 17:30 or 22:30 h) a day. Blood and urine samples were collected to assess diurnal variation until the following morning. The following morning, fasting serum phosphorus levels in the late dinner group were markedly higher than those in the early dinner group (p < 0.001), although serum calcium levels were maintained at approximately constant levels throughout the day in both groups. Fluctuations in urinary calcium excretion were synchronized with the timing of dinner eating, however, fluctuations in urinary phosphorus excretion were not synchronized. Urinary phosphorus excretions at night were inhibited in the late dinner group. In the late dinner group, intact parathyroid hormone levels didn't decrease, and they were significantly higher in this group compared with the early dinner group at 20:00 h (p = 0.004). The following morning, fasting serum fibroblast growth factor 23 levels in the late dinner group had not changed, but those in the early dinner group were significantly increased (p = 0.003). Serum free fatty acid levels before dinner were significantly higher in the late dinner group compared with the early dinner group. Our results indicate that nocturnal eating inhibits phosphorus excretion. It is suggested that nocturnal eating should be abstained from to manage serum phosphorus levels to within an adequate range.
Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia
Scavia, Donald; Allan, J. David; Arend, Kristin K.; Bartell, Steven; Beletsky, Dmitry; Bosch, Nate S.; Brandt, Stephen B.; Briland, Ruth D.; Daloğlu, Irem; DePinto, Joseph V.; Dolan, David M.; Evans, Mary Anne; Farmer, Troy M.; Goto, Daisuke; Han, Haejin; Höök, Tomas O.; Knight, Roger; Ludsin, Stuart A.; Mason, Doran; Michalak, Anna M.; Richards, R. Peter; Roberts, James J.; Rucinski, Daniel K.; Rutherford, Edward; Schwab, David J.; Sesterhenn, Timothy M.; Zhang, Hongyan; Zhou, Yuntao
2014-01-01
Relieving phosphorus loading is a key management tool for controlling Lake Erie eutrophication. During the 1960s and 1970s, increased phosphorus inputs degraded water quality and reduced central basin hypolimnetic oxygen levels which, in turn, eliminated thermal habitat vital to cold-water organisms and contributed to the extirpation of important benthic macroinvertebrate prey species for fishes. In response to load reductions initiated in 1972, Lake Erie responded quickly with reduced water-column phosphorus concentrations, phytoplankton biomass, and bottom-water hypoxia (dissolved oxygen 2) requires cutting total phosphorus loads by 46% from the 2003–2011 average or reducing dissolved reactive phosphorus loads by 78% from the 2005–2011 average. Reductions to these levels are also protective of fish habitat. We provide potential approaches for achieving those new loading targets, and suggest that recent load reduction recommendations focused on western basin cyanobacteria blooms may not be sufficient to reduce central basin hypoxia to 2000 km2.
NASA Astrophysics Data System (ADS)
Pontes, Renato B.; Miwa, Roberto H.; da Silva, Antônio J. R.; Fazzio, Adalberto; Padilha, José E.
2018-06-01
The structural and electronic properties of few layers of blue phosphorus and their van der Waals heterostructures with graphene were investigated by means of first-principles electronic structure calculations. We study the four energetically most stable stacking configurations for multilayers of blue phosphorus. For all of them, the indirect band-gap semiconductor character, are preserved. We show that the properties of monolayer graphene and single-layer (bilayer) blue phosphorus are preserved in the van der Waals heterostructures. Further, our results reveal that under a perpendicular applied electric field, the position of the band structure of blue phosphorus with respect to that of graphene is tunable, enabling the effective control of the Schottky barrier height. Indeed, for the bilayer blue phosphorene on top of graphene, it is possible to even move the system into an Ohmic contact and induce a doping level of the blue phosphorene. All of these features are fundamental for the design of new nanodevices based on van der Waals heterostructures.
Medalie, Laura
2012-01-01
An assessment of the effectiveness of several urban best management practice structures, including a wet extended detention facility and a shallow marsh wetland (together the "wet extended detention ponds"), was made using data collected from 2000 through 2010 at Englesby Brook in Burlington, Vermont. The purpose of the best management practices was to reduce high streamflows and phosphorus and suspended-sediment loads and concentrations and to increase low streamflows. Englesby Brook was monitored for streamflow, phosphorus, and suspended-sediment concentrations at a streamgage downstream of the best management practice structures for 5 years before the wet extended detention ponds were constructed in 2005 and for 4 years (phosphorus and suspended-sediment concentrations) or 5 years (streamflow) after they were constructed. The period after construction of the best management practice structures was wetter and had higher discharges than the period before construction. Despite the wetter conditions, streamflow duration curves provided evidence that the streamflow regime appeared to have shifted so that the percentages of low streamflows have increased and those of high streamflows may have slightly decreased. Two other hydrologic measures showed improvements in the years following construction of the best management practices: the percentage of annual discharge transported during the 3 days with highest discharges and the number of days with zero streamflow have both decreased. Evidence was mixed for the effectiveness of the best management practices in reducing phosphorus and suspended-sediment concentrations and loads. Annual phosphorus and suspended-sediment loads, monthly loads, low-streamflow concentrations, storm-averaged streamflow-adjusted concentrations, and total storm loads either did not change significantly or increased in the period after construction. These results likely were because of the wetter conditions in the period after construction. For example, monthly loads assessed using analysis of covariance, which compensated for the effects of streamflow on loads, suggested no difference in phosphorus or suspended-sediment loads between the two periods, whereas the comparison of monthly loads without factoring in streamflow showed an increase. This result could be viewed as evidence that the ponds may have mitigated the effect of greater discharges in the period after construction by preventing a corresponding increase in loads. In another analysis used to adjust for the difference in discharge between the two comparison periods, annual and monthly load results were grouped into dry and wet years. Large (50 percent) reductions in annual loads were observed when data from dry (or wet) years before construction were compared with data from dry (or wet) years after construction. When paired monthly loads of each constituent were grouped into dry and wet years, approximately the same number of months had increases as did decreases with the magnitudes of the decreases generally larger than the magnitudes of the increases. These differences in magnitude explain the decrease in annual loads for dry and wet years. The close association of phosphorus with suspended-sediment data suggested that most of the phosphorus was in the particulate form and was controlled by suspended-sediment dynamics.
NASA Astrophysics Data System (ADS)
Turner, Andrew M.; Abplanalp, Matthew J.; Blair, Tyler J.; Dayuha, Remwilyn; Kaiser, Ralf I.
2018-01-01
The only known phosphorus-containing organic compounds of extraterrestrial origin, alkylphosphonic acids, were discovered in the Murchison meteorite and have accelerated the hypothesis that reduced oxidation states of phosphorus were delivered to early Earth and served as a prebiotic source of phosphorus. While previous studies looking into the formation of these alkylphosphonic acids have focused on the iron–nickel phosphide mineral schreibersite and phosphorous acid as a source of phosphorus, this work utilizes phosphine (PH3), which has been discovered in the circumstellar envelope of IRC +10216, in the atmosphere of Jupiter and Saturn, and believed to be the phosphorus carrier in comet 67P/Churyumov–Gerasimenko. Phosphine ices prepared with interstellar molecules such as carbon dioxide, water, and methane were subjected to electron irradiation, which simulates the secondary electrons produced from galactic cosmic rays penetrating the ice, and probed using infrared spectroscopy to understand the possible formation of alkylphosphonic acids and their precursors on interstellar icy grains that could become incorporated into meteorites such as Murchison. We present the first study and results on the possible synthesis of alkylphosphonic acids produced from phosphine-mixed ices under interstellar conditions. All functional groups of alkylphosphonic acids were detected through infrared spectroscopically, suggesting that this class of molecules can be formed in interstellar ices.
PHOSPHORUS-BEARING MOLECULES IN MASSIVE DENSE CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontani, F.; Rivilla, V. M.; Caselli, P.
2016-05-10
Phosphorus is a crucial element for the development of life, but so far P-bearing molecules have been detected only in a few astrophysical objects; hence, its interstellar chemistry is almost totally unknown. Here, we show new detections of phosphorus nitride (PN) in a sample of dense cores in different evolutionary stages of the intermediate- and high-mass star formation process: starless, with protostellar objects, and with ultracompact H ii regions. All detected PN line widths are smaller than ≃5 km s{sup −1}, and they arise from regions associated with kinetic temperatures smaller than 100 K. Because the few previous detections reportedmore » in the literature are associated with warmer and more turbulent sources, the results of this work show that PN can arise from relatively quiescent and cold gas. This information is challenging for theoretical models that invoke either high desorption temperatures or grain sputtering from shocks to release phosphorus into the gas phase. Derived column densities are of the order of 10{sup 11–12} cm{sup −2}, marginally lower than the values derived in the few high-mass star-forming regions detected so far. New constraints on the abundance of phosphorus monoxide, the fundamental unit of biologically relevant molecules, are also given.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strempel, Verena E.; Naumann d'Alnoncourt, Raoul, E-mail: r.naumann@bascat.tu-berlin.de; Löffler, Daniel
2016-01-15
Atomic layer deposition is mainly used to deposit thin films on flat substrates. Here, the authors deposit a submonolayer of phosphorus on V{sub 2}O{sub 5} in the form of catalyst powder. The goal is to prepare a model catalyst related to the vanadyl pyrophosphate catalyst (VO){sub 2}P{sub 2}O{sub 7} industrially used for the oxidation of n-butane to maleic anhydride. The oxidation state of vanadium in vanadyl pyrophosphate is 4+. In literature, it was shown that the surface of vanadyl pyrophosphate contains V{sup 5+} and is enriched in phosphorus under reaction conditions. On account of this, V{sub 2}O{sub 5} with themore » oxidation state of 5+ for vanadium partially covered with phosphorus can be regarded as a suitable model catalyst. The catalytic performance of the model catalyst prepared via atomic layer deposition was measured and compared to the performance of catalysts prepared via incipient wetness impregnation and the original V{sub 2}O{sub 5} substrate. It could be clearly shown that the dedicated deposition of phosphorus by atomic layer deposition enhances the catalytic performance of V{sub 2}O{sub 5} by suppression of total oxidation reactions, thereby increasing the selectivity to maleic anhydride.« less
Effect of surface treatment on unalloyed titanium implants: spectroscopic analyses.
Kilpadi, D V; Raikar, G N; Liu, J; Lemons, J E; Vohra, Y; Gregory, J C
1998-06-15
Surgical implant finishing and sterilization procedures were investigated to determine surface characteristics of unalloyed titanium (Ti). All specimens initially were cleaned with phosphoric acid and divided into five groups for comparisons of different surface treatments (C = cleaned as above, no further treatment; CP = C and passivated in nitric acid; CPS = CP and dry-heat sterilized; CPSS = CPS and resterilized; CS = C and dry-heat sterilized). Auger (AES), X-ray photoelectron (XPS), and Raman spectroscopic methods were used to examine surface compositions. The surface oxides formed by all treatments primarily were TiO2, with some Ti2O3 and possibly TiO. Significant concentrations of carbonaceous substances also were observed. The cleaning procedure alone resulted in residual phosphorus, primarily as phosphate groups along with some hydrogen phosphates. A higher percentage of physisorbed water appeared to be associated with the phosphorus. Passivation (with HNO3) alone removed phosphorus from the surface; specimens sterilized without prior passivation showed the thickest oxide and phosphorus profiles, suggesting that passivation alters the oxide characteristics either directly by altering the oxide structure or indirectly by removing moieties that alter the oxide. Raman spectroscopy showed no crystalline order in the oxide. Carbon, oxygen, phosphorus, and nitrogen presence were found to correlate with previously determined surface energy.
Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei
2017-08-01
Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Nutrient enrichment of phosphorus and nitrogen is the second most cited cause for impairment of streams and rivers in the U.S. There is a need to develop stream nutrient criteria to control nutrient loadings. Since biotic metrics can assess the overall impact of nutrient enrichm...
Whole-system phosphorus balances as a practical tool for lake management
Johanna Schussler; Lawrence A. Baker; Hugh Chester-Jones
2007-01-01
Controlling phosphorus (P) inputs to lakes remains a priority of lake management. This study develops watershed P balances for 11 recreational lakes in Minnesota. Areal P input rates to the watersheds ranged from 0.32 to 6.0 kg Pha-1 year-1 and was linearly related to the percentage of watershed in agriculture. Watershed P...
Wastewater Phosphorus Removal by Two Different Types of Andesitic Volcanic Tephra
ERIC Educational Resources Information Center
Liesch, Amanda M.
2010-01-01
Phosphorus (P) is the limiting nutrient controlling productivity in most inland freshwater systems. Several materials have been proposed for use to remove excess P from wastewater treatment, including volcanic lapilli and ash (tephra). There is limited data in using tephra as a P filter. There were two objectives of this study: (1) to determine…
p-type doping by platinum diffusion in low phosphorus doped silicon
NASA Astrophysics Data System (ADS)
Ventura, L.; Pichaud, B.; Vervisch, W.; Lanois, F.
2003-07-01
In this work we show that the cooling rate following a platinum diffusion strongly influences the electrical conductivity in weakly phosphorus doped silicon. Diffusions were performed at the temperature of 910 °C in the range of 8 32 hours in 0.6, 30, and 60 Ωrm cm phosphorus doped silicon samples. Spreading resistance profile analyses clearly show an n-type to p-type conversion under the surface when samples are cooled slowly. On the other hand, a compensation of the phosphorus donors can only be observed when samples are quenched. One Pt related acceptor deep level at 0.43 eV from the valence band is assumed to be at the origin of the type conversion mechanism. Its concentration increases by lowering the applied cooling rate. A complex formation with fast species such as interstitial Pt atoms or intrinsic point defects is expected. In 0.6 Ωrm cm phosphorus doped silicon, no acceptor deep level in the lower band gap is detected by DLTS measurement. This removes the opportunity of a pairing between phosphorus and platinum and suggests the possibility of a Fermi level controlled complex formation.
Yang, Li-Xia; Yang, Gui-Shan; Yuan, Shao-Feng; Wu, Ye
2007-08-01
Experiments of field runoff plots, which were conducted at vegetable plots in Hongsheng town of Wuxi city--the typical region of Taihu Basin, were designed to assess the effects of different rainfall intensities on soil phosphorus runoff loss from vegetable plots by artificial rainfall simulations. Results showed that there was a relationship of power function between initial runoff-generation time and rainfall intensity. Runoff amount slowly increased under small rainfall intensity, but rapidly increased with rainfall intensity increase. The concentrations of total phosphorus (TP) and particulate phosphorus (PP) were higher at the early stage, then gradually decreased with time and finally reached a comparative steady stage under 0.83, 1.17 and 1.67 mm x min(-1). However they indicated no obvious trend except wavy undulation under 2.50 mm x min(-1). In the course of rainfall-runoff, dissolved phosphorus (DP) gently varied and accounted for 20% - 32% of TP. PP was 68% - 80% of TP and its change trend was consistent with TP. Therefore, PP was main loss form of soil phosphorus runoff. Comparison of different phosphorous loss rate under different rainfall intensities suggested that loss rate of TP and DP under 2.50 mm x min(-1) was 20 times and 33 times higher than that under 0.83 mm x min(-1), which showed that loss rate of PP and DP increased with the increase of rainfall intensities. Results indicated that lots of inorganic dissolved phosphorus (DIP) of phosphorous fertilizer was discharged into water environment by using fertilizer in soil surface before rainfall, which increased loss of DP and greatly aggravated degree of water eutrophication.
Cao, Hong-Xing; Zhang, Zheng-Bin; Sun, Cheng-Xu; Shao, Hong-Bo; Song, Wei-Yi; Xu, Ping
2009-09-18
The objective of this study was to locate chromosomes for improving water and phosphorus-deficiency tolerance of wheat at the seedling stage. A set of Chinese Spring-Egyptian Red wheat substitution lines and their parent Chinese Spring (recipient) and Egyptian Red (donor) cultivars were measured to determine the chromosomal locations of genes controlling water use efficiency (WUE) and phosphorus use efficiency (PUE) under different water and phosphorus conditions. The results underlined that chromosomes 1A, 7A, 7B, and 3A showed higher leaf water use efficiency (WUE(l) = Pn/Tr; Pn = photosynthetic rate; Tr = transpiration rate) under W-P (Hoagland solution with 1/2P), -W-P (Hoagland solution with 1/2P and 10% PEG). Chromosomes 7A, 3D, 2B, 3B, and 4B may carry genes for positive effects on individual plant water use efficiency (WUE(p) = biomass/TWC; TWC = total water consumption) under WP (Hoagland solution), W-P and -W-P treatment. Chromosomes 7A and 7D carry genes for PUE enhancement under WP, -WP (Hoagland solution with 10% PEG) and W-P treatment. Chromosome 7A possibly has genes for controlling WUE and PUE simultaneously, which indicates that WUE and PUE may share the same genetic background. Phenotypic and genetic analysis of the investigated traits showed that photosynthetic rate (Pn) and transpiration rate (Tr), Tr and WUE(l) showed significant positive and negative correlations under WP, W-P, -WP and -W-P, W-P, -WP treatments, respectively. Dry mass (DM), WUE(P), PUT (phosphorus uptake) all showed significant positive correlation under WP, W-P and -WP treatment. PUE and phosphorus uptake (PUT = P uptake per plant) showed significant negative correlation under the four treatments. The results might provide useful information for improving WUE and PUE in wheat genetics.
Reversible changes of the muscle cell in experimental phosphorus deficiency.
Fuller, T J; Carter, N W; Barcenas, C; Knochel, J P
1976-01-01
Both animal and human studies suggest that either phosphorus depletion or hypophosphatemia might have an adverse effect on muscle function and composition. Recently a possible deleterious effect was noted in patients with chronic alcoholism. In this unexplained disease, a variety of toxic and nutritional disturbances could affect the muscle cell, thus obscuring the precise role of phosphorus. Accordingly, we examined eight conditioned dogs for the possibility that phosphorus deficiency per se might induce an abnormally low resting transmembrane electrical potential difference (Em) and alter the composition of the muscle cell. Eight conditioned dogs were fed a synthetic phosphorus-deficient but otherwise nutritionally adequate diet plus aluminum carbonate gel for a 28-day period followed by the same diet with phosphorus supplementation for an additional 28 days. Sequential measurements of Em and muscle composition were made at 0 and 28 days during depletion and again after phosphorus repletion. Serum inorganic phosphorus concentration (mg/100 ml) fell from 4.2 +/- 0.6 on day 0 t0 1.7 +/- 0.1 on day 28. Total muscle phosphorus content (mmol/100 g fat-free dry wt [FFDW]) fell from 28.5 +/- 1.8 on day 0 to 22.4 +/- 2.1 on day 28. During phosphorus depletion, average Em (-mV) fell from 92.6 +/- 4.2 to 77.9 +/- 4.1 mV (P less than 0.001). Muscle Na+ and Cl- content (meq/100 g FFDW) rose respectively from 11.8 +/- 3.2 to 17.2 +/- 2.8 (P less than 0.01) and from 8.4 +/- 1.4 to 12.7 +/- 2.0 (P less than 0.001). Total muscle water content rose from 331 +/- 12 to 353 +/- 20 g/100 FFDW (P less than 0.05). A slight, but nevertheless, significant drop in muscle potassium content, 43.7 +/- 2.0-39.7 +/- 2.2 meq/100 g FFDW (P less than 0.05) was also noted. After 4 wk of phosphorus repletion, all of these measurements returned toward control values. We conclude that moderate phosphorus depletion can induce reversible changes in skeletal muscle composition and transmembrane potential in the dog, and it apparently occurs independently of profound hypophosphatemia. PMID:947947
Inositol phosphates in the environment.
Turner, Benjamin L; Papházy, Michael J; Haygarth, Philip M; McKelvie, Ian D
2002-01-01
The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment. PMID:12028785
Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D
2004-01-01
Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus.
1986-06-01
Mycorrhizae. II. Altered Levels of Gibberellin-like Substances and Abscisic Acid in the Host Plant," Canadian Journal of Botany, Vol 60, pp 468-471...application of lime is required to neutralize the acidity before revegetation efforts are undertaken (Gupta et al. 1978; Hunt et al. 1978; Yu et al. 1978...Hoeppel et al. 1978). Phosphorus 29. The form in which phosphorus exists in soils varies with the pH of the soil solution. In acidic soils, H 2P04 ions
From Phosphorous to Arsenic: Changing the Classic Paradigm for the Structure of Biomolecules
Knodle, Ryan; Agarwal, Pratima; Brown, Mark
2012-01-01
Biomolecules are composed primarily of the elements carbon, nitrogen, hydrogen, oxygen, sulfur, and phosphorus. The structured assembly of these elements forms the basis for proteins, nucleic acids and lipids. However, the recent discovery of a new bacterium, strain GFAJ-1 of the Halomonadaceae, has shaken the classic paradigms for the architecture of life. Mounting evidence supports the claim that these bacteria substitute arsenic for phosphorus in macromolecules. Herein, we provide a brief commentary and fuel the debate related to what may be a most unusual organism. PMID:24970138
From phosphorous to arsenic: changing the classic paradigm for the structure of biomolecules.
Knodle, Ryan; Agarwal, Pratima; Brown, Mark
2012-05-30
Biomolecules are composed primarily of the elements carbon, nitrogen, hydrogen, oxygen, sulfur, and phosphorus. The structured assembly of these elements forms the basis for proteins, nucleic acids and lipids. However, the recent discovery of a new bacterium, strain GFAJ-1 of the Halomonadaceae, has shaken the classic paradigms for the architecture of life. Mounting evidence supports the claim that these bacteria substitute arsenic for phosphorus in macromolecules. Herein, we provide a brief commentary and fuel the debate related to what may be a most unusual organism.
de Castro, Robson C; de Melo Benites, Vinícius; César Teixeira, Paulo; Dos Anjos, Marcelino José; de Oliveira, Luis Fernando
2015-11-01
The aim of this study was to evaluate the phosphorus (P) mobility in a tropical Brazilian soil type red Oxisol treated with three different forms of granular fertilizer. Total Reflection X-Ray Fluorescence (TXRF) was applied to determine the concentration of P at different distances from granular fertilizer application point. The results showed that most of the P from fertilizers tends to concentrate in a region of up to 10mm around the place of the fertilizer deposition. Copyright © 2015. Published by Elsevier Ltd.
Zhang, Kewei; Liu, Hanhan; Tao, Peilin; Chen, Huan
2014-01-01
Phosphorus deficiency limits plant growth and development. To better understand the mechanisms behind how maize responds to phosphate stress, we compared the proteome analysis results of two groups of maize leaves that were treated separately with 1,000 µM (control, +P) and 5 µM of KH2PO4 (intervention group, −P) for 25 days. In total, 1,342 protein spots were detected on 2-DE maps and 15.43% had changed (P<0.05; ≥1.5-fold) significantly in quantity between the +P and −P groups. These proteins are involved in several major metabolic pathways, including photosynthesis, carbohydrate metabolism, energy metabolism, secondary metabolism, signal transduction, protein synthesis, cell rescue and cell defense and virulence. The results showed that the reduction in photosynthesis under low phosphorus treatment was due to the down-regulation of the proteins involved in CO2 enrichment, the Calvin cycle and the electron transport system. Electron transport and photosynthesis restrictions resulted in a large accumulation of peroxides. Maize has developed many different reactive oxygen species (ROS) scavenging mechanisms to cope with low phosphorus stress, including up-regulating its antioxidant content and antioxidase activity. After being subjected to phosphorus stress over a long period, maize may increase its internal phosphorus utilization efficiency by altering photorespiration, starch synthesis and lipid composition. These results provide important information about how maize responds to low phosphorus stress. PMID:24858307
Chen, Xianzhong; Xiao, Yan; Shen, Wei; Govender, Algasan; Zhang, Liang; Fan, You; Wang, Zhengxiang
2016-03-01
Currently, development of biofuels as an alternative fuel has gained much attention due to resource and environmental challenges. Bioethanol is one of most important and dominant biofuels, and production using corn or cassava as raw materials has become a prominent technology. However, phytate contained in the raw material not only decreases the efficiency of ethanol production, but also leads to an increase in the discharge of phosphorus, thus impacting on the environment. In this study, to decrease phytate and its phosphorus content in an ethanol fermentation process, Saccharomyces cerevisiae was engineered through a surface-displaying system utilizing the C-terminal half of the yeast α-agglutinin protein. The recombinant yeast strain, PHY, was constructed by successfully displaying phytase on the surface of cells, and enzyme activity reached 6.4 U/g wet biomass weight. Ethanol productions using various strains were compared, and the results demonstrated that the specific growth rate and average fermentation rate of the PHY strain were higher 20 and 18 %, respectively, compared to the control strain S. cerevisiae CICIMY0086, in a 5-L bioreactor process by simultaneous saccharification and fermentation. More importantly, the phytate phosphorus concentration decreased by 89.8 % and free phosphorus concentration increased by 142.9 % in dry vinasse compared to the control in a 5-L bioreactor. In summary, we constructed a recombinant S. cerevisiae strain displaying phytase on the cell surface, which could improve ethanol production performance and effectively reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate.
Rampazzi, Vincent; Roger, Julien; Amardeil, Régine; Penouilh, Marie-José; Richard, Philippe; Fleurat-Lessard, Paul; Hierso, Jean-Cyrille
2016-11-07
A smart steric control of the metallocene backbone in bis- and poly(phosphino)ferrocene ligands favors intramolecular aurophilic interactions between [AuCl] fragments in polynuclear gold(I) complexes. We synthesized and characterized by multinuclear NMR and X-ray diffraction analysis mono-, di-, and polynuclear gold complexes of constrained ferrocenyl diphosphines, which bear either bulky tert-butyl groups or more flexible siloxane substituents at the cyclopentadienyl rings. The complexes meso-1,1'-bis(diphenylphosphino)-3,3'-di-tert-butylferrocene (4-m), rac-1,1'-bis[bis(5-methyl-2-furyl)phosphino]-3,3'-di-tert-butylferrocene (5-r), and rac-1,1'-bis(diphenylphosphino)-3,3'-bis[(tri-iso-propylsilyl)oxy]ferrocene (6-r) were used to form dinuclear gold complexes. Coordination of tert-butylated ferrocenyl phosphines generated aurophilic interactions in the corresponding dinuclear gold complexes, contrary to gold(I) complexes reported with 1,1'-bis(diphenylphosphino)ferrocene. The structurally related tetraphosphine 1,1',2,2'-tetrakis(diphenylphosphino)-4,4'-di-tert-butylferrocene (11) also gave access to mononuclear, dinuclear, and the original trinuclear gold chloride aurophilic complexes in which 14e - to 16e - gold centers coexist. In such complexes, nonbonded ("through-space") 31 P- 31 P' nuclear spin couplings were evidenced by high-resolution NMR. In these interactions nuclear spin information is transferred between the lone-pair electron of an uncoordinated phosphorus P and a phosphorus P' that is involved in a σ covalent bond Au-P'. The dinuclear aurophilic complex displayed a concerted shuttling of its [ClAu···AuCl] fragment between the four phosphorus donors of the tetraphosphine ligand. Thus, an aurophilic Au···Au bond, which is assumed to be a weak energy interaction, can be conserved within a dynamic shuttling process at high temperature involving an intramolecular coordination-decoordination process of digold(I) at phosphorus atoms.
Geo-engineering experiments in two urban ponds to control eutrophication.
Waajen, Guido; van Oosterhout, Frank; Douglas, Grant; Lürling, Miquel
2016-06-15
Many urban ponds experience detrimental algal blooms as the result of eutrophication. During a two year field experiment, the efficacy of five in situ treatments to mitigate eutrophication effects in urban ponds was studied. The treatments targeted the sediment phosphorus release and were intended to switch the ponds from a turbid phytoplankton-dominated state to a clear-water state with a low phytoplankton biomass. Two eutrophic urban ponds were each divided into six compartments (300-400 m(2); 210-700 m(3)). In each pond the following treatments were tested: dredging in combination with biomanipulation (involving fish biomass control and the introduction of macrophytes) with and without the addition of the flocculant polyaluminiumchloride, interception and reduction of sediment phosphorus release with lanthanum-modified bentonite (Phoslock(®)) in combination with biomanipulation with and without polyaluminiumchloride; biomanipulation alone; and a control. Trial results support the hypothesis that the combination of biomanipulation and measures targeting the sediment phosphorus release can be effective in reducing the phytoplankton biomass and establishing and maintaining a clear-water state, provided the external phosphorus loading is limited. During the experimental period dredging combined with biomanipulation showed mean chlorophyll-a concentrations of 5.3 and 6.2 μg L(-1), compared to 268.9 and 52.4 μg L(-1) in the control compartments. Lanthanum-modified bentonite can be an effective alternative to dredging and in combination with biomanipulation it showed mean chlorophyll-a concentrations of 5.9 and 7.6 μg L(-1). Biomanipulation alone did not establish a clear-water state or only during a limited period. As the two experimental sites differed in their reaction to the treatments, it is important to choose the most promising treatment depending on site specific characteristics. In recovering the water quality status of urban ponds, continuing attention is required to the concurrent reduction of external phosphorus loading and to maintaining an appropriate fish community. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Ren; Li, Da-peng; Huang, Yong; Liu, Yan-jian; Chen, Jun
2015-11-01
Synergistic effect of physical and Chironomus plumosus combination disturbance on the characteristics of the micro-environment and micro-interface was investigated by the Rhizon samplers and Unisense micro sensor system. The results showed that the oxygen penetration depth (OPD), total oxygen exchange (TOE), water content and total microbial activity increased under the combination disturbance and bioturbation and were kept at the higher level, compared with the control. These parameters increased with the physical intensity under combination disturbance. However, the content of Fe2+ decreased under the combination disturbance and bioturbation and the decrease was more obvious than that in the control. The changes of the Fe2+, the water content and the total microbial activity were large at 0-4 cm depth in the sediments. Therefore, the area might be the active area for the transformation of internal sedimentary phosphorus forms. The curve fitting was used for the OPD, TOE, the content of Fe2+, the water content and the total microbial activity with the physical intensity under combination disturbance. It was observed that the second-order polynomial equation was suitable for the curve fitting. In addition, jump type synergistic effect was presented in the above mentioned parameters under combination disturbance when the physical intensity was higher than 34 r x min(-1). The remodeling on the sediment micro-interface and micro-environment might be the main inducing mechanism for the transformation of internal phosphorus.
USDA-ARS?s Scientific Manuscript database
Nutrients such as phosphorus availability may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of 21st century. Elevated CO2 may overcome the diffusional limitation to photosynthesis posed by stomata and mesop...
Grand Lake St. Marys (GLSM), a 13,000 acre lake in northwestern Ohio, is experiencing toxic levels of algal blooms resulting primarily from phosphorus input from agricultural runoff. The algal blooms are so severe that the Ohio Department of Natural Resources advised against any...
EPA scientists in Region 4 (Atlanta) conducted a review of data and information regarding hypoxia in the northern Gulf of Mexico. This Region 4 staff assessment concluded that phosphorus, rather than nitrogen, may be the limiting nutrient controlling Gulf hypoxia. An unauthorize...
Phosphate toxicity: new insights into an old problem
RAZZAQUE, M. Shawkat
2011-01-01
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23–klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review. PMID:20958267
Phosphate toxicity: new insights into an old problem.
Razzaque, M Shawkat
2011-02-01
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23-klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review.
Contracting with outpatient hemodialysis patients to improve adherence to treatment.
Laidlaw, J K; Beeken, J E; Whitney, F W; Reyes, A A
1999-02-01
The purpose of this study was to examine the relationship between contingency contracting and adherence to prescribed therapy in outpatient chronic hemodialysis patients. A quasi-experimental, pretest/posttest design was used. The sample included 15 hemodialysis patients, 6 in the phosphorus group and 9 in the weight-gain group. The study was conducted at an outpatient hemodialysis center in a Midwestern rural state. Specific variables investigated were interdialytic weight gains and serum phosphorus levels that reflect adherence to fluid restrictions and to taking phosphate-binding medications. Weekly interviews were conducted with each patient and content analysis of interview data was completed to identify categories related to adherence and nonadherence. Pre- and postcontract weight gains and phosphorus levels were analyzed with a paired two sample t-test. The categories related to adherence and nonadherence included physiological, psychological, environmental, locus of control/self-control/self-praise, economical, medical, knowledge deficit, health benefits, family support, and social support. Adherence to taking phosphate-binding medication responded more favorably to contingency contracting than did adherence to fluid restrictions. Chronic outpatient hemodialysis patients in the sample responded to the use of contingency contracting and developed techniques to remember to take phosphate-binding medications in order to lower serum phosphorus medications.
Nitrogen, like phosphorus, is a critical nutrient required for all life. Nitrogen can occur in rivers and streams, lakes, and coastal waters in several forms including ammonia (NH3), nitrates (NO3), and nitrites (NO2).
Stream Phosphorus Dynamics Along a Suburbanizing Gradient in Southern Ontario, Canada
NASA Astrophysics Data System (ADS)
Duval, T. P.
2017-12-01
While it is well known that urban streams are subject to impaired water quality relative to natural analogues, far less research has been directed at stream water quality during the process of (sub-) urbanization. This study determines the role of housing construction activities in Brampton, Canada on the concentration and flux of phosphorus (P) of a headwater stream. Prior to development the stream was engineered with a riffle-pool sequence, riparian plantings, and a floodplain corridor that was lined with sediment fencing. Stream sites were sampled daily over a period of six months at locations representing varying stages of subdivision completion (upper site -active construction; middle site -finished construction and natural vegetation; lower site -finished construction and active construction). A nearby urban stream site developed ten years prior to this study was selected as a reference site. There were no differences in total phosphorus (TP) levels or flux between the suburbanizing and urban streams; however, the forms of P differed between sites. The urban stream TP load was dominated by particulate phosphorus (PP) while suburbanizing stream P was mainly in the dissolved organic phosphorus (DOP) form. The importance of DOP to TP flux increased with the onset of the growing season. TP levels in all stream segments frequently exceeded provincial water quality guidelines during storm events but were generally low during baseflow conditions. During storm events PP and total suspended solid levels in the suburbanizing stream reached levels of the urban stream due to sediment fence failure at several locations along the construction-hillslope interface. Along the suburbanizing gradient, the hydrological connection to a mid-reach zone of no-construction activity / fallow field and native forest resulted in significantly lower P levels than the upper suburbanizing stream site. This suggests that stream channel design features as well as timing of construction activities and the hydrological connection between the stream and construction projects all contribute to downstream export of nutrients and ultimately stream water quality.
Emelko, Monica B; Stone, Micheal; Silins, Uldis; Allin, Don; Collins, Adrian L; Williams, Chris H S; Martens, Amanda M; Bladon, Kevin D
2016-03-01
Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales. Here, phosphorus (P) speciation and sorption behavior of suspended sediment were examined in two river basins impacted by a severe wildfire in southern Alberta, Canada. Fine-grained suspended sediments (<125 μm) were sampled continuously during ice-free conditions over a two-year period (2009-2010), 6 and 7 years after the wildfire. Suspended sediment samples were collected from upstream reference (unburned) river reaches, multiple tributaries within the burned areas, and from reaches downstream of the burned areas, in the Crowsnest and Castle River basins. Total particulate phosphorus (TPP) and particulate phosphorus forms (nonapatite inorganic P, apatite P, organic P), and the equilibrium phosphorus concentration (EPC0 ) of suspended sediment were assessed. Concentrations of TPP and the EPC0 were significantly higher downstream of wildfire-impacted areas compared to reference (unburned) upstream river reaches. Sediments from the burned tributary inputs contained higher levels of bioavailable particulate P (NAIP) - these effects were also observed downstream at larger river basin scales. The release of bioavailable P from postfire, P-enriched fine sediment is a key mechanism causing these effects in gravel-bed rivers at larger basin scales. Wildfire-associated increases in NAIP and the EPC0 persisted 6 and 7 years after wildfire. Accordingly, this work demonstrated that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and drinking water treatability. © 2015 John Wiley & Sons Ltd.
Calcium and phosphorus supplementation of human milk for preterm infants.
Harding, Jane E; Wilson, Jess; Brown, Julie
2017-02-26
Preterm infants are born with low skeletal stores of calcium and phosphorus. Preterm human milk provides insufficient calcium and phosphorus to meet the estimated needs of preterm infants for adequate growth. Supplementation of human milk with calcium and phosphorus may improve growth and development of preterm infants. To determine whether addition of calcium and phosphorus supplements to human milk leads to improved growth and bone metabolism of preterm infants without significant adverse effects. We used the standard search strategy of the Cochrane Neonatal Review Group to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 3), MEDLINE via PubMed (1966 to 14 April 2016), Embase (1980 to 14 April 2016) and the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1982 to 14 April 2016). We also searched clinical trials databases (11 May 2016) and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. Randomised and quasi-randomised trials comparing supplementation of human milk with calcium and/or phosphorus versus no supplementation in hospitalised preterm infants were eligible for inclusion in this review. Two review authors (JB, JW) independently extracted data and assessed trial quality using standard methods of the Cochrane Neonatal Review Group. We reported dichotomous data as risk ratios (RRs) and continuous data as mean differences (MDs) with 95% confidence intervals (CIs). We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess the quality of evidence. This is an update of a 2001 review that identified no eligible trials. One trial including 40 infants met the inclusion criteria for this review. Using GRADE criteria, we judged the quality of the evidence as low owing to risk of bias (inadequate reporting of methods of randomisation, allocation concealment and/or blinding) and imprecision (wide confidence intervals and data from a single small trial). We found no evidence of a difference between calcium and phosphorus supplementation versus no supplementation for neonatal growth outcomes (weight, length, head circumference) at any time point reported (two, four or six weeks postnatal age). At six weeks postnatal age, supplementation with calcium/phosphorus was associated with a decrease in serum alkaline phosphatase concentration (MD -56.85 IU/L, 95% CI -101.27 to -12.43; one randomised controlled trial (RCT); n = 40 infants). Investigators provided no data on growth at 12 to 18 months, neonatal fractures, feed intolerance, breastfeeding or any of the prespecified childhood outcomes for this review (fractures, growth, neurodevelopmental outcomes). We identified one small trial including only 40 infants that compared supplementation of human milk with calcium and phosphorus versus no supplementation in hospitalised preterm infants. We judged the evidence to be of low quality and found no evidence of differences between groups for clinically important outcomes including growth and fractures. Although serum alkaline phosphatase concentration was reduced in the group receiving supplementation at six weeks postnatal age, this difference is unlikely to be of clinical significance. We conclude that evidence is insufficient to determine whether benefit or harm ensues when human milk is supplemented with calcium and/or phosphorus for the hospitalised preterm infant. We see no advantage of conducting further trials of this intervention because with the advent of multi-component human milk fortifier, supplementation of human milk with calcium and/or phosphorus alone is no longer common practice. Future trials should consider assessing effects of multi-component fortifiers with different mineral compositions on clinically important outcomes during the neonatal period and in later childhood.
[The replacement therapy of rPTH(1-84) in established rat model of hypothyroidism].
Ding, Zhiwei; Li, Tiancheng; Liu, Yuhe; Xiao, Shuifang
2015-12-01
To investigate the replacement therapy of rPTH(1-84) (recombinant human parathyroid hormone (1-84)) to hypothyroidism in established rat model. Rat model of hypothyroidism was established by resecting parathyroids. A total of 30 rats with removal of parathyroids were divided into 6 groups randomly, 5 in each group, and applied respectively with saline injection (negative control group), calcitriol treatment (positive control group) and quadripartite PTH administration with dose of 20, 40, 80 and 160 µg/kg (experimental groups). Saline and rPTH(1-84) were injected subcutaneously daily. Calcitriol was gavaged once a day. Sham-operation was conducted in 5 rats of negative control group. To verify the authenticity of the rat model with hypothyroidism, the serum was insolated centrifugally from rat blood that was obtained from angular vein at specific time to measure calcium and phosphorus concentration. Urine in 12 hours was collected by metabolic cages and the calcium concentration was measured. After 10-week drug treatment, the experiment was terminated and bilateral femoral bone and L2-5 lumbar vertebra were removed from rats. Bone mineral density (BMD)of bilateral femoral bone and lumbar vertebra was analyzed by dual X-ray absorptiometry (DXA). The concentration of bone alkaline phosphatase (BALP) in serum was determined by radioimmunoassay. The rat model with hypothyroidism was obtained by excising parathyroid gland and was verified by monitoring calcium and phosphorus concentration subsequently. Administration of rPTH(1-84) in the dose of 80 or 160 µg/kg made serum calcium and phosphorus back to normal levels, with no significant difference between the doses (P>0.05). The BMD in each group of rats with rPTH(1-84) administration was increased significantly (P<0.05). The levels of urinary calcium and serum BALP in rats of maximum rPTH(1-84) injection group (160 µg/kg) were higher than those of normal control group (P<0.05). The rats treated with calcitriol had normal calcium levels and showed the increase of BMD and phosphorus concentration compared with normal control group (P<0.05). The amount of urinary calcium also exceeded the other groups (P<0.05), but no with significant difference in BMD of bilateral femoral bone and lumbar vertebra between negative control group and normal control group (P>0.05). Calcium and phosphorus return to normal level by administration of rPTH(1-84) in the dose of 80 µg/kg or 160 µg/kg, with increase in BMD. Calcitriol can return the level of calcium to normal and increase BMD, but can not correspondingly decrease the phosphorus concentration and increase the excretion of calcium in urine.
NASA Astrophysics Data System (ADS)
Kruk, Marek; Kobos, Justyna; Nawrocka, Lidia; Parszuto, Katarzyna
2018-04-01
This study aims to demonstrate that factors associated with climate dynamics, such as temperature and wind, affect the ecosystem of the shallow Vistula Lagoon in the southern Baltic and cause nutrient forms phytoplankton interactions: the growth of biomass and constraints of it. This occurs through a network of direct and indirect relationships between environmental and phytoplankton factors, including interactions of positive and negative feedback loops. Path analysis supported by structural equation modeling (SEM) was used to test hypotheses regarding the impact of climate factors on algal assemblages. Increased phytoplankton biomass was affected directly by water temperature and salinity, while the wind speed effect was indirect as it resulted in increased concentrations of suspended solids (SS) in the water column. Simultaneously, the concentration of SS in the water was positively correlated with particulate organic carbon (POC), particulate nitrogen (PN), and particulate phosphorus (PP), and was negatively correlated with the total nitrogen to phosphorus (N:P) ratio. Particulate forms of C, N, and phosphorus (P), concentrations of soluble reactive phosphorus (SRP) and nitrate and nitrite nitrogen (NO3-N + NO2-N), and ratios of the total N:P and DIN:SRP, all indirectly effected Cyanobacteria C concentrations. These processes influence other phytoplankton groups (Chlorophyta, Bacillariophyceae and the picophytoplankton fraction). Increased levels of SRP associated with organic matter (POC), which stemmed from reduced DIN:SRP ratios, contributed to increased Cyanoprokaryota and picophytoplankton C concentrations, which created a positive feedback loop. However, a simultaneous reduction in the total N:P ratio could have inhibited increases in the biomass of these assemblages by limiting N, which likely formed a negative feedback loop. The study indicates that the nutrients-phytoplankton feedback loop phenomenon can intensify eutrophication in a temperate lagoon, including increases of the biomass of Cyanobacteria and picophytoplankton. However, it can also constrain this increase.
Carbon, nitrogen, and phosphorus transport by world rivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meybeck, M.
1982-04-01
The various forms (dissolved and particulate, organic and inorganic) of carbon, nitrogen, and phosphorus in world rivers are reviewed from literature data. Natural levels are based mainly on major rivers for the subarctic and tropical zones which are still unpolluted and on smaller streams for the temperate zone. Atmospheric fallout is also reviewed. Natural contents of dissolved organic carbon (DOC) are mainly dependent on environmental conditions: DOC varies from 1 mg 1/sup -1/ in the mountainous alpine environments to 20 mg 1/sup -1/ in some taiga rivers. The world DOC average is 5.75 mg l/sup -1/. Nitrogen forms include dissolvedmore » organic nitrogen (DON), dissolved inorganic nitrogen (DIN = N - NH/sub 4//sup +/ + N - NO/sub 3//sup -/ + N - NO/sub 2//sup -/), and particulate organic nitrogen (PON). Natural levels are very low: DIN = 120 ..mu..g 1/sup -1/ of which only 15 percent is present as ammonia, and 1 percent as nitrite. Phosphorus is naturally present in very low amounts: around 10 ..mu..g 1/sup -1/ for P-PO/sub 4//sup 3/ and 25 ..mu..g 1/sup -1/ for total dissolved phosphorus (TDP which includes the organic form). The average nutrient content of rains has been estimated with a set of unpolluted stations: P - PO/sub 4/ = 5 ..mu..g 1/sup -1/, TDP = 10, N - NO/sub 2/ = 5, N - NH/sub 4/ = 225, DON = 225, and N - NO/sub 3/ = 175 ..mu..g 1/sup -1/. TOC levels are probably around several mg 1/sup -1/. These contents are very similar to those found in unpolluted rivers. Man's influence on surface waters has now greatly increased natural nutrient levels. Total dissolved P and N have globally increased by a factor of two and locally (Western Europe, North America) by factors of 10 to 50. These increases were found to be directly proportional to the watershed population and to its energy consumption.« less
NASA Astrophysics Data System (ADS)
Mackey, K. R.; Labiosa, R. G.; Calhoun, M.; Street, J. H.; Post, A. F.; Paytan, A.
2006-12-01
The relationships among phytoplankton taxon-specific phosphorus-status, phytoplankton community composition, and nutrient levels were assessed over three seasons in the Gulf of Aqaba, Red Sea. During summer and fall, stratified surface waters were depleted of nutrients and picophytoplankton populations comprised the majority of cells (80% and 88% respectively). In winter, surface nutrient concentrations were higher and larger phytoplankton were more abundant (63%). Cell specific alkaline phosphatase activity (APA) derived from enzyme labeled fluorescence was consistently low (less than 5%) in the picophytoplankton throughout the year, whereas larger cells expressed elevated APA during the summer and fall but less in the winter. A nutrient addition bioassay during the fall showed that, relative to control, APA was reduced by half in larger cells following addition of orthophosphate, whereas the APA of picophytoplankton remained low (less than 1%) across all treatments and the control. These results indicate that the most abundant phytoplankton are not limited by orthophosphate and only some subpopulations (particularly of larger cells) exhibit orthophosphate-limitation throughout the year. Our results indicate that orthophosphate availability influences phytoplankton ecology, correlating with shifts in phytoplankton community structure and the nutrient status of individual cells. The role of dissolved organic phosphorus as an important phosphorus source for marine phytoplankton in oligotrophic settings and the need for evaluating nutrient limitation at the taxa and/or single cell level (rather than inferring it from nutrient concentrations and ratios or bulk enzyme activity measurements) are highlighted.
NASA Astrophysics Data System (ADS)
Finlay, J. C.
2015-12-01
Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.
Influence of Diagenesis on Bioavailable Phosphorus in Lake Mendota, USA
NASA Astrophysics Data System (ADS)
Hoffman, A.; Armstrong, D.; Lathrop, R.; Penn, M.
2013-12-01
Phosphorus (P) is a major driver of productivity in many freshwater systems and in excess P can cause a variety of deleterious effects. Lake Mendota, located in Madison, Wisconsin (USA), is a eutrophic calcareous lake that is influenced by both urban and agricultural sources. As measures have been implemented to control point and non-point source pollution, internal sources, including release by sediments, has become more important. We collected multiple sediment cores from seven depositional basins to determine how diagenesis is influencing the bioavailability of sediment P. Cores were sliced in 1-cm intervals and analyzed for total P (TP), various P fractions, total metals, and multiple stable isotopes. While the average amount of total P that was bioavailable was 64.8%, the range noted was 39.2% to 88.6%. Spatial differences existed among the cores when comparing TP and bioavailable P among the cores. Depth profiles elucidated temporal differences as occasional increases in TP with depth were noted. These increases were found to contain a higher percent of bioavailable P. This variation was explored to determine if it resulted from differences in source material, for example inorganic P formed by diagenesis of organic P (algal derived) rather than soil P from external inputs. Saturation index modeling using MINEQL+ suggests that phosphorus concentrations in Lake Mendota pore waters are influenced by precipitation of vivianite (Fe3(PO4)2●8H2O) and certain calcium phosphates. However, hydroxyl apatite (Ca5(PO4)3(OH)), was highly supersaturated, indicating that precipitation of hydroxyl apatite is hindered and not important in controlling phosphate concentrations in these sediments. Yet even more important than precipitation reactions, adsorption/desorption characteristics of P seem to play a major role in P bioavailability. Sediment 210Pb and 137Cs activity profiles indicate differences exist among sedimentation rates for the various depositional sites in Lake Mendota. Implications for the modeling of P cycling and changes in internal loading following external P reduction in lakes will be discussed.
Jin, Ying; Hu, Zhenhu; Wen, Zhiyou
2009-08-01
Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H(2)SO(4), or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and Maillard side reaction. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium interferes with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147 degrees C and 25.3 min for methane production, and 135 degrees C and 26 min for orthophosphate release, respectively.
Temporal variability in phosphorus transfers: classifying concentration-discharge event dynamics
NASA Astrophysics Data System (ADS)
Haygarth, P.; Turner, B. L.; Fraser, A.; Jarvis, S.; Harrod, T.; Nash, D.; Halliwell, D.; Page, T.; Beven, K.
The importance of temporal variability in relationships between phosphorus (P) concentration (Cp) and discharge (Q) is linked to a simple means of classifying the circumstances of Cp-Q relationships in terms of functional types of response. New experimental data at the upstream interface of grassland soil and catchment systems at a range of scales (lysimeters to headwaters) in England and Australia are used to demonstrate the potential of such an approach. Three types of event are defined as Types 1-3, depending on whether the relative change in Q exceeds the relative change in Cp (Type 1), whether Cp and Q are positively inter-related (Type 2) and whether Cp varies yet Q is unchanged (Type 3). The classification helps to characterise circumstances that can be explained mechanistically in relation to (i) the scale of the study (with a tendency towards Type 1 in small scale lysimeters), (ii) the form of P with a tendency for Type 1 for soluble (i.e., <0.45 μm P forms) and (iii) the sources of P with Type 3 dominant where P availability overrides transport controls. This simple framework provides a basis for development of a more complex and quantitative classification of Cp-Q relationships that can be developed further to contribute to future models of P transfer and delivery from slope to stream. Studies that evaluate the temporal dynamics of the transfer of P are currently grossly under-represented in comparison with models based on static/spatial factors.
Kang, Joon Sang; Ke, Ming; Hu, Yongjie
2017-03-08
Two-dimensional van der Waals materials have shown novel fundamental properties and promise for wide applications. Here, we report for the first time an experimental demonstration of the in situ characterization and highly reversible control of the anisotropic thermal conductivity of black phosphorus. We develop a novel platform based on lithium ion batteries that integrates ultrafast optical spectroscopy and electrochemical control to investigate the interactions between lithium ions and the lattices of the black phosphorus electrode. We discover a strong dependence of the thermal conductivity on battery charge states (lithium concentrations) during the discharge/charge process. The thermal conductivity of black phosphorus is reversibly tunable over a wide range of 2.45-3.86, 62.67-85.80, and 21.66-27.58 W·m -1 ·K -1 in the cross-plan, zigzag, and armchair directions, respectively. The modulation in thermal conductivity is attributed to phonon scattering introduced by the ionic intercalation in between the interspacing layers and shows anisotropic phonon scattering mechanism based on semiclassical model. At the fully discharged state (x ∼ 3 in Li x P), a dramatic reduction of thermal conductivity by up to 6 times from that of the pristine crystal has been observed. This study provides a unique approach to explore the fundamental energy transport involving lattices and ions in the layered structures and may open up new opportunities in controlling energy transport based on novel operation mechanisms and the rational design of nanostructures.
A bibliometric review of nitrogen research in eutrophic lakes and reservoirs.
Yao, Xiaolong; Zhang, Yunlin; Zhang, Lu; Zhou, Yongqiang
2018-04-01
The global application of nitrogen is far greater than phosphorus, and it is widely involved in the eutrophication of lakes and reservoirs. We used a bibliometric method to quantitatively and qualitatively evaluate nitrogen research in eutrophic lakes and reservoirs to reveal research developments, current research hotspots, and emerging trends in this area. A total of 2695 articles in the past 25years from the online database of the Scientific Citation Index Expended (SCI-Expanded) were analyzed. Articles in this area increased exponentially from 1991 to 2015. Although the USA was the most productive country over the past 25years, China achieved the top position in terms of yearly publications after 2010. The most active keywords related to nitrogen in the past 25years included phosphorus, nutrients, sediment, chlorophyll-a, carbon, phytoplankton, cyanobacteria, water quality, modeling, and stable isotopes, based on analysis within 5-year intervals from 1991 to 2015 as well as the entire past 25years. In addition, researchers have drawn increasing attention to denitrification, climate change, and internal loading. Future trends in this area should focus on: (1) nutrient amounts, ratios, and major nitrogen sources leading to eutrophication; (2) nitrogen transformation and the bioavailability of different nitrogen forms; (3) nitrogen budget, mass balance model, control, and management; (4) ecosystem responses to nitrogen enrichment and reduction, as well as the relationships between these responses; and (5) interactions between nitrogen and other stressors (e.g., light intensity, carbon, phosphorus, toxic contaminants, climate change, and hydrological variations) in terms of eutrophication. Copyright © 2017. Published by Elsevier B.V.
Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Søndergaard, Martin; Hansen, Kristina M; Andersen, Hans E; Lauridsen, Torben L; Liboriussen, Lone; Beklioglu, Meryem; Ozen, Arda; Olesen, Jørgen E
2009-01-01
Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.
You, Dae Jong; Pak, Chanho; Jin, Seon-Ah; Lee, Kang Hee; Kwon, Kyungjung; Choi, Kyoung Hwan; Heo, Pil Won; Jang, Hongchul; Kim, Jun Young; Kim, Ji Man
2016-05-01
Palladium-cobalt-phosphorus (PdCoP) catalysts supported on carbon (Ketjen Black) were investigated as a cathode catalyst for oxygen reduction reaction (ORR) in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The PdCoP catalyst was synthesized via a modified polyol process in teflon-sealed reactor by microwave-heating. From X-ray diffraction and transmission electron microscopic analysis, the PdCoP catalyst exhibits a face-centered cubic structure, similar to palladium (Pd), which is attributed to form a good solid solution of Co atoms and P atoms in the Pd lattice. The PdCoP nanoparticles with average diameter of 2.3 nm were uniformly distributed on the carbon support. The electrochemical surface area (ECSA) and ORR activity of PdP, PdCo and PdCoP catalysts were measured using a rotating disk electrode technique with cyclic voltammetry and the linear sweep method. The PdCoP catalysts showed the highest performances for ECSA and ORR, which might be attributed both to formation of small nanoparticle by phosphorus atom and to change in lattice constant of Pd by cobalt atom. Furthermore, The HT-PEMFCs single cell performance employing PdCoP catalyst exhibited an enhanced cell performance compared to a single cell using the PdP and PdCo catalysts. This result indicates the importance of electric and geometric control of Pd alloy nanoparticles that can improve the catalytic activity. This synergistic combination of Co and P with Pd could provide the direction of development of non-Pt catalyst for fuel cell system.
Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Politano, Antonio; Knap, Wojciech; Vitiello, Miriam S.
2016-01-01
The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be “engineered” from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (∼5–8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting. PMID:26847823
NASA Astrophysics Data System (ADS)
Ruttenberg, Kathleen C.; Dyhrman, Sonya T.
2005-10-01
High-frequency temporal and spatial shifts in the various dissolved P pools (total, inorganic, and organic) are linked to upwelling/relaxation events and to phytoplankton bloom dynamics in the upwelling-dominated Oregon coastal system. The presence and regulation of alkaline phosphatase activity (APA) is apparent in the bulk phytoplankton population and in studies of cell-specific APA using Enzyme Labeled Fluorescence (ELF®). Spatial and temporal variability are also evident in phytoplankton community composition and in APA. The spatial pattern of dissolved phosphorus and APA variability can be explained by bottom-controlled patterns of upwelling, and flushing times of different regions within the study area. The presence of APA in eukaryotic taxa indicates that dissolved organic phosphorus (DOP) may contribute to phytoplankton P nutrition in this system, highlighting the need for a more complete understanding of P cycling and bioavailability in the coastal ocean.
Monitoring pH and electric conductivity in an EBPR sequencing batch reactor.
Serralta, J; Borrás, L; Blanco, C; Barat, R; Seco, A
2004-01-01
This paper presents laboratory-scale experimentation carried out to study enhanced biological phosphorus removal. Two anaerobic aerobic (A/O) sequencing batch reactors (SBR) have been operated during more than one year to investigate the information provided by monitoring pH and electric conductivity under stationary and transient conditions. Continuous measurements of these parameters allow detecting the end of anaerobic phosphorus release, of aerobic phosphorus uptake and of initial denitrification, as well as incomplete acetic acid uptake. These results suggest the possibility of using pH and electric conductivity as control parameters to determine the length of both anaerobic and aerobic phases in an A/O SBR. More valuable information provided by monitoring pH and electric conductivity is the relation between the amount of phosphorus released and the conductivity increase observed during the anaerobic stages and which group of bacteria (heterotrophic or polyphosphate accumulating) is carrying out the denitrification process.
Foster, T L; Winans, L
1977-01-01
The objective of the investigation was to isolate anaerobic micro-organisms which had the ability to utilize inorganic phosphorus in forms other than phosphate. The first part of this investigation was to isolate from Cape Canaveral soil micro-organisms capable of utilizing phosphite as their phosphorus source under anaerobic conditions. In an attempt to demonstrate this ability, a medium was prepared which contained hypophosphite as the phosphorus source. This was inoculated with soil samples, and growth was subcultured at least four times. To verify that these isolates could use hypophosphite, they were inoculated into defined hypophosphite medium, and samples were removed periodically and killed with formalin. Growth was determined by turbidity measurements and the sample was then filtered. The filtrate was separated by chromatography and the total amounts of hypophosphite, phosphate and phosphate in the filtrate were measured. By this procedure it appeared that the hypophosphite level began decreasing after 14 hr of incubation suggesting utilization of the hypophosphite under anaerobic conditions. The third part of this investigation used labeled (32P) hypophosphite in a defined medium; the cells were then lysed and the metabolic compounds separated by the use of paper chromatography and autoradiograms, demonstrating the presence of 32P in intermediate metabolic compounds. Similar investigations are now being performed with phosphine as the phosphorus source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang
Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects ofmore » experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.« less
Busato, Jader G; Lima, Lívia S; Aguiar, Natália O; Canellas, Luciano P; Olivares, Fábio L
2012-04-01
The aim of this study was to assess the effect of N(2)-fixing and P-solubilizing bacteria during maturation of vermicompost on phosphorus availability. A bacterial suspension containing Burkholderia silvatlantica, Burkholderia spp. and Herbaspirillum seropedicae was applied at the initial stage of vermicomposting. At the end of the incubation time (120days), the nitrogen content had increased by18% compared to uninoculated vermicompost. Water-soluble P was 106% higher in inoculated vermicompost while resin-extractable P increased during the initial vermicomposting stage and was 21% higher at 60days, but was the same in inoculated and uninoculated mature compost. The activity of acid phosphatase was 43% higher in inoculated than uninoculated vermicompost. These data suggest that the introduction of the mixed culture had beneficial effects on vermicompost maturation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Root developmental adaptation to phosphate starvation: better safe than sorry.
Péret, Benjamin; Clément, Mathilde; Nussaume, Laurent; Desnos, Thierry
2011-08-01
Phosphorus is a crucial component of major organic molecules such as nucleic acids, ATP and membrane phospholipids. It is present in soils in the form of inorganic phosphate (Pi), which has low availability and poor mobility. To cope with Pi limitations, plants have evolved complex adaptive responses that include morphological and physiological modifications. This review describes how the model plant Arabidopsis thaliana adapts its root system architecture to phosphate deficiency through inhibition of primary root growth, increase in lateral root formation and growth and production of root hairs, which all promote topsoil foraging. A better understanding of plant adaptation to low phosphate will open the way to increased phosphorus use efficiency by crops. Such an improvement is needed in order to adjust how we manage limited phosphorus stocks and to reduce the disastrous environmental effects of phosphate fertilizers overuse. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Yang; Zhu, Bo; Wang, Tao; Wang, Yafeng
2012-02-01
SummaryBioavailable phosphorus (P) losses due to agriculture activity in a purple soil watershed in the Sichuan Basin of Southwestern China were monitored to define the hydrological controls of P transport. Our results indicate that the proportion of P that was transported in particulate form increased in the rainy season, and that the mass of total bioavailable P (BAP) loads exhibited seasonal fluctuations, wherein the majority (over 90%) was observed to have been exported between June and September. The proportion of bioavailable dissolved P (BDP) in the BAP discharge budget in the watershed varied between 11% and 15% during the monitoring period. The bioavailable particulate P (BPP) and BDP concentrations of stream water under rainstorm events increased by over 40% in comparison to their annual mean concentrations, and the annual BAP load was primarily dominated by the loads that occurred during rainstorm events in the study year. BAP concentration in groundwater significantly fluctuated with the seasons, and the ratio of total BAP in groundwater to that in surface water gradually increased during the rainy season. Thus, the impact of agriculture on the water quality of this watershed becomes clearly evident.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.
Phosphine, which has now been confirmed around the carbon-rich star IRC+10216, provides the first example of a phosphorus-containing single bond in interstellar or circumstellar media. While four compounds containing both phosphorus and carbon have been discovered, none contain a carbon–phosphorus single bond. Here, we show that this moiety is plausible from the reaction of phosphine with methane in electron-irradiated interstellar ice analogues. Fractional sublimation allows for detection of individual products at distinct temperatures using reflectron time-of-flight mass spectrometry (ReTOF) coupled with vacuum ultraviolet photoionization. This method produced phosphanes and methylphosphanes as large as P{sub 8}H{sub 10} and CH{sub 3}P{sub 8}H{submore » 9}, which demonstrates that a phosphorus–carbon bond can readily form and that methylphosphanes sublime at 12–17 K higher temperatures than the non-organic phosphanes. Also, irradiated ices of phosphine with deuterated-methane untangle the reaction pathways through which these methylphosphanes were formed and identified radical recombination to be preferred over carbene/phosphinidene insertion reactions. In addition, these ReTOF results confirm that CH{sub 3}PH{sub 2} and CH{sub 6}P{sub 2} can form via insertion of carbene and phosphinidene and that the methylenediphosphine (PH{sub 2}CH{sub 2}PH{sub 2}) isomer forms in the ices, although methylphosphine (CH{sub 3}P{sub 2}H{sub 3}) is likely the more abundant isomer and that phosphanes and organophosphanes preferentially fragment via the loss of a phosphino group when photoionized. While the formation of methylphosphine is overall endoergic, the intermediates produced by interactions with energetic electrons proceed toward methylphosphine favorably and barrierlessly and provide plausible mechanisms toward hitherto unidentified interstellar compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Kuan-Kan; Woon, Wei Yen; Chang, Ruey-Dar
We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.
NASA Astrophysics Data System (ADS)
Hu, Kuan-Kan; Chang, Ruey-Dar; Woon, Wei Yen
2015-10-01
We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.
Study on slag forming mechanism of hot metal containing titanium in converter
NASA Astrophysics Data System (ADS)
Wang, H. B.; Lv, Y. C.; Qin, L. Y.; Liu, Y.; Ma, C. W.; Kong, X. T.
2017-09-01
The use of titanium containing molten iron can expand the sources of raw materials, reduce the cost, but the process produce serious foaming slag, low dephosphorization proportion and the consumption of lime is high. The technicians have improved the operation process through experiments and solved the problem of efficient and smooth blowing of hot metal containing titanium. Through mine phase composition analysis of slag using SEM and EDS, the distribution of titanium and the regularity of phosphorus retention are found, and measures to prevent phosphorus recovery in the later stage of converter are put forward.
1982-08-01
AD-AIA 700 FLORIDA UN1V GAINESVILLE DEPT OF ENVIRONMENTAL ENGIN -ETC F/G 6/6 LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMOR--ENL...Conway ecosystem and is part of the Large- Scale Operations Management Test (LSOMT) of the Aquatic Plant Control Research Program (APCRP) at the WES...should be cited as follows: Blancher, E. C., II, and Fellows, C. R. 1982. "Large-Scale Operations Management Test of Use of the White Amur for Control
Development of PCR-Based DNA markers flanking three low phytic acid mutant loci in barley
USDA-ARS?s Scientific Manuscript database
Phytic acid (PA) is the most abundant form of phosphorus (P) in cereal grains. PA chelates mineral cations to form an indigestible salt, and is thus regarded as an antinutritional agent and a contributor to water pollution. Grain with low phytic acid (lpa) genotypes could aid in mitigating this prob...
Bioimpacts of dialyzer variety on phosphorus level in Iranian hemodialysis patients
Pezeshgi, Aiyoub; Moharrami, Bahareh; Kolifarhood, Goodarz; Sadeghi, Alireza; Asadi-Khiavi, Masoud
2016-01-01
Introduction: Cardiovascular events are the major cause of death in patients with chronic renal failure. About half of dialysis patients because of reduced phosphorus clearance have hyperphosphatemia. Hyperphosphatemia and following secondary hyperparathyroidism lead to some cardiovascular changes. Hemodialysis (HD) partly removes phosphorus during each dialysis session. Objectives: Presented study was designed to evaluate dialyzer variation effect on phosphorus level as a prognostic factor after dialysis using. Materials and Methods: Six kinds of dialyzer were used for dialysis; low flux (LF) dialyzer (F7 and F8), high flux (HF) dialyzer (F70 and F80) and finally hollow-fiber dialyzers including polyethersulfone (PES) 130 HF and polysulfone (PS) 13 LF. Fifty-seven patients were divided into 6 matched groups included three groups of 10 people and 3 groups of 9 persons in groups: A (F70), B (F80), C (F7), D (F8), E (PES 130 HF) and F (PS 13 LF). Patients were treated for one month with these dialyzers. At the end of the month, blood samples were taken again for phosphorus level before dialysis handling. Results: The mean pre-dialysis serum phosphorus was 5.03, 5.4, 5.2, 4.6, 4.95 and 5.1 mg/dl and the mean phosphorus was 5.43, 5.01, 4.9, 4.18, 4.17 and 5.3 mg/dl after one month of dialysis, respectively in groups A to F without any statistically differences between pre- and after one month dialysis values respectively. Discussion: The findings indicate dialyzer type in the control of serum phosphorus has not been effective in the short-term HD. We suggest a study with more duration time. PMID:27471742
Bioimpacts of dialyzer variety on phosphorus level in Iranian hemodialysis patients.
Pezeshgi, Aiyoub; Moharrami, Bahareh; Kolifarhood, Goodarz; Sadeghi, Alireza; Asadi-Khiavi, Masoud
2016-01-01
Cardiovascular events are the major cause of death in patients with chronic renal failure. About half of dialysis patients because of reduced phosphorus clearance have hyperphosphatemia. Hyperphosphatemia and following secondary hyperparathyroidism lead to some cardiovascular changes. Hemodialysis (HD) partly removes phosphorus during each dialysis session. Presented study was designed to evaluate dialyzer variation effect on phosphorus level as a prognostic factor after dialysis using. Six kinds of dialyzer were used for dialysis; low flux (LF) dialyzer (F7 and F8), high flux (HF) dialyzer (F70 and F80) and finally hollow-fiber dialyzers including polyethersulfone (PES) 130 HF and polysulfone (PS) 13 LF. Fifty-seven patients were divided into 6 matched groups included three groups of 10 people and 3 groups of 9 persons in groups: A (F70), B (F80), C (F7), D (F8), E (PES 130 HF) and F (PS 13 LF). Patients were treated for one month with these dialyzers. At the end of the month, blood samples were taken again for phosphorus level before dialysis handling. The mean pre-dialysis serum phosphorus was 5.03, 5.4, 5.2, 4.6, 4.95 and 5.1 mg/dl and the mean phosphorus was 5.43, 5.01, 4.9, 4.18, 4.17 and 5.3 mg/dl after one month of dialysis, respectively in groups A to F without any statistically differences between pre- and after one month dialysis values respectively. The findings indicate dialyzer type in the control of serum phosphorus has not been effective in the short-term HD. We suggest a study with more duration time.
Moffett, James W.
1956-01-01
Four experiments involving 873 bob-white quail (Colinus virginianus) chicks were conducted at the Patuxent Research Refuge, Laurel, Maryland. A comparison was made of calcium: phosphorus ratios of 1:1, 15:1, 1%: 1, 2:1, 2+:1,and 2%: 1in diets with phosphorus levels of 0.52, 0.75, 1.00, and 1.25 percent. The results indicate that the optimum level of phosphorus for growth is in the neighborhood of 0.75 per cent, and that of calcium is about 1.00 per cent, making a ratio of 1 1/3: 1....Although the greatest efficiency of feed utilization occurred on the phosphorus level of 0.52 per cent, the liveweight and bone-ash of the birds at the end of ten weeks were significantly lower than they were on the levels of 0.75 and 1.00 per cent, phosphorus. Bone-ash of birds on a Ca: P ratio of 1:1was significantly lower than that on any of the other five ratios, regardless of phosphorus level....There was a significant reverse correlation between the Ca: P ratio of the diet and the storage of vitamin A in the liver. Storage was especially low on the ratio of 2 2/3: 1....The low and high levels of calcium and phosphorus considered in these studies are abnormal, the low level especially being hard to obtain with common feedstuffs, if the protein requirements of the birds are met. Nevertheless, even on such levels, results were not disastrous. The growth of quail in the wild happens during a season when the birds have access to the minerals of the soil and in the abundant animal matter (mostly insects), as well as to minerals in plant material. Therefore, seemingly, calcium and phosphorus need not be critical nutrients for growing quail in the wild.
Walter, D.A.; Rea, B.A.; Stollenwerk, K.G.; Savoie, Jennifer G.
1995-01-01
The disposal of secondarily treated sewage onto rapid infiltration sand beds at the Massachusetts Military Reservation, Cape Cod, Massachusetts, has created a sewage plume in the underlying sand and gravel aquifer; the part of the\\x11sewage plume that contains dissolved phosphorus extends about 2,500 feet downgradient of the sewage-disposal beds. A part of the plume that\\x11contains nearly 2 milligrams per liter of phosphorus currently (1993) discharges into Ashumet Pond along about 700 feet of shoreline. The sewage plume discharges from about 59 to about 76 kilograms of phosphorus per year into the pond. Hydraulic-head measurements indicate that the north end of Ashumet Pond is a ground-water sink and an increased component of ground-water discharge and phosphorus flux into\\x11the pond occurs at higher water levels. Phosphorus was mobile in ground water in two distinct geochemical environments-an anoxic zone that contains no dissolved oxygen and as much as 25\\x11milligrams per liter of dissolved iron, and a more areally extensive suboxic zone that contains little or no iron, low but detectable dissolved oxygen, and as much as 12 milligrams per liter of dissolved manganese. Dissolved phosphorus is mobile in the suboxic geochemical environment because continued phosphorus loading has filled available sorption sites in the aquifer. Continued disposal of sewage since 1936 has created a large reservoir of sorbed phosphorus that is much greater than the mass of dissolved phosphorus in the ground water; the average ratio of sorbed to dissolved phosphorus in the anoxic and suboxic parts of the sewage plume were 31:1 and 155:1, respectively. Column experiments indicate that phosphorus in the anoxic core of the plume containing dissolved iron may be immobilized within 17 years by sorption and coprecipitation with new iron oxyhydroxides following the cessation of sewage disposal and the introduction of uncontaminated oxygenated ground water into the aquifer in December 1995. Residual oxygen demand associated with sorbed organic compounds and ammonia could retard the movement of oxygenated water into the aquifer. Sorbed phosphorus in the suboxic zone of the aquifer will continue to desorb into the ground water and will remain mobile in the ground water for perhaps hundreds of years. Also, the introduction of uncontaminated water into the aquifer may cause dissolved-phosphorus concentrations in the suboxic zone of the aquifer to increase sharply and remain higher than precessation levels for many years due to the desorption of loosely bound phosphorus. Data from three sampling sites, located along the eastern and western boundaries of the sewage plume and downgradient of abandoned sewage-disposal beds, indicate that ground-water mixing and phosphorus desorption may already be occurring in the aquifer in response to the introduction of uncontaminated recharge water into previously contaminated parts of the aquifer.
NASA Astrophysics Data System (ADS)
Yang, Xue-Min; Li, Jin-Yan; Chai, Guo-Ming; Duan, Dong-Ping; Zhang, Jian
2016-08-01
According to the experimental results of hot metal dephosphorization by CaO-based slags at a commercial-scale hot metal pretreatment station, the collected 16 models of equilibrium quotient k_{{P}} or phosphorus partition L_{{P}} between CaO-based slags and iron-based melts from the literature have been evaluated. The collected 16 models for predicting equilibrium quotient k_{{P}} can be transferred to predict phosphorus partition L_{{P}} . The predicted results by the collected 16 models cannot be applied to be criteria for evaluating k_{{P}} or L_{{P}} due to various forms or definitions of k_{{P}} or L_{{P}} . Thus, the measured phosphorus content [pct P] in a hot metal bath at the end point of the dephosphorization pretreatment process is applied to be the fixed criteria for evaluating the collected 16 models. The collected 16 models can be described in the form of linear functions as y = c0 + c1 x , in which independent variable x represents the chemical composition of slags, intercept c0 including the constant term depicts the temperature effect and other unmentioned or acquiescent thermodynamic factors, and slope c1 is regressed by the experimental results of k_{{P}} or L_{{P}} . Thus, a general approach to developing the thermodynamic model for predicting equilibrium quotient k_{{P}} or phosphorus partition L P or [pct P] in iron-based melts during the dephosphorization process is proposed by revising the constant term in intercept c0 for the summarized 15 models except for Suito's model (M3). The better models with an ideal revising possibility or flexibility among the collected 16 models have been selected and recommended. Compared with the predicted result by the revised 15 models and Suito's model (M3), the developed IMCT- L_{{P}} model coupled with the proposed dephosphorization mechanism by the present authors can be applied to accurately predict phosphorus partition L_{{P}} with the lowest mean deviation δ_{{L_{{P}} }} of log L_{{P}} as 2.33, as well as to predict [pct P] in a hot metal bath with the smallest mean deviation δ_{{[% {{ P}}]}} of [pct P] as 12.31.
Flow analysis techniques for phosphorus: an overview.
Estela, José Manuel; Cerdà, Víctor
2005-04-15
A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.
Determination of phosphorus in small amounts of protein samples by ICP-MS.
Becker, J Sabine; Boulyga, Sergei F; Pickhardt, Carola; Becker, J; Buddrus, Stefan; Przybylski, Michael
2003-02-01
Inductively coupled plasma mass spectrometry (ICP-MS) is used for phosphorus determination in protein samples. A small amount of solid protein sample (down to 1 micro g) or digest (1-10 micro L) protein solution was denatured in nitric acid and hydrogen peroxide by closed-microvessel microwave digestion. Phosphorus determination was performed with an optimized analytical method using a double-focusing sector field inductively coupled plasma mass spectrometer (ICP-SFMS) and quadrupole-based ICP-MS (ICP-QMS). For quality control of phosphorus determination a certified reference material (CRM), single cell proteins (BCR 273) with a high phosphorus content of 26.8+/-0.4 mg g(-1), was analyzed. For studies on phosphorus determination in proteins while reducing the sample amount as low as possible the homogeneity of CRM BCR 273 was investigated. Relative standard deviation and measurement accuracy in ICP-QMS was within 2%, 3.5%, 11% and 12% when using CRM BCR 273 sample weights of 40 mg, 5 mg, 1 mg and 0.3 mg, respectively. The lowest possible sample weight for an accurate phosphorus analysis in protein samples by ICP-MS is discussed. The analytical method developed was applied for the analysis of homogeneous protein samples in very low amounts [1-100 micro g of solid protein sample, e.g. beta-casein or down to 1 micro L of protein or digest in solution (e.g., tau protein)]. A further reduction of the diluted protein solution volume was achieved by the application of flow injection in ICP-SFMS, which is discussed with reference to real protein digests after protein separation using 2D gel electrophoresis.The detection limits for phosphorus in biological samples were determined by ICP-SFMS down to the ng g(-1) level. The present work discusses the figure of merit for the determination of phosphorus in a small amount of protein sample with ICP-SFMS in comparison to ICP-QMS.
USDA-ARS?s Scientific Manuscript database
A detailed investigation of the concentration (g-1 seed weight) and content (g plant-1) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO2) and elevated carbon dioxide (eCO2) in soybean is limited. Soybean plants were grown in a controlled environment at ...
Silicone intraocular lens surface calcification in a patient with asteroid hyalosis.
Matsumura, Kazuhiro; Takano, Masahiko; Shimizu, Kimiya; Nemoto, Noriko
2012-07-01
To confirm a substance presence on the posterior intraocular lens (IOL) surface in a patient with asteroid hyalosis. An 80-year-old man had IOLs for approximately 12 years. Opacities and neodymium-doped yttrium aluminum garnet pits were observed on the posterior surface of the right IOL. Asteroid hyalosis and an epiretinal membrane were observed OD. An IOL exchange was performed on 24 March 2008, and the explanted IOL was analyzed using a light microscope and a transmission electron microscope with a scanning electron micrograph and an energy-dispersive X-ray spectrometer for elemental analysis. To confirm asteroid hyalosis, asteroid bodies were examined with the ionic liquid (EtMeIm+ BF4-) method using a field emission scanning electron microscope (FE-SEM) with digital beam control RGB mapping. X-ray spectrometry of the deposits revealed high calcium and phosphorus peaks. Spectrometry revealed that the posterior IOL surface opacity was due to a calcium-phosphorus compound. Examination of the asteroid bodies using FE-SEM with digital beam control RGB mapping confirmed calcium and phosphorus as the main components. Calcium hydrogen phosphate dihydrate deposits were probably responsible for the posterior IOL surface opacity. Furthermore, analysis of the asteroid bodies demonstrated that calcium and phosphorus were its main components.
Huang, Guoyong; Rizwan, Muhammad Shahid; Ren, Chao; Guo, Guangguang; Fu, Qingling; Zhu, Jun; Hu, Hongqing
2018-01-01
Application of fertilizers to supply appropriate nutrients has become an essential agricultural strategy for enhancing the efficiency of phytoremediation in heavy metal contaminated soils. The present study was conducted to investigate the beneficial effects of three types of phosphate fertilizers (i.e., oxalic acid-activated phosphate rock (APR), Ca(H 2 PO 4 ) 2 , and NaH 2 PO 4 ) in the range of 0-600 mg P kg -1 soil, on castor bean growth, antioxidants [antioxidative enzymes and glutathione (GSH)], and Cu uptake. Results showed that with the addition of phosphorus fertilizers, the dry weight of castor bean and the Cu concentration in roots increased significantly, resulting in increased Cu extraction. The phosphorus concentration in both shoots and roots was increased as compared with the control, and the Ca(H 2 PO 4 ) 2 treatment had the greatest effect. Application of APR, NaH 2 PO 4 , and Ca(H 2 PO 4 ) 2 reduced the malondialdehyde (MDA) content, and the activity of the two antioxidant enzymes superoxide dismustase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) in the leaves of castor bean. GSH concentration in leaves increased with the increasing levels of phosphorus applied to soil as well as the accumulation of phosphorus in shoots, compared to the control. These results demonstrated that the addition of phosphorus fertilizers can enhance the resistance of castor bean to Cu and increase the Cu extraction efficiency of the plant from contaminated soils.
Wood, Susanna A.; Depree, Craig; Brown, Logan; McAllister, Tara; Hawes, Ian
2015-01-01
Proliferations of the benthic mat-forming cyanobacteria Phormidium have been reported in rivers worldwide. Phormidium commonly produces natural toxins which pose a health risk to animal and humans. Recent field studies in New Zealand identified that sites with Phormidium proliferations consistently have low concentrations of water column dissolved reactive phosphorus (DRP). Unlike other river periphyton, Phormidium mats are thick and cohesive, with water and fine sediment trapped in a mucilaginous matrix. We hypothesized that daytime photosynthetic activity would elevate pH inside the mats, and/or night time respiration would reduce dissolved oxygen. Either condition could be sufficient to facilitate desorption of phosphates from sediment incorporated within mats, thus allowing Phormidium to utilize it for growth. Using microelectrodes, optodes and pulse amplitude modulation fluorometry we demonstrated that photosynthetic activity results in elevated pH (>9) during daytime, and that night-time respiration causes oxygen depletion (<4 mg L-1) within mats. Water trapped within the mucilaginous Phormidium mat matrix had on average 320-fold higher DRP concentrations than bulk river water and this, together with elevated concentrations of elements, including iron, suggest phosphorus release from entrapped sediment. Sequential extraction of phosphorus from trapped sediment was used to investigate the role of sediment at sites on the Mangatainoka River (New Zealand) with and without Phormidium proliferations. Deposition of fine sediment (<63 μm) was significantly higher at the site with the most extensive proliferations and concentrations of biological available phosphorus were two- to four- fold higher. Collectively these results provide evidence that fine sediment can provide a source of phosphorus to support Phormidium growth and proliferation. PMID:26479491
Mahardika, Dedy; Park, Hak-Soon; Choo, Kwang-Ho
2018-05-23
Adsorptive removal of phosphorus from wastewater effluents has attracted attention because of its reduced sludge production and potential P recovery. In this study, we investigated granular activated carbons (GACs) impregnated with amorphous ferrihydrite (FH@GAC) for the sorption of phosphorus from aqueous solutions. Preoxidation of intact GAC surfaces using an oxidant (e.g., hypochlorite) and strong acids (e.g., HNO 3 /H 2 SO 4 ) was performed to create active functional groups (e.g., carboxyl or phenolic) for enhanced iron binding, leading to greater phosphorus uptake. Both the rate and the capacity of phosphorus sorption onto FH@GAC had significant, positive relationships (Pearson correlation coefficient r > 0.9) with the product of surface area and Fe content. The pseudo-second-order reaction kinetics explained the P sorption rate better than the pseudo-first-order reaction kinetics, whereas the Langmuir model fit the P sorption isotherm better than the Freundlich model. The iron content in the FH@GAC increased significantly (>10 mg/g) when GAC (e.g., BMC1050) was preoxidized by a 1:1 (w/w) concentrated HNO 3 /H 2 SO 4 mixture. The Langmuir maximum P sorption capacity of a functionalized FH@BMC1050 adsorbent prepared with acid pretreatment was estimated to be substantial (5.73 mg P/g GAC corresponding to 526 mg P/g Fe). This sorption capacity was superior to that of a FH slurry, possibly because the nano-sized FH formed inside the GAC pores (<2.5 nm) can bind phosphate ions more effectively than FH aggregates. Fixed-bed column reactor operation with bicarbonate regeneration showed potential for efficient, continuous phosphorus removal by FH@GAC media. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Wen, Xuefa; Yu, Guirui
2017-07-01
Atmospheric phosphorus (P) deposition is not only an important external macronutrient source for aquatic ecosystems but also a major cause of high export coefficient (EC) values. However, there are limited numbers of studies in the literature that focus on estimating the deposition flux of reactive P (P r ). The aim of this study is to estimate the P r deposition on the Xiangxi River watershed, and therefore, provide a comprehensive understanding about the P r deposition on subtropical watersheds in China. Results have shown that maximal P r deposition fluxes reached 12 kg km -2 in our selected subtropical watershed. Furthermore, we found out the particulate phosphorus (PP) were dominating the total P r deposition in the Xiangxi River watershed. According to our experiments, certain forms of P r deposition were associated with high correlation coefficients with respect to the variation of rainfall intensity. Results also demonstrated that the dissolved organic phosphorus (DOP) and soluble reactive phosphorus (SRP) via wet deposition had large influences on the DOP and SRP concentrations in runoff, while the PO 4 -P and PP via wet deposition only affected PO 4 -P and PP loads through runoff discharge. Our experiments also shown that most parts of the P r in runoff water was derived from rainfall and its magnitudes varied with land types. Results suggested that during the dry season, the P r wet deposition not only was an important source for the P r transport driven by runoff, but also was one of the most important influencing factors that dominated the P r transport in subtropical watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Xing; Pearse, Stuart J.; Lambers, Hans
2013-01-01
Background and Aims Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status. Methods Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg−1 dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined. Key Results Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg−1 sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant. Conclusions Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration. PMID:24061491
Wang, Xing; Pearse, Stuart J; Lambers, Hans
2013-11-01
Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status. Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg(-1) dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined. Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg(-1) sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant. Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration.
Phosphorus-bearing molecules in the Galactic Center
NASA Astrophysics Data System (ADS)
Rivilla, V. M.; Jiménez-Serra, I.; Zeng, S.; Martín, S.; Martín-Pintado, J.; Armijos-Abendaño, J.; Viti, S.; Aladro, R.; Riquelme, D.; Requena-Torres, M.; Quénard, D.; Fontani, F.; Beltrán, M. T.
2018-03-01
Phosphorus (P) is one of the essential elements for life due to its central role in biochemical processes. Recent searches have shown that P-bearing molecules (in particular PN and PO) are present in star-forming regions, although their formation routes remain poorly understood. In this letter, we report observations of PN and PO towards seven molecular clouds located in the Galactic Center, which are characterized by different types of chemistry. PN is detected in five out of seven sources, whose chemistry is thought to be shock-dominated. The two sources with PN non-detections correspond to clouds exposed to intense UV/X-rays/cosmic ray (CR) radiation. PO is detected only towards the cloud G+0.693-0.03, with a PO/PN abundance ratio of ˜1.5. We conclude that P-bearing molecules likely form in shocked gas as a result of dust grain sputtering, while are destroyed by intense UV/X-ray/CR radiation.
Formation of vacancy-impurity complexes in heavily Zn-doped InP
NASA Astrophysics Data System (ADS)
Slotte, J.; Saarinen, K.; Salmi, A.; Simula, S.; Aavikko, R.; Hautojärvi, P.
2003-03-01
Positron annihilation spectroscopy has been applied to observe the spontaneous formation of vacancy-type defects by annealing of heavily Zn-doped InP at 500 700 K. The defect is identified as the VP-Zn pair by detecting the annihilation of positrons with core electrons. We conclude that the defect is formed through a diffusion process; a phosphorus vacancy migrates until trapped by a Zn impurity and forms a negatively charged VP-Zn pair. The kinetics of the diffusion process is investigated by measuring the average positron lifetime as a function of annealing time and by fitting a diffusion model to the experimental results. We deduce a migration energy of 1.8±0.2 eV for the phosphorus vacancy. Our results explain both the presence of native VP-Zn pairs in Zn-doped InP and their disappearance in post-growth annealings.
Electron shuttling in phosphorus donor qubit systems
NASA Astrophysics Data System (ADS)
Jacobson, N. Tobias; Gamble, John King; Nielsen, Erik; Muller, Richard P.; Witzel, Wayne M.; Montano, Ines; Carroll, Malcolm S.
2014-03-01
Phosphorus donors in silicon are a promising qubit architecture, due in large part to their long nuclear coherence times and the recent development of atomically precise fabrication methods. Here, we investigate issues related to implementing qubits with phosphorus donors in silicon, employing an effective mass theory that non-phenomenologically takes into account inter-valley coupling. We estimate the significant sources of decoherence and control errors in this system to compute the fidelity of primitive gates and gate timescales. We include the effects of valley repopulation during the process of shuttling an electron between a donor and nearby interface or between neighboring donors, evaluating the control requirements for ensuring adiabaticity with respect to the valley sector. This work was supported in part by the LDRD program at Sandia National Labs, a multi-program laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. DOE NNSA under contract DE-AC04-94AL85000.
40 CFR 116.4 - Designation of hazardous substances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 7664382 Orthophosphoric acid Phosphorus 7723140 Black phosphorus, red phosphorus, white phosphorus, yellow phosphorus Phosphorus oxychloride 10025873 Phosphoryl chloride, phosphorus chloride Phosphorus pentasulfide 1314803 Phosphoric sulfide, thiophosphoric anhydride, phosphorus persulfide Phosphorus trichloride 7719122...
40 CFR 116.4 - Designation of hazardous substances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 7664382 Orthophosphoric acid Phosphorus 7723140 Black phosphorus, red phosphorus, white phosphorus, yellow phosphorus Phosphorus oxychloride 10025873 Phosphoryl chloride, phosphorus chloride Phosphorus pentasulfide 1314803 Phosphoric sulfide, thiophosphoric anhydride, phosphorus persulfide Phosphorus trichloride 7719122...
Influence of phosphorus availability on the community structure and physiology of cultured biofilms.
Li, Shuangshuang; Wang, Chun; Qin, Hongjie; Li, Yinxia; Zheng, Jiaoli; Peng, Chengrong; Li, Dunhai
2016-04-01
Biofilms have important effects on nutrient cycling in aquatic ecosystems. However, publications about the community structure and functions under laboratory conditions are rare. This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator. The results showed that the biomass (Chl a) and photosynthesis of algae were inhibited under P-limitation conditions, while the phosphatase activity and P assimilation rate were promoted. The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability. Cyanobacteria were more competitive than other algae in biofilms, particularly when cultured under low P levels. A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01, 0.1 and 0.6 mg/L. However, the total N content, dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability. This may be attributed to the low respiration rate, high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low. The bacterial community structure differed over time, while there was little difference between the four treatments, which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability. Altogether, these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water. Copyright © 2015. Published by Elsevier B.V.
Jiang, Xia; Jin, Xiangcan; Yao, Yang; Li, Lihe; Wu, Fengchang
2008-04-01
Effects of biological activity, light, temperature and oxygen on the phosphorus (P) release processes at the sediment and water interface of a shallow lake, Taihu Lake, China, were investigated. The results show that organisms at the sediment and water interface can stimulate P release from sediments, and their metabolism can alter the surrounding micro-environmental conditions. The extent of P release and its effects on P concentration in the overlying water were affected by factors such as light, temperature and dissolved oxygen. The organism biomass increased as temperature increased, which was beneficial for P release. Dissolved total phosphorus (DTP) and dissolved inorganic phosphorus (DIP) concentrations in the corresponding overlying water were mainly controlled by light. P release occurred in both aerobic and anoxic conditions with the presence of organisms. However in the presence of light , P release in an anoxic environment was much greater than in an aerobic environment, which may stimulate alga bloom and result in an increase in total phosphorus (TP) in the overlying water. This information aids the understanding of P biogeochemical cycling at the interface and its relationship with eutrophication in shallow lakes.
NASA Astrophysics Data System (ADS)
Zhu, Yafei; McCowan, Andrew; Cook, Perran L. M.
2017-10-01
The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.
Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coveney, M.F.; Wetzel, R.G.
The effects of organic and inorganic nutrient additions on the specific growth rates of bacterioplankton in oligotrophic lake water cultures were investigated. Lake water was first passed through 0.8-{mu}m-pore-size filters (prescreening) to remove bacterivores and to minimize confounding effects of algae. Specific growth rates were calculated from changes in both bacterial cell numbers and biovolumes over 36 h. Gross specific growth rates in unmanipulated control samples were estimated through separate measurements of grazing losses by use of penicillin. The addition of mixed organic substrates alone to prescreened water did not significantly increase bacterioplankton specific growth rates. The addition of inorganicmore » phosphorus alone significantly increased one or both specific growth rates in three of four experiments, and one experiment showed a secondary stimulation by organic substrates. The stimulatory effects of phosphorus addition were greatest concurrently with the highest alkaline phosphatase activity in the lake water. Because bacteria have been shown to dominate inorganic phosphorus uptake in other P-deficient systems, the demonstration that phosphorus, rather than organic carbon, can limit bacterioplankton growth suggests direct competition between phytoplankton and bacterioplankton for inorganic phosphorus.« less
Lee, G T; Ro, H M; Lee, S M
2007-08-01
Bench-scale experiments for electrokinetically enhanced bioremediation of diesel in low permeability soils were conducted. An electrokinetic reactor (ER) was filled with kaolin that was artificially contaminated with diesel at a level of 2500 mg kg(-1). A constant voltage gradient of 1.0 V cm(-1) was applied. In phosphorus transport experiments, KH2PO4 was not distributed homogeneously along the ER, and most of the transported phosphorus was converted to water-insoluble aluminum phosphate after 12 days of electrokinetic (EK) operation. However, the advancing P front of triethyl phosphate (TEP) progressed with time and resulted in uniform P distribution. The treatments employed in the electrokinetically enhanced bioremediation of diesel were control (no addition of nitrogen and phosphorus), NP (KNO3+ KH2PO4), NT (KNO3+ TEP), UP (urea+ KH2PO4), and UT (urea+TEP). Analysis of effluent collected during the first 12 days of EK operation showed that diesel was not removed from the kaolin. After nutrient delivery, using the EK operation, the ER was transferred into an incubator for the biodegradation process. After 60 days of biodegradation, the concentrations of diesel in the kaolin for the NP, NT, UP, UT, and control treatments were 1356, 1002, 1658, 1612, and 2003 mg kg(-1), respectively. The ratio of biodegraded diesel concentration to initial concentration (2465 mg kg(-1)) in NP, NT, UP, UT, and control were 45.0%, 59.4%, 32.7%, 34.6%, and 18.7%, respectively. This result showed that TEP, treated along with NO3-, was most effective for the biodegradation of diesel. TEP was delivered more efficiently to the target zones and with less phosphorus loss than KH2PO4. However, this facilitated phosphorus delivery was effective in biodegrading diesel under anaerobic conditions only when electron acceptors, such as NO3-, were present.
[Changes in mineral metabolism in stage 3, 4, and 5 chronic kidney disease (not on dialysis)].
Lorenzo Sellares, V; Torregrosa, V
2008-01-01
With progression of chronic kidney disease (CKD), disorders of mineral metabolism appear. The classic sequence of events begins with a deficit of calcitriol synthesis and retention of phosphorus. As a result of this, serum calcium decreases and parathyroid hormone (PTH) is stimulated, producing in the bone the high turnover (HT) bone disease known as osteitis fibrosa while on the other extreme we find the forms of low turnover (LT) bone disease. Described later and initially associated with aluminum intoxication, these diseases are now seen primarily in older and/or diabetic patients, who in a uremic setting have relatively low levels of PTH to maintain normal bone turnover. Osteomalacia is also included in this group, which after the disappearance of aluminum intoxication is rarely observed. LT forms of hyperparathyroidism facilitate the exit of calcium (Ca) and phosphorus (P) from bone, whereas the adynamic bone limits the incorporation of Ca and P into bone tissue. Therefore, both forms facilitate the availability of Ca and P, which ends up being deposited in soft tissues such as arteries. The link between bone disease and vascular calcifications in CKD is now a well-established phenomenon. 2. Diagnostic strategies Calcium, Phosphorus They have little capacity to predict underlying bone disease, but their regular measurement is decisive for therapeutic management of the patient, especially in the dose titration stages of intestinal phosphorus binders, vitamin D analogs or calcimimetics. Ideally, Ca++ should be used, but total Ca is routinely used. It is recommended to adjust albumin levels in the event of hypoalbuminemia (for each g/dL of decrease in albumin, total serum Ca decreases 0.9 mg/dL). The following formula facilitates rapid calculation of corrected total calcium: Corrected total Ca (mg/dL) = total Ca (mg/dL) + 0.8 [4-albumina (g/dL)]. Parathyroid hormone "Intact" PTH is the biochemical parameter that best correlates with bone histology (levels measured with the Allegro assay from Nichols Institute Diagnostics, no longer available). Various assays are currently available that use antibodies against different fragments of the molecule, but they have significant intermethod variability and have not been validated. A whole PT assay (1-84) is currently unavailable. A consensus to establish uniform criteria for PTH measurement remains to be established. During the dose titration stages of intestinal phosphorus binders, vitamin D analogs or calcimimetics, more frequent measurement may be required based on clinical judgment. Calcifediol (25(OH)D3) It is important to maintain adequate levels of 25(OH)D3 (> 30 ng/mL), since they will be the substrate for production of 1- 25(OH)2 D3, and their deficiency aggravates hyperthyroidism. Determining 25(OH)D3 levels every 6-12 months is a recommended guideline. Other markers of bone turnover (osteocalcin, total and bone alkaline phosphate, free pyridolines in serum, and C-terminal telopeptide of collagen) do not improve the predictive power of PTH and therefore their systematic use is not justified. Radiologic studies Radiologic studies are of little diagnostic utility, because biochemical changes precede radiologic changes. Systematic radiologic evaluation of the skeleton in asymptomatic patients is not justified at present. They are useful as the first step in the study to detect vascular calcifications and amyloidosis due to b2-microglobulin and in symptomatic and at risk patients to detect vertebral fractures. Bone densitometry: Dual energy x-ray absorptiometry (DEXA) is the standard method to determine bone mineral density (usually in the femoral neck and vertebrae). It provides information on changes in bone mineral content, but not on the type of underlying bone disease. It is useful for follow-up of bone mass or for the study of bone mass changes in the same patient. Its value as a predictor of the risk of fracture has not been demonstrated in patients on kidney replacement therapy or with advanced chronic kidney disease. It is indicated in patients with fractures or risk factors for osteoporosis. Bone biopsy: The "gold standard" for diagnosis of bone disease. With improved knowledge of the value of noninvasive parameters, its use is infrequent. Pathological fractures in the presence or absence of minor trauma. Symptomatic patients in the presence of incongruent clinical parameters. A typical case is the presence of unexplained hypercalcemia from systemic disease, with inconclusive serum PTH values (between 120-450 pg/mL as an estimated range). Evaluation and follow-up of cardiovascular calcifications There are no consensuated clinical practice guidelines for the evaluation and follow-up of extraosseal calcifications in CKD. The clinical tools for evaluation and follow-up of cardiovascular disease are used based on clinical judgment. The periodicity of follow-up has not been established . 3. Recommended biochemical values The biochemical values recommended in clinical practice guidelines for the evaluation of bone mineral metabolism are summarized in Figure 3. The recommended PTH values do not fully coincide with the K/DOQI guidelines. The wide variability in PTH values depending on the assays used has led us to expand the recommended PTH range in stage 3 and 4 CKD. 4. Treatment 4.1. Diet. The recommended diet for the patient with CKD is traditionally based on protein restriction and phosphorus restriction for control of mineral metabolism. A favorable circumstance is that there is a close relationship between protein and phosphorus intake. In CKD stages 3, 4 and 5, it is recommended to restrict phosphorus intake to between 0.8-1 g/day when serum levels of phosphorus and PTH are above the recommended range. This is approximately equivalent to a diet of 50-60 g of protein. This reasonable antiproteinuric strategy that also restricts phosphorus intake is nutritionally safe. What should we tell them to eat? In a practical and oversimplified way, we recommend the following daily intake: Animal proteins: 1 serving (100-120 g), dairy products: 1 serving (equivalent to 200-240 mL of milk or 2 yoghourts), bread, cereals, pastas (1 cup of pasta, rice or legumes + some bread or cookies), vegetables and fruits relatively freely, but with moderation. 4.2. Medication Vitamin D supplements should be provided if serum levels are less than 30 ng/mL. In Spain, vitamin D3 (cholecalciferol) is marketed as Vitamin D3 Berenguer 2,000 IU/mL of solution. Combinations of calcium with cholecalciferol are also available. Most of the dosage forms contain approximately 500 mg of Ca+ and 400 IU of cholecalciferol. Alternatively, calcifediol (25(OH)D3), as Hidroferol 100 mcg/mL, has been used, although the dose range is very variable and has not been established. 4.3. Phosphorus binders. Use if hyperphosphatemia occurs. Start with calcium-containing phosphorus binders (calcium carbonate or calcium acetate), which also provide calcium if dietary intake is inadequate. Do not exceed 1.5 g of Ca++ per day. The most used are calcium carbonate and calcium acetate. Calcium acetate shows a similar binding potency to calcium carbonate but with a lesser calcium overload, and thus would have certain advantages as well as its greater effect at different pH ranges. However, gastric intolerance is more frequent with this dosage form. Aluminum hydroxide may sometimes be required to control phosphoremia or the occurrence of hypercalcemia. Serum aluminum values should be maintained below 30 mcg/L. Avoid use for longer than 6 months and daily doses greater than 1.5 g. Sevelamer is associated with an increased risk of acidosis and has not been approved for use in predialysis stages. Lanthanum carbonate has been recently marketed in Spain, although its indication for use in the predialysis stage of CKD is still not approved. 4.4. Vitamin D derivatives. Indicated when PTH levels are elevated. A prerequisite for their use is that Ca and P serum levels are adequately controlled. Vitamin D derivates available in Spain are 1,25(OH)2D3 (Calcitriol)and 1a(OH)D3 (a-Calcidiol). Doses should be titrated until PTH levels are normalized. Phosphate binder doses often need to be increased because these vitamin D derivatives increase intestinal absorption of calcium and phosphorus. Low doses do not cause hypercalcemia or hyperphosphatemia and do not worsen the course of renal function. Recommended doses: Calcitriol 0.25 mcg every 48 hours and alpha-Calcidiol 0.50 mcg every 48 hours. Soon to be available on the Spanish market is the oral dosage form of paricalcitol (recommended initial dose of 1 mcg/24 h), with a lesser hypercalcemic and hyperphosphoremic effect. Clinical use of calcimimetics in the predialysis state is not yet recommended and is currently under investigation.
Xu, Di; Ding, Shiming; Li, Bin; Bai, Xiuling; Fan, Chengxin; Zhang, Chaosheng
2013-04-01
Organic phosphorus (nonreactive P, NRP) is a major component of P in sediments, but information about its chemical forms and dynamic transformation is limited. The chemical forms and dynamic behaviors of NRP in a sediment profile from Lake Taihu, a freshwater and eutrophic lake in China, were investigated. Five forms of NRP in the sediments were extracted based on a chemical fractionation technique, including easily labile NRP (NaHCO3-NRP), reactive metal oxide-bound NRP (HCl-NRP), humic acid-associated NRP (NaOH-NRP(HA)), fulvic acid-associated NRP (NaOH-NRP(FA)) and residual NRP (Res-TP). There were notable transformations with increasing sediment depth from the labile NaHCO3-NRP and NaOH-NRP pools to the recalcitrant HCl-NRP and Res-TP pools, which caused the NRP to become increasingly recalcitrant as the early diagenetic processes proceeded. Further analyses showed that the relative changes in contents of organic matter and reactive Fe oxides in the sediment profile triggered a competition for binding NRP fractions and led to the transformation of NRP. The results highlighted the importance of abiotic processes in regulating the diagenesis of organic P and its stability in sediments.
Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment.
Havukainen, Jouni; Nguyen, Mai Thanh; Hermann, Ludwig; Horttanainen, Mika; Mikkilä, Mirja; Deviatkin, Ivan; Linnanen, Lassi
2016-03-01
All life forms require phosphorus (P), which has no substitute in food production. The risk of phosphorus loss from soil and limited P rock reserves has led to the development of recycling P from industrial residues. This study investigates the potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment (ASH DEC) in Finland. An ASH DEC plant could receive 46-76 kt/a of sewage sludge ash to produce 51-85 kt/a of a P-rich product with a P2O5 content of 13-18%, while 320-750 kt/a of manure ash could be supplied to produce 350-830 kt/a of a P-rich product with a P content of 4-5%. The P2O5 potential in the total P-rich product from the ASH DEC process using sewage sludge and manure ash is estimated to be 25-47 kt/a, which is significantly more than the P fertilizer demand in Finland's agricultural industries. The energy efficiency of integrated incineration and the ASH DEC process is more dependent on the total solid content and the subsequent need for mechanical dewatering and thermal drying than on the energy required by the ASH DEC process. According to the results of this study, the treated sewage sludge and manure ash using the ASH DEC process represent significant potential phosphorus sources for P fertilizer production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental evidence of six-fold oxygen coordination for phosphorus and XANES calculations
NASA Astrophysics Data System (ADS)
Flank, A.-M.; Trcera, N.; Brunet, F.; Itié, J.-P.; Irifune, T.; Lagarde, P.
2009-11-01
Phosphorus, a group V element, has always been found so far in minerals, biological systems and synthetic compounds with an oxygen coordination number of four (i.e, PO4 groups). We demonstrate here using phosphorus K-edge XANES spectroscopy that this element can also adopt a six-fold oxygen coordination (i.e, PO6 groups). This new coordination was achieved in AlPO4 doped SiO2 stishovite synthesized at 18 GPa and 1873 K and quenched down to ambient conditions. The well-crystallized P-bearing stishovite grains (up to 100μm diameter) were embedded in the back-transformation products of high pressure form of AlPO4 matrix. They were identified by elemental mapping (μ-XRF). μ-XANES spectra collected at the Si and P K edges in the Si rich region with a very low concentration of P present striking resemblance, Si itself being characteristic of pure stishovite. We can therefore infer that phosphorus in the corresponding stishovite crystal is involved in an octahedral coordination made of six oxygen atoms. First principle XANES calculations using a plane-wave density functional formalism with core-hole effects treated in a supercell approach at the P K edge for a P atom substituting an Si one in the stishovite structure confirm this assertion. This result shows that in the lower-mantle where all silicon is six-fold coordinated, phosphorus has the crystal-chemical ability to remain incorporated into silicate structures.
NASA Astrophysics Data System (ADS)
Zhou, Yuyan; Xu, Y. Jun; Xiao, Weihua; Wang, Jianhua; Hao, Cailian; Zhou, Pu; Shi, Min
2017-12-01
Evaluating tillage effects on soil phosphorus (P) loss at the plot-scale has significant implication for developing best management practices (BMPs) to protect water quality and soil productivity management in agricultural watersheds. This paper aims to quantify P loss from tilled soils under different rainfall patterns in a Phaeozems-dominated agricultural watershed. Eleven rainfall events were monitored at three experimental sites growing corns with conventional till, conservational till, and no-till during a growing season from July to August in 2013. Mean event mean concentration of dissolved phosphorus was 0.130, 0.213 and 0.614 mg L-1 and mean particulate phosphorus transfer rate was 103.502, 33.359 and 27.127 g ha-1 hr-1, respectively for three tillage practices. Results showed that less tillage practices could significantly reduce sediment runoff and PP loss, accompanied with a moderate reduction of runoff yield. While the proportion of PP has been cut down, the proportion of DP could account for the majority. Hydrological factors, including antecedent soil moisture and rainfall variables, could exert various effects on DP, PP and sediment losses under different tillage conditions. Further, the results of this study imply that the soil P loss management and water quality protection in black soil region of Northeast China should take consideration of diverse effects of tillage on phosphorus loss and the dynamics of P between different forms.
Calle-Castañeda, Susana M; Márquez-Godoy, Marco A; Hernández-Ortiz, Juan P
2017-12-29
Phosphorus is an essential nutrient for the synthesis of biomolecules and is particularly important in agriculture, as soils must be constantly supplemented with its inorganic form to ensure high yields and productivity. In this paper, we propose a process to solubilize phosphorus from phosphate rocks, where Acidithiobacillus thiooxidans cultures are pre-cultivated to foster the acidic conditions for bioleaching-two-step "growing-then-recovery"-. Our method solubilizes 100% of phosphorus, whereas the traditional process without pre-cultivation-single-step "growing-and-recovery"-results in a maximum of 56% solubilization. As a proof of principle, we demonstrate that even at low concentrations of the phosphate rock, 1% w/v, the bacterial culture is unviable and biological activity is not observed during the single-step process. On the other hand, in our method, the bacteria are grown without the rock, ensuring high acid production. Once pH levels are below 0.7, the mineral is added to the culture, resulting in high yields of biological solubilization. According to the Fourier Transform Infrared Spectroscopy spectrums, gypsum is the dominant phosphate phase after both the single- and two-step methods. However, calcite and fluorapatite, dominant in the un-treated rock, are still present after the single-step, highlighting the differences between the chemical and the biological methods. Our process opens new avenues for biotechnologies to recover phosphorus in tropical soils and in low-grade phosphate rock reservoirs.
Langland, Michael J.; Hainly, Robert A.
1997-01-01
The Susquehanna River drains about 27,510 square miles in New York, Pennsylvania, and Maryland, contributes nearly 50 percent of the freshwater discharge to the Chesapeake Bay, and contributes nearly 66 percent of the annual nitrogen load, 40 percent of the phosphorus load, and 25 percent of the suspended-sediment load from non-tidal parts of the Bay during a year of average streamflow. A reservoir system formed by three hydroelectric dams on the lower Susquehanna River is currently trapping a major part of the phosphorus and suspended-sediment loads from the basin and, to a lesser extent, the nitrogen loads.In the summer of 1996, the U. S. Geological Survey collected bathymetric data along 64 cross sections and 40 bottom-sediment samples along 14 selected cross sections in the lower Susquehanna River reservoir system to determine the remaining sediment-storage capacity, refine the current estimate of when the system may reach sediment-storage capacity, document changes in the reservoir system after the January 1996 flood, and determine the remaining nutrient mass in Conowingo Reservoir. Results from the 1996 survey indicate an estimated total of 14,800,000 tons of sediment were scoured from the reservoir system from 1993 (date of previous bathymetric survey) through 1996. This includes the net sediment change of 4,700,000 tons based on volume change in the reservoir system computed from the 1993 and 1996 surveys, the 6,900,000 tons of sediment deposited from 1993 through 1996, and the 3,200,000 tons of sediment transported into the reservoir system during the January 1996 flood. The January 1996 flood, which exceeded a 100-year recurrence interval, scoured about the same amount of sediment that normally would be deposited in the reservoir system during a 4- to 6-year period.Concentrations of total nitrogen in bottom sediments in the Conowingo Reservoir ranged from 1,500 to 6,900 mg/kg (milligrams per kilogram); 75 percent of the concentrations were between 3,000 and 5,000 mg/kg. About 96 percent of the concentrations of total nitrogen consisted of organic nitrogen. Concentrations of total phosphorus in bottom sediments ranged from 286 to 1,390 mg/kg. About 84 percent of the concentrations of total phosphorus were comprised of inorganic phosphorus. The ratio of concentrations of plant-available phosphorus to concentrations of total phosphorus ranged from 0.6 to 3.5 percent; ratios generally decreased in a downstream direction.About 29,000 acre-feet, or 42,000,000 tons, of sediment can be deposited before Conowingo Reservoir reaches sediment-storage capacity. Assuming the average annual sediment-deposition rate remains unchanged and no scour occurs due to floods, the reservoir system could reach sediment-storage capacity in about 17 years. The reservoir system currently is trapping about 2 percent of the nitrogen, 45 percent of the phosphorus, and 70 percent of the suspended sediment transported by the river to the upper Chesapeake Bay. Once the reservoir reaches sediment-storage capacity, an estimated 250-percent increase in the current annual loads of suspended sediment, a 2-percent increase in the current annual loads of total nitrogen, and a 70-percent increase in the current annual loads of total phosphorus from the Susquehanna River to Chesapeake Bay can be expected. If the goal of a 40-percent reduction in controllable phosphorus load from the Susquehanna River Basin is met before the reservoirs reach sediment-storage capacity, the 40-percent reduction goal will probably be exceeded when the reservoir system reaches sediment-storage capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlov, D. A.; Bidus, N. V.; Bobrov, A. I., E-mail: bobrov@phys.unn.ru
2015-01-15
The distribution of elastic strains in a system consisting of a quantum-dot layer and a buried GaAs{sub x}P{sub 1−x} layer is studied using geometric phase analysis. A hypothesis is offered concerning the possibility of controlling the process of the formation of InAs quantum dots in a GaAs matrix using a local isovalent phosphorus impurity.
Umeukeje, Ebele; Merighi, J. R.; Browne, T.; Wild, M.; Alsmaan, H.; Umanath, K.; Lewis, J.; Wallston, K; Cavanaugh, K. L.
2016-01-01
This study was designed to assess dialysis subjects’ perceived autonomy support association with phosphate binder medication adherence, race and gender. A multi-site cross-sectional study was conducted among 377 dialysis subjects. The Health Care Climate (HCC) Questionnaire assessed subjects’ perception of their providers’ autonomy support for phosphate binder use, and adherence was assessed by the self-reported Morisky Medication Adherence Scale (MMAS). Serum phosphorus was obtained from the medical record. Regression models were used to examine independent factors of medication adherence, serum phosphorus, and differences by race and gender. Non-white HCC scores were consistently lower compared with white subjects’ scores. No differences were observed by gender. Reported phosphate binder adherence was associated with HCC score, and also with phosphorus control. No significant association was found between HCC score and serum phosphorus. Autonomy support, especially in non-white end stage renal disease subjects, may be an appropriate target for culturally informed strategies to optimize mineral bone health. PMID:27167227
Djafer, Lahcène; Ayral, André; Boury, Bruno; Laine, Richard M
2013-03-01
Phosphorus is frequently reported as a doping element for TiO(2) as photocatalyst; however, the previously reported methods used to prepare P-doped TiO(2) do not allow control over the location of the phosphorus either in the bulk or at the surface or both. In this study, we report on the surface modification of Evonik P25 with phosphonic (H(3)PO(3)) and octylphosphonic acid [C(8)H(17)-PO(OH)(2)], done to limit the introduction of phosphorus only to the photocatalyst surface. The effect of this element on the thermal behavior and photocatalytic properties is reported through characterization using elemental analyses, solid state (31)P NMR, X-ray powder diffraction, N(2) porosimetry, dilatometry, etc. Thus, the objective of the work reported here is to focus on the role(s) that phosphorus plays only at TiO(2) crystallite surfaces. For comparison, other samples were treated with phosphoric acid. Copyright © 2012 Elsevier Inc. All rights reserved.
Changes in Soil Minerology Reduce Phosphorus Mobility During Anoxic Soil Conditions
NASA Astrophysics Data System (ADS)
Giri, S. K.; Geohring, L. D.; Richards, B. K.; Walter, M.; Steenhuis, T. S.
2008-05-01
Phosphorus (P) transfer from the landscape to receiving waters is an important environmental concern because these diffuse losses may cause widespread water quality impairments which can accelerate freshwater eutrophication. Phosphorus (P) mobilization from soil to surface and subsurface flow paths is controlled by numerous factors, and thus it can vary greatly with time and landscape scale. To determine whether P mobilization during soil saturation in the landscape was caused or controlled by complexation, iron reduction or ligand exchange, experiments were carried out to better characterize the interrelationships of varying P sources with dissolved organic carbon (DOC) and soil anoxic conditions. The soil incubation experiments consisted of treatments with distilled water, 5 mM acetic acid (HAc), 0.05% humic acid (HA) and glucose (40 mM) at 26 o C under anaerobic conditions to isolate effects of the various P exchange processes. The experimental results suggest that during soil saturation, the loosely bound P, which is primarily associated with iron oxyhydroxides, was mobilized by both reduction and complexation processes. Good correlations were observed between ferrous iron (Fe+2) and DOC, and between total dissolved phosphorus (TDP) and DOC, facilitating P desorption to the soil water. The anaerobic soil conditions with different P sources also indicated that mineralization facilitated P mobility, mainly due to chelation (humics and metabolites) and as a result of the bio-reduction of iron when fresh litter and grass were present. The organic P sources which are rich in carbohydrate and cellulose and that undergo fermentation due to the action of lactate forming organisms also caused a release of P. The easily metabolizable DOC sources lead to intensive bio-reduction of soil with the release of Fe, however this did not necessarily appear to cause more TDP in the soil solution. The varying P additions in soils with water, HAc and glucose (40mm) before and after soil incubation showed higher P sorption than aerobic soil due to reduced iron (Fe+2) - P mineral formation. Some of the readily available P in the soil solution tended to co-precipitate quickly with Fe, Al, Ca, and Mn, but it also resulted in the formation of earthy masses of vivianite [Fe2+3(PO4)2 . 8 H20], thus almost completely immobilizing P. These findings suggest that where conditions in the landscape are saturated, but remain stagnant for extended time periods, P additions may not necessarily enhance leaching once hydrological transport resumes. The temporal nature of P mobilization processes combined with rapid (i.e., preferential flow) hydrological transport appears to have a more important role in controlling P transport through the landscape.
McClanahan, T R; Carreiro-Silva, M; DiLorenzo, M
2007-12-01
Nitrogen and phosphorous fertilizers were used to determine their short-term summer effects on algal colonization, abundance, and species composition in moderate herbivory treatments. Secondary succession of algae on coral skeletons was examined in four treatments: an untreated control, a pure phosphate fertilizer, a pure nitrogen fertilizer, and an equal mix of the two fertilizers. Turf algae cover was the only measure of algae abundance to respond significantly to fertilization. Turf cover was three times higher in treatments with added nitrogen when compared with the pure phosphorus treatment. These turfs were dominated by green and cyanobacteria taxa, namely Enteromorpha prolifera, Lyngbya confervoides, and two species of Cladophora. The phosphate treatment was dominated by encrusting corallines and the cyanobacteria L. confervoides, while the controls had the highest cover of frondose brown algae, namely Padina sanctae-crucis and two species of Dictyota. Results indicate that turf algae were co-limited by nitrogen and phosphorus but enrichment appeared to inhibit brown frondose algae that currently dominate these reefs. Number of species was lowest on the pure phosphorus and nitrogen treatments, highest in the controls and intermediate in the mixed treatments, which suggests that diversity is reduced most by an imbalanced nutrient ratio.
NASA Astrophysics Data System (ADS)
Alosmanov, R. M.; Szuwarzyński, M.; Schnelle-Kreis, J.; Matuschek, G.; Magerramov, A. M.; Azizov, A. A.; Zimmermann, R.; Zapotoczny, S.
2018-04-01
Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).
Black phosphorus quantum dots/attapulgite nanocomposite with enhanced photocatalytic performance
NASA Astrophysics Data System (ADS)
Li, Xiazhang; Li, Feihong; Lu, Xiaowang; Zuo, Shixiang; Zhuang, Ziheng; Yao, Chao
Novel black phosphorus quantum dots/attapulgite (BPQDs/ATP) nanocomposites were prepared via a facile hydrothermal-deposition method. TEM showed that BPQDs dispersed evenly on the surface of ATP with uniform particle size about 5nm. UV-Vis revealed that the BPQDs/ATP composite showed wider visible light absorption range as compared with pure ATP. The photocatalytic activity was evaluated by degradation of bisphenol A (BPA). Results showed that BPQDs/ATP reached 90% degradation rate under solar light irradiation for 180min. The coherent heterostructure formed by BPQDs and ATP was responsible for the enhanced photocatalytic performance, due to the sensitization effect of BPQDs and the facilitation of charges separation.
Garn, Herbert S.
2002-01-01
Transport of nutrients (primarily forms of nitrogen and phosphorus) to lakes and resulting accelerated eutrophication are serious concerns for planners and managers of lakes in urban and developing suburban areas of the country. Runoff from urban land surfaces such as streets, lawns, and rooftops has been noted to contain high concentrations of nutrients; lawns and streets were the largest sources of phosphorus in residential areas (Waschbusch, Selbig and Bannerman, 1999). The cumulative contribution from many lawns to the amount of nutrients in lakes is not well understood and potentially could be a large part of the total nutrient contribution.
Keitel, Jonas; Zak, Dominik; Hupfer, Michael
2016-04-01
Reservoirs in semi-arid areas are subject to water level fluctuations (WLF) that alter biogeochemical processes in the sediment. We hypothesized that wet-dry cycles may cause internal eutrophication in such systems when they affect densely vegetated shallow areas. To assess the impact of WLF on phosphorus (P) mobilization and benthic P cycling of iron-rich sediments, we tested the effects of (i) sediment drying and rewetting, (ii) the impact of organic matter availability in the form of dried Brazilian Waterweed (Egeria densa), and (iii) alternating redox conditions in the surface water. In principle, drying led to increased P release after rewetting both in plant-free and in plant-amended sediments. Highest P mobilization was recorded in plant amendments under oxygen-free conditions. After re-establishment of aerobic conditions, P concentrations in surface water decreased substantially owing to P retention by sediments. In desiccated and re-inundated sediments, P retention decreased by up to 30% compared to constantly inundated sediments. We showed that WLF may trigger biochemical interactions conducive to anaerobic P release. Thereby, E. densa showed high P release and even P uptake that was redox-controlled and superimposed sedimentary P cycling. Macrophytes play an important role in the uptake of P from the water but may be also a significant source of P in wet-dry cycles. We estimated a potential for the abrupt release of soluble reactive phosphorus (SRP) by E. densa of 0.09-0.13 g SRP per m(2) after each wet-dry cycle. Released SRP may exceed critical P limits for eutrophication, provoking usage restrictions. Our results have implications for management of reservoirs in semi-arid regions affected by WLF.
Valverde-Pérez, Borja; Ramin, Elham; Smets, Barth F; Plósz, Benedek Gy
2015-01-01
Current research considers wastewater as a source of energy, nutrients and water and not just a source of pollution. So far, mainly energy intensive physical and chemical unit processes have been developed to recover some of these resources, and less energy and resource demanding alternatives are needed. Here, we present a modified enhanced biological phosphorus removal and recovery system (referred to as EBP2R) that can produce optimal culture media for downstream micro-algal growth in terms of N and P content. Phosphorus is recovered as a P-stream by diversion of some of the effluent from the upstream anaerobic reactor. By operating the process at comparably low solids retention times (SRT), the nitrogen content of wastewater is retained as free and saline ammonia, the preferred form of nitrogen for most micro-algae. Scenario simulations were carried out to assess the capacity of the EBP2R system to produce nutrient rich organic-carbon depleted algal cultivation media of target composition. Via SRT control, the quality of the constructed cultivation media can be optimized to support a wide range of green micro-algal growth requirements. Up to 75% of the influent phosphorus can be recovered, by diverting 30% of the influent flow as a P-stream at an SRT of 5 days. Through global sensitivity analysis we find that the effluent N-to-P ratio and the P recovered are mainly dependent on the influent quality rather than on biokinetics or stoichiometry. Further research is needed to demonstrate that the system performance predicted through the model-based design can be achieved in reality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liang, Yuan; Cao, Xinde; Zhao, Ling; Xu, Xiaoyun; Harris, Willie
2014-07-01
Land application of animal manure often risks excessive phosphorus (P) release into the surrounding water. The aim of this study was to convert the dairy manure into biochar, followed by their application into soil, and then to investigate P release from the manure and its derived biochar as well as from the manure- and biochar-amended soil. The results showed that P release was reduced when the manure was converted into biochar due to formation of less-soluble whitlockite [(Ca, Mg)(PO)]. The cumulative P released from biochar over 240 h was 0.26 g kg, a 76% reduction of that from the manure (1.07 g kg). The kinetic release of P from the manure was determined by the fast desorption process and was better fitted to Elovich equation, whereas P release from biochar was initially controlled by the diffusion process and then by slow but steady dissolution of (Ca,Mg)(PO), following the parabolic diffusion and linear models, respectively. When the manure or biochar was incorporated into the soil, P release in the CaCl and simulated acid rain water extraction from biochar-amended soil was consistently lower than that from the manure-amended soil during 210-d incubation. The lower P release in the biochar-amended soil was determined by stable P form (Ca, Mg)(PO) in the biochar itself, but less from the soil property effect. Results indicated that initial high P release from manure can be mitigated by converting the manure into biochar. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Shifting Foliar N:P Ratios with Experimental Soil Warming in Tussock Tundra
NASA Astrophysics Data System (ADS)
Jasinski, B.; Mack, M. C.; Schuur, E.; Mauritz, M.; Walker, X. J.
2017-12-01
Warming temperatures in the Arctic and boreal ecosystems are currently driving widespread permafrost thaw. Thermokarst is one form of thaw, in which a deepening active soil layer and associated hydrologic changes can lead to increased nutrient availability and shifts in plant community composition. Individual plant species often differ in their ability to access nutrients and adapt to new environmental conditions. While nitrogen (N) is often the nutrient most limiting to Arctic plant communities, the extent to which plant available phosphorus (P) from previously frozen mineral soil may increase as the active layer deepens is still uncertain. To understand the changing relationship between species' uptake of N and P in a thermokarst environment, we assessed foliar N:P ratios from 2015 in two species, a tussock sedge (Eriophorum vaginatum) and a dwarf shrub (Rubus chamaemorus), at a moist acidic tussock tundra experimental passive soil warming site. The passive soil warming treatment increased active layer depth in warmed plots by 35.4 cm (+/- 1.1 cm), an 80% increase over the control plots. E.vaginatum demonstrated a 16.9% decrease (p=0.012, 95% CI [-27.99%, -5.94%]) in foliar N:P ratios in warmed plots, driven mostly by an increase in foliar phosphorus. Foliar N:P ratios of R.chamaemorus showed no significant change. However, foliar samples of R.chamaemorus were significantly enriched in the isotope 15N in soil warming plots (9.9% increase (p=0.002, 95% CI [4.45%, 15.39%])), while the sedge E.vaginatum was slightly depleted. These results suggest that (1) in environments with thawing mineral soil plant available phosphorus may increase more quickly than nitrogen, and (2) that species' uptake strategies and responses to increasing N and P will vary, which has implications for future ecological shifts in thawing ecosystems.
Modeling a phosphorus credit trading program in an agricultural watershed.
Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando
2014-10-01
Water quality and economic models were linked to assess the economic and environmental benefits of implementing a phosphorus credit trading program in an agricultural sub-basin of Lake Okeechobee watershed, Florida, United States. The water quality model determined the effects of rainfall, land use type, and agricultural management practices on the amount of total phosphorus (TP) discharged. TP loadings generated at the farm level, reaching the nearby streams, and attenuated to the sub-basin outlet from all sources within the sub-basin, were estimated at 106.4, 91, and 85 mtons yr(-)(1), respectively. Almost 95% of the TP loadings reaching the nearby streams were attributed to agriculture sources, and only 1.2% originated from urban areas, accounting for a combined TP load of 87.9 mtons yr(-)(1). In order to compare a Least-Cost Abatement approach to a Command-and-Control approach, the most cost effective cap of 30% TP reduction was selected, and the individual allocation was set at a TP load target of 1.6 kg ha(-1) yr(-1) (at the nearby stream level). The Least-Cost Abatement approach generated a potential cost savings of 27% ($1.3 million per year), based on an optimal credit price of $179. Dairies (major buyer), ornamentals, row crops, and sod farms were identified as potential credit buyers, whereas citrus, improved pastures (major seller), and urban areas were identified as potential credit sellers. Almost 81% of the TP credits available for trading were exchanged. The methodology presented here can be adapted to deal with different forms of trading sources, contaminants, or other technologies and management practices. Copyright © 2014 Elsevier Ltd. All rights reserved.
Serum ionized calcium in dogs with chronic renal failure and metabolic acidosis.
Kogika, Marcia M; Lustoza, Marcio D; Notomi, Marcia K; Wirthl, Vera A B F; Mirandola, Regina M S; Hagiwara, Mitika K
2006-12-01
Chronic renal failure (CRF) is a common disease in dogs, and many metabolic disorders can be observed, including metabolic acidosis and calcium and phosphorus disturbances. Acidosis may change the ionized calcium (i-Ca) fraction, usually increasing its concentration. In this study we evaluated the influence of acidosis on the serum concentration of i-Ca in dogs with CRF and metabolic acidosis. Dogs were studied in 2 groups: group I (control group = 40 clinically normal dogs) and group II (25 dogs with CRF and metabolic acidosis). Serum i-Ca was measured by an ion-selective electrode method; other biochemical analytes were measured using routine methods. The i-Ca concentration was significantly lower in dogs in group II than in group I; 56% of the dogs in group II were hypocalcemic. Hypocalcemia was observed in only 8% of dogs in group II when based on total calcium (t-Ca) concentration. No correlation between pH and i-Ca concentration was observed. A slight but significant correlation was detected between i-Ca and serum phosphorus concentration (r = -.284; P = .022), as well as between serum t-Ca and i-Ca concentration (r = .497; P < .0001). The i-Ca concentration in dogs with CRF and metabolic acidosis varied widely from that of t-Ca, showing the importance of determining the biologically active form of calcium. Metabolic acidosis did not influence the increase in i-Ca concentration, so other factors besides acidosis in CRF might alter the i-Ca fraction, such as hyperphosphatemia and other compounds that may form complexes with calcium.
Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both.
Mo, Lan; Liaw, Lucy; Evan, Andrew P; Sommer, Andre J; Lieske, John C; Wu, Xue-Ru
2007-12-01
Although often supersaturated with mineral salts such as calcium phosphate and calcium oxalate, normal urine possesses an innate ability to keep them from forming harmful crystals. This inhibitory activity has been attributed to the presence of urinary macromolecules, although controversies abound regarding their role, or lack thereof, in preventing renal mineralization. Here, we show that 10% of the mice lacking osteopontin (OPN) and 14.3% of the mice lacking Tamm-Horsfall protein (THP) spontaneously form interstitial deposits of calcium phosphate within the renal papillae, events never seen in wild-type mice. Lack of both proteins causes renal crystallization in 39.3% of the double-null mice. Urinalysis revealed elevated concentrations of urine phosphorus and brushite (calcium phosphate) supersaturation in THP-null and OPN/THP-double null mice, suggesting that impaired phosphorus handling may be linked to interstitial papillary calcinosis in THP- but not in OPN-null mice. In contrast, experimentally induced hyperoxaluria provokes widespread intratubular calcium oxalate crystallization and stone formation in OPN/THP-double null mice, while completely sparing the wild-type controls. Whole urine from OPN-, THP-, or double-null mice all possessed a dramatically reduced ability to inhibit the adhesion of calcium oxalate monohydrate crystals to renal epithelial cells. These data establish OPN and THP as powerful and functionally synergistic inhibitors of calcium phosphate and calcium oxalate crystallization in vivo and suggest that defects in either molecule may contribute to renal calcinosis and stone formation, an exceedingly common condition that afflicts up to 12% males and 5% females.
Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian
2011-01-01
In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of floating macrophytes accumulated behind bridge constrictions and dams; in 2008, high flows during the early part of the growing season carried floating macrophytes past bridges and over dams, minimizing accumulations. Samples of Lemna were collected and weighed to provide an estimate of Lemna biomass based on areal coverage during the summer growing seasons at eight sites in the five impoundments. Average estimated biomass during 2007 was approximately twice the 2008 biomass in each of the areas monitored. In 2007, in situ hyperspectral and high-resolution, multispectral data from the IKONOS satellite were obtained to evaluate the feasibility of using remote sensing to monitor the extent of aquatic plant growth in Assabet River impoundments. Three vegetation indices based on light reflectance were used to develop metrics with which the hyperspectral and satellite data were compared. The results of the comparisons confirmed that the high-resolution satellite imagery could differentiate among the common aquatic-plant associations found in the impoundments. The use of satellite imagery could counterbalance emphasis on the subjective judgment of a human observer, and airborne hyperspectral data can provide higher resolution imagery than multispectral satellite data. In 2007 and 2008, the potential for sediment flux of phosphorus was examined in free-flowing reaches of the river and in the two largest impoundments-Hudson and Ben Smith. These studies were undertaken to determine in situ flux rates prior to the implementation of the Assabet River Total Maximum Daily Load (TMDL) for phosphorus and to compare these rates with those used in the development and evaluation of the TMDL. Water samples collected from a chamber placed on the river bottom were analyzed for total phosphorus and orthophosphorus. Ambient dissolved oxygen concentrations and seasonal temperature differences appeared to affect the rates of sequestration and sediment release of phosphorus. When dissolved oxygen concentrations remained relatively high in the chambers and when the temperature was relatively low, the tendency was for phosphorus concentrations to decrease in the chambers, indicating sediment sequestration of phosphorus; when dissolved oxygen concentrations dropped to near zero and temperatures were warmest, phosphorus concentrations increased in the chambers, indicating phosphorus flux from the sediment. The rates of release and sequestration in the in situ studies were generally comparable with the rates determined in laboratory studies of Assabet River sediment cores for State and Federal agencies. Sediment-core and chamber studies produced substantial sediment fluxes to the water column only under extremely low-DO or anaerobic conditions rarely found in the Assabet River impoundments; thus, sediment is not likely to be a major phosphorus source, especially when compared to the wastewater effluent, which sustains higher ambient concentrations. The regulatory agencies now (2011) have substantial laboratory and field data with which to determine the required 90-percent reduction in phosphorus flux after the completion of upgrades to the wastewater-treatment plants that discharge to the Assabet River.
Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.
Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen
2018-05-28
Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dietary micronutrient intake and atherosclerosis in systemic lupus erythematosus.
Lourdudoss, C; Elkan, A-C; Hafström, I; Jogestrand, T; Gustafsson, T; van Vollenhoven, R; Frostegård, J
2016-12-01
The aim of this study was to investigate the role of dietary micronutrient intake in systemic lupus erythematosus (SLE). This study included 111 SLE patients and 118 age and gender-matched controls. Data on diet (food frequency questionnaires) were linked with data on Systemic Lupus Activity Measure, Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) and carotid atherosclerotic/echolucent plaque (B-mode ultrasound). Dietary micronutrient intake were compared between SLE patients and controls and in relation to lupus activity and atherosclerosis in SLE. Associations between micronutrient intake and plaque were analyzed through logistic regression, adjusted for potential confounders. Micronutrient intake did not differ between patients and controls, and between lower and higher lupus activity, apart from the fact that phosphorus was associated with SLEDAI > 6. In SLE patients, some micronutrients were associated with atherosclerotic plaque, left side. Lower intake of riboflavin and phosphorus was associated with atherosclerotic plaque, left side (odds ratio (OR) 3.06, 95% confidence interval (CI) 1.12-8.40 and OR 4.36, 95% CI 1.53-12.39, respectively). Higher intake of selenium and thiamin was inversely associated with atherosclerotic plaque, left side (OR 0.28, 95% CI 0.09-0.89 and OR 0.26, 95% CI 0.08-0.80, respectively). In addition, higher intake of thiamin was inversely associated with echolucent plaque, left side (OR 0.22, 95% CI 0.06-0.84). Lower intake of folate was inversely associated with bilateral echolucent plaque (OR 0.36, 95% CI 0.13-0.99). SLE patients did not have different dietary micronutrient intake compared to controls. Phosphorus was associated with lupus activity. Riboflavin, phosphorus, selenium and thiamin were inversely associated with atherosclerotic plaque, left side in SLE patients, but not in controls. Dietary micronutrients may play a role in atherosclerosis in SLE. © The Author(s) 2016.
Oxygen isotopes as a tracer of phosphate sources and cycling in aquatic systems (Invited)
NASA Astrophysics Data System (ADS)
Young, M. B.; Kendall, C.; Paytan, A.
2013-12-01
The oxygen isotopic composition of phosphate can provide valuable information about sources and processes affecting phosphorus as it moves through hydrologic systems. Applications of this technique in soil and water have become more common in recent years due to improvements in extraction methods and instrument capabilities, and studies in multiple aquatic environments have demonstrated that some phosphorus sources may have distinct isotopic compositions within a given system. Under normal environmental conditions, the oxygen-phosphorus bonds in dissolved inorganic phosphate (DIP) can only be broken by enzymatic activity. Biological cycling of DIP will bring the phosphate oxygen into a temperature-dependent equilibrium with the surrounding water, overprinting any existing isotopic source signals. However, studies conducted in a wide range of estuarine, freshwater, and groundwater systems have found that the phosphate oxygen is often out of biological equilibrium with the water, suggesting that it is common for at least a partial isotopic source signal to be retained in aquatic systems. Oxygen isotope analysis on various potential phosphate sources such as synthetic and organic fertilizers, animal waste, detergents, and septic/wastewater treatment plant effluents show that these sources span a wide range of isotopic compositions, and although there is considerable overlap between the source groups, sources may be isotopically distinct within a given study area. Recent soil studies have shown that isotopic analysis of phosphate oxygen is also useful for understanding microbial cycling across different phosphorus pools, and may provide insights into controls on phosphorus leaching. Combining stable isotope information from soil and water studies will greatly improve our understanding of complex phosphate cycling, and the increasing use of this isotopic technique across different environments will provide new information regarding anthropogenic phosphate inputs and controls on biological cycling within hydrologic systems.
Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavda, Mehul A.; Bernal, Susan A.; Apperley, David C.
The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {supmore » 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.« less
Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation.
Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn
2016-03-30
Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors.
Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation
Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn
2016-01-01
Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors. PMID:27026070
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rottink, M.K.; Angelici, R.J.
1993-05-26
Titration calorimetry has been used to determine the heats of protonation ([Delta]H[sub HP]) of M(CO)[sub 5]([eta][sup 1]-dppm) (M = Cr, Mo, W) and fac-M(CO)[sub 3](N-N)([eta][sup 1]-dppm) (M = Mo, N-N = bipy, phen; M = w, N-N = bipy) complexes with CF[sub 3]SO[sub 3]H in 1,2-dichloroethane solvent at 25.0 [degrees]C. Spectroscopic studies show that protonation occurs at the uncoordinated phosphorus atom of the [eta][sup 1]-coordinated dppm (Ph[sub 2]PCH[sub 2]PPh[sub 2]) ligand. For dppm, its monoprotonated form (dppmH[sup +]), and these complexes, the basicity ([Delta]H[sub HP]) of the dangling phosphorus increases from -14.9 kcal/mol to -23.1 kcal/mol in the order: dppmH[supmore » +]« less
Advances in Holocene mountain geomorphology inspired by sediment budget methodology
NASA Astrophysics Data System (ADS)
Slaymaker, Olav; Souch, Catherine; Menounos, Brian; Filippelli, Gabriel
2003-09-01
The sediment budget, which links sediment sources to sediment sinks with hydroclimatic and weathering processes mediating the response, is applied to the analysis of sediments in three alpine lakes in British Columbia. We provide two ways of using the sediment budget as an integrating device in the interpretation of mountain geomorphology. These approaches differ in their resolution and ability to budget the major components of the fine-sediment cascade in glaciated environments. Taken together, they provide an integrated index of landscape change over the Holocene. The first example compares the hydroclimatic controls of lake sedimentation for the last 600 years (A.D. 1370-1998) preserved in varved sediments from two of the lake basins. This hydroclimatological approach incorporates contemporary monitoring, air photo analysis, and detailed stratigraphy of sedimentation events within a single varve to infer the timing, sources, and preferred pathways of fine-grained sediments reaching the lake basins. The results indicate that glaciers, hillslope, and channel instability within the major subbasins are the principal sediment sources to the lake basins. Transitory sediment storage of glacially derived sediments within the channels is believed to modulate the episodic and more frequent delivery of sediments from adjacent hillslope and fluvial storage sites and direct routing of glacial rock flour during years of prolonged glacial melt. The second example, relying on the phosphorus geochemistry of sediments in an alpine lake basin, considers the evolution of phosphorus forms (from mineral to occluded and organic fractions) as a function of the soil development, inherent slope instability, and repeated cycles of glaciation and neoglaciation over the Holocene. This geochemical approach demonstrates that both neoglaciation and full glaciation have essentially zeroed the system in such a way that a high proportion of mineral phosphorus remains in the present lake sediments and the bioavailability of phosphorus (a key to ecosystem development) is low. Both examples illustrate the importance of variable sediment sources; the seasonality, frequency, and magnitude of sediment transfers; and the profound influence of ice cover over contemporary, neoglacial and Pleistocene time scales. They also signal the value of including both clastic and dissolved components in the sediment budget.
Mineral resource of the month: Phosphate rock
Jasinski, Stephen M.
2013-01-01
As a mineral resource, “phosphate rock” is defined as unprocessed ore and processed concentrates that contain some form of apatite, a group of calcium phosphate minerals that is the primary source for phosphorus in phosphate fertilizers, which are vital to agriculture.
2003-08-01
including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...Tactical Air Controller GIS Geographic Information System H2S hydrogen sulfide H3PO4 orthophosphoric acid H4P2O7 pyrophosphoric acid H5P3O10... Data .............................................................. 3-24 Final EA for White Phosphorus Rocket Use at Melrose Air Force Range, New
Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua
2015-06-01
Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.
Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E
2009-06-01
Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.
Simulation of dissolved nutrient export from the Dongjiang river basin with a grid-based NEWS model
NASA Astrophysics Data System (ADS)
Rong, Qiangqiang; Su, Meirong; Yang, Zhifeng; Cai, Yanpeng; Yue, Wencong; Dang, Zhi
2018-06-01
In this research, a grid-based NEWS model was proposed through coupling the geographic information system (GIS) with the Global NEWS model framework. The model was then applied to the Dongjiang River basin to simulate the dissolved nutrient export from this area. The model results showed that the total amounts of the dissolved nitrogen and phosphorus exported from the Dongjiang River basin were approximately 27154.87 and 1389.33 t, respectively. 90 % of the two loads were inorganic forms (i.e. dissolved inorganic nitrogen and phosphorus, DIN and DIP). Also, the nutrient export loads did not evenly distributed in the basin. The main stream watershed of the Dongjiang River basin has the largest DIN and DIP export loads, while the largest dissolved organic nitrogen and phosphorus (DON and DOP) loads were observed in the middle and upper stream watersheds of the basin, respectively. As for the nutrient exported from each subbasin, different sources had different influences on the output of each nutrient form. For the DIN load in each subbasin, fertilization application, atmospheric deposition and biological fixation were the three main contributors, while eluviation was the most important source for DON. In terms of DIP load, fertilizer application and breeding wastewater were the main contributors, while eluviation and fertilizer application were the two main sources for DOP.
Zhang, Jian; Wang, Peng Cheng; Fang, Ling; Zhang, Qi-An; Yan, Cong Sheng; Chen, Jing Yi
2017-03-30
Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.
Rwei, Syang-Peng; Chen, Yu-Ming; Chiang, Whe-Yi; Ting, Yi-Tien
2017-01-01
A UV-curable, flame-retardant monomer, DAPP (bis[di-acryloyloxyethyl]-p-tert-butyl-phenyl-phosphate), was synthesized based on BPDCP (4-tert-butylphenyl-dichloro phosphate) and HEA (2-hydroxy ethyl acrylate). DAPP was blended with regular bisphenol A epoxy acrylate (BAEA) in various ratios to yield various phosphorus contents. The TGA-IR (thermogravimetric analyzer interface with an infrared spectrometer) results demonstrate that compounding 30 mol % DAPP with BAEA significantly reduced the amount of released CO gas. In contrast, the peak intensity of CO2 is independent of phosphorus content. The limiting oxygen index (LOI), reaching the saturated value of 26, and the heat release rate (HRR) measured using a cone-calorimeter, 156.43 KW/m2, confirm the saturation point when 30 mol % DAPP was compounded into BAEA. A study of the kinetics of pyrolysis reveals that Ea decreases as the phosphorus content increases. Both the TGA-IR and pyrolysis results reveal that the phosphorus compound DAPP is easily decomposed during the initial stage of burning to form an insulating layer, which inhibits further burning of the resin and the consequent release of other flammable gases. PMID:28772562
Li, Jihui; Li, Yongshen; Niu, Shuai; Li, Ning
2017-05-01
In this paper, phosphorus graphene oxide/poly (vinyl alcohol) polymer (PGO/PVA polymer) was synthesized by PGO and PVA via the esterification in the case of faint acidity and the ultrasound irradiation and characterized; moreover, phosphorus graphene oxide/poly (vinyl alcohol) film (PGO/PVA film) was prepared by PGO/PVA polymer and characterized; also, the surface resistivity of PGO/PVA film was investigated in the case of the different amount of PGO. Based on those, it had been found that PGO reacted with PVA to produce PGO/PVA polymer via the esterification under the ultrasonic-assisted condition, and PGO/PVA polymer was structured by 2D lattice of PGO and the chain of PVA connected in the form of six-member lactone ring and phosphonic ester, and PGO/PVA film was constituted by PGO/PVA polymer, and surface resistivity of 0.00, 0.75, 1.50, 2.25 and 3.00wt% of PGO/PVA film were 6.85×10 8 , 2.98×10 8 , 1.42×10 6 , 7.66×10 4 and 1.29×10 5 Ω/sq, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Steckenmesser, Daniel; Vogel, Christian; Adam, Christian; Steffens, Diedrich
2017-04-01
Sewage sludge has one of the highest phosphorus (P) recovery potentials of all waste materials. Therefore, P-recycling from sewage sludge could contribute to closing the P-cycle. Recently, various thermal processes for P-recovery have been developed, but there is still a demand for information on the effect of different process parameters (e.g. additives and temperature) on P-speciation and especially on the fertilization performance. In the present study, two common methods (low-temperature conversion at 400-500°C and thermochemical treatment at 950°C) were investigated and combined to produce highly bioavailable P-fertilizers from two different types of sewage sludge based on chemical phosphorus precipitation (Chem-P) and enhanced biological phosphorus removal (Bio-P). The results of P-fractionation, X-ray diffraction analysis, and pot experiments with maize showed that Bio-P sludges attain high P-plant-availability after treatment at low temperatures (400°C). In contrast, Chem-P sludges can adequately be treated at higher temperatures under reductive conditions with sodium additives to form highly bioavailable calcium-sodium-phosphate. Additionally, also highly heavy-metal contaminated sludges can be thermochemically treated at high temperatures to achieve the legal requirements for fertilizers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fernández-Martín, José Luis; Martínez-Camblor, Pablo; Dionisi, María Paula; Floege, Jürgen; Ketteler, Markus; London, Gérard; Locatelli, Francesco; Gorriz, José Luis; Rutkowski, Boleslaw; Ferreira, Aníbal; Bos, Willem-Jan; Covic, Adrian; Rodríguez-García, Minerva; Sánchez, José Emilio; Rodríguez-Puyol, Diego; Cannata-Andia, Jorge B
2015-09-01
Abnormalities in serum phosphorus, calcium and parathyroid hormone (PTH) have been associated with poor survival in haemodialysis patients. This COSMOS (Current management Of Secondary hyperparathyroidism: a Multicentre Observational Study) analysis assesses the association of high and low serum phosphorus, calcium and PTH with a relative risk of mortality. Furthermore, the impact of changes in these parameters on the relative risk of mortality throughout the 3-year follow-up has been investigated. COSMOS is a 3-year, multicentre, open-cohort, prospective study carried out in 6797 adult chronic haemodialysis patients randomly selected from 20 European countries. Using Cox proportional hazard regression models and penalized splines analysis, it was found that both high and low serum phosphorus, calcium and PTH were associated with a higher risk of mortality. The serum values associated with the minimum relative risk of mortality were 4.4 mg/dL for serum phosphorus, 8.8 mg/dL for serum calcium and 398 pg/mL for serum PTH. The lowest mortality risk ranges obtained using as base the previous values were 3.6-5.2 mg/dL for serum phosphorus, 7.9-9.5 mg/dL for serum calcium and 168-674 pg/mL for serum PTH. Decreases in serum phosphorus and calcium and increases in serum PTH in patients with baseline values of >5.2 mg/dL (phosphorus), >9.5 mg/dL (calcium) and <168 pg/mL (PTH), respectively, were associated with improved survival. COSMOS provides evidence of the association of serum phosphorus, calcium and PTH and mortality, and suggests survival benefits of controlling chronic kidney disease-mineral and bone disorder biochemical parameters in CKD5D patients. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.
Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H
2013-04-01
An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.
de Fornasari, Margareth Lage Leite; Dos Santos Sens, Yvoty Alves
2017-03-01
The purpose of the study was to verify the effects of replacing phosphorus-containing food additives with foods without additives on phosphatemia in end-stage renal disease (ESRD) patients. Randomized clinical trial. Adult patients on hemodialysis for ≥6 months at a single center. A total of 134 patients with phosphorus levels of >5.5 mg/dL were included and were randomized into an intervention group (n = 67) and a control group (n = 67). The IG received individual orientation to replace processed foods that have phosphorus additives with foods of similar nutritional value without these additives. The CG received only the nutritional orientation given before the study. Clinical laboratory data, nutritional status, energy and protein intake, and normalized protein nitrogen appearance (nPNA) were evaluated at the beginning of the study and after 90 days. There was no initial difference between the groups in terms of serum phosphorus levels, nutritional status, and energy intake. After 3 months, there was a decline in phosphorus levels in the IG (from 7.2 ± 1.4 to 5.0 ± 1.3 mg/dL, P < .001), but there was no significant difference in the CG (from 7.1 ± 1.2 to 6.7 ± 1.2 mg/dL, P = .65). In the IG, 69.7% of the patients reached the serum phosphorus target of ≤5.5 mg/dL; however, only 18.5% of the CG subjects reached this level (P < .001). At the end, there was no difference between the two groups in terms of nutritional status, energy intake, protein intake, and nPNA. The replacing phosphorus-containing food additives with foods without additives reduced serum phosphorus without interfering in the nutritional status of ESRD patients. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds
Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie
2013-01-01
Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774
Lovelock, Catherine E; Ball, Marilyn C; Choat, Brendan; Engelbrecht, Bettina M J; Holbrook, N Michelle; Feller, Ilka C
2006-05-01
Spatial gradients in mangrove tree height in barrier islands of Belize are associated with nutrient deficiency and sustained flooding in the absence of a salinity gradient. While nutrient deficiency is likely to affect many parameters, here we show that addition of phosphorus (P) to dwarf mangroves stimulated increases in diameters of xylem vessels, area of conductive xylem tissue and leaf area index (LAI) of the canopy. These changes in structure were consistent with related changes in function, as addition of P also increased hydraulic conductivity (Ks), stomatal conductance and photosynthetic assimilation rates to the same levels measured in taller trees fringing the seaward margin of the mangrove. Increased xylem vessel size and corresponding enhancements in stem hydraulic conductivity in P fertilized dwarf trees came at the cost of enhanced mid-day loss of hydraulic conductivity and was associated with decreased assimilation rates in the afternoon. Analysis of trait plasticity identifies hydraulic properties of trees as more plastic than those of leaf structural and physiological characteristics, implying that hydraulic properties are key in controlling growth in mangroves. Alleviation of P deficiency, which released trees from hydraulic limitations, reduced the structural and functional distinctions between dwarf and taller fringing tree forms of Rhizophora mangle.
Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi.
Shemi, Adva; Schatz, Daniella; Fredricks, Helen F; Van Mooy, Benjamin A S; Porat, Ziv; Vardi, Assaf
2016-08-01
Nutrient availability is an important factor controlling phytoplankton productivity. Phytoplankton contribute c. 50% of the global photosynthesis and possess efficient acclimation mechanisms to cope with nutrient stress. We investigate the cellular response of the bloom-forming coccolithophore Emiliania huxleyi to phosphorus (P) scarcity, which is often a limiting factor in marine ecosystems. We combined mass spectrometry, fluorescence microscopy, transmission electron microscopy (TEM) and gene expression analyses in order to assess diverse cellular features in cells exposed to P limitation and recovery. Early starvation-induced substitution of phospholipids in the cells' membranes with galacto- and betaine lipids. Lipid remodeling was rapid and reversible upon P resupply. The PI3K inhibitor wortmannin reduced phospholipid substitution, suggesting a possible involvement of PI3K- signaling in this process. In addition, P limitation enhanced the formation and acidification of membrane vesicles in the cytoplasm. Intracellular vesicles may facilitate the recycling of cytoplasmic content, which is engulfed in the vesicles and delivered to the main vacuole. Long-term starvation was characterized by a profound increase in cell size and morphological alterations in cellular ultrastructure. This study provides cellular and molecular basis for future ecophysiological assessment of natural E. huxleyi populations in oligotrophic regions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Numerical methods for assessing water quality in lakes and reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahamah, D.S.
1984-01-01
Water quality models are used as tools for predicting both short-term and long-term trends in water quality. They are generally classified into two groups based on the degree of empiricism. The two groups consists of the purely empirical types known as black-box models and the theoretical types called ecosystem models. This dissertation deals with both types of water quality models. The first part deals with empirical phosphorus models. The theory behind this class of models is discussed, leading to the development of an empirical phosphorus model using data from 79 western US lakes. A new approach to trophic state classificationmore » is introduced. The data used for the model was obtained from the Environmental Protection Agency National Eutrophication Study (EPA-NES) of western US lakes. The second portion of the dissertation discusses the development of an ecosystem model for culturally eutrophic Liberty Lake situated in eastern Washington State. The model is capable of simulating chlorophyll-a, phosphorus, and nitrogen levels in the lake on a weekly basis. For computing sediment release rates of phosphorus and nitrogen, equations based on laboratory bench-top studies using sediment samples from Liberty Lake are used. The model is used to simulate certain hypothetical nutrient control techniques such as phosphorus flushing, precipitation, and diversion.« less
Effect of ceramic calcium-phosphorus ratio on chondrocyte-mediated biosynthesis and mineralization.
Boushell, Margaret K; Khanarian, Nora T; LeGeros, Raquel Z; Lu, Helen H
2017-10-01
The osteochondral interface functions as a structural barrier between cartilage and bone, maintaining tissue integrity postinjury and during homeostasis. Regeneration of this calcified cartilage region is thus essential for integrative cartilage healing, and hydrogel-ceramic composite scaffolds have been explored for calcified cartilage formation. The objective of this study is to test the hypothesis that Ca/P ratio of the ceramic phase of the composite scaffold regulates chondrocyte biosynthesis and mineralization potential. Specifically, the response of deep zone chondrocytes to two bioactive ceramics with different calcium-phosphorus ratios (1.35 ± 0.01 and 1.41 ± 0.02) was evaluated in agarose hydrogel scaffolds over two weeks in vitro. It was observed that the ceramic with higher calcium-phosphorus ratio enhanced chondrocyte proliferation, glycosaminoglycan production, and induced an early onset of alkaline phosphorus activity, while the ceramic with lower calcium-phosphorus ratio performed similarly to the ceramic-free control. These results underscore the importance of ceramic bioactivity in directing chondrocyte response, and demonstrate that Ca/P ratio is a key parameter to be considered in osteochondral scaffold design. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2694-2702, 2017. © 2017 Wiley Periodicals, Inc.
He, Xuemeng; Zhang, Tao; Ren, Hongqiang; Li, Guoxue; Ding, Lili; Pawlowski, Lucjan
2017-02-01
Phosphorus (P) recovery from biogas slurry has recently attracted considerable interest. In this work, ultrasound/H 2 O 2 digestion coupled with ferric oxide hydrate/biochar (HFO/biochar) adsorption process was performed to promote P dissolution, release, and recovery from biogas slurry. The results showed that the optimal total phosphorus release efficiency was achieved at an inorganic phosphorus/total phosphorus ratio of 95.0% at pH 4, 1mL of added H 2 O 2 , and ultrasonication for 30min. The P adsorption by the HFO/biochar followed pseudo second-order kinetics and was mainly controlled by chemical processes. The Langmuir-Freundlich model matched the experimental data best for P adsorption by HFO/biochar at 298 and 308K, whereas the Freundlich model matched best at 318K. The maximum amount of P adsorbed was 220mg/g. The process was endothermic, spontaneous, and showed an increase in disorder at the solid-liquid interface. The saturated adsorbed HFO/biochar continually releases P and is most suitable for use in an alkaline environment. The amount of P released reached 29.1mg/g after five extractions. P mass balance calculation revealed that 11.3% of the total P can be made available. Copyright © 2016. Published by Elsevier Ltd.
Reassessing hypoxia forecasts for the Gulf of Mexico.
Scavia, Donald; Donnelly, Kristina A
2007-12-01
Gulf of Mexico hypoxia has received considerable scientific and policy attention because of its potential ecological and economic impacts and implications for agriculture within its massive watershed. A 2000 assessment concluded that increased nitrate load to the Gulf since the 1950s was the primary cause of large-scale hypoxia areas. More recently, models have suggested that large-scale hypoxia did not start untilthe mid-1970s, and that a 40-45% nitrogen load reduction may be needed to reach the hypoxia area goal of the Hypoxia Action Plan. Recently, USGS revised nutrient load estimates to the Gulf, and the Action Plan reassessment has questioned the role of phosphorus versus nitrogen in controlling hypoxia. In this paper, we re-evaluate model simulations, hindcasts, and forecasts using revised nitrogen loads, and testthe ability of a phosphorus-driven version of the model to reproduce hypoxia trends. Our analysis suggests that, if phosphorus is limiting now, it became so because of relative increases in nitrogen loads during the 1970s and 1980s. While our model suggests nitrogen load reductions of 37-45% or phosphorus load reductions of 40-50% below the 1980-1996 average are needed, we caution that a phosphorus-only strategy is potentially dangerous, and suggest it would be prudent to reduce both.
Increasing phosphorus recovery from dewatering centrate in microbial electrolysis cells.
Yuan, Pengyi; Kim, Younggy
2017-01-01
Microbial electrolysis cells (MECs) use bioelectrochemical reactions to remove organic contaminants at the bioanode and produce hydrogen gas at the cathode. High local pH conditions near the cathode can also be utilized to produce struvite from nutrient-rich wastewater. This beneficial aspect was investigated using lab-scale MECs fed with dewatering centrate collected at a local wastewater treatment plant. The main objective was to improve phosphorus recovery by examining various cathode configurations and electric current conditions. The stainless steel mesh (SSM) cathode was relatively inefficient to achieve complete phosphorus recovery because struvite crystals were smaller (a few to tens of micrometers) than the open space between mesh wires (80 µm). As a result, the use of multiple pieces of SSM also showed a limited improvement in the phosphorus recovery up to only 68% with 5 SSM pieces. Readily available organic substrates were not sufficient in the dewatering centrate, resulting in relatively low electric current density (mostly below 0.2 A/m 2 ). The slow electrode reaction did not provide sufficiently high pH conditions near the cathode for complete recovery of phosphorus as struvite. Based on these findings, additional experiments were conducted using stainless steel foil (SSF) as the cathode and acetate (12 mM) as an additional organic substrate for exoelectrogens at the bioanode. With the high electric current (>2 A/m 2 ), a thick layer of struvite crystals was formed on the SSF cathode. The phosphorus recovery increased to 96% with the increasing MEC operation time from 1 to 7 days. With the high phosphorus recovery, estimated energy requirement was relatively low at 13.8 kWh (with acetate) and 0.30 kWh (without acetate) to produce 1 kg struvite from dewatering centrate. For efficient phosphorus recovery from real wastewater, a foil-type cathode is recommended to avoid potential losses of small struvite crystals. Also, presence of readily available organic substrates is important to maintain high electric current and establish high local pH conditions near the cathode. Struvite precipitation was relatively slow, requiring 7 days for nearly complete removal (92%) and recovery (96%). Future studies need to focus on shortening the time requirement.
The Prevalence of Phosphorus Containing Food Additives in Top Selling Foods in Grocery Stores
León, Janeen B.; Sullivan, Catherine M.; Sehgal, Ashwini R.
2013-01-01
Objective To determine the prevalence of phosphorus-containing food additives in best selling processed grocery products and to compare the phosphorus content of a subset of top selling foods with and without phosphorus additives. Design The labels of 2394 best selling branded grocery products in northeast Ohio were reviewed for phosphorus additives. The top 5 best selling products containing phosphorus additives from each food category were matched with similar products without phosphorus additives and analyzed for phosphorus content. Four days of sample meals consisting of foods with and without phosphorus additives were created and daily phosphorus and pricing differentials were computed. Setting Northeast Ohio Main outcome measures Presence of phosphorus-containing food additives, phosphorus content Results 44% of the best selling grocery items contained phosphorus additives. The additives were particularly common in prepared frozen foods (72%), dry food mixes (70%), packaged meat (65%), bread & baked goods (57%), soup (54%), and yogurt (51%) categories. Phosphorus additive containing foods averaged 67 mg phosphorus/100 gm more than matched non-additive containing foods (p=.03). Sample meals comprised mostly of phosphorus additive-containing foods had 736 mg more phosphorus per day compared to meals consisting of only additive-free foods. Phosphorus additive-free meals cost an average of $2.00 more per day. Conclusion Phosphorus additives are common in best selling processed groceries and contribute significantly to their phosphorus content. Moreover, phosphorus additive foods are less costly than phosphorus additive-free foods. As a result, persons with chronic kidney disease may purchase these popular low-cost groceries and unknowingly increase their intake of highly bioavailable phosphorus. PMID:23402914
Zhou, Dong; Bi, Chun-Juan; Chen, Zhen-Lou; Yu, Zhong-Jie; Wang, Jun; Han, Jing-Chao
2013-11-01
Storm runoff from six types of underlying surface area during five rainfall events in two urban study areas of Wenzhou City, China was investigated to measure phosphorus (P) concentrations and discharge rates. The average event mean concentrations (EMCs) of total phosphorus (TP), total dissolved phosphorus (TDP), and particulate phosphorus (PP) ranged from 0.02 to 2.5 mg · L(-1), 0.01 to 0.48 mg · L(-1), and 0.02 to 2.43 mg · L(-1), respectively. PP was generally the dominant component of TP in storm runoff, while the major form of P varied over time, especially in roof runoff, where TDP made up the largest portion in the latter stages of runoff events. Both TP and PP concentrations were positively correlated with pH, total suspended solids (TSS), and biochemical oxygen demand (BOD)/chemical oxygen demand (COD) concentrations (p<0.01), while TDP was positively correlated with BOD/COD only (p<0.01). In addition, the EMCs of TP and PP were negatively correlated with maximum rainfall intensity (p<0.05), while the EMCs of TDP positively correlated with the antecedent dry weather period (p<0.05). The annual TP emission fluxes from the two study areas were 367.33 and 237.85 kg, respectively. Underlying surface type determined the TP and PP loadings in storm runoff, but regional environmental conditions affected the export of TDP more significantly. Our results indicate that the removal of particles from storm runoff could be an effective measure to attenuate P loadings to receiving water bodies.
NASA Astrophysics Data System (ADS)
Zeng, Ying; Yang, Chen
2018-02-01
The content of total organic carbon, total nitrogen and total phosphorus in sediments of Drug Spring Lake was detected and their vertical distribution characteristic was analysed. Results showed that there were significant changes to the content of total organic carbon, total nitrogen and total phosphorus in different depth of the columnar sediments. Their highest content both appeared in the interval of 10cm to 25cm corresponding to the period of 1980s to 1990s, when the tourism of Wudalianchi scenic area began to develop. It reflected the impact of human activities on the Drug Spring Lake. That means the regulation was still not enough, although a series of pollution control measures adopted by the government in recent years had initial success.
Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.
2014-01-01
In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229
Impact of vacancies on electronic properties of black phosphorus probed by STM
NASA Astrophysics Data System (ADS)
Riffle, J. V.; Flynn, C.; St. Laurent, B.; Ayotte, C. A.; Caputo, C. A.; Hollen, S. M.
2018-01-01
Black phosphorus (BP) is receiving significant attention because of its direct 0.4-1.5 eV layer-dependent bandgap and high mobility. Because BP devices rely on exfoliation from bulk crystals, there is a need to understand the native impurities and defects in the source material. In particular, samples are typically p-doped, but the source of the doping is not well understood. Here, we use scanning tunneling microscopy and spectroscopy to compare the atomic defects of BP samples from two commercial sources. Even though the sources produced crystals with an order of magnitude difference in impurity atoms, we observed a similar defect density and level of p-doping. We attribute these defects to phosphorus vacancies and provide evidence that they are the source of p-doping. We also compare these native defects to those induced by air exposure and show that they are distinct and likely more important for the control of electronic structure. These results indicate that impurities in BP play a minor role compared to vacancies, which are prevalent in commercially available materials, and call for better control of vacancy defects.
NASA Astrophysics Data System (ADS)
Yang, Junzhong; Qi, Yong; Li, Hongyuan; Xu, Guangyao
2018-02-01
Using hydroponic, 13 plants were selected from 2 type (aquatic plants, hygrophytes) of new varieties and common varieties of wetland plants in Tianjin to explore the differences of purification effect of nitrogen and phosphorus in water. The result shows that the plants on the removal rate of total nitrogen was significantly higher than control group, but the differences were small. Among them, yellow iris, Siberia iris, Cyperus alternifolius, aquatic Canna and Miscanthus sinensis had the best effect on TN, and the removal rate was above 99%; The removal rates of total phosphorus in plants were significantly higher than those in control group (except for M.sinensis cv. ‘Variegatus’), and the differences among the groups were relatively significant. Among them, Irispseudoacorus, Cyperus alternifolius, iris pseudacorus, Scirpus tabernaemontani, Iris siberian, C.glauca and M.sinensis cv. ‘Gracillimus’ had the best effect on TP, and the removal rate was more than 70%. Therefore, Irispseudoacorus, Cyperus alternifolius, iris pseudacorus, Scirpus tabernaemontani, Iris siberian, C.glauca and M.sinensis cv. ‘Gracillimus’ can be used as an alternative plant for eutrophic, wetlands or landscape water.
Wei, Xiaocheng; Liu, Dongfang; Li, Wenjiao; Liao, Lirui; Wang, Zhendong; Huang, Weiwei; Huang, Wenli
2018-08-01
Biochar was applied during the bioleaching of heavy metals (HMs) from swine manure (SM), in an attempt to accelerate the HMs removal rates and to reduce the losses of nutrient elements (nitrogen and phosphorus). Results showed that the addition of biochar (5gL -1 ) could not only significantly shorten the leaching time of HMs (Cu, Zn, Mn and Cd) from 10 (control) to 7days with a high solubilization efficiency of 90%, but also decrease the total nitrogen loss efficiency by 42.7% from 180.3 (control) to 103.3mgL -1 in the leachate. In addition, biochar addition facilitated Fe 2+ oxidation rate, achieving much better pH and ORP conditions. Electronic conductivity and adsorption properties of biochar with changed microbial community probably contributed a lot to the enhanced HMs solubilization and reduced nitrogen loss during bioleaching. Although the addition of biochar only slightly reduced the total amount of phosphorus loss, the bioavailable phosphorus in SM after bioleaching was markedly increased by 13.7%. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dijkstra, N.; Kraal, P.; Séguret, M. J. M.; Flores, M. R.; Gonzalez, S.; Rijkenberg, M. J. A.; Slomp, C. P.
2018-02-01
Marine basins with oxygen-depleted deep waters provide a natural laboratory to investigate the consequences of anoxic and sulfidic (i.e. euxinic) conditions for biogeochemical processes in seawater and sediments. In this study, we investigate the dynamics of the key nutrient phosphorus (P) and associated elements such as manganese (Mn), iron (Fe) and calcium (Ca) in the euxinic deep basin of the Black Sea. By examining water column particles with scanning electron microscope - energy dispersive spectroscopy and synchrotron-based X-ray absorption spectroscopy, we show that Mn(III/IV)-P is the key form of particulate P in the redoxcline. Other forms of particulate P include organic P, Fe(III)-P, and inorganic polyphosphates. Most inorganic P particles that are formed in the redoxcline subsequently dissolve in the underlying sulfidic waters, with the exception of some particulate Fe(III)-P that accounts for <1% of all P settling onto the seafloor. Organic P is the dominant source of P to the sediment. Most of this organic P is degraded in the upper 2 cm of the sediment. Results of sequential extractions and a 33P radiotracer experiment point towards the formation of labile Ca-P and P adsorbed onto calcium-carbonate and clays and a role of these phases as a major sink of P in the sediment. The total P burial efficiency in the sediments is ∼27%, which is relatively high when compared to estimates for sediments in other euxinic basins such as the Baltic Sea (<12%). We suggest that the abundant presence of calcium carbonate may contribute to the more efficient sequestration of P in Black Sea sediments.
Nutrient Control Design Manual
The purpose of this EPA design manual is to provide updated, state‐of‐the‐technology design guidance on nitrogen and phosphorus control at municipal Wastewater Treatment Plants (WWTPs). Similar to previous EPA manuals, this manual contains extensive information on the principles ...
The prevalence of phosphorus-containing food additives in top-selling foods in grocery stores.
León, Janeen B; Sullivan, Catherine M; Sehgal, Ashwini R
2013-07-01
The objective of this study was to determine the prevalence of phosphorus-containing food additives in best-selling processed grocery products and to compare the phosphorus content of a subset of top-selling foods with and without phosphorus additives. The labels of 2394 best-selling branded grocery products in northeast Ohio were reviewed for phosphorus additives. The top 5 best-selling products containing phosphorus additives from each food category were matched with similar products without phosphorus additives and analyzed for phosphorus content. Four days of sample meals consisting of foods with and without phosphorus additives were created, and daily phosphorus and pricing differentials were computed. Presence of phosphorus-containing food additives, phosphorus content. Forty-four percent of the best-selling grocery items contained phosphorus additives. The additives were particularly common in prepared frozen foods (72%), dry food mixes (70%), packaged meat (65%), bread and baked goods (57%), soup (54%), and yogurt (51%) categories. Phosphorus additive-containing foods averaged 67 mg phosphorus/100 g more than matched nonadditive-containing foods (P = .03). Sample meals comprised mostly of phosphorus additive-containing foods had 736 mg more phosphorus per day compared with meals consisting of only additive-free foods. Phosphorus additive-free meals cost an average of $2.00 more per day. Phosphorus additives are common in best-selling processed groceries and contribute significantly to their phosphorus content. Moreover, phosphorus additive foods are less costly than phosphorus additive-free foods. As a result, persons with chronic kidney disease may purchase these popular low-cost groceries and unknowingly increase their intake of highly bioavailable phosphorus. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
49 CFR 172.330 - Tank cars and multi-unit tank car tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Hydrogen peroxide and peroxyacetic acid mixtures Nitric acid (other than red fuming) Phosphorus, amorphous Phosphorus, white dry or Phosphorus, white, under water or Phosphorus white, in solution, or Phosphorus, yellow dry or Phosphorus, yellow, under water or Phosphorus, yellow, in solution Phosphorus white, molten...
49 CFR 172.330 - Tank cars and multi-unit tank car tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Hydrogen peroxide and peroxyacetic acid mixtures Nitric acid (other than red fuming) Phosphorus, amorphous Phosphorus, white dry or Phosphorus, white, under water or Phosphorus white, in solution, or Phosphorus, yellow dry or Phosphorus, yellow, under water or Phosphorus, yellow, in solution Phosphorus white, molten...
Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific seamount deposits
Hein, J.R.; Hsueh-Wen, Yeh; Gunn, S.H.; Sliter, W.V.; Benninger, L.M.; Chung-Ho, Wang
1993-01-01
The phosphorites occur in a wide variety of forms, but most commonly carbonate fluorapatite (CFA) replaced middle Eocene and older carbonate sediment in a deep water environment (>1000 m). Element ratios distinguish seamount phosphorites from continental margin, plateau, and insular phosphorites. Uranium and thorium contents are low and total rare earch element (REE) contents are generally high. The paleoceanographic conditions initiated and sustained development of phosphorite by accumulation of dissolved phosphorus in the deep sea during relatively stable climatic conditions when oceanic circulation was sluggish. Fluctuations in climate, sealevel, and upwelling that accompanied the climate transitions may have driven cycles of enrichment and depletion of the deep-sea phosphorus reservoir. -from Authors
He, Mingzhu; Dijkstra, Feike A.; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang
2014-01-01
In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0–10 cm), middle (10–40 cm) and deep soil layers (40–100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect. PMID:25373739
NASA Astrophysics Data System (ADS)
He, Mingzhu; Dijkstra, Feike A.; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang
2014-11-01
In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0-10 cm), middle (10-40 cm) and deep soil layers (40-100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect.
Li, Haifeng; Li, Zhijian; Qu, Jianhang; Tian, Hailong; Yang, Xiaohong
2018-05-02
Simulation experiments were conducted using sediments collected from the Taihu Lake to determine the combined effects of submerged macrophytes Ceratophyllum demersum and phosphate-solubilizing bacteria (PSB) strain XMT-5 (Rhizobium sp.) on phosphorus (P) concentrations in overlying waters and sediments. After 30 days of experimental incubation, the total phosphorus (TP) and dissolved total phosphorus (DTP) concentrations of the overlying water subjected to AMB and AHMB treatments (both with the combined effects of PSB cells and submerged macrophytes) were generally lower than those of the AM (with individual effects of inoculated C. demersum) and AB (with individual effects of a smaller amount of inoculated PSB cells) control treatments but higher than that of the A (with no effects of inoculated PSB cells or C. demersum) and AHB (with individual effects of a larger amount of inoculated PSB) control treatments. The TP contents of the sediment in the AMB and AHMB treatments were significantly lower than those of the other control treatments. The TP contents of the C. demersum cocultured with the PSB strain XMT-5 cells in the AMB and AHMB treatments were all significantly higher than that of the AM treatment, indicating the enhancement of P uptake by submerged plants inoculated with PSB. The bacterial diversity structures of the rhizosphere sediment subjected to different treatments were also analyzed by the high-throughput sequencing method. According to the ACE and Chao 1 indices, the bacterial diversity in the AMB and AHMB treatments were the highest. Although many sources contributed to the decrease in the nutrient loads of the lake sediment, harvesting macrophytes inoculated with PSB cells prior to their senescence might constitute a significant in-lake measure for reducing internal P load.
Periphyton dynamics in a subalpine mountain stream during winter
Gustina, G.W.; Hoffmann, J.P.
2000-01-01
We conducted two experiments to determine the activity of and factors which control periphyton during winter in Stevensville Brook, Vermont. The first experiment during winter/spring 1994 examined the effect of a 300 to 450% difference in light and doubling of flow (low and high light, slow and fast flow) on periphyton chlorophyll a (chl a) and ash-free dry mass (AFDM) from stream rocks and artificial substrata. A second experiment was performed to determine whether periphyton was nitrogen or phosphorus limited. In addition, stream water was sampled during fall/winter 1994/95 for nitrate (NO3), ammonia (NH4), soluble reactive phosphorus (SRP), and total phosphorus (TP) to determine the availability of nutrients in Stevensville Brook. Increases of up to 250% for AFDM and 600% for chl a during the first study indicated robust activity throughout the winter despite low temperatures and light. Flow had a negative effect and sampling date was found to have a significant effect on periphyton biomass (chl a and AFDM) while light was found to influence increases in AFDM on clay tiles only. Water analyses showed that SRP was less than 0.001 mg L-1, NH4 and TP were low and often undetectable, and NO3 remained at about 0.20 mg L-1. Results from the nutrient enrichment experiment showed a significant response of chl a to P but not N and no response of AFDM to enrichment with either N or P. In Stevensville Brook during winter, the algal community, as represented by the chl a concentration, is predominantly controlled by phosphorus concentrations and is influenced to a lesser extent by flow; the periphyton community as a whole, represented by AFDM, is controlled mostly by stream flow and light.
Phytase, a new life for an “old” enzyme
USDA-ARS?s Scientific Manuscript database
Phytase represents a group of phosphohydrolytic enzymes that initiate stepwise removals of phosphate from phytate. Simple-stomached species such as swine, poultry, and fish require extrinsic phytase to digest phytate: the major form of phosphorus in plant feeds. Consequently, this enzyme is suppleme...
Controlled Sculpture of Black Phosphorus Nanoribbons
Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; ...
2016-05-18
Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with high promise for fast functional electronics and optoelectronics. We demonstrate that high-resolution and controlled structural modification of few-layer BP along arbitrary crystal direction can be achieved with nanometer-scale precision on a few-minute timescales leading to the formation of sub-nm wide armchair and zigzag BP nanoribbons. The nanoribbons are assembled, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscope (TEM) and scanning TEM nanosculpting. Here we report time-dependent structural properties of the one-dimensional systems under electron irradiation and probe their oxidation propertiesmore » with electron energy-loss spectroscopy (EELS). Finally, we demonstrate the use of STEM to controllably narrow and thin the nanoribbons until they break into nanogaps. The observations are rationalized using density functional theory for transition state calculations and electronic band-structure evolution for the various stages of the narrowing procedure. In particular, we predict that the sub- and few-nm wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. We find the demonstration of this procedure is key for the development of BP-based electronic, optoelectronic, thermoelectric, and other applications in reduced dimensions.« less
de Quevedo, Claudia Maria Gomes; Paganini, Wanderley da Silva
2011-08-01
Phosphorus is a nutrient with finite and non-renewable sources, the speed of exploitation of which is currently far higher than the rates of return to its natural cycle. It is already being predicted that available and known sources will soon be exhausted, with serious and irreversible economic, social and environmental impacts. In this context, this study sets out to present information about the dynamics of phosphorus in the environment, assessing the impacts caused by human activities and establishing what actions might contribute to preservation of the nutrient cycle. To contribute to enhanced understanding of the topic, the evolution of data on population density, the number of industries and the extension of cultivated areas in a river basin, was studied over 22 years in relation to concentrations of phosphorus in water and sediment. The Tietê River was used for the case study. The results revealed that the control of domestic effluent, especially the amount of sodium tripolyphosphate (STPP) used in detergents and soap products, is of major importance for improving water quality, ensuring environmental protection and safeguarding public health.
Lin, Juan; Zhong, Yufang; Fan, Hua; Song, Chaofeng; Yu, Chao; Gao, Yue; Xiong, Xiong; Wu, Chenxi; Liu, Jiantong
2017-01-01
In this work, sediments were treated with calcium nitrate, aluminum sulfate, ferric sulfate, and Phoslock®, respectively. The impact of treatments on internal phosphorus release, the abundance of nitrogen cycle-related functional genes, and the growth of submerged macrophytes were investigated. All treatments reduced total phosphorus (TP) and soluble reactive phosphorus (SRP) in interstitial water, and aluminum sulfate was most efficient. Aluminum sulfate also decreased TP and SRP in overlying water. Treatments significantly changed P speciations in the sediment. Phoslock® transformed other P species into calcium-bound P. Calcium nitrate, ferric sulfate, and Phoslock® had negative influence on ammonia oxidizers, while four chemicals had positive influence on denitrifies, indicating that chemical treatment could inhibit nitrification but enhance denitrification. Aluminum sulfate had decreased chlorophyll content of the leaves of submerged macrophytes, while ferric sulfate and Phoslock® treatment would inhibit the growth of the root. Based on the results that we obtained, we emphasized that before application of chemical treatment, the effects on submerged macrophyte revegetation should be taken into consideration.
Effect of lubricant extreme-pressure additives on surface fatigue life of AISI 9310 spur gears
NASA Technical Reports Server (NTRS)
Scibbe, H. W.; Townsend, D. P.; Aron, P. R.
1984-01-01
Surface fatigue tests were conducted with AISI 9310 spur gears using a formulated synthetic tetraester oil (conforming to MIL-L-23699 specifications) as the lubricant containing either sulfur or phosphorus as the EP additive. Four groups of gears were tested. One group of gears tested without an additive in the lubricant acted as the reference oil. In the other three groups either a 0.1 wt % sulfur or phosphorus additive was added to the tetraester oil to enhance gear surface fatigue life. Test conditions included a gear temperature of 334 K (160 F), a maximum Hertz stress of 1.71 GPa (248 000 psi), and a speed of 10,000 rpm. The gears tested with a 0.1 wt % phosphorus additive showed pitting fatigue life 2.6 times the life of gears tested with the reference tetraester based oil. Although fatigue lives of two groups of gears tested with the sulfur additive in the oil showed improvement over the control group gear life, the results, unlike those obtained with the phosphorus oil, were not considered to be statistically significant.
Merhi, Basma; Shireman, Theresa; Carpenter, Myra A; Kusek, John W; Jacques, Paul; Pfeffer, Marc; Rao, Madhumathi; Foster, Meredith C; Kim, S Joseph; Pesavento, Todd E; Smith, Stephen R; Kew, Clifton E; House, Andrew A; Gohh, Reginald; Weiner, Daniel E; Levey, Andrew S; Ix, Joachim H; Bostom, Andrew
2017-09-01
Mild hyperphosphatemia is a putative risk factor for cardiovascular disease [CVD], loss of kidney function, and mortality. Very limited data are available from sizable multicenter kidney transplant recipient (KTR) cohorts assessing the potential relationships between serum phosphorus levels and the development of CVD outcomes, transplant failure, or all-cause mortality. Cohort study. The Folic Acid for Vascular Outcome Reduction in Transplantation (FAVORIT) Trial, a large, multicenter, multiethnic, controlled clinical trial that provided definitive evidence that high-dose vitamin B-based lowering of plasma homocysteine levels did not reduce CVD events, transplant failure, or total mortality in stable KTRs. Serum phosphorus levels were determined in 3,138 FAVORIT trial participants at randomization. During a median follow-up of 4.0 years, the cohort had 436 CVD events, 238 transplant failures, and 348 deaths. Proportional hazards modeling revealed that each 1-mg/dL higher serum phosphorus level was not associated with a significant increase in CVD risk (HR, 1.06; 95% CI, 0.92-1.22), but increased transplant failure (HR, 1.36; 95% CI, 1.15-1.62) and total mortality risk associations (HR, 1.21; 95% CI, 1.04-1.40) when adjusted for treatment allocation, traditional CVD risk factors, kidney measures, type of kidney transplant, transplant vintage, and use of calcineurin inhibitors, steroids, or lipid-lowering drugs. These associations were strengthened in models without kidney measures: CVD (HR, 1.14; 95% CI, 1.00-1.31), transplant failure (HR, 1.72; 95% CI, 1.46-2.01), and mortality (HR, 1.34; 95% CI, 1.15-1.54). We lacked data for concentrations of parathyroid hormone, fibroblast growth factor 23, or vitamin D metabolites. Serum phosphorus level is marginally associated with CVD and more strongly associated with transplant failure and total mortality in long-term KTRs. A randomized controlled clinical trial in KTRs that assesses the potential impact of phosphorus-lowering therapy on these hard outcomes may be warranted. Copyright © 2017 National Kidney Foundation, Inc. All rights reserved.
Merhi, Basma; Shireman, Theresa; Carpenter, Myra A.; Kusek, John W.; Jacques, Paul; Pfeffer, Marc; Rao, Madhumathi; Foster, Meredith C.; Kim, S. Joseph; Pesavento, Todd E.; Smith, Stephen R.; Kew, Clifton E.; House, Andrew A.; Gohh, Reginald; Weiner, Daniel E.; Levey, Andrew S.; Ix, Joachim H.; Bostom, Andrew
2017-01-01
Background Mild hyperphosphatemia is a putative risk factor for cardiovascular disease [CVD], loss of kidney function, and mortality. Very limited data are available from sizable multicenter kidney transplant recipient (KTR) cohorts assessing the potential relationships between serum phosphorus levels and the development of CVD outcomes, transplant failure, or all-cause mortality. Study Design Cohort study. Setting & Participants The Folic Acid for Vascular Outcome Reduction in Transplantation (FAVORIT) Trial, a large, multicenter, multiethnic, controlled clinical trial that provided definitive evidence that high-dose vitamin B–based lowering of plasma homocysteine levels did not reduce CVD events, transplant failure, or total mortality in stable KTRs. Predictor Serum phosphorus levels were determined in 3,138 FAVORIT trial participants at randomization. Results During a median follow-up of 4.0 years, the cohort had 436 CVD events, 238 transplant failures, and 348 deaths. Proportional hazards modeling revealed that each 1-mg/dL higher serum phosphorus level was not associated with a significant increase in CVD risk (HR, 1.06; 95% CI, 0.92–1.22), but increased transplant failure (HR, 1.36; 95% CI, 1.15–1.62) and total mortality risk associations (HR, 1.21; 95% CI, 1.04–1.40) when adjusted for treatment allocation, traditional CVD risk factors, kidney measures, type of kidney transplant, transplant vintage, and use of calcineurin inhibitors, steroids, or lipid-lowering drugs. These associations were strengthened in models without kidney measures: CVD (HR, 1.14; 95% CI, 1.00–1.31), transplant failure (HR, 1.72; 95% CI, 1.46–2.01), and mortality (HR, 1.34; 95% CI, 1.15–1.54). Limitations We lacked data for concentrations of parathyroid hormone, fibroblast growth factor 23, or vitamin D metabolites. Conclusions Serum phosphorus level is marginally associated with CVD and more strongly associated with transplant failure and total mortality in long-term KTRs. A randomized controlled clinical trial in KTRs that assesses the potential impact of phosphorus-lowering therapy on these hard outcomes may be warranted. PMID:28579423
Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers
Sundareshwar, P.V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S.A.; Sandvik, C.; Trennepohl, A.
2011-01-01
In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large "blooms" in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers. Copyright 2011 by the American Geophysical Union.
Peng, Ching-Yu; Korshin, Gregory V; Valentine, Richard L; Hill, Andrew S; Friedman, Melinda J; Reiber, Steve H
2010-08-01
Corrosion scales and deposits formed within drinking water distribution systems (DWDSs) have the potential to retain inorganic contaminants. The objective of this study was to characterize the elemental and structural composition of extracted pipe solids and hydraulically-mobile deposits originating from representative DWDSs. Goethite (alpha-FeOOH), magnetite (Fe(3)O(4)) and siderite (FeCO(3)) were the primary crystalline phases identified in most of the selected samples. Among the major constituent elements of the deposits, iron was most prevalent followed, in the order of decreasing prevalence, by sulfur, organic carbon, calcium, inorganic carbon, phosphorus, manganese, magnesium, aluminum and zinc. The cumulative occurrence profiles of iron, sulfur, calcium and phosphorus for pipe specimens and flushed solids were similar. Comparison of relative occurrences of these elements indicates that hydraulic disturbances may have relatively less impact on the release of manganese, aluminum and zinc, but more impact on the release of organic carbon, inorganic carbon, and magnesium. (c) 2010 Elsevier Ltd. All rights reserved.
Liu, Xubing; Burslem, David F R P; Taylor, Joe D; Taylor, Andy F S; Khoo, Eyen; Majalap-Lee, Noreen; Helgason, Thorunn; Johnson, David
2018-05-01
Partitioning of soil phosphorus (P) pools has been proposed as a key mechanism maintaining plant diversity, but experimental support is lacking. Here, we provided different chemical forms of P to 15 tree species with contrasting root symbiotic relationships to investigate plant P acquisition in both tropical and subtropical forests. Both ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees responded positively to addition of inorganic P, but strikingly, ECM trees acquired more P from a complex organic form (phytic acid). Most ECM tree species and all AM tree species also showed some capacity to take up simple organic P (monophosphate). Mycorrhizal colonisation was negatively correlated with soil extractable P concentration, suggesting that mycorrhizal fungi may regulate organic P acquisition among tree species. Our results support the hypothesis that ECM and AM plants partition soil P sources, which may play an ecologically important role in promoting species coexistence in tropical and subtropical forests. © 2018 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Yan, H.; Shih, K.
2015-12-01
Phosphorus (P) recovery has been frequently discussed in recent decades due to the uncertain availability and uneven distribution of global phosphate rock reserves. Sorption technology is increasingly considered as a reliable, efficient and environmentally friendly P removal method from aqueous solution. In this study, a series of Mg-Al-based layered double hydroxide nanocomposites and their corresponding calcined products were fabricated and applied as phosphate adsorbents. The prepared samples were with average size at ~50 nm and self-assembled into larger particles in irregular shapes. The results of batch adsorption experiments demonstrated that calcination significantly enhanced the adsorption ability of LDHs for phosphorus, and the maximum adsorption capacity of calcined Mg-Al-LDH was as high as 100.7 mg-P/g. Furthermore, incorporation of Zr4+ and La3+ into LDH materials increases the sorption selectivity as well as sorption amount of phosphorus in LDHs, which was confirmed by experiments operated in synthetic human urine. For the first time ammonia (NH4OH) and potassium hydroxide (KOH) solutions were employed to desorb the P-loaded LDH. Identification of solids derived from two eluting solutions showed that struvite (MgNH4PO4•6H2O, MAP) was precipitated in ammonia solution while most phosphate was desorbed into liquid phase in KOH system without crystallization of potassium struvite (MgKPO4•6H2O) due to its higher solubility. Quantitative X-ray diffraction technique was used to determine struvite contents in obtained solids and the results revealed that ~ 30% of adsorbed P was transferred into struvite form in the sample extracted by 0.5M NH4OH. Leaching tests suggested that the phosphorus releasing kinetics of ammonia treated LDH was comparable to that of pure struvite product, indicating that postsorption Mg-Al-LDH desorbed with ammonia could serve as a slow-releasing fertilizer in agriculture (see Figure 1).
Yu, Juhua; Ding, Shiming; Zhong, Jicheng; Fan, Chengxin; Chen, Qiuwen; Yin, Hongbin; Zhang, Lei; Zhang, Yinlong
2017-08-15
Sediment dredging is an effective restoration method to control the internal phosphorus (P) loading of eutrophic lakes. However, the core question is that the real mechanism of dredging responsible for sediment internal P release still remains unclear. In this study, we investigated the P exchange across the sediment-water interface (SWI) and the internal P resupply ability from the sediments after dredging. The study is based on a one-year field simulation study in Lake Taihu, China, using a Rhizon soil moisture sampler, high-resolution dialysis (HR-Peeper), ZrO-Chelex diffusive gradients in thin film (ZrO-Chelex DGT), and P fractionation and adsorption isotherm techniques. The results showed low concentration of labile P in the pore water with a low diffusion potential and a low resupply ability from the sediments after dredging. The calculated flux of P from the post-dredged sediments decreased by 58% compared with that of non-dredged sediments. Furthermore, the resupply in the upper 20mm of the post-dredged sediments was reduced significantly after dredging (P<0.001). Phosphorus fractionation analysis showed a reduction of 25% in the mobile P fractions in the post-dredged sediments. Further analysis demonstrated that the zero equilibrium P concentration (EPC 0 ), partitioning coefficient (K p ), and adsorption capacity (Q max ) on the surface sediments increased after dredging. Therefore, dredging could effectively reduce the internal P resupply ability of the sediments. The reasons for this reduction are probably the lower contributions of mobile P fractions, higher retention ability, and the adsorption capacity of P for post-dredged sediments. Overall, this investigation indicated that dredging was capable of effectively controlling sediment internal P release, which could be ascribed to the removal of the surface sediments enriched with total phosphorus (TP) and/or organic matter (OM), coupled with the inactivation of P to iron (Fe) (hydr)oxides in the upper 20mm active layer. Copyright © 2017 Elsevier B.V. All rights reserved.
40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride, and...