NASA Technical Reports Server (NTRS)
Bula, R. J.
1997-01-01
The ASTROCULTURE(trademark) plant growth unit flown as part on the STS-63 mission in February 1995, represented the first time plants were flown in microgravity in a enclosed controlled environment plant growth facility. In addition to control of the major environmental parameters, nutrients were provided to the plants with the ZEOPONICS system developed by NASA Johnson Space Center scientists. Two plant species were included in this space experiment, dwarf wheat (Triticum aestivum) and a unique mustard called "Wisconsin Fast Plants" (Brassica rapa). Extensive post-flight analyses have been performed on the plant material and it has been concluded that plant growth and development was normal during the period the plants were in the microgravity environment of space. However, adequate plant growth and development control data were not available for direct comparisons of plant responses to the microgravity environment with those of plants grown at 1 g. Such data would allow for a more complete interpretation of the extent that microgravity affects plant growth and development.
NASA Technical Reports Server (NTRS)
Hiser, L. L.; Herrera, W. R.
1973-01-01
A search was made of NASA developed technology and commercial technology for process control sensors and instrumentation which would be applicable to the operation of municipal sewage treatment plants. Several notable items were found from which process control concepts were formulated that incorporated these items into systems to automatically operate municipal sewage treatment plants. A preliminary design of the most promising concept was developed into a process control scheme for an activated sludge treatment plant. This design included process control mechanisms for maintaining constant food to sludge mass (F/M) ratio, and for such unit processes as primary sedimentation, sludge wastage, and underflow control from the final clarifier.
The role of plant disease in the development of controlled ecological life support systems
NASA Technical Reports Server (NTRS)
Nelson, B.
1986-01-01
Plant diseases could be important factors affecting growth of higher plants in Closed Ecological Life Support Systems (CELSS). Disease control, therefore, will be needed to maintain healthy plants. The most important controls should be aimed at preventing the introduction, reproduction and spread of pathogens and preventing plant infection. An integrared ease control program will maximize that approach. In the design and operation of CELSS, plant disease should be considered an important aspect of plant growth. The effects of plant diseases are reviewed and several disease control measures are discussed.
Ruano, M V; Ribes, J; Seco, A; Ferrer, J
2011-01-01
This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP.
Genetics-based control of a mimo boiler-turbine plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.M.; Lee, K.Y.
1994-12-31
A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.
Neutron Source Facility Training Simulator Based on EPICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.
A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less
Development of Plant Control Diagnosis Technology and Increasing Its Applications
NASA Astrophysics Data System (ADS)
Kugemoto, Hidekazu; Yoshimura, Satoshi; Hashizume, Satoru; Kageyama, Takashi; Yamamoto, Toru
A plant control diagnosis technology was developed to improve the performance of plant-wide control and maintain high productivity of plants. The control performance diagnosis system containing this technology picks out the poor performance loop, analyzes the cause, and outputs the result on the Web page. Meanwhile, the PID tuning tool is used to tune extracted loops from the control performance diagnosis system. It has an advantage of tuning safely without process changes. These systems are powerful tools to do Kaizen (continuous improvement efforts) step by step, coordinating with the operator. This paper describes a practical technique regarding the diagnosis system and its industrial applications.
Digital control for the condensate system in a combined cycle power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez Parra, M.; Fuentes Gutierrez, J.E.; Castelo Cuevas, L.
1994-12-31
This paper presents the highlights by means of which development, installation and start up of the digital control system (DCS)for the condenser and hotwell (condensate system) were performed. This system belongs to the distributed control system installed by the Instituto de Investigaciones Electricas (IIE) at the Combined Cycle Power Plant in Gomez Palacio (GP), Durango, Mexico, during the February-March period, in 1993. The main steps for development of the condenser and hotwell control system include: process modeling, definition of control strategies, algorithms, design and software development, PC simulation tests, laboratory tests with an equipment similar to the one installed atmore » the GP Power Plant, installation, and finally, start up, which was a joint effort with the GP Power Plant engineering staff.« less
Plant Growth Module (PGM) conceptual design
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Rasmussen, Daryl
1987-01-01
The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.
Boiler-turbine control system design using a genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.; Lee, K.Y.
1995-12-01
This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.
MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha
Jones, Victor A. S.
2017-01-01
The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. MpWIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced MpWIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants. PMID:28174248
Can mechanics control pattern formation in plants?
Dumais, Jacques
2007-02-01
Development of the plant body entails many pattern forming events at scales ranging from the cellular level to the whole plant. Recent evidence suggests that mechanical forces play a role in establishing some of these patterns. The development of cellular configurations in glandular trichomes and the rippling of leaf surfaces are discussed in depth to illustrate how intricate patterns can emerge from simple and well-established molecular and cellular processes. The ability of plants to sense and transduce mechanical signals suggests that complex interactions between mechanics and chemistry are possible during plant development. The inclusion of mechanics alongside traditional molecular controls offers a more comprehensive view of developmental processes.
Redox Regulation of Plant Development
Considine, Michael J.
2014-01-01
Abstract Significance: We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Recent Advances: Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. Critical Issues: The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. Future Directions: The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context. Antioxid. Redox Signal. 21, 1305–1326. PMID:24180689
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald
2013-03-01
The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator ismore » also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.« less
Commercial involvement in the development of space-based plant growing technology
NASA Astrophysics Data System (ADS)
Bula, R. J.; Tibbitts, T. W.; Morrow, R. C.; Dinauer, W. R.
1992-07-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
Commercial involvement in the development of space-based plant growing technology.
Bula, R J; Tibbitts, T W; Morrow, R C; Dinauer, W R
1992-01-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
Controlled environment life support system: Calcium-related leaf injuries on plants
NASA Technical Reports Server (NTRS)
Tibbitts, T. W.
1986-01-01
Calcium related injuries to plants grown in controlled environments under conditions which maximize plant growth rates are described. Procedures to encourage movement of calcium into developing leaves of lettuce plants were investigated. The time course and pattern of calcium accumulation was determined to develop effective control procedures for this injury, termed tipburn. Procedures investigated were: (1) increasing the relative humidity to saturation during the dark period and altering root temperatures, (2) maximizing water stress during light and minimizing water stress during dark periods, (3) shortening the light-dark cycle lengths in combination with elevated moisture levels during the dark cycles, (4) reducing nutrient concentrations and (5) vibrating the plants. Saturated humidities at night increased the rate of growth and the large fluctuation in plant water potential encouraged calcium movement to the young leaves and delayed tipburn. Root temperature regulation between 15 and 26 C was not effective in preventing tipburn. Attempts to modulate water stress produced little variation, but no difference in tipburn development. Variations in light-dark cycle lengths also had no effect on calcium concentrations within developing leaves and no variation in tipburn development. Low concentrations of nutrient solution delayed tipburn, presumably because of greater calcium transport in the low concentration plants. Shaking of the plants did not prevent tipburn, but did delay it slightly.
Development of a Biological Control Program for Eurasian Watermilfoil (Myriophyllum spicatum)
2008-08-01
spicatum). Rawalpindi: Pakistan Station Commonwealth Institute of Biological Control. Gleason, H. A ., and A . Cronquist . 1991. Manual of vascular plants...ER D C/ EL T R- 08 -2 2 Aquatic Plant Control Research Program Development of a Biological Control Program for Eurasian Watermilfoil... a Biological Control Program for Eurasian Watermilfoil (Myriophyllum spicatum) Matthew J. W. Cock, Hariet L. Hinz, Gitta Grosskopf, and Patrick
Development of model reference adaptive control theory for electric power plant control applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mabius, L.E.
1982-09-15
The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis.more » An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.« less
Llorens, Eugenio; Agustí-Brisach, Carlos; González-Hernández, Ana I; Troncho, Pilar; Vicedo, Begonya; Yuste, Teresa; Orero, Mayte; Ledó, Carlos; García-Agustín, Pilar; Lapeña, Leonor
2017-05-01
Developments of alternatives to the use of chemical pesticides to control pests are focused on the induction of natural plant defences. The study of new compounds based on liquid bioassimilable sulphur and its effect as an inductor of the immune system of plants would provide an alternative option to farmers to enhance plant resistance against pathogen attacks such as powdery mildew. In order to elucidate the efficacy of this compound in tomato against powdery mildew, we tested several treatments: curative foliar, preventive foliar, preventive in soil drench and combining preventive in soil drench and curative foliar. In all cases, treated plants showed lower infection development, better physiological parameters and a higher level of chlorophyll. We also observed better performance in parameters involved in plant resistance such as antioxidant response, callose deposition and hormonal levels. The results indicate that preventive and curative treatments can be highly effective for the prevention and control of powdery mildew in tomato plants. Foliar treatments are able to stop the pathogen development when they are applied as curative. Soil drench treatments induce immune response mechanisms of plants, increasing significantly callose deposition and promoting plant development. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Lee, S; Kim, C S; Shin, Y G; Kim, J H; Kim, Y S; Jheong, W H
2016-03-01
The Peach rosette mosaic virus (PRMV) is a plant pathogen of the genus Nepovirus, and has been designated as a controlled quarantine virus in Korea. In this study, a specific reverse transcription (RT)-PCR marker set, nested PCR marker set, and modified-plasmid positive control were developed to promptly and accurately diagnose PRMV at plant-quarantine sites. The final selected PRMV-specific RT-PCR marker was PRMV-N10/C70 (967 bp), and the nested PCR product of 419 bp was finally amplified. The modified-plasmid positive control, in which the SalI restriction-enzyme region (GTCGAC) was inserted, verified PRMV contamination in a comparison with the control, enabling a more accurate diagnosis. It is expected that the developed method will continuously contribute to the plant-quarantine process in Korea.
Monitoring and control technologies for bioregenerative life support systems/CELSS
NASA Technical Reports Server (NTRS)
Knott, William M.; Sager, John C.
1991-01-01
The development of a controlled Ecological Life Support System (CELSS) will require NASA to develop innovative monitoring and control technologies to operate the different components of the system. Primary effort over the past three to four years has been directed toward the development of technologies to operate a biomass production module. Computer hardware and software required to operate, collect, and summarize environmental data for a large plant growth chamber facility were developed and refined. Sensors and controls required to collect information on such physical parameters as relative humidity, temperature, irradiance, pressure, and gases in the atmosphere; and PH, dissolved oxygen, fluid flow rates, and electrical conductivity in the nutrient solutions are being developed and tested. Technologies required to produce high artificial irradiance for plant growth and those required to collect and transport natural light into a plant growth chamber are also being evaluated. Significant effort was directed towards the development and testing of a membrane nutrient delivery system required to manipulate, seed, and harvest crops, and to determine plant health prior to stress impacting plant productivity are also being researched. Tissue culture technologies are being developed for use in management and propagation of crop plants. Though previous efforts have focussed on development of technologies required to operate a biomass production module for a CELSS, current efforts are expanding to include technologies required to operate modules such as food preparation, biomass processing, and resource (waste) recovery which are integral parts of the CELSS.
A novel phototropic response to red light is revealed in microgravity.
Millar, Katherine D L; Kumar, Prem; Correll, Melanie J; Mullen, Jack L; Hangarter, Roger P; Edelmann, Richard E; Kiss, John Z
2010-05-01
The aim of this study was to investigate phototropism in plants grown in microgravity conditions without the complications of a 1-g environment. Experiments performed on the International Space Station (ISS) were used to explore the mechanisms of both blue-light- and red-light-induced phototropism in plants. This project utilized the European Modular Cultivation System (EMCS), which has environmental controls for plant growth as well as centrifuges for gravity treatments used as a 1-g control. Images captured from video tapes were used to analyze the growth, development, and curvature of Arabidopsis thaliana plants that developed from seed in space. A novel positive phototropic response to red light was observed in hypocotyls of seedlings that developed in microgravity. This response was not apparent in seedlings grown on Earth or in the 1-g control during the space flight. In addition, blue-light-based phototropism had a greater response in microgravity compared with the 1-g control. Although flowering plants are generally thought to lack red light phototropism, our data suggest that at least some flowering plants may have retained a red light sensory system for phototropism. Thus, this discovery may have important implications for understanding the evolution of light sensory systems in plants.
Chang, Chung-Liang; Sie, Ming-Fong; Shie, Jin-Long
2011-01-01
This paper presents the design concept of a bio-botanic robot which demonstrates its behavior based on plant growth. Besides, it can reflect the different phases of plant growth depending on the proportional amounts of light, temperature and water. The mechanism design is made up of a processed aluminum base, spring, polydimethylsiloxane (PDMS) and actuator to constitute the plant base and plant body. The control system consists of two micro-controllers and a self-designed embedded development board where the main controller transmits the values of the environmental sensing module within the embedded board to a sub-controller. The sub-controller determines the growth stage, growth height, and time and transmits its decision value to the main controller. Finally, based on the data transmitted by the sub-controller, the main controller controls the growth phase of the bio-botanic robot using a servo motor and leaf actuator. The research result not only helps children realize the variation of plant growth but also is entertainment-educational through its demonstration of the growth process of the bio-botanic robot in a short time.
Microgravity Effects on Water Supply and Substrate Properties in Porous Matrix Root Support Systems
NASA Astrophysics Data System (ADS)
Bingham, G. E.; Jones, S. B.; Or, D.; Podolski, I. G.; Levinskikh, M. A.; Sytchov, V. N.; Ivanova, T.; Kostov, P.; Sapunova, S.; Dandolov, I.; Bubenheim, D. B.; Jahns, G.
2000-12-01
The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles.
NASA Astrophysics Data System (ADS)
Iakovleva, E. V.; Momot, B. A.
2017-10-01
The object of this study is to develop a power plant and an electric propulsion control system for autonomous remotely controlled vessels. The tasks of the study are as follows: to assess remotely controlled vessels usage reasonability, to define the requirements for this type of vessel navigation. In addition, the paper presents the analysis of technical diagnostics systems. The developed electric propulsion control systems for vessels should provide improved reliability and efficiency of the propulsion complex to ensure the profitability of remotely controlled vessels.
NASA Technical Reports Server (NTRS)
Macelroy, Robert D.; Smernoff, David T.; Rummel, John D.
1987-01-01
Problems of food production by higher plants are addressed. Experimentation requirements and necessary equipment for designing an experimental Controlled Ecological Life Support System (CELSS) Plant Growth Module are defined. A framework is provided for the design of laboratory sized plant growth chambers. The rationale for the development of an informal collaborative effort between investigators from universities and industry and those at Ames is evaluated. Specific research problems appropriate for collaborative efforts are identified.
Modeling, simulation, and control of an extraterrestrial oxygen production plant
NASA Technical Reports Server (NTRS)
Schooley, L.; Cellier, F.; Zeigler, B.; Doser, A.; Farrenkopf, G.
1991-01-01
The immediate objective is the development of a new methodology for simulation of process plants used to produce oxygen and/or other useful materials from local planetary resources. Computer communication, artificial intelligence, smart sensors, and distributed control algorithms are being developed and implemented so that the simulation or an actual plant can be controlled from a remote location. The ultimate result of this research will provide the capability for teleoperation of such process plants which may be located on Mars, Luna, an asteroid, or other objects in space. A very useful near-term result will be the creation of an interactive design tool, which can be used to create and optimize the process/plant design and the control strategy. This will also provide a vivid, graphic demonstration mechanism to convey the results of other researchers to the sponsor.
Modeling, simulation, and high-autonomy control of a Martian oxygen production plant
NASA Technical Reports Server (NTRS)
Schooley, L. C.; Cellier, F. E.; Wang, F.-Y.; Zeigler, B. P.
1992-01-01
Progress on a project for the development of a high-autonomy intelligent command and control architecture for process plants used to produce oxygen from local planetary resources is reported. A distributed command and control architecture is being developed and implemented so that an oxygen production plant, or other equipment, can be reliably commanded and controlled over an extended time period in a high-autonomy mode with high-level task-oriented teleoperation from one or several remote locations. During the reporting period, progress was made at all levels of the architecture. At the remote site, several remote observers can now participate in monitoring the plant. At the local site, a command and control center was introduced for increased flexibility, reliability, and robustness. The local control architecture was enhanced to control multiple tubes in parallel, and was refined for increased robustness. The simulation model was enhanced to full dynamics descriptions.
USDA-ARS?s Scientific Manuscript database
Vital physiological processes that drive the insect molt represent areas of interest for the development of alternative control strategies. The western tarnished plant bug (Lygus hesperus Knight) is a pest of numerous agronomic and horticultural crops but the development of novel control approaches ...
Potato stem density effects on canopy development and production
USDA-ARS?s Scientific Manuscript database
Controlled environment studies with potato frequently assume responses from single-stem potato plants can be extrapolated to the field where multiple-stem plants are common. Two controlled environment studies were conducted in order to characterize differences in canopy growth, development, and dry...
MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha.
Jones, Victor A S; Dolan, Liam
2017-04-15
The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. Mp WIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced Mp WIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants. © 2017. Published by The Company of Biologists Ltd.
1980-10-01
Development; Problem Identification and Assessment for Aquatic Plant Management; Natural Succession of Aquatic Plants; Large-Scale Operations Management Test...of Insects and Pathogens for Control of Waterhyacinth in Louisiana; Large-Scale Operations Management Test to Evaluate Prevention Methodology for...Control of Eurasian Watermilfoil in Washington; Large-Scale Operations Management Test Using the White Amur at Lake Conway, Florida; and Aquatic Plant Control Activities in the Panama Canal Zone.
Developmental Pathways Are Blueprints for Designing Successful Crops
Trevaskis, Ben
2018-01-01
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene–gene or gene–environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted. PMID:29922318
Developmental Pathways Are Blueprints for Designing Successful Crops.
Trevaskis, Ben
2018-01-01
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.
Liu, Chun-Zhao; Gao, Min; Guo, Bin
2008-01-01
An efficient micropropagation system for Erigeron breviscapus (vant.) Hand. Mazz., an important medicinal plant for heart disease, has been developed. Shoot organogenesis occurred from E. breviscapus leaf explants inoculated on a medium supplemented with a combination of plant growth regulators. On average, 17 shoots per leaf explant were produced after 30 days when they were cultured on MS basal salts and vitamin medium containing 5 microM 6-benzylaminopurine (BAP) and 5 microM 1-naphthaleneacetic acid (NAA). All the regenerated shoots formed complete plantlets on a medium containing 2.5-10 microM indole-3-butyric acid (IBA) within 30 days, and 80.2% of the regenerated plantlets survived and grew vigorously in field conditions. Based on the variation in common peaks and the produced amount of the most important bioactive component, scutellarin, a high performance liquid chromatography (HPLC) fingerprinting system was developed for quality control of these micropropagated plants. Chemical constituents in E. breviscapus micropropagated plants varied during plant development from regeneration to maturation, the latter of which showed the most similar phytochemical profile in comparison with mother plants. The regeneration protocol and HPLC fingerprint analysis developed here provided a new approach to quality control of micropropagated plants producing secondary metabolites with significant implications for germplasm conservation.
Radi, Abeer; Lange, Theo; Niki, Tomoya; Koshioka, Masaji; Lange, Maria João Pimenta
2006-02-01
Immature pumpkin (Cucurbita maxima) seeds contain gibberellin (GA) oxidases with unique catalytic properties resulting in GAs of unknown function for plant growth and development. Overexpression of pumpkin GA 7-oxidase (CmGA7ox) in Arabidopsis (Arabidopsis thaliana) resulted in seedlings with elongated roots, taller plants that flower earlier with only a little increase in bioactive GA4 levels compared to control plants. In the same way, overexpression of the pumpkin GA 3-oxidase1 (CmGA3ox1) resulted in a GA overdose phenotype with increased levels of endogenous GA4. This indicates that, in Arabidopsis, 7-oxidation and 3-oxidation are rate-limiting steps in GA plant hormone biosynthesis that control plant development. With an opposite effect, overexpression of pumpkin seed-specific GA 20-oxidase1 (CmGA20ox1) in Arabidopsis resulted in dwarfed plants that flower late with reduced levels of GA4 and increased levels of physiological inactive GA17 and GA25 and unexpected GA34 levels. Severe dwarfed plants were obtained by overexpression of the pumpkin GA 2-oxidase1 (CmGA2ox1) in Arabidopsis. This dramatic change in phenotype was accompanied by a considerable decrease in the levels of bioactive GA4 and an increase in the corresponding inactivation product GA34 in comparison to control plants. In this study, we demonstrate the potential of four pumpkin GA oxidase-encoding genes to modulate the GA plant hormone pool and alter plant stature and development.
Control system development for a 1 MW/e/ solar thermal power plant
NASA Technical Reports Server (NTRS)
Daubert, E. R.; Bergthold, F. M., Jr.; Fulton, D. G.
1981-01-01
The point-focusing distributed receiver power plant considered consists of a number of power modules delivering power to a central collection point. Each power module contains a parabolic dish concentrator with a closed-cycle receiver/turbine/alternator assembly. Currently, a single-module prototype plant is under construction. The major control system tasks required are related to concentrator pointing control, receiver temperature control, and turbine speed control. Attention is given to operational control details, control hardware and software, and aspects of CRT output display.
Microgravity effects on water supply and substrate properties in porous matrix root support systems
NASA Technical Reports Server (NTRS)
Bingham, G. E.; Jones, S. B.; Or, D.; Podolski, I. G.; Levinskikh, M. A.; Sytchov, V. N.; Ivanova, T.; Kostov, P.; Sapunova, S.; Dandolov, I.;
2000-01-01
The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles. c 2001 Published by Elsevier Science Ltd. All rights reserved.
New pressure control method of mixed gas in a combined cycle power plant of a steel mill
NASA Astrophysics Data System (ADS)
Xie, Yudong; Wang, Yong
2017-08-01
The enterprise production concept is changing with the development of society. A steel mill requires a combined-cycle power plant, which consists of both a gas turbine and steam turbine. It can recycle energy from the gases that are emitted from coke ovens and blast furnaces during steel production. This plant can decrease the overall energy consumption of the steel mill and reduce pollution to our living environment. To develop a combined-cycle power plant, the pressure in the mixed-gas transmission system must be controlled in the range of 2.30-2.40 MPa. The particularity of the combined-cycle power plant poses a challenge to conventional controllers. In this paper, a composite control method based on the Smith predictor and cascade control was proposed for the pressure control of the mixed gases. This method has a concise structure and can be easily implemented in actual industrial fields. The experiment has been conducted to validate the proposed control method. The experiment illustrates that the proposed method can suppress various disturbances in the gas transmission control system and sustain the pressure of the gas at the desired level, which helps to avoid abnormal shutdowns in the combined-cycle power plant.
Chang, Chung-Liang; Sie, Ming-Fong; Shie, Jin-Long
2011-01-01
This paper presents the design concept of a bio-botanic robot which demonstrates its behavior based on plant growth. Besides, it can reflect the different phases of plant growth depending on the proportional amounts of light, temperature and water. The mechanism design is made up of a processed aluminum base, spring, polydimethylsiloxane (PDMS) and actuator to constitute the plant base and plant body. The control system consists of two micro-controllers and a self-designed embedded development board where the main controller transmits the values of the environmental sensing module within the embedded board to a sub-controller. The sub-controller determines the growth stage, growth height, and time and transmits its decision value to the main controller. Finally, based on the data transmitted by the sub-controller, the main controller controls the growth phase of the bio-botanic robot using a servo motor and leaf actuator. The research result not only helps children realize the variation of plant growth but also is entertainment-educational through its demonstration of the growth process of the bio-botanic robot in a short time. PMID:22247684
Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas
Sun, Yanwei; Wang, Chunming; Wang, Ning; Jiang, Xiyuan; Mao, Huizhu; Zhu, Changxiang; Wen, Fujiang; Wang, Xianghua; Lu, Zhijun; Yue, Genhua; Xu, Zengfu; Ye, Jian
2017-01-01
Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in controlling seed size and seed yield. Through Virus Induced Gene Silencing (VIGS), we found that JcARF19 was a positive upstream modulator in auxin signaling and may control plant organ size in J. curcas. Importantly, transgenic overexpression of JcARF19 significantly increased seed size and seed yield in plants Arabidopsis thaliana and J. curcas, indicating the importance of auxin pathway in seed yield controlling in dicot plants. Transcripts analysis indicated that ectopic expression of JcARF19 in J. curcas upregulated auxin responsive genes encoding essential regulators in cell differentiation and cytoskeletal dynamics of seed development. Our data suggested the potential of improving seed traits by precisely engineering auxin signaling in woody perennial plants. PMID:28102350
Steam plant startup and control in system restoration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mello, F.P. de; Westcott, J.C.
1994-02-01
The IEEE Working Group on Power System Restoration developed a panel session for the Summer Power Meeting on July 14, 1992 on Special Considerations in Power System Restoration. One of the contributions to this session is presented in this paper dealing with aspects of steam plant startup and control in scenarios of system restoration. The topics addressed include the complexity of a steam plant, the contrast between normal plant startups and shutdowns and those following major system blackouts including the effects of plant design, automatic controls, bypass valving and operator training.
NASA Technical Reports Server (NTRS)
Charron, C. S.; Cantliffe, D. J.; Wheeler, R. M.; Manukian, A.; Heath, R. R.
1996-01-01
A system and methodology were developed for the nondestructive qualitative and quantitative analysis of volatile emissions from hydroponically grown 'Waldmann's Green' leaf lettuce (Lactuca sativa L.). Photosynthetic photon flux (PPF), photoperiod, and temperature were automatically controlled and monitored in a growth chamber modified for the collection of plant volatiles. The lipoxygenase pathway products (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate were emitted by lettuce plants after the transition from the light period to the dark period. The volatile collection system developed in this study enabled measurements of volatiles emitted by intact plants, from planting to harvest, under controlled environmental conditions.
Kong, Xiangpei; Pan, Jiaowen; Cai, Guohua; Li, Dequan
2012-11-01
Brassinosteroid (BR) signaling, plant innate immunity, and stomatal developments are three pathways that are initiated by receptor-like kinases. This commentary focuses on the latest findings in the role of BR signaling in plant immunity and stomatal development that provide some insight into the molecular mechanism of the BR signal pathway interacting with other receptor signaling pathways.
Enzyme action in the regulation of plant hormone responses.
Westfall, Corey S; Muehler, Ashley M; Jez, Joseph M
2013-07-05
Plants synthesize a chemically diverse range of hormones that regulate growth, development, and responses to environmental stresses. The major classes of plant hormones are specialized metabolites with exquisitely tailored perception and signaling systems, but equally important are the enzymes that control the dose and exposure to the bioactive forms of these molecules. Here, we review new insights into the role of enzyme families, including the SABATH methyltransferases, the methylesterases, the GH3 acyl acid-amido synthetases, and the hormone peptidyl hydrolases, in controlling the biosynthesis and modifications of plant hormones and how these enzymes contribute to the network of chemical signals responsible for plant growth, development, and environmental adaptation.
Roles of jasmonate signalling in plant inflorescence and flower development.
Yuan, Zheng; Zhang, Dabing
2015-10-01
Development of inflorescences and flowers in plants is controlled by the combined action of environmental and genetic signals. Investigations reveal that the phytohormone jasmonate (JA) plays a critical function in plant reproduction such as male fertility, sex determination and seed maturation. Here, we review recent progress on JA synthesis, signalling, the interplay between JAs and other hormones, and regulatory network of JA in controlling the development of inflorescence, flower and the male organ. The conserved and diversified roles of JAs in meristem transition and specification of flower organ identity and number, and multiple regulatory networks of JAs in stamen development are highlighted. Further, this review provides perspectives on future research endeavors to elucidate mechanisms underlying JAs homeostasis and transport during plant reproductive development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radi, Abeer; Lange, Theo; Niki, Tomoya; Koshioka, Masaji; Lange, Maria João Pimenta
2006-01-01
Immature pumpkin (Cucurbita maxima) seeds contain gibberellin (GA) oxidases with unique catalytic properties resulting in GAs of unknown function for plant growth and development. Overexpression of pumpkin GA 7-oxidase (CmGA7ox) in Arabidopsis (Arabidopsis thaliana) resulted in seedlings with elongated roots, taller plants that flower earlier with only a little increase in bioactive GA4 levels compared to control plants. In the same way, overexpression of the pumpkin GA 3-oxidase1 (CmGA3ox1) resulted in a GA overdose phenotype with increased levels of endogenous GA4. This indicates that, in Arabidopsis, 7-oxidation and 3-oxidation are rate-limiting steps in GA plant hormone biosynthesis that control plant development. With an opposite effect, overexpression of pumpkin seed-specific GA 20-oxidase1 (CmGA20ox1) in Arabidopsis resulted in dwarfed plants that flower late with reduced levels of GA4 and increased levels of physiological inactive GA17 and GA25 and unexpected GA34 levels. Severe dwarfed plants were obtained by overexpression of the pumpkin GA 2-oxidase1 (CmGA2ox1) in Arabidopsis. This dramatic change in phenotype was accompanied by a considerable decrease in the levels of bioactive GA4 and an increase in the corresponding inactivation product GA34 in comparison to control plants. In this study, we demonstrate the potential of four pumpkin GA oxidase-encoding genes to modulate the GA plant hormone pool and alter plant stature and development. PMID:16384902
Control oriented concentrating solar power (CSP) plant model and its applications
NASA Astrophysics Data System (ADS)
Luo, Qi
Solar receivers in concentrating solar thermal power plants (CSP) undergo over 10,000 start-ups and shutdowns, and over 25,000 rapid rate of change in temperature on receivers due to cloud transients resulting in performance degradation and material fatigue in their expected lifetime of over 30 years. The research proposes to develop a three-level controller that uses multi-input-multi-output (MIMO) control technology to minimize the effect of these disturbances, improve plant performance, and extend plant life. The controller can be readily installed on any vendor supplied state-of-the-art control hardware. We propose a three-level controller architecture using multi-input-multi-output (MIMO) control for CSP plants that can be implemented on existing plants to improve performance, reliability, and extend the life of the plant. This architecture optimizes the performance on multiple time scalesreactive level (regulation to temperature set points), tactical level (adaptation of temperature set points), and strategic level (trading off fatigue life due to thermal cycling and current production). This controller unique to CSP plants operating at temperatures greater than 550 °C, will make CSPs competitive with conventional power plants and contribute significantly towards the Sunshot goal of 0.06/kWh(e), while responding with agility to both market dynamics and changes in solar irradiance such as due to passing clouds. Moreover, our development of control software with performance guarantees will avoid early stage failures and permit smooth grid integration of the CSP power plants. The proposed controller can be implemented with existing control hardware infrastructure with little or no additional equipment. In the thesis, we demonstrate a dynamics model of CSP, of which different components are modelled with different time scales. We also show a real time control strategy of CSP control oriented model in steady state. Furthermore, we shown different controllers design for disturbance rejection and reference tracking to handle complex receiver dynamics under system disturbance and measurement noise. At last, we show different applications of this control oriented CSP model including life cycle enhancement and electricity load forecasting using both neural network and regression tree.
NOVEL MERCURY OXIDANT AND SORBENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED POWER PLANTS
The authors have successfully developed novel efficient and cost-effective sorbent and oxidant for removing mercury from power plant flue gases. These sorbent and oxidant offer great promise for controlling mercury emissions from coal-fired power plants burning a wide range of c...
Higher Plants in life support systems: design of a model and plant experimental compartment
NASA Astrophysics Data System (ADS)
Hezard, Pauline; Farges, Berangere; Sasidharan L, Swathy; Dussap, Claude-Gilles
The development of closed ecological life support systems (CELSS) requires full control and efficient engineering for fulfilling the common objectives of water and oxygen regeneration, CO2 elimination and food production. Most of the proposed CELSS contain higher plants, for which a growth chamber and a control system are needed. Inside the compartment the development of higher plants must be understood and modeled in order to be able to design and control the compartment as a function of operating variables. The plant behavior must be analyzed at different sub-process scales : (i) architecture and morphology describe the plant shape and lead to calculate the morphological parameters (leaf area, stem length, number of meristems. . . ) characteristic of life cycle stages; (ii) physiology and metabolism of the different organs permit to assess the plant composition depending on the plant input and output rates (oxygen, carbon dioxide, water and nutrients); (iii) finally, the physical processes are light interception, gas exchange, sap conduction and root uptake: they control the available energy from photosynthesis and the input and output rates. These three different sub-processes are modeled as a system of equations using environmental and plant parameters such as light intensity, temperature, pressure, humidity, CO2 and oxygen partial pressures, nutrient solution composition, total leaf surface and leaf area index, chlorophyll content, stomatal conductance, water potential, organ biomass distribution and composition, etc. The most challenging issue is to develop a comprehensive and operative mathematical model that assembles these different sub-processes in a unique framework. In order to assess the parameters for testing a model, a polyvalent growth chamber is necessary. It should permit a controlled environment in order to test and understand the physiological response and determine the control strategy. The final aim of this model is to have an envi-ronmental control of plant behavior: this requires an extended knowledge of plant response to environment variations. This needs a large number of experiments, which would be easier to perform in a high-throughput system.
Dynamic Simulation of Human Gait Model With Predictive Capability.
Sun, Jinming; Wu, Shaoli; Voglewede, Philip A
2018-03-01
In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.
Comperative investigations of non chemical weed management methods in Hungary.
Pali, Orsolya; Reisinger, Peter; Pomsar, Peter
2007-01-01
Organic farming has an increasing tendency in Hungary because of growing consumers' demands according to organic products not only in inland but also in the countries of the European Union. Developments of weed control methods in organically cropped field plants have become conspicuous next to developing chemical weed management methods of convencionally cropped cultural plants. The aim of our investigations was to make comperative investigations of non chemical weed control methods in wide rowed plants.
ERIC Educational Resources Information Center
Nickell, Louis G.
1978-01-01
Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)
Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense
Häffner, Eva; Konietzki, Sandra; Diederichsen, Elke
2015-01-01
Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding. PMID:27135337
NASA Technical Reports Server (NTRS)
Modell, M.; Meissner, H.; Karel, M.; Carden, J.; Lewis, S.
1981-01-01
The research program entitled 'Development of a Prototype Experiment for Treating CELSS (Controlled Ecological Life Support Systems) and PCELSS (Partially Controlled Ecological Life Support Systems) Wastes to Produce Nutrients for Plant Growth' consists of two phases: (1) the development of the neccessary facilities, chemical methodologies and models for meaningful experimentation, and (2) the application of what methods and devices are developed to the interfacing of waste oxidation with plant growth. Homogeneous samples of freeze-dried human feces and urine have been prepared to ensure comparability of test results between CELSS waste treatment research groups. A model of PCELSS food processing wastes has been developed, and an automated gas chromatographic system to analyze oxidizer effluents was designed and brought to operational status. Attention is given the component configuration of the wet oxidation system used by the studies.
Nuclear Power Plant Cyber Security Discrete Dynamic Event Tree Analysis (LDRD 17-0958) FY17 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Timothy A.; Denman, Matthew R.; Williams, R. A.
Instrumentation and control of nuclear power is transforming from analog to modern digital assets. These control systems perform key safety and security functions. This transformation is occurring in new plant designs as well as in the existing fleet of plants as the operation of those plants is extended to 60 years. This transformation introduces new and unknown issues involving both digital asset induced safety issues and security issues. Traditional nuclear power risk assessment tools and cyber security assessment methods have not been modified or developed to address the unique nature of cyber failure modes and of cyber security threat vulnerabilities.more » iii This Lab-Directed Research and Development project has developed a dynamic cyber-risk in- formed tool to facilitate the analysis of unique cyber failure modes and the time sequencing of cyber faults, both malicious and non-malicious, and impose those cyber exploits and cyber faults onto a nuclear power plant accident sequence simulator code to assess how cyber exploits and cyber faults could interact with a plants digital instrumentation and control (DI&C) system and defeat or circumvent a plants cyber security controls. This was achieved by coupling an existing Sandia National Laboratories nuclear accident dynamic simulator code with a cyber emulytics code to demonstrate real-time simulation of cyber exploits and their impact on automatic DI&C responses. Studying such potential time-sequenced cyber-attacks and their risks (i.e., the associated impact and the associated degree of difficulty to achieve the attack vector) on accident management establishes a technical risk informed framework for developing effective cyber security controls for nuclear power.« less
Vreck, D; Gernaey, K V; Rosen, C; Jeppsson, U
2006-01-01
In this paper, implementation of the Benchmark Simulation Model No 2 (BSM2) within Matlab-Simulink is presented. The BSM2 is developed for plant-wide WWTP control strategy evaluation on a long-term basis. It consists of a pre-treatment process, an activated sludge process and sludge treatment processes. Extended evaluation criteria are proposed for plant-wide control strategy assessment. Default open-loop and closed-loop strategies are also proposed to be used as references with which to compare other control strategies. Simulations indicate that the BM2 is an appropriate tool for plant-wide control strategy evaluation.
Deconinck, E; Djiogo, C A Sokeng; Kamugisha, A; Courselle, P
2017-08-01
The consumption of plant food supplements is increasing steadily and more and more, these products are bought through internet. Often the products sold through internet are not registered or declared with a national authority, meaning that no or minimal quality control is performed and that they could contain herbs or plants that are regulated. Stationary Phase Optimized Selectivity Liquid Chromatography (SOS-LC) was evaluated for the development of specific fingerprints, to be used for the detection of targeted plants in plant food supplements. Three commonly used plants in plant food supplements and two regulated plants were used to develop fingerprints with SOS-LC. It was shown that for all plants specific fingerprints could be obtained, allowing the detection of these targeted plants in triturations with different herbal matrices as well as in real samples of suspicious supplements seized by the authorities. For three of the five plants a more specific fingerprint was obtained, compared to the ones developed on traditional columns described in literature. It could therefore be concluded that the combination of segments of different types of stationary phases, as used in SOS-LC, has the potential of becoming a valuable tool in the quality control and the identification of crude herbal or plant material and in the detection of regulated plants in plant food supplements or other herbal preparations. Copyright © 2017 Elsevier B.V. All rights reserved.
Designing propagation environments in forest and native plant nurseries
Thomas D. Landis
2013-01-01
Propagation environments are areas that have been modified for plant growth, and can be designed using the law of limiting factors. Identifying critical factors that are most limiting to optimal plant growth is helpful when developing both bareroot and container nurseries. Propagation environments can be categorized into minimally-controlled, semi-controlled, and fully...
NASA Technical Reports Server (NTRS)
Kuang, A.; Xiao, Y.; Musgrave, M. E.
1996-01-01
Successful development of seeds under spaceflight conditions has been an elusive goal of numerous long-duration experiments with plants on orbital spacecraft. Because carbohydrate metabolism undergoes changes when plants are grown in microgravity, developing seed storage reserves might be detrimentally affected during spaceflight. Seed development in Arabidopsis thaliana plants that flowered during 11 d in space on shuttle mission STS-68 has been investigated in this study. Plants were grown to the rosette stage (13 d) on a nutrient agar medium on the ground and loaded into the Plant Growth Unit flight hardware 18 h prior to lift-off. Plants were retrieved 3 h after landing and siliques were immediately removed from plants. Young seeds were fixed and processed for microscopic observation. Seeds in both the ground control and flight plants are similar in their morphology and size. The oldest seeds from these plants contain completely developed embryos and seed coats. These embryos developed radicle, hypocotyl, meristematic apical tissue, and differentiated cotyledons. Protoderm, procambium, and primary ground tissue had differentiated. Reserves such as starch and protein were deposited in the embryos during tissue differentiation. The aleurone layer contains a large quantity of storage protein and starch grains. A seed coat developed from integuments of the ovule with gradual change in cell composition and cell material deposition. Carbohydrates were deposited in outer integument cells especially in the outside cell walls. Starch grains decreased in number per cell in the integument during seed coat development. All these characteristics during seed development represent normal features in the ground control plants and show that the spaceflight environment does not prevent normal development of seeds in Arabidopsis.
Anticipatory control: A software retrofit for current plant controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parthasarathy, S.; Parlos, A.G.; Atiya, A.F.
1993-01-01
The design and simulated testing of an artificial neural network (ANN)-based self-adapting controller for complex process systems are presented in this paper. The proposed controller employs concepts based on anticipatory systems, which have been widely used in the petroleum and chemical industries, and they are slowly finding their way into the power industry. In particular, model predictive control (MPC) is used for the systematic adaptation of the controller parameters to achieve desirable plant performance over the entire operating envelope. The versatile anticipatory control algorithm developed in this study is projected to enhance plant performance and lend robustness to drifts inmore » plant parameters and to modeling uncertainties. This novel technique of integrating recurrent ANNs with a conventional controller structure appears capable of controlling complex, nonlinear, and nonminimum phase process systems. The direct, on-line adaptive control algorithm presented in this paper considers the plant response over a finite time horizon, diminishing the need for manual control or process interruption for controller gain tuning.« less
NASA Astrophysics Data System (ADS)
Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil
2009-12-01
Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.
International Lighting in Controlled Environments Workshop
NASA Technical Reports Server (NTRS)
Tibbits, Ted W. (Editor)
1994-01-01
Lighting is a central and critical aspect of control in environmental research for plant research and is gaining recognition as a significant factor to control carefully for animal and human research. Thus this workshop was convened to reevaluate the technology that is available today and to work toward developing guidelines for the most effective use of lighting in controlled environments with emphasis on lighting for plants but also to initiate interest in the development of improved guidelines for human and animal research.
USDA-ARS?s Scientific Manuscript database
Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental f...
Seed development and genomic imprinting in plants.
Köhler, Claudia; Grossniklaus, Ueli
2005-01-01
Genomic imprinting refers to an epigenetic phenomenon where the activity of an allele depends on its parental origin. Imprinting at individual genes has only been described in mammals and seed plants. We will discuss the role imprinted genes play in seed development and compare the situation in plants with that in mammals. Interestingly, many imprinted genes appear to control cell proliferation and growth in both groups of organisms although imprinting in plants may also be involved in the cellular differentiation of the two pairs of gametes involved in double fertilization. DNA methylation plays some role in the control of parent-of-origin-specific expression in both mammals and plants. Thus, although imprinting evolved independently in mammals and plants, there are striking similarities at the phenotypic and possibly also mechanistic level.
Signature Optical Cues: Emerging Technologies for Monitoring Plant Health
Liew, Oi Wah; Chong, Pek Ching Jenny; Li, Bingqing; Asundi, Anand K.
2008-01-01
Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for non-invasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control. PMID:27879874
Size of tuber propagule influences injury of 'Kennebec' potato plants by constant light
NASA Technical Reports Server (NTRS)
Cushman, K. E.; Tibbitts, T. W.
1996-01-01
Chlorosis and necrotic spotting develop on the foliage of particular cultivars of potato (Solanum tuberosum L.) when grown under constant light. 'Kennebec', a cultivar severely injured by constant light when propagated from tissue-cultured plantlets, also was injured when plants were propagated from small tuber pieces (approximately 1 g). However, plants did not develop injury when propagated from large tuber pieces (approximately 100 g). Plants from large tuber pieces grew more rapidly than plants from small tuber pieces. The role of plant vigor and carbohydrate translocation in controlling injury development is discussed.
Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae).
Noodén, L D; Penney, J P
2001-11-01
Like most monocarpic plants, longevity of Arabidopsis thaliana plants is controlled by the reproductive structures; however, they appear to work differently from most dicots studied. Neither male- and female-sterility mutations (ms1-1 and bell1, respectively) nor surgical removal of the stems with inflorescences (bolts) at various stages significantly increased the longevity of individual rosette leaves, yet the mutants and treated plants lived 20-50 d longer, measured by the death of the last rosette and/or the last cauline leaf. A series of growth mutations (clv2-4, clv3-2, det3, vam1 enh, and dark green) also increased plant longevity by 20-30 d but did not delay the overall development of the plants. The mutations prolonged plant life through the production of new leaves and stems with inflorescences (bolts) rather than by extending leaf longevity. In growing stems, the newly-formed leaves may induce senescence in the older leaves; however, removal of the younger leaves did not significantly increase the life of the older leaves on the compressed stems of Arabidopsis. Since plants that produce more bolts also live longer, the reproductive load (dry weight) of the bolts did not seem to drive leaf or whole plant senescence here. The developing reproductive structures caused the death of the plant by preventing regeneration of leaves and bolts, which are green and presumably photosynthetic. They also exerted a correlative control (repression) on the development of additional reproductive structures.
Guo, Yongfeng; Ni, Jun; Denver, Robert; Wang, Xiaohong; Clark, Steven E.
2011-01-01
Nematodes that parasitize plant roots cause huge economic losses and have few mechanisms for control. Many parasitic nematodes infect plants by reprogramming root development to drive the formation of feeding structures. How nematodes take control of plant development is largely unknown. Here, we identify two host factors involved in the function of a receptor ligand mimic, GrCLE1, secreted by the potato cyst nematode Globodera rostochiensis. GrCLE1 is correctly processed to an active form by host plant proteases. Processed GrCLE1 peptides bind directly to the plant CLE receptors CLV2, BAM1, and BAM2. Involvement of these receptors in the ligand-mimicking process is also supported by the fact that the ability of GrCLE1 peptides to alter plant root development in Arabidopsis (Arabidopsis thaliana) is dependent on these receptors. Critically, we also demonstrate that GrCLE1 maturation can be entirely carried out by plant factors and that the availability of CLE processing activity may be essential for successful ligand mimicry. PMID:21750229
Guo, Yongfeng; Ni, Jun; Denver, Robert; Wang, Xiaohong; Clark, Steven E
2011-09-01
Nematodes that parasitize plant roots cause huge economic losses and have few mechanisms for control. Many parasitic nematodes infect plants by reprogramming root development to drive the formation of feeding structures. How nematodes take control of plant development is largely unknown. Here, we identify two host factors involved in the function of a receptor ligand mimic, GrCLE1, secreted by the potato cyst nematode Globodera rostochiensis. GrCLE1 is correctly processed to an active form by host plant proteases. Processed GrCLE1 peptides bind directly to the plant CLE receptors CLV2, BAM1, and BAM2. Involvement of these receptors in the ligand-mimicking process is also supported by the fact that the ability of GrCLE1 peptides to alter plant root development in Arabidopsis (Arabidopsis thaliana) is dependent on these receptors. Critically, we also demonstrate that GrCLE1 maturation can be entirely carried out by plant factors and that the availability of CLE processing activity may be essential for successful ligand mimicry.
High-autonomy control of space resource processing plants
NASA Technical Reports Server (NTRS)
Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue
1993-01-01
A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.
Feldman, Max J.; Paul, Rachel E.; Banan, Darshi; ...
2017-06-23
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. For this research, we have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reducedmore » under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Max J.; Paul, Rachel E.; Banan, Darshi
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. For this research, we have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reducedmore » under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.« less
Paul, Rachel E.; Sebastian, Jose; Yee, Muh-Ching; Jiang, Hui; Lipka, Alexander E.; Brutnell, Thomas P.; Dinneny, José R.; Leakey, Andrew D. B.
2017-01-01
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development. PMID:28644860
Feldman, Max J; Paul, Rachel E; Banan, Darshi; Barrett, Jennifer F; Sebastian, Jose; Yee, Muh-Ching; Jiang, Hui; Lipka, Alexander E; Brutnell, Thomas P; Dinneny, José R; Leakey, Andrew D B; Baxter, Ivan
2017-06-01
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.
Yang, Haibing; Zhang, Xiao; Gaxiola, Roberto A.; Xu, Guohua; Peer, Wendy Ann; Murphy, Angus S.
2014-01-01
Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (P<0.01) in both greenhouse and field trials compared with the control plants. These results suggest that selection of tomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils. PMID:24723407
WTEC panel report on European nuclear instrumentation and controls
NASA Technical Reports Server (NTRS)
White, James D.; Lanning, David D.; Beltracchi, Leo; Best, Fred R.; Easter, James R.; Oakes, Lester C.; Sudduth, A. L.
1991-01-01
Control and instrumentation systems might be called the 'brain' and 'senses' of a nuclear power plant. As such they become the key elements in the integrated operation of these plants. Recent developments in digital equipment have allowed a dramatic change in the design of these instrument and control (I&C) systems. New designs are evolving with cathode ray tube (CRT)-based control rooms, more automation, and better logical information for the human operators. As these new advanced systems are developed, various decisions must be made about the degree of automation and the human-to-machine interface. Different stages of the development of control automation and of advanced digital systems can be found in various countries. The purpose of this technology assessment is to make a comparative evaluation of the control and instrumentation systems that are being used for commercial nuclear power plants in Europe and the United States. This study is limited to pressurized water reactors (PWR's). Part of the evaluation includes comparisons with a previous similar study assessing Japanese technology.
Candidate Species Selection and Controlled Environment Injuries
NASA Technical Reports Server (NTRS)
Tibbitts, T. W.
1982-01-01
Research was undertaken to attempt to identify the causal agents for intumescences that develop on many different species of plants in controlled environments. Concentration and filtration procedures were not successful in identifying any particular compounds. The injury was found to develop, even though the atmosphere for the plants is filtered through activated charcoal, potassium permanganate, or is subjected to catalytic combustion at 450 C. Thus, the causal agent is apparently either an oxidized compound or specific element, or the result of some unrecognized variation in physical conditions around the plants. The research has demonstrated that the injury is controlled to a significant extent by temperature. Growing temperatures of 20 degrees and 25 degrees C resulted in serious injury on plants, but temperatures of 30 C resulted in very little injury.
Homogalacturonan methyl-esterification and plant development.
Wolf, Sebastian; Mouille, Grégory; Pelloux, Jérome
2009-09-01
The ability of a plant cell to expand is largely defined by the physical constraints imposed by its cell wall. Accordingly, cell wall properties have to be regulated during development. The pectic polysaccharide homogalacturonan is a major component of the plant primary walls. Biosynthesis and in muro modification of homogalacturonan have recently emerged as key determinants of plant development, controlling cell adhesion, organ development, and phyllotactic patterning. This review will focus on recent findings regarding impact of homogalacturonan content and methyl-esterification status of this polymer on plant life. De-methyl-esterification of homogalacturonan occurs through the action of the ubiquitous enzyme 'pectin methyl-esterase'. We here describe various strategies developed by the plant to finely tune the methyl-esterification status of homogalacturonan along key events of the plant lifecycle.
Plant growth chamber based on space proven controlled environment technology
NASA Astrophysics Data System (ADS)
Ignatius, Ronald W.; Ignatius, Matt H.; Imberti, Henry J.
1997-01-01
Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE™ flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber.
NASA Technical Reports Server (NTRS)
Barta, D. J.; Tibbitts, T. W.
1991-01-01
An electron microprobe was used to determine tissue concentrations of Ca across 20-mm-long leaves of 'Green Lakes' crisphead lettuce (Lactuca sativa L.) with and without tipburn injury. Concentrations within the fifth and 14th leaves, counted from the cotyledons, from plants grown under controlled-environment conditions were compared to concentrations within similar leaves obtained from plants grown under field conditions. Only the 14th leaf from plants grown under controlled-environment conditions developed tipburn. Injured areas on these leaves had Ca concentrations as low as 0.2 to 0.3 mg g-1 dry weight. Uninjured areas of tipburned leaves contained from 0.4 to 0.5 mg g-1 dry weight. Concentrations across the uninjured 14th leaf from field-grown plants averaged 1.0 mg g-1 dry weight. Amounts across the uninjured fifth leaves from both environments averaged 1.6 mg g-1 dry weight. In contrast, Mg concentrations were higher in injured leaves than in uninjured leaves and thus were negatively correlated with Ca concentrations. Magnesium concentrations averaged 4.7 mg g-1 dry weight in injured leaves compared with 3.4 mg g-1 dry weight in uninjured leaves from both environments. Magnesium concentrations were uniform across the leaf. Potassium concentrations were highest at the leaf apex and decreased toward the base and also decreased from the midrib to the margin. Potassium averaged 51 mg g-1 dry weight in injured and uninjured leaves from both environments. No significant differences in K concentration were present between injured and uninjured leaves. This study documented that deficient concentrations of Ca were present in areas of leaf tissue developing tipburn symptoms and that concentrations were significantly higher in similar areas of other leaves that had no symptoms. This study also documented that Ca concentrations were significantly lower in enclosed leaves that exhibited tipburn symptoms than in exposed leaves that did not exhibit tipburn. Also, the amounts of Ca in plants that developed tipburn in controlled environments were lower than in plants of the same cultivar that did not develop tipburn in field plantings. The reduced levels of Ca in plants grown in controlled environments were associated with faster development rates compared with field-grown plants.
Proust, Hélène; Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Prescott, Helen; Kelly, Steve; Ishizaki, Kimitsune; Kohchi, Takayuki; Dolan, Liam
2016-01-11
The colonization of the land by plants, sometime before 470 million years ago, was accompanied by the evolution tissue systems [1-3]. Specialized structures with diverse functions-from nutrient acquisition to reproduction-derived from single cells in the outermost layer (epidermis) were important sources of morphological innovation at this time [2, 4, 5]. In extant plants, these structures may be unicellular extensions, such as root hairs or rhizoids [6-9], or multicellular structures, such as asexual propagules or secretory hairs (papillae) [10-12]. Here, we show that a ROOTHAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix-loop-helix transcription factor positively regulates the development of the unicellular and multicellular structures that develop from individual cells that expand out of the epidermal plane of the liverwort Marchantia polymorpha; mutants that lack MpRSL1 function do not develop rhizoids, slime papillae, mucilage papillae, or gemmae. Furthermore, we discovered that RSL class I genes are also required for the development of multicellular axillary hairs on the gametophyte of the moss Physcomitrella patens. Because class I RSL proteins also control the development of rhizoids in mosses and root hairs in angiosperms [13, 14], these data demonstrate that the function of RSL class I genes was to control the development of structures derived from single epidermal cells in the common ancestor of the land plants. Class I RSL genes therefore controlled the generation of adaptive morphological diversity as plants colonized the land from the water. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Proust, Hélène; Honkanen, Suvi; Jones, Victor A.S.; Morieri, Giulia; Prescott, Helen; Kelly, Steve; Ishizaki, Kimitsune; Kohchi, Takayuki; Dolan, Liam
2016-01-01
Summary The colonization of the land by plants, sometime before 470 million years ago, was accompanied by the evolution tissue systems [1, 2, 3]. Specialized structures with diverse functions—from nutrient acquisition to reproduction—derived from single cells in the outermost layer (epidermis) were important sources of morphological innovation at this time [2, 4, 5]. In extant plants, these structures may be unicellular extensions, such as root hairs or rhizoids [6, 7, 8, 9], or multicellular structures, such as asexual propagules or secretory hairs (papillae) [10, 11, 12]. Here, we show that a ROOTHAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix-loop-helix transcription factor positively regulates the development of the unicellular and multicellular structures that develop from individual cells that expand out of the epidermal plane of the liverwort Marchantia polymorpha; mutants that lack MpRSL1 function do not develop rhizoids, slime papillae, mucilage papillae, or gemmae. Furthermore, we discovered that RSL class I genes are also required for the development of multicellular axillary hairs on the gametophyte of the moss Physcomitrella patens. Because class I RSL proteins also control the development of rhizoids in mosses and root hairs in angiosperms [13, 14], these data demonstrate that the function of RSL class I genes was to control the development of structures derived from single epidermal cells in the common ancestor of the land plants. Class I RSL genes therefore controlled the generation of adaptive morphological diversity as plants colonized the land from the water. PMID:26725198
Trichoderma-plant-pathogen interactions: advances in genetics of biological control.
Mukherjee, Mala; Mukherjee, Prasun K; Horwitz, Benjamin A; Zachow, Christin; Berg, Gabriele; Zeilinger, Susanne
2012-12-01
Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt.... History of infestation. Discuss obvious development as established. e. Criteria for identification of the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt.... History of infestation. Discuss obvious development as established. e. Criteria for identification of the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt.... History of infestation. Discuss obvious development as established. e. Criteria for identification of the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt.... History of infestation. Discuss obvious development as established. e. Criteria for identification of the...
James H. Miller; B.R. Zutter; S.M Zedaker; M.B. Edwards; R.A. Newbold
2002-01-01
Pine plantations are increasingly cultured using early woody and/or herbaceous plant control. Developments in sustainable cultural practices are hindered by the absence of long-term data on productivity gains relative to competition levels, crop-competition dynamics, and compositional succession. To gain baseline data, this study examined loblolly pine (Pinus...
Kowalski, Kurt P.; Bacon, Charles; Bickford, Wesley; Braun, Heather; Clay, Keith; Leduc-Lapierre, Michèle; Lillard, Elizabeth; McCormick, Melissa K.; Nelson, Eric; Torres, Monica; White, James; Wilcox, Douglas A.
2015-01-01
A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis and Phragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management. PMID:25745417
Kowalski, Kurt P; Bacon, Charles; Bickford, Wesley; Braun, Heather; Clay, Keith; Leduc-Lapierre, Michèle; Lillard, Elizabeth; McCormick, Melissa K; Nelson, Eric; Torres, Monica; White, James; Wilcox, Douglas A
2015-01-01
A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis and Phragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management.
Kowalski, Kurt P.; Bacon, Charles R.; Bickford, Wesley A.; Braun, Heather A.; Clay, Keith; Leduc-Lapierre, Michele; Lillard, Elizabeth; McCormick, Melissa K.; Nelson, Eric; Torres, Monica; White, James W. C.; Wilcox, Douglas A.
2015-01-01
A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis andPhragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management.
VirtualPlant: A Software Platform to Support Systems Biology Research1[W][OA
Katari, Manpreet S.; Nowicki, Steve D.; Aceituno, Felipe F.; Nero, Damion; Kelfer, Jonathan; Thompson, Lee Parnell; Cabello, Juan M.; Davidson, Rebecca S.; Goldberg, Arthur P.; Shasha, Dennis E.; Coruzzi, Gloria M.; Gutiérrez, Rodrigo A.
2010-01-01
Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org. PMID:20007449
Studies on Somatic Embryogenesis in Sweetpotato
NASA Technical Reports Server (NTRS)
Bennett, J. Rasheed; Prakash, C. S.
1997-01-01
The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweetpotato Ipomoea batatas L.(Lam)l. Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 Explants isolated from those plants developed through somatic embryo-genesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants. They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.
Studies for Somatic Embryogenesis in Sweet Potato
NASA Technical Reports Server (NTRS)
Bennett, J. Rasheed; Prakash, C. S.
1997-01-01
The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweet potato (Ipomoea batatas L(Lam)). Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 mg/L). Explants isolated from those plants developed through somatic embryogenesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.
Development of a smart type motor operated valve for nuclear power plants
NASA Astrophysics Data System (ADS)
Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo
2005-12-01
In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.
1984-10-01
develop pollution abatement procedures for Army munition plants and military installations.n, t ftr Laboratory is also actively engaged in the...FACILITIES The physical plant provides over 100,000 square feet for research, development, testing, and administrative activities . Space is...protection of industrial workers and thq surrounding community at Army-controlled, industry-operated munition plants . G Environmental Quality program
The knowledge-based framework for a nuclear power plant operator advisor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.W.; Hajek, B.K.
1989-01-01
An important facet in the design, development, and evaluation of aids for complex systems is the identification of the tasks performed by the operator. Operator aids utilizing artificial intelligence, or more specifically knowledge-based systems, require identification of these tasks in the context of a knowledge-based framework. In this context, the operator responses to the plant behavior are to monitor and comprehend the state of the plant, identify normal and abnormal plant conditions, diagnose abnormal plant conditions, predict plant response to specific control actions, and select the best available control action, implement a feasible control action, monitor system response to themore » control action, and correct for any inappropriate responses. These tasks have been identified to formulate a knowledge-based framework for an operator advisor under development at Ohio State University that utilizes the generic task methodology proposed by Chandrasekaran. The paper lays the foundation to identify the responses as a knowledge-based set of tasks in accordance with the expected human operator responses during an event. Initial evaluation of the expert system indicates the potential for an operator aid that will improve the operator's ability to respond to both anticipated and unanticipated events.« less
Status of NO sub x control for coal-fired power plants
NASA Technical Reports Server (NTRS)
Teixeira, D. P.
1978-01-01
The status of technologies for controlling emissions of oxides of nitrogen (NOx) from coal-fired power plants is reviewed. A discussion of current technology as well as future NOx control approaches is presented. Advanced combustion approaches are included as well as post-combustion alternatives such as catalytic and noncatalytic ammonia-bases systems and wet scrubbing. Special emphasis is given to unresolved development issues as they relate to practical applications on coal-fired power plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.
Carrasco, Juan A; Dormido, Sebastián
2006-04-01
The use of industrial control systems in simulators facilitates the execution of engineering activities related with the installation and the optimization of the control systems in real plants. "Industrial control system" intends to be a valid term that would represent all the control systems which can be installed in an industrial plant, ranging from complex distributed control systems and SCADA packages to small single control devices. This paper summarizes the current alternatives for the development of simulators of industrial plants and presents an analysis of the process of integrating an industrial control system into a simulator, with the aim of helping in the installation of real control systems in simulators.
Demonstration of a Porous Tube Hydroponic System to Control Plant Moisture and Growth
NASA Technical Reports Server (NTRS)
Dreschel, T. W.; Hall, C. R.; Foster, T. E.
2003-01-01
Accurate remote detection of plant health indicators such as moisture, plant pigment concentrations, photosynthetic flux, and other biochemicals in canopies is a major goal in plant research. Influencing factors include complex interactions between wavelength dependent absorbing and scattering features from backgrounds as well as canopy biochemical and biophysical constituents. Accurately controlling these factors in outdoor field studies is difficult. Early testing of a porous tube plant culture system has indicated that plant biomass production, biomass partitioning, and leaf moisture of plants can be controlled by precisely managing the root water potential. Managing nutrient solution chemistry can also control plant pigments, biochemical concentrations, plant biomass production, and photosynthetic rates. A test bed was developed which utilized the porous tube technology with the intent of evaluating remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements for their ability to detect small differences in plant water status. Spectral analysis was able to detect small differences in the mean leaf water content between the treatments. However these small differences were not detectable in the gas-exchange or fluorescence measurements.
Spectral composition of light and growing of plants in controlled environments
NASA Technical Reports Server (NTRS)
Tikhomirov, Alexander A.
1994-01-01
The main conclusions of many investigations about general requirements of plants for spectral composition of PAR (photosynthetically active radiation) are based on phylogenetic aspects of plant growth. We think that these aspects are not the main criteria in choosing the spectral composition required for growing plants in controlled conditions. Our approach to this problem is based on plant and crop reaction under long duration growth with specific spectra and intensity. Only in this way can we determine correctly the role of light characteristics for developing crops.
Plant development in the absence of epiphytic microorganisms
NASA Astrophysics Data System (ADS)
Kutschera, U.; Koopmann, V.; Grotha, R.
2002-05-01
Microorganisms (bacteria, fungi) are common residents of the roots, stems and leaves of higher plants. In order to explore the dependency of plant development on the presence of epiphytic microorganisms, the achenes (seeds) of sunflower (Helianthus annuus L.) were sterilized and germinated under aseptic conditions. The sterility of the seedlings was determined with the agar impression method. In seedlings from non-sterile seeds (control) that were likewise raised in a germ-free environment, all plant organs investigated (stem, cotyledons and primary leaves) were contaminated with bacteria. Hypocotyl elongation was not affected by epiphytic microorganisms. However, the growth rates of the cotyledons and primary leaves were higher in sterile seedlings compared with the control. The implications of this differential inhibition of organ development by epiphytic bacteria that are transmitted via the outer surface of the seed coat are discussed. We conclude that epiphytes in the above-ground phytosphere are not necessary for the development of the sunflower seedling.
The Control of Auxin Transport in Parasitic and Symbiotic Root–Microbe Interactions
Ng, Jason Liang Pin; Perrine-Walker, Francine; Wasson, Anton P.; Mathesius, Ulrike
2015-01-01
Most field-grown plants are surrounded by microbes, especially from the soil. Some of these, including bacteria, fungi and nematodes, specifically manipulate the growth and development of their plant hosts, primarily for the formation of structures housing the microbes in roots. These developmental processes require the correct localization of the phytohormone auxin, which is involved in the control of cell division, cell enlargement, organ development and defense, and is thus a likely target for microbes that infect and invade plants. Some microbes have the ability to directly synthesize auxin. Others produce specific signals that indirectly alter the accumulation of auxin in the plant by altering auxin transport. This review highlights root–microbe interactions in which auxin transport is known to be targeted by symbionts and parasites to manipulate the development of their host root system. We include case studies for parasitic root–nematode interactions, mycorrhizal symbioses as well as nitrogen fixing symbioses in actinorhizal and legume hosts. The mechanisms to achieve auxin transport control that have been studied in model organisms include the induction of plant flavonoids that indirectly alter auxin transport and the direct targeting of auxin transporters by nematode effectors. In most cases, detailed mechanisms of auxin transport control remain unknown. PMID:27135343
Use of space for development of commercial plant natural products
NASA Astrophysics Data System (ADS)
Draeger, Norman A.
1997-01-01
Plant experiments conducted in environments where conditions are carefully controlled reveal fundamental information about physiological processes. An important environmental parameter is gravity, the effects of which may be better understood in part through experiments conducted in space. New insights gained can be used to develop commercial plant natural products in industries such as pharmaceuticals and biocontrol.
Problems and potentialities of cultured plant cells in retrospect and prospect
NASA Technical Reports Server (NTRS)
Steward, F. C.; Krikorian, A. D.
1979-01-01
The past, present and expected future accomplishments and limitations of plant cell and tissue culture are reviewed. Consideration is given to the pioneering insights of Haberlandt in 1902, the development of culture techniques, and past work on cell division, cell and tissue growth and development, somatic embryogenesis, and metabolism and respiration. Current activity in culture media and technique development for plant regions, organs, tissues, cells, protoplasts, organelles and embryos, totipotency, somatic embryogenesis and clonal propagation under normal and space conditions, biochemical potentialities, and genetic engineering is surveyed. Prospects for the investigation of the induced control of somatic cell division, the division of isolated protoplasts, the improvement of haploid cell cultures, liquid cultures for somatic embryogenesis, and the genetic control of development are outlined.
Optimization of EB plant by constraint control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummel, H.K.; de Wit, G.B.C.; Maarleveld, A.
1991-03-01
Optimum plant operation can often be achieved by means of constraint control instead of model- based on-line optimization. This is because optimum operation is seldom at the top of the hill but usually at the intersection of constraints. This article describes the development of a constraint control system for a plant producing ethylbenzene (EB) by the Mobil/Badger Ethylbenzene Process. Plant optimization can be defined as the maximization of a profit function describing the economics of the plant. This function contains terms with product values, feedstock prices and operational costs. Maximization of the profit function can be obtained by varying relevantmore » degrees of freedom in the plant, such as a column operating pressure or a reactor temperature. These degrees of freedom can be varied within the available operating margins of the plant.« less
Automated hydroponics nutrition plants systems using arduino uno microcontroller based on android
NASA Astrophysics Data System (ADS)
Sihombing, P.; Karina, N. A.; Tarigan, J. T.; Syarif, M. I.
2018-03-01
Technological developments today make the combination of science is very common, including in Computer Science and Agriculture to make both of science need each other. This paper aims to develop a control tool for the flow of nutrients of hydroponic plants automatically using Arduino microcontroller and controlled by smartphone. We use an Arduino Uno microcontroller to automatically control the flow of nutrient solution with logic if else. The microcontroller can also send data of fluid level (solution) and temperature around the plant to smartphone android of the owner of the hydroponics plant. The height of the nutrient solution (water) is detected by the Ultrasonic sensor HC-SR04 and the temperature is detected by the temperature sensor LM35. Data from the sensor will forward into Arduino Uno and displayed in liquid crystal display (LCD) then via wireless fidelity (WIFI) ESP8266 module will transmit the height of the nutrient solution and the temperature around of the plants to Android smartphone.
Veggie ISS Validation Test Results and Produce Consumption
NASA Technical Reports Server (NTRS)
Massa, Gioia; Hummerick, Mary; Spencer, LaShelle; Smith, Trent
2015-01-01
The Veggie vegetable production system flew to the International Space Station (ISS) in the spring of 2014. The first set of plants, Outredgeous red romaine lettuce, was grown, harvested, frozen, and returned to Earth in October. Ground control and flight plant tissue was sub-sectioned for microbial analysis, anthocyanin antioxidant phenolic analysis, and elemental analysis. Microbial analysis was also performed on samples swabbed on orbit from plants, Veggie bellows, and plant pillow surfaces, on water samples, and on samples of roots, media, and wick material from two returned plant pillows. Microbial levels of plants were comparable to ground controls, with some differences in community composition. The range in aerobic bacterial plate counts between individual plants was much greater in the ground controls than in flight plants. No pathogens were found. Anthocyanin concentrations were the same between ground and flight plants, while antioxidant and phenolic levels were slightly higher in flight plants. Elements varied, but key target elements for astronaut nutrition were similar between ground and flight plants. Aerobic plate counts of the flight plant pillow components were significantly higher than ground controls. Surface swab samples showed low microbial counts, with most below detection limits. Flight plant microbial levels were less than bacterial guidelines set for non-thermostabalized food and near or below those for fungi. These guidelines are not for fresh produce but are the closest approximate standards. Forward work includes the development of standards for space-grown produce. A produce consumption strategy for Veggie on ISS includes pre-flight assessments of all crops to down select candidates, wiping flight-grown plants with sanitizing food wipes, and regular Veggie hardware cleaning and microbial monitoring. Produce then could be consumed by astronauts, however some plant material would be reserved and returned for analysis. Implementation of this plan is a step toward developing pick-and-eat food production to supplement the packaged diet on ISS and for future exploration missions where plants could make up a larger portion of the diet. Supported by NASA Space Biology Program.
Wu, Qingyu; Shigaki, Toshiro; Williams, Kimberly A; Han, Jeung-Sul; Kim, Chang Kil; Hirschi, Kendal D; Park, Sunghun
2011-01-15
Phytoremediation is a cost-effective and minimally invasive technology to cleanse soils contaminated with heavy metals. However, few plant species are suitable for phytoremediation of metals such as cadmium (Cd). Genetic engineering offers a powerful tool to generate plants that can hyperaccumulate Cd. An Arabidopsis CAX1 mutant (CAXcd), which confers enhanced Cd transport in yeast, was ectopically expressed in petunia to evaluate whether the CAXcd expression would enhance Cd tolerance and accumulation in planta. The CAXcd-expressing petunia plants showed significantly greater Cd tolerance and accumulation than the controls. After being treated with either 50 or 100μM CdCl(2) for 6 weeks, the CAXcd-expressing plants showed more vigorous growth compared with controls, and the transgenic plants accumulated significantly more Cd (up to 2.5-fold) than controls. Moreover, the accumulation of Cd did not affect the development and morphology of the CAXcd-expressing petunia plants until the flowering and ultimately the maturing of seeds. Therefore, petunia has the potential to serve as a model species for developing herbaceous, ornamental plants for phytoremediation. Copyright © 2010 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Somova, Lydia; Mikheeva, Galina; Somova, Lydia
The life support systems (LSS) for long-term missions are to use cycling-recycling systems, including biological recycling. Simple ecosystems include 3 links: producers (plants), consumers (man, animals) and reducers (microorganisms). Microorganisms are substantial component of every link of LSS. Higher plants are the traditional regenerator of air and producer of food. They should be used in many successive generations of their reproduction in LSS. Controlled microbiocenoses can increase productivity of producer's link and protect plants from infections. The goal of this work was development of methodological bases of formation of stable, controlled microbiocenoses, intended for increase of productivity of plants and for obtaining ecologically pure production of plants. Main results of our investigations: 1. Experimental microbiocenoses, has been produced in view of the developed methodology on the basis of natural association of microorganisms by long cultivation on specially developed medium. Dominating groups are bacteria of genera: Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Rhodopseudomonas and yeast of genera: Kluyveromyces, Saccharomyces, Torulopsis. 2. Optimal parameters of microbiocenosis cultivation (t, pH, light exposure, biogenic elements concentrations) were experimentally established. Conditions of cultivation on which domination of different groups of microbiocenosis have been found. 3. It was shown, that processing of seeds of wheat, oats, bulbs and plants Allium cepa L. (an onions) with microbial association raised energy of germination of seeds and bulbs and promoted the increase (on 20-30 %) of growth green biomass and root system of plants in comparison with the control. This work is supported by grant, Yenissey , 07-04-96806
The crop growth research chamber
NASA Technical Reports Server (NTRS)
Wagenbach, Kimberly
1993-01-01
The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.
Martins, Sara; Dohmann, Esther M N; Cayrel, Anne; Johnson, Alexander; Fischer, Wolfgang; Pojer, Florence; Satiat-Jeunemaître, Béatrice; Jaillais, Yvon; Chory, Joanne; Geldner, Niko; Vert, Grégory
2015-01-21
Brassinosteroids are plant steroid hormones that control many aspects of plant growth and development, and are perceived at the cell surface by the plasma membrane-localized receptor kinase BRI1. Here we show that BRI1 is post-translationally modified by K63 polyubiquitin chains in vivo. Using both artificial ubiquitination of BRI1 and generation of an ubiquitination-defective BRI1 mutant form, we demonstrate that ubiquitination promotes BRI1 internalization from the cell surface and is essential for its recognition at the trans-Golgi network/early endosomes (TGN/EE) for vacuolar targeting. Finally, we demonstrate that the control of BRI1 protein dynamics by ubiquitination is an important control mechanism for brassinosteroid responses in plants. Altogether, our results identify ubiquitination and K63-linked polyubiquitin chain formation as a dual targeting signal for BRI1 internalization and sorting along the endocytic pathway, and highlight its role in hormonally controlled plant development.
Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.
2011-01-01
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, (2) increasing BSC cover in areas under strong erosion risk, to avoid soil loss, and (3) enhancing soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation. ?? 2011 by the Ecological Society of America.
Innovative Technology Reduces Power Plant Emissions - Commercialization Success
NASA Technical Reports Server (NTRS)
Parrish, Clyde
2004-01-01
Emission control system development includes: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on. power plant (3) Development of method to oxidize NO. to N02 (4) Experience gained from licensing NASA technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provost, G.; Stone, H.; McClintock, M.
2008-01-01
To meet the growing demand for education and experience with the analysis, operation, and control of commercial-scale Integrated Gasification Combined Cycle (IGCC) plants, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) is leading a collaborative R&D project with participants from government, academia, and industry. One of the goals of this project is to develop a generic, full-scope, real-time generic IGCC dynamic plant simulator for use in establishing a world-class research and training center, as well as to promote and demonstrate the technology to power industry personnel. The NETL IGCC dynamic plant simulator will combine for the first timemore » a process/gasification simulator and a power/combined-cycle simulator together in a single dynamic simulation framework for use in training applications as well as engineering studies. As envisioned, the simulator will have the following features and capabilities: A high-fidelity, real-time, dynamic model of process-side (gasification and gas cleaning with CO2 capture) and power-block-side (combined cycle) for a generic IGCC plant fueled by coal and/or petroleum coke Full-scope training simulator capabilities including startup, shutdown, load following and shedding, response to fuel and ambient condition variations, control strategy analysis (turbine vs. gasifier lead, etc.), representative malfunctions/trips, alarms, scenarios, trending, snapshots, data historian, and trainee performance monitoring The ability to enhance and modify the plant model to facilitate studies of changes in plant configuration and equipment and to support future R&D efforts To support this effort, process descriptions and control strategies were developed for key sections of the plant as part of the detailed functional specification, which will form the basis of the simulator development. These plant sections include: Slurry Preparation Air Separation Unit Gasifiers Syngas Scrubbers Shift Reactors Gas Cooling, Medium Pressure (MP) and Low Pressure (LP) Steam Generation, and Knockout Sour Water Stripper Mercury Removal Selexol™ Acid Gas Removal System CO2 Compression Syngas Reheat and Expansion Claus Plant Hydrogenation Reactor and Gas Cooler Combustion Turbine (CT)-Generator Assemblies Heat Recovery Steam Generators (HRSGs) and Steam Turbine (ST)-Generator In this paper, process descriptions, control strategies, and Process & Instrumentation Diagram (P&ID) drawings for key sections of the generic IGCC plant are presented, along with discussions of some of the operating procedures and representative faults that the simulator will cover. Some of the intended future applications for the simulator are discussed, including plant operation and control demonstrations as well as education and training services such as IGCC familiarization courses.« less
Statistically Valid Planting Trials
C. B. Briscoe
1961-01-01
More than 100 million tree seedlings are planted each year in Latin America, and at least ten time'that many should be planted Rational control and development of a program of such magnitude require establishing and interpreting carefully planned trial plantings which will yield statistically valid answers to real and important questions. Unfortunately, many...
NASA Technical Reports Server (NTRS)
Davis, D.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.
1998-01-01
Control of nutrient solution parameters is very important for the growth and development of plants grown hydroponically. Protocols involving different nutrient solution replenishment times (e.g. one-week, two-week, or two-day replenishment) provide manual periodic control of the nutrient solution's electrical conductivity (EC). Since plants take-up nutrients as they grow, manual control has a drawback in that EC is not held constant between replenishments. In an effort to correct this problem the Center for Food and Environmental Systems for Human Exploration of Space at Tuskegee University has developed a system for managing and controlling levels of EC over a plant's entire growing cycle. A prototype system is being tested on sweetpotato production using the nutrient film technique (NFT), and it is being compared to a system in which sweetpotatoes are grown using NFT with manual control. NASA has played an important role in the development of environmental control systems. They have become a forerunner in growing plants hydroponically with some control systems through the use of networked data acquisition and control using environmental growth chambers. Data acquisition systems which involve the use of real-time, calibration, set points, user panel, and graphical representation programming provide a good method of controlling nutrient solution parameters such as EC and pH [Bledsoe, 19931]. In NASA's Biomass Production Chamber (BPC) at Kennedy Space Center, control is provided by a programmable logic controller (PLC). This is an industrial controller which combines ladder computer logic which has the ability to handle various levels of electrical power. The controller controls temperature, light and other parameters that affect the plant's environment, in the BPC, the Nutrient Delivery System (NIX), a sub-system of the PLC, controls nutrient solution parameters such as EC, pH, and solution levels. When the nutrient EC measurement goes outside a preset range (120-130 mS/m) a set amount of a stock solution of nutrients is automatically added by a metering pump to bring the EC back into operating range [Fortson, 1992]. This paper describes a system developed at Tuskegee University for controlling the EC of a nutrient solution used for growing sweetpotatoes with an EC controller and a computer with LabView data acquisition and instrumentation software. It also describes the preliminary data obtained from the growth of sweetpotatoes using this prototype control system.
[Recent advances in sample preparation methods of plant hormones].
Wu, Qian; Wang, Lus; Wu, Dapeng; Duan, Chunfeng; Guan, Yafeng
2014-04-01
Plant hormones are a group of naturally occurring trace substances which play a crucial role in controlling the plant development, growth and environment response. With the development of the chromatography and mass spectroscopy technique, chromatographic analytical method has become a widely used way for plant hormone analysis. Among the steps of chromatographic analysis, sample preparation is undoubtedly the most vital one. Thus, a highly selective and efficient sample preparation method is critical for accurate identification and quantification of phytohormones. For the three major kinds of plant hormones including acidic plant hormones & basic plant hormones, brassinosteroids and plant polypeptides, the sample preparation methods are reviewed in sequence especially the recently developed methods. The review includes novel methods, devices, extractive materials and derivative reagents for sample preparation of phytohormones analysis. Especially, some related works of our group are included. At last, the future developments in this field are also prospected.
James H. Miller; Bruce R. Zutter; Shepard M. Zedaker; M. Boyd Edwards; Ray A. Newbold
2002-01-01
Conifer plantations in North America and elsewhere in the world are increasingly cultured using early control of herbaceous and woody plants. Development of sustainable cultural practices are hindered by the absence of long-term data on productivity gains relative to competition levels, crop- competition dynamics, and ecological changes. There are lmany reports of...
Skirvin, D J; de Courcy Williams, M
1999-06-01
The influence of plant species on the population dynamics of the spider mite pest, Tetranychus urticae, and its predator, Phytoseiulus persimilis, was examined as a prerequisite to effective biological control on ornamental nursery stock. Experiments have been done to investigate how the development, fecundity and movement of T. urticae, and the movement of P. persimilis were affected by plant species. A novel experimental method, which incorporates plant structure, was used to investigate the functional response of P. persimilis. Development times for T. urticae were consistent with published data and did not differ with plant species in a biologically meaningful way. Plant species was shown to have a major influence on fecundity (P < 0.001) and movement of the pest mite (P < 0.01), but no influence on the movement of the predator. The movement of both pest and predator was shown to be related to the density of the adult pest mites on the plant (P < 0.001). Plant structure affected the functional response, particularly in relation to the ability of the predator to locate prey at low densities. The impact of these findings on the effective use of biological control on ornamental nursery stock is discussed.
Álvarez-Flórez, F; López-Cristoffanini, C; Jáuregui, O; Melgarejo, L M; López-Carbonell, M
2017-06-01
Changes in abscisic acid (ABA), indole-3-acetic acid (IAA) and jasmonic acid (JA) content in developing calyx, fruits and leaves of Physalis peruviana L. plants were analysed. Plant hormones have been widely studied for their roles in the regulation of various aspects related to plant development and, in particular, into their action during development and ripening of fleshly fruits. The obtained evidences suggest that the functions of these hormones are no restricted to a particular development stage, and more than one hormone is involved in controlling various aspects of plant development. Our results will contribute to understand the role of these hormones during growth and development of calyx, fruits and leaves in cape gooseberry plants. This work offers a good, quickly and efficiently protocol to extract and quantify simultaneously ABA, IAA and JA in different tissues of cape gooseberry plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Implementation of Sensor and Control Designs for Bioregenerative Systems
NASA Technical Reports Server (NTRS)
Rodriguez, Pedro R. (Editor)
1990-01-01
The goal of the Spring 1990 EGM 4001 Design class was to design, fabricate, and test sensors and control systems for a closed loop life support system (CLLSS). The designs investigated were to contribute to the development of NASA's Controlled Ecological Life Support System (CELSS) at Kennedy Space Center (KSC). Designs included a seed moisture content sensor, a porous medium wetness sensor, a plant health sensor, and a neural network control system. The seed group focused on the design and implementation of a sensor that could detect the moisture content of a seed batch. The porous medium wetness group concentrated on the development of a sensor to monitor the amount of nutrient solution within a porous plate incorporating either infrared reflectance or thermal conductance properties. The plant health group examined the possibility of remotely monitoring the health of the plants within the Biomass Production Chamber (BPC) using infrared reflectance properties. Finally, the neural network group concentrated on the ability to use parallel processing in order to control a robot arm and analyze the data from the health sensor to detect regions of a plant.
Characterization of Antisense Transformed Plants Deficient in the Tobacco Anionic Peroxidase.
Lagrimini, L. M.; Gingas, V.; Finger, F.; Rothstein, S.; Liu, TTY.
1997-01-01
On the basis of the biological compounds that they metabolize, plant peroxidases have long been implicated in plant growth, cell wall biogenesis, lignification, and host defenses. Transgenic tobacco (Nicotiana tabacum L.) plants that underexpress anionic peroxidase were generated using antisense RNA. The antisense RNA was found to be specific for the anionic isoenzyme and highly effective, reducing endogenous transcript levels and total peroxidase activity by as much as 1600-fold. Antisense-transformed plants appeared normal at initial observation; however, growth studies showed that plants with reduced peroxidase activity grow taller and flower sooner than control plants. In contrast, previously transformed plants overproducing anionic peroxidase were shorter and flowered later than controls. Axillary buds were more developed in antisense-transformed plants and less developed in plants overproducing this enzyme. It was found that the lignin content in leaf, stem, and root was unchanged in antisense-transformed plants, which does not support a role for anionic peroxidase in the lignification of secondary xylem vessels. However, studies of wounded tissue show some reduction in wound-induced deposition of lignin-like polymers. The data support a possible role for tobacco anionic peroxidase in host defenses but not without a reduction in growth potential. PMID:12223765
Characterization of Antisense Transformed Plants Deficient in the Tobacco Anionic Peroxidase.
Lagrimini, L. M.; Gingas, V.; Finger, F.; Rothstein, S.; Liu, TTY.
1997-08-01
On the basis of the biological compounds that they metabolize, plant peroxidases have long been implicated in plant growth, cell wall biogenesis, lignification, and host defenses. Transgenic tobacco (Nicotiana tabacum L.) plants that underexpress anionic peroxidase were generated using antisense RNA. The antisense RNA was found to be specific for the anionic isoenzyme and highly effective, reducing endogenous transcript levels and total peroxidase activity by as much as 1600-fold. Antisense-transformed plants appeared normal at initial observation; however, growth studies showed that plants with reduced peroxidase activity grow taller and flower sooner than control plants. In contrast, previously transformed plants overproducing anionic peroxidase were shorter and flowered later than controls. Axillary buds were more developed in antisense-transformed plants and less developed in plants overproducing this enzyme. It was found that the lignin content in leaf, stem, and root was unchanged in antisense-transformed plants, which does not support a role for anionic peroxidase in the lignification of secondary xylem vessels. However, studies of wounded tissue show some reduction in wound-induced deposition of lignin-like polymers. The data support a possible role for tobacco anionic peroxidase in host defenses but not without a reduction in growth potential.
Application of CRISPR/Cas9 system in breeding of new antiviral plant germplasm.
Zhang, Dao-wei; Zhang, Chao-fan; Dong, Fang; Huang, Yan-lan; Zhang, Ya; Zhou, Hong
2016-09-01
With the development and improvement of CRISPR/Cas9 system in genomic editing technology, the system has been applied to the prevention and control of animal viral infectious diseases, which has made considerable achievements. It has also been applied to the study of highly efficient gene targeting editing in plant virus genomes. The CRISPR/Cas9-mediated targeted gene modification has not only achieved the genome editing of plant DNA virus, but also showed the genome editing potential of plant RNA virus. In addition, the CRISPR/Cas9 system functions at the gene transcriptional and post-transcriptional level, indicating that the system could regulate the replication of plant viruses through different ways. Compared with other plant viral disease control strategies, this system is more accurate in genome editing, more stable in gene expression regulation, and has broader spectrum of resistance to virus disease. In this review, we summarized the advantages, main problems and development tendency of CRISPR/cas9 system in breeding of new antiviral plant germplasms.
Kovalchuk, Nataliya; Chew, William; Sornaraj, Pradeep; Borisjuk, Nikolai; Yang, Nannan; Singh, Rohan; Bazanova, Natalia; Shavrukov, Yuri; Guendel, Andre; Munz, Eberhard; Borisjuk, Ljudmilla; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy
2016-07-01
Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Development of testing and training simulator for CEDMCS in KSNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, C. H.; Park, C. Y.; Nam, J. I.
2006-07-01
This paper presents a newly developed testing and training simulator (TTS) for automatically diagnosing and tuning the Control Element Drive Mechanism Control System (CEDMCS). TTS includes a new automatic, diagnostic, method for logic control cards and a new tuning method for phase synchronous pulse cards. In Korea Standard Nuclear Power Plants (KSNP). reactor trips occasionally occur due to a damaged logic control card in CEDMCS. However, there is no pre-diagnostic tester available to detect a damaged card in CEDMCS before it causes a reactor trip. Even after the reactor trip occurs, it is difficult to find the damaged card. Tomore » find the damaged card. ICT is usually used. ICT is an automated, computer-controlled testing system with measurement capabilities for testing active and passive components, or clusters of components, on printed circuit boards (PCB) and/or assemblies. However, ICT cannot detect a time dependent fault correctly and requires removal of the waterproof mating to perform the test. Therefore, the additional procedure of re-coating the PCB card is required after the test. TTS for CEDMCS is designed based on real plant conditions, both electrically and mechanically. Therefore, the operator can operate the Control Element Drive Mechanism (CEDM), which is mounted on the closure head of the reactor vessel (RV) using the soft control panel in ITS, which duplicates the Main Control Board (MCB) in the Main Control Room (MCR). However, during the generation of electric power in a nuclear power plant, it is difficult to operate the CEDM so a CEDM and Control Element Assembly (CEA) mock-up facility was developed to simulate a real plant CEDM. ITS was used for diagnosing and tuning control logic cards in CEDMCS in the Ulchin Nuclear Power Plant No. 4 during the plant overhaul period. It exhibited good performance in detecting the damaged cards and tuning the phase synchronous pulse cards. In addition, TTS was useful in training the CEDMCS operator by supplying detail signal information from the logic cards. (authors)« less
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1987-01-01
A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.
Anjum, Naser A.; Gill, Sarvajeet S.; Umar, Shahid; Ahmad, Iqbal; Duarte, Armando C.; Pereira, Eduarda
2012-01-01
Mineral nutrients are the integral part of the agricultural systems. Among important plant nutrients, nitrogen (N) and sulphur (S) are known essential elements for growth, development, and various physiological functions in plants. Oleiferous brassicas (rapeseed and mustard) require higher amounts of S in addition to N for optimum growth and yield. Therefore, balancing S-N fertilization, optimization of nutrient replenishment, minimization of nutrient losses to the environment, and the concept of coordination in action between S and N could be a significant strategy for improvement of growth and productivity of oleiferous brassicas. Additionally, positive interaction between S and N has been reported to be beneficial for various aspects of oilseed brassicas. The current paper updates readers on the significance of N and S for the improvement of plant growth, development, and productivity in detail. In addition, S-N nutrition-mediated control of major plant antioxidant defense system components involved in the removal and/or metabolism of stress-induced/generated reactive oxygen species in plants (hence, the control of plant growth, development, and productivity) has been overviewed. PMID:22629181
NASA Technical Reports Server (NTRS)
Chapman, David K.; Wells, H. William
1996-01-01
The plant growth facility (PGF), currently under development as a Space Shuttle middeck facility for the support of research on higher plants in microgravity, is presented. The PGF provides controlled fluorescent lighting and the active control of temperature, relative humidity and CO2 concentration. These parameters are designed to be centrally controlled by a dedicated microprocessor. The status of the experiment can be displayed for onboard analysis, and will be automatically archived for post-flight analysis. The facility is designed to operate for 15 days and will provide air filtration to remove ethylene and trace organics with replaceable potassium permanganate filters. Similar ground units will be available for pre-flight experimentation.
Development of a material processing plant for lunar soil
NASA Technical Reports Server (NTRS)
Goettsch, Ulix; Ousterhout, Karl
1992-01-01
Currently there is considerable interest in developing in-situ materials processing plants for both the Moon and Mars. Two of the most important aspects of developing such a materials processing plant is the overall system design and the integration of the different technologies into a reliable, lightweight, and cost-effective unit. The concept of an autonomous materials processing plant that is capable of producing useful substances from lunar regolith was developed. In order for such a materials processing plant to be considered as a viable option, it must be totally self-contained, able to operate autonomously, cost effective, light weight, and fault tolerant. In order to assess the impact of different technologies on the overall systems design and integration, a one-half scale model was constructed that is capable of scooping up (or digging) lunar soil, transferring the soil to a solar furnace, heating the soil in the furnace to liberate the gasses, and transferring the spent soil to a 'tile' processing center. All aspects of the control system are handled by a 386 class PC via D/A, A/D, and DSP (Digital Signal Processor) control cards.
A distributed finite-element modeling and control approach for large flexible structures
NASA Technical Reports Server (NTRS)
Young, K. D.
1989-01-01
An unconventional framework is described for the design of decentralized controllers for large flexible structures. In contrast to conventional control system design practice which begins with a model of the open loop plant, the controlled plant is assembled from controlled components in which the modeling phase and the control design phase are integrated at the component level. The developed framework is called controlled component synthesis (CCS) to reflect that it is motivated by the well developed Component Mode Synthesis (CMS) methods which were demonstrated to be effective for solving large complex structural analysis problems for almost three decades. The design philosophy behind CCS is also closely related to that of the subsystem decomposition approach in decentralized control.
NASA Technical Reports Server (NTRS)
Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.
1988-01-01
A system developed for plant production in space was used to grow wheat, beans, rice, and white potatoes. It was found that the negative gauge pressure used to control the nutrient solution at the root/membrane interface and the pore size influence plant production. The results suggest that wheat, rice, beans, and lettuce can probably be grown with production values resembling those of plants grown in other media. Potato growth seemed to be stunted; this could be a possible response to root restriction.
Growth regulation in tip-growing cells that develop on the epidermis.
Honkanen, Suvi; Dolan, Liam
2016-12-01
Plants develop tip-growing extensions-root hairs and rhizoids-that initiate as swellings on the outer surface of individual epidermal cells. A conserved genetic mechanism controls the earliest stages in the initiation of these swellings. The same mechanism controls the formation of multicellular structures that develop from swellings on epidermal cells in early diverging land plants. Details of the molecular events that regulate the positioning of the swellings involve sterols and phosphatidylinositol phosphates. The final length of root hairs is determined by the intensity of a pulse of transcription factor synthesis. Genes encoding similar transcription factors control root hair development in cereals and are potential targets for crop improvement. Copyright © 2016. Published by Elsevier Ltd.
AVESTAR Center for Operational Excellence of Electricity Generation Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, Stephen
2012-08-29
To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offeringmore » combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for use in establishing a Virtual Carbon Capture Center (VCCC), similar in concept to the DOE’s National Carbon Capture Center for slipstream testing. The VCCC will enable developers of CO2 capture technologies to integrate, test, and optimize the operation of their dynamic capture models within the context of baseline power plant dynamic models. The objective is to provide hands-on, simulator-based “learn-by-operating” test platforms to accelerate the scale-up and deployment of CO2 capture technologies. Future AVESTAR plans also include pursuing R&D on the dynamics, operation, and control of integrated electricity generation and storage systems for the modern grid era. Special emphasis will be given to combining load-following energy plants with renewable and distributed generating supplies and fast-ramping energy storage systems to provide near constant baseload power.« less
Outside-in control -Does plant cell wall integrity regulate cell cycle progression?
Gigli-Bisceglia, Nora; Hamann, Thorsten
2018-04-13
During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.
Risk based management of invading plant disease
USDA-ARS?s Scientific Manuscript database
Effective control of new and emerging plant disease remains a key challenge. Attempts to eradicate pathogens often involve removal of all plants within a fixed distance of detected infected hosts, targeting asymptomatic infection. Here we develop and test potentially more efficient, epidemiologicall...
Alabouvette, Claude; Olivain, Chantal; Migheli, Quirico; Steinberg, Christian
2009-11-01
Plant diseases induced by soil-borne plant pathogens are among the most difficult to control. In the absence of effective chemical control methods, there is renewed interest in biological control based on application of populations of antagonistic micro-organisms. In addition to Pseudomonas spp. and Trichoderma spp., which are the two most widely studied groups of biological control agents, the protective strains of Fusarium oxysporum represent an original model. These protective strains of F. oxysporum can be used to control wilt induced by pathogenic strains of the same species. Exploring the mechanisms involved in the protective capability of these strains is not only necessary for their development as commercial biocontrol agents but raises many basic questions related to the determinism of pathogenicity versus biocontrol capacity in the F. oxysporum species complex. In this paper, current knowledge regarding the interaction between the plant and the protective strains is reviewed in comparison with interactions between the plant and pathogenic strains. The success of biological control depends not only on plant-microbial interactions but also on the ecological fitness of the biological control agents.
Only in dying, life: programmed cell death during plant development.
Van Hautegem, Tom; Waters, Andrew J; Goodrich, Justin; Nowack, Moritz K
2015-02-01
Programmed cell death (PCD) is a fundamental process of life. During the evolution of multicellular organisms, the actively controlled demise of cells has been recruited to fulfil a multitude of functions in development, differentiation, tissue homeostasis, and immune systems. In this review we discuss some of the multiple cases of PCD that occur as integral parts of plant development in a remarkable variety of cell types, tissues, and organs. Although research in the last decade has discovered a number of PCD regulators, mediators, and executers, we are still only beginning to understand the mechanistic complexity that tightly controls preparation, initiation, and execution of PCD as a process that is indispensable for successful vegetative and reproductive development of plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Distributed Control System Prototyping Environment to Support Control Room Modernization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lew, Roger Thomas; Boring, Ronald Laurids; Ulrich, Thomas Anthony
Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, however the set of tools for developing and designing HMIs is still in its infancy. Here we propose a rapid prototyping approach for integrating proposed HMIs into their native environments before a design is finalized. This approach allows researchers and developers tomore » test design ideas and eliminate design flaws prior to fully developing the new system. We illustrate this approach with four prototype designs developed using Microsoft’s Windows Presentation Foundation (WPF). One example is integrated into a microworld environment to test the functionality of the design and identify the optimal level of automation for a new system in a nuclear power plant. The other three examples are integrated into a full-scale, glasstop digital simulator of a nuclear power plant. One example demonstrates the capabilities of next generation control concepts; another aims to expand the current state of the art; lastly, an HMI prototype was developed as a test platform for a new control system currently in development at U.S. nuclear power plants. WPF possesses several characteristics that make it well suited to HMI design. It provides a tremendous amount of flexibility, agility, robustness, and extensibility. Distributed control system (DCS) specific environments tend to focus on the safety and reliability requirements for real-world interfaces and consequently have less emphasis on providing functionality to support novel interaction paradigms. Because of WPF’s large user-base, Microsoft can provide an extremely mature tool. Within process control applications,WPF is platform independent and can communicate with popular full-scope process control simulator vendor plant models and DCS platforms.« less
de Freitas, Sergio Tonetto; Shackel, Kenneth A; Mitcham, Elizabeth J
2011-05-01
Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.
Agrochemical control of plant water use using engineered abscisic acid receptors.
Park, Sang-Youl; Peterson, Francis C; Mosquna, Assaf; Yao, Jin; Volkman, Brian F; Cutler, Sean R
2015-04-23
Rising temperatures and lessening fresh water supplies are threatening agricultural productivity and have motivated efforts to improve plant water use and drought tolerance. During water deficit, plants produce elevated levels of abscisic acid (ABA), which improves water consumption and stress tolerance by controlling guard cell aperture and other protective responses. One attractive strategy for controlling water use is to develop compounds that activate ABA receptors, but agonists approved for use have yet to be developed. In principle, an engineered ABA receptor that can be activated by an existing agrochemical could achieve this goal. Here we describe a variant of the ABA receptor PYRABACTIN RESISTANCE 1 (PYR1) that possesses nanomolar sensitivity to the agrochemical mandipropamid and demonstrate its efficacy for controlling ABA responses and drought tolerance in transgenic plants. Furthermore, crystallographic studies provide a mechanistic basis for its activity and demonstrate the relative ease with which the PYR1 ligand-binding pocket can be altered to accommodate new ligands. Thus, we have successfully repurposed an agrochemical for a new application using receptor engineering. We anticipate that this strategy will be applied to other plant receptors and represents a new avenue for crop improvement.
Modeling Separate and Combined Atmospheres in BIO-Plex
NASA Technical Reports Server (NTRS)
Jones, Harry; Finn, Cory; Kwauk, Xianmin; Blackwell, Charles; Luna, Bernadette (Technical Monitor)
2000-01-01
We modeled BIO-Plex designs with separate or combined atmospheres and then simulated controlling the atmosphere composition. The BIO-Plex is the Bioregenerative Planetary Life Support Systems Test Complex, a large regenerative life support test facility under development at NASA Johnson Space Center. Although plants grow better at above-normal carbon dioxide levels, humans can tolerate even higher carbon dioxide levels. Incinerator exhaust has very high levels of carbon dioxide. An elaborate BIO-Plex design would maintain different atmospheres in the crew and plant chambers and isolate the incinerator exhaust in the airlock. This design easily controls the crew and plant carbon dioxide levels but it uses many gas processors, buffers, and controllers. If all the crew's food is grown inside BIO-Plex, all the carbon dioxide required by the plants is supplied by crew respiration and the incineration of plant and food waste. Because the oxygen mass flow must balance in a closed loop, the plants supply all the oxygen required by the crew and the incinerator. Using plants for air revitalization allows using fewer gas processors, buffers, and controllers. In the simplest design, a single combined atmosphere was used for the crew, the plant chamber, and the incinerator. All gas processors, buffers, and controllers were eliminated. The carbon dioxide levels were necessarily similar for the crew and plants. If most of the food is grown, carbon dioxide can be controlled at the desired level by scheduling incineration. An intermediate design uses one atmosphere for the crew and incinerator chambers and a second for the plant chamber. This allows different carbon dioxide levels for the crew and plants. Better control of the atmosphere is obtained by varying the incineration rate. Less gas processing storage and control is needed if more food is grown.
Modeling Separate and Combined Atmospheres in BIO-Plex
NASA Technical Reports Server (NTRS)
Jones, Harry; Finn, Cory; Kwauk, Xian-Min; Blackwell, Charles; Luna, Bernadette (Technical Monitor)
2000-01-01
We modeled BIO-Plex designs with separate or combined atmospheres and then simulated controlling the atmosphere composition. The BIO-Plex is the Bioregenerative Planetary Life Support Systems Test Complex, a large regenerative life support test facility under development at NASA Johnson Space Center. Although plants grow better at above-normal carbon dioxide levels, humans can tolerate even higher carbon dioxide levels. incinerator exhaust has very high levels of carbon dioxide. An elaborate BIO-Plex design would maintain different atmospheres in the crew and plant chambers and isolate the incinerator exhaust in the airlock. This design easily controls the crew and plant carbon dioxide levels but it uses many gas processors, buffers, and controllers. If all the crew's food is grown inside BIO-Plex, all the carbon dioxide required by the plants is supplied by crew respiration and the incineration of plant and food waste. Because the oxygen mass flow must balance in a closed loop, the plants supply all the oxygen required by the crew and the incinerator. Using plants for air revitalization allows using fewer gas processors, buffers, and controllers. In the simplest design, a single combined atmosphere was used for the crew, the plant chamber, and the incinerator. All gas processors, buffers, and controllers were eliminated. The carbon dioxide levels were necessarily similar for the crew and plants. If most of the food is grown, carbon dioxide can be controlled at the desired level by scheduling incineration. An intermediate design uses one atmosphere for the crew and incinerator chambers and a second for the plant chamber. This allows different carbon dioxide levels for the crew and plants. Better control of the atmosphere is obtained by varying the incineration rate. Less gas processing, storage, and control is needed if more food is grown.
USDA-ARS?s Scientific Manuscript database
Due to increasing regulations and restrictions, there is an urgent need to develop effective alternatives to chemical-dependent soil fumigation control of soilborne pests and pathogens. Anaerobic soil disinfestation (ASD) is one such alternative showing great promise against a number of soilborne pa...
USDA-ARS?s Scientific Manuscript database
Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based syntheti...
Changes in Polysome Association of mRNA Throughout Growth and Development in Arabidopsis thaliana.
Yamasaki, Shotaro; Matsuura, Hideyuki; Demura, Taku; Kato, Ko
2015-11-01
Translational control is a key regulatory step in the expression of genes as proteins. In plant cells, the translational efficiency of mRNAs differs for different mRNA species, and the efficiency dynamically changes in various conditions. To gain a global view of translational control throughout growth and development, we performed genome-wide analysis of polysome association of mRNA during growth and leaf development in Arabidopsis thaliana by subjecting the mRNAs in polysomes to DNA microarray. This analysis revealed that the degree of polysome association of mRNA was different depending on the mRNA species, and the polysome association changed greatly throughout growth and development for each. In the growth stage, transcripts showed varying changes in polysome association from strongly depressed to unchanged, with the majority of transcripts showing dissociation from ribosomes. On the other hand, during leaf development, the polysome association of transcripts showed a normal distribution from repressed to activated mRNAs when comparing expanding and expanded leaves. In addition, functional category analysis of the microarray data suggested that translational control has a physiological significance in the plant growth and development process, especially in the categories of signaling and protein synthesis. In addition to this, we compared changes in polysome association of mRNAs between various conditions and characterized translational controls in each. This result suggested that mRNA translation might be controlled by complicated mechanisms for response to each condition. Our results highlight the importance of dynamic changes in mRNA translation in plant development and growth. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Astafiev, A.; Orlov, A.; Privezencev, D.
2018-01-01
The article is devoted to the development of technology and software for the construction of positioning and control systems for small mechanization in industrial plants based on radio frequency identification methods, which will be the basis for creating highly efficient intelligent systems for controlling the product movement in industrial enterprises. The main standards that are applied in the field of product movement control automation and radio frequency identification are considered. The article reviews modern publications and automation systems for the control of product movement developed by domestic and foreign manufacturers. It describes the developed algorithm for positioning of small-scale mechanization means in an industrial enterprise. Experimental studies in laboratory and production conditions have been conducted and described in the article.
Pollination and embryo development in Brassica rapa L. in microgravity
NASA Technical Reports Server (NTRS)
Kuang, A.; Popova, A.; Xiao, Y.; Musgrave, M. E.
2000-01-01
Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.
Innovative Technology Reduces Power Plant Emissions-Commercialization Success
NASA Technical Reports Server (NTRS)
Parrish, Clyde; Chung, Landy
2004-01-01
Overview of emission control system development: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on power plant (3) Development of method to oxidize NO to NO2 (4) Experience gained from licensing NASA technology.
Recent advances in PV systems technology development in Europe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imamura, M.; Grottke, M.; Weiss, I.
1995-11-01
The objectives of the photovoltaics (PV) systems technology development were to study several aspects of plant design, monitoring, control, operation, and management of different types of photovoltaic plants. Unsolved problems were to be identified and analysed, and guidelines to improve the monitoring system were to be developed. Principal studies are summarized.
Osman, Gamal H.; Assem, Shireen K.; Alreedy, Rasha M.; El-Ghareeb, Doaa K.; Basry, Mahmoud A.; Rastogi, Anshu; Kalaji, Hazem M.
2015-01-01
Due to the importance of chitinolytic enzymes for insect, nematode and fungal growth, they are receiving attention concerning their development as biopesticides or chemical defense proteins in transgenic plants and as microbial biocontrol agents. Targeting chitin associated with the extracellular matrices or cell wall by insect chitinases may be an effective approach for controlling pest insects and pathogenic fungi. The ability of chitinases to attack and digest chitin in the peritrophic matrix or exoskeleton raises the possibility to use them as insect control method. In this study, an insect chitinase cDNA from cotton leaf worm (Spodoptera littoralis) has been synthesized. Transgenic maize plant system was used to improve its tolerance against insects. Insect chitinase transcripts and proteins were expressed in transgenic maize plants. The functional integrity and expression of chitinase in progenies of the transgenic plants were confirmed by insect bioassays. The bioassays using transgenic corn plants against corn borer (Sesamia cretica) revealed that ~50% of the insects reared on transgenic corn plants died, suggesting that transgenic maize plants have enhanced resistance against S. cretica. PMID:26658494
NASA Technical Reports Server (NTRS)
Nevill, Gale E., Jr.
1988-01-01
The goal of the Fall 1987 class of EGM 4000 was the investigation of engineering aspects contributing to the development of NASA's Controlled Ecological Life Support System (CELSS). The areas investigated were the geometry of plant growth chambers, automated seeding of plants, remote sensing of plant health, and processing of grain into edible forms. The group investigating variable spacing of individual soybean plants designed growth trays consisting of three dimensional trapezoids arranged in a compact circular configuration. The automated seed manipulation and planting group investigated the electrical and mechanical properties of wheat seeds and developed three seeding concepts based upon these properties. The plant health and disease sensing group developed a list of reliable plant health indicators and investigated potential detection technologies.
NASA Technical Reports Server (NTRS)
Heyenga, A. G.
2003-01-01
The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive-based water and nutrient support systems and techniques, which can be used to minimize demands on power, mass, and operational complexity in space flight studies. This effort has direct application to the development of next-generation space flight plant chambers such as the Plant Research Unit (PRU). Work was also directed at the development of in-flight plant preservation techniques and protocols consistent with the interest in applying recent developments in gene chip micro array technologies. Cultivation technologies and protocols were evaluated in a 55 day space flight plant growth study, conducted on the ISS, mission 9A (10/7/02 - 12/7/02).
Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin
2015-01-01
Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.
Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul
The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integrationmore » of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be controlled to contribute to system-wide reliability. It was shown that the First Solar plant can provide essential reliability services related to different forms of active and reactive power controls, including plant participation in AGC, primary frequency control, ramp rate control, and voltage regulation. For AGC participation in particular, by comparing the PV plant testing results to the typical performance of individual conventional technologies, we showed that regulation accuracy by the PV plant is 24-30 points better than fast gas turbine technologies. The plant's ability to provide volt-ampere reactive control during periods of extremely low power generation was demonstrated as well. The project team developed a pioneering demonstration concept and test plan to show how various types of active and reactive power controls can leverage PV generation's value from being a simple variable energy resource to a resource that provides a wide range of ancillary services. With this project's approach to a holistic demonstration on an actual, large, utility-scale, operational PV power plant and dissemination of the obtained results, the team sought to close some gaps in perspectives that exist among various stakeholders in California and nationwide by providing real test data.« less
Use of space for development of commercial plant natural products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draeger, N.A.
1997-01-01
Plant experiments conducted in environments where conditions are carefully controlled reveal fundamental information about physiological processes. An important environmental parameter is gravity, the effects of which may be better understood in part through experiments conducted in space. New insights gained can be used to develop commercial plant natural products in industries such as pharmaceuticals and biocontrol. {copyright} {ital 1997 American Institute of Physics.}
The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants.
Yamasaki, S; Fujii, N; Matsuura, S; Mizusawa, H; Takahashi, H
2001-06-01
Sex determination in cucumber (Cucumis sativus L.) plants is genetically controlled by the F and M loci. These loci interact to produce three different sexual phenotypes: gynoecious (M-F-), monoecious (M-ff), and andromonoecious (mmff). Gynoecious cucumber plants produce more ethylene than do monoecious plants. We found that the levels of ethylene production and the accumulation of CS-ACS2 mRNA in andromonoecious cucumber plants did not differ from those in monoecious plants and were lower than the levels measured in gynoecious plants. Ethylene inhibited stamen development in gynoecious cucumbers but not in andromonoecious ones. Furthermore, ethylene caused substantial increases in the accumulation of CS-ETR2, CS-ERS, and CS-ACS2 mRNA in monoecious and gynoecious cucumber plants, but not in andromonoecious one. In addition, the inhibitory effect of ethylene on hypocotyl elongation in andromonoecious cucumber plants was less than that in monoecious and gynoecious plants. These results suggest that ethylene responses in andromonoecious cucumber plants are reduced from those in monoecious and gynoecious plants. This is the first evidence that ethylene signals may influence the product of the M locus and thus inhibit stamen development in cucumber. The andromonoecious line provides novel material for studying the function of the M locus during sex determination in flowering cucumbers.
Redox control of plant growth and development.
Kocsy, Gábor; Tari, Irma; Vanková, Radomíra; Zechmann, Bernd; Gulyás, Zsolt; Poór, Péter; Galiba, Gábor
2013-10-01
Redox changes determined by genetic and environmental factors display well-organized interactions in the control of plant growth and development. Diurnal and seasonal changes in the environmental conditions are important for the normal course of these physiological processes and, similarly to their mild irregular alterations, for stress adaptation. However, fast or large-scale environmental changes may lead to damage or death of sensitive plants. The spatial and temporal redox changes influence growth and development due to the reprogramming of metabolism. In this process reactive oxygen and nitrogen species and antioxidants are involved as components of signalling networks. The control of growth, development and flowering by reactive oxygen and nitrogen species and antioxidants in interaction with hormones at organ, tissue, cellular and subcellular level will be discussed in the present review. Unsolved problems of the field, among others the need for identification of new components and interactions in the redox regulatory network at various organization levels using systems biology approaches will be also indicated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Alonso Chavez, Vasthi; Parnell, Stephen; VAN DEN Bosch, Frank
2016-10-21
The global increase in the movement of plant products in recent years has triggered an increase in the number of introduced plant pathogens. Plant nurseries importing material from abroad may play an important role in the introduction and spread of diseases such as ash dieback and sudden oak death which are thought to have been introduced through trade. The economic, environmental and social costs associated with the spread of invasive pathogens become considerably larger as the incidence of the pathogen increases. To control the movement of pathogens across the plant trade network it is crucial to develop monitoring programmes at key points of the network such as plant nurseries. By detecting the introduction of invasive pathogens at low incidence, the control and eradication of an epidemic is more likely to be successful. Equally, knowing the likelihood of having sold infected plants once a disease has been detected in a nursery can help designing tracing plans to control the onward spread of the disease. Here, we develop an epidemiological model to detect and track the movement of an invasive plant pathogen into and from a plant nursery. Using statistical methods, we predict the epidemic incidence given that a detection of the pathogen has occurred for the first time, considering that the epidemic has an asymptomatic period between infection and symptom development. Equally, we calculate the probability of having sold at least one infected plant during the period previous to the first disease detection. This analysis can aid stakeholder decisions to determine, when the pathogen is first discovered in a nursery, the need of tracking the disease to other points in the plant trade network in order to control the epidemic. We apply our method to high profile recent introductions including ash dieback and sudden oak death in the UK and citrus canker and Huanglongbing disease in Florida. These results provide new insight for the design of monitoring strategies at key points of the trade network. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassman, J.H.; Dickmann, D.I.
Patterns of UC-photosynthate distribution in growth chamber-grown Populus xeuramericana cv. Negrito de Granada were determined 24 h, 3 weeks, and 5 weeks after defoliation in the developing leaf zone. Translocation patterns were determined by exposing leaves below, within, or above the defoliated zone to UCO2 and determining UC distribution within the plant after 48 h. Translocation patterns were altered within 24 h after defoliation. When leaves below or remaining tissue of leaves within the zone of defoliation were exposed to UCO2, a greater percentage of UC-photosynthate was transported to the expanding shoot and lateral branches and less to the rootsmore » in defoliated plants compared to controls. Little difference between defoliated and control plants and UC distribution occurred when new leaves produced subsequent to defoliation were exposed to UCO2. By 5 weeks after defoliation there was little difference in patterns of UC distribution between defoliated and control plants. These results substantiate biomass partitioning data which showed that a single defoliation of young poplar plants did not affect diameter or height growth, whereas leaf growth was stimulated and root growth reduced.« less
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.
1987-01-01
A concept for optimally designing output feedback controllers for plants whose dynamics exhibit gross changes over their operating regimes was developed. This was to formulate the design problem in such a way that the implemented feedback gains vary as the output of a dynamical system whose independent variable is a scalar parameterization of the plant operating point. The results of this effort include derivation of necessary conditions for optimality for the general problem formulation, and for several simplified cases. The question of existence of a solution to the design problem was also examined, and it was shown that the class of gain variation schemes developed are capable of achieving gain variation histories which are arbitrarily close to the unconstrained gain solution for each point in the plant operating range. The theory was implemented in a feedback design algorithm, which was exercised in a numerical example. The results are applicable to the design of practical high-performance feedback controllers for plants whose dynamics vary significanly during operation. Many aerospace systems fall into this category.
Controlled ecological life support systems: Development of a plant growth module
NASA Technical Reports Server (NTRS)
Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.
1987-01-01
An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.
Walls around tumours - why plants do not develop cancer.
Doonan, John H; Sablowski, Robert
2010-11-01
In plants, as in animals, most cells that constitute the organism limit their reproductive potential in order to provide collective support for the immortal germ line. And, as in animals, the mechanisms that restrict the proliferation of somatic cells in plants can fail, leading to tumours. There are intriguing similarities in tumorigenesis between plants and animals, including the involvement of the retinoblastoma pathway as well as overlap with mechanisms that are used for stem cell maintenance. However, plant tumours are less frequent and are not as lethal as those in animals. We argue that fundamental differences between plant and animal development make it much more difficult for individual plant cells to escape communal controls.
Plant cell technologies in space: Background, strategies and prospects
NASA Technical Reports Server (NTRS)
Kirkorian, A. D.; Scheld, H. W.
1987-01-01
An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.
USDA-ARS?s Scientific Manuscript database
Understanding of plant-bacterial interactions is of critical importance for developing effective control measures against infectious diseases caused by foodborne human pathogens. However, limitations of existing scientific tools to access and evaluate natural plant tissues, and the large variations ...
Gravisensitivity of various host plant -virus systems in simulated microgravity
NASA Astrophysics Data System (ADS)
Mishchenko, Lidiya; Taran, Oksana; Gordejchyk, Olga
In spite of considerable achievements in the study of gravity effects on plant development, some issues of gravitropism, like species-specificity and gravitation response remain unclear. The so-lution of such problems is connected with the aspects of life supply, in piloted space expeditions. The role of microgravity remains practically unstudied in the development of relations in the system host plant-virus, which are important for biotechnologies in crop production. It is ev-ident that the conditions of space flight can act as stressors, and the stress inducted by them favors the reactivation of latest herpes viruses in humans (satish et al., 2009) Viral infections of plants, which also can be in a latest state at certain stages of plant organism development, cause great damage to the growth and development of a host plant. Space flight conditions may cause both reactivation of latent viral infection in plants and its elimination, as it has been found by us for the system WSMW -wheat (Mishchenko et al., 2004). Our further research activities were concentrated on the identification of gravisensitivity in the system virus -potato plant to find out whether there was any species -related specificity of the reaction. In our research we used potato plants of Krymska Rosa, Zhuravushka, Agave, Belarosa, Kupalinka, and Zdubytok varieties. Simulated microgravity was ensured by clinostats KG-8 and Cycle -2. Gravisensitiv-ity has been studied the systems including PVX, PVM and PVY. Virus concentrations have been determined by ELISA using LOEWE reagents (placecountry-regionGermany). Virus iden-tification by morphological features were done by electron microscopy. For the system PVX -potato plant, we found the reduction in virus antigens content with prolonged clinostating. On the 18th day of cultivation, the plants showed a high level of X-virus antigen content on both stationary (control) and clinostated variants. On 36th and 47th day, depending plant variety, clinostated plants had lower X-virus antigen content, compared with negative control. In plants, cultivated without clinostating, PVX antigen content was 5-10 times greater than on negative control variants. Prolonged (over 43 days) clinostating, depending on potato plant genotype, may cause both simulation and impeding of the accumulation of Y-virus antigens in potato plants. Studying the interaction between the host plant and PVM, we found that prolonged clinorotation at first reduced the antigen content by 25-30% compared with stationary control. Further on after 44 days of experimentation, the antigen content increased with more intensive increase in non-clinostated plants. Thus, prolonged clinostating reduced the intensity of anti-gen accumulation but did not stop it completely. We admit that proves a low sensitivity of the system PVM -potato plant to simulated microgravity. The phenomena of PVX reproduction in simulated microgravity may find on employment in present-day biotechnologies.
THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW.
Shuping, D S S; Eloff, J N
2017-01-01
Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms "plant fungal pathogen", "plant extracts" and "phytopathogens". Proposals are made on the best extractants and bioassay techniques to be used. In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase food security for rural farmers, lead to commercial rewards, but it is also much easier to test the efficacy in greenhouse or field experiments. Even if extracts are toxic it may still be useful in the floriculture industry.
Integration and Assessment of Component Health Prognostics in Supervisory Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Bonebrake, Christopher A.; Dib, Gerges
Enhanced risk monitors (ERMs) for active components in advanced reactor concepts use predictive estimates of component failure to update, in real time, predictive safety and economic risk metrics. These metrics have been shown to be capable of use in optimizing maintenance scheduling and managing plant maintenance costs. Integrating this information with plant supervisory control systems increases the potential for making control decisions that utilize real-time information on component conditions. Such decision making would limit the possibility of plant operations that increase the likelihood of degrading the functionality of one or more components while maintaining the overall functionality of the plant.more » ERM uses sensor data for providing real-time information about equipment condition for deriving risk monitors. This information is used to estimate the remaining useful life and probability of failure of these components. By combining this information with plant probabilistic risk assessment models, predictive estimates of risk posed by continued plant operation in the presence of detected degradation may be estimated. In this paper, we describe this methodology in greater detail, and discuss its integration with a prototypic software-based plant supervisory control platform. In order to integrate these two technologies and evaluate the integrated system, software to simulate the sensor data was developed, prognostic models for feedwater valves were developed, and several use cases defined. The full paper will describe these use cases, and the results of the initial evaluation.« less
Gravity independence of seed-to-seed cycling in Brassica rapa
NASA Technical Reports Server (NTRS)
Musgrave, M. E.; Kuang, A.; Xiao, Y.; Stout, S. C.; Bingham, G. E.; Briarty, L. G.; Levenskikh, M. A.; Sychev, V. N.; Podolski, I. G.
2000-01-01
Growth of higher plants in the microgravity environment of orbital platforms has been problematic. Plants typically developed more slowly in space and often failed at the reproductive phase. Short-duration experiments on the Space Shuttle showed that early stages in the reproductive process could occur normally in microgravity, so we sought a long-duration opportunity to test gravity's role throughout the complete life cycle. During a 122-d opportunity on the Mir space station, full life cycles were completed in microgravity with Brassica rapa L. in a series of three experiments in the Svet greenhouse. Plant material was preserved in space by chemical fixation, freezing, and drying, and then compared to material preserved in the same way during a high-fidelity ground control. At sampling times 13 d after planting, plants on Mir were the same size and had the same number of flower buds as ground control plants. Following hand-pollination of the flowers by the astronaut, siliques formed. In microgravity, siliques ripened basipetally and contained smaller seeds with less than 20% of the cotyledon cells found in the seeds harvested from the ground control. Cytochemical localization of storage reserves in the mature embryos showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in the ground control seeds. While these successful seed-to-seed cycles show that gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.
Planting Loblolly Pine for Erosion Control in Northern Mississippi
Stanley J. Ursic
1963-01-01
Loblolly pine is widely planted for soil stabilization and the rehabilitation of denuded, actively eroding uplands of the upper Gulf Coastal Plain in north Mississippi and west Tennessee. This paper presents methods and specifications that recent research has developed for such planting. It supplements information found in Wakeleyâs Planting the Southern Pines and...
Artificial Soil With Build-In Plant Nutrients
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Allen, Earl; Henninger, Donald; Golden, D. C.
1995-01-01
Nutrients contained in sandlike material. Artificial soil provides nutrients to plants during several growing seasons without need to add fertilizer or nutrient solution. When watered, artificial soil slowly releases all materials a plant needs to grow. Developed as medium for growing crops in space. Also used to grow plants on Earth under controlled conditions or even to augment natural soil.
Planted Hardwood Development on Clay Soil Without Weed Control Through 16 Years
Roger M. Krinard; Harvey E. Kennedy
1987-01-01
Average survival at age 16 was determined for five hardwood species that received no weed control after planting at 10- by 10-foot spacing on cleared Sharkey clay soil. The average survival rates, in percent, were: sweetgum (Liquidambar styraciflua L.), 35; cottonwood (fopulus delfoides Bartr. ex Marsh.), 45; Nuttall oak (Quercus...
Farag, Mohamed A
2014-01-01
The number of botanical dietary supplements in the market has recently increased primarily due to increased health awareness. Standardization and quality control of the constituents of these plant extracts is an important topic, particularly when such ingredients are used long term as dietary supplements, or in cases where higher doses are marketed as drugs. The development of fast, comprehensive, and effective untargeted analytical methods for plant extracts is of high interest. Nuclear magnetic resonance spectroscopy and mass spectrometry are the most informative tools, each of which enables high-throughput and global analysis of hundreds of metabolites in a single step. Although only one of the two techniques is utilized in the majority of plant metabolomics applications, there is a growing interest in combining the data from both platforms to effectively unravel the complexity of plant samples. The application of combined MS and NMR in the quality control of nutraceuticals forms the major part of this review. Finally I will look at the future developments and perspectives of these two technologies for the quality control of herbal materials.
Minimal-Inversion Feedforward-And-Feedback Control System
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.J.
In the last 100 years, power plant controls have evolved from manual operation and simple instruments to automatic state-of-the-art computerized control systems using smart instruments. This article traces the evolution of controls. The topics of the article include early control systems, developments in the early 20th century, Bailey controls, and developments in the late 20th century.
Demey, D; Vanderhaegen, B; Vanhooren, H; Liessens, J; Van Eyck, L; Hopkins, L; Vanrolleghem, P A
2001-01-01
In this paper, the practical implementation and validation of advanced control strategies, designed using model based techniques, at an industrial wastewater treatment plant is demonstrated. The plant under study is treating the wastewater of a large pharmaceutical production facility. The process characteristics of the wastewater treatment were quantified by means of tracer tests, intensive measurement campaigns and the use of on-line sensors. In parallel, a dynamical model of the complete wastewater plant was developed according to the specific kinetic characteristics of the sludge and the highly varying composition of the industrial wastewater. Based on real-time data and dynamic models, control strategies for the equalisation system, the polymer dosing and phosphorus addition were established. The control strategies are being integrated in the existing SCADA system combining traditional PLC technology with robust PC based control calculations. The use of intelligent control in wastewater treatment offers a wide spectrum of possibilities to upgrade existing plants, to increase the capacity of the plant and to eliminate peaks. This can result in a more stable and secure overall performance and, finally, in cost savings. The use of on-line sensors has a potential not only for monitoring concentrations, but also for manipulating flows and concentrations. This way the performance of the plant can be secured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjostrom, S.; Durham, M.; Bustard, J.
2009-07-15
Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbonmore » facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.« less
Han, Jae Woo; Shim, Sang Hee; Jang, Kyoung Soo; Choi, Yong Ho; Dang, Quang Le; Kim, Hun; Choi, Gyung Ja
2018-02-01
As an alternative to synthetic pesticides, natural materials such as plant extracts and microbes have been considered to control plant diseases. In this study, methanol extracts of 120 plants were explored for in vivo antifungal activity against Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia triticina, and Blumeria graminis f. sp. hordei. Of the 120 plant extracts, eight plant extracts exhibited a disease control efficacy of more than 90% against at least one of five plant diseases. In particular, a methanol extract of Curcuma zedoaria rhizomes exhibited strong activity against wheat leaf rust caused by P. triticina. When the C. zedoaria methanol extracts were partitioned with various solvents, the layers of n-hexane, methylene chloride, and ethyl acetate showed disease control values of 100, 80, and 43%, respectively, against wheat leaf rust. From the C. zedoaria rhizome extracts, an antifungal substance was isolated and identified as a sesquiterpene ketolactone based on the mass and nuclear magnetic resonance spectral data. The active compound controlled the development of rice sheath blight, wheat leaf rust, and tomato late blight. Considering the in vivo antifungal activities of the sesquiterpene ketolactone and the C. zedoaria extracts, these results suggest that C. zedoaria can be used as a potent fungicide in organic agriculture.
Plant Perception and Short-Term Responses to Phytophagous Insects and Mites.
Santamaria, M Estrella; Arnaiz, Ana; Gonzalez-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel
2018-05-03
Plant⁻pest relationships involve complex processes encompassing a network of molecules, signals, and regulators for overcoming defenses they develop against each other. Phytophagous arthropods identify plants mainly as a source of food. In turn, plants develop a variety of strategies to avoid damage and survive. The success of plant defenses depends on rapid and specific recognition of the phytophagous threat. Subsequently, plants trigger a cascade of short-term responses that eventually result in the production of a wide range of compounds with defense properties. This review deals with the main features involved in the interaction between plants and phytophagous insects and acari, focusing on early responses from the plant side. A general landscape of the diverse strategies employed by plants within the first hours after pest perception to block the capability of phytophagous insects to develop mechanisms of resistance is presented, with the potential of providing alternatives for pest control.
Cingel, Aleksandar; Savić, Jelena; Vinterhalter, Branka; Vinterhalter, Dragan; Kostić, Miroslav; Jovanović, Darka Šešlija; Smigocki, Ann; Ninković, Slavica
2015-08-01
Plant proteinase inhibitors (PIs) are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. PI oryzacystatin II (OCII), isolated from rice, showed potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate the applicability of the OCII gene in enhancing plant defence, OCII-transformed potatoes were bioassayed for resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Feeding on transformed leaves of potato cultivars Desiree and Jelica significantly affected larval growth and development, but did not change mortality rates. During the L2 and L3 developmental stages larvae consumed the OCII-transformed foliage faster as compared to the nontransformed control. Also these larvae reached the prepupal stage (end of L4 stage) 2 days earlier than those fed on control leaves. However, the total amounts of consumed OCII-transformed leaves were up to 23% lower than of control, and the maximal weights of prepupal larvae were reduced by up to 18% as compared to larvae fed on nontransformed leaves. The reduction in insect fitness reported in this study in combination with other control measures, could lead to improved CPB resistance management in potato.
Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato.
McKeehen, J D; Mitchell, C A; Wheeler, R M; Bugbee, B; Nielsen, S S
1996-01-01
Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.
Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato
NASA Technical Reports Server (NTRS)
McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.
1996-01-01
Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.
Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato
NASA Astrophysics Data System (ADS)
McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.
Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.
NASA Technical Reports Server (NTRS)
Kopasakis, George
1997-01-01
Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.
Invasive species and coal bed methane development in the Powder River Basin, Wyoming
Bergquist, E.; Evangelista, P.; Stohlgren, T.J.; Alley, N.
2007-01-01
One of the fastest growing areas of natural gas production is coal bed methane (CBM) due to the large monetary returns and increased demand for energy from consumers. The Powder River Basin, Wyoming is one of the most rapidly expanding areas of CBM development with projections of the establishment of up to 50,000 wells. CBM disturbances may make the native ecosystem more susceptible to invasion by non-native species, but there are few studies that have been conducted on the environmental impacts of this type of resource extraction. To evaluate the potential effects of CBM development on native plant species distribution and patterns of non-native plant invasion, 36 modified Forest Inventory and Analysis plots (each comprised of four 168-m2 subplots) were established in the Powder River Basin, Wyoming. There were 73 168-m2 subplots on control sites; 42 subplots on secondary disturbances; 14 on major surface disturbances; eight on well pads; and seven on sites downslope of CBM wells water discharge points. Native plant species cover ranged from 39.5 ?? 2.7% (mean ?? 1 SE) in the secondary disturbance subplots to 17.7 ?? 7.5% in the pad subplots. Non-native plant species cover ranged from 31.0 ?? 8.4% in the discharge areas to 14.7 ?? 8.9% in the pad subplots. The control subplots had significantly less non-native species richness than the combined disturbance types. The combined disturbance subplots had significantly greater soil salinity than the control sites. These results suggest that CBM development and associated disturbances may facilitate the establishment of non-native plants. Future research and management decisions should consider the accumulative landscape-scale effects of CBM development on preserving native plant diversity. ?? Springer Science+Business Media B.V. 2006.
Supervisory Control System Architecture for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Sacit M; Cole, Daniel L; Fugate, David L
2013-08-01
This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history ofmore » hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.« less
Ingegno, B L; Candian, V; Psomadelis, I; Bodino, N; Tavella, L
2017-06-01
Dicyphus errans (Wolff) has been shown to be a suitable biocontrol agent for Tuta absoluta (Meyrick). This generalist predator shares various host plants with the exotic pest, and these interactions could be exploited to enhance pest control. Therefore, host preference, survival rate and development times of the predator and prey were investigated on crop and non-crop plant species. Among the tested plants, the favourite hosts were Solanum species for T. absoluta, and herb Robert, European black nightshade, courgette and tomato for D. errans. Tuta absoluta accepted the same plant species as hosts for oviposition, but it never developed on herb Robert and courgette in all the experiments. Based on our results, we would suggest the use of courgette and herb Robert in consociation with tomato and as a companion plant, respectively, which may keep pest densities below the economic threshold. Moreover, the omnivorous and widespread D. errans could be a key predator of this exotic pest, allowing a high encounter probability on several cultivated and non-cultivated plant species.
Brassinosteroid control of sex determination in maize.
Hartwig, Thomas; Chuck, George S; Fujioka, Shozo; Klempien, Antje; Weizbauer, Renate; Potluri, Devi Prasad V; Choe, Sunghwa; Johal, Gurmukh S; Schulz, Burkhard
2011-12-06
Brassinosteroids (BRs) are plant hormones that regulate growth and development. They share structural similarities with animal steroids, which are decisive factors of sex determination. BRs are known to regulate morphogenesis and environmental stress responses, but their involvement in sex determination in plants has been only speculative. We show that BRs control sex determination in maize revealed through characterization of the classical dwarf mutant nana plant1 (na1), which also feminizes male flowers. na1 plants carry a loss-of-function mutation in a DET2 homolog--a gene in the BR biosynthetic pathway. The mutant accumulates the DET2-specific substrate (24R)-24-methylcholest-4-en-3-one with a concomitant decrease of downstream BR metabolites. Treatment of wild-type maize plants with BR biosynthesis inhibitors completely mimicked both dwarf and tasselseed phenotypes of na1 mutants. Tissue-specific na1 expression in anthers throughout their development supports the hypothesis that BRs promote masculinity of the male inflorescence. These findings suggest that, in the monoecious plant maize, BRs have been coopted to perform a sex determination function not found in plants with bisexual flowers.
USDA-ARS?s Scientific Manuscript database
Plant growth, development, and response to environmental stress require the judicious balance of reactive oxygen species (ROS). Glutaredoxins (GRXs) are a group of oxidoreductases that participate in the control of ROS and are traditionally defined as redox regulators. New studies suggest the member...
Inhibition of plant-interacting microbes by Vegelys®, an Allium-based antimicrobial formulation
USDA-ARS?s Scientific Manuscript database
Plant extracts offer a natural alternative to synthetic chemicals for the control of unwanted microbes. VEG’LYS®, a commercial formulation of three ingredients from garlic and onion, was developed for surface sterilization of seeds. Here, we show that this product inhibited the growth or development...
NASA Technical Reports Server (NTRS)
Levinskikh, M. A.; Sychev, V. N.; Derendyaeva, T. A.; Signalova, O. B.; Salisbury, F. B.; Campbell, W. F.; Bingham, G. E.; Bubenheim, D. L.; Jahns, G.
2000-01-01
The hypothesis being tested is that Super Dwarf wheat, Triticum aestivum L., plants in the Svet Greenhouse onboard the Russian Space Station Mir will complete a life cycle in spaceflight, providing that the environmental conditions necessary for adequate growth on Earth are supplied. Twenty six seeds of wheat were planted in each of 2 rows of 2 root compartments for a total of 104 seeds in Svet. Germination rate at 7 d was 56 and 73% on Mir and 75 and 90% in ground-based controls. Plants were grown throughout the whole cycle of ontogenesis (123 d) with samples gathered at different times to validate the morphological and reproductive stages of the plants. Young plants showed vigorous early seedling growth, with large biomass production, including the formation of 280 floral spikes. Upon return to Earth, comparative analyses showed that the number of tillers and flowers per spikelet were 63.2% and 40% greater, respectively, in Mir-grown plants than in the controls. By contrast, the stem length (52.4%), spike mass (49.2%) and length (23.1%), awn length (75.7%), number of spikelets per spike (42.8%) and number of seeds per spike (100% sterile) from Mir-grown plants were substantially less than the controls. Distribution of moisture and roots throughout the substrate was very good. All florets on Mir-grown spikes ceased development at the same stage of ontogeny. Lack of caryopses formation was attributed to male sterility occurring at different stages of staminal development. Anthers failed to dehisce and pollen grains were smaller and shriveled compared to the controls, suggesting a chronic stress had occurred in the Svet growth chamber. Recent ground-based studies indicated that ethylene, which was measured at 0.3 to 1.8 mg per kilogram in the Mir, almost certainly could have induced male sterility in the wheat plants grown on the Mir.
USDA-ARS?s Scientific Manuscript database
The temporal development of biological control of arthropod pests in perennial cropping systems is largely unreported. In this study, the development of biological control of twospotted spider mite, Tetranychus urticae Koch and hop aphid, Phorodon humuli (Schrank) in a new planting of hop in Oregon...
NASA Astrophysics Data System (ADS)
Leucht, Florian; Bessler, Wolfgang G.; Kallo, Josef; Friedrich, K. Andreas; Müller-Steinhagen, H.
A sustainable future power supply requires high fuel-to-electricity conversion efficiencies even in small-scale power plants. A promising technology to reach this goal is a hybrid power plant in which a gas turbine (GT) is coupled with a solid oxide fuel cell (SOFC). This paper presents a dynamic model of a pressurized SOFC system consisting of the fuel cell stack with combustion zone and balance-of-plant components such as desulphurization, humidification, reformer, ejector and heat exchangers. The model includes thermal coupling between the different components. A number of control loops for fuel and air flows as well as power management are integrated in order to keep the system within the desired operation window. Models and controls are implemented in a MATLAB/SIMULINK environment. Different hybrid cycles proposed earlier are discussed and a preferred cycle is developed. Simulation results show the prospects of the developed modeling and control system.
A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus.
Nishida, Hanna; Tanaka, Sachiko; Handa, Yoshihiro; Ito, Momoyo; Sakamoto, Yuki; Matsunaga, Sachihiro; Betsuyaku, Shigeyuki; Miura, Kenji; Soyano, Takashi; Kawaguchi, Masayoshi; Suzaki, Takuya
2018-02-05
Legumes and rhizobia establish symbiosis in root nodules. To balance the gains and costs associated with the symbiosis, plants have developed two strategies for adapting to nitrogen availability in the soil: plants can regulate nodule number and/or stop the development or function of nodules. Although the former is accounted for by autoregulation of nodulation, a form of systemic long-range signaling, the latter strategy remains largely enigmatic. Here, we show that the Lotus japonicus NITRATE UNRESPONSIVE SYMBIOSIS 1 (NRSYM1) gene encoding a NIN-LIKE PROTEIN transcription factor acts as a key regulator in the nitrate-induced pleiotropic control of root nodule symbiosis. NRSYM1 accumulates in the nucleus in response to nitrate and directly regulates the production of CLE-RS2, a root-derived mobile peptide that acts as a negative regulator of nodule number. Our data provide the genetic basis for how plants respond to the nitrogen environment and control symbiosis to achieve proper plant growth.
Effects of PSAG12-IPT Gene Expression on Development and Senescence in Transgenic Lettuce1
McCabe, Matthew S.; Garratt, Lee C.; Schepers, Frank; Jordi, Wilco J.R.M.; Stoopen, Geert M.; Davelaar, Evert; van Rhijn, J. Hans A.; Power, J. Brian; Davey, Michael R.
2001-01-01
An ipt gene under control of the senescence-specific SAG12 promoter from Arabidopsis (PSAG12-IPT) significantly delayed developmental and postharvest leaf senescence in mature heads of transgenic lettuce (Lactuca sativa L. cv Evola) homozygous for the transgene. Apart from retardation of leaf senescence, mature, 60-d-old plants exhibited normal morphology with no significant differences in head diameter or fresh weight of leaves and roots. Induction of senescence by nitrogen starvation rapidly reduced total nitrogen, nitrate, and growth of transgenic and azygous (control) plants, but chlorophyll was retained in the lower (outer) leaves of transgenic plants. Harvested PSAG12-IPT heads also retained chlorophyll in their lower leaves. During later development (bolting and preflowering) of transgenic plants, the decrease in chlorophyll, total protein, and Rubisco content in leaves was abolished, resulting in a uniform distribution of these components throughout the plants. Homozygous PSAG12-IPT lettuce plants showed a slight delay in bolting (4–6 d), a severe delay in flowering (4–8 weeks), and premature senescence of their upper leaves. These changes correlated with significantly elevated concentrations of cytokinin and hexoses in the upper leaves of transgenic plants during later stages of development, implicating a relationship between cytokinin and hexose concentrations in senescence. PMID:11598225
Material control and accountancy at EDF PWR plants; GCN: Gestion du Combustible Nucleaire
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Cormis, F.
1991-01-01
The paper describes the comprehensive system which is developed and implemented at Electricite de France to provide a single reliable nuclear material control and accounting system for all nuclear plants. This software aims at several objectives among which are: the control and the accountancy of nuclear material at the plant, the optimization of the consistency of data by minimizing the possibility of transcription errors, the fulfillment of the statutory requirements by automatic transfer of reports to national and international safeguards authorities, the servicing of other EDF users of nuclear material data for technical or commercial purposes.
Modeling and control for closed environment plant production systems
NASA Technical Reports Server (NTRS)
Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)
2002-01-01
A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.
The common molecular players in plant hormone crosstalk and signaling.
Ohri, Puja; Bhardwaj, Renu; Bali, Shagun; Kaur, Ravinderjit; Jasrotia, Shivam; Khajuria, Anjali; Parihar, Ripu D
2015-01-01
Plant growth and development is under the control of mutual interactions among plant hormones. The five classical categories of plant hormones include auxins, cytokinins, gibberellins, abscisic acid and ethylene. Additionally, newer classes of plant hormones have been recognized like brassinosteroids, jasmonic acid, salicylic acid and polyamines. These hormones play significant roles in regulating the plant growth and development. Various receptors and key signaling components of these hormones have been studied and identified. At genetic level, crosstalk among the various plant hormones is found to be antagonistic or synergistic. In addition, components of signaling pathway of one plant hormone interact with the signaling components of other hormone. Thus, an attempt has been made to review the literature regarding the role of plant hormones in plant physiology and the common molecular players in their signaling and crosstalk.
Xiong, Yehui; Zeng, Hongmei; Zhang, Yuliang; Xu, Dawei; Qiu, Dewen
2013-01-01
RNA interference (RNAi) caused by exogenous double-stranded RNA (dsRNA) has developed into a powerful technique in functional genomics, and to date it is widely used to down-regulate crucial physiology-related genes to control pest insects. A molt-regulating transcription factor gene, HaHR3, of cotton bollworm (Helicoverpa armigera) was selected as the target gene. Four different fragments covering the coding sequence (CDS) of HaHR3 were cloned into vector L4440 to express dsRNAs in Escherichia coli. The most effective silencing fragment was then cloned into a plant over-expression vector to express a hairpin RNA (hpRNA) in transgenic tobacco (Nicotiana tabacum). When H. armigera larvae were fed the E. coli or transgenic plants, the HaHR3 mRNA and protein levels dramatically decreased, resulting developmental deformity and larval lethality. The results demonstrate that both recombinant bacteria and transgenic plants could induce HaHR3 silence to disrupt H. armigera development, transgenic plant-mediated RNAi is emerging as a powerful approach for controlling insect pests. PMID:23630449
Development of an Automated Seed Sowing and Induced Germination System for Space Flight Application
NASA Technical Reports Server (NTRS)
Heyenga, A. G.; Kliss, Mark
1995-01-01
The successful utilization of higher plants in space flight is likely to require the effective transition of plants through all phases of growth and development. A particularly sensitive and critical stage in this cycle is seed germination. The present inflight capability to manipulate seed from a state of dormancy to germination and the performance of such activity under aseptic conditions is extremely limited. An Automated Sowing Mechanism (ASM) has been designed to address this area of science and technology. The self-contained system is readily compatible with the existing Shuttle middeck locker Plant Growth Unit (PGU) and planned Plant Growth Facility (PGF), presenting an opportunity to extend the experimental capability of these systems. The ASM design encompasses the controlled transition of seed from a dry to hydrated state utilizing solid media substrate as the source of water and nutrient support. System activation has been achieved with both photo and timing mechanisms. Controlled induced germination and development of various plant species has been achieved in ground-based trials. The system is presently being prepared for a KC-135 flight test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.; Mowrey, J.
1995-12-01
This report describes the design, development and testing of process controls for selected system operations in the Browns Ferry Nuclear Plant (BFNP) Reactor Water Cleanup System (RWCU) using a Computer Simulation Platform which simulates the RWCU System and the BFNP Integrated Computer System (ICS). This system was designed to demonstrate the feasibility of the soft control (video touch screen) of nuclear plant systems through an operator console. The BFNP Integrated Computer System, which has recently. been installed at BFNP Unit 2, was simulated to allow for operator control functions of the modeled RWCU system. The BFNP Unit 2 RWCU systemmore » was simulated using the RELAP5 Thermal/Hydraulic Simulation Model, which provided the steady-state and transient RWCU process variables and simulated the response of the system to control system inputs. Descriptions of the hardware and software developed are also included in this report. The testing and acceptance program and results are also detailed in this report. A discussion of potential installation of an actual RWCU process control system in BFNP Unit 2 is included. Finally, this report contains a section on industry issues associated with installation of process control systems in nuclear power plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C.H.; Bernard, S.; Andersen, G.L.
2009-03-01
Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe-plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant-growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed.
Jeon, B J; Kim, J D; Han, J W; Kim, B S
2016-05-01
The objective of this study was to explore antifungal metabolites targeting fungal cell envelope and to evaluate the control efficacy against anthracnose development in pepper plants. A natural product library comprising 3000 microbial culture extracts was screened via an adenylate kinase (AK)-based cell lysis assay to detect antifungal metabolites targeting the cell envelope of plant-pathogenic fungi. The culture extract of Streptomyces mauvecolor strain BU16 displayed potent AK-releasing activity. Rimocidin and a new rimocidin derivative, BU16, were identified from the extract as active constituents. BU16 is a tetraene macrolide containing a six-membered hemiketal ring with an ethyl group side chain instead of the propyl group in rimocidin. Rimocidin and BU16 showed broad-spectrum antifungal activity against various plant-pathogenic fungi and demonstrated potent control efficacy against anthracnose development in pepper plants. Antifungal metabolites produced by S. mauvecolor strain BU16 were identified to be rimocidin and BU16. The compounds displayed potent control efficacy against pepper anthracnose. Rimocidin and BU16 would be active ingredients of disease control agents disrupting cell envelope of plant-pathogenic fungi. The structure and antifungal activity of rimocidin derivative BU16 is first described in this study. © 2016 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Olofsson, K. E. J.; Brunsell, P. R.; Drake, J. R.
2011-06-01
The EXTRAP T2R feedback system (active coils, sensor coils and controller) is used to study and develop new tools for advanced control of the MHD instabilities in fusion plasmas. New feedback algorithms developed in EXTRAP T2R reversed-field pinch allow flexible and independent control of each magnetic harmonic. Methods developed in control theory and applied to EXTRAP T2R allow a closed-loop identification of the machine plant and of the resistive wall modes growth rates. The plant identification is the starting point for the development of output-tracking algorithms which enable the generation of external magnetic perturbations. These algorithms will then be used to study the effect of a resonant magnetic perturbation (RMP) on the tearing mode (TM) dynamics. It will be shown that the stationary RMP can induce oscillations in the amplitude and jumps in the phase of the rotating TM. It will be shown that the RMP strongly affects the magnetic island position.
Regulating DNA Replication in Plants
Sanchez, Maria de la Paz; Costas, Celina; Sequeira-Mendes, Joana; Gutierrez, Crisanto
2012-01-01
Chromosomal DNA replication in plants has requirements and constraints similar to those in other eukaryotes. However, some aspects are plant-specific. Studies of DNA replication control in plants, which have unique developmental strategies, can offer unparalleled opportunities of comparing regulatory processes with yeast and, particularly, metazoa to identify common trends and basic rules. In addition to the comparative molecular and biochemical studies, genomic studies in plants that started with Arabidopsis thaliana in the year 2000 have now expanded to several dozens of species. This, together with the applicability of genomic approaches and the availability of a large collection of mutants, underscores the enormous potential to study DNA replication control in a whole developing organism. Recent advances in this field with particular focus on the DNA replication proteins, the nature of replication origins and their epigenetic landscape, and the control of endoreplication will be reviewed. PMID:23209151
NASA Astrophysics Data System (ADS)
Kordyum, E. L.; Sytnik, K. M.; Chernyaeva, I. I.
An experiment was carried out aboard the Salyut 6 research orbital station on Arabidopsis thaliana cultivations. The seeds were sprouted in the Svetoblok 1 device which provides for plant growth in the agar medium under sterile conditions and at 4000 lux illumination. The experimental plants, as well as the controls, reached approximately the same developmental stages: both flowered and began to bear fruit. A microscopic examination of the generative organs in the control and experimental plants shows that in normally formed (by appearance) flower buds and flowers of the experimental plants, as distinct from the controls, there were no fertile elements of the adroecium and gynoecium. Degeneration of the latter occurred at different stages of generative organ development. Possible reasons for this phenomenon in plants grown under weightless conditions are considered.
Experimental Validation of a Resilient Monitoring and Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen-Chiao Lin; Kris R. E. Villez; Humberto E. Garcia
2014-05-01
Complex, high performance, engineering systems have to be closely monitored and controlled to ensure safe operation and protect public from potential hazards. One of the main challenges in designing monitoring and control algorithms for these systems is that sensors and actuators may be malfunctioning due to malicious or natural causes. To address this challenge, this paper addresses a resilient monitoring and control (ReMAC) system by expanding previously developed resilient condition assessment monitoring systems and Kalman filter-based diagnostic methods and integrating them with a supervisory controller developed here. While the monitoring and diagnostic algorithms assess plant cyber and physical health conditions,more » the supervisory controller selects, from a set of candidates, the best controller based on the current plant health assessments. To experimentally demonstrate its enhanced performance, the developed ReMAC system is then used for monitoring and control of a chemical reactor with a water cooling system in a hardware-in-the-loop setting, where the reactor is computer simulated and the water cooling system is implemented by a machine condition monitoring testbed at Idaho National Laboratory. Results show that the ReMAC system is able to make correct plant health assessments despite sensor malfunctioning due to cyber attacks and make decisions that achieve best control actions despite possible actuator malfunctioning. Monitoring challenges caused by mismatches between assumed system component models and actual measurements are also identified for future work.« less
USDA-ARS?s Scientific Manuscript database
Plant proteinase inhibitors are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. Oryzacystatins I and II (OCI and OCII) show potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate ...
USDA-ARS?s Scientific Manuscript database
Controlling elemental composition is critical for plant growth and development as well as the nutrition of humans who utilize plants for food. Uncovering the genes that underpin mineral ion homeostasis in plants is a critical first step towards understanding the biochemical networks that regulate a ...
Development of northern red oak rooted cutting and enrichment planting systems
Matthew H. Gocke; Jamie Schuler; Daniel J. Robison; Barry Goldfarb
2005-01-01
Enrichment planting may provide an efficient means to establish elite northern red oak (Quercus rubra L.) genotypes in recently harvested natural forests. However, planting northern red oak (NRO) seedlings into natural stands has proven difficult in the past, especially when competition and other stress factors are not controlled.
Development of a plant based threshold for tarnished plant bug (Hemiptera: miridae) in cotton
USDA-ARS?s Scientific Manuscript database
The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is the most important insect pest of cotton, Gossypium hirsutum L., in the midsouthern United States. It is almost exclusively controlled with foliar insecticide applications, and sampling methods and thresholds need to be revisited. ...
2010-01-01
Evolution of steroids such as sex hormones and ecdysteroids occurred independently in the animal and plant kingdoms. Plants use phytoecdysteroids (PEs) to control defense interactions with some predators; furthermore, PEs can exert beneficial influence on many aspects of mammalian metabolism. Endocrine disrupting compounds such as the estrogen agonist bisphenol A (BPA) are widespread in the environment, posing a potential hormonal risk to animals and plants. Adverse BPA effects on reproductive development and function are coupled with other toxic effects. BPA bioremediation techniques could be developed by exploiting some tolerant plant species. PMID:20671439
Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture.
Vargas-Hernandez, Marcela; Macias-Bobadilla, Israel; Guevara-Gonzalez, Ramon G; Romero-Gomez, Sergio de J; Rico-Garcia, Enrique; Ocampo-Velazquez, Rosalia V; Alvarez-Arquieta, Luz de L; Torres-Pacheco, Irineo
2017-01-01
Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors). Hormesis is a phenomenon by which a stressor (i.e., toxins, herbicides, etc.) stimulates the cellular stress response, including secondary metabolites production, in order to help organisms to establish adaptive responses. Hormetins of biotic origin (i.e., biostimulants or biological control compounds), in certain doses might enhance plant performance, however, in excessive doses they are commonly deleterious. Biostimulants or biological control compounds of biotic origin are called "elicitors" that have widely been studied as inducers of plant tolerance to biotic and abiotic stresses. The plant response toward elicitors is reminiscent of hormetic responses toward toxins in several organisms. Thus, controlled management of hormetic responses in plants using these types of compounds is expected to be an important tool to increase nutraceutical quality of plant food and trying to minimize negative effects on yields. The aim of this review is to analyze the potential for agriculture that the use of biostimulants and biological control compounds of biotic origin could have in the management of the plant hormesis. The use of homolog DNA as biostimulant or biological control compound in crop production is also discussed.
Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture
Vargas-Hernandez, Marcela; Macias-Bobadilla, Israel; Guevara-Gonzalez, Ramon G.; Romero-Gomez, Sergio de J.; Rico-Garcia, Enrique; Ocampo-Velazquez, Rosalia V.; Alvarez-Arquieta, Luz de L.; Torres-Pacheco, Irineo
2017-01-01
Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors). Hormesis is a phenomenon by which a stressor (i.e., toxins, herbicides, etc.) stimulates the cellular stress response, including secondary metabolites production, in order to help organisms to establish adaptive responses. Hormetins of biotic origin (i.e., biostimulants or biological control compounds), in certain doses might enhance plant performance, however, in excessive doses they are commonly deleterious. Biostimulants or biological control compounds of biotic origin are called “elicitors” that have widely been studied as inducers of plant tolerance to biotic and abiotic stresses. The plant response toward elicitors is reminiscent of hormetic responses toward toxins in several organisms. Thus, controlled management of hormetic responses in plants using these types of compounds is expected to be an important tool to increase nutraceutical quality of plant food and trying to minimize negative effects on yields. The aim of this review is to analyze the potential for agriculture that the use of biostimulants and biological control compounds of biotic origin could have in the management of the plant hormesis. The use of homolog DNA as biostimulant or biological control compound in crop production is also discussed. PMID:29081787
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Hongmei; Ma, Leyuan; Zhao, Cong
To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leavesmore » and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.« less
The endophyte Verticillium Vt305 protects cauliflower against Verticillium wilt.
Tyvaert, L; França, S C; Debode, J; Höfte, M
2014-06-01
To investigate the interaction between cauliflower and the isolate VerticilliumVt305, obtained from a field suppressive to Verticillium wilt of cauliflower, and to evaluate the ability of VerticilliumVt305 to control Verticillium wilt of cauliflower caused by V. longisporum. Single and combined inoculations of VerticilliumVt305 and V. longisporum were performed on cauliflower seedlings. Symptom development was evaluated, and fungal colonization was measured in the roots, hypocotyl and stem with real-time PCR. No symptoms were observed after single inoculation of VerticilliumVt305, although it colonized the plant tissues. Pre-inoculation of VerticilliumVt305 reduced symptom development and colonization of plant tissues by V. longisporum. VerticilliumVt305 is an endophyte on cauliflower plants and showed effective biological control of V. longisporum in controlled conditions. This work can contribute to the development of a sustainable control measure of V. longisporum in Brassicaceae hosts, which is currently not available. Additionally, this study provides evidence for the different roles of Verticillium species present in the agro-ecosystem. © 2014 The Society for Applied Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aegerter, P.A.
Phillips Petroleum Company scientists and engineers have been operating petroleum refining and separations pilot plants for five years in the Process Development Center. The 26 pilot plants in this building, with one exception, operate under complete computer-control, allowing maximum utilization of limited operating manpower. This centralization and automation of pilot plants has allowed Phillips to more than double the number of operating pilot plants in the petroleum refining area without an increase in manpower. At the same time, the quantity and quality of data has increased correspondingly. This paper discusses Phillips philosophy of operation and management of these pilot plants.more » In addition, details of day-to-day operations and a brief description of the control system are also presented.« less
2012-01-01
Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED) technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD). The average photosynthetic PFD (PPFD) in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%), which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD) of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm) grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength), the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg) and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1) was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a graphical user interface program, can control the PFD and mixing ratios of five wavelength-band lights. A highly uniform PFD distribution was achieved, although an intentionally distorted PFD gradient was also created. Phototropic responses of oat coleoptiles to the blue light gradient demonstrated the merit of fine controllability of this plant lighting system. PMID:23173915
Optimization of controlled processes in combined-cycle plant (new developments and researches)
NASA Astrophysics Data System (ADS)
Tverskoy, Yu S.; Muravev, I. K.
2017-11-01
All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.
Khodayari, Samira; Abedini, Fatemeh; Renault, David
2018-05-01
The plant stress hypothesis posits that a herbivore's reproductive success increases when it feeds on stressed plants, while the plant vigor hypothesis predicts that a herbivore preferentially feeds on more vigorous plants. We examined these opposing hypotheses by growing spider mites (Tetranychus urticae) on the leaves of stressed and healthy (vigorous) cucumber plants. Host plants were grown under controlled conditions at low, moderate, and high concentrations of NaCl (to induce salinity stress), at low, moderate, and high fertilizer concentrations (to support growth), and without these additions (control). The effects of these treatments were evaluated by measuring fresh and dry plant biomass, carotenoid and chlorophyll content, antioxidant enzyme activity, and concentrations of PO 4 3- , K + , and Na + in plant tissues. The addition of low concentrations of fertilizer increased dry mass, protein, and carotenoid content relative to controls, suggesting a beneficial effect on plants. The highest NaCl treatment (2560 mg L -1 ) resulted in increased Na + and protein content relative to control plants, as well as reduced PO 4 3- , K + , and chlorophyll levels and reduced catalase and ascorbate peroxidase enzyme activity levels. Analysis of life table data of T. urticae mites raised on leaves from the aforementioned plant groups showed the intrinsic rate of increase (r) for mites was 0.167 day -1 in control specimens, 0.125 day -1 for mites reared on plants treated with a moderate concentration of fertilizer (10 mL L -1 ), and was highest (0.241 day -1 ) on plants grown under moderate salinity conditions (1920 mg L -1 NaCl). Reproductive success of T. urticae did not differ on plants watered with a moderate concentration of NaCl or a high concentration of fertilizer. The moderately-stressed plants formed a favorable environment for the development and reproduction of spider mites, supporting the plant stress hypothesis.
Marshall, Eleanor; Costa, Liliana M; Gutierrez-Marcos, Jose
2011-03-01
Cell-cell communication in plants is essential for the correct co-ordination of reproduction, growth, and development. Studies to dissect this mode of communication have previously focussed primarily on the action of plant hormones as mediators of intercellular signalling. In animals, peptide signalling is a well-documented intercellular communication system, however, relatively little is known about this system in plants. In recent years, numerous reports have emerged about small, secreted peptides controlling different aspects of plant reproduction. Interestingly, most of these peptides are cysteine-rich, and there is convincing evidence suggesting multiple roles for related cysteine-rich peptides (CRPs) as signalling factors in developmental patterning as well as during plant pathogen responses and symbiosis. In this review, we discuss how CRPs are emerging as key signalling factors in regulating multiple aspects of vegetative growth and reproductive development in plants.
A new balancing act: The many roles of melatonin and serotonin in plant growth and development
Erland, Lauren A E; Murch, Susan J; Reiter, Russel J; Saxena, Praveen K
2015-01-01
Melatonin and serotonin are indoleamines first identified as neurotransmitters in vertebrates; they have now been found to be ubiquitously present across all forms of life. Both melatonin and serotonin were discovered in plants several years after their discovery in mammals, but their presence has now been confirmed in almost all plant families. The mechanisms of action of melatonin and serotonin are still poorly defined. Melatonin and serotonin possess important roles in plant growth and development, including functions in chronoregulation and modulation of reproductive development, control of root and shoot organogenesis, maintenance of plant tissues, delay of senescence, and responses to biotic and abiotic stresses. This review focuses on the roles of melatonin and serotonin as a novel class of plant growth regulators. Their roles in reproductive and vegetative plant growth will be examined including an overview of current hypotheses and knowledge regarding their mechanisms of action in specific responses. PMID:26418957
A new balancing act: The many roles of melatonin and serotonin in plant growth and development.
Erland, Lauren A E; Murch, Susan J; Reiter, Russel J; Saxena, Praveen K
2015-01-01
Melatonin and serotonin are indoleamines first identified as neurotransmitters in vertebrates; they have now been found to be ubiquitously present across all forms of life. Both melatonin and serotonin were discovered in plants several years after their discovery in mammals, but their presence has now been confirmed in almost all plant families. The mechanisms of action of melatonin and serotonin are still poorly defined. Melatonin and serotonin possess important roles in plant growth and development, including functions in chronoregulation and modulation of reproductive development, control of root and shoot organogenesis, maintenance of plant tissues, delay of senescence, and responses to biotic and abiotic stresses. This review focuses on the roles of melatonin and serotonin as a novel class of plant growth regulators. Their roles in reproductive and vegetative plant growth will be examined including an overview of current hypotheses and knowledge regarding their mechanisms of action in specific responses.
CELSS research and development program
NASA Technical Reports Server (NTRS)
Bubenheim, David
1990-01-01
Research in Controlled Ecological Life Support Systems (CELSS) conducted by NASA indicate that plant based systems are feasible candidates for human support in space. Ames has responsibility for research and development, systems integration and control, and space flight experiment portions of the CELSS program. Important areas for development of new methods and technologies are biomass production, waste processing, water purification, air revitalization, and food processing. For the plant system, the approach was to identify the flexibility and response time for the food, water, and oxygen production, and carbon dioxide consumption processes. Tremendous increases in productivity, compared with terrestrial agriculture, were realized. Waste processing research emphasizes recycle (transformation) of human wastes, trash, and inedible biomass to forms usable as inputs to the plant production system. Efforts to improve efficiency of the plant system, select new CELSS crops for a balanced diet, and initiate closed system research with the Crop Growth Research Chambers continue. The System Control and Integration program goal is to insure orchestrated system operation of the biological, physical, and chemical operation of the biological, physical, and chemical component processors of the CELSS. Space flight studies are planned to verify adequate operation of the system in reduced gravity or microgravity environments.
Thrips advisor: exploiting thrips-induced defences to combat pests on crops.
Steenbergen, Merel; Abd-El-Haliem, Ahmed; Bleeker, Petra; Dicke, Marcel; Escobar-Bravo, Rocio; Cheng, Gang; Haring, Michel A; Kant, Merijn R; Kappers, Iris; Klinkhamer, Peter G L; Leiss, Kirsten A; Legarrea, Saioa; Macel, Mirka; Mouden, Sanae; Pieterse, Corné M J; Sarde, Sandeep J; Schuurink, Robert C; De Vos, Martin; Van Wees, Saskia C M; Broekgaarden, Colette
2018-04-09
Plants have developed diverse defence mechanisms to ward off herbivorous pests. However, agriculture still faces estimated crop yield losses ranging from 25% to 40% annually. These losses arise not only because of direct feeding damage, but also because many pests serve as vectors of plant viruses. Herbivorous thrips (Thysanoptera) are important pests of vegetable and ornamental crops worldwide, and encompass virtually all general problems of pests: they are highly polyphagous, hard to control because of their complex lifestyle, and they are vectors of destructive viruses. Currently, control management of thrips mainly relies on the use of chemical pesticides. However, thrips rapidly develop resistance to these pesticides. With the rising demand for more sustainable, safer, and healthier food production systems, we urgently need to pinpoint the gaps in knowledge of plant defences against thrips to enable the future development of novel control methods. In this review, we summarize the current, rather scarce, knowledge of thrips-induced plant responses and the role of phytohormonal signalling and chemical defences in these responses. We describe concrete opportunities for breeding resistance against pests such as thrips as a prototype approach for next-generation resistance breeding.
International lighting in controlled environments workshop: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-31
Lighting is a central and critical aspect of control in environmental research for plant research and is gaining recognition as a significant factor to control carefully for animal and human research. Thus this workshop was convened to reevaluate the technology that is available today and to work toward developing guidelines for the most effective use of lighting in controlled environments with emphasis on lighting for plants but also to initiate interest in the development of improved guidelines for human and animal research. There are a number of established guidelines for lighting in human and animal environments. Development of new lightingmore » guidelines is necessary for three reasons: (1) recent scientific discoveries show that in addition to supporting the sensation of vision, light has profound nonvisual biological and behavioral effects in both animals and humans; (2) federal regulations (EPACT 1992) are requiring all indoor environments to become more energy efficient with a specific emphasis on energy conservation in lighting; (3) lighting engineers and manufacturers have developed a wealth of new light sources and lighting products that can be applied in animal and human environments. The workshop was aimed at bringing together plant scientists and physical scientists to interact in the discussions. It involved participation of biological scientists involved in studying mechanisms of light reactions and those involved in utilizing lighting for production of plants and maintenance of animals in controlled environments. It included participation of physical scientists from universities and government involved in research as well as those from industry involved in producing lamps and in construction of controlled growth facilities. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less
NASA Astrophysics Data System (ADS)
Ablay, Gunyaz
Using traditional control methods for controller design, parameter estimation and fault diagnosis may lead to poor results with nuclear systems in practice because of approximations and uncertainties in the system models used, possibly resulting in unexpected plant unavailability. This experience has led to an interest in development of robust control, estimation and fault diagnosis methods. One particularly robust approach is the sliding mode control methodology. Sliding mode approaches have been of great interest and importance in industry and engineering in the recent decades due to their potential for producing economic, safe and reliable designs. In order to utilize these advantages, sliding mode approaches are implemented for robust control, state estimation, secure communication and fault diagnosis in nuclear plant systems. In addition, a sliding mode output observer is developed for fault diagnosis in dynamical systems. To validate the effectiveness of the methodologies, several nuclear plant system models are considered for applications, including point reactor kinetics, xenon concentration dynamics, an uncertain pressurizer model, a U-tube steam generator model and a coupled nonlinear nuclear reactor model.
History and applications in controlled environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downs, R.J.
1994-12-31
The widespread application of electric (often called artificial) light in greenhouses, growing rooms, and plant growth chambers would presuppose that the role of phytochrome would be considered in the selection and use of such lighting systems. Part of the problem is that many students, and indeed an unfortunate number of senior scientists, seem to regard phytochrome as a laboratory phenomenon without much application in the real world. They simply have not grasped the concept that phytochrome is functioning through all stages of plant development, wherever plants are grown. It is certainly true, as Meijer (1971) stated, that one cannot comparemore » experimental results obtained under very strict laboratory conditions with plant irradiation in glasshouses and in growth rooms. For example, the action spectrum for flowering of the long-day plant, Hyoscyamus niger, clearly shows that red radiation is the most efficient portion of the spectrum for promoting flower initiation, but in practical photoperiod control red or fluorescent lamps do not promote flowering nearly as well as the mixture of red and far-red in incandescent lamps. Nevertheless, much evidence exists that documents phytochrome control of plant growth and development in controlled environments and under natural conditions. When Karl Norris developed the first practical portable spectroradiometer about 1962 some of the first measurements were to determine the red/far-red ratios under tree canopies. These measurements showed clearly the predominance of far-red in the understory and suggested that far-red was contributing to the elongation exhibited by many species growing in the shade, and possibly was a factor in the induction of light requirements in seeds. Subsequently we used Catalpa leaves as far-red filters to make light-insensitive lettuce seed light requiring.« less
Optimal cooperative control synthesis of active displays
NASA Technical Reports Server (NTRS)
Garg, S.; Schmidt, D. K.
1985-01-01
A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.
[Iron from soil to plant products].
Briat, Jean-François
2005-11-01
As an essential mineral, iron plays an important role in fundamental biological processes such as photosynthesis, respiration, nitrogen fixation and assimilation, and DNA synthesis. Iron is also a co-factor of many enzymes involved in the synthesis of plant hormones. The latter are involved in many pathways controling plant development or adaptative responses to environmental conditions. Iron reactivity with oxygen leads to its insolubility (responsible for deficiency) and potential toxicity, and complicates iron use by aerobic organisms. If plants lacked an active root system with which to acquire iron from the soil, most would experience iron deficiency and show physiological changes. In contrast, an excess of soluble iron, which can occur in flooded acidic soils, can lead to ferrous iron toxicity due to iron reactivity with reduced forms of oxygen and subsequent free radical production. An optimal iron concentration is thus required for a plant to grow and develop normally. This concentration depends on multiple regulatory mechanisms controlling iron uptake from soil by the roots, as well as iron transport and distribution to the various plant organs. Optimized seed iron content is a major biotechnological challenge identified by the World Health Organization, and it is therefore crucial to understand the underlying mechanisms. Iron delivery to seeds is tightly controlled, and depends on the nature of iron speciation in specific chelates, and their transport.
NASA Technical Reports Server (NTRS)
Kuang, A.; Popova, A.; McClure, G.; Musgrave, M. E.
2005-01-01
Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.
Road map to adaptive optimal control. [jet engine control
NASA Technical Reports Server (NTRS)
Boyer, R.
1980-01-01
A building block control structure leading toward adaptive, optimal control for jet engines is developed. This approach simplifies the addition of new features and allows for easier checkout of the control by providing a baseline system for comparison. Also, it is possible to eliminate certain features that do not have payoff by being selective in the addition of new building blocks to be added to the baseline system. The minimum risk approach specifically addresses the need for active identification of the plant to be controlled in real time and real time optimization of the control for the identified plant.
Qi, Tiancong; Liu, Zhipeng; Fan, Meng; Chen, Yan; Tian, Haixia; Wu, Dewei; Gao, Hua; Ren, Chunmei; Song, Susheng; Xie, Daoxin
2017-09-04
Plant GDP-D-mannose epimerase (GME) converts GDP-D-mannose to GDP-L-galactose, a precursor of both L-ascorbate (vitamin C) and cell wall polysaccharides. However, the genetic functions of GME in Arabidopsis are unclear. In this study, we found that mutations in Arabidopsis GME affect pollen germination, pollen tube elongation, and transmission and development of the male gametophyte through analysis of the heterozygous GME/gme plants and the homozygous gme plants. Arabidopsis gme mutants also exhibit severe growth defects and early leaf senescence. Surprisingly, the defects in male gametophyte in the gme plants are not restored by L-ascorbate, boric acid or GDP-L-galactose, though boric acid rescues the growth defects of the mutants, indicating that GME may regulate male gametophyte development independent of L-ascorbate and GDP-L-galactose. These results reveal key roles for Arabidopsis GME in reproductive development, vegetative growth and leaf senescence, and suggest that GME regulates plant growth and controls male gametophyte development in different manners.
SCE&G Cope Station simulator training program development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stottlemire, J.L.; Fabry, R.
1996-11-01
South Carolina Electric and Gas Company made a significant investment into meeting the needs of their customers in designing and building the new fossil Generating Station near Cope, South Carolina. Cope Station is a state-of-the-art, 385 MW plant, with equipment and design features that will provide the plant with the capabilities of achieving optimum availability and capability. SCE&G has also implemented a team concept approach to plant organization at Cope Station. The modern plant design, operating philosophy, and introduction of a large percentage of new operations personnel presented a tremendous challenge in preparing for plant commissioning and commercial operation. SCE&G`smore » answer to this challenge was to hire an experienced operations trainer, and implement a comprehensive training program. An important part of the training investment was the procurement of a plant specific control room simulator. SCE&G, through tailored collaboration with the Electric Power Research Institute (EPRI), developed a specification for a simulator with the features necessary for training the initial plant staff as well as advanced operator training. The high-fidelity CRT based training simulator is a stimulated system that completely and accurately simulates the various plant systems, process startups, shutdowns, normal operating scenarios, and malfunctions. The process model stimulates a Foxboro Distributed Control System consisting of twelve control processors, five WP51 work stations, and one AW51 file server. The workstations, file server and support hardware and software necessary to interface with ESSCOR`s FSIM4 software was provided by Foxoboro.« less
Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min
2015-09-01
Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.
Modification of reproductive development in Arabidopsis thaliana under spaceflight conditions
NASA Technical Reports Server (NTRS)
Kuang, A.; Musgrave, M. E.; Matthews, S. W.
1996-01-01
Reproductive development in Arabidopsis thaliana (L.) Heynh. cv. Columbia plants was investigated under spaceflight conditions on shuttle mission STS-51. Plants launched just prior to initiation of the reproductive phase developed flowers and siliques during the 10-d flight. Approximately 500 flowers were produced in total by the 12 plants in both the ground control and spaceflight material, and there was no significant difference in the number of flowers in each size class. The flower buds and siliques of the spaceflight plants were not morphologically different from the ground controls. Pollen viability tests immediately post-flight using fluorescein diacetate indicated that about 35% of the pollen was viable in the spaceflight material. Light-microscopy observations on this material showed that the female gametophytes also had developed normally to maturity. However, siliques from the spaceflight plants contained empty, shrunken ovules, and no evidence of pollen transfer to stigmatic papillae was found by light microscopy immediately post-flight or by scanning electron microscopy on fixed material. Short stamen length and indehiscent anthers were observed in the spaceflight material, and a film-like substance inside the anther that connected to the tapetum appeared to restrict the release of pollen from the anthers. These observations indicate that given appropriate growing conditions, early reproductive development in A. thaliana can occur normally under spaceflight conditions. On STS-51, reproductive development aborted due to obstacles in pollination or fertilization.
Optimal control issues in plant disease with host demographic factor and botanical fungicides
NASA Astrophysics Data System (ADS)
Anggriani, N.; Mardiyah, M.; Istifadah, N.; Supriatna, A. K.
2018-03-01
In this paper, we discuss a mathematical model of plant disease with the effect of fungicide. We assume that the fungicide is given as a preventive treatment to infectious plants. The model is constructed based on the development of the disease in which the monomolecular is monocyclic. We show the value of the Basic Reproduction Number (BRN) ℛ0 of the plant disease transmission. The BRN is computed from the largest eigenvalue of the next generation matrix of the model. The result shows that in the region where ℛ0 greater than one there is a single stable endemic equilibrium. However, in the region where ℛ0 less than one this endemic equilibrium becomes unstable. The dynamics of the model is highly sensitive to changes in contact rate and infectious period. We also discuss the optimal control of the infected plant host by considering a preventive treatment aimed at reducing the infected host plant. The obtaining optimal control shows that it can reduce the number of infected hosts compared to that without control. Some numerical simulations are also given to illustrate our analytical results.
Genetic and environmental control of the Verticillium syndrome in Arabidopsis thaliana.
Häffner, Eva; Karlovsky, Petr; Diederichsen, Elke
2010-11-02
Verticillium spp. are major pathogens of dicotyledonous plants such as cotton, tomato, olive or oilseed rape. Verticillium symptoms are often ambiguous and influenced by development and environment. The aim of the present study was to define disease and resistance traits of the complex Verticillium longisporum syndrome in Arabidopsis thaliana (L.) Heynh. A genetic approach was used to determine genetic, developmental and environmental factors controlling specific disease and resistance traits and to study their interrelations. A segregating F2/F3 population originating from ecotypes 'Burren' (Bur) and 'Landsberg erecta' (Ler) was established. Plants were root-dip inoculated and tested under greenhouse conditions. The Verticillium syndrome was dissected into components like systemic spread, stunting, development time and axillary branching. Systemic spread of V. longisporum via colonisation of the shoot was extensive in Ler; Bur showed a high degree of resistance against systemic spread. Fungal colonisation of the shoot apex was determined by (a) determining the percentage of plants from which the fungus could be re-isolated and (b) measuring fungal DNA content with quantitative real-time PCR (qPCR). Four quantitative trait loci (QTL) controlling systemic spread were identified for the percentage of plants showing fungal outgrowth, two of these QTL were confirmed with qPCR data. The degree of colonisation by V. longisporum was negatively correlated with development time. QTL controlling development time showed some overlap with QTL for resistance to systemic spread. Stunting depended on host genotype, development time and seasonal effects. Five QTL controlling this trait were identified which did not co-localize with QTL controlling systemic spread. V. longisporum induced increased axillary branching in Bur; two QTL controlling this reaction were found. Systemic spread of V. longisporum in the host as well as resistance to this major disease trait are described for the first time in natural A. thaliana accessions. This creates the possibility to study a major resistance mechanism against vascular pathogens in this model plant and to clone relevant genes of the involved pathways. Stunting resistance and resistance to systemic spread were controlled by different QTL and should be treated as separate traits. Developmental and environmental effects on pathogenesis and resistance need to be considered when designing and interpreting experiments in research and breeding.
Model reference adaptive control of robots
NASA Technical Reports Server (NTRS)
Steinvorth, Rodrigo
1991-01-01
This project presents the results of controlling two types of robots using new Command Generator Tracker (CGT) based Direct Model Reference Adaptive Control (MRAC) algorithms. Two mathematical models were used to represent a single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were then controlled in simulation using different MRAC algorithms. Special attention was given to the performance of the algorithms in the presence of sudden changes in the robot load. Previously used CGT based MRAC algorithms had several problems. The original algorithm that was developed guaranteed asymptotic stability only for almost strictly positive real (ASPR) plants. This condition is very restrictive, since most systems do not satisfy this assumption. Further developments to the algorithm led to an expansion of the number of plants that could be controlled, however, a steady state error was introduced in the response. These problems led to the introduction of some modifications to the algorithms so that they would be able to control a wider class of plants and at the same time would asymptotically track the reference model. This project presents the development of two algorithms that achieve the desired results and simulates the control of the two robots mentioned before. The results of the simulations are satisfactory and show that the problems stated above have been corrected in the new algorithms. In addition, the responses obtained show that the adaptively controlled processes are resistant to sudden changes in the load.
Ilyas, Humaira; Datta, Aritreyee; Bhunia, Anirban
2017-01-01
Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are ubiquitous and vital components of innate defense response that present themselves as potential candidates for drug design, and aim to control plant and animal diseases. Though their application for plant disease management has long been studied with natural AMPs, cytotoxicity and stability related shortcomings for the development of transgenic plants limit their usage. Newer technologies like molecular modelling, NMR spectroscopy and combinatorial chemistry allow screening for potent candidates and provide new avenues for the generation of rationally designed synthetic AMPs with multiple biological functions. Such AMPs can be used for the control of plant diseases that lead to huge yield losses of agriculturally important crop plants, via generation of transgenic plants. Such approaches have gained significant attention in the past decade as a consequence of increasing antibiotic resistance amongst plant pathogens, and the shortcomings of existing strategies that include environmental contamination and human/animal health hazards amongst others. This review summarizes the recent trends and approaches used for employing AMPs, emphasizing on designed/modified ones, and their applications toward agriculture and food technology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Results from conceptual design study of potential early commercial MHD/steam power plants
NASA Technical Reports Server (NTRS)
Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.
1981-01-01
This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.
Preliminary results of Physiological plant growth modelling for human life support in space
NASA Astrophysics Data System (ADS)
Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline
2012-07-01
Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the physiological plant model, in the case of lettuce (since the leaf metabolic model predominates), the developed model was verified with the carbon consumption of plant, as input. The model predicts the biomass production (as output) with respect to the quantum of light absorbed by the plant. The obtained result was found satisfying for the first initiation in the physiological plant modelling.
The influence of space flight factors on viability and mutability of plants.
Kostina, L; Anikeeva, I; Vaulina, E
1984-01-01
The experiments with air-dried Crepis capillaris seeds aboard the Soyuz 16 spaceship and the orbital stations Salyut 5, 6, 7 have revealed an increase in the frequency of aberrant cells in seedlings grown from flight-exposed seeds during the flight (experiment) and after the flight on Earth (flight control) as compared to the ground-based control. The increase in seedlings grown during the flight is more significant than in the flight control. During the flight Arabidopsis thaliana developed from cotyledons to the flowering stage. Analysis of seeds setting on these plants after the flight has shown a reduction in the fertility of these plants and an increase in the frequency of recessive mutants ("Light block-1"). An increased frequency of mutants was also retained in the progeny of plants which had passed through a complete cycle of development during the flight ("Fiton-3"). Suppression of embryo viability was observed in all experiments and expressed itself in reduced germinating ability of seeds from the exposed plants and in the early death of seedlings. Damages resulting from chromosome aberrations are eliminated in the first postflight generation and damages resulting from gene mutations and micro-aberrations are preserved for a longer time.
Plasticity Regulators Modulate Specific Root Traits in Discrete Nitrogen Environments
Gifford, Miriam L.; Banta, Joshua A.; Katari, Manpreet S.; Hulsmans, Jo; Chen, Lisa; Ristova, Daniela; Tranchina, Daniel; Purugganan, Michael D.; Coruzzi, Gloria M.; Birnbaum, Kenneth D.
2013-01-01
Plant development is remarkably plastic but how precisely can the plant customize its form to specific environments? When the plant adjusts its development to different environments, related traits can change in a coordinated fashion, such that two traits co-vary across many genotypes. Alternatively, traits can vary independently, such that a change in one trait has little predictive value for the change in a second trait. To characterize such “tunability” in developmental plasticity, we carried out a detailed phenotypic characterization of complex root traits among 96 accessions of the model Arabidopsis thaliana in two nitrogen environments. The results revealed a surprising level of independence in the control of traits to environment – a highly tunable form of plasticity. We mapped genetic architecture of plasticity using genome-wide association studies and further used gene expression analysis to narrow down gene candidates in mapped regions. Mutants in genes implicated by association and expression analysis showed precise defects in the predicted traits in the predicted environment, corroborating the independent control of plasticity traits. The overall results suggest that there is a pool of genetic variability in plants that controls traits in specific environments, with opportunity to tune crop plants to a given environment. PMID:24039603
NASA Astrophysics Data System (ADS)
Karahara, Ichirou; Soga, Kouichi; Hoson, Takayuki; Kamisaka, Seiichiro; Yano, Sachiko; Shimazu, Toru; Tamaoki, Daisuke; Tanigaki, Fumiaki; Kasahara, Haruo; Yashiro, Umi; Suto, Takamichi; Yamaguchi, Takashi; Kasahara, Hirokazu
2012-07-01
Gravity is an important environmental factors for growth and development of plants throughout their life cycle. We have designed an experiment, which is called Space Seed, to examine the effects of microgravity on the seed to seed life cycle of plants. We have carried out this experiment using a newly developed apparatus, which is called the Plant Experiment Unit (PEU) and installed in the Cell Biology Experiment Facility (CBEF) onboard International Space Station (ISS). The CBEF is equipped with a turntable generating artificial gravity to perform 1-G control experiment as well as micro-G experiment on board. Arabidopsis thaliana seeds sown on dry rockwool in PEUs were transported from Kennedy Space Center to the ISS Kibo module by Space Shuttle Discovery in STS-128 mission. This experiment was started on Sep. 10, 2009 and terminated on Nov. 11, 2009. Arabidopsis seeds successfully germinated, and the plants passed through both vegetative and reproductive processes, such as formation of rosette leaves, bolting of inflorescence stems, flowering, formation of siliques and seeds. Vegetative and reproductive growth were compared among micro-G plants, 1-G control, and the ground control.
OsAUX1 controls lateral root initiation in rice (Oryza sativa L.).
Zhao, Heming; Ma, Tengfei; Wang, Xin; Deng, Yingtian; Ma, Haoli; Zhang, Rongsheng; Zhao, Jie
2015-11-01
Polar auxin transport, mediated by influx and efflux transporters, controls many aspects of plant growth and development. The auxin influx carriers in Arabidopsis have been shown to control lateral root development and gravitropism, but little is known about these proteins in rice. This paper reports on the functional characterization of OsAUX1. Three OsAUX1 T-DNA insertion mutants and RNAi knockdown transgenic plants reduced lateral root initiation compared with wild-type (WT) plants. OsAUX1 overexpression plants exhibited increased lateral root initiation and OsAUX1 was highly expressed in lateral roots and lateral root primordia. Similarly, the auxin reporter, DR5-GUS, was expressed at lower levels in osaux1 than in the WT plants, which indicated that the auxin levels in the mutant roots had decreased. Exogenous 1-naphthylacetic acid (NAA) treatment rescued the defective phenotype in osaux1-1 plants, whereas indole-3-acetic acid (IAA) and 2,4-D could not, which suggested that OsAUX1 was a putative auxin influx carrier. The transcript levels of several auxin signalling genes and cell cycle genes significantly declined in osaux1, hinting that the regulatory role of OsAUX1 may be mediated by auxin signalling and cell cycle genes. Overall, our results indicated that OsAUX1 was involved in polar auxin transport and functioned to control auxin-mediated lateral root initiation in rice. © 2014 John Wiley & Sons Ltd.
Plant nutrition: root transporters on the move.
Zelazny, Enric; Vert, Grégory
2014-10-01
Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to maintain nutrient homeostasis in plants. This control first involves the delivery of newly synthesized proteins to the plasma membrane by establishing check points along the secretory pathway, especially during the export from the endoplasmic reticulum. Plasma membrane-localized transport proteins are internalized through endocytosis followed by recycling to the cell surface or targeting to the vacuole for degradation, hence constituting another layer of control. These intricate mechanisms are often regulated by nutrient availability, stresses, and endogenous cues, allowing plants to rapidly adjust to their environment and adapt their development. © 2014 American Society of Plant Biologists. All Rights Reserved.
Advanced Grid-Friendly Controls Demonstration for Utility-Scale
PV power plant in CAISO's footprint. NREL, CAISO, and First Solar conducted demonstration tests that vendors, integrators, and utilities to develop and evaluate photovoltaic (PV) power plants with advanced grid-friendly capabilities. Graph of power over time that shows a PV plant varying output to follow an
Somatic embryogenesis and polyamines in woody plants
Rakesh Minocha; Subhash C. Minocha; Liisa Kaarina Simola
1995-01-01
The formation of whole plants from cultured cells is interesting not only because of its applications for mass propagation but also as a prime example of the process of controlled development and differentiation in plants. Cultures capable of producing somatic embryos with high frequency provide ideal experimental systems to study and understand the biochemical basis...
1998-10-01
Research with plants in microgravity offers many exciting opportunities to gain new insights and could improve products on Earth ranging from crop production to fragrances and food flavorings. The ASTROCULTURE facility is a lead commercial facility for plant growth and plant research in microgravity and was developed by the Wisconsin Center for Space Automation and Robotics (WSCAR), a NASA Commercial Space Center. On STS-95 it will support research that could help improve crop development leading to plants that are more disease resistant or have a higher yield and provide data on the production of plant essential oils---oils that contain the essence of the plant and provide both fragrance and flavoring. On STS-95, a flowering plant will be grown in ASTROCULTURE and samples taken using a method developed by the industry partner for this investigation. On Earth, the samples will be analyzed by gas chromatography/mass spectrometry and the data used to evaluate both the production of fragrant oils in microgravity and in the development of one or more products. The ASTROCULTURE payload uses these pourous tubes with precise pressure sensing and control for fluid delivery to the plant root tray.
NASA Technical Reports Server (NTRS)
1998-01-01
Research with plants in microgravity offers many exciting opportunities to gain new insights and could improve products on Earth ranging from crop production to fragrances and food flavorings. The ASTROCULTURE facility is a lead commercial facility for plant growth and plant research in microgravity and was developed by the Wisconsin Center for Space Automation and Robotics (WSCAR), a NASA Commercial Space Center. On STS-95 it will support research that could help improve crop development leading to plants that are more disease resistant or have a higher yield and provide data on the production of plant essential oils---oils that contain the essence of the plant and provide both fragrance and flavoring. On STS-95, a flowering plant will be grown in ASTROCULTURE and samples taken using a method developed by the industry partner for this investigation. On Earth, the samples will be analyzed by gas chromatography/mass spectrometry and the data used to evaluate both the production of fragrant oils in microgravity and in the development of one or more products. The ASTROCULTURE payload uses these pourous tubes with precise pressure sensing and control for fluid delivery to the plant root tray.
Soybeans as bioreactors for biopharmaceuticals and industrial proteins.
Vianna, G R; Cunha, N B; Murad, A M; Rech, E L
2011-01-01
Plants present various advantages for the production of biomolecules, including low risk of contamination with prions, viruses and other pathogens, scalability, low production costs, and available agronomical systems. Plants are also versatile vehicles for the production of recombinant molecules because they allow protein expression in various organs, such as tubers and seeds, which naturally accumulate large amounts of protein. Among crop plants, soybean is an excellent protein producer. Soybean plants are also a good source of abundant and cheap biomass and can be cultivated under controlled greenhouse conditions. Under containment, the plant cycle can be manipulated and the final seed yield can be maximized for large-scale protein production within a small and controlled area. Exploitation of specific regulatory sequences capable of directing and accumulating recombinant proteins in protein storage vacuoles in soybean seeds, associated with recently developed biological research tools and purification systems, has great potential to accelerate preliminary characterization of plant-derived biopharmaceuticals and industrial macromolecules. This is an important step in the development of genetically engineered products that are inexpensive and safe for medicinal, food and other uses.
Foo, Mathias; Gherman, Iulia; Zhang, Peijun; Bates, Declan G; Denby, Katherine J
2018-05-23
Crop disease leads to significant waste worldwide, both pre- and postharvest, with subsequent economic and sustainability consequences. Disease outcome is determined both by the plants' response to the pathogen and by the ability of the pathogen to suppress defense responses and manipulate the plant to enhance colonization. The defense response of a plant is characterized by significant transcriptional reprogramming mediated by underlying gene regulatory networks, and components of these networks are often targeted by attacking pathogens. Here, using gene expression data from Botrytis cinerea-infected Arabidopsis plants, we develop a systematic approach for mitigating the effects of pathogen-induced network perturbations, using the tools of synthetic biology. We employ network inference and system identification techniques to build an accurate model of an Arabidopsis defense subnetwork that contains key genes determining susceptibility of the plant to the pathogen attack. Once validated against time-series data, we use this model to design and test perturbation mitigation strategies based on the use of genetic feedback control. We show how a synthetic feedback controller can be designed to attenuate the effect of external perturbations on the transcription factor CHE in our subnetwork. We investigate and compare two approaches for implementing such a controller biologically-direct implementation of the genetic feedback controller, and rewiring the regulatory regions of multiple genes-to achieve the network motif required to implement the controller. Our results highlight the potential of combining feedback control theory with synthetic biology for engineering plants with enhanced resilience to environmental stress.
Q&A: What are strigolactones and why are they important to plants and soil microbes?
Smith, Steven M
2014-03-31
What are strigolactones? Strigolactones are signaling compounds made by plants. They have two main functions: first, as endogenous hormones to control plant development, and second as components of root exudates to promote symbiotic interactions between plants and soil microbes. Some plants that are parasitic on other plants have established a third function, which is to stimulate germination of their seeds when in close proximity to the roots of a suitable host plant. It is this third function that led to the original discovery and naming of strigolactones.
Controlled ecological life-support system - Use of plants for human life-support in space
NASA Technical Reports Server (NTRS)
Chamberland, D.; Knott, W. M.; Sager, J. C.; Wheeler, R.
1992-01-01
Scientists and engineers within NASA are conducting research which will lead to development of advanced life-support systems that utilize higher plants in a unique approach to solving long-term life-support problems in space. This biological solution to life-support, Controlled Ecological Life-Support System (CELSS), is a complex, extensively controlled, bioengineered system that relies on plants to provide the principal elements from gas exchange and food production to potable water reclamation. Research at John F. Kennedy Space Center (KSC) is proceeding with a comprehensive investigation of the individual parts of the CELSS system at a one-person scale in an approach called the Breadboard Project. Concurrently a relatively new NASA sponsored research effort is investigating plant growth and metabolism in microgravity, innovative hydroponic nutrient delivery systems, and use of highly efficient light emitting diodes for artificial plant illumination.
Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development.
Engineer, Cawas B; Ghassemian, Majid; Anderson, Jeffrey C; Peck, Scott C; Hu, Honghong; Schroeder, Julian I
2014-09-11
Environmental stimuli, including elevated carbon dioxide levels, regulate stomatal development; however, the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. A diverse range of plant species show a decrease in stomatal density in response to the continuing rise in atmospheric CO2 (ref. 4). To date, one mutant that exhibits deregulation of this CO2-controlled stomatal development response, hic (which is defective in cell-wall wax biosynthesis, ref. 5), has been identified. Here we show that recently isolated Arabidopsis thaliana β-carbonic anhydrase double mutants (ca1 ca4) exhibit an inversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels. We characterized the mechanisms mediating this response and identified an extracellular signalling pathway involved in the regulation of CO2-controlled stomatal development by carbonic anhydrases. RNA-seq analyses of transcripts show that the extracellular pro-peptide-encoding gene EPIDERMAL PATTERNING FACTOR 2 (EPF2), but not EPF1 (ref. 9), is induced in wild-type leaves but not in ca1 ca4 mutant leaves at elevated CO2 levels. Moreover, EPF2 is essential for CO2 control of stomatal development. Using cell-wall proteomic analyses and CO2-dependent transcriptomic analyses, we identified a novel CO2-induced extracellular protease, CRSP (CO2 RESPONSE SECRETED PROTEASE), as a mediator of CO2-controlled stomatal development. Our results identify mechanisms and genes that function in the repression of stomatal development in leaves during atmospheric CO2 elevation, including the carbonic-anhydrase-encoding genes CA1 and CA4 and the secreted protease CRSP, which cleaves the pro-peptide EPF2, in turn repressing stomatal development. Elucidation of these mechanisms advances the understanding of how plants perceive and relay the elevated CO2 signal and provides a framework to guide future research into how environmental challenges can modulate gas exchange in plants.
Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development
Engineer, Cawas B.; Ghassemian, Majid; Anderson, Jeffrey C.; Peck, Scott C.; Hu, Honghong; Schroeder, Julian I.
2014-01-01
Environmental stimuli, including elevated carbon dioxide levels, regulate stomatal development1–3; however, the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. A diverse range of plant species show a decrease in stomatal density in response to the continuing rise in atmospheric CO2 (ref. 4). To date, one mutant that exhibits deregulation of this CO2-controlled stomatal development response, hic (which is defective in cell-wall wax biosynthesis, ref. 5), has been identified. Here we show that recently isolated Arabidopsis thaliana β-carbonic anhydrase double mutants (ca1 ca4)6 exhibit aninversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels. We characterized the mechanisms mediating this response and identified an extracellular signalling pathway involved in the regulation of CO2-controlled stomatal development by carbonic anhydrases. RNA-seq analyses of transcripts show that the extracellular pro-peptide-encoding gene EPIDERMAL PATTERNING FACTOR 2 (EPF2)7,8, but not EPF1 (ref. 9), is induced in wild-type leaves but not inca1 ca4 mutant leaves at elevated CO2 levels. Moreover, EPF2 is essential for CO2 control of stomatal development. Using cell-wall proteomic analyses and CO2-dependent transcriptomic analyses, we identified a novel CO2-induced extracellular protease, CRSP (CO2 RESPONSE SECRETED PROTEASE), as a mediator of CO2-controlled stomatal development. Our results identify mechanisms and genes that function in the repression of stomatal development in leaves during atmospheric CO2 elevation, including the carbonic-anhydrase-encoding genes CA1 and CA4 and the secreted protease CRSP, which cleaves the pro-peptide EPF2, in turn repressing stomatal development. Elucidation of these mechanisms advances the understanding of how plants perceive and relay the elevated CO2 signal and provides a framework to guide future research into how environmental challenges can modulate gas exchange in plants. PMID:25043023
Tri-trophic insecticidal effects of African plants against cabbage pests.
Amoabeng, Blankson W; Gurr, Geoff M; Gitau, Catherine W; Nicol, Helen I; Munyakazi, Louis; Stevenson, Phil C
2013-01-01
Botanical insecticides are increasingly attracting research attention as they offer novel modes of action that may provide effective control of pests that have already developed resistance to conventional insecticides. They potentially offer cost-effective pest control to smallholder farmers in developing countries if highly active extracts can be prepared simply from readily available plants. Field cage and open field experiments were conducted to evaluate the insecticidal potential of nine common Ghanaian plants: goat weed, Ageratum conyzoides (Asteraceae), Siam weed, Chromolaena odorata (Asteraceae), Cinderella weed, Synedrella nodiflora (Asteraceae), chili pepper, Capsicum frutescens (Solanaceae), tobacco, Nicotiana tabacum (Solanaceae) cassia, Cassia sophera (Leguminosae), physic nut, Jatropha curcas (Euphorbiaceae), castor oil plant, Ricinus communis (Euphorbiaceae) and basil, Ocimum gratissimum (Lamiaceae). In field cage experiments, simple detergent and water extracts of all botanical treatments gave control of cabbage aphid, Brevicoryne brassicae and diamondback moth, Plutella xylostella, equivalent to the synthetic insecticide Attack® (emamectin benzoate) and superior to water or detergent solution. In open field experiments in the major and minor rainy seasons using a sub-set of plant extracts (A. conyzoides, C. odorata, S. nodiflora, N. tabacum and R. communis), all controlled B. brassicae and P. xylostella more effectively than water control and comparably with or better than Attack®. Botanical and water control treatments were more benign to third trophic level predators than Attack®. Effects cascaded to the first trophic level with all botanical treatments giving cabbage head weights, comparable to Attack® in the minor season. In the major season, R. communis and A conyzoides treatment gave lower head yields than Attack® but the remaining botanicals were equivalent or superior to this synthetic insecticide. Simply-prepared extracts from readily-available Ghanaian plants give beneficial, tri-trophic benefits and merit further research as an inexpensive plant protection strategy for smallholder farmers in West Africa.
Tri-Trophic Insecticidal Effects of African Plants against Cabbage Pests
Amoabeng, Blankson W.; Gurr, Geoff M.; Gitau, Catherine W.; Nicol, Helen I.; Stevenson, Phil C.
2013-01-01
Botanical insecticides are increasingly attracting research attention as they offer novel modes of action that may provide effective control of pests that have already developed resistance to conventional insecticides. They potentially offer cost-effective pest control to smallholder farmers in developing countries if highly active extracts can be prepared simply from readily available plants. Field cage and open field experiments were conducted to evaluate the insecticidal potential of nine common Ghanaian plants: goat weed, Ageratum conyzoides (Asteraceae), Siam weed, Chromolaena odorata (Asteraceae), Cinderella weed, Synedrella nodiflora (Asteraceae), chili pepper, Capsicum frutescens (Solanaceae), tobacco, Nicotiana tabacum (Solanaceae) cassia, Cassia sophera (Leguminosae), physic nut, Jatropha curcas (Euphorbiaceae), castor oil plant, Ricinus communis (Euphorbiaceae) and basil, Ocimum gratissimum (Lamiaceae). In field cage experiments, simple detergent and water extracts of all botanical treatments gave control of cabbage aphid, Brevicoryne brassicae and diamondback moth, Plutella xylostella, equivalent to the synthetic insecticide Attack® (emamectin benzoate) and superior to water or detergent solution. In open field experiments in the major and minor rainy seasons using a sub-set of plant extracts (A. conyzoides, C. odorata, S. nodiflora, N. tabacum and R. communis), all controlled B. brassicae and P. xylostella more effectively than water control and comparably with or better than Attack®. Botanical and water control treatments were more benign to third trophic level predators than Attack®. Effects cascaded to the first trophic level with all botanical treatments giving cabbage head weights, comparable to Attack® in the minor season. In the major season, R. communis and A conyzoides treatment gave lower head yields than Attack® but the remaining botanicals were equivalent or superior to this synthetic insecticide. Simply-prepared extracts from readily-available Ghanaian plants give beneficial, tri-trophic benefits and merit further research as an inexpensive plant protection strategy for smallholder farmers in West Africa. PMID:24205287
THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW
Shuping, D.S.S.; Eloff, J.N.
2017-01-01
Background: Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Materials and Methods: Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms “plant fungal pathogen”, “plant extracts” and “phytopathogens”. Proposals are made on the best extractants and bioassay techniques to be used. Results: In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Conclusions: Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase food security for rural farmers, lead to commercial rewards, but it is also much easier to test the efficacy in greenhouse or field experiments. Even if extracts are toxic it may still be useful in the floriculture industry. PMID:28638874
Lomax, Terri L; Findlay, Kirk A; White, T J; Winner, William E
2003-06-01
Plants will play an essential role in providing life support for any long-term space exploration or habitation. We are evaluating the feasibility of an adaptable system for measuring the response of plants to any unique space condition and optimizing plant performance under those conditions. The proposed system is based on a unique combination of systems including the rapid advances in the field of plant genomics, microarray technology for measuring gene expression, bioinformatics, gene pathways and networks, physiological measurements in controlled environments, and advances in automation and robotics. The resulting flexible module for monitoring and optimizing plant responses will be able to be inserted as a cassette into a variety of platforms and missions for either experimental or life support purposes. The results from future plant functional genomics projects have great potential to be applied to those plant species most likely to be used in space environments. Eventually, it will be possible to use the plant genetic assessment and control system to optimize the performance of any plant in any space environment. In addition to allowing the effective control of environmental parameters for enhanced plant productivity and other life support functions, the proposed module will also allow the selection or engineering of plants to thrive in specific space environments. The proposed project will advance human exploration of space in the near- and mid-term future on the International Space Station and free-flying satellites and in the far-term for longer duration missions and eventual space habitation.
Controlling plant architecture by manipulation of gibberellic acid signalling in petunia
Liang, Yin-Chih; Reid, Michael S; Jiang, Cai-Zhong
2014-01-01
Since stem elongation is a gibberellic acid (GA) response, GA inhibitors are commonly used to control plant height in the production of potted ornamentals and bedding plants. In this study, we investigated interfering with GA signaling by using molecular techniques as an alternative approach. We isolated three putative GID1 genes (PhGID1A, PhGID1B and PhGID1C) encoding GA receptors from petunia. Virus-induced gene silencing (VIGS) of these genes results in stunted growth, dark-green leaves and late-flowering. We also isolated the gai mutant gene (gai-1) from Arabidopsis. We have generated transgenic petunia plants in which the gai mutant protein is over-expressed under the control of a dexamethasone-inducible promoter. This system permits induction of the dominant Arabidopsis gai mutant gene at a desired stage of plant development in petunia plants by the application of dexamethasone (Dex). The induction of gai in Dex-treated T1 petunia seedlings caused dramatic growth retardation with short internodes. PMID:26504556
Development of a Biological Control Program for Eurasian Watermilfoil (Myriophyllum Spicatum)
2006-12-22
spicatum). Pakistan Station Commonwealth Institute of Biological Control, Rawalpindi. 16 Gleason, H.A., Cronquist , A . 1991. Manual of Vascular Plants of...Development of a biological control program for Eurasian watermilfoil (Myriophyllum spicatum...control agents have not considered potential impact on non target indigenous species. A phased programme to address these gaps is put forward. List of
Overview of expression of hepatitis B surface antigen in transgenic plants.
Guan, Zheng-jun; Guo, Bin; Huo, Yan-lin; Guan, Zheng-ping; Wei, Ya-hui
2010-10-28
Hepatitis B virus (HBV), a pathogen for chronic liver infection, afflicts more than 350 million people world-wide. The effective way to control the virus is to take HBV vaccine. Hepatitis B surface antigen (HBsAg) is an effective protective antigen suitable for vaccine development. At present, "edible" vaccine based on transgenic plants is one of the most promising directions in novel types of vaccines. HBsAg production from transgenic plants has been carried out, and the transgenic plant expression systems have developed from model plants (such as tobacco, potato and tomato) to other various plant platforms. Crude or purified extracts of transformed plants have been found to conduct immunological responses and clinical trials for hepatitis B, which gave the researches of plant-based HBsAg production a big boost. The aim of this review was to summarize the recent data about plant-based HBsAg development including molecular biology of HBsAg gene, selection of expression vector, the expression of HBsAg gene in plants, as well as corresponding immunological responses in animal models or human. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
Over the next four years, the Progetto Energia project will be building several cogeneration plants to help satisfy the increasing demands of Italy`s industrial users and the country`s demand for electrical power. Located at six different sites within Italy, these combined-cycle cogeneration plants will supply a total of 500 MW of electricity and 100 tons/hr of process steam to Italian industries and residences. To ensure project success, a dynamic model of the 50-MW base unit was developed. The goal established for the model was to predict the dynamic behavior of the complex thermodynamic system in order to assess equipment performancemore » and control system effectiveness for normal operation and, more importantly, abrupt load changes. In addition to fulfilling its goals, the dynamic study guided modifications to controller logic that significantly improved steam drum pressure control and bypassed steam desuperheating performance simulations of normal and abrupt transient events allowed engineers to define optimum controller gain coefficients. The dynamic study will undoubtedly reduce the associated plant start-up costs and contribute to a smooth commercial plant acceptance. As a result of the work, the control system has already been through its check-out and performance evaluation, usually performed during the plant start-up phase. Field engineers will directly benefit from this effort to identify and resolve control system {open_quotes}bugs{close_quotes} before the equipment reaches the field. High thermal efficiency, rapid dispatch and high plant availability were key reasons why the natural gas combined-cycle plant was chosen. Other favorable attributes of the combined-cycle plant contributing to the decision were: Minimal environmental impact; a simple and effective process and control philosophy to result in safe and easy plant operation; a choice of technologies and equipment proven in a large number of applications.« less
Comparative Floral Development of Mir-Grown and Ethylene-Treated, Earth-Grown Super Dwarf Wheat
NASA Technical Reports Server (NTRS)
Campbell, William F.; Salisbury, Frank B.; Bugbee, Bruce; Klassen, Steven; Naegle, Erin; Strickland, Darren T.; Bingham, Gail E.; Levinskikh, Margarita; Iljina, Galena M.; Veselova, Tatjana D.
2001-01-01
To study plant growth in microgravity, we grew Super Dwarf wheat (Triticum aestivum L.) in the Svet growth chamber onboard the orbiting Russian space station, Mir, and in identical ground control units at the Institute of BioMedical Problems in Moscow, Russia. Seedling emergence was 56% and 73% in the two root-module compartments on Mir and 75% and 90% on Earth. Growth was vigorous (produced ca. 1 kg dry mass), and individual plants produced 5 to 8 tillers on Mir compared with 3 to 5 on Earth-grown controls. Upon harvest in space and return to Earth, however, all inflorescences of the flight-grown plants were sterile. To ascertain if Super Dwarf wheat responded to the 1.1 to 1.7 micromol/mol atmospheric levels of ethylene measured on the Mir prior to and during flowering, plants on earth were exposed to 0, 1, 3, 10, and 20 micromol/mol of ethylene gas and 1200 micromol/mol CO2 from 7d after emergence to maturity. As in our Mir wheat, plant height, awn length, and the flag leaf were significantly shorter in the ethylene-exposed plants than in controls; inflorescences also exhibited 100% sterility. Scanning electron microscopic (SEM) examination of florets from Mir-grown and ethylene-treated, earth-grown plants showed that development ceased prior to anthesis, and the anthers did not dehisce. Laser scanning confocal microscopic (LSCM) examination of pollen grains from Mir and ethylene-treated plants on earth exhibited zero, one, and occasionally two, but rarely three nuclei; pollen produced in the absence of ethylene was always trinucleate, the normal condition. The scarcity of trinucleate pollen, abrupt cessation of floret development prior to anthesis, and excess tillering in wheat plants on Mir and in ethylene-containing atmospheres on earth build a strong case for the ethylene on Mir as the agent for the induced male sterility and other symptoms, rather than microgravity.
Morphometric Analysis of Auxin-Mediated Development
NASA Astrophysics Data System (ADS)
Lewis, Daniel
Auxin controls many aspects of plant development through its effects on growth. Its distribution is controlled by specific tissue and organ level polar transport streams. The responses to environmental cues such as gravity light, nutrient availability are largely controlled by coordinated regulation of distinct auxin transport streams. Many plant responses to the environment involve changes in shape. Much can be learned about the underlying processes controlling plant form if the response is measured with sufficient resolution. Computer-aided analysis of digital images or 'machine vision' can be used to greatly increase the speed and consistency of data from a morphometric study of plant form. Advances in image acquisition and analysis pioneered at UW-Madison have allowed unprecedented resolution of the growth and gravitropism of Arabidopsis. A reverse genetic analysis was used to determine if the MDR-like ABC transporters influence auxin distribution important for plant development and the response to environmental cues in Arabidopsis. Mutations in MDR1 (At3g28860) reduce acropetal auxin transport in the root. This is correlated with deviation from the vertical axis. Mutations in MDR4 (At2g47000) reduce basipetal auxin transport in the root. This is correlated with hypergravitropism. It was theorized that reduced transport whithin the elongation zone is responsible for the increased curvature. Flavanols were found to regulate gravitropism upstream of MDR4. The mdr1 mdr4 double mutant showed additive but not synergistic phenotypes, suggesting that the two auxin transport streams are more independent than interdependent. MDR proteins seem to enhance auxin transport in situations where PIN-type effux alone is insufficient.
Popova, A Yu; Trukhina, G M; Mikailova, O M
In the article there is considered the quality control and safety system implemented in the one of the largest flight catering food production plant for airline passengers and flying squad. The system for the control was based on the Hazard Analysis And Critical Control Points (HACCP) principles and developed hygienic and antiepidemic measures. There is considered the identification of hazard factors at stages of the technical process. There are presented results of the analysis data of monitoring for 6 critical control points over the five-year period. The quality control and safety system permit to decline food contamination risk during acceptance, preparation and supplying of in-flight meal. There was proved the efficiency of the implemented system. There are determined further ways of harmonization and implementation for HACCP principles in the plant.
Unconventional gas development facilitates plant invasions.
Barlow, Kathryn M; Mortensen, David A; Drohan, Patrick J; Averill, Kristine M
2017-11-01
Vegetation removal and soil disturbance from natural resource development, combined with invasive plant propagule pressure, can increase vulnerability to plant invasions. Unconventional oil and gas development produces surface disturbance by way of well pad, road, and pipeline construction, and increased traffic. Little is known about the resulting impacts on plant community assembly, including the spread of invasive plants. Our work was conducted in Pennsylvania forests that overlay the Marcellus and Utica shale formations to determine if invasive plants have spread to edge habitat created by unconventional gas development and to investigate factors associated with their presence. A piecewise structural equation model was used to determine the direct and indirect factors associated with invasive plant establishment on well pads. The model included the following measured or calculated variables: current propagule pressure on local access roads, the spatial extent of the pre-development road network (potential source of invasive propagules), the number of wells per pad (indicator of traffic density), and pad age. Sixty-one percent of the 127 well pads surveyed had at least one invasive plant species present. Invasive plant presence on well pads was positively correlated with local propagule pressure on access roads and indirectly with road density pre-development, the number of wells, and age of the well pad. The vast reserves of unconventional oil and gas are in the early stages of development in the US. Continued development of this underground resource must be paired with careful monitoring and management of surface ecological impacts, including the spread of invasive plants. Prioritizing invasive plant monitoring in unconventional oil and gas development areas with existing roads and multi-well pads could improve early detection and control of invasive plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Commercial potential of space-based plant research
NASA Astrophysics Data System (ADS)
Bula, Raymond J.; Christophersen, Eric
1999-01-01
Plant research conducted in space by commercial organizations could enhance the development of plant materials having superior characteristics and unique constituents for a wide range of agricultural, industrial, and medical applications. These commercial efforts will also include terrestrial application of controlled environment technologies that reduce the time involved in making the new plant materials available in the marketplace. The International Space Station with its ability to support long duration plant experiments will be critically important to such commercial activities.
An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis
Guo, Hongyan; Zhang, Wei; Tian, Hainan; Zheng, Kaijie; Dai, Xuemei; Liu, Shanda; Hu, Qingnan; Wang, Xianling; Liu, Bao; Wang, Shucai
2015-01-01
Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance, and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa) CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION) gene, as an auxin response gene, and the functional characterization of OsCLE48 in Arabidopsis and rice. OsCLE48 encodes a CLE peptide hormone that is similar to Arabidopsis CLEs. RT-PCR analysis showed that OsCLE48 was induced by exogenously application of IAA (indole-3-acetic acid), a naturally occurred auxin. Expression of integrated OsCLE48p:GUS reporter gene in transgenic Arabidopsis plants was also induced by exogenously IAA treatment. These results indicate that OsCLE48 is an auxin responsive gene. Histochemical staining showed that GUS activity was detected in all the tissue and organs of the OsCLE48p:GUS transgenic Arabidopsis plants. Expression of OsCLE48 under the control of the 35S promoter in Arabidopsis inhibited shoot apical meristem development. Expression of OsCLE48 under the control of the CLV3 native regulatory elements almost completely complemented clv3-2 mutant phenotypes, suggesting that OsCLE48 is functionally similar to CLV3. On the other hand, expression of OsCLE48 under the control of the 35S promoter in Arabidopsis has little, if any effects on root apical meristem development, and transgenic rice plants overexpressing OsCLE48 are morphologically indistinguishable from wild type plants, suggesting that the functions of some CLE peptides may not be fully conserved in Arabidopsis and rice. Taken together, our results showed that OsCLE48 is an auxin responsive peptide hormone gene, and it regulates shoot apical meristem development when expressed in Arabidopsis. PMID:25983737
Elevated CO{sub 2} and leaf shape: Are dandelions getting toothier?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, S.C.; Bazzaz, F.A.
1996-01-01
Heteroblastic leaf development in Taraxacum officinale is compared between plants grown under ambient (350 ppm) vs. elevated (700 ppm) CO{sub 2} levels. Leaves of elevated CO{sub 2} plants exhibited more deeply incised leaf margins and relatively more slender leaf laminae than leaves of ambient CO{sub 2} plants. These differences were found to be significant in allometric analyses that controlled for differences in leaf size, as well as analyses that controlled for leaf development order. The effects of elevated CO{sub 2} on leaf shape were most pronounced when plants were grown individually, but detectable differences were also found in plants grownmore » at high density. Although less dramatic than in Taraxacum, significant effects of elevated CO{sub 2} on leaf shape were also found in two other weedy rosette species, Plantago major and Rumex crispus. These observations support the long-standing hypothesis that leaf carbohydrate level plays an important role in regulating heteroblastic leaf development, though elevated CO{sub 2} may also affect leaf development through direct hormonal interactions or increased leaf water potential. In Taraxacum, pronounced modifications of leaf shape were found at CO{sub 2} levels predicted to occur within the next century. 33 refs., 5 figs.« less
Beneficial microbes affect endogenous mechanisms controlling root development
Verbon, Eline H.; Liberman, Louisa M.
2016-01-01
Plants have incredible developmental plasticity, enabling them to respond to a wide range of environmental conditions. Among these conditions is the presence of plant growth-promoting rhizobacteria (PGPR) in the soil. Recent studies show that PGPR affect root growth and development within Arabidopsis thaliana root. These effects lead to dramatic changes in root system architecture, that significantly impact aboveground plant growth. Thus, PGPR may promote shoot growth via their effect on root developmental programs. This review focuses on contextualizing root developmental changes elicited by PGPR in light of our understanding of plant-microbe interactions and root developmental biology. PMID:26875056
Recent Trends in Studies on Botanical Fungicides in Agriculture
Yoon, Mi-Young; Cha, Byeongjin; Kim, Jin-Cheol
2013-01-01
Plants are attacked by various phytopathogenic fungi. For many years, synthetic fungicides have been used to control plant diseases. Although synthetic fungicides are highly effective, their repeated use has led to problems such as environmental pollution, development of resistance, and residual toxicity. This has prompted intensive research on the development of biopesticides, including botanical fungicides. To date, relatively few botanical fungicides have been registered and commercialized. However, many scientists have reported isolation and characterization of a variety of antifungal plant derivatives. Here, we present a survey of a wide range of reported plant-derived antifungal metabolites. PMID:25288923
Feedback system design with an uncertain plant
NASA Technical Reports Server (NTRS)
Milich, D.; Valavani, L.; Athans, M.
1986-01-01
A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.
Controlled Ecological Life Support Systems (CELSS)
NASA Technical Reports Server (NTRS)
Majumdar, M.
1985-01-01
One of the major problems facing researchers in the design of a life support system is to construct it so that it will be capable of regulating waste materials and gases, while at the same time supporting the inhabitants with adequate food and oxygen. The basis of any gaseous life supporting cycle is autotrophs (plants that photosynthesize). The major problem is to get the respiratory quotient (RQ) of the animals to be equivalent to the assimilatory quotient (AQ) of the plants. A technique is being developed to control the gas exchange. The goal is to determine the feasibility of manipulating the plant's AQ by altering the plants environment in order to eliminate the mismatch between the plant's AQ and the animal's RQ.
NASA Astrophysics Data System (ADS)
Ismail, Firas B.; Thiruchelvam, Vinesh
2013-06-01
Steam condenser is one of the most important equipment in steam power plants. If the steam condenser trips it may lead to whole unit shutdown, which is economically burdensome. Early condenser trips monitoring is crucial to maintain normal and safe operational conditions. In the present work, artificial intelligent monitoring systems specialized in condenser outages has been proposed and coded within the MATLAB environment. The training and validation of the system has been performed using real operational measurements captured from the control system of selected steam power plant. An integrated plant data preparation scheme for condenser outages with related operational variables has been proposed. Condenser outages under consideration have been detected by developed system before the plant control system"
Emerging microbial biocontrol strategies for plant pathogens.
Syed Ab Rahman, Sharifah Farhana; Singh, Eugenie; Pieterse, Corné M J; Schenk, Peer M
2018-02-01
To address food security, agricultural yields must increase to match the growing human population in the near future. There is now a strong push to develop low-input and more sustainable agricultural practices that include alternatives to chemicals for controlling pests and diseases, a major factor of heavy losses in agricultural production. Based on the adverse effects of some chemicals on human health, the environment and living organisms, researchers are focusing on potential biological control microbes as viable alternatives for the management of pests and plant pathogens. There is a growing body of evidence that demonstrates the potential of leaf and root-associated microbiomes to increase plant efficiency and yield in cropping systems. It is important to understand the role of these microbes in promoting growth and controlling diseases, and their application as biofertilizers and biopesticides whose success in the field is still inconsistent. This review focusses on how biocontrol microbes modulate plant defense mechanisms, deploy biocontrol actions in plants and offer new strategies to control plant pathogens. Apart from simply applying individual biocontrol microbes, there are now efforts to improve, facilitate and maintain long-term plant colonization. In particular, great hopes are associated with the new approaches of using "plant-optimized microbiomes" (microbiome engineering) and establishing the genetic basis of beneficial plant-microbe interactions to enable breeding of "microbe-optimized crops". Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, JA
2002-01-15
This report describes the tasks performed and the progress made during Phase 2 of the DOE-NERI project number 99-119 entitled Automatic Development of Highly Reliable Control Architecture for Future Nuclear Power Plants. This project is a collaboration effort between the Oak Ridge National Laboratory (ORNL), The University of Tennessee, Knoxville (UTK) and the North Carolina State University (NCSU). ORNL is the lead organization and is responsible for the coordination and integration of all work.
Chatelle, Claire; Ochoa-Fernandez, Rocio; Engesser, Raphael; Schneider, Nils; Beyer, Hannes M; Jones, Alex R; Timmer, Jens; Zurbriggen, Matias D; Weber, Wilfried
2018-05-18
The ever-increasing complexity of synthetic gene networks and applications of synthetic biology requires precise and orthogonal gene expression systems. Of particular interest are systems responsive to light as they enable the control of gene expression dynamics with unprecedented resolution in space and time. While broadly used in mammalian backgrounds, however, optogenetic approaches in plant cells are still limited due to interference of the activating light with endogenous photoreceptors. Here, we describe the development of the first synthetic light-responsive system for the targeted control of gene expression in mammalian and plant cells that responds to the green range of the light spectrum in which plant photoreceptors have minimal activity. We first engineered a system based on the light-sensitive bacterial transcription factor CarH and its cognate DNA operator sequence CarO from Thermus thermophilus to control gene expression in mammalian cells. The system was functional in various mammalian cell lines, showing high induction (up to 350-fold) along with low leakiness, as well as high reversibility. We quantitatively described the systems characteristics by the development and experimental validation of a mathematical model. Finally, we transferred the system into A. thaliana protoplasts and demonstrated gene repression in response to green light. We expect that this system will provide new opportunities in applications based on synthetic gene networks and will open up perspectives for optogenetic studies in mammalian and plant cells.
Miyazaki, Yuji; Abe, Hiroshi; Takase, Tomoyuki; Kobayashi, Masatomo; Kiyosue, Tomohiro
2015-05-01
The overexpression of LKP2 confers dehydration tolerance in Arabidopsis thaliana ; this is likely due to enhanced expression of dehydration-inducible genes and reduced stomatal opening. LOV KELCH protein 2 (LKP2) modulates the circadian rhythm and flowering time in plants. In this study, we observed that LKP2 overexpression enhanced dehydration tolerance in Arabidopsis. Microarray analysis demonstrated that expression of water deprivation-responsive genes was higher in the absence of dehydration stress in transgenic Arabidopsis plants expressing green fluorescent protein-tagged LKP2 (GFP-LKP2) than in control transgenic plants expressing GFP. After dehydration followed by rehydration, GFP-LKP2 plants developed more leaves and roots and exhibited higher survival rates than control plants. In the absence of dehydration stress, four dehydration-inducible genes, namely DREB1A, DREB1B, DREB1C, and RD29A, were expressed in GFP-LKP2 plants, whereas they were not expressed or were expressed at low levels in control plants. Under dehydration stress, the expression of DREB2B and RD29A peaked faster in the GFP-LKP2 plants than in control plants. The stomatal aperture of GFP-LKP2 plants was smaller than that of control plants. These results suggest that the dehydration tolerance of GFP-LKP2 plants is caused by upregulation of DREB1A-C/CBF1-3 and their downstream targets; restricted stomatal opening in the absence of dehydration stress also appears to contribute to the phenotype. The rapid and high expression of DREB2B and its downstream target genes also likely accounts for some features of the GFP-LKP2 phenotype. Our results suggest that LKP2 can be used for biotechnological applications not only to adjust the flowering time control but also to enhance dehydration tolerance.
PWR PRELIMINARY DESIGN FOR PL-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, G. E.
1962-02-28
The pressurized water reactor preliminary design, the preferred design developed under Phase I of the PL-3 contract, is presented. Plant design criteria, summary of plant selection, plant description, reactor and primary system description, thermal and hydraulic analysis, nuclear analysis, control and instrumentatlon description, shielding description, auxiliary systems, power plant equipment, waste dispusal, buildings and tunnels, services, operation and maintenance, logistics, erection, cost information, and a training program outline are given. (auth)
Overexpression of a glutamine synthetase gene affects growth and development in sorghum.
Urriola, Jazmina; Rathore, Keerti S
2015-06-01
Nitrogen is a primary macronutrient in plants, and nitrogen fertilizers play a critical role in crop production and yield. In this study, we investigated the effects of overexpressing a glutamine synthetase (GS) gene on nitrogen metabolism, and plant growth and development in sorghum (Sorghum bicolor L., Moench). GS catalyzes the ATP dependent reaction between ammonia and glutamate to produce glutamine. A 1,071 bp long coding sequence of a sorghum cytosolic GS gene (Gln1) under the control of the maize ubiquitin (Ubq) promoter was introduced into sorghum immature embryos by Agrobacterium-mediated transformation. Progeny of the transformants exhibited higher accumulation of the Gln1 transcripts and up to 2.2-fold higher GS activity compared to the non-transgenic controls. When grown under optimal nitrogen conditions, these Gln1 transgenic lines showed greater tillering and up to 2.1-fold increase in shoot vegetative biomass. Interestingly, even under greenhouse conditions, we observed a seasonal component to both these parameters and the grain yield. Our results, showing that the growth and development of sorghum Gln1 transformants are also affected by N availability and other environmental factors, suggest complexity of the relationship between GS activity and plant growth and development. A better understanding of other control points and the ability to manipulate these will be needed to utilize the transgenic technology to improve nitrogen use efficiency of crop plants.
The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development.
Pasare, Stefania A; Ducreux, Laurence J M; Morris, Wayne L; Campbell, Raymond; Sharma, Sanjeev K; Roumeliotis, Efstathios; Kohlen, Wouter; van der Krol, Sander; Bramley, Peter M; Roberts, Alison G; Fraser, Paul D; Taylor, Mark A
2013-06-01
· Strigolactones (SLs) are a class of phytohormones controlling shoot branching. In potato (Solanum tuberosum), tubers develop from underground stolons, diageotropic stems which originate from basal stem nodes. As the degree of stolon branching influences the number and size distribution of tubers, it was considered timely to investigate the effects of SL production on potato development and tuber life cycle. · Transgenic potato plants were generated in which the CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) gene, key in the SL biosynthetic pathway, was silenced by RNA interference (RNAi). · The resulting CCD8-RNAi potato plants showed significantly more lateral and main branches than control plants, reduced stolon formation, together with a dwarfing phenotype and a lack of flowering in the most severely affected lines. New tubers were formed from sessile buds of the mother tubers. The apical buds of newly formed transgenic tubers grew out as shoots when exposed to light. In addition, we found that CCD8 transcript levels were rapidly downregulated in tuber buds by the application of sprout-inducing treatments. · These results suggest that SLs could have an effect, solely or in combination with other phytohormones, in the morphology of potato plants and also in controlling stolon development and maintaining tuber dormancy. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
The role of plant-microbiome interactions in weed establishment and control.
Trognitz, Friederike; Hackl, Evelyn; Widhalm, Siegrid; Sessitsch, Angela
2016-10-01
The soil microbiome plays an important role in the establishment of weeds and invasive plants. They associate with microorganisms supporting their growth and health. Weed management strategies, like tillage and herbicide treatments, to control weeds generally alter soil structure going alongside with changes in the microbial community. Once a weed population establishes in the field, the plants build up a close relationship with the available microorganisms. Seeds or vegetative organs overwinter in soil and select early in the season their own microbiome before crop plants start to vegetate. Weed and crop plants compete for light, nutrition and water, but may differently interact with soil microorganisms. The development of new sequencing technologies for analyzing soil microbiomes has opened up the possibility for in depth analysis of the interaction between 'undesired' plants and crop plants under different management systems. These findings will help us to understand the functions of microorganisms involved in crop productivity and plant health, weed establishment and weed prevention. Exploitation of the knowledge offers the possibility to search for new biocontrol methods against weeds based on soil and plant-associated microorganisms. This review discusses the recent advances in understanding the functions of microbial communities for weed/invasive plant establishment and shows new ways to use plant-associated microorganisms to control weeds and invasive plants in different land management systems. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okita, T.W.
Part 1 of this research focuses on patterns of gene expression of ADPG-pyrophosphorylase in native and transgenic potato plants. To elucidate the mechanism controlling AGP expression during plant development, the expression of the potato tuber AGP small subunit (sAGP) gene was analyzed in transgenic potato plants using a promoter-{beta}-glucuronidase expression system. Part II evaluated the structure-function relationships of AGP.
Villordon, Arthur Q.; Clark, Christopher A.
2014-01-01
It has been shown that virus infections, often symptomless, significantly limit sweetpotato productivity, especially in regions characterized by low input agricultural systems. In sweetpotatoes, the successful emergence and development of lateral roots (LRs), the main determinant of root architecture, determines the competency of adventitious roots to undergo storage root initiation. This study aimed to investigate the effect of some plant viruses on root architecture attributes during the onset of storage root initiation in ‘Beauregard’ sweetpotatoes that were grown with or without the presence of nitrogen. In two replicate experiments, virus-tested plants consistently failed to show visible symptoms at 20 days regardless of nitrogen treatment. In both experiments, the severity of symptom development among infected plants ranged from 25 to 118% when compared to the controls (virus tested plants grown in the presence of nitrogen). The presence of a complex of viruses (Sweet potato feathery mottle virus, Sweet potato virus G, Sweet potato virus C, and Sweet potato virus 2) was associated with 51% reduction in adventitious root number among plants grown without nitrogen. The effect of virus treatments on first order LR development depended on the presence or absence of nitrogen. In the presence of nitrogen, only plants infected with Sweet potato chlorotic stunt virus showed reductions in first order LR length, number, and density, which were decreased by 33%, 12%, and 11%, respectively, when compared to the controls. In the absence of nitrogen, virus tested and infected plants manifested significant reductions for all first order LR attributes. These results provide evidence that virus infection directly influences sweetpotato yield potential by reducing both the number of adventitious roots and LR development. These findings provide a framework for understanding how virus infection reduces sweetpotato yield and could lead to the development of novel strategies to mitigate virus effects on sweetpotato productivity. PMID:25243579
Lee, H; Min, Y M; Park, C H; Park, Y H
2004-01-01
Many small-size wastewater treatment plants in Korea's rural communities are designed to remove organic and suspended matter only, and they generally show a large fluctuation in the influent loading compared to municipal wastewater treatment plants (MWWTPs). They also have no professional engineers stationed for efficient operation against mechanical breakdown. For those reasons, the wastewater treatment plants have low efficiency in treatment of nitrogen and phosphorus as well as organic matter. In order to solve those problems, this study developed an automatic control system and RMS (remote monitoring system), which can keep efficiency stable despite any change in the small plants' loading rates and are capable of removing nutrient materials such as nitrogen or phosphorus. According to the results of the Experimental SBR system of the automatic control program, complete nitrification was made under oxic conditions and denitrification occurred as NO3-N concentration decreased by 0.5 mg/l in anoxic conditions and excellent nitrogen removal efficiency was seen generally. The Experimental SBR system created "phosphate release and uptake" effectively and displayed phosphate-removing efficiency up to more than 80% as the concentration of effluent was kept low by 0.4 mg/l. RMS developed in this study transmits a plant's data and operation states to clients in remote locations in real-time interval through the Internet. Therefore, although you are in a remote location, it allows you to see if a plant is properly operated or there is any breakdown.
Control of pome and stone fruit virus diseases.
Barba, Marina; Ilardi, Vincenza; Pasquini, Graziella
2015-01-01
Many different systemic pathogens, including viruses, affect pome and stone fruits causing diseases with adverse effects in orchards worldwide. The significance of diseases caused by these pathogens on tree health and fruit shape and quality has resulted in the imposition of control measures both nationally and internationally. Control measures depend on the identification of diseases and their etiological agents. Diagnosis is the most important aspect of controlling fruit plant viruses. Early detection of viruses in fruit trees or in the propagative material is a prerequisite for their control and to guarantee a sustainable agriculture. Many quarantine programs are in place to reduce spread of viruses among countries during international exchange of germplasm. All these phytosanitary measures are overseen by governments based on agreements produced by international organizations. Also certification schemes applied to fruit trees allow the production of planting material of known variety and plant health status for local growers by controlling the propagation of pathogen-tested mother plants. They ensure to obtain propagative material not only free of "quarantine" organisms under the national legislation but also of important "nonquarantine" pathogens. The control of insect vectors plays an important role in the systemic diseases management, but it must be used together with other control measures as eradication of infected plants and use of certified propagation material. Apart from the control of the virus vector and the use of virus-free material, the development of virus-resistant cultivars appears to be the most effective approach to achieve control of plant viruses, especially for perennial crops that are more exposed to infection during their long life span. The use of resistant or tolerant cultivars and/or rootstocks could be potentially the most important aspect of virus disease management, especially in areas in which virus infections are endemic. The conventional breeding for virus-tolerant or resistant fruit tree cultivars using available germplasm is a long-term strategy, and the development and production of these cultivars may take decades, if successful. Genetic engineering allows the introduction of specific DNA sequences offering the opportunity to obtain existing fruit tree cultivars improved for the desired resistance trait. Unfortunately, genetic transformation of pome and stone fruits is still limited to few commercial genotypes. Research carried out and the new emerging biotechnological approaches to obtain fruit tree plants resistant or tolerant to viruses are discussed. © 2015 Elsevier Inc. All rights reserved.
Enabling co-simulation of tokamak plant models and plasma control systems
Walker, M. L.
2017-12-22
A system for connecting the Plasma Control System and a model of the tokamak Plant in closed loop co-simulation for plasma control development has been in routine use at DIII-D for more than 20 years and at other fusion labs that use variants of the DIII-D PCS for approximately the last decade. Here, co-simulation refers to the simultaneous execution of two independent codes with the exchange of data - Plant actuator commands and tokamak diagnostic data - between them during execution. Interest in this type of PCS-Plant simulation technology has also been growing recently at other fusion facilities. In fact,more » use of such closed loop control simulations is assumed to play an even larger role in the development of both the ITER Plasma Control System (PCS) and the experimental operation of the ITER device, where they will be used to support verification/validation of the PCS and also for ITER pulse schedule development and validation. We describe the key use cases that motivate the co-simulation capability and the features that must be provided by the Plasma Control System to support it. These features could be provided by the PCS itself or by a model of the PCS. If the PCS itself is chosen to provide them, there are requirements imposed on its architecture. If a PCS model is chosen, there are requirements imposed on the initial implementation of this simulation as well as long-term consequences for its continued development and maintenance. We describe these issues for each use case and discuss the relative merits of the two choices. Several examples are given illustrating uses of the co-simulation method to address problems of plasma control during the operation of DIII-D and of other devices that use the DIII-D PCS.« less
Enabling co-simulation of tokamak plant models and plasma control systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, M. L.
A system for connecting the Plasma Control System and a model of the tokamak Plant in closed loop co-simulation for plasma control development has been in routine use at DIII-D for more than 20 years and at other fusion labs that use variants of the DIII-D PCS for approximately the last decade. Here, co-simulation refers to the simultaneous execution of two independent codes with the exchange of data - Plant actuator commands and tokamak diagnostic data - between them during execution. Interest in this type of PCS-Plant simulation technology has also been growing recently at other fusion facilities. In fact,more » use of such closed loop control simulations is assumed to play an even larger role in the development of both the ITER Plasma Control System (PCS) and the experimental operation of the ITER device, where they will be used to support verification/validation of the PCS and also for ITER pulse schedule development and validation. We describe the key use cases that motivate the co-simulation capability and the features that must be provided by the Plasma Control System to support it. These features could be provided by the PCS itself or by a model of the PCS. If the PCS itself is chosen to provide them, there are requirements imposed on its architecture. If a PCS model is chosen, there are requirements imposed on the initial implementation of this simulation as well as long-term consequences for its continued development and maintenance. We describe these issues for each use case and discuss the relative merits of the two choices. Several examples are given illustrating uses of the co-simulation method to address problems of plasma control during the operation of DIII-D and of other devices that use the DIII-D PCS.« less
Advanced I&C for Fault-Tolerant Supervisory Control of Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Daniel G.
In this research, we have developed a supervisory control approach to enable automated control of SMRs. By design the supervisory control system has an hierarchical, interconnected, adaptive control architecture. A considerable advantage to this architecture is that it allows subsystems to communicate at different/finer granularity, facilitates monitoring of process at the modular and plant levels, and enables supervisory control. We have investigated the deployment of automation, monitoring, and data collection technologies to enable operation of multiple SMRs. Each unit's controller collects and transfers information from local loops and optimize that unit’s parameters. Information is passed from the each SMR unitmore » controller to the supervisory controller, which supervises the actions of SMR units and manage plant processes. The information processed at the supervisory level will provide operators the necessary information needed for reactor, unit, and plant operation. In conjunction with the supervisory effort, we have investigated techniques for fault-tolerant networks, over which information is transmitted between local loops and the supervisory controller to maintain a safe level of operational normalcy in the presence of anomalies. The fault-tolerance of the supervisory control architecture, the network that supports it, and the impact of fault-tolerance on multi-unit SMR plant control has been a second focus of this research. To this end, we have investigated the deployment of advanced automation, monitoring, and data collection and communications technologies to enable operation of multiple SMRs. We have created a fault-tolerant multi-unit SMR supervisory controller that collects and transfers information from local loops, supervise their actions, and adaptively optimize the controller parameters. The goal of this research has been to develop the methodologies and procedures for fault-tolerant supervisory control of small modular reactors. To achieve this goal, we have identified the following objectives. These objective are an ordered approach to the research: I) Development of a supervisory digital I&C system II) Fault-tolerance of the supervisory control architecture III) Automated decision making and online monitoring.« less
Sara Tramontini; Cornelis van Leeuwen; Jean-Christophe Domec; Agnès Destrac-Irvine; Cyril Basteau; Marco Vitali; Olaf Mosbach-Schulz; Claudio Lovisolo
2013-01-01
All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes...
Li, Bin-Bin; Wang, Xiang; Tai, Li; Ma, Tian-Tian; Shalmani, Abdullah; Liu, Wen-Ting; Li, Wen-Qiang; Chen, Kun-Ming
2018-01-01
NAD(H) and NADP(H) are essential co-enzymes which dominantly control a number of fundamental biological processes by acting as reducing power and maintaining the intracellular redox balance of all life kingdoms. As the only enzymes that catalyze NAD(H) and ATP to synthesize NADP(H), NAD Kinases (NADKs) participate in many essential metabolic reactions, redox sensitive regulation, photosynthetic performance and also reactive oxygen species (ROS) homeostasis of cells and therefore, play crucial roles in both development and stress responses of plants. NADKs are highly conserved enzymes in amino acid sequences but have multiple subcellular localization and diverse functions. They may function as monomers, dimers or multimers in cells but the enzymatic properties in plants are not well elucidated yet. The activity of plant NADK is regulated by calcium/calmodulin and plays crucial roles in photosynthesis and redox co-enzyme control. NADK genes are expressed in almost all tissues and developmental stages of plants with specificity for different members. Their transcripts can be greatly stimulated by a number of environmental factors such as pathogenic attack, irritant applications and abiotic stress treatments. Using transgenic approaches, several studies have shown that NADKs are involved in chlorophyll synthesis, photosynthetic efficiency, oxidative stress protection, hormone metabolism and signaling regulation, and therefore contribute to the growth regulation and stress tolerance of plants. In this review, the enzymatic properties and functional mechanisms of plant NADKs are thoroughly investigated based on literature and databases. The results obtained here are greatly advantageous for further exploration of NADK function in plants. PMID:29662499
Involvement of thiol-based mechanisms in plant development.
Rouhier, Nicolas; Cerveau, Delphine; Couturier, Jérémy; Reichheld, Jean-Philippe; Rey, Pascal
2015-08-01
Increasing knowledge has been recently gained regarding the redox regulation of plant developmental stages. The current state of knowledge concerning the involvement of glutathione, glutaredoxins and thioredoxins in plant development is reviewed. The control of the thiol redox status is mainly ensured by glutathione (GSH), a cysteine-containing tripeptide and by reductases sharing redox-active cysteines, glutaredoxins (GRXs) and thioredoxins (TRXs). Indeed, thiol groups present in many regulatory proteins and metabolic enzymes are prone to oxidation, ultimately leading to post-translational modifications such as disulfide bond formation or glutathionylation. This review focuses on the involvement of GSH, GRXs and TRXs in plant development. Recent studies showed that the proper functioning of root and shoot apical meristems depends on glutathione content and redox status, which regulate, among others, cell cycle and hormone-related processes. A critical role of GRXs in the formation of floral organs has been uncovered, likely through the redox regulation of TGA transcription factor activity. TRXs fulfill many functions in plant development via the regulation of embryo formation, the control of cell-to-cell communication, the mobilization of seed reserves, the biogenesis of chloroplastic structures, the metabolism of carbon and the maintenance of cell redox homeostasis. This review also highlights the tight relationships between thiols, hormones and carbon metabolism, allowing a proper development of plants in relation with the varying environment and the energy availability. GSH, GRXs and TRXs play key roles during the whole plant developmental cycle via their antioxidant functions and the redox-regulation of signaling pathways. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.
Mechanosensitive control of plant growth: bearing the load, sensing, transducing, and responding
Moulia, Bruno; Coutand, Catherine; Julien, Jean-Louis
2015-01-01
As land plants grow and develop, they encounter complex mechanical challenges, especially from winds and turgor pressure. Mechanosensitive control over growth and morphogenesis is an adaptive trait, reducing the risks of breakage or explosion. This control has been mostly studied through experiments with artificial mechanical loads, often focusing on cellular or molecular mechanotransduction pathway. However, some important aspects of mechanosensing are often neglected. (i) What are the mechanical characteristics of different loads and how are loads distributed within different organs? (ii) What is the relevant mechanical stimulus in the cell? Is it stress, strain, or energy? (iii) How do mechanosensing cells signal to meristematic cells? Without answers to these questions we cannot make progress analyzing the mechanobiological effects of plant size, plant shape, tissue distribution and stiffness, or the magnitude of stimuli. This situation is rapidly changing however, as systems mechanobiology is being developed, using specific biomechanical and/or mechanobiological models. These models are instrumental in comparing loads and responses between experiments and make it possible to quantitatively test biological hypotheses describing the mechanotransduction networks. This review is designed for a general plant science audience and aims to help biologists master the models they need for mechanobiological studies. Analysis and modeling is broken down into four steps looking at how the structure bears the load, how the distributed load is sensed, how the mechanical signal is transduced, and then how the plant responds through growth. Throughout, two examples of adaptive responses are used to illustrate this approach: the thigmorphogenetic syndrome of plant shoots bending and the mechanosensitive control of shoot apical meristem (SAM) morphogenesis. Overall this should provide a generic understanding of systems mechanobiology at work. PMID:25755656
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo; Brown, Christopher S.; Nagle, H. Troy
2004-01-01
Plant experiments in space will require active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of plant cultivation systems in the space environment. Control of water and oxygen is limited by the current state-of-the-art in sensor technology. Two capabilities of the new microsensor array were tested. First, a novel in situ self-diagnosis/self-calibration capability for the microsensor was explored by dynamically controlling the oxygen microenvironment in close proximity to an amperometric dissolved oxygen microsensors. A pair of integrated electrochemical actuator electrodes provided the microenvironments based on water electrolysis. Miniaturized thin film dissolved oxygen microsensors on a flexible polyimide (Kapton(Registered Trademark)? substrate were fabricated and their performances were tested. Secondly, measurements of dissolved oxygen in two representative plant growth systems were made, which had not been performed previously due to lack of proper sensing technology. The responses of the oxygen microsensor array on a flexible polymer substrate properly reflected the oxygen contents on the surface of a porous tube nutrient delivery system and within a particulate substrate system. Additionally, we demonstrated the feasibility of using a 4-point thin film microprobe for water contents measurements for both plant growth systems. mechanical flexibility, and self-diagnosis. The proposed technology is anticipated to provide a reliable sensor feedback plant growth nutrient delivery systems in both terrestrial environment and the microgravity environment during long term space missions. The unique features of the sensor include small size and volume, multiple-point sensing,
Multispectral Image Processing for Plants
NASA Technical Reports Server (NTRS)
Miles, Gaines E.
1991-01-01
The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.
García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián
2015-01-01
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, 2) increase BSC cover in areas under strong erosion risk, to avoid soil loss, and 3) enhance soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation. PMID:22073661
Tian, Geng; Cheng, Linlin; Qi, Xuewei; Ge, Zonghe; Niu, Changying; Zhang, Xianlong; Jin, Shuangxia
2015-01-01
RNA interference (RNAi) has been developed as a powerful technique in the research of functional genomics as well as plant pest control. In this report, double-stranded RNAs (dsRNA) targeting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene, which catalyze a rate-limiting enzymatic reaction in the mevalonate pathway of juvenile hormone (JH) synthesis in cotton bollworm, was expressed in cotton plants via Agrobacterium tumefaciens-mediated transformation. PCR and Sothern analysis revealed the integration of HMGR gene into cotton genome. RT-PCR and qRT-PCR confirmed the high transcription level of dsHMGR in transgenic cotton lines. The HMGR expression both in transcription and translation level was significantly downregulated in cotton bollworms (helicoverpa armigera) larvae after feeding on the leaves of HMGR transgenic plants. The transcription level of HMGR gene in larvae reared on transgenic cotton leaves was as much as 80.68% lower than that of wild type. In addition, the relative expression level of vitellogenin (Vg, crucial source of nourishment for offspring embryo development) gene was also reduced by 76.86% when the insect larvae were fed with transgenic leaves. The result of insect bioassays showed that the transgenic plant harboring dsHMGR not only inhibited net weight gain but also delayed the growth of cotton bollworm larvae. Taken together, transgenic cotton plant expressing dsRNAs successfully downregulated HMGR gene and impaired the development and survival of target insect, which provided more option for plant pest control. PMID:26435695
Behle, Robert W; Hibbard, Bruce E; Cermak, Steven C; Isbell, Terry A
2008-06-01
In previous crop rotation research, adult emergence traps placed in plots planted to Cuphea PSR-23 (a selected cross of Cuphea viscosissma Jacq. and Cuphea lanceolata Ait.) caught high numbers of adult western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), suggesting that larvae may have completed development on this broadleaf plant. Because of this observation, a series of greenhouse and field experiments were conducted to test the hypothesis that Cuphea could serve as a host for larval development. Greenhouse-grown plants infested with neonates of a colonized nondiapausing strain of the beetle showed no survival of larvae on Cuphea, although larvae did survive on the positive control (corn, Zea mays L.) and negative control [sorghum, Sorghum bicolor (L.) Moench] plants. Soil samples collected 20 June, 7 July, and 29 July 2005 from field plots planted to Cuphea did not contain rootworm larvae compared with means of 1.28, 0.22, and 0.00 rootworms kg(-1) soil, respectively, for samples collected from plots planted to corn. Emergence traps captured a peak of eight beetles trap(-1) day(-1) from corn plots on 8 July compared with a peak of 0.5 beetle trap(-1) day(-1) on 4 August from Cuphea plots. Even though a few adult beetles were again captured in the emergence traps placed in the Cuphea plots, it is not thought to be the result of successful larval development on Cuphea roots. All the direct evidence reported here supports the conventional belief that rootworm larvae do not survive on broadleaf plants, including Cuphea.
A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges.
Boualem, Adnane; Troadec, Christelle; Camps, Céline; Lemhemdi, Afef; Morin, Halima; Sari, Marie-Agnes; Fraenkel-Zagouri, Rina; Kovalski, Irina; Dogimont, Catherine; Perl-Treves, Rafael; Bendahmane, Abdelhafid
2015-11-06
Understanding the evolution of sex determination in plants requires identifying the mechanisms underlying the transition from monoecious plants, where male and female flowers coexist, to unisexual individuals found in dioecious species. We show that in melon and cucumber, the androecy gene controls female flower development and encodes a limiting enzyme of ethylene biosynthesis, ACS11. ACS11 is expressed in phloem cells connected to flowers programmed to become female, and ACS11 loss-of-function mutants lead to male plants (androecy). CmACS11 represses the expression of the male promoting gene CmWIP1 to control the development and the coexistence of male and female flowers in monoecious species. Because monoecy can lead to dioecy, we show how a combination of alleles of CmACS11 and CmWIP1 can create artificial dioecy. Copyright © 2015, American Association for the Advancement of Science.
[Space experiments on the development of biological systems for the human life].
Sychev, V N
2013-01-01
Over the past 22 years, the Institute of Biomedical Problems has stubbornly continued the investigations with higher plants aimed at the development of cultivation technologies suitable for the conditions of space flight. Analysis of the results of 24 plant experiments performed aboard orbital complex MIR and the ISS Russian segment evidenced the ability of higher plants to grow, develop and reproduce inside spacecraft living compartments. Space crops were normal as compared with the laboratory controls. Microbial contamination of the plants was within the normal limits; no pathogen has been detected on plant surfaces. Plants did not change genetically, at least in four space generations. It should be noted that the presence of greenhouse on board the ISS also has a marked positive effect on wellbeing of people living in the close environment and isolation from Earth's biosphere. In the context of the above, the higher plants might become a secure and beneficial part of the life support system for crews on space exploration missions.
Biotechnological application of functional genomics towards plant-parasitic nematode control.
Li, Jiarui; Todd, Timothy C; Lee, Junghoon; Trick, Harold N
2011-12-01
Plant-parasitic nematodes are primary biotic factors limiting the crop production. Current nematode control strategies include nematicides, crop rotation and resistant cultivars, but each has serious limitations. RNA interference (RNAi) represents a major breakthrough in the application of functional genomics for plant-parasitic nematode control. RNAi-induced suppression of numerous genes essential for nematode development, reproduction or parasitism has been demonstrated, highlighting the considerable potential for using this strategy to control damaging pest populations. In an effort to find more suitable and effective gene targets for silencing, researchers are employing functional genomics methodologies, including genome sequencing and transcriptome profiling. Microarrays have been used for studying the interactions between nematodes and plant roots and to measure both plants and nematodes transcripts. Furthermore, laser capture microdissection has been applied for the precise dissection of nematode feeding sites (syncytia) to allow the study of gene expression specifically in syncytia. In the near future, small RNA sequencing techniques will provide more direct information for elucidating small RNA regulatory mechanisms in plants and specific gene silencing using artificial microRNAs should further improve the potential of targeted gene silencing as a strategy for nematode management. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Plant phenology and composition controls of carbon fluxes in a boreal peatland
NASA Astrophysics Data System (ADS)
Peichl, Matthias; Gažovič, Michal; Vermeij, Ilse; De Goede, Eefje; Sonnentag, Oliver; Limpens, Juul; Nilsson, Mats B.
2016-04-01
Vegetation drives the peatland carbon (C) cycle via the processes of photosynthesis, plant respiration and decomposition as well as by providing substrate for methane (CH4) and dissolved organic carbon production. However, due to the lack of comprehensive vegetation data, variations in the peatland C fluxes are commonly related to temperature and other more easily measured abiotic (i.e. weather and soil) variables. Due to the temporal co-linearity between plant development and abiotic variables, these relationships may describe the variations in C fluxes reasonably well, however, without representing the true mechanistic processes driving the peatland C cycle. As a consequence, current process-based models are poorly parameterized and unable to adequately predict the responses of the peatland C cycle to climate change, extreme events and anthropogenic impacts. To fill this knowledge gap, we explored vegetation phenology and composition effects on the peatland C cycle at the Degerö peatland located in northern Sweden. We used a greenness index derived from digital repeat photography to quantitatively describe plant canopy development with high temporal (i.e. daily) and spatial (plot to ecosystem) resolution. In addition, eddy covariance and static chamber measurements of carbon dioxide (CO2) and CH4 fluxes over an array of vegetation manipulation plots were conducted over multiple years. Our results suggest that vascular plant phenology controls the onset and pattern of eddy covariance-derived gross primary production (GPP) during the spring period, while abiotic conditions modify GPP during the summer period when plant canopy cover is fully developed. Inter-annual variations in the spring onset and patterns of plant canopy development were best explained by differences in the preceding growing degree day sum. We also observed strong correlations of canopy greenness with the net ecosystem CO2 exchange and ecosystem respiration. On average, vascular plant and moss production accounted for ~60 and 40% of GPP, respectively. However, while the seasonal variation of vascular plant productivity was driven by plant phenology, water table level was the strongest control of moss productivity. Across vegetation manipulation plots, highest chamber-derived GPP and net CO2 uptake occurred when both vascular and moss species were present. Furthermore, CH4 fluxes increased with the amount of sedge species leaf area; however, their seasonal flux patterns were more closely related to water table level than to plant phenology. Overall these findings highlight the need for better understanding the separate controls of biotic and abiotic drivers of the peatland C fluxes to improve predictions of ecosystem processes and the peatland C sink strength in response to future climate change and management impacts.
Health-aware Model Predictive Control of Pasteurization Plant
NASA Astrophysics Data System (ADS)
Karimi Pour, Fatemeh; Puig, Vicenç; Ocampo-Martinez, Carlos
2017-01-01
In order to optimize the trade-off between components life and energy consumption, the integration of a system health management and control modules is required. This paper proposes the integration of model predictive control (MPC) with a fatigue estimation approach that minimizes the damage of the components of a pasteurization plant. The fatigue estimation is assessed with the rainflow counting algorithm. Using data from this algorithm, a simplified model that characterizes the health of the system is developed and integrated with MPC. The MPC controller objective is modified by adding an extra criterion that takes into account the accumulated damage. But, a steady-state offset is created by adding this extra criterion. Finally, by including an integral action in the MPC controller, the steady-state error for regulation purpose is eliminated. The proposed control scheme is validated in simulation using a simulator of a utility-scale pasteurization plant.
Trends and problems in development of the power plants electrical part
NASA Astrophysics Data System (ADS)
Gusev, Yu. P.
2015-03-01
The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.
Expert System Control of Plant Growth in an Enclosed Space
NASA Technical Reports Server (NTRS)
May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.
2008-01-01
The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.
Tonetto de Freitas, Sergio; McElrone, Andrew J; Shackel, Kenneth A; Mitcham, Elizabeth J
2014-01-01
The mechanisms regulating Ca(2+) partitioning and allocation in plants and fruit remain poorly understood. The objectives of this study were to determine Ca(2+) partitioning and allocation in tomato plants and fruit in response to whole-plant and fruit-specific abscisic acid (ABA) treatments, as well as to analyse the effect of changes in Ca(2+) partitioning and allocation on fruit susceptibility to the Ca(2+) deficiency disorder blossom-end rot (BER) under water stress conditions. Tomato plants of the cultivar Ace 55 (Vf) were grown in a greenhouse and exposed to low Ca(2+) conditions during fruit growth and development. Starting 1 day after pollination (DAP), the following treatments were initiated: (i) whole plants were sprayed weekly with deionized water (control) or (ii) with 500mg l(-1) ABA; or fruit on each plant were dipped weekly (iii) in deionized water (control) or (iv) in 500mg l(-1) ABA. At 15 DAP, BER was completely prevented by whole-plant or fruit-specific ABA treatments, whereas plants or fruit treated with water had 16-19% BER incidence. At 30 DAP, BER was prevented by the whole-plant ABA treatment, whereas fruit dipped in ABA had a 16% and water-treated plants or fruit had a 36-40% incidence of BER. The results showed that spraying the whole plant with ABA increases xylem sap flow and Ca(2+) movement into the fruit, resulting in higher fruit tissue and water-soluble apoplastic Ca(2+) concentrations that prevent BER development. Although fruit-specific ABA treatment had no effect on xylem sap flow rates or Ca(2+) movement into the fruit, it increased fruit tissue water-soluble apoplastic Ca(2+) concentrations and reduced fruit susceptibility to BER to a lesser extent.
Tonetto de Freitas, Sergio
2014-01-01
The mechanisms regulating Ca2+ partitioning and allocation in plants and fruit remain poorly understood. The objectives of this study were to determine Ca2+ partitioning and allocation in tomato plants and fruit in response to whole-plant and fruit-specific abscisic acid (ABA) treatments, as well as to analyse the effect of changes in Ca2+ partitioning and allocation on fruit susceptibility to the Ca2+ deficiency disorder blossom-end rot (BER) under water stress conditions. Tomato plants of the cultivar Ace 55 (Vf) were grown in a greenhouse and exposed to low Ca2+ conditions during fruit growth and development. Starting 1 day after pollination (DAP), the following treatments were initiated: (i) whole plants were sprayed weekly with deionized water (control) or (ii) with 500mg l−1 ABA; or fruit on each plant were dipped weekly (iii) in deionized water (control) or (iv) in 500mg l−1 ABA. At 15 DAP, BER was completely prevented by whole-plant or fruit-specific ABA treatments, whereas plants or fruit treated with water had 16–19% BER incidence. At 30 DAP, BER was prevented by the whole-plant ABA treatment, whereas fruit dipped in ABA had a 16% and water-treated plants or fruit had a 36–40% incidence of BER. The results showed that spraying the whole plant with ABA increases xylem sap flow and Ca2+ movement into the fruit, resulting in higher fruit tissue and water-soluble apoplastic Ca2+ concentrations that prevent BER development. Although fruit-specific ABA treatment had no effect on xylem sap flow rates or Ca2+ movement into the fruit, it increased fruit tissue water-soluble apoplastic Ca2+ concentrations and reduced fruit susceptibility to BER to a lesser extent. PMID:24220654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanna, Wayne W.; Burton, Glenn W.
2000-06-25
We developed fundamental methods and techniques for transferring germplasm from wild to cultivated species. Germplasm transferred included diverse cytoplasms, new genes for pest resistance, genes controlling dry matter yield and apomixis. Some of the germplasm has been shown to be valuable in plant breeding and has been incorporated into commercial cultivators.
NREL Software Models Performance of Wind Plants (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2015-01-01
This NREL Highlight is being developed for the 2015 February Alliance S&T Meeting, and describes NREL's Simulator for Offshore Wind Farm Applications (SOWFA) software in collaboration with Norway-based Statoil, to optimize layouts and controls of wind plants arrays.
DEVELOPING INDICATORS OF SALT MARSH HEALTH
We relate plant zonation in salt marshes to key ecosystem services such as erosion control and wildlife habitat. Ten salt marshes in Narragansett Bay, with similar geological bedrock and sea exchange, were identified to examine plant zonation. Sub-watersheds adjacent to the salt ...
PLANT-SCALE DEMONSTRATION OF SLUDGE INCINERATOR FUEL REDUCTION
A plant-scale demonstration was conducted on 8 sewage sludge incinerators at Indianapolis, Indiana to reduce fuel consumption. More efficient operating mode of operation was developed, instrumentation and controls were added and an operator training program was conducted to reduc...
Applications of CELSS technology to controlled environment agriculture
NASA Technical Reports Server (NTRS)
Bates, Maynard E.; Bubenheim, David L.
1991-01-01
Controlled environment agriculture (CEA) is defined as the use of environmental manipulation for the commercial production of organisms, whether plants or animals. While many of the technologies necessary for aquaculture systems in North America is nevertheless doubling approximately every five years. Economic, cultural, and environmental pressures all favor CEA over field production for many non-commodity agricultural crops. Many countries around the world are already dependent on CEA for much of their fresh food. Controlled ecological life support systems (CELSS), under development at ARC, KSC, and JSC expand the concept of CEA to the extent that all human requirements for food, oxygen, and water will be provided regenerated by processing of waste streams to supply plant inputs. The CELSS will likely contain plants, humans, possibly other animals, microorganisms and physically and chemical processors. In effect, NASA will create engineered ecosystems. In the process of developing the technology for CELSS, NASA will develop information and technology which will be applied to improving the efficiency, reliability, and cost effectiveness for CEA, improving its resources recycling capabilities, and lessening its environmental impact to negligible levels.
Regulating plant/insect interactions using CO2 enrichment in model ecosystems
NASA Astrophysics Data System (ADS)
Grodzinski, B.; Schmidt, J. M.; Watts, B.; Taylor, J.; Bates, S.; Dixon, M. A.; Staines, H.
1999-01-01
The greenhouse environment is a challenging artificial ecosystem in which it is possible to study selected plant/insect interaction in a controlled environment. Due to a combination of ``direct'' and ``indirect'' effects of CO2 enrichment on plant photosynthesis and plant development, canopy productivity is generally increased. In this paper, we discuss the effects of daytime and nighttime CO2 enrichment protocols on gas exchange of pepper plants (Capsicum annuum L, cv Cubico) grown in controlled environments. In addition, we present the effects of thrips, a common insect pest, on the photosynthetic and respiratory activity of these plant canopies. Carbon dioxide has diverse effects on the physiology and mortality of insects. However, our data indicate that thrips and whiteflies, at least, are not killed ``directly'' by CO2 levels used to enhance photosynthesis and plant growth. Together the data suggest that the insect population is affected ``indirectly'' by CO2 and that the primary effect of CO2 is via its effects on plant metabolism.
Virtual solar field - An opportunity to optimize transient processes in line-focus CSP power plants
NASA Astrophysics Data System (ADS)
Noureldin, Kareem; Hirsch, Tobias; Pitz-Paal, Robert
2017-06-01
Optimizing solar field operation and control is a key factor to improve the competitiveness of line-focus solar thermal power plants. However, the risks of assessing new and innovative control strategies on operational power plants hinder such optimizations and result in applying more conservative control schemes. In this paper, we describe some applications for a whole solar field transient in-house simulation tool developed at the German Aerospace Centre (DLR), the Virtual Solar Field (VSF). The tool offers a virtual platform to simulate real solar fields while coupling the thermal and hydraulic conditions of the field with high computational efficiency. Using the tool, developers and operator can probe their control strategies and assess the potential benefits while avoiding the high risks and costs. In this paper, we study the benefits gained from controlling the loop valves and of using direct normal irradiance maps and forecasts for the field control. Loop valve control is interesting for many solar field operators since it provides a high degree of flexibility to the control of the solar field through regulating the flow rate in each loop. This improves the reaction to transient condition, such as passing clouds and field start-up in the morning. Nevertheless, due to the large number of loops and the sensitivity of the field control to the valve settings, this process needs to be automated and the effect of changing the setting of each valve on the whole field control needs to be taken into account. We used VSF to implement simple control algorithms to control the loop valves and to study the benefits that could be gained from using active loop valve control during transient conditions. Secondly, we study how using short-term highly spatially-resolved DNI forecasts provided by cloud cameras could improve the plant energy yield. Both cases show an improvement in the plant efficiency and outlet temperature stability. This paves the road for further investigations of new control strategies or for optimizations of the currently implemented ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Suk; Bragg-Sitton, Shannon M.; Boardman, Richard D.
This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year 2015 (FY15), Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants asmore » industrial processes. In FY16, INL developed two additional subsystems in the Modelica framework: (1) a high-temperature steam electrolysis (HTSE) plant as a high priority industrial plant to be integrated with a light water reactor (LWR) within an N-R HES and (2) a gas turbine power plant as a secondary energy supply. In FY17, five new components (i.e., a feedwater pump, a multi-stage compression system, a sweep-gas turbine, flow control valves, and pressure control valves) have been incorporated into the HTSE system proposed in FY16, aiming to better realistically characterize all key components of concern. Special attention has been given to the controller settings based on process models (i.e., direct synthesis method), aiming to improve process dynamics and controllability. A dynamic performance analysis of the improved LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. The analysis (evaluated in terms of the step response) clearly shows that the FY17 model resulted in superior output responses with much smaller settling times and less oscillatory behavior in response to disturbances in the electric load than those observed with the FY16 model. Simulation results involving several case studies show that the suggested control scheme could maintain the controlled variables (including the steam utilization factor, cathode stream inlet composition, and temperatures and pressures of the process streams at various locations) within desired limits under various plant operating conditions. The results also indicate that the proposed HTSE plant could provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess plant capacity within an N-R HES.« less
Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; O'Neill, Barbara
A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Officemore » selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls.« less
The pillars of land plants: new insights into stem development.
Serrano-Mislata, Antonio; Sablowski, Robert
2018-05-12
In spite of its central importance in evolution, plant architecture and crop improvement, stem development remains poorly understood relative to other plant organs. Here, we summarise current knowledge of stem ontogenesis and its regulation, including insights from new image analysis and biophysical approaches. The stem initiates in the rib zone (RZ) of the shoot apical meristem, under transcriptional control by DELLA and BLH proteins. Links have emerged between these regulators and cell proliferation, patterning and oriented growth in the RZ. During subsequent internode elongation, cell wall properties and mechanics have been analysed in detail, revealing pectin modification as a prominent control point. Recent work has also highlighted signalling to coordinate growth of stem tissues with different mechanical properties. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Heck, Carolin; Kuhn, Hannah; Heidt, Sven; Walter, Stefanie; Rieger, Nina; Requena, Natalia
2016-10-24
In an approaching scenario of soil nutrient depletion, root association with soil microorganisms can be key for plant health and sustainability [1-3]. Symbiotic arbuscular mycorrhizal (AM) fungi are major players in helping plants growing under nutrient starvation conditions. They provide plants with minerals like phosphate and, furthermore, act as modulators of plant growth altering the root developmental program [4, 5]. However, the precise mechanisms involved in this latter process are not well understood. Here, we show that AM fungi are able to modulate root cortex development in Medicago truncatula by activating a novel GRAS-domain transcription factor, MIG1, that determines the size of cortical root cells. MIG1 expression peaks in arbuscule-containing cells, suggesting a role in cell remodeling during fungal accommodation. Roots ectopically expressing MIG1 become thicker due to an increase in the number and width of cortical cells. This phenotype is fully counteracted by gibberellin (GA) and phenocopied with a GA biosynthesis inhibitor or by expression of a dominant DELLA (Δ18DELLA1) protein. MIG1 downregulation leads to malformed arbuscules, a phenotype rescued by Δ18DELLA1, suggesting that MIG1 intersects with the GA signaling to control cell morphogenesis through DELLA1. DELLA1 was shown to be a central node controlling arbuscule branching [6-8]. Now we provide evidence that, together with MIG1, DELLA1 is responsible for radial cortical cell expansion during arbuscule development. Our data point toward DELLA proteins being not only longitudinal root growth repressors [9] but also positive regulators of cortical radial cell expansion, extending the knowledge of how DELLAs control root growth. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kesanakurti, Prasad; Belton, Mark; Saeed, Hanaa; Rast, Heidi; Boyes, Ian; Rott, Michael
2016-10-01
The majority of plant viruses contain RNA genomes. Detection of viral RNA genomes in infected plant material by next generation sequencing (NGS) is possible through the extraction and sequencing of total RNA, total RNA devoid of ribosomal RNA, small RNA interference (RNAi) molecules, or double stranded RNA (dsRNA). Plants do not typically produce high molecular weight dsRNA, therefore the presence of dsRNA makes it an attractive target for plant virus diagnostics. The sensitivity of NGS as a diagnostic method demands an effective dsRNA protocol that is both representative of the sample and minimizes sample cross contamination. We have developed a modified dsRNA extraction protocol that is more efficient compared to traditional protocols, requiring reduced amounts of starting material, that is less prone to sample cross contamination. This was accomplished by using bead based homogenization of plant material in closed, disposable 50ml tubes. To assess the quality of extraction, we also developed an internal control by designing a real-time (quantitative) PCR (qPCR) assay that targets endornaviruses present in Phaseolus vulgaris cultivar Black Turtle Soup (BTS). Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Meng, Lai-Sheng
2018-04-11
Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.
In vitro propagation of fraser photinia using Azospirillum-mediated root development.
Llorente, Berta E; Larraburu, Ezequiel E
2013-01-01
Fraser photinia (Photinia × fraseri Dress.) is a woody plant of high ornamental value. The traditional propagation system for photinia is by rooting apical cuttings using highly concentrated auxin treatments. However, photinia micropropagation is an effective alternative to traditional in vivo propagation which is affected by the seasonal supply of cuttings, the long time required to obtain new plants, and the difficulties in rooting some clones.A protocol for in vitro propagation of fraser photinia using the plant growth-promoting ability of some rhizobacteria is described here. Bacterial inoculation is a new tool in micropropagation protocols that improves plant development in in vitro culture. Shoots culture on a medium containing MS macro- and microelements, Gamborg's vitamins (BM), N (6)-benzyladenine (BA, 11.1 μM), and gibberellic acid (1.3 μM) produce well-established explants. Proliferation on BM medium supplemented with 4.4 μM BA results in four times the number of shoots per initial shoot that develops monthly. Consequently, there is a continuous supply of plant material since shoot production is independent of season. Azospirillum brasilense inoculation, after 49.2 μM indole-3-butyric acid pulse treatment, stimulates early rooting of photinia shoots and produces significant increase in root fresh and dry weights, root surface area, and shoot fresh and dry weights in comparison with controls. Furthermore, inoculated in vitro photinia plants show anatomical and morphological changes that might lead to better adaptation in ex vitro conditions after transplanting, compared with the control plants.
USDA-ARS?s Scientific Manuscript database
The large size and relative complexity of many plant genomes make creation, quality control, and dissemination of high-quality gene structure annotations challenging. In response, we have developed MAKER-P, a fast and easy-to-use genome annotation engine for plants. Here, we report the use of MAKER-...
ShiLi Miao; Yi Li; Qinfeng Guo; Hua Yu; JiangQing Ding; et al.
2012-01-01
The development of an effective approach to control and eradication of invasive species has become a major challenge to scientists, managers, and society. Biocontrol has been widely utilized to control exotic plants in the past few decades with some degree of sucess. However, there have been an increasing number of controversies pertaining to this approach, largely...
Evaluation of engineering foods for Controlled Ecological Life Support Systems (CELSS)
NASA Technical Reports Server (NTRS)
Karel, M.
1982-01-01
The feasibility of developing acceptable and reliable engineered foods for use in controlled ecological support systems (CELSS) was evaluated. Food resupply and regeneration are calculated, flow charts of food processes in a multipurpose food pilot plant are presented, and equipment for a multipurpose food pilot plant and potential simplification of processes are discussed. Food-waste treatment and water usage in food processing and preparation are also considered.
2017-01-01
Antitick plants and related ethnoknowledge/ethnopractices with potential for integrated tick control and management strategies to improve livestock production are reviewed. About 231 plants reviewed showed a variety of bioactive properties, namely, being toxic, repellent, antifeedant, and antiovipositant and ability to immobilize target tick species. These ethnobotanical substances are potentially useful in developing sustainable, efficient, and effective antitick agents suitable for rural livestock farmers. Majority of these plants are holistic in action, economically affordable, user friendly, easily adaptable and accessible, and environmentally friendly and help develop community-driven tick control interventions well suited to local conditions and specific to different livestock communities. Such a multipurpose intervention best fits the recent ascendancy of individual livestock owners as the key players in tick control programmes, particularly following the withdrawal of subsidies accorded to tick control programmes by most African government agencies since mid-1980s. However, scientific validation of antitick ethnobotanicals on their efficacy and formulation of packages easily handled by local communities is necessary to achieve a significantly increased use of such remedies. It is envisaged that the results of validation may lead to the discovery of effective and affordable antitick products. The effectiveness of these “best bets” ethnopractices can be greatest, if they are appropriately blended with conventional technologies. PMID:28798806
A technique for designing active control systems for astronomical telescope mirrors
NASA Technical Reports Server (NTRS)
Howell, W. E.; Creedon, J. F.
1973-01-01
The problem of designing a control system to achieve and maintain the required surface accuracy of the primary mirror of a large space telescope was considered. Control over the mirror surface is obtained through the application of a corrective force distribution by actuators located on the rear surface of the mirror. The design procedure is an extension of a modal control technique developed for distributed parameter plants with known eigenfunctions to include plants whose eigenfunctions must be approximated by numerical techniques. Instructions are given for constructing the mathematical model of the system, and a design procedure is developed for use with typical numerical data in selecting the number and location of the actuators. Examples of actuator patterns and their effect on various errors are given.
NASA Astrophysics Data System (ADS)
Zhang, Lian; Yu, Chengbo; Tao, Hongyan; Chen, Xuejun; Zhai, Feng
2005-12-01
The equipment is developed to measure and control micro-pressure in loading experiment of plant cell mechanics. The motivation for the development of this equipment was to maintain a stationary micro-pressure on the agar of culturing cells to keep cytoactive in biology experiments. A singlechip controls the stepping motor of this equipment to drive loading equipment in the system, in order to load between 50mN and 250mN under a constant voltage. The accuracy is estimated to be +/-0.4 mN. The structure and control system of this equipment is introduced and described in detail. The experimental results show that the equipment is capable of maintaining a constant, stationary micropressure in cell culturing application and is worth of extending and applying.
NASA Astrophysics Data System (ADS)
Wilson, Eric Lee
Due to increased competition in a world economy, steel companies are currently interested in developing techniques that will allow for the improvement of the steelmaking process, either by increasing output efficiency or by improving the quality of their product, or both. Slag foaming is one practice that has been shown to contribute to both these goals. However, slag foaming is highly dynamic and difficult to model or control. This dissertation describes an effort to use artificial intelligence-based tools (genetic algorithms, fuzzy logic, and neural networks) to both model and control the slag foaming process. Specifically, a neural network is trained and tested on slag foaming data provided by a steel plant. This neural network model is then controlled by a fuzzy logic controller, which in turn is optimized by a genetic algorithm. This tuned controller is then installed at a steel plant and given control be a more efficient slag foaming controller than what was previously used by the steel plant.
Characterization of the pumpkin Translationally-Controlled Tumor Protein CmTCTP
Hinojosa-Moya, J Jesús; Xoconostle-Cázares, Beatriz; Toscano-Morales, Roberto; Ramírez-Ortega, Francisco; Luis Cabrera-Ponce, José; Ruiz-Medrano, Roberto
2013-01-01
In higher plants, the phloem plays a central role in the delivery of nutrients and signals from source to sink tissues. These signals likely coordinate different aspects of plant development, as well as its response to environmental cues. Although some phloem-transported proteins and RNAs may function as signaling molecules in plants, their mode of action remains poorly understood. Previous analysis of transcripts from CMV-infected pumpkin (Cucurbita maxima cv Big Max) identified a Translationally-Controlled Tumor Protein (TCTP) mRNA homolog, designated CmTCTP. In the present work this transcript was analyzed in terms of its expression pattern. This RNA accumulates, both in healthy and CMV-infected plants, in developing and mature phloem in petiole and roots, as well as in apices at high levels. The protein was present at lower levels in most cell types, and almost no signal was detected in apices, suggesting translational regulation of this RNA. Additionally, CmTCTP harbored by Agrobacterium rhizogenes is capable of inducing whole plant regeneration. These data suggest a role for CmTCTP in growth regulation, possibly through long-distance signaling. PMID:24065051
Clark, Larry; Russell Mason, J
1988-11-01
The European starling Sturnus vulgaris preferentially incorporates fresh sprigs of particular plant species for use as nesting material. Chemicals found in these plants may act to reduce pathogen and ectoparasite populations normally found in nest environments. The present experiments were performed to test this Nest Protection Hypothesis. In the fild, we experimentally determined that wild carrot Daucus carota, a plant species preferred as nest material, effectively reduced the number of hematophagous mites found within nests relative to control nests without green vegetation. Chicks from nests containing wild carrot had higher levels of blood hemoglobin than chicks from control nests. However, there were no differences in weight or feather development. In the laboratory, we found that wild carrot and fleabane, Erigeron philadelphicus, (also preferred by starlings as nest material) substantially reduced the emergence of feeding instars of mites, while garlic mustard, Alliaria officinalis, (commonly available but not preferred) had little effect on the emergence of mites. We infer that preferred plant material may act to inhibit feeding or otherwise delay reproduction of mites, thereby reducing risk of anemia to developing nestlings.
Schneider, Vanessa Karine; Soares-Costa, Andrea; Chakravarthi, Mohan; Ribeiro, Carolina; Chabregas, Sabrina Moutinho; Falco, Maria Cristina; Henrique-Silva, Flavio
2017-01-01
Transgenic sugarcane expressing CaneCPI-1 exhibits resistance to Sphenophorus levis larvae. Transgenic plants have widely been used to improve resistance against insect attack. Sugarcane is an economically important crop; however, great losses are caused by insect attack. Sphenophorus levis is a sugarcane weevil that digs tunnels in the stem base, leading to the destruction of the crop. This insect is controlled inefficiently by chemical insecticides. Transgenic plants expressing peptidase inhibitors represent an important strategy for impairing insect growth and development. Knowledge of the major peptidase group present in the insect gut is critical when choosing the most effective inhibitor. S. levis larvae use cysteine peptidases as their major digestive enzymes, primarily cathepsin L-like activity. In this study, we developed transgenic sugarcane plants that overexpress sugarcane cysteine peptidase inhibitor 1 (CaneCPI-1) and assessed their potential through feeding bioassays with S. levis larvae. Cystatin overexpression in the transgenic plants was evaluated using semi-quantitative RT-PCR, RT-qPCR, and immunoblot assays. A 50% reduction of the average weight was observed in larvae that fed on transgenic plants in comparison to larvae that fed on non-transgenic plants. In addition, transgenic sugarcane exhibited less damage caused by larval attack than the controls. Our results suggest that the overexpression of CaneCPI-1 in sugarcane is a promising strategy for improving resistance against this insect.
NASA Technical Reports Server (NTRS)
Levinskikh, M. A.; Sychev, V. N.; Derendiaeva, T. A.; Signalova, O. B.; Podol'skii, I. G.; Avdeev, S. V.; Bingheim, G. E.; Campbell, W. F. (Principal Investigator)
2001-01-01
Results of the experiment aimed at harvesting a second space generation of wheat var. Apogee in Mir greenhouse Svet (experiment GREENHOUSE-5) are presented. In space flight, germination rate of space seeds from the first crop made up 89% against 100% of the ground seeds. The full biological ripeness was observed in 20 plants grown from the ground seeds and one plant grown from the space seeds following 80- to 90-d vegetation. The plant of the second space generation was morphologically different neither from the species in the first space crop nor from the ground controls. To study the biological characteristics of Apogee seeds gathered in the first and second crops in spaceflight experiment GREENHOUSE-5, the seeds were planted on their return to the laboratory. Morphometric analysis showed that they were essentially similar to the controls. Hence, the space experiments in Mir greenhouse Svet performed during 1998-1999 gave proof that plants cultivated in microgravity can pass the ontogenetic cycle more than once. However, initial results of the investigations into growth and development of plants through several generations are still in-sufficient to speak of possible delayed effects of the spaceflight factors (microgravity, multicomponent radiation, harmful trace contaminants etc.).
Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi
2015-08-01
Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.
Garcia-Abellan, José O; Fernandez-Garcia, Nieves; Lopez-Berenguer, Carmen; Egea, Isabel; Flores, Francisco B; Angosto, Trinidad; Capel, Juan; Lozano, Rafael; Pineda, Benito; Moreno, Vicente; Olmos, Enrique; Bolarin, Maria C
2015-11-01
Jasmonic acid (JA) regulates a wide spectrum of plant biological processes, from plant development to stress defense responses. The role of JA in plant response to salt stress is scarcely known, and even less known is the specific response in root, the main plant organ responsible for ionic uptake and transport to the shoot. Here we report the characterization of the first tomato (Solanum lycopersicum) mutant, named res (restored cell structure by salinity), that accumulates JA in roots prior to exposure to stress. The res tomato mutant presented remarkable growth inhibition and displayed important morphological alterations and cellular disorganization in roots and leaves under control conditions, while these alterations disappeared when the res mutant plants were grown under salt stress. Reciprocal grafting between res and wild type (WT) (tomato cv. Moneymaker) indicated that the main organ responsible for the development of alterations was the root. The JA-signaling pathway is activated in res roots prior to stress, with transcripts levels being even higher in control condition than in salinity. Future studies on this mutant will provide significant advances in the knowledge of JA role in root in salt-stress tolerance response, as well as in the energy trade-off between plant growth and response to stress. © 2015 Scandinavian Plant Physiology Society.
NASA Technical Reports Server (NTRS)
Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1988-01-01
A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.
CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.
Ma, Xiaoding; Ma, Jian; Zhai, Honghong; Xin, Peiyong; Chu, Jinfang; Qiao, Yongli; Han, Longzhi
2015-01-01
CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.
METHODS TO DEFINE MARSH EVALUATION AND PERCENT SUBMERGENCE
Elevation can determine the percentage submergence from tides and therefore is one of the controlling factors for plant zonation within salt marshes. To make comparisons among plants from various salt marshes throughout Narragansett Bay, Rhode Island, a method was developed to es...
Development of a multispectral sensor for crop canopy temperature measurement
USDA-ARS?s Scientific Manuscript database
Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric...
Chandran, Divya; Rickert, Joshua; Huang, Yingxiang; Steinwand, Michael A; Marr, Sharon K; Wildermuth, Mary C
2014-04-09
In plants, the activation of immunity is often inversely correlated with growth. Mechanisms that control plant growth in the context of pathogen challenge and immunity are unclear. Investigating Arabidopsis infection with the powdery mildew fungus, we find that the Arabidopsis atypical E2F DEL1, a transcriptional repressor known to promote cell proliferation, represses accumulation of the hormone salicylic acid (SA), an established regulator of plant immunity. DEL1-deficient plants are more resistant to pathogens and slightly smaller than wild-type. The resistance and size phenotypes of DEL1-deficient plants are due to the induction of SA and activation of immunity in the absence of pathogen challenge. Moreover, Enhanced Disease Susceptibility 5 (EDS5), a SA transporter required for elevated SA and immunity, is a direct repressed target of DEL1. Together, these findings indicate that DEL1 control of SA levels contributes to regulating the balance between growth and immunity in developing leaves. Copyright © 2014 Elsevier Inc. All rights reserved.
Systematic Review of Plant-Based Homeopathic Basic Research: An Update.
Ücker, Annekathrin; Baumgartner, Stephan; Sokol, Anezka; Huber, Roman; Doesburg, Paul; Jäger, Tim
2018-05-01
Plant-based test systems have been described as a useful tool for investigating possible effects of homeopathic preparations. The last reviews of this research field were published in 2009/2011. Due to recent developments in the field, an update is warranted. Publications on plant-based test systems were analysed with regard to publication quality, reproducibility and potential for further research. A literature search was conducted in online databases and specific journals, including publications from 2008 to 2017 dealing with plant-based test systems in homeopathic basic research. To be included, they had to contain statistical analysis and fulfil quality criteria according to a pre-defined manuscript information score (MIS). Publications scoring at least 5 points (maximum 10 points) were assumed to be adequate. They were analysed for the use of adequate controls, outcome and reproducibility. Seventy-four publications on plant-based test systems were found. Thirty-nine publications were either abstracts or proceedings of conferences and were excluded. From the remaining 35 publications, 26 reached a score of 5 or higher in the MIS. Adequate controls were used in 13 of these publications. All of them described specific effects of homeopathic preparations. The publication quality still varied: a substantial number of publications (23%) did not adequately document the methods used. Four reported on replication trials. One replication trial found effects of homeopathic preparations comparable to the original study. Three replication trials failed to confirm the original study but identified possible external influencing factors. Five publications described novel plant-based test systems. Eight trials used systematic negative control experiments to document test system stability. Regarding research design, future trials should implement adequate controls to identify specific effects of homeopathic preparations and include systematic negative control experiments. Further external and internal replication trials, and control of influencing factors, are needed to verify results. Standardised test systems should be developed. The Faculty of Homeopathy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Kenneth; Oxstrand, Johanna
The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore,more » a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal of the digital architecture project is to provide a long-term strategy to integrate plant systems, plant processes, and plant workers. This include technologies to improve nuclear worker efficiency and human performance; to offset a range of plant surveillance and testing activities with new on-line monitoring technologies; improve command, control, and collaboration in settings such as outage control centers and work execution centers; and finally to improve operator performance with new operator aid technologies for the control room. The requirements identified through the activities in the Digital Architecture project will be used to estimate the amount of traffic on the network and hence estimating the minimal bandwidth needed.« less
Mechanisms and kinetics of cellulose fermentation for protein production
NASA Technical Reports Server (NTRS)
Dunlap, C. A.
1971-01-01
The development of a process (and ancillary processing and analytical techniques) to produce bacterial single-cell protein of good nutritional quality from waste cellulose is discussed. A fermentation pilot plant and laboratory were developed and have been in operation for about two years. Single-cell protein (SCP) can be produced from sugarcane bagasse--a typical agricultural cellulosic waste. The optimization and understanding of this process and its controlling variables are examined. Both batch and continuous fermentation runs have been made under controlled conditions in the 535 liter pilot plant vessel and in the laboratory 14-liter fermenters.
Positive and negative peptide signals control stomatal density.
Shimada, Tomoo; Sugano, Shigeo S; Hara-Nishimura, Ikuko
2011-06-01
The stoma is a micro valve found on aerial plant organs that promotes gas exchange between the atmosphere and the plant body. Each stoma is formed by a strict cell lineage during the early stages of leaf development. Molecular genetics research using the model plant Arabidopsis has revealed the genes involved in stomatal differentiation. Cysteine-rich secretory peptides of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play crucial roles as extracellular signaling factors. Stomatal development is orchestrated by the positive factor STOMAGEN/EPFL9 and the negative factors EPF1, EPF2, and CHALLAH/EPFL6 in combination with multiple receptors. EPF1 and EPF2 are produced in the stomatal lineage cells of the epidermis, whereas STOMAGEN and CHALLAH are derived from the inner tissues. These findings highlight the complex cell-to-cell and intertissue communications that regulate stomatal development. To optimize gas exchange, particularly the balance between the uptake of carbon dioxide (CO(2)) and loss of water, plants control stomatal activity in response to environmental conditions. The CO(2) level and light intensity influence stomatal density. Plants sense environmental cues in mature leaves and adjust the stomatal density of newly forming leaves, indicating the involvement of long-distance systemic signaling. This review summarizes recent research progress in the peptide signaling of stomatal development and discusses the evolutionary model of the signaling machinery.
RACK1 and the microRNA pathway: is it déjà-vu all over again?
Speth, Corinna; Laubinger, Sascha
2014-01-01
MicroRNAs (miRNAs) control many aspects of development and adaption in plants and in animals by post-transcriptional control of mRNA stability and translatability. Over the last years numerous proteins have been identified in the miRNA pathway. The versatile scaffold protein RACK1 has been associated with efficient miRNA production and function in plants and metazoans. Here, we briefly summarize the differences of RACK1 function in the plant and animal miRNA pathways and discuss putative mechanisms and functional roles of RACK1 in miRNA biogenesis and action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suk Kim, Jong; McKellar, Michael; Bragg-Sitton, Shannon M.
This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year (FY) 2015, Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants asmore » industrial processes. In FY 2016, INL has developed two additional subsystems in the Modelica framework: a high-temperature steam electrolysis (HTSE) plant and a gas turbine power plant (GTPP). HTSE has been proposed as a high priority industrial process to be integrated with a light water reactor (LWR) in an N-R HES. This integrated energy system would be capable of dynamically apportioning thermal and electrical energy (1) to provide responsive generation to the power grid and (2) to produce alternative industrial products (i.e., hydrogen and oxygen) without generating any greenhouse gases. A dynamic performance analysis of the LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. To support the dynamic analysis, the detailed dynamic model and control design of the HTSE process, which employs solid oxide electrolysis cells, have been developed to predict the process behavior over a large range of operating conditions. As first-generation N-R HES technology will be based on LWRs, which provide thermal energy at a relatively low temperature, complementary temperature-boosting technology was suggested for integration with the HTSE process that requires higher temperature input. Simulation results involving several case studies show that the suggested control scheme could maintain the controlled variables (including the steam utilization factor, cathode stream inlet composition, and temperatures of the process streams at various locations) within desired limits under various plant operating conditions. The results also indicate that the proposed HTSE plant could provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess plant capacity within an N-R HES. A natural-gas fired GTPP has been proposed as a secondary energy supply to be included in an N-R HES. This auxiliary generator could be used to cover rapid dynamics in grid demand that cannot be met by the remainder of the N-R HES. To evaluate the operability and controllability of the proposed process during transients between load (demand) levels, the dynamic model and control design were developed. Special attention was given to the design of feedback controllers to regulate the power frequency, and exhaust gas and turbine firing temperatures. Several case studies were performed to investigate the system responses to the major disturbance (power load demand) in such a control system. The simulation results show that the performance of the proposed control strategies was satisfactory under each test when the GTPP experienced high rapid variations in the load.« less
Spectral quality may be used to alter plant disease development in CELSS
NASA Astrophysics Data System (ADS)
Schuerger, A. C.; Brown, C. S.
1994-11-01
Plants were grown under light emitting diode (LED) arrays with different spectral qualities to determine the effects of light on the development of tomato mosaic virus (ToMV) in peppers and powdery mildew on cucumbers. One LED array supplied 100% of the photosynthetic photon flux (PPF) at 660 nm, a second array supplied 90% of the PPF at 660 nm and 10% at 735 nm, and a third array supplied 98% of the PPF at 660 nm with 2% in the blue region (380-500 nm) supplied by blue fluorescent lamps. Control plants were grown under metal halide (MH) lamps. Pepper plants inoculated with ToMV and grown under 660 and 660/735 LED arrays showed marked increases in both the rate and the severity of symptoms as compared to inoculated plants grown under the MH lamp or 660/blue array. Pepper plants grown under the 660/blue array did not develop symptoms as rapidly as inoculated plants grown under the 660 or 660/735 arrays, but they did develop symptoms faster than inoculated plants grown under the MH lamp. The numbers of colonies of powdery mildew per leaf and the size of each colony were greatest on inoculated cucumber plants grown under the MH lamp.
Barczi, Jean-François; Rey, Hervé; Caraglio, Yves; de Reffye, Philippe; Barthélémy, Daniel; Dong, Qiao Xue; Fourcaud, Thierry
2008-05-01
AmapSim is a tool that implements a structural plant growth model based on a botanical theory and simulates plant morphogenesis to produce accurate, complex and detailed plant architectures. This software is the result of more than a decade of research and development devoted to plant architecture. New advances in the software development have yielded plug-in external functions that open up the simulator to functional processes. The simulation of plant topology is based on the growth of a set of virtual buds whose activity is modelled using stochastic processes. The geometry of the resulting axes is modelled by simple descriptive functions. The potential growth of each bud is represented by means of a numerical value called physiological age, which controls the value for each parameter in the model. The set of possible values for physiological ages is called the reference axis. In order to mimic morphological and architectural metamorphosis, the value allocated for the physiological age of buds evolves along this reference axis according to an oriented finite state automaton whose occupation and transition law follows a semi-Markovian function. Simulations were performed on tomato plants to demonstrate how the AmapSim simulator can interface external modules, e.g. a GREENLAB growth model and a radiosity model. The algorithmic ability provided by AmapSim, e.g. the reference axis, enables unified control to be exercised over plant development parameter values, depending on the biological process target: how to affect the local pertinent process, i.e. the pertinent parameter(s), while keeping the rest unchanged. This opening up to external functions also offers a broadened field of applications and thus allows feedback between plant growth and the physical environment.
Barczi, Jean-François; Rey, Hervé; Caraglio, Yves; de Reffye, Philippe; Barthélémy, Daniel; Dong, Qiao Xue; Fourcaud, Thierry
2008-01-01
Background and Aims AmapSim is a tool that implements a structural plant growth model based on a botanical theory and simulates plant morphogenesis to produce accurate, complex and detailed plant architectures. This software is the result of more than a decade of research and development devoted to plant architecture. New advances in the software development have yielded plug-in external functions that open up the simulator to functional processes. Methods The simulation of plant topology is based on the growth of a set of virtual buds whose activity is modelled using stochastic processes. The geometry of the resulting axes is modelled by simple descriptive functions. The potential growth of each bud is represented by means of a numerical value called physiological age, which controls the value for each parameter in the model. The set of possible values for physiological ages is called the reference axis. In order to mimic morphological and architectural metamorphosis, the value allocated for the physiological age of buds evolves along this reference axis according to an oriented finite state automaton whose occupation and transition law follows a semi-Markovian function. Key Results Simulations were performed on tomato plants to demostrate how the AmapSim simulator can interface external modules, e.g. a GREENLAB growth model and a radiosity model. Conclusions The algorithmic ability provided by AmapSim, e.g. the reference axis, enables unified control to be exercised over plant development parameter values, depending on the biological process target: how to affect the local pertinent process, i.e. the pertinent parameter(s), while keeping the rest unchanged. This opening up to external functions also offers a broadened field of applications and thus allows feedback between plant growth and the physical environment. PMID:17766310
Wang, Le; Wu, Shu-Ming; Zhu, Yue; Fan, Qiang; Zhang, Zhen-Nan; Hu, Guang; Peng, Qing-Zhong; Wu, Jia-He
2017-03-01
The jasmonic acid (JA) signalling pathway plays roles in plant development and defence against biotic and abiotic stresses. We isolated a cotton NINJA (novel interactor of JA ZIM-domain) gene, designated GhNINJA, which contains a 1305 bp open read frame. The GhNINJA gene encodes a 434 amino acid peptide. According to quantitative real-time PCR analysis, GhNINJA is preferentially expressed in roots, and its expression level is greatly induced by Verticillium dahliae infection. Through a virus-induced gene silencing technique, we developed GhNINJA-silenced cotton plants, which had significantly decreased expression of the target gene with an average expression of 6% of the control. The regenerating lateral root growth of silenced plants was largely inhibited compared to the control. Analysis by microscopy demonstrated that the cell length of the root differentiation zone in GhNINJA-silenced plants is significantly shorter than those of the control. Moreover, the silenced plants exhibited higher tolerance to V. dahliae infection compared to the control, which was linked to the increased expression of the defence marker genes PDF1.2 and PR4. Together, these data indicated that knockdown of GhNINJA represses the root growth and enhances the tolerance to V. dahliae. Therefore, GhNINJA gene can be used as a candidate gene to breed the new cultivars for improving cotton yield and disease resistance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Alinia, F; Ghareyazie, B; Rubia, L; Bennett, J; Cohen, M B
2000-04-01
The resistance of vegetative, booting, and flowering stage plants of a variety of an aromatic rice, Oryza sativa L., transformed with a Bacillus thuringiensis Berliner cry1Ab gene under control of the maize phosphoenolpyruvate carboxylase (PEPC) promoter was evaluated against four lepidopterous rice pests--the stem borers Chilo suppressalis (Walker) (Lepidoptera: Crambidae) and Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae), and the foliage feeders Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) and Naranga aenescens Moore (Lepidoptera: Noctuidae). Plants of the cry1Ab-transformed line (no. 827) were more resistant to young larvae of S. incertulas, C. suppressalis, and C. medinalis than control plants at the vegetative stage but not at the flowering stage. Survival of 10-d-old stem borer larvae did not differ on cry1Ab plants and control plants at either the vegetative or flowering stage, but the development of 10-d-old C. suppressalis larvae was retarded on the vegetative stage cry1Ab plants. Immunological analysis also showed an apparent decline in Cry1Ab titer in leaf blades and leaf sheaths at the reproductive stage. In experiments comparing three fertilizer treatments (NPK, PK, and none), there was a significant interaction between fertilizer treatment and variety on larval survival only in whole-plant assays at booting stage with C. suppressalis. On cry1Ab plants, larval survival did not differ significantly among the three fertilizer levels, whereas on control plants survival was highest with the NPK treatment. cry1Ab plants tested at the sixth and seventh generations after transformation were more resistant than control plants to N. aenescens and C. suppressalis, respectively, suggesting that gene silencing will not occur in line 827. The results of the experiments are discussed in terms of resistance management for B. thuringiensis toxins in rice.
Role of TCP Gene BRANCHED1 in the Control of Shoot Branching in Arabidopsis.
Poza-Carrión, César; Aguilar-Martínez, José Antonio; Cubas, Pilar
2007-11-01
Branching patterns are major determinants of plant architecture. They depend both on leaf phillotaxy (branch primordia are formed in the axils of leaves) and on the decision of buds to grow out to give a branch or to remain dormant. In Arabidopsis, several genes involved in the long-distance signalling of the control of branch outgrowth have been identified. However, the genes acting inside the buds to cause growth arrest remained unknown until now. In the February issue of Plant Cell we have described the function of BRANCHED1 (BRC1), an Arabidopsis gene coding for a plant-specific transcription factor of the TCP family that is expressed in the buds and prevents their development. Loss of BRC1 function leads to accelerated AM initiation, precocious progression of bud development and excess of shoot branching. BRC1 transcription is affected by endogenous and environmental signals controlling branching and we have shown that BRC1 function mediates the response to these stimuli. Therefore we have proposed that BRC1 function represents the point at which signals controlling branching are integrated within axillary buds.
An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant
Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo
2015-01-01
The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display. PMID:26556356
An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant.
Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo
2015-11-05
The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display.
Pythium invasion of plant-based life support systems: biological control and sources
NASA Technical Reports Server (NTRS)
Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)
2000-01-01
Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.
RSL genes are sufficient for rhizoid system development in early diverging land plants.
Jang, Geupil; Yi, Keke; Pires, Nuno D; Menand, Benoît; Dolan, Liam
2011-06-01
Land plants are anchored to their substratum from which essential inorganic nutrients are taken up. These functions are carried out by a system of rhizoids in early diverging groups of land plants, such as mosses, liverworts and hornworts. Physcomitrella patens RHD SIX-LIKE1 (PpRSL1) and PpRSL2 transcription factors are necessary for rhizoid development in mosses. Similar proteins, AtRHD6 and AtRSL1, control the development of root hairs in Arabidopsis thaliana. Auxin positively regulates root hair development independently of AtRHD6 and AtRSL1 in A. thaliana but the regulatory interactions between auxin and PpRSL1 and PpRSL2 are unknown. We show here that co-expression of PpRSL1 and PpRSL2 is sufficient for the development of the rhizoid system in the moss P. patens; constitutive expression of PpRSL1 and PpRSL2 converts developing leafy shoot axes (gametophores) into rhizoids. During wild-type development, PpRSL1 and PpRSL2 are expressed in the specialized cells that develop rhizoids, indicating that cell-specific expression of PpRSL1 and PpRSL2 is sufficient to promote rhizoid differentiation during wild-type P. patens development. In contrast to A. thaliana, auxin promotes rhizoid development by positively regulating PpRSL1 and PpRSL2 activity in P. patens. This indicates that even though the same genes control the development of root hairs and rhizoids, the regulation of this transcriptional network by auxin is different in these two species. This suggests that auxin might have controlled the development of the first land plant soil anchoring systems that evolved 465 million years ago by regulating the expression of RSL genes and that this regulatory network has changed since mosses and angiosperms last shared a common ancestor.
Weis, Allison; Michalek, Jeremy J; Jaramillo, Paulina; Lueken, Roger
2015-05-05
We develop a unit commitment and economic dispatch model to estimate the operation costs and the air emissions externality costs attributable to new electric vehicle electricity demand under controlled vs uncontrolled charging schemes. We focus our analysis on the PJM Interconnection and use scenarios that characterize (1) the most recent power plant fleet for which sufficient data are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming plant retirements, and (3) the 2018 fleet with increased wind capacity. We find that controlled electric vehicle charging can reduce associated generation costs by 23%-34% in part by shifting loads to lower-cost, higher-emitting coal plants. This shift results in increased externality costs of health and environmental damages from increased air pollution. On balance, we find that controlled charging of electric vehicles produces negative net social benefits in the recent PJM grid but could have positive net social benefits in a future grid with sufficient coal retirements and wind penetration.
Plant synthetic biology for molecular engineering of signalling and development.
Nemhauser, Jennifer L; Torii, Keiko U
2016-03-02
Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.
The never-ending story: from pluripotency to plant developmental plasticity
Gaillochet, Christophe; Lohmann, Jan U.
2015-01-01
Plants are sessile organisms, some of which can live for over a thousand years. Unlike most animals, plants employ a post-embryonic mode of development driven by the continuous activity of pluripotent stem cells. Consequently, plants are able to initiate new organs over extended periods of time, and many species can readily replace lost body structures by de novo organogenesis. Classical studies have also shown that plant tissues have a remarkable capacity to undergo de-differentiation and proliferation in vitro, highlighting the fact that plant cell fate is highly plastic. This suggests that the mechanisms regulating fate transitions must be continuously active in most plant cells and that the control of cellular pluripotency lies at the core of diverse developmental programs. Here, we review how pluripotency is established in plant stem cell systems, how it is maintained during development and growth and re-initiated during regeneration, and how these mechanisms eventually contribute to the amazing developmental plasticity of plants. PMID:26130755
NASA Technical Reports Server (NTRS)
Dreschel, T. W.; Hall, C. R.; Foster, T. E.; Salganic, M.; Warren, L.; Corbett, M.
2005-01-01
The Porous Tube Plant Nutrient Delivery System (PTPNDS) was designed for NASA to grow plants in microgravity of space. The system utilizes a controlled fluid loop to supply nutrients and water to plant roots growing on a ceramic surface moistened by capiflary action. A PTPNDS test bed was developed and utilizing remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements, we examined differences in plant water status for wheat plants (Triticum aestivum, cv. Perigee) grown in a modified growth chamber during the summers of 2003 and 2004. Some differences in plant performance were detectable in the gas-exchange and fluorescence measurements. For instance, in both years the plants grown with the most available water had the lowest rates of photosynthesis and exhibited higher proportions of non-photochemical quenching particularly under low light levels. In addition, small differences in mean leaf water content between treatments were detected using spectral reflectance analyses.
Development and Practical Use of RT-PCR for Seed-transmitted Prune dwarf virus in Quarantine
Lee, Siwon; Shin, Yong-Gil
2014-01-01
Among imported plants, seeds are the items that have many latent pathogens and are difficult to inspect. Also, they are the import and export items whose market is expected to expand. The biggest problem with seeds is viruses. Prune dwarf virus (PDV) is the virus that is commonly inspected in Prunus cerasifera, P. persica, P. armeniaca, P. mandshurica, P. cerasus, P. avium or P. serotina seeds. In this study, two RT-PCR primer sets, which can promptly and specifically diagnose plant quarantine seed-transmitted PDV, were developed; and nested PCR primers, where products amplify 739 and 673 nucleotides (nt), and an nested PCR-product, 305 nt, can be obtained as these products are amplified again, were developed. Also, a modified-positive control plasmid was developed, where the restriction enzyme XhoI, which can identify the contamination of samples from the control, was inserted. The method developed in this study has detected PDV in 18 cases since 2007, and is expected to continuously contribute to the plant quarantine in Korea. PMID:25289000
Johnston, Amal J.; Kirioukhova, Olga; Barrell, Philippa J.; Rutten, Twan; Moore, James M.; Baskar, Ramamurthy; Grossniklaus, Ueli; Gruissem, Wilhelm
2010-01-01
The plant life cycle alternates between two distinct multi-cellular generations, the reduced gametophytes and the dominant sporophyte. Little is known about how generation-specific cell fate, differentiation, and development are controlled by the core regulators of the cell cycle. In Arabidopsis, RETINOBLASTOMA RELATED (RBR), an evolutionarily ancient cell cycle regulator, controls cell proliferation, differentiation, and regulation of a subset of Polycomb Repressive Complex 2 (PRC2) genes and METHYLTRANSFERASE 1 (MET1) in the male and female gametophytes, as well as cell fate establishment in the male gametophyte. Here we demonstrate that RBR is also essential for cell fate determination in the female gametophyte, as revealed by loss of cell-specific marker expression in all the gametophytic cells that lack RBR. Maintenance of genome integrity also requires RBR, because diploid plants heterozygous for rbr (rbr/RBR) produce an abnormal portion of triploid offspring, likely due to gametic genome duplication. While the sporophyte of the diploid mutant plants phenocopied wild type due to the haplosufficiency of RBR, genetic analysis of tetraploid plants triplex for rbr (rbr/rbr/rbr/RBR) revealed that RBR has a dosage-dependent pleiotropic effect on sporophytic development, trichome differentiation, and regulation of PRC2 subunit genes CURLY LEAF (CLF) and VERNALIZATION 2 (VRN2), and MET1 in leaves. There were, however, no obvious cell cycle and cell proliferation defects in these plant tissues, suggesting that a single functional RBR copy in tetraploids is capable of maintaining normal cell division but is not sufficient for distinct differentiation and developmental processes. Conversely, in leaves of mutants in sporophytic PRC2 subunits, trichome differentiation was also affected and expression of RBR and MET1 was reduced, providing evidence for a RBR-PRC2-MET1 regulatory feedback loop involved in sporophyte development. Together, dosage-sensitive RBR function and its genetic interaction with PRC2 genes and MET1 must have been recruited during plant evolution to control distinct generation-specific cell fate, differentiation, and development. PMID:20585548
NASA Technical Reports Server (NTRS)
Colton, Andrew
2012-01-01
I am finishing up my internship with the Application & Simulation group at NASA Kennedy Space Center (KSC). During this internship I was working with the Plant Habitat development team. The Plant Habitat provides a large enclosed, environmentally controlled chamber designed to support commercial and fundamental plant research onboard the International Space Station (ISS). The work that I did was for the prototype of the Graphical User Interface (GUI) display. This display is used by the scientists to monitor the system health, start new experiment configurations, and get real-time information about the experiment as its being run. This display is developed using the Qt Framework Integrated Development Environment (IDE) and the programming language C++.
The Plant Research Unit: An International Space Station Habitat
NASA Technical Reports Server (NTRS)
Morrow, Robert; Reiss-Bubenheim, Debra; Schaefer, Ronald L.
2003-01-01
The Plant Research Unit (PRU) is one of six life science habitats being developed as part of the Space Station Biological Research Program. The PRU is designed for experiments in microgravity and will utilize the ISS Centrifuge Facility to provide gravity levels between microgravity and 29. The PRU will provide and control all aspects of a plant s needs in a nearly closed system. In other words, the shoot and root environments will not be open to the astronaut s environment except for experiment maintenance such as planting, harvesting and plant sampling. This also means that all lighting, temperature and humidity control, "watering," and air filtering and cleaning .must be done within strict limitations of volume, weight, power, and crew time while at the same time providing a very high level of reliability and a service life in excess of 10 years. The PRU will contain two plant chambers 31.5 cm tall, each with independent control of temperature, humidity, light level and photoperiod, CO2 level, nutrient and water delivery, and video and data acquisition. The PRU is currently in the preliminary design phase and a number of subsystem components have been prototyped for testing, including the temperature and humidity control systems, the plant chambers, the LED lighting system, the atmospheric control system and a variety of nutrient delivery systems. The LED prototype provides independent feedback control of 5 separate spectral bands and variable output between 0 and 1000 micro-mol sq m/sec. The water and nutrient delivery system (WNDS) prototypes have been used to test particulate based, thin film, and gel-based WNDS configurations.
Control of Citrus Huanglongbing via Trunk Injection of Plant Defense Activators and Antibiotics.
Hu, J; Jiang, J; Wang, N
2018-02-01
Citrus huanglongbing (HLB) or greening is a devastating disease of citrus worldwide and no effective control measure is currently available. Plant defense activators environmentally friendly compounds capable of inducing resistance against many plant pathogens. Earlier studies showed that foliar spray of plant defense inducers could slow down HLB disease progress. In this study, eight plant defense activators and three antibiotics were evaluated in three field trials for their effect to control HLB by trunk injection of young and mature sweet orange trees. Results showed that four trunk injections of several activators, including salicylic acid, oxalic acid, acibenzolar-S-methyl, and potassium phosphate, provided significant control of HLB by suppressing 'Candidatus Liberibacter asiaticus' titer and disease progress. Trunk injection of penicillin, streptomycin, and oxytetracycline hydrochloride resulted in excellent control of HLB. In general, antibiotics were more effective in reduction of 'Ca. L. asiaticus' titer and HLB symptom expressions than plant defense activators. These treatments also resulted in increased yield and better fruit quality. Injection of both salicylic acid and acibenzolar-S-methyl led to significant induction of pathogenesis-related (PR) genes PR-1 and PR-2 genes. Meanwhile, injection of either potassium phosphate or oxalic acid resulted in significant induction of PR-2 or PR-15 gene expression, respectively. These results suggested that HLB diseased trees remained inducible for systemic acquired resistance under field conditions. In summary, this study presents information regarding controlling HLB via trunk injection of plant defense activators and antibiotics, which helps citrus growers in decision making regarding developing an effective HLB management program.
Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle.
Mi, Xiaoxiao; Ji, Xiangzhuo; Yang, Jiangwei; Liang, Lina; Si, Huaijun; Wu, Jiahe; Zhang, Ning; Wang, Di
2015-07-01
The Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a fatal pest, which is a quarantine pest in China. The CPB has now invaded the Xinjiang Uygur Autonomous Region and is constantly spreading eastward in China. In this study, we developed transgenic potato plants expressing cry3A gene. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the cry3A gene expressed in leaves, stems and roots of the transgenic plants under the control of CaMV 35S promoter, while they expressed only in leaves and stems under the control of potato leaf and stem-specific promoter ST-LS1. The mortality of the larvae was higher (28% and 36%) on the transgenic plant line 35S1 on the 3rd and 4th days, and on ST3 (48%) on the 5th day after inoculation with instar larvae. Insect biomass accumulation on the foliage of the transgenic plant lines 35S1, 35S2 and ST3 was significantly lower (0.42%, 0.43% and 0.42%). Foliage consumption was lowest on transgenic lines 35S8 and ST2 among all plant foliage (7.47 mg/larvae/day and 12.46 mg/larvae/day). The different transgenic plant foliages had varied inhibition to larval growth. The survivors on the transgenic lines obviously were smaller than their original size and extremely weak. The transgenic potato plants with CPB resistance could be used to develop germplasms or varieties for controlling CPB damage and halting its spread in China. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill ...
Technology for subsystems of space-based plant growth facilities
NASA Technical Reports Server (NTRS)
Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Corey, R. B.
1990-01-01
Technologies for different subsystems of space-based plant growth facilities are being developed at the Wisconsin Center for Space Automation and Robotics, a NASA Center for the Commercial Development of Space. The technologies include concepts for water and nutrient delivery, for nutrient composition control, and for irradiation. Effort is being concentrated on these subsystems because available technologies cannot be effectively utilized for space applications.
Saijo, Takanori; Nagasawa, Akitsu
2014-01-01
A newly developed copper-inducible gene expression system overcame the mixed results reported earlier, worked well both in cultured cells and a whole plant, and enabled to control flowering timing. Copper is one of the essential microelements and is readily taken up by plants. However, to date, it has rarely been used to control the expression of genes of interest, probably due to the inefficiency of the gene expression systems. In this study, we successfully developed a copper-inducible gene expression system that is based on the regulation of the yeast metallothionein gene. This system can be applied in the field and regulated at approximately one-hundredth of the rate used for registered copper-based fungicides. In the presence of copper, a translational fusion of the ACE1 transcription factor with the VP16 activation domain (VP16AD) of herpes simplex virus strongly activated transcription of the GFP gene in transgenic Arabidopsis. Interestingly, insertion of the To71 sequence, a 5'-untranslated region of the 130k/180k gene of tomato mosaic virus, upstream of the GFP gene reduced the basal expression of GFP in the absence of copper to almost negligible levels, even in soil-grown plants that were supplemented with ordinary liquid nutrients. Exposure of plants to 100 μM copper resulted in an over 1,000-fold induction ratio at the transcriptional level of GFP. This induction was copper-specific and dose-dependent with rapid and reversible responses. Using this expression system, we also succeeded in regulating floral transition by copper treatment. These results indicate that our newly developed copper-inducible system can accelerate gene functional analysis in model plants and can be used to generate novel agronomic traits in crop species.
Guo, Shengye; Li, Xingyu; He, Pengfei; Ho, Honhing; Wu, Yixin; He, Yueqiu
2015-06-01
Bacillus subtilis XF-1 is a gram-positive, plant-associated bacterium that stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. In particular, it is especially highly efficient at controlling the clubroot disease of cruciferous crops. Its 4,061,186-bp genome contains an estimated 3853 protein-coding sequences and the 1155 genes of XF-1 are present in most genome-sequenced Bacillus strains: 3757 genes in B. subtilis 168, and 1164 in B. amyloliquefaciens FZB42. Analysis using the Cluster of Orthologous Groups database of proteins shows that 60 genes control bacterial mobility, 221 genes are related to cell wall and membrane biosynthesis, and more than 112 are genes associated with secondary metabolites. In addition, the genes contributed to the strain's plant colonization, bio-control and stimulation of plant growth. Sequencing of the genome is a fundamental step for developing a desired strain to serve as an efficient biological control agent and plant growth stimulator. Similar to other members of the taxon, XF-1 has a genome that contains giant gene clusters for the non-ribosomal synthesis of antifungal lipopeptides (surfactin and fengycin), the polyketides (macrolactin and bacillaene), the siderophore bacillibactin, and the dipeptide bacilysin. There are two synthesis pathways for volatile growth-promoting compounds. The expression of biosynthesized antibiotic peptides in XF-1 was revealed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.
Ozone injury on Bel W-3 tobacco controlled by at least two genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, G.S.
1968-08-01
Tobacco varieties differ widely in susceptibility to injury by ozone in polluted air. Ordinarily, this injury appears as small flecks on the upper surface of the leaf. The highly susceptible variety Bel W-3, commonly used as an indicator plant for ozone, develops both the flecking plus larger brown or white spots which interfere with the assessment of injury. The highly resistant breeding line 6524 develops no spots but only a few flecks under like conditions. The F/sub 1/ of Bel W-3 x 6524 is intermediate, showing flecks but fewer spots than Bel W-3. The F/sub 2/, however, segregated into 40%more » highly resistant, 10% highly susceptible, and 50% intermediate individuals. When exposed to ozone, resistant plants developed only a few small flecks, and susceptible plants responded as does Bel W-3. Among the plants in the intermediate group were individuals that formed only larger brown or white spots without fleck. Plants with the severe spot reaction showed injury on the calyx remnant surrounding the seed pod. Microbial infection was not involved. This is the first evidence that the severe symptoms of ozone injury on Bel W-3 are a combination of reactions controlled by at least two separate genes.« less
Evidente, Antonio; Cimmino, Alessio; Andolfi, Anna
2013-02-01
Phytotoxins are secondary microbial metabolites that play an essential role in the development of disease symptoms induced by fungi on host plants. Although phytotoxins can cause extensive-and in some cases devastating-damage to agricultural crops, they can also represent an important tool to develop natural herbicides when produced by fungi and plants to inhibit the growth and spread of weeds. An alternative strategy to biologically control parasitic plants is based on the use of plant and fungal metabolites, which stimulate seed germination in the absence of the host plant. Nontoxigenic fungi also produce bioactive metabolites with potential fungicide and insecticide activity, and could be applied for crop protection. All these metabolites represent important tools to develop eco-friendly pesticides. This review deals with the relationships between the biological activity of some phytotoxins, seed germination stimulants, fungicides and insecticides, and their stereochemistry. Copyright © 2012 Wiley Periodicals, Inc.
Life in the dark: Roots and how they regulate plant-soil interactions
NASA Astrophysics Data System (ADS)
Wu, Y.; Chou, C.; Peruzzo, L.; Riley, W. J.; Hao, Z.; Petrov, P.; Newman, G. A.; Versteeg, R.; Blancaflor, E.; Ma, X.; Dafflon, B.; Brodie, E.; Hubbard, S. S.
2017-12-01
Roots play a key role in regulating interactions between soil and plants, an important biosphere process critical for soil development and health, global food security, carbon sequestration, and the cycling of elements (water, carbon, nutrients, and environmental contaminants). However, their underground location has hindered studies of plant roots and the role they play in regulating plant-soil interactions. Technological limitations for root phenotyping and the lack of an integrated approach capable of linking root development, its environmental adaptation/modification with subsequent impact on plant health and productivity are major challenges faced by scientists as they seek to understand the plant's hidden half. To overcome these challenges, we combine novel experimental methods with numerical simulations, and conduct controlled studies to explore the dynamic growth of crop roots. We ask how roots adapt to and change the soil environment and their subsequent impacts on plant health and productivity. Specifically, our efforts are focused on (1) developing novel geophysical approaches for non-invasive plant root and rhizosphere characterization; (2) correlating root developments with key canopy traits indicative of plant health and productivity; (3) developing numerical algorithms for novel geophysical root signal processing; (4) establishing plant growth models to explore root-soil interactions and above and below ground traits co-variabilities; and (5) exploring how root development modifies rhizosphere physical, hydrological, and geochemical environments for adaptation and survival. Our preliminary results highlight the potential of using electro-geophysical methods to quantifying key rhizosphere traits, the capability of the ecosys model for mechanistic plant growth simulation and traits correlation exploration, and the combination of multi-physics and numerical approach for a systematic understanding of root growth dynamics, impacts on soil physicochemical environments, and plant health and productivity.
Mohamed, Omar; Wang, Jihong; Khalil, Ashraf; Limhabrash, Marwan
2016-01-01
This paper presents a novel strategy for implementing model predictive control (MPC) to a large gas turbine power plant as a part of our research progress in order to improve plant thermal efficiency and load-frequency control performance. A generalized state space model for a large gas turbine covering the whole steady operational range is designed according to subspace identification method with closed loop data as input to the identification algorithm. Then the model is used in developing a MPC and integrated into the plant existing control strategy. The strategy principle is based on feeding the reference signals of the pilot valve, natural gas valve, and the compressor pressure ratio controller with the optimized decisions given by the MPC instead of direct application of the control signals. If the set points for the compressor controller and turbine valves are sent in a timely manner, there will be more kinetic energy in the plant to release faster responses on the output and the overall system efficiency is improved. Simulation results have illustrated the feasibility of the proposed application that has achieved significant improvement in the frequency variations and load following capability which are also translated to be improvements in the overall combined cycle thermal efficiency of around 1.1 % compared to the existing one.
The Arabidopsis USL1 controls multiple aspects of development by affecting late endosome morphology.
Yuan, Rongrong; Lan, Jingqiu; Fang, Yuxing; Yu, Hao; Zhang, Jinzhe; Huang, Jiaying; Qin, Genji
2018-06-13
The polar transport of auxin controls many aspects of plant development. However, the molecular mechanisms underlying auxin tranport regulation remain to be further elucidated. We identified a mutant named as usl1 (unflattened and small leaves) in a genetic screen in Arabidopsis thaliana. The usl1 displayed multiple aspects of developmental defects in leaves, embryogenesis, cotyledons, silique phyllotaxy and lateral roots in addition to abnormal leaves. USL1 encodes a protein orthologous to the yeast vacuolar protein sorting (Vps) 38p and human UV RADIATION RESISTANCE-ASSOCIATED GENE (UVRAG). Cell biology, Co-IP/MS and yeast two-hybrid were used to identify the function of USL1. USL1 colocalizes at the subcellular level with VPS29, a key factor of the retromer complex that controls auxin transport. The morphology of the VPS29-associated late endosomes (LE) is altered from small dots in the wild-type to aberrant enlarged circles in the usl1 mutants. The usl1 mutant synergistically interacts with vps29. We also found that USL1 forms a complex with AtVPS30 and AtVPS34. We propose that USL1 controls multiple aspects of plant development by affecting late endosome morphology and by regulating the PIN1 polarity. Our findings provide a new layer of the understanding on the mechanisms of plant development regulation. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Prospects for the development of coal-steam plants in Russia
NASA Astrophysics Data System (ADS)
Tumanovskii, A. G.
2017-06-01
Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.
Anaerobic soil disinfestation and soil borne pest management
USDA-ARS?s Scientific Manuscript database
Anaerobic soil disinfestation (ASD; also referred to as Biological Soil Disinfestation (BSD)) is a pre-plant soil treatment method developed to control plant disease and manage yield decline in many crop production systems. The practice involves induction of anaerobic soil conditions by increasing m...
González, M E; Cea, M; Medina, J; González, A; Diez, M C; Cartes, P; Monreal, C; Navia, R
2015-02-01
Biochar constitutes a promising support material for the formulation of controlled-release fertilizers (CRFs). In this study we evaluated the effect of different polymeric materials as encapsulating agents to control nitrogen (N) leaching from biochar based CRFs. Nitrogen impregnation onto biochar was performed in a batch reactor using urea as N source. The resulting product was encapsulated by using sodium alginate (SA), cellulose acetate (CA) and ethyl cellulose (EC). Leaching potential was studied in planted and unplanted soil columns, monitoring nitrate, nitrite, ammonium and urea concentrations. After 90 days, plants were removed from the soil columns and plant yield was evaluated. It was observed that the ammonium concentration in leachates presented a maximum concentration for all treatments at day 22. The highest concentration of N in the leachates was the nitrate form. The crop yield was negatively affected by all developed CRFs using biochar compared with the traditional fertilization. Copyright © 2014 Elsevier B.V. All rights reserved.
MacTavish, Rachel M.; Cohen, Risa A.
2014-01-01
• Premise of the study: A microcosm unit with tidal simulation was developed to address the challenge of maintaining ecologically relevant tidal regimes while performing controlled greenhouse experiments on smooth cordgrass, Spartina alterniflora. • Methods and Results: We designed a simple, inexpensive, easily replicated microcosm unit with tidal simulation and tested whether S. alterniflora growth in microcosms with tidal simulation was similar to that of tidally influenced plants in the field on Sapelo Island, Georgia. After three months of exposure to either natural or simulated tidal treatment, plants in microcosms receiving tidal simulation had similar stem density, height, and above- and belowground biomass to plants in field plots. • Conclusions: The tidal simulator developed may provide an inexpensive, effective method for conducting studies on S. alterniflora and other tidally influenced plants in controlled settings to be used not only to complement field studies, but also in locations without coastal access. PMID:25383265
Nutrition acquisition strategies during fungal infection of plants.
Divon, Hege H; Fluhr, Robert
2007-01-01
In host-pathogen interactions, efficient pathogen nutrition is a prerequisite for successful colonization and fungal fitness. Filamentous fungi have a remarkable capability to adapt and exploit the external nutrient environment. For phytopathogenic fungi, this asset has developed within the context of host physiology and metabolism. The understanding of nutrient acquisition and pathogen primary metabolism is of great importance in the development of novel disease control strategies. In this review, we discuss the current knowledge on how plant nutrient supplies are utilized by phytopathogenic fungi, and how these activities are controlled. The generation and use of auxotrophic mutants have been elemental to the determination of essential and nonessential nutrient compounds from the plant. Considerable evidence indicates that pathogen entrainment of host metabolism is a widespread phenomenon and can be accomplished by rerouting of the plant's responses. Crucial fungal signalling components for nutrient-sensing pathways as well as their developmental dependency have now been identified, and were shown to operate in a coordinate cross-talk fashion that ensures proper nutrition-related behaviour during the infection process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshkati, N.; Buller, B.J.; Azadeh, M.A.
1995-04-01
The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators` individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and amore » mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators` individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators` decision styles affect on both their performance and preference for the Ecological interface.« less
Message in a bottle: small signalling peptide outputs during growth and development.
Czyzewicz, Nathan; Yue, Kun; Beeckman, Tom; De Smet, Ive
2013-12-01
Classical and recently found phytohormones play an important role in plant growth and development, but plants additionally control these processes through small signalling peptides. Over 1000 potential small signalling peptide sequences are present in the Arabidopsis genome. However, to date, a mere handful of small signalling peptides have been functionally characterized and few have been linked to a receptor. Here, we assess the potential small signalling peptide outputs, namely the molecular, biochemical, and morphological changes they trigger in Arabidopsis. However, we also include some notable studies in other plant species, in order to illustrate the varied effects that can be induced by small signalling peptides. In addition, we touch on some evolutionary aspects of small signalling peptides, as studying their signalling outputs in single-cell green algae and early land plants will assist in our understanding of more complex land plants. Our overview illustrates the growing interest in the small signalling peptide research area and its importance in deepening our understanding of plant growth and development.
Widespread mechanosensing controls the structure behind the architecture in plants.
Hamant, Olivier
2013-10-01
Mechanical forces play an instructing role for many aspects of animal cell biology, such as division, polarity and fate. Although the associated mechanoperception pathways still remain largely elusive in plants, physical cues have long been thought to guide development in parallel to biochemical factors. With the development of new imaging techniques, micromechanics tools and modeling approaches, the role of mechanical signals in plant development is now re-examined and fully integrated with modern cell biology. Using recent examples from the literature, I propose to use a multiscale perspective, from the whole plant down to the cell wall, to fully appreciate the diversity of developmental processes that depend on mechanical signals. Incidentally, this also illustrates how conceptually rich this field is. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaluating the potential of SHI expression as a compacting tool for ornamental plants.
Topp, Sine H; Rasmussen, Søren K
2012-05-01
Control of plant growth, especially elongation of stems, is important in modern plant production, and many plant species, including cereals, grasses, fruit trees and ornamentals, are regularly treated chemically to control their stature and flowering time. Chemical treatments ensure short, homogenous plants, which are more robust and easy to harvest, transport and sell. Although growth retardants are an expensive and undesirable step in plant production, it is unfortunately necessary at present. Compact growth is desirable in most ornamentals and this trait can be difficult to obtain by traditional breeding. As an alternative, biotechnology could provide plant varieties with optimized growth habits. This review is an introduction to the family of SHI transcription factors, which has recently been used to produce compact plants of very diverse species. The possible functions and regulations of the SHI proteins are discussed, and the potential of using overexpression as means to dwarf plants is assessed. In conclusion the breeding of some species, especially flowering ornamentals, could benefit from this strategy. Furthermore, detailed knowledge about the role of SHI proteins in plant growth and development could help shed more light on the interactions between plant hormone signaling pathways. © 2012 Elsevier Ireland Ltd. All rights reserved.
Park, Yong-Soon; Ryu, Choong-Min
2016-05-03
Since plants first appeared about 1.1 billion years ago, they have been faced with biotic and abiotic stresses in their environment. To overcome these stresses, plants developed defense strategies. Accumulating evidence suggests that the whitefly [Bemisia tabaci (Genn.)] affects the regulation of plant defenses and physiology. A recent study demonstrates that aboveground whitefly infestation positively modulates root biomass and anthocyanin pigmentation on brace roots of maize plants (Zea mays L.). In agreement with these observations, indole-3-acetic acid (IAA) and jasmonic acid (JA) contents and the expression of IAA- and JA-related genes are higher in whitefly-infested maize plants than in non-infected control plants. Interestingly, the fresh weight of whitefly-infested maize plants is approximately 20% higher than in non-infected control plants under water stress conditions. Further investigation has revealed that hydrogen peroxide (H2O2) accumulates in whitefly-infested maize plants after water stoppage. Taken together, these results suggest that activation of phytohormones- (i.e., IAA and JA) and H2O2-mediated maize signaling pathways triggered by aboveground whitefly infestation promotes drought resistance. They also provide an insight into how inter-kingdom interactions can improve drought tolerance in plants.
JPRS Report, Science & Technology, Europe & Latin America
1988-04-14
can be applied everywhere that monitoring of gaseous atmospheres is required, for example in air pollution control, monitor- ing of furnace plants ...invest a further DM50 million in develop- ing the materials and construction of a pilot plant . 2.6 Spray Process To Produce Sheet Metal Today, semi...opportunities for building small production plants that can operate economically. Initial results from this project, in which two industrial
Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum.
Wilson, Emma D; Assaf, Tareq; Pearson, Martin J; Rossiter, Jonathan M; Dean, Paul; Anderson, Sean R; Porrill, John
2015-01-01
The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks.
Phytochrome-mediated responses implications for controlled environment research facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, H.
1994-12-31
Light is undoubtedly the most important environmental variable for plant growth and development; plants not only use radiant energy in photosynthesis, they also respond to the quantity, quality, direction and timing of incident radiation through photomorphogenic responses that can have huge effects on the rate of growth and the pattern of development. It is surprising, therefore, that the manufacturers and suppliers of controlled environment facilities have been singularly uninventive in the design of the lighting assemblies they provide. The consumer has one choice only - a lighting assembly that provides irradiance levels usually only a fraction of sunlight, and amore » control system that is limited to regulating the timing of the on-off switch. The reasons for these limitations are partly technological, but in the main they result from ignorance on the part of both the consumer and the manufacturer. A specific and powerful example of this ignorance relates to the importance of the so-called far-red wavelengths (FR = 700-800 nm). Because the human eye can hardly detect wavelengths above 700 nm, and photosynthesis also cuts off at ca. 700 mn, the majority of plant and crop physiologists are still almost completely unaware that FR radiation can have massive effects on growth rate and development. In consequence, most growth cabinets have light sources based on fluorescent tubes, and provide very little FR apart from that emitted by a token number of small incandescent bulbs. Larger growth facilities often use broader spectrum light sources, but growth facilities that provide the capability to vary the FR incident upon the plants are about as abundant as seals in the Sahara. This article sets the background of the significance of FR radiation in the natural environment and its importance for plant growth and development in the hope that it might inform intelligently those concerned with improving the design of plant growth facilities.« less
Phytochrome-mediated responses: Implications for controlled environment research facilities
NASA Technical Reports Server (NTRS)
Smith, Harry
1994-01-01
Light is undoubtedly the most important environmental variable for plant growth and development; plants not only use radiant energy in photosynthesis, they also respond to the quantity, quality, direction and timing of incident radiation through photomorphogenic response that can have huge effects on the rate of growth and the pattern of development. It is surprising, therefore, that the manufacturers and suppliers of controlled environment facilities have been singularly uninventive in the design of the lighting assemblies they provide. The consumer has one choice only - a lighting assembly that provides irradiance levels usually only a fraction of sunlight, and a control system that is limited to regulating the timing of the on-off switch. The reasons for these limitations are partly technological, but in the main they result from ignorance on the part of both the consumer and the manufacturer. A specific and powerful example of this ignorance relates to the importance of the so-called far-red wavelengths (FR = 700-800 nm). Because the human eye can hardly detect wavelengths above 700 nm, and photosynthesis also cuts off at about 700 nm, the majority of plant and crop physiologists are still almost completely unaware that FR radiation can have massive effects on growth rate and development. In consequence, most growth cabinets have light sources based on fluorescent tubes, and provide very little FR apart from that emitted by a token number of small incandescent bulbs. Larger growth facilities often use broader spectrum light sources, but growth facilities that provide the capability to vary the FR incident upon the plants are about as abundant as seals in the Sahara. This article sets the background of the significance of FR radiation in the natural environment and its importance for plant growth and development in the hope that it might inform intelligently those concerned with improving the design of plant growth facilities.
From Genes to Networks: Characterizing Gene-Regulatory Interactions in Plants.
Kaufmann, Kerstin; Chen, Dijun
2017-01-01
Plants, like other eukaryotes, have evolved complex mechanisms to coordinate gene expression during development, environmental response, and cellular homeostasis. Transcription factors (TFs), accompanied by basic cofactors and posttranscriptional regulators, are key players in gene-regulatory networks (GRNs). The coordinated control of gene activity is achieved by the interplay of these factors and by physical interactions between TFs and DNA. Here, we will briefly outline recent technological progress made to elucidate GRNs in plants. We will focus on techniques that allow us to characterize physical interactions in GRNs in plants and to analyze their regulatory consequences. Targeted manipulation allows us to test the relevance of specific gene-regulatory interactions. The combination of genome-wide experimental approaches with mathematical modeling allows us to get deeper insights into key-regulatory interactions and combinatorial control of important processes in plants.
Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants.
Salla, Tamiris Daros; da Silva, Ramos; Astarita, Leandro Vieira; Santarém, Eliane Romanato
2014-12-01
The genus Eucalyptus comprises economically important species, such as Eucalyptus grandis and Eucalyptus globulus, used especially as a raw material in many industrial sectors. Species of Eucalyptus are very susceptible to pathogens, mainly fungi, which leads to mortality of plant cuttings in rooting phase. One alternative to promote plant health and development is the potential use of microorganisms that act as agents for biological control, such as plant growth-promoting rhizobacteria (PGPR). Rhizobacteria Streptomyces spp have been considered as PGPR. This study aimed at selecting strains of Streptomyces with ability to promote plant growth and modulate secondary metabolism of E. grandis and E. globulus in vitro plants. The experiments assessed the development of plants (root number and length), changes in key enzymes in plant defense (polyphenol oxidase and peroxidase) and induction of secondary compounds(total phenolic and quercetinic flavonoid fraction). The isolate Streptomyces PM9 showed highest production of indol-3-acetic acid and the best potential for root induction. Treatment of Eucalyptus roots with Streptomyces PM9 caused alterations in enzymes activities during the period of co-cultivation (1-15 days), as well as in the levels of phenolic compounds and flavonoids. Shoots also showed alteration in the secondary metabolism, suggesting induced systemic response. The ability of Streptomyces sp. PM9 on promoting root growth, through production of IAA, and possible role on modulation of secondary metabolism of Eucalyptus plants characterizes this isolate as PGPR and indicates its potential use as a biological control in forestry.
Willmann, Martin; Gerlach, Nina; Buer, Benjamin; Polatajko, Aleksandra; Nagy, Réka; Koebke, Eva; Jansa, Jan; Flisch, René; Bucher, Marcel
2013-01-01
Arbuscular mycorrhizal fungi (AMF) form a mutually beneficial symbiosis with plant roots providing predominantly phosphorus in the form of orthophosphate (Pi) in exchange for plant carbohydrates on low P soils. The goal of this work was to generate molecular-genetic evidence in support of a major impact of the mycorrhizal Pi uptake (MPU) pathway on the productivity of the major crop plant maize under field and controlled conditions. Here we show, that a loss-of-function mutation in the mycorrhiza-specific Pi transporter gene Pht1;6 correlates with a dramatic reduction of above-ground biomass and cob production in agro-ecosystems with low P soils. In parallel mutant pht1;6 plants exhibited an altered fingerprint of chemical elements in shoots dependent on soil P availability. In controlled environments mycorrhiza development was impaired in mutant plants when grown alone. The presence of neighboring mycorrhizal nurse plants enhanced the reduced mycorrhiza formation in pht1;6 roots. Uptake of 33P-labeled orthophosphate via the MPU pathway was strongly impaired in colonized mutant plants. Moreover, repression of the MPU pathway resulted in a redirection of Pi to neighboring plants. In line with previous results, our data highlight the relevance of the MPU pathway in Pi allocation within plant communities and in particular the role of Pht1;6 for the establishment of symbiotic Pi uptake and for maize productivity and nutritional value in low-input agricultural systems. In a first attempt to identify cellular pathways which are affected by Pht1;6 activity, gene expression profiling via RNA-Seq was performed and revealed a set of maize genes involved in cellular signaling which exhibited differential regulation in mycorrhizal pht1;6 and control plants. The RNA data provided support for the hypothesis that fungal supply of Pi and/or Pi transport across Pht1;6 affects cell wall biosynthesis and hormone metabolism in colonized root cells. PMID:24409191
A high-throughput seed germination assay for root parasitic plants
2013-01-01
Background Some root-parasitic plants belonging to the Orobanche, Phelipanche or Striga genus represent one of the most destructive and intractable weed problems to agricultural production in both developed and developing countries. Compared with most of the other weeds, parasitic weeds are difficult to control by conventional methods because of their life style. The main difficulties that currently limit the development of successful control methods are the ability of the parasite to produce a tremendous number of tiny seeds that may remain viable in the soil for more than 15 years. Seed germination requires induction by stimulants present in root exudates of host plants. Researches performed on these minute seeds are until now tedious and time-consuming because germination rate is usually evaluated in Petri-dish by counting germinated seeds under a binocular microscope. Results We developed an easy and fast method for germination rate determination based on a standardized 96-well plate test coupled with spectrophotometric reading of tetrazolium salt (MTT) reduction. We adapted the Mosmann’s protocol for cell cultures to germinating seeds and determined the conditions of seed stimulation and germination, MTT staining and formazan salt solubilization required to obtain a linear relationship between absorbance and germination rate. Dose–response analyses were presented as applications of interest for assessing half maximal effective or inhibitory concentrations of germination stimulants (strigolactones) or inhibitors (ABA), respectively, using four parameter logistic curves. Conclusion The developed MTT system is simple and accurate. It yields reproducible results for germination bioassays of parasitic plant seeds. This method is adapted to high-throughput screenings of allelochemicals (stimulants, inhibitors) or biological extracts on parasitic plant seed germination, and strengthens the investigations of distinctive features of parasitic plant germination. PMID:23915294
The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.
Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R
2015-01-01
The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed. © 2014 Scandinavian Plant Physiology Society.
Air pollution control systems in WtE units: an overview.
Vehlow, J
2015-03-01
All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of plant-based mucosal vaccines against widespread infectious diseases.
Salyaev, Rurick K; Rigano, Maria Manuela; Rekoslavskaya, Natalya I
2010-08-01
Mucosal vaccination is a perspective for the control of infectious diseases, since it is capable of inducing humoral and cell-mediated responses. In addition, the delivery of vaccines to mucosal surfaces makes immunization practice safe and acceptable, and eliminates needle-associated risks. Transgenic plants can be used as bioreactors for the production of mucosally delivered protective antigens. This technology shows great promise to simplify and decrease the cost of vaccine delivery. Herein, we review the development of mucosally administered vaccines expressed in transgenic plants. In particular, we evaluate the advantages and disadvantages of using plants for the production of mucosal vaccines against widespread infectious diseases such as HIV, hepatitis B and TB.
Chromatin versus pathogens: the function of epigenetics in plant immunity.
Ding, Bo; Wang, Guo-Liang
2015-01-01
To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed.
Cytokinins for immunity beyond growth, galls and green islands.
Naseem, Muhammad; Wölfling, Mirko; Dandekar, Thomas
2014-08-01
Cytokinins are essential plant hormones that control almost every aspect of plant growth and development. Their function in mediating plant susceptibility to fungal biotrophs and gall-causing pathogens is well known. Here we highlight the interaction between cytokinins and salicylic acid pathways. Furthermore, we discuss ways in which cytokinin signaling could crosstalk with plant immune networks. Some of these networks are modulated by pathogens to propagate disease, whereas others help the host to mitigate an infection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel
2015-01-01
Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition.
Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel
2015-01-01
Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition. PMID:25875745
Storm Water Control Management & Monitoring
DOT National Transportation Integrated Search
2017-11-30
Temple and Villanova universities collected monitoring and assessment data along the I-95 corridor to evaluate the performance of current stormwater control design and maintenance practices. An extensive inventory was developed that ranks plants in t...
Proteomic Responses in Arabidopsis thaliana Seedlings Treated with Ethylene
USDA-ARS?s Scientific Manuscript database
Ethylene (ET) is a volatile plant growth hormone that most famously modulates fruit ripening, but it also controls plant growth, development and stress responses. In Arabidopsis thaliana, ET is perceived by receptors in the endoplasmic reticulum, and a signal is transduced through a protein kinase,...
Promise for plant pest control: root-associated pseudomonads with insecticidal activities
Kupferschmied, Peter; Maurhofer, Monika; Keel, Christoph
2013-01-01
Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework. PMID:23914197
Sub-synchronous resonance damping using high penetration PV plant
NASA Astrophysics Data System (ADS)
Khayyatzadeh, M.; Kazemzadeh, R.
2017-02-01
The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, J.A.
Nuclear plants of the 21st century will employ higher levels of automation and fault tolerance to increase availability, reduce accident risk, and lower operating costs. Key developments in control algorithms, fault diagnostics, fault tolerance, and communication in a distributed system are needed to implement the fully automated plant. Equally challenging will be integrating developments in separate information and control fields into a cohesive system, which collectively achieves the overall goals of improved performance, safety, reliability, maintainability, and cost-effectiveness. Under the Nuclear Energy Research Initiative (NERI), the U. S. Department of Energy is sponsoring a project to address some of themore » technical issues involved in meeting the long-range goal of 21st century reactor control systems. This project, ''A New Paradigm for Automated Development Of Highly Reliable Control Architectures For Future Nuclear Plants,'' involves researchers from Oak Ridge National Laboratory, University of Tennessee, and North Carolina State University. This paper documents a research effort to develop methods for automated generation of control systems that can be traced directly to the design requirements. Our final goal is to allow the designer to specify only high-level requirements and stress factors that the control system must survive (e.g. a list of transients, or a requirement to withstand a single failure.) To this end, the ''control engine'' automatically selects and validates control algorithms and parameters that are optimized to the current state of the plant, and that have been tested under the prescribed stress factors. The control engine then automatically generates the control software from validated algorithms. Examples of stress factors that the control system must ''survive'' are: transient events (e.g., set-point changes, or expected occurrences such a load rejection,) and postulated component failures. These stress factors are specified by the designer and become a database of prescribed transients and component failures. The candidate control systems are tested, and their parameters optimized, for each of these stresses. Examples of high-level requirements are: response time less than xx seconds, or overshoot less than xx% ... etc. In mathematical terms, these types of requirements are defined as ''constraints,'' and there are standard mathematical methods to minimize an objective function subject to constraints. Since, in principle, any control design that satisfies all the above constraints is acceptable, the designer must also select an objective function that describes the ''goodness'' of the control design. Examples of objective functions are: minimize the number or amount of control motions, minimize an energy balance... etc.« less
Control of root growth and development by reactive oxygen species.
Tsukagoshi, Hironaka
2016-02-01
Reactive oxygen species (ROS) are relatively simple molecules that exist within cells growing in aerobic conditions. ROS were originally associated with oxidative stress and seen as highly reactive molecules that are injurious to many cell components. More recently, however, the function of ROS as signal molecules in many plant cellular processes has become more evident. One of the most important functions of ROS is their role as a plant growth regulator. For example, ROS are key molecules in regulating plant root development, and as such, are comparable to plant hormones. In this review, the molecular mechanisms of ROS that are mainly associated with plant root growth are discussed. The molecular links between root growth regulation by ROS and other signals will also be briefly discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Invasive Plant Management Plan for the Oak Ridge Reservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giffen, Neil R.; McCracken, Kitty
Invasive non-native plant species have become one of the greatest ecological threats across the country and around the world. Actively managing incursions of invasive plants is crucial to maintaining ecosystems, protecting natural resources, and ensuring proper function of facilities and their support infrastructures, power lines and other utility rights-of-way (ROWs), communications structures, roadways, and waterways. Invasive plants can threaten cultural resources, public and private properties, forests, wetlands, and other natural areas through increased risks of fire and storm damage, as well as decrease native plant diversity, particularly disrupting vital habitats of threatened and endangered species, both plant and animal. Inmore » 2000, the Federal Plant Protection Act came into effect. Under this Act, federal agencies are required to develop and coordinate an undesirable plants management program for control of invasive plants on federal lands under each agency’s respective jurisdiction. The agency must adequately fund the undesirable plants management program using an Integrated Pest Management Plan. Additionally, each agency is required to implement cooperative agreements with local and state agencies, as well as other federal agencies, to manage undesirable plants on federal lands under the agency’s jurisdiction. The US Department of Energy (DOE) takes its responsibility for addressing invasive and undesirable plant issues very seriously. Many DOE sites have programs to control invasive pest plant species. DOE has taken a proactive stance toward invasive plant control, and the Invasive Plant Management Plan— created to meet regulatory requirements of federal laws, executive orders, presidential memos, contracts, and agreements on DOE’s Oak Ridge Reservation (ORR)—has been in effect since 2004. This document represents the second revision of this plan.« less
Immunodetection of S-Nitrosoglutathione Reductase Protein in Plant Samples.
Tichá, Tereza; Luhová, Lenka; Petřivalský, Marek
2018-01-01
S-nitrosation, the attachment of a nitroso group to cysteine thiols, has been recognized as an important posttranslational modification of proteins by nitric oxide and related reactive nitrogen species. Mechanisms and significance of S-nitrosation in the regulation of the structure and activity of proteins have been extensively studied in animal and plant systems. In plants, protein S-nitrosation is involved in signaling pathways of plant hormones and regulators during plant growth and development and in responses to abiotic and biotic stress stimuli. S-nitrosoglutathione reductase (GSNOR) has been identified as a key enzyme controlling the intracellular level of S-nitrosothiols. GSNOR irreversibly degrades S-nitrosoglutathione (GSNO), the major low molecular weight S-nitrosothiol involved in the formation of protein S-nitrosothiols through transnitrosylation. GSNOR level and activity in plant cells are modulated during plant development and in response to external stimuli such as pathogen infection. In this chapter, we give a detailed description of the immunochemical detection of the GSNOR protein in plant samples.
Stem cell function during plant vascular development
Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka
2013-01-01
The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537
Control of Floral Meristem Determinacy in Petunia by MADS-Box Transcription Factors1[W
Ferrario, Silvia; Shchennikova, Anna V.; Franken, John; Immink, Richard G.H.; Angenent, Gerco C.
2006-01-01
The shoot apical meristem (SAM), a small group of undifferentiated dividing cells, is responsible for the continuous growth of plants. Several genes have been identified that control the development and maintenance of the SAM. Among these, WUSCHEL (WUS) from Arabidopsis (Arabidopsis thaliana) is thought to be required for maintenance of a stem cell pool in the SAM. The MADS-box gene AGAMOUS, in combination with an unknown factor, has been proposed as a possible negative regulator of WUS, leading to the termination of meristematic activity within the floral meristem. Transgenic petunia (Petunia hybrida) plants were produced in which the E-type and D-type MADS-box genes FLORAL BINDING PROTEIN2 (FBP2) and FBP11, respectively, are simultaneously overexpressed. These plants show an early arrest in development at the cotyledon stage. Molecular analysis of these transgenic plants revealed a possible combined action of FBP2 and FBP11 in repressing the petunia WUS homolog, TERMINATOR. Furthermore, the ectopic up-regulation of the C-type and D-type homeotic genes FBP6 and FBP7, respectively, suggests that they may also participate in a complex, which causes the determinacy in transgenic plants. These data support the model that a transcription factor complex consisting of C-, D-, and E-type MADS-box proteins controls the stem cell population in the floral meristem. PMID:16428599
Forsyth, G G; Le Maitre, D C; O'Farrell, P J; van Wilgen, B W
2012-07-30
Invasions by alien plants are a significant threat to the biodiversity and functioning of ecosystems and the services they provide. The South African Working for Water program was established to address this problem. It needs to formulate objective and transparent priorities for clearing in the face of multiple and sometimes conflicting demands. This study used the analytic hierarchy process (a multi-criteria decision support technique) to develop and rank criteria for prioritising alien plant control operations in the Western Cape, South Africa. Stakeholder workshops were held to identify a goal and criteria and to conduct pair-wise comparisons to weight the criteria with respect to invasive alien plant control. The combination of stakeholder input (to develop decision models) with data-driven model solutions enabled us to include many alternatives (water catchments), that would otherwise not have been feasible. The most important criteria included the capacity to maintain gains made through control operations, the potential to enhance water resources and conserve biodiversity, and threats from priority invasive alien plant species. We selected spatial datasets and used them to generate weights that could be used to objectively compare alternatives with respect to agreed criteria. The analysis showed that there are many high priority catchments which are not receiving any funding and low priority catchments which are receiving substantial allocations. Clearly, there is a need for realigning priorities, including directing sufficient funds to the highest priority catchments to provide effective control. This approach provided a tractable, consensus-based solution that can be used to direct clearing operations. Copyright © 2012 Elsevier Ltd. All rights reserved.
An Automated and Continuous Plant Weight Measurement System for Plant Factory
Chen, Wei-Tai; Yeh, Yu-Hui F.; Liu, Ting-Yu; Lin, Ta-Te
2016-01-01
In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications. PMID:27066040
An Automated and Continuous Plant Weight Measurement System for Plant Factory.
Chen, Wei-Tai; Yeh, Yu-Hui F; Liu, Ting-Yu; Lin, Ta-Te
2016-01-01
In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications.
Optimization of Phenotyping Assays for the Model Monocot Setaria viridis.
Acharya, Biswa R; Roy Choudhury, Swarup; Estelle, Aiden B; Vijayakumar, Anitha; Zhu, Chuanmei; Hovis, Laryssa; Pandey, Sona
2017-01-01
Setaria viridis (green foxtail) is an important model plant for the study of C4 photosynthesis in panicoid grasses, and is fast emerging as a system of choice for the study of plant development, domestication, abiotic stress responses and evolution. Basic research findings in Setaria are expected to advance research not only in this species and its close relative S. italica (foxtail millet), but also in other panicoid grasses, many of which are important food or bioenergy crops. Here we report on the standardization of multiple growth and development assays for S. viridis under controlled conditions, and in response to several phytohormones and abiotic stresses. We optimized these assays at three different stages of the plant's life: seed germination and post-germination growth using agar plate-based assays, early seedling growth and development using germination pouch-based assays, and adult plant growth and development under environmentally controlled growth chambers and greenhouses. These assays will be useful for the community to perform large scale phenotyping analyses, mutant screens, comparative physiological analysis, and functional characterization of novel genes of Setaria or other related agricultural crops. Precise description of various growth conditions, effective treatment conditions and description of the resultant phenotypes will help expand the use of S. viridis as an effective model system.
de Oliveira, Raquel S; Oliveira-Neto, Osmundo B; Moura, Hudson F N; de Macedo, Leonardo L P; Arraes, Fabrício B M; Lucena, Wagner A; Lourenço-Tessutti, Isabela T; de Deus Barbosa, Aulus A; da Silva, Maria C M; Grossi-de-Sa, Maria F
2016-01-01
Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.
de Oliveira, Raquel S.; Oliveira-Neto, Osmundo B.; Moura, Hudson F. N.; de Macedo, Leonardo L. P.; Arraes, Fabrício B. M.; Lucena, Wagner A.; Lourenço-Tessutti, Isabela T.; de Deus Barbosa, Aulus A.; da Silva, Maria C. M.; Grossi-de-Sa, Maria F.
2016-01-01
Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests. PMID:26925081
Ivanova, T N; Bercovich YuA; Mashinskiy, A L; Meleshko, G I
1992-04-01
The paper describes the project "SVET"--the creating of a small dimensions space greenhouse of new generation. By means of minicomputer, "SVET" is full-automatic operating and controlling environmental conditions system in the higher plants growth unit. A number of studies have selected the radish and cabbage vegetables as a potentially important crop for CELSS (short term cycle of vegetation). The "SVET" space greenhouse has been mounted on the "CRYSTAL" technological module which docked to the "MIR" orbital space station on June 10, 1990. Soviet cosmonauts Balandin and Solovyov started the first experiments with the greenhouse on June 15, 1990. The preliminary results of the seeds cultivation for the first 54-days period in "SVET" are presented. Morphometrical characteristics of the plants, brought back to the Earth are given. The vegetation peculiarities, such as the plants growth and the development slowing-down, or the dry substance contents raising are noted. For the first time, the root crop of radish plants at microgravity conditions, are produced. Characteristics of controlled plants' environment parameters and an estimation of functional properties of control and regulation systems of the "SVET" greenhouse in space flight according to telemetry data is given.
Waller, P J; Bernes, G; Thamsborg, S M; Sukura, A; Richter, S H; Ingebrigtsen, K; Höglund, J
2001-01-01
Preparations derived from plants were the original therapeutic interventions used by man to control diseases (including parasites), both within humans and livestock. Development of herbal products depended upon local botanical flora with the result that different remedies tended to develop in different parts of the world. Nevertheless, in some instances, the same or related plants were used over wide geographic regions, which also was the result of communication and/or the importation of plant material of high repute. Thus, the Nordic countries have an ancient, rich and diverse history of plant derived anthelmintic medications for human and animal use. Although some of the more commonly used herbal de-wormers were derived from imported plants, or their products, many are from endemic plants or those that thrive in the Scandinavian environment. With the advent of the modern chemotherapeutic era, and the discovery, development and marketing of a seemingly unlimited variety of highly efficacious, safe synthetic chemicals with very wide spectra of activities, herbal remedies virtually disappeared from the consciousness--at least in the Western world. This attitude is now rapidly changing. There is a widespread resurgence in natural product medication, driven by major threats posed by multi-resistant pest, or disease, organisms and the diminishing public perceptions that synthetic chemicals are the panacea to health and disease control. This review attempts to provide a comprehensive account of the depth of historical Nordic information available on herbal de-wormers, with emphasis on livestock and to provide some insights on potentially rewarding areas of "re-discovery" and scientific evaluation in this field.
The Plant Ontology as a Tool for Comparative Plant Anatomy and Genomic Analyses
Cooper, Laurel; Walls, Ramona L.; Elser, Justin; Gandolfo, Maria A.; Stevenson, Dennis W.; Smith, Barry; Preece, Justin; Athreya, Balaji; Mungall, Christopher J.; Rensing, Stefan; Hiss, Manuel; Lang, Daniel; Reski, Ralf; Berardini, Tanya Z.; Li, Donghui; Huala, Eva; Schaeffer, Mary; Menda, Naama; Arnaud, Elizabeth; Shrestha, Rosemary; Yamazaki, Yukiko; Jaiswal, Pankaj
2013-01-01
The Plant Ontology (PO; http://www.plantontology.org/) is a publicly available, collaborative effort to develop and maintain a controlled, structured vocabulary (‘ontology’) of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and stages of plant development, using the data model adopted by the Gene Ontology. From its original design covering only rice, maize and Arabidopsis, the scope of the PO has been expanded to include all green plants. The PO was the first multispecies anatomy ontology developed for the annotation of genes and phenotypes. Also, to our knowledge, it was one of the first biological ontologies that provides translations (via synonyms) in non-English languages such as Japanese and Spanish. As of Release #18 (July 2012), there are about 2.2 million annotations linking PO terms to >110,000 unique data objects representing genes or gene models, proteins, RNAs, germplasm and quantitative trait loci (QTLs) from 22 plant species. In this paper, we focus on the plant anatomical entity branch of the PO, describing the organizing principles, resources available to users and examples of how the PO is integrated into other plant genomics databases and web portals. We also provide two examples of comparative analyses, demonstrating how the ontology structure and PO-annotated data can be used to discover the patterns of expression of the LEAFY (LFY) and terpene synthase (TPS) gene homologs. PMID:23220694
NASA Technical Reports Server (NTRS)
Ostroff, Aaron J.
1998-01-01
This paper contains a study of two methods for use in a generic nonlinear simulation tool that could be used to determine achievable control dynamics and control power requirements while performing perfect tracking maneuvers over the entire flight envelope. The two methods are NDI (nonlinear dynamic inversion) and the SOFFT(Stochastic Optimal Feedforward and Feedback Technology) feedforward control structure. Equivalent discrete and continuous SOFFT feedforward controllers have been developed. These equivalent forms clearly show that the closed-loop plant model loop is a plant inversion and is the same as the NDI formulation. The main difference is that the NDI formulation has a closed-loop controller structure whereas SOFFT uses an open-loop command model. Continuous, discrete, and hybrid controller structures have been developed and integrated into the formulation. Linear simulation results show that seven different configurations all give essentially the same response, with the NDI hybrid being slightly different. The SOFFT controller gave better tracking performance compared to the NDI controller when a nonlinear saturation element was added. Future plans include evaluation using a nonlinear simulation.
Machine vision guided sensor positioning system for leaf temperature assessment
NASA Technical Reports Server (NTRS)
Kim, Y.; Ling, P. P.; Janes, H. W. (Principal Investigator)
2001-01-01
A sensor positioning system was developed for monitoring plants' well-being using a non-contact sensor. Image processing algorithms were developed to identify a target region on a plant leaf. A novel algorithm to recover view depth was developed by using a camera equipped with a computer-controlled zoom lens. The methodology has improved depth recovery resolution over a conventional monocular imaging technique. An algorithm was also developed to find a maximum enclosed circle on a leaf surface so the conical field-of-view of an infrared temperature sensor could be filled by the target without peripheral noise. The center of the enclosed circle and the estimated depth were used to define the sensor 3-D location for accurate plant temperature measurement.
Regulated Expression of a Calmodulin Isoform Alters Growth and Development in Potato
NASA Technical Reports Server (NTRS)
Poovaiah, B. W.; Takezawa, D.; An, G.; Han, T.-J.
1996-01-01
A transgene approach was taken to study the consequences of altered expression of a calmodutin iso-form on plant growth and development. Eight genomic clones of potato calmodulin (PCM 1 to 8) have been isolated and characterized. Among the potato calmodulin isoforms studied, PCM 1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM 1 fused to the CAMV 35S promoter. Transgenic plants showing a moderate increase in PCM 1 MRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM 1 MRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM 1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM 1 MRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM 1 protein in transgenic plants, indicating that the expression of both MRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM 1 alters growth and development in potato plants.
Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants.
Thakur, Abhinay; Kaur, Sanehdeep; Kaur, Amarjeet; Singh, Varinder
2013-04-01
Endophytic fungi, which live within host plant tissues without causing any visible symptom of disease, are important mediators of plant-herbivore interactions. These endophytes enhance resistance of host plant against insect herbivores mainly by productions of various alkaloid based defensive compounds in the plant tissue or through alterations of plant nutritional quality. Two endophytic fungi, i.e., Nigrospora sp. and Cladosporium sp., were isolated from Tinospora cordifolia (Thunb.) Miers, a traditional indian medicinal plant. Cauliflower (Brassica oleracea L.) plants were inoculated with these two endophytic fungi. The effect of endophyte infected and uninfected cauliflower plants were measured on the survival and development of Spodoptera litura (Fab.), a polyphagous pest. Endophyte infected cauliflower plants showed resistance to S. litura in the form of significant increase in larval and pupal mortality in both the fungi. Inhibitory effects of endophytic fungi also were observed on adult emergence, longevity, reproductive potential, as well as hatchability of eggs. Thus, it is concluded that antibiosis to S. litura could be imparted by artificial inoculation of endophytes and this could be used to develop alternative ecologically safe control strategies.
Improved understanding of weed biological control safety and impact with chemical ecology: a review
USDA-ARS?s Scientific Manuscript database
We review chemical ecology literature as it relates to weed biological control and discuss how this means of controlling invasive plants could be enhanced by the consideration of several well established research developments. The interface between chemical ecology and weed biological control presen...
1990-12-01
methods are implemented in MATRIXx with the programs SISOTF and MIMOTF respectively. Following the mathe - matical development, the application of these...intent is not to teach any of the methods , it has been written in a manner to significantly assist an individual attempting follow on work. I would...equivalent plant models. A detailed mathematical development of the method used to develop these equivalent LTI plant models is provided. After this inner
Sathiyabama, Muthukrishnan; Manikandan, Appu
2018-02-28
Copper-chitosan nanoparticle (CuChNp) was synthesized and used to study its effect on finger millet plant as a model plant system. Our objective was to explore the efficacy of CuChNp application to control blast disease of finger millet. CuChNp was applied to finger millet either as a foliar spray or as a combined application (involving seed coat and foliar spray). Both the application methods enhanced growth profile of finger millet plants and increased yield. The increased yield was nearly 89% in combined application method. Treated finger millet plants challenged with Pyricularia grisea showed suppression of blast disease development when compared to control. Nearly 75% protection was observed in the combined application of CuChNp to finger millet plants. In CuChNp treated finger millet plants, a significant increase in defense enzymes was observed, which was detected both qualitatively and quantitatively. The suppression of blast disease correlates well with increased defense enzymes in CuChNp treated finger millet plants.
Development status of the small community solar power system
NASA Technical Reports Server (NTRS)
Pons, R. L.
1982-01-01
The development status and test results for the Small Community Solar Thermal Power Experiment are presented. Activities on the phase 2 power module development effort are presented with emphasis on the receiver, the plant control subsystem, and the energy transport subsystem. The components include a single prototype power module consisting of a parabolic dish concentrator, a power conversion assembly (PCA), and a multiple-module plant control subsystem. The PCA consists of a cavity receiver coupled to an organic Rankine cycle engine-alternator unit defined as the power conversion subsystem; the PCA is mounted at the focus of a parabolic dish concentrator. At a solar insolation of 100 W/sq m and ambient temperature of 28 C (82 F), the power module produces approximately 20 kW of 3-phase, 3 kHz ac power, depending on the concentrator employed. A ground-mounted rectifier to the central collection site where it is supplied directly to the common dc bus which collects the power from all modules in the plant.
Study of an automatic trajectory following control system
NASA Technical Reports Server (NTRS)
Vanlandingham, H. F.; Moose, R. L.; Zwicke, P. E.; Lucas, W. H.; Brinkley, J. D.
1983-01-01
It is shown that the estimator part of the Modified Partitioned Adaptive Controller, (MPAC) developed for nonlinear aircraft dynamics of a small jet transport can adapt to sensor failures. In addition, an investigation is made into the potential usefulness of the configuration detection technique used in the MPAC and the failure detection filter is developed that determines how a noise plant output is associated with a line or plane characteristic of a failure. It is shown by computer simulation that the estimator part and the configuration detection part of the MPAC can readily adapt to actuator and sensor failures and that the failure detection filter technique cannot detect actuator or sensor failures accurately for this type of system because of the plant modeling errors. In addition, it is shown that the decision technique, developed for the failure detection filter, can accurately determine that the plant output is related to the characteristic line or plane in the presence of sensor noise.
NASA Astrophysics Data System (ADS)
Astafiev, A.; Orlov, A.; Privezencev, D.
2018-01-01
The article is devoted to the development of technology and software for the construction of positioning and control systems in industrial plants based on aggregation to determine the current storage area using computer vision and radiofrequency identification. It describes the developed of the project of hardware for industrial products positioning system in the territory of a plant on the basis of radio-frequency grid. It describes the development of the project of hardware for industrial products positioning system in the plant on the basis of computer vision methods. It describes the development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification. Experimental studies in laboratory and production conditions have been conducted and described in the article.
Summary of NR Program Prometheus Efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Ashcroft; C Eshelman
2006-02-08
The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less
Park, Joon-Heum; Jung, Sunyo
2017-01-22
In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by F v /F m . NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Control of continuous irradiation injury on potatoes with daily temperature cycling
NASA Technical Reports Server (NTRS)
Tibbitts, T. W.; Bennett, S. M.; Cao, W.
1990-01-01
Two controlled-environment experiments were conducted to determine the effects of temperature fluctuations under continuous irradiation on growth and tuberization of two potato (Solanum tuberosum L.) cultivars, Kennebec and Superior. These cultivars had exhibited chlorotic and stunted growth under continuous irradiation and constant temperatures. The plants were grown for 4 weeks in the first experiment and for 6 weeks in the second experiment. Each experiment was conducted under continuous irradiation of 400 micromoles per square meter per second of photosynthetic photon flux and included two temperature treatments: constant 18 degrees C and fluctuating 22 degrees C/14 degrees C on a 12-hour cycle. A common vapor pressure deficit of 0.62 kilopascal was maintained at all temperatures. Plants under constant 18 degrees C were stunted and had chlorotic and abscised leaves and essentially no tuber formation. Plants grown under the fluctuating temperature treatment developed normally, were developing tubers, and had a fivefold or greater total dry weight as compared with those under the constant temperature. These results suggest that a thermoperiod can allow normal plant growth and tuberization in potato cultivars that are unable to develop effectively under continuous irradiation.
A molecular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus.
Kim, Juhyun; Joo, Youngsung; Kyung, Jinseul; Jeon, Myeongjune; Park, Jong Yoon; Lee, Ho Gyun; Chung, Doo Soo; Lee, Eunju; Lee, Ilha
2018-02-01
Ranunculus trichophyllus is an amphibious plant that produces thin and cylindrical leaves if grown under water but thick and broad leaves if grown on land. We found that such heterophylly is widely controlled by two plant hormones, abscisic acid (ABA) and ethylene, which control terrestrial and aquatic leaf development respectively. Aquatic leaves produced higher levels of ethylene but lower levels of ABA than terrestrial leaves. In aquatic leaves, their distinct traits with narrow shape, lack of stomata, and reduced vessel development were caused by EIN3-mediated overactivation of abaxial genes, RtKANADIs, and accompanying with reductions of STOMAGEN and VASCULAR-RELATED NAC-DOMAIN7 (VDN7). In contrast, in terrestrial leaves, ABI3-mediated activation of the adaxial genes, RtHD-ZIPIIIs, and STOMAGEN and VDN7 established leaf polarity, and stomata and vessel developments. Heterophylly of R.trichophyllus could be also induced by external cues such as cold and hypoxia, which is accompanied with the changes in the expression of leaf polarity genes similar to aquatic response. A closely-related land plant R. sceleratus did not show such heterophyllic responses, suggesting that the changes in the ABA/ethylene signaling and leaf polarity are one of key evolutionary steps for aquatic adaptation.
Design and fabrication of adjustable red-green-blue LED light arrays for plant research
Folta, Kevin M; Koss, Lawrence L; McMorrow, Ryan; Kim, Hyeon-Hye; Kenitz, J Dustin; Wheeler, Raymond; Sager, John C
2005-01-01
Background Although specific light attributes, such as color and fluence rate, influence plant growth and development, researchers generally cannot control the fine spectral conditions of artificial plant-growth environments. Plant growth chambers are typically outfitted with fluorescent and/or incandescent fixtures that provide a general spectrum that is accommodating to the human eye and not necessarily supportive to plant development. Many studies over the last several decades, primarily in Arabidopsis thaliana, have clearly shown that variation in light quantity, quality and photoperiod can be manipulated to affect growth and control developmental transitions. Light emitting diodes (LEDs) has been used for decades to test plant responses to narrow-bandwidth light. LEDs are particularly well suited for plant growth chambers, as they have an extraordinary life (about 100,000 hours), require little maintenance, and use negligible energy. These factors render LED-based light strategies particularly appropriate for space-biology as well as terrestrial applications. However, there is a need for a versatile and inexpensive LED array platform where individual wavebands can be specifically tuned to produce a series of light combinations consisting of various quantities and qualities of individual wavelengths. Two plans are presented in this report. Results In this technical report we describe the practical construction of tunable red-green-blue LED arrays to support research in plant growth and development. Two light fixture designs and corresponding circuitry are presented. The first is well suited for a laboratory environment for use in a finite area with small plants, such as Arabidopsis. The second is expandable and appropriate for growth chambers. The application of these arrays to early plant developmental studies has been validated with assays of hypocotyl growth inhibition/promotion and phototropic curvature in Arabidopsis seedlings. Conclusion The presentation of these proven plans for LED array construction allows the teacher, researcher or electronics aficionado a means to inexpensively build efficient, adjustable lighting modules for plant research. These simple and effective designs permit the construction of useful tools by programs short on electronics expertise. These arrays represent a means to modulate precise quality and quantity in experimental settings to test the effect of specific light combinations in regulating plant growth, development and plant-product yield. PMID:16117835
Rezania, Shahabaldin; Ponraj, Mohanadoss; Talaiekhozani, Amirreza; Mohamad, Shaza Eva; Md Din, Mohd Fadhil; Taib, Shazwin Mat; Sabbagh, Farzaneh; Sairan, Fadzlin Md
2015-11-01
The development of eco-friendly and efficient technologies for treating wastewater is one of the attractive research area. Phytoremediation is considered to be a possible method for the removal of pollutants present in wastewater and recognized as a better green remediation technology. Nowadays the focus is to look for a sustainable approach in developing wastewater treatment capability. Water hyacinth is one of the ancient technology that has been still used in the modern era. Although, many papers in relation to wastewater treatment using water hyacinth have been published, recently removal of organic, inorganic and heavy metal have not been reviewed extensively. The main objective of this paper is to review the possibility of using water hyacinth for the removal of pollutants present in different types of wastewater. Water hyacinth is although reported to be as one of the most problematic plants worldwide due to its uncontrollable growth in water bodies but its quest for nutrient absorption has provided way for its usage in phytoremediation, along with the combination of herbicidal control, integratated biological control and watershed management controlling nutrient supply to control its growth. Moreover as a part of solving wastewater treatment problems in urban or industrial areas using this plant, a large number of useful byproducts can be developed like animal and fish feed, power plant energy (briquette), ethanol, biogas, composting and fiber board making. In focus to the future aspects of phytoremediation, the utilization of invasive plants in pollution abatement phytotechnologies can certainly assist for their sustainable management in treating waste water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath
2016-01-01
The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338
Ku, Lixia; Zhang, Liangkun; Tian, Zhiqiang; Guo, Shulei; Su, Huihui; Ren, Zhenzhen; Wang, Zhiyong; Li, Guohui; Wang, Xiaobo; Zhu, Yuguang; Zhou, Jinlong; Chen, Yanhui
2015-08-01
Plant height is one of the most heritable traits in maize (Zea mays L.). Understanding the genetic control of plant height is important for elucidating the molecular mechanisms that regulate maize development. To investigate the genetic basis of the plant height response to density in maize, we evaluated the effects of two different plant densities (60,000 and 120,000 plant/hm(2)) on three plant height-related traits (plant height, ear height, and ear height-to-plant height ratio) using four sets of recombinant inbred line populations. The phenotypes observed under the two-plant density treatments indicated that high plant density increased the phenotypic performance values of the three measured traits. Twenty-three quantitative trait loci (QTLs) were detected under the two-plant density treatments, and five QTL clusters were located. Nine QTLs were detected under the low plant density treatment, and seven QTLs were detected under the high plant density treatment. Our results suggested that plant height may be controlled mainly by a common set of genes that could be influenced by additional genetic mechanisms when the plants were grown under high plant density. Fine mapping for genetic regions of the stable QTLs across different plant density environments may provide additional information about their different responses to density. The results presented here provide useful information for further research and will help to reveal the molecular mechanisms related to plant height in response to density.
Wind Plant Power Optimization and Control under Uncertainty
NASA Astrophysics Data System (ADS)
Jha, Pankaj; Ulker, Demet; Hutchings, Kyle; Oxley, Gregory
2017-11-01
The development of optimized cooperative wind plant control involves the coordinated operation of individual turbines co-located within a wind plant to improve the overall power production. This is typically achieved by manipulating the trajectory and intensity of wake interactions between nearby turbines, thereby reducing wake losses. However, there are various types of uncertainties involved, such as turbulent inflow and microscale and turbine model input parameters. In a recent NREL-Envision collaboration, a controller that performs wake steering was designed and implemented for the Longyuan Rudong offshore wind plant in Jiangsu, China. The Rudong site contains 25 Envision EN136-4 MW turbines, of which a subset was selected for the field test campaign consisting of the front two rows for the northeasterly wind direction. In the first row, a turbine was selected as the reference turbine, providing comparison power data, while another was selected as the controlled turbine. This controlled turbine wakes three different turbines in the second row depending on the wind direction. A yaw misalignment strategy was designed using Envision's GWCFD, a multi-fidelity plant-scale CFD tool based on SOWFA with a generalized actuator disc (GAD) turbine model, which, in turn, was used to tune NREL's FLORIS model used for wake steering and yaw control optimization. The presentation will account for some associated uncertainties, such as those in atmospheric turbulence and wake profile.
Gong, Ya-Jun; Cao, Li-Jun; Wang, Ze-Hua; Zhou, Xiao-Yi; Chen, Jin-Cui; Hoffmann, Ary Anthony; Wei, Shu-Jun
2018-03-28
To develop a new control method for the two-spotted spider mite (TSSM), Tetranychus urticae, we investigated the effect of controlled atmospheres of carbon dioxide (CO 2 ) on TSSM mortality under different concentrations and treatment periods, and evaluated the impact of treatments on seedlings of five host plants of TSSM. Egg hatching rate of TSSM was reduced to 37.7, 5.4 or 0% after 24 h treatment involving concentrations of 16.7, 33.3 or 50%, respectively. Mobile stages (nymphs and adult) of TSSM were completely controlled after 24 h treatment at concentrations higher than 33.3%. After 4 h at concentrations of 33.3 or 50%, 1st-day survival rate for all mobile stages was 45.3 or 36.0%, respectively, whereas after 8 or 16 h treatments, all values were decreased to zero. Seedlings of four major host plants of TSSM (cucumber, eggplant, rape, green peppers) were damaged to varying degrees after 24 h at the three concentrations, but strawberry, another host plant, was not damaged. Cucumber suffered the most serious damage, resulting in wilting and death. In conclusion, controlled atmospheres of CO 2 can kill TSSM, particularly at high concentrations and with long treatment times. It can be used to control TSSM on strawberry, but should be used cautiously on other host plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skiles, S. K.
1994-12-22
An inductive double-contingency analysis (DCA) method developed by the criticality safety function at the Savannah River Site, was applied in Criticality Safety Evaluations (CSEs) of five major plant process systems at the Westinghouse Electric Corporation`s Commercial Nuclear Fuel Manufacturing Plant in Columbia, South Carolina (WEC-Cola.). The method emphasizes a thorough evaluation of the controls intended to provide barriers against criticality for postulated initiating events, and has been demonstrated effective at identifying common mode failure potential and interdependence among multiple controls. A description of the method and an example of its application is provided.
Effect of lamp type and temperature on development, carbon partitioning and yield of soybean
NASA Astrophysics Data System (ADS)
Dougher, T. A. O.; Bugbee, B.
1997-01-01
Soybeans grown in controlled environments are commonly taller than field-grown plants. In controlled environments, including liquid hydroponics, height of the dwarf cultivar ``Hoyt'' was reduced from 46 to 33 cm when plants were grown under metal halide lamps compared to high pressure sodium lamps at the same photosynthetic photon flux. Metal halide lamps reduced total biomass 14% but did not significantly reduce seed yield. Neither increasing temperature nor altering the difference between day/night temperature affected plant height. Increasing temperature from 21 to 27 degC increased yield 32%. High temperature significantly increased carbon partitioning to stems and increased harvest index.
Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei
2009-01-01
Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed. PMID:19015126
Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei
2009-01-01
Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed.
Agatz, Annika; Schumann, Mario M; French, Bryan W; Brown, Colin D; Vidal, Stefan
2018-03-24
Characterizing lethal and sublethal control of soil-based pests with plant protection products is particularly challenging due to the complex and dynamic interplay of the system components. Here, we present two types of studies: acute toxcity experiments (homogenous exposure of individuals in soil) and rhizotron experiments (heterogeneous exposure of individuals in soil) to investigate their ability to strengthen our understanding of mechanisms driving the effectivness of the plant protection product. Experiments were conducted using larvae of the western corn rootworm Diabrotica virgifera LeConte and three pesticide active ingredients: clothianidin (neonicotinoid), chlorpyrifos (organophosphate) and tefluthrin (pyrethroid). The order of compound concentrations needed to invoke a specific effect intensity (EC 50 values) within the acute toxicity tests was chlorpyrifos > tefluthrin > clothianidin. This order changed for the rhizotron experiments because application type, fate and transport of the compounds in the soil profile, and sublethal effects on larvae also influence their effectiveness in controlling larval feeding on corn roots. Beyond the pure measurement of efficacy through observing relative changes in plant injury to control plants, the tests generate mechanistic understanding for drivers of efficacy apart from acute toxicity. The experiments have the potential to enhance efficacy testing and product development, and might be useful tools for assessing resistance development in the future. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Natural or synthetic elicitors can affect plant physiology by stimulating direct and indirect defense responses to herbivores. For example, increased production of plant secondary metabolites, a direct response, can negatively impact herbivore survival, development, and fecundity. Indirect respons...
Evaluating leaf and canopy reflectance of stressed rice plants to monitor arsenic contamination
USDA-ARS?s Scientific Manuscript database
Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor ars...
Blueberry (Vaccinium corymbosum)-Scorch
USDA-ARS?s Scientific Manuscript database
The Blueberry scorch virus (BlScV), which is vectored by aphids, can infect blueberry and cranberry. Once a plant is infected, symptoms may take 1 to 2 years or more to develop. This makes early detection vital for controlling the disease. The virus was first observed in a ‘Berkeley’ blueberry plant...
Transgenic Studies on the Involvement of Cytokinin and Gibberellin in Male Development
Huang, Shihshieh; Cerny, R. Eric; Qi, Youlin; Bhat, Deepti; Aydt, Carrie M.; Hanson, Doris D.; Malloy, Kathleen P.; Ness, Linda A.
2003-01-01
Numerous plant hormones interact during plant growth and development. Elucidating the role of these various hormones on particular tissue types or developmental stages has been difficult with exogenous applications or constitutive expression studies. Therefore, we used tissue-specific promoters expressing CKX1 and gai, genes involved in oxidative cytokinin degradation and gibberellin (GA) signal transduction, respectively, to study the roles of cytokinin and GA in male organ development. Accumulation of CKX1 in reproductive tissues of transgenic maize (Zea mays) resulted in male-sterile plants. The male development of these plants was restored by applications of kinetin and thidiazuron. Similarly, expression of gai specifically in anthers and pollen of tobacco (Nicotiana tabacum) and Arabidopsis resulted in the abortion of these respective tissues. The gai-induced male-sterile phenotype exhibited by the transgenic plants was reversible by exogenous applications of kinetin. Our results provide molecular evidence of the involvement of cytokinin and GA in male development and support the hypothesis that the male development is controlled in concert by multiple hormones. These studies also suggest a potential method for generating maintainable male sterility in plants by using existing agrochemicals that would reduce the expense of seed production for existing hybrid crops and provide a method to produce hybrid varieties of traditionally non-hybrid crops. PMID:12644677
Air pollution control systems in WtE units: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vehlow, J., E-mail: juergen.vehlow@partner.kit.edu
Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removalmore » of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made.« less
Automatic micropropagation of plants
NASA Astrophysics Data System (ADS)
Otte, Clemens; Schwanke, Joerg; Jensch, Peter F.
1996-12-01
Micropropagation is a sophisticated technique for the rapid multiplication of plants. It has a great commercial potential due to the speed of propagation, the high plant quality, and the ability to produce disease-free plants. However, micropropagation is usually done by hand which makes the process cost-intensive and tedious for the workers especially because it requires a sterile work-place. Therefore, we have developed a prototype automation system for the micropropagation of a grass species (miscanthus sinensis gigantheus). The objective of this paper is to describe the robotic system in an overview and to discuss the vision system more closely including the implemented morphological operations recognizing the cutting and gripping points of miscanthus plants. Fuzzy controllers are used to adapt the parameters of image operations on-line to each individual plant. Finally, we discuss our experiences with the developed prototype an give a preview of a possible real production line system.
Trends in plant virus epidemiology: opportunities from new or improved technologies.
Jones, R A C
2014-06-24
This review focuses on new or improved technologies currently being applied, or likely to be applied in the future, to worldwide research on plant virus epidemiology. Recent technological advances and innovations provide many opportunities to improve understanding of the way diverse types of plant virus epidemics develop and how to manage them. The review starts at the macro level by considering how recent innovations in remote sensing and precision agriculture can provide valuable information about (i) virus epidemics occurring at continental, regional or district scales (via satellites) and within individual crops (mostly via lightweight unmanned aerial vehicles), and (ii) exactly where to target control measures. It then considers recent improvements in information systems and innovations in modelling that improve (i) understanding of virus epidemics and ability to predict them, and (ii) delivery to end-users of critical advice on control measures, such as Internet-based Decision Support Systems. The review goes on to discuss how advances in analysis of spatiotemporal virus spread patterns within crops can help to enhance understanding of how virus epidemics develop and validate potentially useful virus control measures. At the micro level, the review then considers the many insights that advances in molecular epidemiology can provide about genetic variation within plant virus populations involved in epidemics, and how this variation drives what occurs at the macro level. Next, it describes how recent innovations in virus detection technologies are providing many opportunities to collect and analyse new types, and ever increasing amounts, of data about virus epidemics, and the genetic variability of the virus populations involved. Finally, the implications for plant virus epidemiology of technologies likely to be important in the future are considered. To address looming world food insecurity and threats to plant biodiversity resulting from climate change and rapid population growth, it is important that new and improved technologies that help understand and control epidemics of damaging plant viruses are adopted as smoothly and speedily as possible. Copyright © 2013 Elsevier B.V. All rights reserved.
Plant model of KIPT neutron source facility simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.
2016-02-01
Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system ismore » coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.« less
Application of 3D printing to prototype and develop novel plant tissue culture systems.
Shukla, Mukund R; Singh, Amritpal S; Piunno, Kevin; Saxena, Praveen K; Jones, A Maxwell P
2017-01-01
Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated experiment are discussed. This open source design has the scope for further improvement and adaptation and demonstrates the power of 3D printing to improve the design of culture systems.
NASA Technical Reports Server (NTRS)
Polotzky, Anthony S.; Wieseman, Carol; Hoadley, Sherwood Tiffany; Mukhopadhyay, Vivek
1990-01-01
The development of a controller performance evaluation (CPE) methodology for multiinput/multioutput digital control systems is described. The equations used to obtain the open-loop plant, controller transfer matrices, and return-difference matrices are given. Results of applying the CPE methodology to evaluate MIMO digital flutter suppression systems being tested on an active flexible wing wind-tunnel model are presented to demonstrate the CPE capability.
Electrophysiological assessment of water stress in fruit-bearing woody plants.
Ríos-Rojas, Liliana; Tapia, Franco; Gurovich, Luis A
2014-06-15
Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a continuous signal with daily maximum and a minimum EP of similar magnitude in time, with zero slope. This plant electrical behavior is proposed for the development of a sensor measuring real-time plant water status. Copyright © 2014 Elsevier GmbH. All rights reserved.
Transcription Factor-Mediated Control of Anthocyanin Biosynthesis in Vegetative Tissues1[OPEN
Outchkourov, Nikolay S.; Schrama, Xandra; Blilou, Ikram; Jongedijk, Esmer; Simon, Carmen Diez; Bosch, Dirk; Hall, Robert D.
2018-01-01
Plants accumulate secondary metabolites to adapt to environmental conditions. These compounds, here exemplified by the purple-colored anthocyanins, are accumulated upon high temperatures, UV-light, drought, and nutrient deficiencies, and may contribute to tolerance to these stresses. Producing compounds is often part of a more broad response of the plant to changes in the environment. Here we investigate how a transcription-factor-mediated program for controlling anthocyanin biosynthesis also has effects on formation of specialized cell structures and changes in the plant root architecture. A systems biology approach was developed in tomato (Solanum lycopersicum) for coordinated induction of biosynthesis of anthocyanins, in a tissue- and development-independent manner. A transcription factor couple from Antirrhinum that is known to control anthocyanin biosynthesis was introduced in tomato under control of a dexamethasone-inducible promoter. By application of dexamethasone, anthocyanin formation was induced within 24 h in vegetative tissues and in undifferentiated cells. Profiles of metabolites and gene expression were analyzed in several tomato tissues. Changes in concentration of anthocyanins and other phenolic compounds were observed in all tested tissues, accompanied by induction of the biosynthetic pathways leading from Glc to anthocyanins. A number of pathways that are not known to be involved in anthocyanin biosynthesis were observed to be regulated. Anthocyanin-producing plants displayed profound physiological and architectural changes, depending on the tissue, including root branching, root epithelial cell morphology, seed germination, and leaf conductance. The inducible anthocyanin-production system reveals a range of phenomena that accompanies anthocyanin biosynthesis in tomato, including adaptions of the plants architecture and physiology. PMID:29192027
Suppression and restoration of male fertility using a transcription factor.
Li, Song Feng; Iacuone, Sylvana; Parish, Roger W
2007-03-01
The Arabidopsis AtMYB103 gene codes for an R2R3 MYB domain protein whose expression is restricted to the tapetum of developing anthers and to trichomes. Down-regulation of expression using anti-sense leads to abnormal tapetum and pollen development, although seed setting still occurs (Higginson, T., Li, S.F. and Parish, R.W. (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J. 35, 177-192). In this study, we show that blocking the function of the AtMYB103 gene, employing either an insertion mutant or an AtMYB103EAR chimeric repressor construct under the control of the AtMYB103 promoter, results in complete male sterility and failure to set seed. These plants exhibit similar abnormalities in tapetum and pollen development, with the tapetum becoming highly vacuolated at early stages and degenerating prematurely. No exine is deposited on to the pollen wall. The degeneration of pollen grains commences prior to pollen mitosis, the pollen collapsing and largely lacking cytoplasmic content. A restorer containing the AtMYB103 gene under the control of a stronger anther-specific promoter was introduced into pollen donor plants and crossed into the male sterile plants transgenic for the repressor. The male fertility of F1 plants was restored. The chimeric repressor and the restorer constitute a reversible male sterility system which could be adapted for hybrid seed production. This is the first reversible male sterility system targeting a transcription factor essential for pollen development. Strategies for generating inducible male sterility and maintainable male sterility for the production of hybrid crops are discussed.
Efficient transmission of cassava brown streak disease viral pathogens by chip bud grafting.
Wagaba, Henry; Beyene, Getu; Trembley, Cynthia; Alicai, Titus; Fauquet, Claude M; Taylor, Nigel J
2013-12-06
Techniques to study plant viral diseases under controlled growth conditions are required to fully understand their biology and investigate host resistance. Cassava brown streak disease (CBSD) presents a major threat to cassava production in East Africa. No infectious clones of the causal viruses, Cassava brown streak virus (CBSV) or Ugandan cassava brown streak virus (UCBSV) are available, and mechanical transmission to cassava is not effective. An improved method for transmission of the viruses, both singly and as co-infections has been developed using bud grafts. Axillary buds from CBSD symptomatic plants infected with virulent isolates of CBSV and UCBSV were excised and grafted onto 6-8 week old greenhouse-grown, disease-free cassava plants of cultivars Ebwanateraka, TME204 and 60444. Plants were assessed visually for development of CBSD symptoms and by RT-PCR for presence of the viruses in leaf and storage root tissues. Across replicated experiments, 70-100% of plants inoculated with CBSV developed CBSD leaf and stem symptoms 2-6 weeks after bud grafting. Infected plants showed typical, severe necrotic lesions in storage roots at harvest 12-14 weeks after graft inoculation. Sequential grafting of buds from plants infected with UCBSV followed 10-14 days later by buds carrying CBSV, onto the same test plant, resulted in 100% of the rootstocks becoming co-infected with both pathogens. This dual transmission rate was greater than that achieved by simultaneous grafting with UCBSV and CBSV (67%), or when grafting first with CBSV followed by UCBSV (17%). The bud grafting method described presents an improved tool for screening cassava germplasm for resistance to CBSD causal viruses, and for studying pathogenicity of this important disease. Bud grafting provides new opportunities compared to previously reported top and side grafting systems. Test plants can be inoculated as young, uniform plants of a size easily handled in a small greenhouse or large growth chamber and can be inoculated in a controlled manner with CBSV and UCBSV, either singly or together. Disease symptoms develop rapidly, allowing better studies of interactions between these viral pathogens, their movement within shoot and root systems, and how they induce their destructive disease symptoms.
Device for Automated Cutting and Transfer of Plant Shoots
NASA Technical Reports Server (NTRS)
Cipra, Raymond; Das, Hari; Ali, Khaled; Hong, Dennis
2003-01-01
A device that enables the automated cutting and transfer of plant shoots is undergoing development for use in the propagation of plants in a nursery or laboratory. At present, it is standard practice for a human technician to use a knife and forceps to cut, separate, and grasp a plant shoot. The great advantage offered by the present device is that its design and operation are simpler than would be those of a device based on the manual cutting/separation/grasping procedure. [The present device should not be confused with a prior device developed for partly the same purpose and described in Compliant Gripper for a Robotic Manipulator (NPO-21104), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 59.]. The device (see figure) includes a circular tube sharpened at its open (lower) end and mounted on a robotic manipulator at its closed (upper) end. The robotic manipulator simply pushes the sharpened open end of the tube down onto a bed of plants and rotates a few degrees clockwise then counterclockwise about the vertical axis, causing the tube to cut a cylindrical plug of plant material. Exploiting the natural friction between the tube and plug, the tube retains the plug, without need for a gripping mechanism and control. The robotic manipulator then retracts the tube, translates it to a new location over a plant-growth tray, and inserts the tube part way into the growth medium at this location in the tray. A short burst of compressed air is admitted to the upper end of the tube to eject the plug of plant material and drive it into the growth medium. A prototype has been tested and verified to function substantially as intended. It is projected that in the fully developed robotic plant-propagation system, the robot control system would include a machine- vision subsystem that would automatically guide the robotic manipulator in choosing the positions from which to cut plugs of plant material. Planned further development efforts also include more testing and refinement of the design and operation described above.
NASA Astrophysics Data System (ADS)
Trautz, A.; Illangasekare, T. H.; Rodriguez-Iturbe, I.; Howington, S. E.
2017-12-01
The availability of soil moisture in water-stressed environments is one of the primary factors controlling plant performance and overall plant community productivity and structure. The minimization of non-consumptive water loss, or water not utilized by plants (i.e. consumptive use), to bare soil evaporation is a key plant survival strategy and important agricultural consideration. Competitive (negative) and facilitative (positive) interactions between individual plants play a pivotal role in controlling the local coupled soil-plant-atmosphere hydrodynamics that affect both consumptive and non-consumptive water use. The strength of these two types of interactions vary with spacing distance between individuals. In a recent PNAS publication, we hypothesized that there exists a quantifiable spacing distance between plants that optimizes the balance between competition and facilitation, and hence maximizes water conservation. This study expands upon on our previous work, for which only a subset of the data generated was used, through the development and testing of a numerical model that can test a conceptual model we presented. The model simulates soil-plant-atmosphere continuum heat and mass transfer hydrodynamics, taking into account the complex feedbacks that exist between the near-surface atmosphere, subsurface, and plants. This model has been developed to explore the combined effects of subsurface competition and micro-climatic amelioration (i.e., facilitation) on local soil moisture redistribution and fluxes in the context of water-stressed environments that experienced sustained winds. We believe the results have the potential to provide new insights into climatological, ecohydrological, and hydrological problems pertaining to: the extensively used and much debated stress-gradient hypothesis, plant community population self-organization, agricultural best practices (e.g., water management), and spatial heterogeneity of land-atmosphere fluxes.
Can we manipulate root system architecture to control soil erosion?
NASA Astrophysics Data System (ADS)
Ola, A.; Dodd, I. C.; Quinton, J. N.
2015-09-01
Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.
Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong
2017-02-01
The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.
Characterizing photosynthesis and transpiration of plant communities in controlled environments
NASA Technical Reports Server (NTRS)
Monje, O.; Bugbee, B.
1996-01-01
CO2 and water vapor fluxes of hydroponically grown wheat and soybean canopies were measured continuously in several environments with an open gas exchange system. Canopy CO2 fluxes reflect the photosynthetic efficiency of a plant community, and provide a record of plant growth and health. There were significant diurnal fluctuations in root and shoot CO2 fluxes, and in shoot water vapor fluxes. Canopy stomatal conductance (Gc) to water vapor was calculated from simultaneous measurements of canopy temperature (Tcan) and transpiration rates (Tr). Tr in the dark was substantial, and there were large diurnal fluctuations in both Gc and Tr. Canopy net Photosynthesis (Pnet), Tr, and Gc increased with increasing net radiation. Gc increased with Tr, suggesting that the stomata of plants in controlled environments (CEs) behave differently from field-grown plants. A transpiration model based on measurements of Gc was developed for CEs. The model accurately predicted Tr from a soybean canopy.
Techniques for optimal crop selection in a controlled ecological life support system
NASA Technical Reports Server (NTRS)
Mccormack, Ann; Finn, Cory; Dunsky, Betsy
1993-01-01
A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.
Techniques for optimal crop selection in a controlled ecological life support system
NASA Technical Reports Server (NTRS)
Mccormack, Ann; Finn, Cory; Dunsky, Betsy
1992-01-01
A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Hara, J.M.; W. Gunther, G. Martinez-Guridi
New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines,more » empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.« less
Machado-Assefh, Cristina R; Lucatti, Alejandro F; Alvarez, Adriana E
2014-01-01
The effect of dark-induced senescence on Solanum tuberosum L. (Solanales: Solanaceae) plants was assessed on the feeding behavior and performance of the green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). Senescence was induced by covering the basal part of the plant with a black cloth for 5 d, avoiding the light passage, but keeping the apical buds uncovered. The basal part of control plants was covered with a white nonwoven cloth. The degree of senescence was determined by measuring the chlorophyll content of the covered leaves. The performance and feeding behavior of M. persicae were studied on the uncovered nonsenescent apical leaves. The aphid's performance was evaluated by measuring nymphal mortality and prereproductive time. Aphid feeding behavior was monitored by the electrical penetration graph technique. In plants with dark-induced senescence, the aphids showed a reduction in their prereproductive time. Aphids also spent more time ingesting sap from the phloem than in control plants and performed more test probes after the first sustained ingestion of phloem sap. These data suggest that M. persicae's phloem activities and nymph development benefit from the nutritional enrichment of phloem sap, derived from dark-induced senescence on potato plants. The induced senescence improved plant acceptance by M. persicae through an increase in sap ingestion that likely resulted in a reduction in developmental time. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Xia, Xiao-Jian; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Foyer, Christine H; Yu, Jing-Quan
2015-05-01
As a consequence of a sessile lifestyle, plants are continuously exposed to changing environmental conditions and often life-threatening stresses caused by exposure to excessive light, extremes of temperature, limiting nutrient or water availability, and pathogen/insect attack. The flexible coordination of plant growth and development is necessary to optimize vigour and fitness in a changing environment through rapid and appropriate responses to such stresses. The concept that reactive oxygen species (ROS) are versatile signalling molecules in plants that contribute to stress acclimation is well established. This review provides an overview of our current knowledge of how ROS production and signalling are integrated with the action of auxin, brassinosteroids, gibberellins, abscisic acid, ethylene, strigolactones, salicylic acid, and jasmonic acid in the coordinate regulation of plant growth and stress tolerance. We consider the local and systemic crosstalk between ROS and hormonal signalling pathways and identify multiple points of reciprocal control, as well as providing insights into the integration nodes that involve Ca(2+)-dependent processes and mitogen-activated protein kinase phosphorylation cascades. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Bowman, R. N.; Steele, M. K.; Sun, S. (Technical Monitor)
2002-01-01
The European Modular Cultivation System (EMCS) is an European Space Agency-developed facility designed to support plant research in microgravity on the IS NASA is responsible for providing US specific hardware to use within the EMCS. In preparation for flight, research will be developed and tested at Ames Research Center in the EMCS ground test hardware, the Experiment Reference Module (ERM) In order to determine the acceptability of the ERM for such purposes, biocompatibility tests will be performed to determine that the hardware functions as intended and successfully supports the' growth of plants. In this report, we describe the development of procedures and the collection of baseline data against which to compare ERM function, e.g. biocompatibility testing. A simple and robust system was developed to grow whole Arabidopsis thaliana plants within the confined volumes characteristic of spaceflight hardware. Our system for growing plants eliminated the necessity of a water/nutrient delivery system and allowed for quantifiable assessment of individual plants, as well as entire population dynamics. To insure uniform germination, seeds were started in small straw segments and transplanted into modified scintillation vials. Seedlings were selected prior to transplantation to decrease genetic variability. Plants were grown for a total of 24 days in standard laboratory plant growth chambers under controlled conditions. Sequential digital still images were taken on a daily basis. Analysis of these images allowed for the quantification of even minute environmental effect, on growth dynamics whole plants. The data collected provide reliable growth curves against which to compare plants grown in the ERM.
2014-06-11
CAPE CANAVERAL, Fla. – Jim Smodell, a technician with SGT, removes an outredgeous red lettuce leaf from a plant pillow inside the Payload Development Laboratory at the Space Station Processing Facility, or SSPF, at NASA's Kennedy Space Center in Florida. In the background is George Guerra, a quality control engineer with QinetiQ North America. The plant pillows were removed from the Veggie plant growth system inside a control chamber at the SSPF. The growth chamber was used as a control unit for Veggie and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin
Risk-based management of invading plant disease.
Hyatt-Twynam, Samuel R; Parnell, Stephen; Stutt, Richard O J H; Gottwald, Tim R; Gilligan, Christopher A; Cunniffe, Nik J
2017-05-01
Effective control of plant disease remains a key challenge. Eradication attempts often involve removal of host plants within a certain radius of detection, targeting asymptomatic infection. Here we develop and test potentially more effective, epidemiologically motivated, control strategies, using a mathematical model previously fitted to the spread of citrus canker in Florida. We test risk-based control, which preferentially removes hosts expected to cause a high number of infections in the remaining host population. Removals then depend on past patterns of pathogen spread and host removal, which might be nontransparent to affected stakeholders. This motivates a variable radius strategy, which approximates risk-based control via removal radii that vary by location, but which are fixed in advance of any epidemic. Risk-based control outperforms variable radius control, which in turn outperforms constant radius removal. This result is robust to changes in disease spread parameters and initial patterns of susceptible host plants. However, efficiency degrades if epidemiological parameters are incorrectly characterised. Risk-based control including additional epidemiology can be used to improve disease management, but it requires good prior knowledge for optimal performance. This focuses attention on gaining maximal information from past epidemics, on understanding model transferability between locations and on adaptive management strategies that change over time. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Unitized Regenerative Fuel Cell System Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2003-01-01
Unitized Regenerative Fuel Cells (URFC) have recently been developed by several fuel cell manufacturers. These manufacturers have concentrated their efforts on the development of the cell stack technology itself, and have not up to this point devoted much effort to the design and development of the balance of plant. A fuel cell technology program at the Glenn Research Center (GRC) that has as its goal the definition and feasibility testing of the URFC system balance of plant. Besides testing the feasibility, the program also intends to minimize the system weight, volume, and parasitic power as its goal. The design concept currently being developed uses no pumps to circulate coolant or reactants, and minimizes the ancillary components to only the oxygen and hydrogen gas storage tanks, a water storage tank, a loop heat pipe to control the temperature and two pressure control devices to control the cell stack pressures during operation. The information contained in this paper describes the design and operational concepts employed in this concept. The paper also describes the NASA Glenn research program to develop this concept and test its feasibility.
Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals.
Hsieh, Ju-Liang; Chen, Ching-Yi; Chiu, Meng-Hsuen; Chein, Mei-Fang; Chang, Jo-Shu; Endo, Ginro; Huang, Chieh-Chen
2009-01-30
A specific mercuric ion binding protein (MerP) originating from transposon TnMERI1 of Bacillus megaterium strain MB1 isolated from Minamata Bay displayed good adsorption capability for a variety of heavy metals. In this study, the Gram-positive MerP protein was expressed in transgenic Arabidopsis to create a model system for phytoremediation of heavy metals. Under control of an actin promoter, the transgenic Arabidpsis showed higher tolerance and accumulation capacity for mercury, cadium and lead when compared with the control plant. Results from confocal microscopy analysis also indicate that MerP was localized at the cell membrane and vesicles of plant cells. The developed transgenic plants possessing excellent metal-accumulative ability could have potential applications in decontamination of heavy metals.
An arduino based control system for a brackish water desalination plant
NASA Astrophysics Data System (ADS)
Caraballo, Ginna
Water scarcity for agriculture is one of the most important challenges to improve food security worldwide. In this thesis we study the potential to develop a low-cost controller for a small scale brackish desalination plant that consists of proven water treatment technologies, reverse osmosis, cation exchange, and nanofiltration to treat groundwater into two final products: drinking water and irrigation water. The plant is powered by a combination of wind and solar power systems. The low-cost controller uses Arduino Mega, and Arduino DUE, which consist of ATmega2560 and Atmel SAM3X8E ARM Cortex-M3 CPU microcontrollers. These are widely used systems characterized for good performance and low cost. However, Arduino also requires drivers and interfaces to allow the control and monitoring of sensors and actuators. The thesis explains the process, as well as the hardware and software implemented.
Medeiros, Renan Landau Paiva de; Barra, Walter; Bessa, Iury Valente de; Chaves Filho, João Edgar; Ayres, Florindo Antonio de Cavalho; Neves, Cleonor Crescêncio das
2018-02-01
This paper describes a novel robust decentralized control design methodology for a single inductor multiple output (SIMO) DC-DC converter. Based on a nominal multiple input multiple output (MIMO) plant model and performance requirements, a pairing input-output analysis is performed to select the suitable input to control each output aiming to attenuate the loop coupling. Thus, the plant uncertainty limits are selected and expressed in interval form with parameter values of the plant model. A single inductor dual output (SIDO) DC-DC buck converter board is developed for experimental tests. The experimental results show that the proposed methodology can maintain a desirable performance even in the presence of parametric uncertainties. Furthermore, the performance indexes calculated from experimental data show that the proposed methodology outperforms classical MIMO control techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
The evolution of root hairs and rhizoids.
Jones, Victor A S; Dolan, Liam
2012-07-01
Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively. Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts. A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period.
The evolution of root hairs and rhizoids
Jones, Victor A.S.; Dolan, Liam
2012-01-01
Background Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively. Scope Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts. Conclusions A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period. PMID:22730024
Development, registration and commercialization of microbial pesticides for plant protection.
Montesinos, Emilio
2003-12-01
Plant protection against pathogens, pests and weeds has been progressively reoriented from a therapeutic approach to a rational use of pesticide chemicals in which consumer health and environmental preservation prevail over any other productive or economic considerations. Microbial pesticides are being introduced in this new scenario of crop protection and currently several beneficial microorganisms are the active ingredients of a new generation of microbial pesticides or the basis for many natural products of microbial origin. The development of a microbial pesticide requires several steps addressed to its isolation in pure culture and screening by means of efficacy bioassays performed in vitro, ex vivo, in vivo, or in pilot trials under real conditions of application (field, greenhouse, post-harvest). For the commercial delivery of a microbial pesticide, the biocontrol agent must be produced at an industrial scale (fermentation), preserved for storage and formulated by means of biocompatible additives to increase survival and to improve the application and stability of the final product. Despite the relative high number of patents for biopesticides, only a few of them have materialized in a register for agricultural use. The excessive specificity in most cases and biosafety or environmental concerns in others are major limiting factors. Non-target effects may be possible in particular cases, such as displacement of beneficial microorganisms, allergenicity, toxinogencity (production of secondary metabolites toxic to plants, animals, or humans), pathogenicity (to plants or animals) by the agent itself or due to contaminants, or horizontal gene transfer of these characteristics to non-target microorganisms. However, these non-target effects should not be evaluated in an absolute manner, but relative to chemical control or the absence of any control of the target disease (for example, toxins derived from the pathogen). Consumer concerns about live microbes due to emerging food-borne diseases and bioterrorism do not help to create a socially receptive environment to microbial pesticides. The future of microbial pesticides is not only in developing new active ingredients based on microorganisms beneficial to plants, but in producing self-protected plants (so-called plant-incorporated pesticides) by transforming agronomically high-value crop plants with genes from biological control agents.
Variable structure control of nonlinear systems through simplified uncertain models
NASA Technical Reports Server (NTRS)
Sira-Ramirez, Hebertt
1986-01-01
A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.
NASA Astrophysics Data System (ADS)
Sachau, D.; Jukkert, S.; Hövelmann, N.
2016-08-01
This paper presents the development and experimental validation of an ANC (active noise control)-system designed for a particular application in the exhaust line of a submarine. Thereby, tonal components of the exhaust noise in the frequency band from 75 Hz to 120 Hz are reduced by more than 30 dB. The ANC-system is based on the feedforward leaky FxLMS-algorithm. The observability of the sound pressure in standing wave field is ensured by using two error microphones. The noninvasive online plant identification method is used to increase the robustness of the controller. Online plant identification is extended by a time-varying convergence gain to improve the performance in the presence of slight error in the frequency of the reference signal.
From structure to function - a family portrait of plant subtilases.
Schaller, Andreas; Stintzi, Annick; Rivas, Susana; Serrano, Irene; Chichkova, Nina V; Vartapetian, Andrey B; Martínez, Dana; Guiamét, Juan J; Sueldo, Daniela J; van der Hoorn, Renier A L; Ramírez, Vicente; Vera, Pablo
2018-05-01
Contents Summary 901 I. Introduction 901 II. Biochemistry and structure of plant SBTs 902 III. Phylogeny of plant SBTs and family organization 903 IV. Physiological roles of plant SBTs 905 V. Conclusions and outlook 911 Acknowledgements 912 References 912 SUMMARY: Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
The MICE facility - a new tool to study plant-soil C cycling with a holistic approach.
Studer, Mirjam S; Künzli, Roland; Maier, Reto; Schmidt, Michael W I; Siegwolf, Rolf T W; Woodhatch, Ivan; Abiven, Samuel
2017-06-01
Plant-soil interactions are recognized to play a crucial role in the ecosystem response to climate change. We developed a facility to disentangle the complex interactions behind the plant-soil C feedback mechanisms. The MICE ('Multi-Isotope labelling in a Controlled Environment') facility consists of two climate chambers with independent control of the atmospheric conditions (light, CO 2 , temperature, humidity) and the soil environment (temperature, moisture). Each chamber holds 15 plant-soil systems with hermetical separation of the shared above ground (shoots) from the individual belowground compartments (roots, rhizosphere, soil). Stable isotopes (e.g. 13 C, 15 N, 2 H, 18 O) can be added to either compartment and traced within the whole system. The soil CO 2 efflux rate is monitored, and plant material, leached soil water and gas samples are taken frequently. The facility is a powerful tool to improve our mechanistic understanding of plant-soil interactions that drive the C cycle feedback to climate change.
Understanding the holobiont: the interdependence of plants and their microbiome.
Sánchez-Cañizares, Carmen; Jorrín, Beatriz; Poole, Philip S; Tkacz, Andrzej
2017-08-01
The holobiont is composed by the plant and its microbiome. In a similar way to ecological systems of higher organisms, the holobiont shows interdependent and complex dynamics [1,2]. While plants originate from seeds, the microbiome has a multitude of sources. The assemblage of these communities depends on the interaction between the emerging seedling and its surrounding environment, with soil being the main source. These microbial communities are controlled by the plant through different strategies, such as the specific profile of root exudates and its immune system. Despite this control, the microbiome is still able to adapt and thrive. The molecular knowledge behind these interactions and microbial '-omic' technologies are developing to the point of enabling holobiont engineering. For a long time microorganisms were in the background of plant biology but new multidisciplinary approaches have led to an appreciation of the importance of the holobiont, where plants and microbes are interdependent. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues
NASA Astrophysics Data System (ADS)
Mackowiak, C. L.; Stutte, G. W.; Garland, J. L.; Finger, B. W.; Ruffe, L. M.
1997-01-01
Bioregenerative methods are being developed for recycling plant minerals from harvested inedible biomass as part of NASA's Advanced Life Support (ALS) research. Anaerobic processing produces secondary metabolites, a food source for yeast production, while providing a source of water soluble nutrients for plant growth. Since NH_4-N is the nitrogen product, processing the effluent through a nitrification reactor was used to convert this to NO_3-N, a more acceptable form for plants. Potato (Solanum tuberosum L.) cv. Norland plants were used to test the effects of anaerobically-produced effluent after processing through a yeast reactor or nitrification reactor. These treatments were compared to a mixed-N treatment (75:25, NO_3:NH_4) or a NO_3-N control, both containing only reagent-grade salts. Plant growth and tuber yields were greatest in the NO_3-N control and yeast reactor effluent treatments, which is noteworthy, considering the yeast reactor treatment had high organic loading in the nutrient solution and concomitant microbial activity.
Wang, Guo-Kun; Zhang, Meng; Gong, Jiang-Feng; Guo, Qi-Fang; Feng, Ya-Nan; Wang, Wei
2012-12-01
Overexpressing TaUb2 promoted stem growth and resulted in early flowering in transgenic tobacco plants. Ubiquitin are involved in the production, metabolism and proper function of gibberellin. The ubiquitin-26S proteasome system (UPS), in which ubiquitin (Ub) functions as a marker, is a post-translational regulatory system that plays a prominent role in various biological processes. To investigate the impact of different Ub levels on plant growth and development, transgenic tobacco (Nicotiana tabacum L.) plants were engineered to express an Ub gene (TaUb2) from wheat (Triticum aestivum L.) under the control of cauliflower mosaic virus 35S promoter. Transgenic tobacco plants overexpressing TaUb2 demonstrated an accelerated growth rate at early stage and an early flowering phenotype in development. The preceding expression of MADS-box genes also corresponded to the accelerated developmental phenotypes of the transgenic tobacco plants compared to that of wild-type (WT). Total gibberellin (GA) and active GA contents in transgenic tobacco plants were higher than those in WT at the corresponding developmental stages, and some GA metabolism genes were upregulated. Treatment with GA(3) conferred a similarly accelerated grown rate in WT plants to that of transgenic tobacco plants, while growth was inhibited when transgenic tobacco plants were treated with a GA biosynthesis inhibitor. Thus, the results suggest that Ub are involved in the production, metabolism and proper function of GA, which is important in the regulation of plant growth and development.
Utilizing Chamber Data for Developing and Validating Climate Change Models
NASA Technical Reports Server (NTRS)
Monje, Oscar
2012-01-01
Controlled environment chambers (e.g. growth chambers, SPAR chambers, or open-top chambers) are useful for measuring plant ecosystem responses to climatic variables and CO2 that affect plant water relations. However, data from chambers was found to overestimate responses of C fluxes to CO2 enrichment. Chamber data may be confounded by numerous artifacts (e.g. sidelighting, edge effects, increased temperature and VPD, etc) and this limits what can be measured accurately. Chambers can be used to measure canopy level energy balance under controlled conditions and plant transpiration responses to CO2 concentration can be elucidated. However, these measurements cannot be used directly in model development or validation. The response of stomatal conductance to CO2 will be the same as in the field, but the measured response must be recalculated in such a manner to account for differences in aerodynamic conductance, temperature and VPD between the chamber and the field.
Kudapa, Himabindu; Garg, Vanika; Chitikineni, Annapurna; Varshney, Rajeev K
2018-04-10
Chickpea is one of the world's largest cultivated food legumes and is an excellent source of high-quality protein to the human diet. Plant growth and development are controlled by programmed expression of a suite of genes at the given time, stage, and tissue. Understanding how the underlying genome sequence translates into specific plant phenotypes at key developmental stages, information on gene expression patterns is crucial. Here, we present a comprehensive Cicer arietinum Gene Expression Atlas (CaGEA) across different plant developmental stages and organs covering the entire life cycle of chickpea. One of the widely used drought tolerant cultivars, ICC 4958 has been used to generate RNA-Seq data from 27 samples at 5 major developmental stages of the plant. A total of 816 million raw reads were generated and of these, 794 million filtered reads after quality control (QC) were subjected to downstream analysis. A total of 15,947 unique number of differentially expressed genes across different pairwise tissue combinations were identified. Significant differences in gene expression patterns contributing in the process of flowering, nodulation, and seed and root development were inferred in this study. Furthermore, differentially expressed candidate genes from "QTL-hotspot" region associated with drought stress response in chickpea were validated. © 2018 The Authors. Plant, Cell & Environment Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula
2012-08-01
Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth.
Oxygen control of ethylene biosynthesis during seed development in Arabidopsis thaliana (L.) Heynh
NASA Technical Reports Server (NTRS)
Ramonell, K. M.; McClure, G.; Musgrave, M. E.
2002-01-01
An unforeseen side-effect on plant growth in reduced oxygen is the loss of seed production at concentrations around 25% atmospheric (50 mmol mol-1 O2). In this study, the model plant Arabidopsis thaliana (L.) Heynh. cv. 'Columbia' was used to investigate the effect of low oxygen on ethylene biosynthesis during seed development. Plants were grown in a range of oxygen concentrations (210 [equal to ambient], 160, 100, 50 and 25 mmol mol-1) with 0.35 mmol mol-1 CO2 in N2. Ethylene in full-sized siliques was sampled using gas chromatography, and viable seed production was determined at maturity. Molecular analysis of ethylene biosynthesis was accomplished using cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase in ribonuclease protection assays and in situ hybridizations. No ethylene was detected in siliques from plants grown at 50 and 25 mmol mol-1 O2. At the same time, silique ACC oxidase mRNA increased three-fold comparing plants grown under the lowest oxygen with ambient controls, whereas ACC synthase mRNA was unaffected. As O2 decreased, tissue-specific patterning of ACC oxidase and ACC synthase gene expression shifted from the embryo to the silique wall. These data demonstrate how low O2 modulates the activity and expression of the ethylene biosynthetic pathway during seed development in Arabidopsis.
Plant Invasions in China – Challenges and Chances
Axmacher, Jan C.; Sang, Weiguo
2013-01-01
Invasive species cause serious environmental and economic harm and threaten global biodiversity. We set out to investigate how quickly invasive plant species are currently spreading in China and how their resulting distribution patterns are linked to socio-economic and environmental conditions. A comparison of the invasive plant species density (log species/log area) reported in 2008 with current data shows that invasive species were originally highly concentrated in the wealthy, southeastern coastal provinces of China, but they are currently rapidly spreading inland. Linear regression models based on the species density and turnover of invasive plants as dependent parameters and principal components representing key socio-economic and environmental parameters as predictors indicate strong positive links between invasive plant density and the overall phytodiversity and associated climatic parameters. Principal components representing socio-economic factors and endemic plant density also show significant positive links with invasive plant density. Urgent control and eradication measures are needed in China's coastal provinces to counteract the rapid inland spread of invasive plants. Strict controls of imports through seaports need to be accompanied by similarly strict controls of the developing horticultural trade and underpinned by awareness campaigns for China's increasingly affluent population to limit the arrival of new invaders. Furthermore, China needs to fully utilize its substantial native phytodiversity, rather than relying on exotics, in current large-scale afforestation projects and in the creation of urban green spaces. PMID:23691164
A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants.
Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi
2014-10-22
Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.
Oh, Sang-Keun; Yoon, Joonseon; Choi, Gyung Ja; Jang, Hyun A; Kwon, Suk-Yoon; Choi, Doil
2013-12-06
Homeodomain-leucine zipper (HD-Zip) family proteins are unique to plants, but little is known about their role in defense responses. CaHB1 is a nuclear factor in peppers, belonging to subfamily II of HD-Zip proteins. Here, we determined the role of CaHB1 in the defense response. CaHB1 expression was induced when pepper plants were challenged with Phytophthora capsici, a plant pathogen to which peppers are susceptible, or environmental stresses such as drought and salt stimuli. CaHB1 was also highly expressed in pepper leaves following application of SA, whereas ethephon and MeJA had a moderate effect. To further investigate the function of CaHB1 in plants, we performed gain-of-function study by overexpression of CaHB1 in tomato. CaHB1-transgenic tomatoes showed significant growth enhancement including increased leaf thickness and enlarged cell size (1.8-fold larger than control plants). Microscopic analysis revealed that leaves from CaHB1-transgenic plants had thicker cell walls and cuticle layers than those from controls. Moreover, CaHB1-transgenic plants displayed enhanced resistance against Phytophthora infestans and increased tolerance to salt stress. Additionally, RT-PCR analysis of CaHB1-transgenic tomatoes revealed constitutive up-regulation of multiple genes involved in plant defense and osmotic stress. Therefore, our findings suggest roles for CaHB1 in development, salt stress, and pathogen defense. Copyright © 2013 Elsevier Inc. All rights reserved.
Radzki, W; Gutierrez Mañero, F J; Algar, E; Lucas García, J A; García-Villaraco, A; Ramos Solano, B
2013-09-01
Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.
Mofikoya, Adedayo O; Kim, Tae Ho; Abd El-Raheem, Ahmed M; Blande, James D; Kivimäenpää, Minna; Holopainen, Jarmo K
2017-11-08
Plant volatiles mediate a range of interactions across and within trophic levels, including plant-plant interactions. Volatiles emitted by a plant may trigger physiological responses in neighboring plants or adhere to their surfaces, which, in turn, may affect the responses of the neighboring plant to herbivory. These volatiles are subject to chemical reactions during transport in air currents, especially in a polluted atmosphere. We conducted a field experiment to test for the adsorption of dispenser-released myrcene on the surfaces of cabbage plants and the effects of distance from the dispenser and elevated ozone levels (1.4× ambient) on the process. We also tested the effects of the same treatments on oviposition on cabbage plants by naturally occurring Plutella xylostella. Under low ambient ozone conditions of central Finland, there was evidence for the adsorption and re-release of myrcene by cabbage plants growing at a distance of 50 cm from myrcene dispensers. This effect was absent at elevated ozone levels. The number of eggs deposited by P. xylostella was generally lower in plots under elevated ozone compared to ambient control plots. Our results indicate that passive adsorption and re-release of a volatile monoterpene can occur in nature; however, this process is dependent upon the distance between emitter source and receiver plants as well as the concentration of atmospheric pollutants in the air. We conclude that, in the development of field-scale use of plant volatiles in modern pest control, the effects of distances and air pollution should be considered.