Sample records for control points obtained

  1. A technique for processing of planetary images with heterogeneous characteristics for estimating geodetic parameters of celestial bodies with the example of Ganymede

    NASA Astrophysics Data System (ADS)

    Zubarev, A. E.; Nadezhdina, I. E.; Brusnikin, E. S.; Karachevtseva, I. P.; Oberst, J.

    2016-09-01

    The new technique for generation of coordinate control point networks based on photogrammetric processing of heterogeneous planetary images (obtained at different time, scale, with different illumination or oblique view) is developed. The technique is verified with the example for processing the heterogeneous information obtained by remote sensing of Ganymede by the spacecraft Voyager-1, -2 and Galileo. Using this technique the first 3D control point network for Ganymede is formed: the error of the altitude coordinates obtained as a result of adjustment is less than 5 km. The new control point network makes it possible to obtain basic geodesic parameters of the body (axes size) and to estimate forced librations. On the basis of the control point network, digital terrain models (DTMs) with different resolutions are generated and used for mapping the surface of Ganymede with different levels of detail (Zubarev et al., 2015b).

  2. 41 CFR 101-26.606 - Supply support available from the inventory control points of the military departments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from the inventory control points of the military departments. 101-26.606 Section 101-26.606 Public... § 101-26.606 Supply support available from the inventory control points of the military departments. Federal civil agencies may obtain items of supply which are procured and managed by the inventory control...

  3. Filter Function for Wavefront Sensing Over a Field of View

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A filter function has been derived as a means of optimally weighting the wavefront estimates obtained in image-based phase retrieval performed at multiple points distributed over the field of view of a telescope or other optical system. When the data obtained in wavefront sensing and, more specifically, image-based phase retrieval, are used for controlling the shape of a deformable mirror or other optic used to correct the wavefront, the control law obtained by use of the filter function gives a more balanced optical performance over the field of view than does a wavefront-control law obtained by use of a wavefront estimate obtained from a single point in the field of view.

  4. Annular suspension and pointing system with controlled DC electromagnets

    NASA Technical Reports Server (NTRS)

    Vu, Josephine Lynn; Tam, Kwok Hung

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.

  5. On two special values of temperature factor in hypersonic flow stagnation point

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2018-03-01

    The hypersonic aircraft permeable cylindrical and spherical surfaces laminar boundary layer heat and mass transfer control mathematical model properties are investigated. The nonlinear algebraic equations systems are obtained for two special values of temperature factor in the hypersonic flow stagnation point. The mappings bijectivity between heat and mass transfer local parameters and controls is established. The computation experiments results are presented: the domains of allowed values “heat-friction” are obtained.

  6. Rapid Topographic Mapping Using TLS and UAV in a Beach-dune-wetland Environment: Case Study in Freeport, Texas, USA

    NASA Astrophysics Data System (ADS)

    Ding, J.; Wang, G.; Xiong, L.; Zhou, X.; England, E.

    2017-12-01

    Coastal regions are naturally vulnerable to impact from long-term coastal erosion and episodic coastal hazards caused by extreme weather events. Major geomorphic changes can occur within a few hours during storms. Prediction of storm impact, costal planning and resilience observation after natural events all require accurate and up-to-date topographic maps of coastal morphology. Thus, the ability to conduct rapid and high-resolution-high-accuracy topographic mapping is of critical importance for long-term coastal management and rapid response after natural hazard events. Terrestrial laser scanning (TLS) techniques have been frequently applied to beach and dune erosion studies and post hazard responses. However, TLS surveying is relatively slow and costly for rapid surveying. Furthermore, TLS surveying unavoidably retains gray areas that cannot be reached by laser pulses, particularly in wetland areas where lack of direct access in most cases. Aerial mapping using photogrammetry from images taken by unmanned aerial vehicles (UAV) has become a new technique for rapid topographic mapping. UAV photogrammetry mapping techniques provide the ability to map coastal features quickly, safely, inexpensively, on short notice and with minimal impact. The primary products from photogrammetry are point clouds similar to the LiDAR point clouds. However, a large number of ground control points (ground truth) are essential for obtaining high-accuracy UAV maps. The ground control points are often obtained by GPS survey simultaneously with the TLS survey in the field. The GPS survey could be a slow and arduous process in the field. This study aims to develop methods for acquiring a huge number of ground control points from TLS survey and validating point clouds obtained from photogrammetry with the TLS point clouds. A Rigel VZ-2000 TLS scanner was used for developing laser point clouds and a DJI Phantom 4 Pro UAV was used for acquiring images. The aerial images were processed with the Photogrammetry mapping software Agisoft PhotoScan. A workflow for conducting rapid TLS and UAV survey in the field and integrating point clouds obtained from TLS and UAV surveying will be introduced. Key words: UAV photogrammetry, ground control points, TLS, coastal morphology, topographic mapping

  7. Localization of an Underwater Control Network Based on Quasi-Stable Adjustment.

    PubMed

    Zhao, Jianhu; Chen, Xinhua; Zhang, Hongmei; Feng, Jie

    2018-03-23

    There exists a common problem in the localization of underwater control networks that the precision of the absolute coordinates of known points obtained by marine absolute measurement is poor, and it seriously affects the precision of the whole network in traditional constraint adjustment. Therefore, considering that the precision of underwater baselines is good, we use it to carry out quasi-stable adjustment to amend known points before constraint adjustment so that the points fit the network shape better. In addition, we add unconstrained adjustment for quality control of underwater baselines, the observations of quasi-stable adjustment and constrained adjustment, to eliminate the unqualified baselines and improve the results' accuracy of the two adjustments. Finally, the modified method is applied to a practical LBL (Long Baseline) experiment and obtains a mean point location precision of 0.08 m, which improves by 38% compared with the traditional method.

  8. Localization of an Underwater Control Network Based on Quasi-Stable Adjustment

    PubMed Central

    Chen, Xinhua; Zhang, Hongmei; Feng, Jie

    2018-01-01

    There exists a common problem in the localization of underwater control networks that the precision of the absolute coordinates of known points obtained by marine absolute measurement is poor, and it seriously affects the precision of the whole network in traditional constraint adjustment. Therefore, considering that the precision of underwater baselines is good, we use it to carry out quasi-stable adjustment to amend known points before constraint adjustment so that the points fit the network shape better. In addition, we add unconstrained adjustment for quality control of underwater baselines, the observations of quasi-stable adjustment and constrained adjustment, to eliminate the unqualified baselines and improve the results’ accuracy of the two adjustments. Finally, the modified method is applied to a practical LBL (Long Baseline) experiment and obtains a mean point location precision of 0.08 m, which improves by 38% compared with the traditional method. PMID:29570627

  9. Realtime control of multiple-focus phased array heating patterns based on noninvasive ultrasound thermography.

    PubMed

    Casper, Andrew; Liu, Dalong; Ebbini, Emad S

    2012-01-01

    A system for the realtime generation and control of multiple-focus ultrasound phased-array heating patterns is presented. The system employs a 1-MHz, 64-element array and driving electronics capable of fine spatial and temporal control of the heating pattern. The driver is integrated with a realtime 2-D temperature imaging system implemented on a commercial scanner. The coordinates of the temperature control points are defined on B-mode guidance images from the scanner, together with the temperature set points and controller parameters. The temperature at each point is controlled by an independent proportional, integral, and derivative controller that determines the focal intensity at that point. Optimal multiple-focus synthesis is applied to generate the desired heating pattern at the control points. The controller dynamically reallocates the power available among the foci from the shared power supply upon reaching the desired temperature at each control point. Furthermore, anti-windup compensation is implemented at each control point to improve the system dynamics. In vitro experiments in tissue-mimicking phantom demonstrate the robustness of the controllers for short (2-5 s) and longer multiple-focus high-intensity focused ultrasound exposures. Thermocouple measurements in the vicinity of the control points confirm the dynamics of the temperature variations obtained through noninvasive feedback. © 2011 IEEE

  10. Application of square-root filtering for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Schmidt, S. F.; Goka, T.

    1978-01-01

    Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.

  11. Obtaining Approximate Values of Exterior Orientation Elements of Multi-Intersection Images Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Li, X.; Li, S. W.

    2012-07-01

    In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO), is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm, two experiments are carried out. In the first experiment, images of a standard grid board are taken according to multi-intersection photography using digital camera. Three points or six points which are located on the left-down corner of the standard grid are regarded as control points respectively, and the exterior orientation elements of each image are computed through PSO, and compared with these elements computed through bundle adjustment. In the second experiment, the exterior orientation elements obtained from the first experiment are used as approximate values in bundle adjustment and then the space coordinates of other grid points on the board can be computed. The coordinate difference of grid points between these computed space coordinates and their known coordinates can be used to compute the accuracy. The point accuracy computed in above experiments are ±0.76mm and ±0.43mm respectively. The above experiments prove the effectiveness of PSO used in close range photogrammetry to compute approximate values of exterior orientation elements, and the algorithm can meet the requirement of higher accuracy. In short, PSO can get better results in a faster, cheaper way compared with other surveying methods in close range photogrammetry.

  12. Barriers and dispersal surfaces in minimum-time interception

    NASA Technical Reports Server (NTRS)

    Rajan, N.; Ardema, M. D.

    1982-01-01

    Minimum time interception of a target moving in a horizontal plane is analyzed as a one-player differential game. Dispersal points and points on the barrier are located for a class of pursuit evasion and interception problems. These points are determined by constructing cross sections of the isochrones and hence obtaining the barrier, dispersal, and control level surfaces. The game solution maps the controls as a function of the state within the capture region.

  13. Digital controller design: Analysis of the annular suspension pointing system

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.

    1979-01-01

    The Annular Suspension and Pointing System (ASPS) is a payload auxiliary pointing device of the Space Shuttle. The ASPS is comprised of two major subassemblies, a vernier and a coarse pointing subsystem. The experiment is attached to a mounting plate/rim combination which is suspended on magnetic bearing/actuators (MBA) strategically located about the rim. Fine pointing is achieved by gimballing the plate/rim within the MBA gaps. Control about the experiment line-of-sight is obtained through the use of a non-contacting rim drive and positioning torquer. All sensors used to close the servo loops on the vernier system are noncontacting elements. Therefore, the experiment is a free-flyer constrained only by the magnetic forces generated by the control loops.

  14. A simple model-based control for Pichia pastoris allows a more efficient heterologous protein production bioprocess.

    PubMed

    Cos, Oriol; Ramon, Ramon; Montesinos, José Luis; Valero, Francisco

    2006-09-05

    A predictive control algorithm coupled with a PI feedback controller has been satisfactorily implemented in the heterologous Rhizopus oryzae lipase production by Pichia pastoris methanol utilization slow (Mut(s)) phenotype. This control algorithm has allowed the study of the effect of methanol concentration, ranging from 0.5 to 1.75 g/L, on heterologous protein production. The maximal lipolytic activity (490 UA/mL), specific yield (11,236 UA/g(biomass)), productivity (4,901 UA/L . h), and specific productivity (112 UA/g(biomass)h were reached for a methanol concentration of 1 g/L. These parameters are almost double than those obtained with a manual control at a similar methanol set-point. The study of the specific growth, consumption, and production rates showed different patterns for these rates depending on the methanol concentration set-point. Results obtained have shown the need of implementing a robust control scheme when reproducible quality and productivity are sought. It has been demonstrated that the model-based control proposed here is a very efficient, robust, and easy-to-implement strategy from an industrial application point of view. (c) 2006 Wiley Periodicals, Inc.

  15. Image Tiling for Profiling Large Objects

    NASA Technical Reports Server (NTRS)

    Venkataraman, Ajit; Schock, Harold; Mercer, Carolyn R.

    1992-01-01

    Three dimensional surface measurements of large objects arc required in a variety of industrial processes. The nature of these measurements is changing as optical instruments arc beginning to replace conventional contact probes scanned over the objects. A common characteristic of the optical surface profilers is the trade off between measurement accuracy and field of view. In order to measure a large object with high accuracy, multiple views arc required. An accurate transformation between the different views is needed to bring about their registration. In this paper, we demonstrate how the transformation parameters can be obtained precisely by choosing control points which lie in the overlapping regions of the images. A good starting point for the transformation parameters is obtained by having a knowledge of the scanner position. The selection of the control points arc independent of the object geometry. By successively recording multiple views and obtaining transformation with respect to a single coordinate system, a complete physical model of an object can be obtained. Since all data arc in the same coordinate system, it can thus be used for building automatic models for free form surfaces.

  16. Automated control of robotic camera tacheometers for measurements of industrial large scale objects

    NASA Astrophysics Data System (ADS)

    Heimonen, Teuvo; Leinonen, Jukka; Sipola, Jani

    2013-04-01

    The modern robotic tacheometers equipped with digital cameras (called also imaging total stations) and capable to measure reflectorless offer new possibilities to gather 3d data. In this paper an automated approach for the tacheometer measurements needed in the dimensional control of industrial large scale objects is proposed. There are two new contributions in the approach: the automated extraction of the vital points (i.e. the points to be measured) and the automated fine aiming of the tacheometer. The proposed approach proceeds through the following steps: First the coordinates of the vital points are automatically extracted from the computer aided design (CAD) data. The extracted design coordinates are then used to aim the tacheometer to point out to the designed location of the points, one after another. However, due to the deviations between the designed and the actual location of the points, the aiming need to be adjusted. An automated dynamic image-based look-and-move type servoing architecture is proposed to be used for this task. After a successful fine aiming, the actual coordinates of the point in question can be automatically measured by using the measuring functionalities of the tacheometer. The approach was validated experimentally and noted to be feasible. On average 97 % of the points actually measured in four different shipbuilding measurement cases were indeed proposed to be vital points by the automated extraction algorithm. The accuracy of the results obtained with the automatic control method of the tachoemeter were comparable to the results obtained with the manual control, and also the reliability of the image processing step of the method was found to be high in the laboratory experiments.

  17. Robust non-rigid registration algorithm based on local affine registration

    NASA Astrophysics Data System (ADS)

    Wu, Liyang; Xiong, Lei; Du, Shaoyi; Bi, Duyan; Fang, Ting; Liu, Kun; Wu, Dongpeng

    2018-04-01

    Aiming at the problem that the traditional point set non-rigid registration algorithm has low precision and slow convergence speed for complex local deformation data, this paper proposes a robust non-rigid registration algorithm based on local affine registration. The algorithm uses a hierarchical iterative method to complete the point set non-rigid registration from coarse to fine. In each iteration, the sub data point sets and sub model point sets are divided and the shape control points of each sub point set are updated. Then we use the control point guided affine ICP algorithm to solve the local affine transformation between the corresponding sub point sets. Next, the local affine transformation obtained by the previous step is used to update the sub data point sets and their shape control point sets. When the algorithm reaches the maximum iteration layer K, the loop ends and outputs the updated sub data point sets. Experimental results demonstrate that the accuracy and convergence of our algorithm are greatly improved compared with the traditional point set non-rigid registration algorithms.

  18. Calibration of Viking imaging system pointing, image extraction, and optical navigation measure

    NASA Technical Reports Server (NTRS)

    Breckenridge, W. G.; Fowler, J. W.; Morgan, E. M.

    1977-01-01

    Pointing control and knowledge accuracy of Viking Orbiter science instruments is controlled by the scan platform. Calibration of the scan platform and the imaging system was accomplished through mathematical models. The calibration procedure and results obtained for the two Viking spacecraft are described. Included are both ground and in-flight scan platform calibrations, and the additional calibrations unique to optical navigation.

  19. Pareto Design of State Feedback Tracking Control of a Biped Robot via Multiobjective PSO in Comparison with Sigma Method and Genetic Algorithms: Modified NSGAII and MATLAB's Toolbox

    PubMed Central

    Mahmoodabadi, M. J.; Taherkhorsandi, M.; Bagheri, A.

    2014-01-01

    An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot. PMID:24616619

  20. Dynamics and control of high area-to-mass ratio spacecraft and its application to geomagnetic exploration

    NASA Astrophysics Data System (ADS)

    Luo, Tong; Xu, Ming; Colombo, Camilla

    2018-04-01

    This paper studies the dynamics and control of a spacecraft, whose area-to-mass ratio is increased by deploying a reflective orientable surface such as a solar sail or a solar panel. The dynamical system describing the motion of a non-zero attitude angle high area-to-mass ratio spacecraft under the effects of the Earth's oblateness and solar radiation pressure admits the existence of equilibrium points, whose number and the eccentricity values depend on the semi-major axis, the area-to-mass ratio and the attitude angle of the spacecraft together. When two out of three parameters are fixed, five different dynamical topologies successively occur through varying the third parameter. Two of these five topologies are critical cases characterized by the appearance of the bifurcation phenomena. A conventional Hamiltonian structure-preserving (HSP) controller and an improved HSP controller are both constructed to stabilize the hyperbolic equilibrium point. Through the use of a conventional HSP controller, a bounded trajectory around the hyperbolic equilibrium point is obtained, while an improved HSP controller allows the spacecraft to easily transfer to the hyperbolic equilibrium point and to follow varying equilibrium points. A bifurcation control using topologies and changes of behavior areas can also stabilize a spacecraft near a hyperbolic equilibrium point. Natural trajectories around stable equilibrium point and these stabilized trajectories around hyperbolic equilibrium point can all be applied to geomagnetic exploration.

  1. Massage therapy versus simple touch to improve pain and mood in patients with advanced cancer: a randomized trial.

    PubMed

    Kutner, Jean S; Smith, Marlaine C; Corbin, Lisa; Hemphill, Linnea; Benton, Kathryn; Mellis, B Karen; Beaty, Brenda; Felton, Sue; Yamashita, Traci E; Bryant, Lucinda L; Fairclough, Diane L

    2008-09-16

    Small studies of variable quality suggest that massage therapy may relieve pain and other symptoms. To evaluate the efficacy of massage for decreasing pain and symptom distress and improving quality of life among persons with advanced cancer. Multisite, randomized clinical trial. Population-based Palliative Care Research Network. 380 adults with advanced cancer who were experiencing moderate-to-severe pain; 90% were enrolled in hospice. Six 30-minute massage or simple-touch sessions over 2 weeks. Primary outcomes were immediate (Memorial Pain Assessment Card, 0- to 10-point scale) and sustained (Brief Pain Inventory [BPI], 0- to 10-point scale) change in pain. Secondary outcomes were immediate change in mood (Memorial Pain Assessment Card) and 60-second heart and respiratory rates and sustained change in quality of life (McGill Quality of Life Questionnaire, 0- to 10-point scale), symptom distress (Memorial Symptom Assessment Scale, 0- to 4-point scale), and analgesic medication use (parenteral morphine equivalents [mg/d]). Immediate outcomes were obtained just before and after each treatment session. Sustained outcomes were obtained at baseline and weekly for 3 weeks. 298 persons were included in the immediate outcome analysis and 348 in the sustained outcome analysis. A total of 82 persons did not receive any allocated study treatments (37 massage patients, 45 control participants). Both groups demonstrated immediate improvement in pain (massage, -1.87 points [95% CI, -2.07 to -1.67 points]; control, -0.97 point [CI, -1.18 to -0.76 points]) and mood (massage, 1.58 points [CI, 1.40 to 1.76 points]; control, 0.97 point [CI, 0.78 to 1.16 points]). Massage was superior for both immediate pain and mood (mean difference, 0.90 and 0.61 points, respectively; P < 0.001). No between-group mean differences occurred over time in sustained pain (BPI mean pain, 0.07 point [CI, -0.23 to 0.37 points]; BPI worst pain, -0.14 point [CI, -0.59 to 0.31 points]), quality of life (McGill Quality of Life Questionnaire overall, 0.08 point [CI, -0.37 to 0.53 points]), symptom distress (Memorial Symptom Assessment Scale global distress index, -0.002 point [CI, -0.12 to 0.12 points]), or analgesic medication use (parenteral morphine equivalents, -0.10 mg/d [CI, -0.25 to 0.05 mg/d]). The immediate outcome measures were obtained by unblinded study therapists, possibly leading to reporting bias and the overestimation of a beneficial effect. The generalizability to all patients with advanced cancer is uncertain. The differential beneficial effect of massage therapy over simple touch is not conclusive without a usual care control group. Massage may have immediately beneficial effects on pain and mood among patients with advanced cancer. Given the lack of sustained effects and the observed improvements in both study groups, the potential benefits of attention and simple touch should also be considered in this patient population.

  2. The effect of different control point sampling sequences on convergence of VMAT inverse planning

    NASA Astrophysics Data System (ADS)

    Pardo Montero, Juan; Fenwick, John D.

    2011-04-01

    A key component of some volumetric-modulated arc therapy (VMAT) optimization algorithms is the progressive addition of control points to the optimization. This idea was introduced in Otto's seminal VMAT paper, in which a coarse sampling of control points was used at the beginning of the optimization and new control points were progressively added one at a time. A different form of the methodology is also present in the RapidArc optimizer, which adds new control points in groups called 'multiresolution levels', each doubling the number of control points in the optimization. This progressive sampling accelerates convergence, improving the results obtained, and has similarities with the ordered subset algorithm used to accelerate iterative image reconstruction. In this work we have used a VMAT optimizer developed in-house to study the performance of optimization algorithms which use different control point sampling sequences, most of which fall into three different classes: doubling sequences, which add new control points in groups such that the number of control points in the optimization is (roughly) doubled; Otto-like progressive sampling which adds one control point at a time, and equi-length sequences which contain several multiresolution levels each with the same number of control points. Results are presented in this study for two clinical geometries, prostate and head-and-neck treatments. A dependence of the quality of the final solution on the number of starting control points has been observed, in agreement with previous works. We have found that some sequences, especially E20 and E30 (equi-length sequences with 20 and 30 multiresolution levels, respectively), generate better results than a 5 multiresolution level RapidArc-like sequence. The final value of the cost function is reduced up to 20%, such reductions leading to small improvements in dosimetric parameters characterizing the treatments—slightly more homogeneous target doses and better sparing of the organs at risk.

  3. Bounded parametric control of plane motions of space tethered system

    NASA Astrophysics Data System (ADS)

    Bezglasnyi, S. P.; Mukhametzyanova, A. A.

    2018-05-01

    This paper is focused on the problem of control of plane motions of a space tethered system (STS). The STS is modeled as a heavy rod with two point masses. Point masses are fixed on the rod. A third point mass can move along the rod. The control is realized as a continuous change of the distance from the centre of mass of the tethered system to the movable mass. New limited control laws processes of excitation and damping are built. Diametric reorientation and gravitational stabilization to the local vertical of an STS were obtained. The problem is solved by the method of Lyapunov's functions of the classical theory of stability. The theoretical results are confirmed by numerical calculations.

  4. Experimental determination of group flux control coefficients in metabolic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, T.W.; Shimizu, Hiroshi; Stephanopoulos, G.

    1998-04-20

    Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, the authors demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmentalmore » perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway.« less

  5. Quasi-minimal active disturbance rejection control of MIMO perturbed linear systems based on differential neural networks and the attractive ellipsoid method.

    PubMed

    Salgado, Iván; Mera-Hernández, Manuel; Chairez, Isaac

    2017-11-01

    This study addresses the problem of designing an output-based controller to stabilize multi-input multi-output (MIMO) systems in the presence of parametric disturbances as well as uncertainties in the state model and output noise measurements. The controller design includes a linear state transformation which separates uncertainties matched to the control input and the unmatched ones. A differential neural network (DNN) observer produces a nonlinear approximation of the matched perturbation and the unknown states simultaneously in the transformed coordinates. This study proposes the use of the Attractive Ellipsoid Method (AEM) to optimize the gains of the controller and the gain observer in the DNN structure. As a consequence, the obtained control input minimizes the convergence zone for the estimation error. Moreover, the control design uses the estimated disturbance provided by the DNN to obtain a better performance in the stabilization task in comparison with a quasi-minimal output feedback controller based on a Luenberger observer and a sliding mode controller. Numerical results pointed out the advantages obtained by the nonlinear control based on the DNN observer. The first example deals with the stabilization of an academic linear MIMO perturbed system and the second example stabilizes the trajectories of a DC-motor into a predefined operation point. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Geovisualisation of relief in a virtual reality system on the basis of low-level aerial imagery

    NASA Astrophysics Data System (ADS)

    Halik, Łukasz; Smaczyński, Maciej

    2017-12-01

    The aim of the following paper was to present the geomatic process of transforming low-level aerial imagery obtained with unmanned aerial vehicles (UAV) into a digital terrain model (DTM) and implementing the model into a virtual reality system (VR). The object of the study was a natural aggretage heap of an irregular shape and denivelations up to 11 m. Based on the obtained photos, three point clouds (varying in the level of detail) were generated for the 20,000-m2-area. For further analyses, the researchers selected the point cloud with the best ratio of accuracy to output file size. This choice was made based on seven control points of the heap surveyed in the field and the corresponding points in the generated 3D model. The obtained several-centimetre differences between the control points in the field and the ones from the model might testify to the usefulness of the described algorithm for creating large-scale DTMs for engineering purposes. Finally, the chosen model was implemented into the VR system, which enables the most lifelike exploration of 3D terrain plasticity in real time, thanks to the first person view mode (FPV). In this mode, the user observes an object with the aid of a Head- mounted display (HMD), experiencing the geovisualisation from the inside, and virtually analysing the terrain as a direct animator of the observations.

  7. HACCP (Hazard Analysis and Critical Control Points) to guarantee safe water reuse and drinking water production--a case study.

    PubMed

    Dewettinck, T; Van Houtte, E; Geenens, D; Van Hege, K; Verstraete, W

    2001-01-01

    To obtain a sustainable water catchment in the dune area of the Flemish west coast, the integration of treated domestic wastewater in the existing potable water production process is planned. The hygienic hazards associated with the introduction of treated domestic wastewater into the water cycle are well recognised. Therefore, the concept of HACCP (Hazard Analysis and Critical Control Points) was used to guarantee hygienically safe drinking water production. Taking into account the literature data on the removal efficiencies of the proposed advanced treatment steps with regard to enteric viruses and protozoa and after setting high quality limits based on the recent progress in quantitative risk assessment, the critical control points (CCPs) and points of attention (POAs) were identified. Based on the HACCP analysis a specific monitoring strategy was developed which focused on the control of these CCPs and POAs.

  8. In-flight photogrammetric camera calibration and validation via complementary lidar

    NASA Astrophysics Data System (ADS)

    Gneeniss, A. S.; Mills, J. P.; Miller, P. E.

    2015-02-01

    This research assumes lidar as a reference dataset against which in-flight camera system calibration and validation can be performed. The methodology utilises a robust least squares surface matching algorithm to align a dense network of photogrammetric points to the lidar reference surface, allowing for the automatic extraction of so-called lidar control points (LCPs). Adjustment of the photogrammetric data is then repeated using the extracted LCPs in a self-calibrating bundle adjustment with additional parameters. This methodology was tested using two different photogrammetric datasets, a Microsoft UltraCamX large format camera and an Applanix DSS322 medium format camera. Systematic sensitivity testing explored the influence of the number and weighting of LCPs. For both camera blocks it was found that when the number of control points increase, the accuracy improves regardless of point weighting. The calibration results were compared with those obtained using ground control points, with good agreement found between the two.

  9. Determining osmotic pressure of drug solutions by air humidity in equilibrium method.

    PubMed

    Zhan, Xiancheng; Li, Hui; Yu, Lan; Wei, Guocui; Li, Chengrong

    2014-06-01

    To establish a new osmotic pressure measuring method with a wide measuring range. The osmotic pressure of drug solutions is determined by measuring the relative air humidity in equilibrium with the solution. The freezing point osmometry is used as a control. The data obtained by the proposed method are comparable to those by the control method, and the measuring range of the proposed method is significantly wider than that of the control method. The proposed method is performed in an isothermal and equilibrium state, so it overcomes the defects of the freezing point and dew point osmometries which result from the heterothermal process in the measurement, and therefore is not limited to diluted solutions.

  10. Maneuvering strategies using CMGs

    NASA Technical Reports Server (NTRS)

    Oh, H. S.; Vadali, S. R.

    1988-01-01

    This paper considers control strategies for maneuvering spacecraft using Single-Gimbal Control Momentum Gyros (CMGs). A pyramid configuration using four gyros is utilized. Preferred initial gimbal angles for maximum utilization of CMG momentum are obtained for some known torque commands. Feedback control laws are derived from the stability point of view by using the Liapunov's Second Theorem. The gyro rates are obtained by the pseudo-inverse technique. The effect of gimbal rate bounds on controllability are studied for an example maneuver. Singularity avoidance is based on limiting the gyro rates depending on a singularity index.

  11. Maximum power point tracker for photovoltaic power plants

    NASA Astrophysics Data System (ADS)

    Arcidiacono, V.; Corsi, S.; Lambri, L.

    The paper describes two different closed-loop control criteria for the maximum power point tracking of the voltage-current characteristic of a photovoltaic generator. The two criteria are discussed and compared, inter alia, with regard to the setting-up problems that they pose. Although a detailed analysis is not embarked upon, the paper also provides some quantitative information on the energy advantages obtained by using electronic maximum power point tracking systems, as compared with the situation in which the point of operation of the photovoltaic generator is not controlled at all. Lastly, the paper presents two high-efficiency MPPT converters for experimental photovoltaic plants of the stand-alone and the grid-interconnected type.

  12. A variable-gain output feedback control design approach

    NASA Technical Reports Server (NTRS)

    Haylo, Nesim

    1989-01-01

    A multi-model design technique to find a variable-gain control law defined over the whole operating range is proposed. The design is formulated as an optimal control problem which minimizes a cost function weighing the performance at many operating points. The solution is obtained by embedding into the Multi-Configuration Control (MCC) problem, a multi-model robust control design technique. In contrast to conventional gain scheduling which uses a curve fit of single model designs, the optimal variable-gain control law stabilizes the plant at every operating point included in the design. An iterative algorithm to compute the optimal control gains is presented. The methodology has been successfully applied to reconfigurable aircraft flight control and to nonlinear flight control systems.

  13. Projective rectification of infrared images from air-cooled condenser temperature measurement by using projection profile features and cross-ratio invariability.

    PubMed

    Xu, Lijun; Chen, Lulu; Li, Xiaolu; He, Tao

    2014-10-01

    In this paper, we propose a projective rectification method for infrared images obtained from the measurement of temperature distribution on an air-cooled condenser (ACC) surface by using projection profile features and cross-ratio invariability. In the research, the infrared (IR) images acquired by the four IR cameras utilized are distorted to different degrees. To rectify the distorted IR images, the sizes of the acquired images are first enlarged by means of bicubic interpolation. Then, uniformly distributed control points are extracted in the enlarged images by constructing quadrangles with detected vertical lines and detected or constructed horizontal lines. The corresponding control points in the anticipated undistorted IR images are extracted by using projection profile features and cross-ratio invariability. Finally, a third-order polynomial rectification model is established and the coefficients of the model are computed with the mapping relationship between the control points in the distorted and anticipated undistorted images. Experimental results obtained from an industrial ACC unit show that the proposed method performs much better than any previous method we have adopted. Furthermore, all rectified images are stitched together to obtain a complete image of the whole ACC surface with a much higher spatial resolution than that obtained by using a single camera, which is not only useful but also necessary for more accurate and comprehensive analysis of ACC performance and more reliable optimization of ACC operations.

  14. Performance Analysis of Web-Based Ppp Services with DİFFERENT Visibility Conditions

    NASA Astrophysics Data System (ADS)

    Albayrak, M.; Erkaya, H.; Ozludemir, M. T.; Ocalan, T.

    2016-12-01

    GNSS is being used effectively to precise position for many measuring and geodetic purposes at the present time. There is an increasing variety of these systems including the post-processing calculations in terms of number, quality and features and many different techniques are developed to determine position. Precise positioning intend to derive requires user experience and scientific or commercial software with costly license fees. However, in recent years important alternatives to this software that are user friendly and offer free web-based online precise point positioning service have become widely used in geodetic applications. The aim of this study is to test the performance of PPP techniques on ground control points with different visibility conditions. Within this framework, static observations were carried out for three hours a day repeatedly for six days, in YTU Davutpasa Campus on three different ground control points. The locations of these stations were selected by taking into account the impact of natural (trees, etc.) and artificial (buildings, etc.) obstacles. In order to compare the obtained GPS observations with PPP performances, first of all the accurate coordinates of the control points were computed with relative positioning technique in connection with the IGS stations using Bernese v5.0 software. Afterwards, three different web-based positioning services (CSRS-PPP, magicGNSS, GAPS) were used to analyze the GPS observations via PPP technique. To compare all of the obtained results, ITRF2008 datum measurement epoch coordinates were preferred by taking the service result criteria into consideration. In coordinate comparison, for the first station located nearby a building and possibly subjected to multipath effect horizontal discrepancies vary between 2-14.5 cm while vertical differences are between 3.5-16 cm. For the second point located partly in a forestry area, the discrepancies have been obtained as 1.5-8 cm and 2-10 cm for horizontal and vertical components, respectively. For the third point located in an area with no obstacles, 1.5-7 cm horizontal and 1-7 cm vertical differences have been obtained. The results show that the PPP technique could be used effectively in several positioning applications.

  15. Precise control of flexible manipulators

    NASA Technical Reports Server (NTRS)

    Cannon, R. H., Jr.; Bindford, T. O.; Schmitz, E.

    1984-01-01

    The design and experimental testing of end point position controllers for a very flexible one link lightweight manipulator are summarized. The latest upgraded version of the experimental set up, and the basic differences between conventional joint angle feedback and end point position feedback are described. A general procedure for application of modern control methods to the problem is outlined. The relationship between weighting parameters and the bandwidth and control stiffness of the resulting end point position closed loop system is shown. It is found that joint rate angle feedback in addition to the primary end point position sensor is essential for adequate disturbance rejection capability of the closed loop system. The use of a low order multivariable compensator design computer code; called Sandy is documented. A solution to the problem of control mode switching between position sensor sets is outlined. The proof of concept for endpoint position feedback for a one link flexible manipulator was demonstrated. The bandwidth obtained with the experimental end point position controller is about twice as fast as the beam's first natural cantilevered frequency, and comes within a factor of four of the absolute physical speed limit imposed by the wave propagation time of the beam.

  16. Exponentially Stabilizing Robot Control Laws

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Bayard, David S.

    1990-01-01

    New class of exponentially stabilizing laws for joint-level control of robotic manipulators introduced. In case of set-point control, approach offers simplicity of proportion/derivative control architecture. In case of tracking control, approach provides several important alternatives to completed-torque method, as far as computational requirements and convergence. New control laws modified in simple fashion to obtain asymptotically stable adaptive control, when robot model and/or payload mass properties unknown.

  17. Features of control systems analysis with discrete control devices using mathematical packages

    NASA Astrophysics Data System (ADS)

    Yakovleva, E. M.; Faerman, V. A.

    2017-02-01

    The article contains presentation of basic provisions of the theory of automatic pulse control systems as well as methods of analysis of such systems using the mathematical software widespread in the academic environment. The pulse systems under research are considered as analogues systems interacting among themselves, including sensors, amplifiers, controlled objects, and discrete parts. To describe such systems, one uses a mathematical apparatus of difference equations as well as discrete transfer functions. To obtain a transfer function of the open-loop system, being important from the point of view of the analysis of control systems, one uses mathematical packages Mathcad and Matlab. Despite identity of the obtained result, the way of its achievement from the point of view of user’s action is various for the specified means. In particular, Matlab uses a structural model of the control system while Mathcad allows only execution of a chain of operator transforms. It is worth noting that distinctions taking place allow considering transformation of signals during interaction of the linear and continuous parts of the control system from different sides. The latter can be used in an educational process for the best assimilation of the course of the control system theory by students.

  18. A MEMS-based super fast dew point hygrometer—construction and medical applications

    NASA Astrophysics Data System (ADS)

    Jachowicz, Ryszard S.; Weremczuk, Jerzy; Paczesny, Daniel; Tarapata, Grzegorz

    2009-12-01

    The paper shows how MEMS (micro-electro-mechanical system) technology and a modified principle of fast temperature control (by heat injection instead of careful control of cooling) can considerably improve the dynamic parameters of dew point hygrometers. Some aspects of MEMS-type integrated sensor construction and technology, whole measurement system design, the control algorithm to run the system as well as empirical dynamic parameters from the tests are discussed too. The hygrometer can easily obtain five to six measurements per second with an uncertainty of less than 0.3 K. The meter range is between -10 °C and 40 °C dew point. In the second part of the paper (section 2), two different successful applications in medicine based on fast humidity measurements have been discussed. Some specific constructions of these super fast dew point hygrometers based on a MEMS sensor as well as limited empirical results from clinical tests have been reported too.

  19. Optimization of Control Points Number at Coordinate Measurements based on the Monte-Carlo Method

    NASA Astrophysics Data System (ADS)

    Korolev, A. A.; Kochetkov, A. V.; Zakharov, O. V.

    2018-01-01

    Improving the quality of products causes an increase in the requirements for the accuracy of the dimensions and shape of the surfaces of the workpieces. This, in turn, raises the requirements for accuracy and productivity of measuring of the workpieces. The use of coordinate measuring machines is currently the most effective measuring tool for solving similar problems. The article proposes a method for optimizing the number of control points using Monte Carlo simulation. Based on the measurement of a small sample from batches of workpieces, statistical modeling is performed, which allows one to obtain interval estimates of the measurement error. This approach is demonstrated by examples of applications for flatness, cylindricity and sphericity. Four options of uniform and uneven arrangement of control points are considered and their comparison is given. It is revealed that when the number of control points decreases, the arithmetic mean decreases, the standard deviation of the measurement error increases and the probability of the measurement α-error increases. In general, it has been established that it is possible to repeatedly reduce the number of control points while maintaining the required measurement accuracy.

  20. Nonlinear analysis and performance evaluation of the Annular Suspension and Pointing System (ASPS)

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1978-01-01

    The Annular Suspension and Pointing System (ASPS) can provide high accurate fine pointing for a variety of solar-, stellar-, and Earth-viewing scientific instruments during space shuttle orbital missions. In this report, a detailed nonlinear mathematical model is developed for the ASPS/Space Shuttle system. The equations are augmented with nonlinear models of components such as magnetic actuators and gimbal torquers. Control systems and payload attitude state estimators are designed in order to obtain satisfactory pointing performance, and statistical pointing performance is predicted in the presence of measurement noise and disturbances.

  1. A vision-based end-point control for a two-link flexible manipulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Obergfell, Klaus

    1991-01-01

    The measurement and control of the end-effector position of a large two-link flexible manipulator are investigated. The system implementation is described and an initial algorithm for static end-point positioning is discussed. Most existing robots are controlled through independent joint controllers, while the end-effector position is estimated from the joint positions using a kinematic relation. End-point position feedback can be used to compensate for uncertainty and structural deflections. Such feedback is especially important for flexible robots. Computer vision is utilized to obtain end-point position measurements. A look-and-move control structure alleviates the disadvantages of the slow and variable computer vision sampling frequency. This control structure consists of an inner joint-based loop and an outer vision-based loop. A static positioning algorithm was implemented and experimentally verified. This algorithm utilizes the manipulator Jacobian to transform a tip position error to a joint error. The joint error is then used to give a new reference input to the joint controller. The convergence of the algorithm is demonstrated experimentally under payload variation. A Landmark Tracking System (Dickerson, et al 1990) is used for vision-based end-point measurements. This system was modified and tested. A real-time control system was implemented on a PC and interfaced with the vision system and the robot.

  2. EOS mapping accuracy study

    NASA Technical Reports Server (NTRS)

    Forrest, R. B.; Eppes, T. A.; Ouellette, R. J.

    1973-01-01

    Studies were performed to evaluate various image positioning methods for possible use in the earth observatory satellite (EOS) program and other earth resource imaging satellite programs. The primary goal is the generation of geometrically corrected and registered images, positioned with respect to the earth's surface. The EOS sensors which were considered were the thematic mapper, the return beam vidicon camera, and the high resolution pointable imager. The image positioning methods evaluated consisted of various combinations of satellite data and ground control points. It was concluded that EOS attitude control system design must be considered as a part of the image positioning problem for EOS, along with image sensor design and ground image processing system design. Study results show that, with suitable efficiency for ground control point selection and matching activities during data processing, extensive reliance should be placed on use of ground control points for positioning the images obtained from EOS and similar programs.

  3. Active control of the forced and transient response of a finite beam. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Post, John T.

    1990-01-01

    Structural vibrations from a point force are modelled on a finite beam. This research explores the theoretical limit on controlling beam vibrations utilizing another point source as an active controller. Three different types of excitation are considered, harmonic, random, and transient. For harmonic excitation, control over the entire beam length is possible only when the excitation frequency is near a resonant frequency of the beam. Control over a subregion may be obtained even between resonant frequencies at the cost of increasing the vibration outside of the control region. For random excitation, integrating the expected value of the displacement squared over the required interval, is shown to yield the identical cost function as obtained by integrating the cost function for harmonic excitation over all excitation frequencies. As a result, it is always possible to reduce the cost function for random excitation whether controlling the entire beam or just a subregion, without ever increasing the vibration outside the region in which control is desired. The last type of excitation considered is a single, transient pulse. The form of the controller is specified as either one or two delayed pulses, thus constraining the controller to be casual. The best possible control is examined while varying the region of control and the controller location. It is found that control is always possible using either one or two control pulses.

  4. The dynamics and control of large flexible space structures, 2. Part A: Shape and orientation control using point actuators

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Reddy, A. S. S. R.

    1979-01-01

    The equations of planar motion for a flexible beam in orbit which includes the effects of gravity gradient torques and control torques from point actuators located along the beam was developed. Two classes of theorems are applied to the linearized form of these equations to establish necessary conditions for controlability for preselected actuator configurations. The feedback gains are selected: (1) based on the decoupling of the original coordinates and to obtain proper damping, and (2) by applying the linear regulator problem to the individual model coordinates separately. The linear control laws obtained using both techniques were evaluated by numerical integration of the nonlinear system equations. Numerical examples considering pitch and various number of modes with different combination of actuator numbers and locations are presented. The independent model control concept used earlier with a discretized model of the thin beam in orbit was reviewed for the case where the number of actuators is less than the number of modes. Results indicate that although the system is controllable it is not stable about the nominal (local vertical) orientation when the control is based on modal decoupling. An alternate control law not based on modal decoupling ensures stability of all the modes.

  5. Biomechanical stability analysis of the lambda-model controlling one joint.

    PubMed

    Lan, L; Zhu, K Y

    2007-06-01

    Computer modeling and control of the human motor system might be helpful for understanding the mechanism of human motor system and for the diagnosis and treatment of neuromuscular disorders. In this paper, a brief view of the equilibrium point hypothesis for human motor system modeling is given, and the lambda-model derived from this hypothesis is studied. The stability of the lambda-model based on equilibrium and Jacobian matrix is investigated. The results obtained in this paper suggest that the lambda-model is stable and has a unique equilibrium point under certain conditions.

  6. Choosing the Optimal Number of B-spline Control Points (Part 1: Methodology and Approximation of Curves)

    NASA Astrophysics Data System (ADS)

    Harmening, Corinna; Neuner, Hans

    2016-09-01

    Due to the establishment of terrestrial laser scanner, the analysis strategies in engineering geodesy change from pointwise approaches to areal ones. These areal analysis strategies are commonly built on the modelling of the acquired point clouds. Freeform curves and surfaces like B-spline curves/surfaces are one possible approach to obtain space continuous information. A variety of parameters determines the B-spline's appearance; the B-spline's complexity is mostly determined by the number of control points. Usually, this number of control points is chosen quite arbitrarily by intuitive trial-and-error-procedures. In this paper, the Akaike Information Criterion and the Bayesian Information Criterion are investigated with regard to a justified and reproducible choice of the optimal number of control points of B-spline curves. Additionally, we develop a method which is based on the structural risk minimization of the statistical learning theory. Unlike the Akaike and the Bayesian Information Criteria this method doesn't use the number of parameters as complexity measure of the approximating functions but their Vapnik-Chervonenkis-dimension. Furthermore, it is also valid for non-linear models. Thus, the three methods differ in their target function to be minimized and consequently in their definition of optimality. The present paper will be continued by a second paper dealing with the choice of the optimal number of control points of B-spline surfaces.

  7. Welding deviation detection algorithm based on extremum of molten pool image contour

    NASA Astrophysics Data System (ADS)

    Zou, Yong; Jiang, Lipei; Li, Yunhua; Xue, Long; Huang, Junfen; Huang, Jiqiang

    2016-01-01

    The welding deviation detection is the basis of robotic tracking welding, but the on-line real-time measurement of welding deviation is still not well solved by the existing methods. There is plenty of information in the gas metal arc welding(GMAW) molten pool images that is very important for the control of welding seam tracking. The physical meaning for the curvature extremum of molten pool contour is revealed by researching the molten pool images, that is, the deviation information points of welding wire center and the molten tip center are the maxima and the local maxima of the contour curvature, and the horizontal welding deviation is the position difference of these two extremum points. A new method of weld deviation detection is presented, including the process of preprocessing molten pool images, extracting and segmenting the contours, obtaining the contour extremum points, and calculating the welding deviation, etc. Extracting the contours is the premise, segmenting the contour lines is the foundation, and obtaining the contour extremum points is the key. The contour images can be extracted with the method of discrete dyadic wavelet transform, which is divided into two sub contours including welding wire and molten tip separately. The curvature value of each point of the two sub contour lines is calculated based on the approximate curvature formula of multi-points for plane curve, and the two points of the curvature extremum are the characteristics needed for the welding deviation calculation. The results of the tests and analyses show that the maximum error of the obtained on-line welding deviation is 2 pixels(0.16 mm), and the algorithm is stable enough to meet the requirements of the pipeline in real-time control at a speed of less than 500 mm/min. The method can be applied to the on-line automatic welding deviation detection.

  8. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    PubMed

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  9. Nonlinear Multiobjective MPC-Based Optimal Operation of a High Consistency Refining System in Papermaking

    DOE PAGES

    Li, Mingjie; Zhou, Ping; Wang, Hong; ...

    2017-09-19

    As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less

  10. Nonlinear Multiobjective MPC-Based Optimal Operation of a High Consistency Refining System in Papermaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingjie; Zhou, Ping; Wang, Hong

    As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less

  11. International Aviation (Selected Articles)

    DTIC Science & Technology

    1991-09-11

    THE ANAYLYSIS OF DYNAMIC FORCES IN AVIATION STRUCTURES Following along with the development of test manufacturing projects for many types of aircraft...type water troughs. All the main equipment embodies automated measurement controls. It is capable of obtaining test data and curves in a real time...results from thousands of calculations, and decisions were made to select the imaginary origin point to act as the turbulence flow origination point

  12. An approach of point cloud denoising based on improved bilateral filtering

    NASA Astrophysics Data System (ADS)

    Zheng, Zeling; Jia, Songmin; Zhang, Guoliang; Li, Xiuzhi; Zhang, Xiangyin

    2018-04-01

    An omnidirectional mobile platform is designed for building point cloud based on an improved filtering algorithm which is employed to handle the depth image. First, the mobile platform can move flexibly and the control interface is convenient to control. Then, because the traditional bilateral filtering algorithm is time-consuming and inefficient, a novel method is proposed which called local bilateral filtering (LBF). LBF is applied to process depth image obtained by the Kinect sensor. The results show that the effect of removing noise is improved comparing with the bilateral filtering. In the condition of off-line, the color images and processed images are used to build point clouds. Finally, experimental results demonstrate that our method improves the speed of processing time of depth image and the effect of point cloud which has been built.

  13. A study of the application of singular perturbation theory. [development of a real time algorithm for optimal three dimensional aircraft maneuvers

    NASA Technical Reports Server (NTRS)

    Mehra, R. K.; Washburn, R. B.; Sajan, S.; Carroll, J. V.

    1979-01-01

    A hierarchical real time algorithm for optimal three dimensional control of aircraft is described. Systematic methods are developed for real time computation of nonlinear feedback controls by means of singular perturbation theory. The results are applied to a six state, three control variable, point mass model of an F-4 aircraft. Nonlinear feedback laws are presented for computing the optimal control of throttle, bank angle, and angle of attack. Real Time capability is assessed on a TI 9900 microcomputer. The breakdown of the singular perturbation approximation near the terminal point is examined Continuation methods are examined to obtain exact optimal trajectories starting from the singular perturbation solutions.

  14. Optimal control of a variable spin speed CMG system for space vehicles. [Control Moment Gyros

    NASA Technical Reports Server (NTRS)

    Liu, T. C.; Chubb, W. B.; Seltzer, S. M.; Thompson, Z.

    1973-01-01

    Many future NASA programs require very high accurate pointing stability. These pointing requirements are well beyond anything attempted to date. This paper suggests a control system which has the capability of meeting these requirements. An optimal control law for the suggested system is specified. However, since no direct method of solution is known for this complicated system, a computation technique using successive approximations is used to develop the required solution. The method of calculus of variations is applied for estimating the changes of index of performance as well as those constraints of inequality of state variables and terminal conditions. Thus, an algorithm is obtained by the steepest descent method and/or conjugate gradient method. Numerical examples are given to show the optimal controls.

  15. Cooperative path following control of multiple nonholonomic mobile robots.

    PubMed

    Cao, Ke-Cai; Jiang, Bin; Yue, Dong

    2017-11-01

    Cooperative path following control problem of multiple nonholonomic mobile robots has been considered in this paper. Based on the framework of decomposition, the cooperative path following problem has been transformed into path following problem and cooperative control problem; Then cascaded theory of non-autonomous system has been employed in the design of controllers without resorting to feedback linearization. One time-varying coordinate transformation based on dilation has been introduced to solve the uncontrollable problem of nonholonomic robots when the whole group's reference converges to stationary point. Cooperative path following controllers for nonholonomic robots have been proposed under persistent reference or reference target that converges to stationary point respectively. Simulation results using Matlab have illustrated the effectiveness of the obtained theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer.

    PubMed

    Hu, Jiwen; Qian, Shengyou; Ding, Yajun

    2010-05-01

    Temperature control of hyperthermia treatments is generally implemented with multipoint feedback system comprised of phased-array transducer, which is complicated and high cost. Our simulations to the acoustic field induced by a self-focused concave spherical transducer (0.5MHz, 9cm aperture width, 8.0cm focal length) show that the distribution of temperature can keep the same "cigar shape" in the focal region during ultrasound insonation. Based on the characteristic of the temperature change, a two-dimensional model of a "cigar shape" tumor is designed and tested through numerical simulation. One single-point on the border of the "cigar shape" tumor is selected as the control target and is controlled at the temperature of 43 degrees C by using a self-tuning regulator (STR). Considering the nonlinear effects of biological medium, an accurate state-space model obtained via the finite Fourier integral transformation to the bioheat equation is presented and used for calculating temperature. Computer simulations were performed with the perfusion rates of 2.0kg/(m(3)s) and 4.5kg/(m(3)s) to the different targets, it was found that the temperatures on the border of the "cigar shape" tumor can achieve the desired temperature of 43 degrees C by control of one single-point. A larger perfusion rate requires a higher power output to obtain the same temperature elevation under the same insonation time and needs a higher cost for compensating the energy loss carried away by blood flow after steady state. The power output increases with the controlled region while achieving the same temperature at the same time. Especially, there is no overshoot during temperature elevation and no oscillation after steady state. The simulation results demonstrate that the proposed approach may offers a way for obtaining a single-point, low-cost hyperthermia system. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Sliding mode controller for a photovoltaic pumping system

    NASA Astrophysics Data System (ADS)

    ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.

    2017-03-01

    In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.

  18. Control allocation for gimballed/fixed thrusters

    NASA Astrophysics Data System (ADS)

    Servidia, Pablo A.

    2010-02-01

    Some overactuated control systems use a control distribution law between the controller and the set of actuators, usually called control allocator. Beyond the control allocator, the configuration of actuators may be designed to be able to operate after a single point of failure, for system optimization and/or decentralization objectives. For some type of actuators, a control allocation is used even without redundancy, being a good example the design and operation of thruster configurations. In fact, as the thruster mass flow direction and magnitude only can be changed under certain limits, this must be considered in the feedback implementation. In this work, the thruster configuration design is considered in the fixed (F), single-gimbal (SG) and double-gimbal (DG) thruster cases. The minimum number of thrusters for each case is obtained and for the resulting configurations a specific control allocation is proposed using a nonlinear programming algorithm, under nominal and single-point of failure conditions.

  19. An operational theory of laser-radar selenodesy

    USGS Publications Warehouse

    Wildey, R.L.; Schlier, R.E.; Hull, J.A.; Larson, G.

    1967-01-01

    A theory of the utilization of laser techniques for ranging from the Earth to the Moon for the purpose of providing control points on the lunar surface at which the figure of the Moon is measured to an accuracy at least an order of magnitude better than that of the present astrometric measurements is presented. This, in turn, increases the accuracy of the horizontal selenocentric coordinates of topographical features measured by present astrometric methods. The improvement in the vertical and horizontal coordinates of control points in the Apollo landing zone will aid in the analysis of Unmanned Lunar Orbiter photographs for the selection of Apollo landing sites. The present discussion proposes the means of obtaining the ground control upon which the Orbiter photogrammetry is to be fastened. In addition, a technique of combining Goldstone tracking data to show where the resulting lunar figure is positioned relative to the Moon's center of mass is presented. If corner reflectors are placed on the lunar surface, as suggested by many members of the scientific community, or on a lunar orbiting vehicle, one or more Earth-based laser ranging systems are essential. These reflectors will give enough enhancement in return signal to allow for an additional increase in range accuracy of one to two orders of magnitude. In addition to the primary data on the figure of the Moon, a number of other measurements of scientific importance are then readily obtainable. As far as the measurement of control points is concerned, however, the use of corner reflectors is not essential for the success of this project. Questions regarding the influence on the present shape of the Moon of the frozen tide, isostasy, and past impacts of large asteroids appear in large part answerable through the data which are indicated to be obtainable under the present theory. ?? 1967.

  20. Implementation of the DAST ARW II control laws using an 8086 microprocessor and an 8087 floating-point coprocessor. [drones for aeroelasticity research

    NASA Technical Reports Server (NTRS)

    Kelly, G. L.; Berthold, G.; Abbott, L.

    1982-01-01

    A 5 MHZ single-board microprocessor system which incorporates an 8086 CPU and an 8087 Numeric Data Processor is used to implement the control laws for the NASA Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing II. The control laws program was executed in 7.02 msec, with initialization consuming 2.65 msec and the control law loop 4.38 msec. The software emulator execution times for these two tasks were 36.67 and 61.18, respectively, for a total of 97.68 msec. The space, weight and cost reductions achieved in the present, aircraft control application of this combination of a 16-bit microprocessor with an 80-bit floating point coprocessor may be obtainable in other real time control applications.

  1. Multiple excitation nano-spot generation and confocal detection for far-field microscopy.

    PubMed

    Mondal, Partha Pratim

    2010-03-01

    An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.

  2. Multiple excitation nano-spot generation and confocal detection for far-field microscopy

    NASA Astrophysics Data System (ADS)

    Mondal, Partha Pratim

    2010-03-01

    An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.

  3. Agreement between the 'point of care' tests for microalbuminuria and HbA1c performed in mexican family medicine units and the results of standard laboratory tests.

    PubMed

    Valdez-González, Leticia A; Méndez-Padrón, Araceli; Gómez-Díaz, Rita A; Valladares-Salgado, Adán; Sánchez-Becerra, Martha Catalina; Mondragón-González, Rafael; Hernández-Rubí, Jaime; González-Hermosillo, Arturo; Cruz, Miguel; Borja, Víctor; Wacher, Niels H

    The albumin-creatinine ratio is considered an indicator of microalbuminuria, precursor to chronic kidney disease, while HbA1c is used to measure glycemic control. Given the prevalence of diabetes-related nephropathy, spot testing of albumin has long been recommended as a preventative measure, for the timely detection of microalbuminuria. However, many countries do not have this testing available in primary care, and sometimes not even in second- and third-level care. The objective of this study was to compare agreement of the microalbuminuria and HbA1c results obtained in the laboratory with 'gold standard' techniques, with those obtained on site with a 'Point of Care' DCA Vantage™ device by Siemens. Results for the albumin-creatinine ratio and HbA1c from the Siemens DCA Vantage™ point of care device were compared with those from standard laboratory tests in 25 family medicine units in Mexico City and Toluca, State of Mexico, in patients diagnosed with type-2 diabetes. Agreement between the albumin values of the 2 tests was 0.745 (CI 95% 0.655-0.812). Agreement between the two measurement techniques for HbA1c was 0.970 (CI 95% 0.966-0.973). The results obtained were sufficiently comparative (R i = 0.74 for albumin-creatinine ratio and R i  = 0.97 for HbA1c) to justify the use of the point of care device. Given the high agreement between the point of care device and laboratory tests, this device could be used to identify chronic kidney disease and glycemic control for more adequate treatment in patients with diabetes, especially in remote areas.

  4. Boundary assessment under uncertainty: A case study

    USGS Publications Warehouse

    Pawlowsky, V.; Olea, R.A.; Davis, J.C.

    1993-01-01

    Estimating certain attributes within a geological body whose exact boundary is not known presents problems because of the lack of information. Estimation may result in values that are inadmissible from a geological point of view, especially with attributes which necessarily must be zero outside the boundary, such as the thickness of the oil column outside a reservoir. A simple but effective way to define the boundary is to use indicator kriging in two steps, the first for the purpose of extrapolating control points outside the body, the second to obtain a weighting function which expresses the uncertainty attached to estimations obtained in the boundary region. ?? 1993 International Association for Mathematical Geology.

  5. Design of the stabilizing control of the orbital motion in the vicinity of the collinear libration point L1 using the analytical representation of the invariant manifold

    NASA Astrophysics Data System (ADS)

    Maliavkin, G. P.; Shmyrov, A. S.; Shmyrov, V. A.

    2018-05-01

    Vicinities of collinear libration points of the Sun-Earth system are currently quite attractive for the space navigation. Today, various projects on placing of spacecrafts observing the Sun in the L1 libration point and telescopes in L2 have been implemented (e.g. spacecrafts "WIND", "SOHO", "Herschel", "Planck"). Collinear libration points being unstable leads to the problem of stabilization of a spacecraft's motion. Laws of stabilizing motion control in vicinity of L1 point can be constructed using the analytical representation of a stable invariant manifold. Efficiency of these control laws depends on the precision of the representation. Within the model of Hill's approximation of the circular restricted three-body problem in the rotating geocentric coordinate system one can obtain the analytical representation of an invariant manifold filled with bounded trajectories in a form of series in terms of powers of the phase variables. Approximate representations of the orders from the first to the fourth inclusive can be used to construct four laws of stabilizing feedback motion control under which trajectories approach the manifold. By virtue of numerical simulation the comparison can be made: how the precision of the representation of the invariant manifold influences the efficiency of the control, expressed by energy consumptions (characteristic velocity). It shows that using approximations of higher orders in constructing the control laws can significantly reduce the energy consumptions on implementing the control compared to the linear approximation.

  6. Electronic field permeameter

    DOEpatents

    Chandler, Mark A.; Goggin, David J.; Horne, Patrick J.; Kocurek, Gary G.; Lake, Larry W.

    1989-01-01

    For making rapid, non-destructive permeability measurements in the field, a portable minipermeameter of the kind having a manually-operated gas injection tip is provided with a microcomputer system which operates a flow controller to precisely regulate gas flow rate to a test sample, and reads a pressure sensor which senses the pressure across the test sample. The microcomputer system automatically turns on the gas supply at the start of each measurement, senses when a steady-state is reached, collects and records pressure and flow rate data, and shuts off the gas supply immediately after the measurement is completed. Preferably temperature is also sensed to correct for changes in gas viscosity. The microcomputer system may also provide automatic zero-point adjustment, sensor calibration, over-range sensing, and may select controllers, sensors, and set-points for obtaining the most precise measurements. Electronic sensors may provide increased accuracy and precision. Preferably one microcomputer is used for sensing instrument control and data collection, and a second microcomputer is used which is dedicated to recording and processing the data, selecting the sensors and set-points for obtaining the most precise measurements, and instructing the user how to set-up and operate the minipermeameter. To provide mass data collection and user-friendly operation, the second microcomputer is preferably a lap-type portable microcomputer having a non-volatile or battery-backed CMOS memory.

  7. Delineation of soil temperature regimes from HCMM data

    NASA Technical Reports Server (NTRS)

    Day, R. L.; Petersen, G. W. (Principal Investigator)

    1981-01-01

    Supplementary data including photographs as well as topographic, geologic, and soil maps were obtained and evaluated for ground truth purposes and control point selection. A study area (approximately 450 by 450 pixels) was subset from LANDSAT scene No. 2477-17142. Geometric corrections and scaling were performed. Initial enhancement techniques were initiated to aid control point selection and soils interpretation. The SUBSET program was modified to read HCMM tapes and HCMM data were reformated so that they are compatible with the ORSER system. Initial NMAP products of geometrically corrected and scaled raw data tapes (unregistered) of the study were produced.

  8. Revising two-point discrimination assessment in normal aging and in patients with polyneuropathies.

    PubMed

    van Nes, S I; Faber, C G; Hamers, R M T P; Harschnitz, O; Bakkers, M; Hermans, M C E; Meijer, R J; van Doorn, P A; Merkies, I S J

    2008-07-01

    To revise the static and dynamic normative values for the two-point discrimination test and to examine its applicability and validity in patients with a polyneuropathy. Two-point discrimination threshold values were assessed in 427 healthy controls and 99 patients mildly affected by a polyneuropathy. The controls were divided into seven age groups ranging from 20-29, 30-39,..., up to 80 years and older; each group consisted of at least 30 men and 30 women. Two-point discrimination examination took place under standardised conditions on the index finger. Correlation studies were performed between the scores obtained and the values derived from the Weinstein Enhanced Sensory Test (WEST) and the arm grade of the Overall Disability SumScore (ODSS) in the patients' group (validity studies). Finally, the sensitivity to detect patients mildly affected by a polyneuropathy was evaluated for static and dynamic assessments. There was a significant age-dependent increase in the two-point discrimination values. No significant gender difference was found. The dynamic threshold values were lower than the static scores. The two-point discrimination values obtained correlated significantly with the arm grade of the ODSS (static values: r = 0.33, p = 0.04; dynamic values: r = 0.37, p = 0.02) and the scores of the WEST in patients (static values: r = 0.58, p = 0.0001; dynamic values: r = 0.55, p = 0.0002). The sensitivity for the static and dynamic threshold values was 28% and 33%, respectively. This study provides age-related normative two-point discrimination threshold values using a two-point discriminator (an aesthesiometer). This easily applicable instrument could be used as part of a more extensive neurological sensory evaluation.

  9. Preliminary Design and Analysis of the GIFTS Instrument Pointing System

    NASA Technical Reports Server (NTRS)

    Zomkowski, Paul P.

    2003-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Instrument is the next generation spectrometer for remote sensing weather satellites. The GIFTS instrument will be used to perform scans of the Earth s atmosphere by assembling a series of field-of- views (FOV) into a larger pattern. Realization of this process is achieved by step scanning the instrument FOV in a contiguous fashion across any desired portion of the visible Earth. A 2.3 arc second pointing stability, with respect to the scanning instrument, must be maintained for the duration of the FOV scan. A star tracker producing attitude data at 100 Hz rate will be used by the autonomous pointing algorithm to precisely track target FOV s on the surface of the Earth. The main objective is to validate the pointing algorithm in the presence of spacecraft disturbances and determine acceptable disturbance limits from expected noise sources. Proof of concept validation of the pointing system algorithm is carried out with a full system simulation developed using Matlab Simulink. Models for the following components function within the full system simulation: inertial reference unit (IRU), attitude control system (ACS), reaction wheels, star tracker, and mirror controller. With the spacecraft orbital position and attitude maintained to within specified limits the pointing algorithm receives quaternion, ephemeris, and initialization data that are used to construct the required mirror pointing commands at a 100 Hz rate. This comprehensive simulation will also aid in obtaining a thorough understanding of spacecraft disturbances and other sources of pointing system errors. Parameter sensitivity studies and disturbance analysis will be used to obtain limits of operability for the GIFTS instrument. The culmination of this simulation development and analysis will be used to validate the specified performance requirements outlined for this instrument.

  10. Analysis of random signal combinations for spacecraft pointing stability

    NASA Technical Reports Server (NTRS)

    Howell, L.

    1983-01-01

    Methods for obtaining the probability density function of random signal combustions are discussed. These methods provide a realistic criteria for the design of control systems subjected to external noise with several important applications for aerospace problems.

  11. Automatic control of cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with fixed Mach number control is demonstrated.

  12. Applying Matched Sampling to Evaluate a University Tutoring Program for First-Year Students

    ERIC Educational Resources Information Center

    Walvoord, Mark E.; Pleitz, Jacob D.

    2016-01-01

    Our study used a case-control matching design to assess the influence of a voluntary tutoring program in improving first-year students' Grade Point Averages (GPA). To evaluate program effectiveness, we applied case-control matching to obtain 215 pairs of students with or without participation in tutoring, but matched on high school GPA and…

  13. Phospholipase A2 as a point of care alternative to serum amylase and pancreatic lipase

    NASA Astrophysics Data System (ADS)

    Liu, Nathan J.; Chapman, Robert; Lin, Yiyang; Bentham, Andrew; Tyreman, Matthew; Philips, Natalie; Khan, Shahid A.; Stevens, Molly M.

    2016-06-01

    Acute pancreatitis is a relatively common and potentially fatal condition, but the presenting symptoms are non-specific and diagnosis relies largely on the measurement of amylase activity by the hospital clinical laboratory. In this work we develop a point of care test for pancreatitis measuring concentration of secretory phospholipase A2 group IB (sPLA2-IB). Novel antibodies for sPLA2-IB were raised and used to design an ELISA and a lateral flow device (LFD) for the point of care measurement of sPLA2-IB concentration, which was compared to pancreatic amylase activity, lipase activity, and sPLA2-IB activity in 153 serum samples. 98 of these samples were obtained from the pathology unit of a major hospital and classified retrospectively according to presence or absence of pancreatitis, and the remaining 55 were obtained from commercial sources to serve as high lipase (n = 20), CA19-9 positive (n = 15), and healthy (n = 20) controls. sPLA2-IB concentration correlated well with the serum activity of both amylase and lipase, and performed at least as well as either markers in the differentiation of pancreatitis from controls.Acute pancreatitis is a relatively common and potentially fatal condition, but the presenting symptoms are non-specific and diagnosis relies largely on the measurement of amylase activity by the hospital clinical laboratory. In this work we develop a point of care test for pancreatitis measuring concentration of secretory phospholipase A2 group IB (sPLA2-IB). Novel antibodies for sPLA2-IB were raised and used to design an ELISA and a lateral flow device (LFD) for the point of care measurement of sPLA2-IB concentration, which was compared to pancreatic amylase activity, lipase activity, and sPLA2-IB activity in 153 serum samples. 98 of these samples were obtained from the pathology unit of a major hospital and classified retrospectively according to presence or absence of pancreatitis, and the remaining 55 were obtained from commercial sources to serve as high lipase (n = 20), CA19-9 positive (n = 15), and healthy (n = 20) controls. sPLA2-IB concentration correlated well with the serum activity of both amylase and lipase, and performed at least as well as either markers in the differentiation of pancreatitis from controls. Electronic supplementary information (ESI) available: Additional characterisation and statistical analysis. See DOI: 10.1039/c6nr03376h

  14. Active Control of the Forced and Transient Response of a Finite Beam. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Post, John Theodore

    1989-01-01

    When studying structural vibrations resulting from a concentrated source, many structures may be modelled as a finite beam excited by a point source. The theoretical limit on cancelling the resulting beam vibrations by utilizing another point source as an active controller is explored. Three different types of excitation are considered, harmonic, random, and transient. In each case, a cost function is defined and minimized for numerous parameter variations. For the case of harmonic excitation, the cost function is obtained by integrating the mean squared displacement over a region of the beam in which control is desired. A controller is then found to minimize this cost function in the control interval. The control interval and controller location are continuously varied for several frequencies of excitation. The results show that control over the entire beam length is possible only when the excitation frequency is near a resonant frequency of the beam, but control over a subregion may be obtained even between resonant frequencies at the cost of increasing the vibration outside of the control region. For random excitation, the cost function is realized by integrating the expected value of the displacement squared over the interval of the beam in which control is desired. This is shown to yield the identical cost function as obtained by integrating the cost function for harmonic excitation over all excitation frequencies. As a result, it is always possible to reduce the cost function for random excitation whether controlling the entire beam or just a subregion, without ever increasing the vibration outside the region in which control is desired. The last type of excitation considered is a single, transient pulse. A cost function representative of the beam vibration is obtained by integrating the transient displacement squared over a region of the beam and over all time. The form of the controller is chosen a priori as either one or two delayed pulses. Delays constrain the controller to be causal. The best possible control is then examined while varying the region of control and the controller location. It is found that control is always possible using either one or two control pulses. The two pulse controller gives better performance than a single pulse controller, but finding the optimal delay time for the additional controllers increases as the square of the number of control pulses.

  15. Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang

    2018-07-01

    In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 {μ Φ }_0/Hz^{1/2}.

  16. Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang

    2018-03-01

    In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.

  17. Physical mechanisms of active control of sound transmission through rib stiffened double-panel structure

    NASA Astrophysics Data System (ADS)

    Ma, Xiyue; Chen, Kean; Ding, Shaohu; Yu, Haoxin

    2016-06-01

    This paper presents an analytical investigation on physical mechanisms of actively controlling sound transmission through a rib stiffened double-panel structure using point source in the cavity. The combined modal expansion and vibro-acoustic coupling methods are applied to establish the theoretical model of such active structure. Under the condition of minimizing radiated power of the radiating ribbed plate, the physical mechanisms are interpreted in detail from the point of view of modal couplings similar as that used in existed literatures. Results obtained demonstrate that the rule of sound energy transmission and the physical mechanisms for the rib stiffened double-panel structure are all changed, and affected by the coupling effects of the rib when compared with the analytical results obtained for unribbed double-panel case. By taking the coupling effects of the rib into considerations, the cavity modal suppression and rearrangement mechanisms obtained in existed investigations are modified and supplemented for the ribbed plate case, which gives a clear interpretation for the physical nature involved in the active rib stiffened double-panel structure.

  18. Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals

    NASA Astrophysics Data System (ADS)

    Li, Qian; Hu, Lei; Mao, Qiuping; Jiang, Haiming; Hu, Zhijia; Xie, Kang; Wei, Zhang

    2018-03-01

    Light trapping at the Dirac point in 2D plasma photonic crystal has been obtained. The new localized mode, Dirac mode, is attributable to neither photonic bandgap nor total internal reflection. It exhibits a unique algebraic profile and possesses a high-Q factor resonator of about 105. The Dirac point could be modulated by tuning the filling factor, plasma frequency and plasma cyclotron frequency, respectively. When a magnetic field parallel to the wave vector is applied, Dirac modes for right circularly polarized and left circularly polarized waves could be obtained at different frequencies, and the Q factor could be tuned. This property will add more controllability and flexibility to the design and modulation of novel photonic devices. It is also valuable for the possibilities of Dirac modes in photonic crystal containing other kinds of metamaterials.

  19. Precomputed state dependent digital control of a nuclear rocket engine

    NASA Technical Reports Server (NTRS)

    Johnson, M. R.

    1972-01-01

    A control method applicable to multiple-input multiple-output nonlinear time-invariant systems in which desired behavior can be expressed explicitly as a trajectory in system state space is developed. The precomputed state dependent control method is basically a synthesis technique in which a suboptimal control law is developed off-line, prior to system operation. This law is obtained by conducting searches at a finite number of points in state space, in the vicinity of some desired trajectory, to obtain a set of constant control vectors which tend to return the system to the desired trajectory. These vectors are used to evaluate the unknown coefficients in a control law having an assumed hyperellipsoidal form. The resulting coefficients constitute the heart of the controller and are used in the on-line computation of control vectors. Two examples of PSDC are given prior to the more detailed description of the NERVA control system development.

  20. Possibilities for Using LIDAR and Photogrammetric Data Obtained with AN Unmanned Aerial Vehicle for Levee Monitoring

    NASA Astrophysics Data System (ADS)

    Bakuła, K.; Ostrowski, W.; Szender, M.; Plutecki, W.; Salach, A.; Górski, K.

    2016-06-01

    This paper presents the possibilities for using an unmanned aerial system for evaluation of the condition of levees. The unmanned aerial system is equipped with two types of sensor. One is an ultra-light laser scanner, integrated with a GNSS receiver and an INS system; the other sensor is a digital camera that acquires data with stereoscopic coverage. Sensors have been mounted on the multirotor, unmanned platform the Hawk Moth, constructed by MSP company. LiDAR data and images of levees the length of several hundred metres were acquired during testing of the platform. Flights were performed in several variants. Control points measured with the use of the GNSS technique were considered as reference data. The obtained results are presented in this paper; the methodology of processing the acquired LiDAR data, which increase in accuracy when low accuracy of the navigation systems occurs as a result of systematic errors, is also discussed. The Iterative Closest Point (ICP) algorithm, as well as measurements of control points, were used to georeference the LiDAR data. Final accuracy in the order of centimetres was obtained for generation of the digital terrain model. The final products of the proposed UAV data processing are digital elevation models, an orthophotomap and colour point clouds. The authors conclude that such a platform offers wide possibilities for low-budget flights to deliver the data, which may compete with typical direct surveying measurements performed during monitoring of such objects. However, the biggest advantage is the density and continuity of data, which allows for detection of changes in objects being monitored.

  1. Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons.

    PubMed

    Schiavon, S; Yang, B; Donner, Y; Chang, V W-C; Nazaroff, W W

    2017-05-01

    In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty-six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant-controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant-controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air-conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Pilot usage of decoupled flight path and pitch controls

    NASA Technical Reports Server (NTRS)

    Berkhout, J.; Osgood, R.; Berry, D.

    1985-01-01

    Data from decoupled flight maneuvers have been collected and analyzed for four AFTI-F-16 pilots operating this aircraft's highly augmented fly-by-wire control system, in order to obtain spectral density, cross spectra, and Bode amplitude data, as well as coherences and phase angles for the two longitudinal axis control functions of each of 50 20-sec epochs. The analysis of each epoch yielded five distinct plotted parameters for the left hand twist grip and right hand sidestick controller output time series. These two control devices allow the left hand to generate vertical translation, direct lift, or pitch-pointing commands that are decoupled from those of the right hand. Attention is given to the control patterns obtained for decoupled normal flight, air-to-air gun engagement decoupled maneuvering, and decoupled air-to-surface bombing run maneuvering.

  3. Mathematical Analysis of an Epidemic System in the Presence of Optimal Control and Population Dispersal

    NASA Astrophysics Data System (ADS)

    Nandi, Swapan Kumar; Jana, Soovoojeet; Mandal, Manotosh; Kar, T. K.

    In this paper, we proposed and analyzed a susceptible-infected-recovered (SIR) type epidemic model to investigate the effect of transport-related infectious diseases namely tuberculosis, measles, rubella, influenza, sexually transmitted diseases, etc. The existence and stability criteria of both the diseases include free equilibrium point and endemic equilibrium point which are established and the threshold parametric condition for which the system passes through a transcritical bifurcation is also obtained. Optimal control strategy for control parameters is formulated and solved both theoretically and numerically. Lastly, we not only illustrate our theoretical results through graphical illustrations but also computer simulation is used to show that our model would be a good model to study the SARS epidemic in 2003.

  4. Solving a Local Boundary Value Problem for a Nonlinear Nonstationary System in the Class of Feedback Controls

    NASA Astrophysics Data System (ADS)

    Kvitko, A. N.

    2018-01-01

    An algorithm convenient for numerical implementation is proposed for constructing differentiable control functions that transfer a wide class of nonlinear nonstationary systems of ordinary differential equations from an initial state to a given point of the phase space. Constructive sufficient conditions imposed on the right-hand side of the controlled system are obtained under which this transfer is possible. The control of a robotic manipulator is considered, and its numerical simulation is performed.

  5. A simplified dynamic model of the T700 turboshaft engine

    NASA Technical Reports Server (NTRS)

    Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.

    1992-01-01

    A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.

  6. Integrated-optic current sensors with a multimode interference waveguide device.

    PubMed

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  7. Control of Low Melting Point Mno-Sio2-Al2o3 Inclusions in Low Carbon Thin-Strip Continuous Casting Steel

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhu, Qing; Huang, Di; Zheng, Shaobo; Zhang, Jieyu; Li, Huigai

    2017-09-01

    There is a significant difference in the demand for molten steel quality between thin-strip continuous casting and traditional continuous casting. In order to make sure the better surface quality of the thin strips, to generate an oxidation film on the surface of cooling roller is required. This will require that the higher oxygen potential in molten steel and inclusions with low melting point. In this article, the possibility of producing low-melting inclusions which is mainly consisted of SiO2 and MnO is studied by controlling the initial oxygen potential and addition order of deoxidizing alloys. The interaction activity between each component in the ternary system of Al2O3-SiO2-MnO is obtained by Action Concentration model. The equal [Mn], [Si], [O], [Al] curve under the temperature of 1823K and equilibrium condition in ternary system of Al2O3-SiO2-MnO is obtained by relative thermodynamic calculation as well. The control method for getting the low-melting point inclusion is as below. While the weight percentage of Si is 0.35% and the one of Mn is 0.90%, in order to maintain the melting point of inclusion around 1200°C, the free oxygen potential in melted steel F[O] should be maintained between 0.002% ∼ 0.004%. On the contrary, the requirement for acid dissolved [Al] content in melted steel is as low as 0.0001% ∼ 0.0005%.

  8. Design and Simulation of a PID Controller for Motion Control Systems

    NASA Astrophysics Data System (ADS)

    Hassan Abdullahi, Zakariyya; Danzomo, Bashir Ahmed; Suleiman Abdullahi, Zainab

    2018-04-01

    Motion control system plays important role in many industrial applications among which are in robot system, missile launching, positioning systems etc. However, the performance requirement for these applications in terms of high accuracy, high speed, insignificant or no overshoot and robustness have generated continuous challenges in the field of motion control system design and implementation. To compensate this challenge, a PID controller was design using mathematical model of a DC motor based on classical root-locus approach. The reason for adopting root locus design is to remodel the closed-loop response by putting the closed-loop poles of the system at desired points. Adding poles and zeros to the initial open-loop transfer function through the controller provide a way to transform the root locus in order to place the closed-loop poles at the required points. This process can also be used for discrete-time models. The Advantages of root locus over other methods is that, it gives the better way of pinpointing the parameters and can easily predict the fulfilment of the whole system. The controller performance was simulated using MATLAB code and a reasonable degree of accuracy was obtained. Implementation of the proposed model was conducted using-Simulink and the result obtained shows that the PID controller met the transient performance specifications with both settling time and overshoot less than 0.1s and 5% respectively. In terms of steady state error, the PID controller gave good response for both step input and ramp.

  9. An optimization-based integrated controls-structures design methodology for flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Joshi, Suresh M.; Armstrong, Ernest S.

    1993-01-01

    An approach for an optimization-based integrated controls-structures design is presented for a class of flexible spacecraft that require fine attitude pointing and vibration suppression. The integrated design problem is posed in the form of simultaneous optimization of both structural and control design variables. The approach is demonstrated by application to the integrated design of a generic space platform and to a model of a ground-based flexible structure. The numerical results obtained indicate that the integrated design approach can yield spacecraft designs that have substantially superior performance over a conventional design wherein the structural and control designs are performed sequentially. For example, a 40-percent reduction in the pointing error is observed along with a slight reduction in mass, or an almost twofold increase in the controlled performance is indicated with more than a 5-percent reduction in the overall mass of the spacecraft (a reduction of hundreds of kilograms).

  10. No scanning depth imaging system based on TOF

    NASA Astrophysics Data System (ADS)

    Sun, Rongchun; Piao, Yan; Wang, Yu; Liu, Shuo

    2016-03-01

    To quickly obtain a 3D model of real world objects, multi-point ranging is very important. However, the traditional measuring method usually adopts the principle of point by point or line by line measurement, which is too slow and of poor efficiency. In the paper, a no scanning depth imaging system based on TOF (time of flight) was proposed. The system is composed of light source circuit, special infrared image sensor module, processor and controller of image data, data cache circuit, communication circuit, and so on. According to the working principle of the TOF measurement, image sequence was collected by the high-speed CMOS sensor, and the distance information was obtained by identifying phase difference, and the amplitude image was also calculated. Experiments were conducted and the experimental results show that the depth imaging system can achieve no scanning depth imaging function with good performance.

  11. 3D reconstruction of microminiature objects based on contour line

    NASA Astrophysics Data System (ADS)

    Li, Cailin; Wang, Qiang; Guo, Baoyun

    2009-10-01

    A new 3D automatic reconstruction method of micro solid of revolution is presented in this paper. In the implementation procedure of this method, image sequence of the solid of revolution of 360° is obtained, which rotation speed is controlled by motor precisely, in the rotate photographic mode of back light. Firstly, we need calibrate the height of turntable, the size of pixel and rotation axis of turntable. Then according to the calibration result of rotation axis, the height of turntable, rotation angle and the pixel size, the contour points of each image can be transformed into 3D points in the reference coordinate system to generate the point cloud model. Finally, the surface geometrical model of solid of revolution is obtained by using the relationship of two adjacent contours. Experimental results on real images are presented, which demonstrate the effectiveness of the Approach.

  12. Efficient Jacobian inversion for the control of simple robot manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1988-01-01

    Symbolic inversion of the Jacobian matrix for spherical wrist arms is investigated. It is shown that, taking advantage of the simple geometry of these arms, the closed-form solution of the system Q = J-1X, representing a transformation from task space to joint space, can be obtained very efficiently. The solutions for PUMA, Stanford, and a six-revolute-joint coplanar arm, along with all singular points, are presented. The solution for each joint variable is found as an explicit function of the singular points which provides a better insight into the effect of different singular points on the motion and force exertion of each individual joint. For the above arms, the computation cost of the solution is on the same order as the cost of forward kinematic solution and it is significantly reduced if forward kinematic solution is already obtained. A comparison with previous methods shows that this method is the most efficient to date.

  13. Optimal tracking and second order sliding power control of the DFIG wind turbine

    NASA Astrophysics Data System (ADS)

    Abdeddaim, S.; Betka, A.; Charrouf, O.

    2017-02-01

    In the present paper, an optimal operation of a grid-connected variable speed wind turbine equipped with a Doubly Fed Induction Generator (DFIG) is presented. The proposed cascaded nonlinear controller is designed to perform two main objectives. In the outer loop, a maximum power point tracking (MPPT) algorithm based on fuzzy logic theory is designed to permanently extract the optimal aerodynamic energy, whereas in the inner loop, a second order sliding mode control (2-SM) is applied to achieve smooth regulation of both stator active and reactive powers quantities. The obtained simulation results show a permanent track of the MPP point regardless of the turbine power-speed slope moreover the proposed sliding mode control strategy presents attractive features such as chattering-free, compared to the conventional first order sliding technique (1-SM).

  14. Measurement of scour-depth near bridge piers

    USGS Publications Warehouse

    Skinner, J.V.

    1986-01-01

    Because a free-running craft will be undesirably heavy and large, other methods of obtaining scour data are proposed. A tethered craft fitted with a controllable rudder and some methods of measuring scour at a point are presented for future study and development.

  15. The Evaluation of GPS techniques for UAV-based Photogrammetry in Urban Area

    NASA Astrophysics Data System (ADS)

    Yeh, M. L.; Chou, Y. T.; Yang, L. S.

    2016-06-01

    The efficiency and high mobility of Unmanned Aerial Vehicle (UAV) made them essential to aerial photography assisted survey and mapping. Especially for urban land use and land cover, that they often changes, and need UAVs to obtain new terrain data and the new changes of land use. This study aims to collect image data and three dimensional ground control points in Taichung city area with Unmanned Aerial Vehicle (UAV), general camera and Real-Time Kinematic with positioning accuracy down to centimetre. The study area is an ecological park that has a low topography which support the city as a detention basin. A digital surface model was also built with Agisoft PhotoScan, and there will also be a high resolution orthophotos. There will be two conditions for this study, with or without ground control points and both were discussed and compared for the accuracy level of each of the digital surface models. According to check point deviation estimate, the model without ground control points has an average two-dimension error up to 40 centimeter, altitude error within one meter. The GCP-free RTK-airborne approach produces centimeter-level accuracy with excellent to low risk to the UAS operators. As in the case of the model with ground control points, the accuracy of x, y, z coordinates has gone up 54.62%, 49.07%, and 87.74%, and the accuracy of altitude has improved the most.

  16. Serial sectioning of grain microstructures under junction control: An old problem in a new guise

    NASA Astrophysics Data System (ADS)

    Zöllner, D.; Streitenberger, P.

    2015-04-01

    In the present work the importance of 3D and 4D microstructure analyses are shown. To that aim, we study polycrystalline grain microstructures obtained by grain growth under grain boundary, triple line and quadruple point control. The microstructures themselves are obtained by mesoscopic computer simulations, which enjoy a far greater control over the kinetic and thermodynamic parameters affecting grain growth than can be realized experimentally. In extensive simulation studies we find by 3D respectively 4D microstructure analyses that metrical and topological properties of the microstructures depend strongly on the microstructural feature controlling the growth kinetics. However, the differences between the growth kinetics vanish when we look at classical 2D sections of the 3D ensembles making a differentiation of the controlling grain feature near impossible.

  17. A Novelty Design Of Minimization Of Electrical Losses In A Vector Controlled Induction Machine Drive

    NASA Astrophysics Data System (ADS)

    Aryza, Solly; Irwanto, M.; Lubis, Zulkarnain; Putera Utama Siahaan, Andysah; Rahim, Robbi; Furqan, Mhd.

    2018-01-01

    The induction motor has in the industry . More attention has been a focus to develop and design of induction motor drive. With the method of vector control novelty prove the efficiency of induction motor over their entire speed range. In this paper desirable to design a loss minimization controller which can improve the efficiency. Also, this research described Modeling of an induction motor with core loss included. Realization of methods vector control for an induction motor drive with loss element included. The case of the loss minimization condition. The procedure was successful to calculate the gains of a PI controller. Though the problem of obtaining a robust and sensorless induction motor drive is by no means completely solved, the results obtained as part of this work point in a promising direction.

  18. Attitude orientation control for a spinning satellite

    NASA Astrophysics Data System (ADS)

    Frost, Gerald

    The Department of the Air Force, Headquarters Space Systems Division, and the National Aeronautics and Space Administration (NASA) are currently involved in litigation with Hughes Aircraft Company over the alledged infringement of the 'Williams patent,' which describes a method for attitude control of a spin-stabilized vehicle. Summarized here is pre-1960 RAND work on this subject and information obtained from RAND personnel knowledgeable on this subject. It was concluded that there is no RAND documentation that directly parallels the 'Williams patent' concept. Also, the TIROS II magnetic torque attitude control method is reviewed. The TIROS II meteorological satellite, launched on November 23, 1960, incorporated a magnetic actuation system for spin axis orientation control. The activation system was ground controlled to orient the satellite spin axis to obtain the desired pointing direction for optical and infrared sensor subsystems.

  19. Design of set-point weighting PIλ + Dμ controller for vertical magnetic flux controller in Damavand tokamak.

    PubMed

    Rasouli, H; Fatehi, A

    2014-12-01

    In this paper, a simple method is presented for tuning weighted PI(λ) + D(μ) controller parameters based on the pole placement controller of pseudo-second-order fractional systems. One of the advantages of this controller is capability of reducing the disturbance effects and improving response to input, simultaneously. In the following sections, the performance of this controller is evaluated experimentally to control the vertical magnetic flux in Damavand tokamak. For this work, at first a fractional order model is identified using output-error technique in time domain. For various practical experiments, having desired time responses for magnetic flux in Damavand tokamak, is vital. To approach this, at first the desired closed loop reference models are obtained based on generalized characteristic ratio assignment method in fractional order systems. After that, for the identified model, a set-point weighting PI(λ) + D(μ) controller is designed and simulated. Finally, this controller is implemented on digital signal processor control system of the plant to fast/slow control of magnetic flux. The practical results show appropriate performance of this controller.

  20. Global shape estimates and GIS cartography of Io and Enceladus using new control point network

    NASA Astrophysics Data System (ADS)

    Nadezhdina, I.; Patraty, V.; Shishkina, L.; Zhukov, D.; Zubarev, A.; Karachevtseva, I.; Oberst, J.

    2012-04-01

    We have analyzed a total of 53 Galileo and Voyager images of Io and 54 Cassini images of Enceladus to derive new geodetic control point networks for the two satellites. In order to derive the network for Io we used a subset of 66 images from those used in previous control point network studies [1, 2]. Additionally we have carried out new point measurements. We used recently reconstructed Galileo spacecraft trajectory data, supplied by the spacecraft navigation team of JPL. A total of 1956 tie point measurements for Io and 4392 ones for Enceladus have been carried out, which were processed by performing photogrammetric bundle block adjustments. Measurements and block adjustments were performed by means of the «PHOTOMOD» software [3] which was especially adapted for this study to accommodate global networks of small bodies, such as Io and Enceladus. As a result, two catalogs with the Cartesian three-dimensional coordinates of 197 and 351 control points were obtained for Io and Enceladus, respectively. The control points for Io have a mean overall accuracy of 4985.7 m (RMS). The individual accuracy of the control points for Enceladus differ substantially over the surface (the range is from 0.1 to 36.0 km) because images lack coverage and resolutions. We also determine best-fit spheres, spheroids, and tri-axial ellipsoids. The centers of the models were found to be shifted from the coordinate system origin attesting to possible errors in the ephemeris of Io. Conclusion and Future work: A comparison of our results for Io with the most recent control point network analysis [2] has revealed that we managed to derive the same accuracy of the control points using a smaller number of images and measurements (This study: 1956 measurements, DLR study: 4392). This probably attests to the fact that the now available new navigation data are internally more consistent. At present an analysis of the data is in progress. We report that control point measurements and global network analysis for small planetary bodies by means of the software «PHOTOMOD» is fast and efficient. Using the new control points and shape models of the satellites we are currently preparing new maps of Io and Enceladus using GIS tools. For parts of the surface for which we have quality stereo-images we will produce DEMs and orthoimages, which will be shown at the conference. Acknowledgments: This research was funded by the Ministry of Education and Science of the Russian Federation (MEGA-GRANT, Project name: "Geodesy, cartography and the study of planets and satellites", contract No. 11.G34.31.0021).

  1. [Impact of a psychosocial intervention in caregiver burden of children with cerebral palsy].

    PubMed

    Martínez Lazcano, Félix; Avilés Cura, Manuel; Ramírez Aranda, José Manuel; Riquelme Heras, Héctor; Garza Elizondo, Teófilo; Barrón Garza, Fabiola

    2014-10-01

    To demonstrate that problem-solving therapy is effective in reducing the burden on caregivers of children with cerebral palsy. Randomized clinical trial. Check primary care within a private nonprofit association. 140caregivers divided into control group (CG) and experimental group (EG). We performed in both groups a psychosocial intervention with a frequency of one session per week for three weeks to complete 120minutes. In the EG performed a shortened form of problem-solving therapy with a focus on caregiver burden and the CG performed an educational intervention focusing on respiratory diseases. The response variable corresponds to the score obtained by Zarit questionnaire. The independent variable accounted for psychosocial intervention. In the EG according to Zarit questionnaire score was obtained by averaging 45.0 points pre intervention against 45.3 points in the CP after intervention Zarit was obtained by averaging 29.8 points in the EG and 44.3 points in the CG (P<.0001). The catalog groups according to their score Zarit in charge: none, mild, moderate and severe impact differences were found in the different intervention categories (Wilcoxon test Z=6.281, P<.00001). Problem solving therapy is effective in reducing the burden on caregivers of children with cerebral palsy. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  2. Reference point detection for camera-based fingerprint image based on wavelet transformation.

    PubMed

    Khalil, Mohammed S

    2015-04-30

    Fingerprint recognition systems essentially require core-point detection prior to fingerprint matching. The core-point is used as a reference point to align the fingerprint with a template database. When processing a larger fingerprint database, it is necessary to consider the core-point during feature extraction. Numerous core-point detection methods are available and have been reported in the literature. However, these methods are generally applied to scanner-based images. Hence, this paper attempts to explore the feasibility of applying a core-point detection method to a fingerprint image obtained using a camera phone. The proposed method utilizes a discrete wavelet transform to extract the ridge information from a color image. The performance of proposed method is evaluated in terms of accuracy and consistency. These two indicators are calculated automatically by comparing the method's output with the defined core points. The proposed method is tested on two data sets, controlled and uncontrolled environment, collected from 13 different subjects. In the controlled environment, the proposed method achieved a detection rate 82.98%. In uncontrolled environment, the proposed method yield a detection rate of 78.21%. The proposed method yields promising results in a collected-image database. Moreover, the proposed method outperformed compare to existing method.

  3. Point- and line-based transformation models for high resolution satellite image rectification

    NASA Astrophysics Data System (ADS)

    Abd Elrahman, Ahmed Mohamed Shaker

    Rigorous mathematical models with the aid of satellite ephemeris data can present the relationship between the satellite image space and the object space. With government funded satellites, access to calibration and ephemeris data has allowed the development and use of these models. However, for commercial high-resolution satellites, which have been recently launched, these data are withheld from users, and therefore alternative empirical models should be used. In general, the existing empirical models are based on the use of control points and involve linking points in the image space and the corresponding points in the object space. But the lack of control points in some remote areas and the questionable accuracy of the identified discrete conjugate points provide a catalyst for the development of algorithms based on features other than control points. This research, concerned with image rectification and 3D geo-positioning determination using High-Resolution Satellite Imagery (HRSI), has two major objectives. First, the effects of satellite sensor characteristics, number of ground control points (GCPs), and terrain elevation variations on the performance of several point based empirical models are studied. Second, a new mathematical model, using only linear features as control features, or linear features with a minimum number of GCPs, is developed. To meet the first objective, several experiments for different satellites such as Ikonos, QuickBird, and IRS-1D have been conducted using different point based empirical models. Various data sets covering different terrain types are presented and results from representative sets of the experiments are shown and analyzed. The results demonstrate the effectiveness and the superiority of these models under certain conditions. From the results obtained, several alternatives to circumvent the effects of the satellite sensor characteristics, the number of GCPs, and the terrain elevation variations are introduced. To meet the second objective, a new model named the Line Based Transformation Model (LBTM) is developed for HRSI rectification. The model has the flexibility to either solely use linear features or use linear features and a number of control points to define the image transformation parameters. Unlike point features, which must be explicitly defined, linear features have the advantage that they can be implicitly defined by any segment along the line. (Abstract shortened by UMI.)

  4. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    NASA Astrophysics Data System (ADS)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  5. Closed Loop solar array-ion thruster system with power control circuitry

    NASA Technical Reports Server (NTRS)

    Gruber, R. P. (Inventor)

    1979-01-01

    A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.

  6. Jet Mixing Enhancement by Feedback Control

    NASA Technical Reports Server (NTRS)

    Glauser, Mark; Taylor, Jeffrey

    1999-01-01

    The objective of this work has been to produce methodologies for high speed jet noise reduction based on natural mechanisms and enhanced feedback control to affect frequencies and structures in a prescribed manner. In this effort the two-point hot wire measurements obtained in the Langley jet facility by Ukeiley were used in conjuction with linear stochastic estimation (LSE) to implement the LSE component of the complementary technique. This method combines the Proper Orthogonal Decomposition (POD) and LSE to provide an experimental low dimensional time dependent description of the flow field. From such a description it should be possible to identify short time high strain rate events in the jet which contribute to the noise. The main task completed for this effort is summarized: LSE experiments were performed at the downstream locations where the two point hot wire measurements have been obtained by Ukeiley. These experiments involved sampling simultaneously hot wire signals from a relatively course spatial grid in gamma and theta. From this simultaneous data, coupled with the two-point measurements of Ukeiley via the LSE components of the complementary technique, an experimental low dimensional description of the jet at 4, 5, 6, 7 and 8 diameters downstream was obtained for Mach numbers of 0.3 and 0.6. We first present an overview of the theory involved. We finish up with a statement of the work performed and finally provide charts from a 1999 APS talk which summarizes the results.

  7. Passive serialization in a multitasking environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennessey, J.P.; Osisek, D.L.; Seigh, J.W. II

    1989-02-28

    In a multiprocessing system having a control program in which data objects are shared among processes, this patent describes a method for serializing references to a data object by the processes so as to prevent invalid references to the data object by any process when an operation requiring exclusive access is performed by another process, comprising the steps of: permitting the processes to reference data objects on a shared access basis without obtaining a shared lock; monitoring a point of execution of the control program which is common to all processes in the system, which occurs regularly in the process'more » execution and across which no references to any data object can be maintained by any process, except references using locks; establishing a system reference point which occurs after each process in the system has passed the point of execution at least once since the last such system reference point; requesting an operation requiring exclusive access on a selected data object; preventing subsequent references by other processes to the selected data object; waiting until two of the system references points have occurred; and then performing the requested operation.« less

  8. Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes.

    PubMed

    Ding, Xiaoshuai; Cao, Jinde; Zhao, Xuan; Alsaadi, Fuad E

    2017-08-01

    This paper is concerned with the drive-response synchronization for a class of fractional-order bidirectional associative memory neural networks with time delays, as well as in the presence of discontinuous activation functions. The global existence of solution under the framework of Filippov for such networks is firstly obtained based on the fixed-point theorem for condensing map. Then the state feedback and impulsive controllers are, respectively, designed to ensure the Mittag-Leffler synchronization of these neural networks and two new synchronization criteria are obtained, which are expressed in terms of a fractional comparison principle and Razumikhin techniques. Numerical simulations are presented to validate the proposed methodologies.

  9. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point.

    PubMed

    Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong

    2015-07-01

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  10. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Chenxi, E-mail: cxshao@ustc.edu.cn; Xue, Yong; Fang, Fang

    2015-07-15

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedbackmore » control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.« less

  11. Effect of sleep deprivation after a night shift duty on simulated crisis management by residents in anaesthesia. A randomised crossover study.

    PubMed

    Arzalier-Daret, Ségolène; Buléon, Clément; Bocca, Marie-Laure; Denise, Pierre; Gérard, Jean-Louis; Hanouz, Jean-Luc

    2018-04-01

    Sleep deprivation has been associated with an increased incidence of medical errors and can jeopardise patients' safety during medical crisis management. The aim of the study was to assess the effect of sleep deprivation on the management of simulated anaesthesia crisis by residents in anaesthesiology. A randomised, comparative, monocentric crossover study involving 48 residents in anaesthesia was performed on a high fidelity patient simulator. Each resident was evaluated in a sleep-deprived state (deprived group, after a night shift duty) and control state (control group, after a night of sleep). Performance was assessed through points obtained during crisis scenario 1 (oesophageal intubation followed by anaphylactic shock) and scenario 2 (anaesthesia-related bronchospasm followed by ventricular tachycardia). Sleep periods were recorded by actigraphy. Two independent observers assessed the performances. The primary endpoint of the study was the score obtained for each scenario. Resident's crisis management performance is associated with sleep deprivation (scenario 1: control=39 [33-42] points vs. deprived=26 [19-40] points, P=0.02; scenario 2: control=21 [17-24] vs. deprived=14 [12-19], P=0.01). The main errors observed were: error in drug administration and dose, delay in identification of hypotension, and missing communication with the surgical team about situation. The present study showed that sleep deprivation is associated with impairment of performance to manage crisis situations by residents in anaesthesia. Copyright © 2017 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  12. Proceedings of the 1982 Army Numerical Analysis and Computers Conference.

    DTIC Science & Technology

    1982-08-01

    field array WACC (l,J). Configuration types. The cartesian coordinates of the points on the entire boundary of the physical region, i.e., the closed outer...the field array WACC . This calculation is discussed in Ref.[8],where it is noted that the values obtained are not truly optimum in all cases...placed in the field 60 4g array WACC . The addition to the control functions from attraction to specified lines and/or points in the physical region is

  13. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  14. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  15. Mapping islands, reefs and shoals in the oceans surrounding Australia

    NASA Technical Reports Server (NTRS)

    Turner, L. G. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Contours of residual errors were depicted in east and north directions. Contours were constructed from residuals which were determined at 22 ground control points. Residuals at two control points were rejected from contour determination, as their magnitudes were not in keeping with surrounding values. Results obtained so far from depth measurement tests are only tentative. Both sucessful and unsuccessful correlations were depicted between the imagery intensities and bathymetric data. Using the results from nine profile comparisons abstracted from a scene over Torres Strait, where water was generally very clear, an empirical relationship between image intensity (1) and water depth (d) was derived: 1 = 30 - 0.75 d.

  16. Nonlinear predictive control of a boiler-turbine unit: A state-space approach with successive on-line model linearisation and quadratic optimisation.

    PubMed

    Ławryńczuk, Maciej

    2017-03-01

    This paper details development of a Model Predictive Control (MPC) algorithm for a boiler-turbine unit, which is a nonlinear multiple-input multiple-output process. The control objective is to follow set-point changes imposed on two state (output) variables and to satisfy constraints imposed on three inputs and one output. In order to obtain a computationally efficient control scheme, the state-space model is successively linearised on-line for the current operating point and used for prediction. In consequence, the future control policy is easily calculated from a quadratic optimisation problem. For state estimation the extended Kalman filter is used. It is demonstrated that the MPC strategy based on constant linear models does not work satisfactorily for the boiler-turbine unit whereas the discussed algorithm with on-line successive model linearisation gives practically the same trajectories as the truly nonlinear MPC controller with nonlinear optimisation repeated at each sampling instant. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Measurement of whole tire profile

    NASA Astrophysics Data System (ADS)

    Yang, Yongyue; Jiao, Wenguang

    2010-08-01

    In this paper, a precision measuring device is developed for obtaining characteristic curve of tire profile and its geometric parameters. It consists of a laser displacement measurement unit, a closed-loop precision two-dimensional coordinate table, a step motor control system and a fast data acquisition and analysis system. Based on the laser trigonometry, a data map of tire profile and coordinate values of all points can be obtained through corresponding data transformation. This device has a compact structure, a convenient control, a simple hardware circuit design and a high measurement precision. Experimental results indicate that measurement precision can meet the customer accuracy requirement of +/-0.02 mm.

  18. A systematic approach to sound decision making starts with financial reporting.

    PubMed

    Taylor, R B

    1989-11-01

    Managers and supervisors need information to measure departmental performance. Designing a reporting system requires managers to obtain needed information without being flooded by extraneous data. A reporting framework designed to examine five control points is a necessary tool, and a good place to start.

  19. Does high flexion after total knee replacement really improve our patients' quality of life at a short-term follow-up? : a comparative case-control study with hyperflex PFC Sigma versus a Triathlon knee series.

    PubMed

    Mencière, Maxime L; Epinette, Jean-Alain; Gabrion, Antoine; Arnalsteen, Damien; Mertl, Patrice

    2014-10-01

    A full range of motion after total knee arthroplasty has become more and more requested by our patients, leading to novel designs of knee implants, the so-called "hyperflex" knees. The aim of the present study was to confirm whether or not hyperflexion of operated knees really improves the patients' quality of life. A retrospective comparative case-control study has been carried out to compare clinical results shown in two types of knee prosthesis, from two homogeneous paired groups of patients including 45 cases of a "hyperflex" model (RP-F), while the control group consisted of 43 cases of a "regular design" model (Triathlon) in terms of expected postoperative flexion. The hyperflex group demonstrated significant higher mean values of passive flexion at 119.9° in the RP-F group versus 111.1° in the Triathlon group. However, global results in the "regular" control group were significantly better than the "hyperflex" study group, in both IKS knee and functional scores at 84.4 points (RP-F) vs. 89.8 points (Triathlon), and 84.6 points (RP-F) vs. 89.5 points (Triathlon), respectively. Moreover, the self-administered KOOS questionnaire was significantly in favor of the control group, with 73.5 points in RP-F knees versus 86.0 points for Triathlon knees at global KOOS postoperative scores. The quality of life of operated patients after TKA obviously would be considered as the main priority, which was better obtained by a "regular design" in our study. Hence "high flexion" cannot be considered as an absolute target when choosing a model for total knee arthroplasty.

  20. Fuzzy observer-based control for maximum power-point tracking of a photovoltaic system

    NASA Astrophysics Data System (ADS)

    Allouche, M.; Dahech, K.; Chaabane, M.; Mehdi, D.

    2018-04-01

    This paper presents a novel fuzzy control design method for maximum power-point tracking (MPPT) via a Takagi and Sugeno (TS) fuzzy model-based approach. A knowledge-dynamic model of the PV system is first developed leading to a TS representation by a simple convex polytopic transformation. Then, based on this exact fuzzy representation, a H∞ observer-based fuzzy controller is proposed to achieve MPPT even when we consider varying climatic conditions. A specified TS reference model is designed to generate the optimum trajectory which must be tracked to ensure maximum power operation. The controller and observer gains are obtained in a one-step procedure by solving a set of linear matrix inequalities (LMIs). The proposed method has been compared with some classical MPPT techniques taking into account convergence speed and tracking accuracy. Finally, various simulation and experimental tests have been carried out to illustrate the effectiveness of the proposed TS fuzzy MPPT strategy.

  1. The impact of active controls technology on the structural integrity of aeronautical vehicles

    NASA Technical Reports Server (NTRS)

    Noll, Thomas E.; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry; Kaynes, Ian; Lee, Ben; Sparrow, James

    1993-01-01

    The findings of an investigation conducted under the auspices of The Technical Cooperation Program (TTCP) to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle are summarized. Important points concerning structural technology considerations implicit in applying active controls technology in new aircraft are summarized. These points are well founded and based upon information received from within the aerospace industry and government laboratories, acquired by sponsoring workshops which brought together experts from contributing and interacting technical disciplines, and obtained by conducting a case study to independently assess the state of the technology. The paper concludes that communication between technical disciplines is absolutely essential in the design of future high performance aircraft.

  2. Chaos control in delayed phase space constructed by the Takens embedding theory

    NASA Astrophysics Data System (ADS)

    Hajiloo, R.; Salarieh, H.; Alasty, A.

    2018-01-01

    In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.

  3. Controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion.

    PubMed

    Sathiyaraj, T; Balasubramaniam, P

    2017-11-30

    This paper presents a new set of sufficient conditions for controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion (fBm) in finite dimensional space using fractional calculus, fixed point technique and stochastic analysis approach. In particular, we discuss the complete controllability for nonlinear fractional stochastic integrodifferential systems under the proved result of the corresponding linear fractional system is controllable. Finally, an example is presented to illustrate the efficiency of the obtained theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. TIME-INTERVAL MEASURING DEVICE

    DOEpatents

    Gross, J.E.

    1958-04-15

    An electronic device for measuring the time interval between two control pulses is presented. The device incorporates part of a previous approach for time measurement, in that pulses from a constant-frequency oscillator are counted during the interval between the control pulses. To reduce the possible error in counting caused by the operation of the counter gating circuit at various points in the pulse cycle, the described device provides means for successively delaying the pulses for a fraction of the pulse period so that a final delay of one period is obtained and means for counting the pulses before and after each stage of delay during the time interval whereby a plurality of totals is obtained which may be averaged and multplied by the pulse period to obtain an accurate time- Interval measurement.

  5. Stability and Control Estimation Flight Test Results for the SR-71 Aircraft With Externally Mounted Experiments

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Iliff, Kenneth

    2002-01-01

    A maximum-likelihood output-error parameter estimation technique is used to obtain stability and control derivatives for the NASA Dryden Flight Research Center SR-71A airplane and for configurations that include experiments externally mounted to the top of the fuselage. This research is being done as part of the envelope clearance for the new experiment configurations. Flight data are obtained at speeds ranging from Mach 0.4 to Mach 3.0, with an extensive amount of test points at approximately Mach 1.0. Pilot-input pitch and yaw-roll doublets are used to obtain the data. This report defines the parameter estimation technique used, presents stability and control derivative results, and compares the derivatives for the three configurations tested. The experimental configurations studied generally show acceptable stability, control, trim, and handling qualities throughout the Mach regimes tested. The reduction of directional stability for the experimental configurations is the most significant aerodynamic effect measured and identified as a design constraint for future experimental configurations. This report also shows the significant effects of aircraft flexibility on the stability and control derivatives.

  6. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

    NASA Astrophysics Data System (ADS)

    Simeral, J. D.; Kim, S.-P.; Black, M. J.; Donoghue, J. P.; Hochberg, L. R.

    2011-04-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor.

  7. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

    PubMed Central

    Simeral, J D; Kim, S-P; Black, M J; Donoghue, J P; Hochberg, L R

    2013-01-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor. PMID:21436513

  8. Impulsive control of a financial model [rapid communication

    NASA Astrophysics Data System (ADS)

    Sun, Jitao; Qiao, Fei; Wu, Qidi

    2005-02-01

    In this Letter, several new theorems on the stability of impulsive control systems are presented. These theorem are then used to find the conditions under which an advertising strategy can be asymptotically control to the equilibrium point by using impulsive control. Given the parameters of the financial model and the impulsive control law, an estimation of the upper bound of the impulse interval is given, i.e., number of advert can been decreased (i.e., can decrease cost) for to obtain the equivalent advertising effect.The result is illustrated to be efficient through a numerical example.

  9. [Design of a Hazard Analysis and Critical Control Points (HACCP) plan to assure the safety of a bologna product produced by a meat processing plant].

    PubMed

    Bou Rached, Lizet; Ascanio, Norelis; Hernández, Pilar

    2004-03-01

    The Hazard Analysis and Critical Control Point (HACCP) is a systematic integral program used to identify and estimate the hazards (microbiological, chemical and physical) and the risks generated during the primary production, processing, storage, distribution, expense and consumption of foods. To establish a program of HACCP has advantages, being some of them: to emphasize more in the prevention than in the detection, to diminish the costs, to minimize the risk of manufacturing faulty products, to allow bigger trust to the management, to strengthen the national and international competitiveness, among others. The present work is a proposal based on the design of an HACCP program to guarantee the safety of the Bologna Special Type elaborated by a meat products industry, through the determination of hazards (microbiological, chemical or physical), the identification of critical control points (CCP), the establishment of critical limits, plan corrective actions and the establishment of documentation and verification procedures. The used methodology was based in the application of the seven basic principles settled down by the Codex Alimentarius, obtaining the design of this program. In view of the fact that recently the meat products are linked with pathogens like E. coli O157:H7 and Listeria monocytogenes, these were contemplated as microbiological hazard for the establishment of the HACCP plan whose application will guarantee the obtaining of a safe product.

  10. Adaptive surrogate model based multi-objective transfer trajectory optimization between different libration points

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Wang, Wei

    2016-10-01

    An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.

  11. Hybrid position/force control of multi-arm cooperating robots

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    1986-01-01

    This paper extends the theory of hybrid position/force control to the case of multi-arm cooperating robots. Cooperation between n robot arms is achieved by controlling each arm such that the burden of actuation is shared between the arms in a nonconflicting way as they control the position of and force on a designated point on an object. The object, which may or may not be in contact with a rigid environment, is assumed to be held rigidly by n robot end-effectors. Natural and artificial position and force constraints are defined for a point on the object and two selection matrices are obtained to control the arms. The position control loops are designed based on each manipulator's Cartesian space dynamic equations. In the position control subspace, a feature is provided which allows the robot arms to exert additional forces/torques to achieve compression, tension, or torsion in the object without affecting the execution of the motion trajectories. In the force control subspace, a method is introduced to minimize the total force/torque magnitude square while realizing the net desired force/torque on the environment.

  12. Dynamical behaviours and control measures of rumour-spreading model with consideration of network topology

    NASA Astrophysics Data System (ADS)

    Zhu, Linhe; Zhao, Hongyong

    2017-07-01

    A series of online rumours have seriously influenced the normal production and living of people. This paper aims to study the combined impact of psychological factor, propagation delay, network topology and control strategy on rumour diffusion over the online social networks. Based on an online social network, which is seen as a scale-free network, we model the spread of rumours by using a delayed SIS (Susceptible and Infected) epidemic-like model with consideration of psychological factor and network topology. First, through theoretical analysis, we illustrate the boundedness of the density of rumour-susceptible individuals and rumour-infected individuals. Second, we obtain the basic reproduction number R0 and prove the stability of the non-rumour equilibrium point and the rumour-spreading equilibrium point. Third, control strategies, such as uniform immunisation control, proportional immunisation control, targeted immunisation control and optimum control, are put forward to restrain rumour diffusion. Meanwhile, we have compared the differences of these control strategies. Finally, some representative numerical simulations are performed to verify the theoretical analysis results.

  13. Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases.

    PubMed

    Koppelmans, Vincent; Erdeniz, Burak; De Dios, Yiri E; Wood, Scott J; Reuter-Lorenz, Patricia A; Kofman, Igor; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2013-12-18

    Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether spaceflight also affects other central nervous system functions such as cognition is yet largely unknown, but of importance in consideration of the health and performance of crewmembers both in- and post-flight. We are therefore conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor and cognitive performance changes. Here we present the protocol of our study. This study includes three groups (astronauts, bed rest subjects, ground-based control subjects) for which each the design is single group with repeated measures. The effects of spaceflight on the brain will be investigated in astronauts who will be assessed at two time points pre-, at three time points during-, and at four time points following a spaceflight mission of six months. To parse out the effect of microgravity from the overall effects of spaceflight, we investigate the effects of seventy days head-down tilted bed rest. Bed rest subjects will be assessed at two time points before-, two time points during-, and three time points post-bed rest. A third group of ground based controls will be measured at four time points to assess reliability of our measures over time. For all participants and at all time points, except in flight, measures of neurocognitive performance, fine motor control, gait, balance, structural MRI (T1, DTI), task fMRI, and functional connectivity MRI will be obtained. In flight, astronauts will complete some of the tasks that they complete pre- and post flight, including tasks measuring spatial working memory, sensorimotor adaptation, and fine motor performance. Potential changes over time and associations between cognition, motor-behavior, and brain structure and function will be analyzed. This study explores how spaceflight induced brain changes impact functional performance. This understanding could aid in the design of targeted countermeasures to mitigate the negative effects of long-duration spaceflight.

  14. Design of set-point weighting PI{sup λ} + D{sup μ} controller for vertical magnetic flux controller in Damavand tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasouli, H.; Fatehi, A.

    2014-12-15

    In this paper, a simple method is presented for tuning weighted PI{sup λ} + D{sup μ} controller parameters based on the pole placement controller of pseudo-second-order fractional systems. One of the advantages of this controller is capability of reducing the disturbance effects and improving response to input, simultaneously. In the following sections, the performance of this controller is evaluated experimentally to control the vertical magnetic flux in Damavand tokamak. For this work, at first a fractional order model is identified using output-error technique in time domain. For various practical experiments, having desired time responses for magnetic flux in Damavand tokamak,more » is vital. To approach this, at first the desired closed loop reference models are obtained based on generalized characteristic ratio assignment method in fractional order systems. After that, for the identified model, a set-point weighting PI{sup λ} + D{sup μ} controller is designed and simulated. Finally, this controller is implemented on digital signal processor control system of the plant to fast/slow control of magnetic flux. The practical results show appropriate performance of this controller.« less

  15. Intrinsic dynamics and total energy-shaping control of the ballbot system

    NASA Astrophysics Data System (ADS)

    Satici, A. C.; Donaire, A.; Siciliano, B.

    2017-12-01

    Research on bipedal locomotion has shown that a dynamic walking gait is energetically more efficient than a statically stable one. Analogously, even though statically stable multi-wheeled robots are easier to control, they are energetically less efficient and have low accelerations to avoid tipping over. In contrast, the ballbot is an underactuated, nonholonomically constrained mobile robot, whose upward equilibrium point has to be stabilised by active control. In this work, we derive coordinate-invariant, reduced, Euler-Poincaré equations of motion for the ballbot. By means of partial feedback linearisation, we obtain two independent passive outputs with corresponding storage functions and utilise these to come up with energy-shaping control laws which move the system along the trajectories of a new Lagrangian system whose desired equilibrium point is asymptotically stable by construction. The basin of attraction of this controller is shown to be almost global under certain conditions on the design of the mechanism which are reflected directly in the mass matrix of the unforced equations of motion.

  16. Workshop on Structural Dynamics and Control Interaction of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Davis, L. P.; Wilson, J. F.; Jewell, R. E.

    1987-01-01

    The Hubble Space Telescope features the most exacting line of sight jitter requirement thus far imposed on a spacecraft pointing system. Consideration of the fine pointing requirements prompted an attempt to isolate the telescope from the low level vibration disturbances generated by the attitude control system reaction wheels. The primary goal was to provide isolation from axial component of wheel disturbance without compromising the control system bandwidth. A passive isolation system employing metal springs in parallel with viscous fluid dampers was designed, fabricated, and space qualified. Stiffness and damping characteristics are deterministic, controlled independently, and were demonstrated to remain constant over at least five orders of input disturbance magnitude. The damping remained purely viscous even at the data collection threshold of .16 x .000001 in input displacement, a level much lower than the anticipated Hubble Space Telescope disturbance amplitude. Vibration attenuation goals were obtained and ground test of the vehicle has demonstrated the isolators are transparent to the attitude control system.

  17. Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer.

    PubMed

    Ferone, Claudio; Colangelo, Francesco; Roviello, Giuseppina; Asprone, Domenico; Menna, Costantino; Balsamo, Alberto; Prota, Andrea; Cioffi, Raffaele; Manfredi, Gaetano

    2013-05-10

    In this study the development of a metakaolin based geopolymeric mortar to be used as bonding matrix for external strengthening of reinforced concrete beams is reported. Four geopolymer formulations have been obtained by varying the composition of the activating solution in terms of SiO₂/Na₂O ratio. The obtained samples have been characterized from a structural, microstructural and mechanical point of view. The differences in structure and microstructure have been correlated to the mechanical properties. A major issue of drying shrinkage has been encountered in the high Si/Al ratio samples. In the light of the characterization results, the optimal geopolymer composition was then applied to fasten steel fibers to reinforced concrete beams. The mechanical behavior of the strengthened reinforced beams was evaluated by four-points bending tests, which were performed also on reinforced concrete beams as they are for comparison. The preliminary results of the bending tests point out an excellent behavior of the geopolymeric mixture tested, with the failure load of the reinforced beams roughly twice that of the control beam.

  18. Genetics-based control of a mimo boiler-turbine plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.M.; Lee, K.Y.

    1994-12-31

    A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.

  19. Uav Photogrammetry with Oblique Images: First Analysis on Data Acquisition and Processing

    NASA Astrophysics Data System (ADS)

    Aicardi, I.; Chiabrando, F.; Grasso, N.; Lingua, A. M.; Noardo, F.; Spanò, A.

    2016-06-01

    In recent years, many studies revealed the advantages of using airborne oblique images for obtaining improved 3D city models (e.g. including façades and building footprints). Expensive airborne cameras, installed on traditional aerial platforms, usually acquired the data. The purpose of this paper is to evaluate the possibility of acquire and use oblique images for the 3D reconstruction of a historical building, obtained by UAV (Unmanned Aerial Vehicle) and traditional COTS (Commercial Off-the-Shelf) digital cameras (more compact and lighter than generally used devices), for the realization of high-level-of-detail architectural survey. The critical issues of the acquisitions from a common UAV (flight planning strategies, ground control points, check points distribution and measurement, etc.) are described. Another important considered aspect was the evaluation of the possibility to use such systems as low cost methods for obtaining complete information from an aerial point of view in case of emergency problems or, as in the present paper, in the cultural heritage application field. The data processing was realized using SfM-based approach for point cloud generation: different dense image-matching algorithms implemented in some commercial and open source software were tested. The achieved results are analysed and the discrepancies from some reference LiDAR data are computed for a final evaluation. The system was tested on the S. Maria Chapel, a part of the Novalesa Abbey (Italy).

  20. The use of experimental design to find the operating maximum power point of PEM fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria

    2015-03-10

    Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.

  1. a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Li, J.; Wan, Y.; Gao, X.

    2012-07-01

    With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  2. Early intraoperative blood collection does not affect complete blood counts, von Willebrand factor or factor VIII levels in normal children.

    PubMed

    Darwish, Hanni; Mundell, Gillianne; Engen, Dale; Lillicrap, David; Silva, Mariana; James, Paula

    2011-01-01

    Obtaining blood from children for research studies can be difficult, particularly for controls. One solution is to obtain samples during elective surgery; however, consideration must be given to the potential effects of the timing of phlebotomy. Ten children were recruited and phlebotomy was carried out during a preoperative clinic visit and intraoperatively immediately after the induction of anesthesia but before the start of surgery. CBCs, VWF, and FVIII levels were measured at both time points and no significant differences were seen. This negative result may be beneficial to pediatric research by suggesting that early intraoperative blood collection for controls does not affect the results.

  3. Cutting tool form compensation system and method

    DOEpatents

    Barkman, W.E.; Babelay, E.F. Jr.; Klages, E.J.

    1993-10-19

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed. 9 figures.

  4. Cutting tool form compensaton system and method

    DOEpatents

    Barkman, William E.; Babelay, Jr., Edwin F.; Klages, Edward J.

    1993-01-01

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed.

  5. Real-time seam tracking control system based on line laser visions

    NASA Astrophysics Data System (ADS)

    Zou, Yanbiao; Wang, Yanbo; Zhou, Weilin; Chen, Xiangzhi

    2018-07-01

    A set of six-degree-of-freedom robotic welding automatic tracking platform was designed in this study to realize the real-time tracking of weld seams. Moreover, the feature point tracking method and the adaptive fuzzy control algorithm in the welding process were studied and analyzed. A laser vision sensor and its measuring principle were designed and studied, respectively. Before welding, the initial coordinate values of the feature points were obtained using morphological methods. After welding, the target tracking method based on Gaussian kernel was used to extract the real-time feature points of the weld. An adaptive fuzzy controller was designed to input the deviation value of the feature points and the change rate of the deviation into the controller. The quantization factors, scale factor, and weight function were adjusted in real time. The input and output domains, fuzzy rules, and membership functions were constantly updated to generate a series of smooth bias robot voltage. Three groups of experiments were conducted on different types of curve welds in a strong arc and splash noise environment using the welding current of 120 A short-circuit Metal Active Gas (MAG) Arc Welding. The tracking error was less than 0.32 mm and the sensor's metrical frequency can be up to 20 Hz. The end of the torch run smooth during welding. Weld trajectory can be tracked accurately, thereby satisfying the requirements of welding applications.

  6. Optimal robust control strategy of a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Gao, Danhui

    2018-01-01

    Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.

  7. Tuning of PID controller using optimization techniques for a MIMO process

    NASA Astrophysics Data System (ADS)

    Thulasi dharan, S.; Kavyarasan, K.; Bagyaveereswaran, V.

    2017-11-01

    In this paper, two processes were considered one is Quadruple tank process and the other is CSTR (Continuous Stirred Tank Reactor) process. These are majorly used in many industrial applications for various domains, especially, CSTR in chemical plants.At first mathematical model of both the process is to be done followed by linearization of the system due to MIMO process and controllers are the major part to control the whole process to our desired point as per the applications so the tuning of the controller plays a major role among the whole process. For tuning of parameters we use two optimizations techniques like Particle Swarm Optimization, Genetic Algorithm. The above techniques are majorly used in different applications to obtain which gives the best among all, we use these techniques to obtain the best tuned values among many. Finally, we will compare the performance of the each process with both the techniques.

  8. Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.

    PubMed

    Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon

    2017-01-01

    In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.

  9. Characteristics, Control and Treatment of Leachate at Military Installations.

    DTIC Science & Technology

    1981-02-01

    points in the area adjacent to the landfill. Background data can be obtained 61C. W. Thornthwaite and J. R. Wather , "Instructions and Tables for...Development," Public Works, Vol 102, No. 2 (March 1971), pp 77-79. Thornthwaite, C. W., and J. R. Wather , "Instructions and Tables for Computing Potential

  10. Recent enhancements to the GRIDGEN structured grid generation system

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Chawner, John R.

    1992-01-01

    Significant enhancements are being implemented into the GRIDGEN3D, multiple block, structured grid generation software. Automatic, point-to-point, interblock connectivity will be possible through the addition of the domain entity to GRIDBLOCK's block construction process. Also, the unification of GRIDGEN2D and GRIDBLOCK has begun with the addition of edge grid point distribution capability to GRIDBLOCK. The geometric accuracy of surface grids and the ease with which databases may be obtained is being improved by adding support for standard computer-aided design formats (e.g., PATRAN Neutral and IGES files). Finally, volume grid quality was improved through addition of new SOR algorithm features and the new hybrid control function type to GRIDGEN3D.

  11. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications.

    PubMed

    Rohini, G; Jamuna, V

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  12. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications

    PubMed Central

    Rohini, G.; Jamuna, V.

    2016-01-01

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results. PMID:27294189

  13. H∞ output tracking control of uncertain and disturbed nonlinear systems based on neural network model

    NASA Astrophysics Data System (ADS)

    Li, Chengcheng; Li, Yuefeng; Wang, Guanglin

    2017-07-01

    The work presented in this paper seeks to address the tracking problem for uncertain continuous nonlinear systems with external disturbances. The objective is to obtain a model that uses a reference-based output feedback tracking control law. The control scheme is based on neural networks and a linear difference inclusion (LDI) model, and a PDC structure and H∞ performance criterion are used to attenuate external disturbances. The stability of the whole closed-loop model is investigated using the well-known quadratic Lyapunov function. The key principles of the proposed approach are as follows: neural networks are first used to approximate nonlinearities, to enable a nonlinear system to then be represented as a linearised LDI model. An LMI (linear matrix inequality) formula is obtained for uncertain and disturbed linear systems. This formula enables a solution to be obtained through an interior point optimisation method for some nonlinear output tracking control problems. Finally, simulations and comparisons are provided on two practical examples to illustrate the validity and effectiveness of the proposed method.

  14. LiveWire interactive boundary extraction algorithm based on Haar wavelet transform and control point set direction search

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.

  15. Automated High-Temperature Hall-Effect Apparatus

    NASA Technical Reports Server (NTRS)

    Parker, James B.; Zoltan, Leslie D.

    1992-01-01

    Automated apparatus takes Hall-effect measurements of specimens of thermoelectric materials at temperatures from ambient to 1,200 K using computer control to obtain better resolution of data and more data points about three times as fast as before. Four-probe electrical-resistance measurements taken in 12 electrical and 2 magnetic orientations to characterize specimens at each temperature. Computer acquires data, and controls apparatus via three feedback loops: one for temperature, one for magnetic field, and one for electrical-potential data.

  16. Evaluating the effectiveness of low cost UAV generated topography for geomorphic change detection

    NASA Astrophysics Data System (ADS)

    Cook, K. L.

    2014-12-01

    With the recent explosion in the use and availability of unmanned aerial vehicle platforms and development of easy to use structure from motion software, UAV based photogrammetry is increasingly being adopted to produce high resolution topography for the study of surface processes. UAV systems can vary substantially in price and complexity, but the tradeoffs between these and the quality of the resulting data are not well constrained. We look at one end of this spectrum and evaluate the effectiveness of a simple low cost UAV setup for obtaining high resolution topography in a challenging field setting. Our study site is the Daan River gorge in western Taiwan, a rapidly eroding bedrock gorge that we have monitored with terrestrial Lidar since 2009. The site presents challenges for the generation and analysis of high resolution topography, including vertical gorge walls, vegetation, wide variation in surface roughness, and a complicated 3D morphology. In order to evaluate the accuracy of the UAV-derived topography, we compare it with terrestrial Lidar data collected during the same survey period. Our UAV setup combines a DJI Phantom 2 quadcopter with a 16 megapixel Canon Powershot camera for a total platform cost of less than $850. The quadcopter is flown manually, and the camera is programmed to take a photograph every 5 seconds, yielding 200-250 pictures per flight. We measured ground control points and targets for both the Lidar scans and the aerial surveys using a Leica RTK GPS with 1-2 cm accuracy. UAV derived point clouds were obtained using Agisoft Photoscan software. We conducted both Lidar and UAV surveys before and after a summer typhoon season, allowing us to evaluate the reliability of the UAV survey to detect geomorphic changes in the range of one to several meters. We find that this simple UAV setup can yield point clouds with an average accuracy on the order of 10 cm compared to the Lidar point clouds. Well-distributed and accurately located ground control points are critical, but we achieve good accuracy with even with relatively few ground control points (25) over a 150,000 sq m area. The large number of photographs taken during each flight also allows us to explore the reproducibility of the UAV-derived topography by generating point clouds from different subsets of photographs taken of the same area during a single survey.

  17. Implementation of a MFAC based position sensorless drive for high speed BLDC motors with nonideal back EMF.

    PubMed

    Li, Haitao; Ning, Xin; Li, Wenzhuo

    2017-03-01

    In order to improve the reliability and reduce power consumption of the high speed BLDC motor system, this paper presents a model free adaptive control (MFAC) based position sensorless drive with only a dc-link current sensor. The initial commutation points are obtained by detecting the phase of EMF zero-crossing point and then delaying 30 electrical degrees. According to the commutation error caused by the low pass filter (LPF) and other factors, the relationship between commutation error angle and dc-link current is analyzed, a corresponding MFAC based control method is proposed, and the commutation error can be corrected by the controller in real time. Both the simulation and experimental results show that the proposed correction method can achieve ideal commutation effect within the entire operating speed range. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. A Hybrid Vortex Sheet / Point Vortex Model for Unsteady Separated Flows

    NASA Astrophysics Data System (ADS)

    Darakananda, Darwin; Eldredge, Jeff D.; Colonius, Tim; Williams, David R.

    2015-11-01

    The control of separated flow over an airfoil is essential for obtaining lift enhancement, drag reduction, and the overall ability to perform high agility maneuvers. In order to develop reliable flight control systems capable of realizing agile maneuvers, we need a low-order aerodynamics model that can accurately predict the force response of an airfoil to arbitrary disturbances and/or actuation. In the present work, we integrate vortex sheets and variable strength point vortices into a method that is able to capture the formation of coherent vortex structures while remaining computationally tractable for control purposes. The role of the vortex sheet is limited to tracking the dynamics of the shear layer immediately behind the airfoil. When parts of the sheet develop into large scale structures, those sections are replaced by variable strength point vortices. We prevent the vortex sheets from growing indefinitely by truncating the tips of the sheets and transfering their circulation into nearby point vortices whenever the length of sheet exceeds a threshold. We demonstrate the model on a variety of canonical problems, including pitch-up and impulse translation of an airfoil at various angles of attack. Support by the U.S. Air Force Office of Scientific Research (FA9550-14-1-0328) with program manager Dr. Douglas Smith is gratefully acknowledged.

  19. Focal points and principal solutions of linear Hamiltonian systems revisited

    NASA Astrophysics Data System (ADS)

    Šepitka, Peter; Šimon Hilscher, Roman

    2018-05-01

    In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.

  20. Three-dimensional reconstruction of indoor whole elements based on mobile LiDAR point cloud data

    NASA Astrophysics Data System (ADS)

    Gong, Yuejian; Mao, Wenbo; Bi, Jiantao; Ji, Wei; He, Zhanjun

    2014-11-01

    Ground-based LiDAR is one of the most effective city modeling tools at present, which has been widely used for three-dimensional reconstruction of outdoor objects. However, as for indoor objects, there are some technical bottlenecks due to lack of GPS signal. In this paper, based on the high-precision indoor point cloud data which was obtained by LiDAR, an international advanced indoor mobile measuring equipment, high -precision model was fulfilled for all indoor ancillary facilities. The point cloud data we employed also contain color feature, which is extracted by fusion with CCD images. Thus, it has both space geometric feature and spectral information which can be used for constructing objects' surface and restoring color and texture of the geometric model. Based on Autodesk CAD platform and with help of PointSence plug, three-dimensional reconstruction of indoor whole elements was realized. Specifically, Pointools Edit Pro was adopted to edit the point cloud, then different types of indoor point cloud data was processed, including data format conversion, outline extracting and texture mapping of the point cloud model. Finally, three-dimensional visualization of the real-world indoor was completed. Experiment results showed that high-precision 3D point cloud data obtained by indoor mobile measuring equipment can be used for indoor whole elements' 3-d reconstruction and that methods proposed in this paper can efficiently realize the 3 -d construction of indoor whole elements. Moreover, the modeling precision could be controlled within 5 cm, which was proved to be a satisfactory result.

  1. Control-structure interaction in precision pointing servo loops

    NASA Technical Reports Server (NTRS)

    Spanos, John T.

    1989-01-01

    The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.

  2. Determination of the boiling-point distribution by simulated distillation from n-pentane through n-tetratetracontane in 70 to 80 seconds.

    PubMed

    Lubkowitz, Joaquin A; Meneghini, Roberto I

    2002-01-01

    This work presents the carrying out of boiling-point distributions by simulated distillation with direct-column heating rather than oven-column heating. Column-heating rates of 300 degrees C/min are obtained yielding retention times of 73 s for n-tetratetracontane. The calibration curves of the retention time versus the boiling point, in the range of n-pentane to n-tetratetracontane, are identical to those obtained by slower oven-heating rates. The boiling-point distribution of the reference gas oil is compared with that obtained with column oven heating at rates of 15 to 40 degrees C/min. The results show boiling-point distribution values nearly the same (1-2 degrees F) as those obtained with oven column heating from the initial boiling point to 80% distilled off. Slightly higher differences are obtained (3-4 degrees F) for the 80% distillation to final boiling-point interval. Nonetheless, allowed consensus differences are never exceeded. Precision of the boiling-point distributions (expressed as standard deviations) are 0.1-0.3% for the data obtained in the direct column-heating mode.

  3. Development of a low temperature phase change material package. [for spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Brennan, P. J.; Suelau, H. J.; Mcintosh, R.

    1977-01-01

    Test data obtained for a low temperature phase change material (PCM) canisters are presented. The canister was designed to provide up to 30 w-hrs of storage capacity at approximately -90 C with an overall thermal conductance which is greater than 8 w/deg C. N-heptane which is an n-paraffin and has a -90.6 C freezing point was used as the working fluid. The canister was fabricated from aluminum and has an aluminum honeycomb core. Its void volume permits service temperatures up to 70 C. Results obtained from component and system's tests indicate well defined melting and freezing points which are repeatable and within 1 C of each other. Subcooling effects are less than 0.5 C and are essentially negligible. Measured storage capacities are within 94 to 88% the theoretical.

  4. Interval Analysis Approach to Prototype the Robust Control of the Laboratory Overhead Crane

    NASA Astrophysics Data System (ADS)

    Smoczek, J.; Szpytko, J.; Hyla, P.

    2014-07-01

    The paper describes the software-hardware equipment and control-measurement solutions elaborated to prototype the laboratory scaled overhead crane control system. The novelty approach to crane dynamic system modelling and fuzzy robust control scheme design is presented. The iterative procedure for designing a fuzzy scheduling control scheme is developed based on the interval analysis of discrete-time closed-loop system characteristic polynomial coefficients in the presence of rope length and mass of a payload variation to select the minimum set of operating points corresponding to the midpoints of membership functions at which the linear controllers are determined through desired poles assignment. The experimental results obtained on the laboratory stand are presented.

  5. Control of three-dimensional waves on thin liquid films

    NASA Astrophysics Data System (ADS)

    Tomlin, Ruben; Gomes, Susana; Pavliotis, Greg; Papageorgiou, Demetrios

    2017-11-01

    We consider a weakly nonlinear model for interfacial waves on three-dimensional thin films on inclined flat planes - the Kuramoto-Sivashinsky equation. The flow is driven by gravity, and is allowed to be overlying or hanging on the flat substrate. Blowing and suction controls are applied at the substrate surface. We explore the instability of the transverse modes for hanging arrangements, which are unbounded and grow exponentially. The structure of the equations allows us to construct optimal transverse controls analytically to prevent this transverse growth. We also may consider the influence of transverse modes on overlying film flows, these modes are damped out if uncontrolled. We also consider the more physical concept of point actuated controls which are modelled using Dirac delta functions. We first study the case of proportional control, where the actuation at a point depends on the local interface height alone. Here, we study the influence of control strength and number/location of actuators on the possible stabilization of the zero solution. We also consider the full feedback problem, which assumes that we can observe the full interface and allow communication between actuators. Using these controls we can obtain exponential stability where proportional controls fail, and stabilize non-trivial solutions.

  6. Impact of magnetic isolation on pointing system performance in the presence of structural flexibility

    NASA Technical Reports Server (NTRS)

    Seller, J.

    1985-01-01

    The inertial pointing stability of a gimbal pointing system (AGS) was compared with a magnetic pointing/gimbal followup system (ASPS), under certain conditions of system structural flexibility and disturbance inputs from the gimbal support structure. Separate 3 degree-of-freedom (3DOF) linear models based on NASTRAN modal flexibility data for the gimbal and support structures were generated for the ASPS configurations. Using the models inertial pointing control loops providing 6dB of gain margin and 45 deg of phase margin were defined for each configuration. The pointing loop bandwidth obtained for the ASPS is more than twice the level achieved for the AGS configuration. The AGS limit is attributed to the gimbal and support structure flexibility. As a result of the higher ASPS pointing loop bandwidth and the disturbance rejection provided by the magnetic isolation ASPS pointing performane is significantly better than that of the AGS system. The low frequency peak of the ASPS transfer function from base disturbance to payload angular motion is almost 60dB lower than AGS low frequency peak.

  7. A new approach to adaptive control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    An approach in which the manipulator inverse is used as a feedforward controller is employed in the adaptive control of manipulators in order to achieve trajectory tracking by the joint angles. The desired trajectory is applied as an input to the feedforward controller, and the controller output is used as the driving torque for the manipulator. An adaptive algorithm obtained from MRAC theory is used to update the controller gains to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal enhance closed-loop stability and achieve faster adaptation. Simulation results demonstrate the effectiveness of the proposed control scheme for different reference trajectories, and despite large variations in the payload.

  8. Preliminary GAOFEN-3 Insar dem Accuracy Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Li, T.; Tang, X.; Gao, X.; Zhang, X.

    2018-04-01

    GF-3 satellite, the first C band and full-polarization SAR satellite of China with spatial resolution of 1 m, was successfully launched in August 2016. We analyze the error sources of GF-3 satellite in this paper, and provide the interferometric calibration model based on range function, Doppler shift equation and interferometric phase function, and interferometric parameters calibrated using the three-dimensional coordinates of ground control points. Then, we conduct the experimental two pairs of images in fine stripmap I mode covering Songshan of Henan Province and Tangshan of Hebei Province, respectively. The DEM data are assessed using SRTM DEM, ICESat-GLAS points, and ground control points database obtained using ZY-3 satellite to validate the accuracy of DEM elevation. The experimental results show that the accuracy of DEM extracted from GF-3 satellite SAR data can meet the requirements of topographic mapping in mountain and alpine regions at the scale of 1 : 50000 in China. Besides, it proves that GF-3 satellite has the potential of interferometry.

  9. Dynamics and control of coherent structures in the turbulent wall layer: An overview

    NASA Technical Reports Server (NTRS)

    Berkooz, Gal; Holmes, Philip; Lumley, John

    1993-01-01

    We expand the velocity field in the vicinity of the wall in empirical eigenfunctions obtained from experiment. Truncating our system and using Galerkin projection, we obtain a closed set of non-linear ordinary differential equations with ten degrees of freedom. We find a rich dynamical behavior, including in particular a heteroclinic attracting orbit giving rise to intermittency. The intermittent jump from one attracting point to the other resembles in many respects the bursts observed in experiments. Specifically, the time between jumps and the duration of the jumps, is approximately that observed in a burst; the jump begins with the formation of a narrowed and intensified updraft, like the ejection phase of a burst, and is followed by a gentle, diffuse downdraft like the sweep phase of a burst. The magnitude of the Reynolds stress spike produced during a burst is limited by our truncation. The behavior is quite robust, much of it being due to the symmetries present (Aubry's group has examined dimensions up to 128 with persistence of the global behavior). We have examined eigenvalues and coefficients obtained from experiment, and from exact simulation, which differ in magnitude. Similar behavior is obtained in both cases; in the latter case, the heteroclinic orbits connect limit cycles instead of fixed points, corresponding to cross-stream waving of the streamwise rolls. The bifurcation diagram remains structurally similar, but somewhat distorted. The role of the pressure term is made clear - it triggers the intermittent jumps, which otherwise would occur at longer and longer intervals, as the system trajectory is attracted closer and closer to the heteroclinic cycle. The pressure term results in the jumps occurring at essentially random times, and the magnitude of the signal determines the average timing. Stretching of the wall region shows that the model is consistent with observations of polymer drag reduction. Change of the third order coefficients, corresponding to acceleration or deceleration of the mean flow, changes the heteroclinic cycles from attracting to repelling, increasing or decreasing the stability, in agreement with observations. The existence of fixed points is an artifact introduced by the projection; however, a decoupled model still displays the rich dynamics. Numerous assumptions made in Aubry et al. (1988) can now be proved exactly. Feeding back eigenfuncitons with the proper phase can delay the bursting, (the heteroclinic jump to the other fixed point), decreasing the drag. It is also possible to speed up the bursting, increasing mixing to control separation. Our approach is optimal for short time tracking in control.

  10. Geologic map of the west-central Buffalo National River region, northern Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2014-01-01

    This report provides a geologic map database of the map area that improves understanding of the regional geologic framework and its influence on the regional groundwater flow system. Furthermore, additional edits were made to the Ponca and Jasper quadrangles in the following ways: new control points on important contacts were obtained using modern GPS; recent higher resolution elevation data allowed further control on placement of contacts; some new contacts were added, in particular the contact separating the upper and lower Everton Formation.

  11. Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases

    PubMed Central

    2013-01-01

    Background Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether spaceflight also affects other central nervous system functions such as cognition is yet largely unknown, but of importance in consideration of the health and performance of crewmembers both in- and post-flight. We are therefore conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor and cognitive performance changes. Here we present the protocol of our study. Methods/design This study includes three groups (astronauts, bed rest subjects, ground-based control subjects) for which each the design is single group with repeated measures. The effects of spaceflight on the brain will be investigated in astronauts who will be assessed at two time points pre-, at three time points during-, and at four time points following a spaceflight mission of six months. To parse out the effect of microgravity from the overall effects of spaceflight, we investigate the effects of seventy days head-down tilted bed rest. Bed rest subjects will be assessed at two time points before-, two time points during-, and three time points post-bed rest. A third group of ground based controls will be measured at four time points to assess reliability of our measures over time. For all participants and at all time points, except in flight, measures of neurocognitive performance, fine motor control, gait, balance, structural MRI (T1, DTI), task fMRI, and functional connectivity MRI will be obtained. In flight, astronauts will complete some of the tasks that they complete pre- and post flight, including tasks measuring spatial working memory, sensorimotor adaptation, and fine motor performance. Potential changes over time and associations between cognition, motor-behavior, and brain structure and function will be analyzed. Discussion This study explores how spaceflight induced brain changes impact functional performance. This understanding could aid in the design of targeted countermeasures to mitigate the negative effects of long-duration spaceflight. PMID:24350728

  12. Pneumatic Variable Series Elastic Actuator.

    PubMed

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-08-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  13. Pneumatic Variable Series Elastic Actuator

    PubMed Central

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-01-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on–off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator. PMID:27354755

  14. Study of geomorphological changes by high quality DEMs, obtained from UAVs-Structure from Motion in highest continental cliffs of Europe: A Capelada (Galicia, Spain)

    NASA Astrophysics Data System (ADS)

    Muñoz Narciso, Efrén; García, Horacio; Sierra Pernas, Chema; Pérez-Alberti, Augusto

    2017-04-01

    This study analyses the geomorphological evolution of a highly dynamic coastal environment, one of the higher cliffs in Continental Europe (A Capelada, NW Spain), using Structure from Motion-Multi View Stereoscan techniques (hereafter referred to as SfM-MVS). Comparing orthoimages from the last 10 years we observed several topographical changes in one specific valley (Teixidelo). Interestingly, these changes were caused by 2 different processes: (i) heavy coastal erosion and (ii) slow complex landslides, working in opposite directions. The main challenge was obtaining high quality topographical data for quantifying the changes during the last few years using low cost-high quality techniques in remote areas. Unmanned Aerial Vehicle platforms (drones, hereafter referred to as UAVs) and SFM-MVS offer ultrahigh-density topographical data. Furthermore, the use of drones and SfM-MVS close range images requires new applications in geomorphology for understanding the workflow and limitations. In this paper we present the 2 main results: (i) a centimeter spatial resolution DEM from august 2016 was obtained using a @DJI Phantom 3 advanced model drone. The pictures were processed in Agisoft PhotoScan Pro 1.2.6 version by SfM-MVS techniques, generating a high-density point cloud (i.e. ˜2000 points/m2) with 3mm of RMSE (i.e. the point cloud was georeferenced in a geographical coordinates system using ˜40 Ground Control Points obtained from differential RTK-GPS and a Total Station network) and (ii) a DEM of Differences, which compares official freely available 2010 LiDAR data (i.e. ˜2 points/m2) with a 2016 DEM derived by UAVs-SfM, where we have observed meter-scale elevation changes (i.e. sediment and erosion processes). During this time, 75% of the sediment has been mobilized. The novel UAVs and SfM-MVS techniques prove to be great for advancing the study of geomorphological processes in remote areas.

  15. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, A.; Villanueva, R.; Vie, D.

    2013-01-15

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and themore » nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: Black-Right-Pointing-Pointer Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders. Black-Right-Pointing-Pointer The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. Black-Right-Pointing-Pointer The temperature of the thermal treatment controls particle sizes. Black-Right-Pointing-Pointer The preparation procedure has been scaled up to the 100 g scale. Black-Right-Pointing-Pointer This method is appropriate for the large-scale industrial preparation of multimetallic systems.« less

  16. Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks.

    PubMed

    Li, Zhijun; Ge, Shuzhi Sam; Liu, Sibang

    2014-08-01

    This paper investigates optimal feet forces' distribution and control of quadruped robots under external disturbance forces. First, we formulate a constrained dynamics of quadruped robots and derive a reduced-order dynamical model of motion/force. Consider an external wrench on quadruped robots; the distribution of required forces and moments on the supporting legs of a quadruped robot is handled as a tip-point force distribution and used to equilibrate the external wrench. Then, a gradient neural network is adopted to deal with the optimized objective function formulated as to minimize this quadratic objective function subjected to linear equality and inequality constraints. For the obtained optimized tip-point force and the motion of legs, we propose the hybrid motion/force control based on an adaptive neural network to compensate for the perturbations in the environment and approximate feedforward force and impedance of the leg joints. The proposed control can confront the uncertainties including approximation error and external perturbation. The verification of the proposed control is conducted using a simulation.

  17. Small catchments DEM creation using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Gafurov, A. M.

    2018-01-01

    Digital elevation models (DEM) are an important source of information on the terrain, allowing researchers to evaluate various exogenous processes. The higher the accuracy of DEM the better the level of the work possible. An important source of data for the construction of DEMs are point clouds obtained with terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAV). In this paper, we present the results of constructing a DEM on small catchments using UAVs. Estimation of the UAV DEM showed comparable accuracy with the TLS if real time kinematic Global Positioning System (RTK-GPS) ground control points (GCPs) and check points (CPs) were used. In this case, the main source of errors in the construction of DEMs are the errors in the referencing of survey results.

  18. Generation of multifocal irradiance patterns by using complex Fresnel holograms.

    PubMed

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Mínguez-Vega, Gladys; Lancis, Jesús

    2018-03-01

    We experimentally demonstrate Fresnel holograms able to produce multifocal irradiance patterns with micrometric spatial resolution. These holograms are assessed from the coherent sum of multiple Fresnel lenses. The utilized encoded technique guarantees full control over the reconstructed irradiance patterns due to an optimal codification of the amplitude and phase information of the resulting complex field. From a practical point of view, a phase-only spatial light modulator is used in a couple of experiments addressed to obtain two- and three-dimensional distributions of focal points to excite both linear and non-linear optical phenomena.

  19. Calibration of Low Cost Digital Camera Using Data from Simultaneous LIDAR and Photogrammetric Surveys

    NASA Astrophysics Data System (ADS)

    Mitishita, E.; Debiasi, P.; Hainosz, F.; Centeno, J.

    2012-07-01

    Digital photogrammetric products from the integration of imagery and lidar datasets are a reality nowadays. When the imagery and lidar surveys are performed together and the camera is connected to the lidar system, a direct georeferencing can be applied to compute the exterior orientation parameters of the images. Direct georeferencing of the images requires accurate interior orientation parameters to perform photogrammetric application. Camera calibration is a procedure applied to compute the interior orientation parameters (IOPs). Calibration researches have established that to obtain accurate IOPs, the calibration must be performed with same or equal condition that the photogrammetric survey is done. This paper shows the methodology and experiments results from in situ self-calibration using a simultaneous images block and lidar dataset. The calibration results are analyzed and discussed. To perform this research a test field was fixed in an urban area. A set of signalized points was implanted on the test field to use as the check points or control points. The photogrammetric images and lidar dataset of the test field were taken simultaneously. Four strips of flight were used to obtain a cross layout. The strips were taken with opposite directions of flight (W-E, E-W, N-S and S-N). The Kodak DSC Pro SLR/c digital camera was connected to the lidar system. The coordinates of the exposition station were computed from the lidar trajectory. Different layouts of vertical control points were used in the calibration experiments. The experiments use vertical coordinates from precise differential GPS survey or computed by an interpolation procedure using the lidar dataset. The positions of the exposition stations are used as control points in the calibration procedure to eliminate the linear dependency of the group of interior and exterior orientation parameters. This linear dependency happens, in the calibration procedure, when the vertical images and flat test field are used. The mathematic correlation of the interior and exterior orientation parameters are analyzed and discussed. The accuracies of the calibration experiments are, as well, analyzed and discussed.

  20. Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer

    PubMed Central

    Ferone, Claudio; Colangelo, Francesco; Roviello, Giuseppina; Asprone, Domenico; Menna, Costantino; Balsamo, Alberto; Prota, Andrea; Cioffi, Raffaele; Manfredi, Gaetano

    2013-01-01

    In this study the development of a metakaolin based geopolymeric mortar to be used as bonding matrix for external strengthening of reinforced concrete beams is reported. Four geopolymer formulations have been obtained by varying the composition of the activating solution in terms of SiO2/Na2O ratio. The obtained samples have been characterized from a structural, microstructural and mechanical point of view. The differences in structure and microstructure have been correlated to the mechanical properties. A major issue of drying shrinkage has been encountered in the high Si/Al ratio samples. In the light of the characterization results, the optimal geopolymer composition was then applied to fasten steel fibers to reinforced concrete beams. The mechanical behavior of the strengthened reinforced beams was evaluated by four-points bending tests, which were performed also on reinforced concrete beams as they are for comparison. The preliminary results of the bending tests point out an excellent behavior of the geopolymeric mixture tested, with the failure load of the reinforced beams roughly twice that of the control beam. PMID:28809251

  1. Cross Validation on the Equality of Uav-Based and Contour-Based Dems

    NASA Astrophysics Data System (ADS)

    Ma, R.; Xu, Z.; Wu, L.; Liu, S.

    2018-04-01

    Unmanned Aerial Vehicles (UAV) have been widely used for Digital Elevation Model (DEM) generation in geographic applications. This paper proposes a novel framework of generating DEM from UAV images. It starts with the generation of the point clouds by image matching, where the flight control data are used as reference for searching for the corresponding images, leading to a significant time saving. Besides, a set of ground control points (GCP) obtained from field surveying are used to transform the point clouds to the user's coordinate system. Following that, we use a multi-feature based supervised classification method for discriminating non-ground points from ground ones. In the end, we generate DEM by constructing triangular irregular networks and rasterization. The experiments are conducted in the east of Jilin province in China, which has been suffered from soil erosion for several years. The quality of UAV based DEM (UAV-DEM) is compared with that generated from contour interpolation (Contour-DEM). The comparison shows a higher resolution, as well as higher accuracy of UAV-DEMs, which contains more geographic information. In addition, the RMSE errors of the UAV-DEMs generated from point clouds with and without GCPs are ±0.5 m and ±20 m, respectively.

  2. Automated information and control complex of hydro-gas endogenous mine processes

    NASA Astrophysics Data System (ADS)

    Davkaev, K. S.; Lyakhovets, M. V.; Gulevich, T. M.; Zolin, K. A.

    2017-09-01

    The automated information and control complex designed to prevent accidents, related to aerological situation in the underground workings, accounting of the received and handed over individual devices, transmission and display of measurement data, and the formation of preemptive solutions is considered. Examples for the automated workplace of an airgas control operator by individual means are given. The statistical characteristics of field data characterizing the aerological situation in the mine are obtained. The conducted studies of statistical characteristics confirm the feasibility of creating a subsystem of controlled gas distribution with an adaptive arrangement of points for gas control. The adaptive (multivariant) algorithm for processing measuring information of continuous multidimensional quantities and influencing factors has been developed.

  3. Integrated optical detection of autonomous capillary microfluidic immunoassays:a hand-held point-of-care prototype.

    PubMed

    Novo, P; Chu, V; Conde, J P

    2014-07-15

    The miniaturization of biosensors using microfluidics has potential in enabling the development of point-of-care devices, with the added advantages of reduced time and cost of analysis with limits-of-detection comparable to those obtained through traditional laboratory techniques. Interfacing microfluidic devices with the external world can be difficult especially in aspects involving fluid handling and the need for simple sample insertion that avoids special equipment or trained personnel. In this work we present a point-of-care prototype system by integrating capillary microfluidics with a microfabricated photodiode array and electronic instrumentation into a hand-held unit. The capillary microfluidic device is capable of autonomous and sequential fluid flow, including control of the average fluid velocity at any given point of the analysis. To demonstrate the functionality of the prototype, a model chemiluminescence ELISA was performed. The performance of the integrated optical detection in the point-of-care prototype is equal to that obtained with traditional bench-top instrumentation. The photodiode signals were acquired, displayed and processed by a simple graphical user interface using a computer connected to the microcontroller through USB. The prototype performed integrated chemiluminescence ELISA detection in about 15 min with a limit-of-detection of ≈2 nM with an antibody-antigen affinity constant of ≈2×10(7) M(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. An Update on Phased Array Results Obtained on the GE Counter-Rotating Open Rotor Model

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Horvath, Csaba; Envia, Edmane

    2013-01-01

    Beamform maps have been generated from 1) simulated data generated by the LINPROP code and 2) actual experimental phased array data obtained on the GE Counter-rotating open rotor model. The beamform maps show that many of the tones in the experimental data come from their corresponding Mach radius. If the phased array points to the Mach radius associated with a tone then it is likely that the tone is a result of the loading and thickness noise on the blades. In this case, the phased array correctly points to where the noise is coming from and indicates the axial location of the loudest source in the image but not necessarily the correct vertical location. If the phased array does not point to the Mach radius associated with a tone then some mechanism other than loading and thickness noise may control the amplitude of the tone. In this case, the phased array may or may not point to the actual source. If the source is not rotating it is likely that the phased array points to the source. If the source is rotating it is likely that the phased array indicates the axial location of the loudest source but not necessarily the correct vertical location. These results indicate that you have to be careful in how you interpret phased array data obtained on an open rotor since they may show the tones coming from a location other than the source location. With a subsonic tip speed open rotor the tones can come form locations outboard of the blade tips. This has implications regarding noise shielding.

  5. Fuzzy logic control of stand-alone photovoltaic system with battery storage

    NASA Astrophysics Data System (ADS)

    Lalouni, S.; Rekioua, D.; Rekioua, T.; Matagne, E.

    Photovoltaic energy has nowadays an increased importance in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore, to maximize the efficiency of the photovoltaic energy system, it is necessary to track the maximum power point of the PV array. The present paper proposes a maximum power point tracker (MPPT) method, based on fuzzy logic controller (FLC), applied to a stand-alone photovoltaic system. It uses a sampling measure of the PV array power and voltage then determines an optimal increment required to have the optimal operating voltage which permits maximum power tracking. This method carries high accuracy around the optimum point when compared to the conventional one. The stand-alone photovoltaic system used in this paper includes two bi-directional DC/DC converters and a lead-acid battery bank to overcome the scare periods. One converter works as an MPP tracker, while the other regulates the batteries state of charge and compensates the power deficit to provide a continuous delivery of energy to the load. The Obtained simulation results show the effectiveness of the proposed fuzzy logic controller.

  6. Is the bronchodilator test an useful tool to measure asthma control?

    PubMed

    Ferrer Galván, Marta; Javier Alvarez Gutiérrez, Francisco; Romero Falcón, Auxiliadora; Romero Romero, Beatriz; Sáez, Antonia; Medina Gallardo, Juan Francisco

    2017-05-01

    Asthma control includes the control of symptoms and future risk. We sought to evaluate the usefulness of the degree of spirometric reversibility of the forced expiratory volume in one second (FEV 1 ) as the target parameter of control. Patients with bronchial asthma were followed up for one year. The clinical, functional, inflammatory and control parameters of the asthma were collected. The area under the curve (AUC) was estimated to establish the cutoff point of the post-bronchodilator FEV 1 reversibility in relation to non-control asthma. In the univariate analysis, the differences between groups were studied based on the degree of estimated reversibility. Factors with a significance <0.1 were included in the multivariate analysis by binary logistic regression. A total of 407 patients with a mean age of 38.1 ± 16.7 years were included. When the patients were grouped into controlled and non-controlled groups, compared with post-bronchodilator FEV 1 reversibility, the cutoff point obtained for the non-controlled group was ≥10% (sensitivity: 65.8%, specificity: 48.4%, positive predictive value: 69.5%, and AUC: 0.619 [0.533-0.700], p < 0.01). In the year-long follow-up of this group (post-bronchodilator FEV 1 ≥10), an increased use of relief medication was observed, along with a significantly progressive drop in post-bronchodilator FEV 1 and post-bronchodilator FEV 1 /FVC (forced expiratory volume in one second/forced vital capacity). Spirometric reversibility can be useful in assessing control in asthmatic patients and can predict future risk parameters. The cutoff point related to the non-control of asthma found in our work was ≥10%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Interferometry with flexible point source array for measuring complex freeform surface and its design algorithm

    NASA Astrophysics Data System (ADS)

    Li, Jia; Shen, Hua; Zhu, Rihong; Gao, Jinming; Sun, Yue; Wang, Jinsong; Li, Bo

    2018-06-01

    The precision of the measurements of aspheric and freeform surfaces remains the primary factor restrict their manufacture and application. One effective means of measuring such surfaces involves using reference or probe beams with angle modulation, such as tilted-wave-interferometer (TWI). It is necessary to improve the measurement efficiency by obtaining the optimum point source array for different pieces before TWI measurements. For purpose of forming a point source array based on the gradients of different surfaces under test, we established a mathematical model describing the relationship between the point source array and the test surface. However, the optimal point sources are irregularly distributed. In order to achieve a flexible point source array according to the gradient of test surface, a novel interference setup using fiber array is proposed in which every point source can be independently controlled on and off. Simulations and the actual measurement examples of two different surfaces are given in this paper to verify the mathematical model. Finally, we performed an experiment of testing an off-axis ellipsoidal surface that proved the validity of the proposed interference system.

  8. Black start research of the wind and storage system based on the dual master-slave control

    NASA Astrophysics Data System (ADS)

    Leng, Xue; Shen, Li; Hu, Tian; Liu, Li

    2018-02-01

    Black start is the key to solving the problem of large-scale power failure, while the introduction of new renewable clean energy as a black start power supply was a new hotspot. Based on the dual master-slave control strategy, the wind and storage system was taken as the black start reliable power, energy storage and wind combined to ensure the stability of the micorgrid systems, to realize the black start. In order to obtain the capacity ratio of the storage in the small system based on the dual master-slave control strategy, and the black start constraint condition of the wind and storage combined system, obtain the key points of black start of wind storage combined system, but also provide reference and guidance for the subsequent large-scale wind and storage combined system in black start projects.

  9. Considerations for conducting epidemiologic case-control studies of cancer in developing countries.

    PubMed

    Brinton, L A; Herrero, R; Brenes, M; Montalván, P; de la Guardia, M E; Avila, A; Domínguez, I L; Basurto, E; Reeves, W C

    1991-01-01

    The challenges involved in conducting epidemiologic studies of cancer in developing countries can be and often are unique. This article reports on our experience in performing a case-control study of invasive cervical cancer in four Latin American countries (Columbia, Costa Rica, Mexico, and Panama), the summary medical results of which have been published in a previous issue of this journal (1). The study involved a number of principal activities--mainly selecting, conducting interviews with, and obtaining appropriate biologic specimens from 759 cervical cancer patients, 1,467 matched female controls, and 689 male sex partners of monogamous female subjects. This presentation provides an overview of the planning and methods used to select the subjects, conduct the survey work, and obtain complete and effectively unbiased data. It also points out some of the important advantages and disadvantages of working in developing areas similar to those serving as locales for this study.

  10. Tracking instrument and control for solar concentrators. Final technical report, October 1979-January 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J; Kuhlman, J

    1981-01-31

    The tracker uses a single photo sensor, and a rotating aperature to obtain tracking accuracies better than 1.5 mrads (0.1 degs). Peak signal detection is used to eliminate tracking of false sources, i.e., clouds, etc. A prism is employed to obtain an extended field of view (150 degs axially - 360 degs radially). The tracker digitally measures the Suns displacement angle relative to the concentrator axis, and repositions it incrementally. This arrangement permits the use of low cost non-servo motors. The local controller contains microprocessor based electronics, incorporating digital signal processing. A single controller may be time shared by amore » maximum of sixteen trackers, providing a high performance, cost effective solar tracking system, suitable for both line and point focus concentrators. An installation may have the local controller programmed as a standalone unit or slaved to a central controller. When used with a central controller, dynamic data monitoring and logging is available, together with the ability to change system modes and parameters, as desired.« less

  11. Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Moes, Timothy R.

    2004-01-01

    Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

  12. Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Moes, Timothy R.

    2004-01-01

    Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in real-time, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real-time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

  13. Bouc-Wen hysteresis model identification using Modified Firefly Algorithm

    NASA Astrophysics Data System (ADS)

    Zaman, Mohammad Asif; Sikder, Urmita

    2015-12-01

    The parameters of Bouc-Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc-Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc-Wen model parameters. Finally, the proposed method is used to find the Bouc-Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data.

  14. Simplified data reduction methods for the ECT test for mode 3 interlaminar fracture toughness

    NASA Technical Reports Server (NTRS)

    Li, Jian; Obrien, T. Kevin

    1995-01-01

    Simplified expressions for the parameter controlling the load point compliance and strain energy release rate were obtained for the Edge Crack Torsion (ECT) specimen for mode 3 interlaminar fracture toughness. Data reduction methods for mode 3 toughness based on the present analysis are proposed. The effect of the transverse shear modulus, G(sub 23), on mode 3 interlaminar fracture toughness characterization was evaluated. Parameters influenced by the transverse shear modulus were identified. Analytical results indicate that a higher value of G(sub 23) results in a low load point compliance and lower mode 3 toughness estimation. The effect of G(sub 23) on the mode 3 toughness using the ECT specimen is negligible when an appropriate initial delamination length is chosen. A conservative estimation of mode 3 toughness can be obtained by assuming G(sub 23) = G(sub 12) for any initial delamination length.

  15. Role of delay and screening in controlling AIDS

    NASA Astrophysics Data System (ADS)

    Chauhan, Sudipa; Bhatia, Sumit Kaur; Gupta, Surbhi

    2016-06-01

    We propose a non-linear HIV/ AIDS model to analyse the spread and control of HIV/AIDS. The population is divided into three classes, susceptible, infective and AIDS patients. The model is developed under the assumptions of vertical transmission and time delay in infective class. Time delay is also included to show sexual maturity period of infected newborns. We study dynamics of the model and obtain the reproduction number. Now to control the epidemic, we study the model where aware infective class is also added, i.e., people are made aware of their medical status by way of screening. To make the model more realistic, we consider the situation where aware infective class also interacts with other people. The model is analysed qualitatively by stability theory of ODE. Stability analysis of both disease-free and endemic equilibrium is studied based on reproduction number. Also, it is proved that if (R0)1, R1 ≤ 1 then, disease free equilibrium point is locally asymptotically stable and if (R0)1, R1 > 1 then, disease free equilibrium is unstable. Also, the stability analysis of endemic equilibrium point has been done and it is shown that for (R0)1 > 1 endemic equilibrium point is stable. Global stability analysis of endemic equilibrium point has also been done. At last, it is shown numerically that the delay in sexual maturity of infected individuals result in less number of AIDS patients.

  16. Design and implementation of robust controllers for a gait trainer.

    PubMed

    Wang, F C; Yu, C H; Chou, T Y

    2009-08-01

    This paper applies robust algorithms to control an active gait trainer for children with walking disabilities. Compared with traditional rehabilitation procedures, in which two or three trainers are required to assist the patient, a motor-driven mechanism was constructed to improve the efficiency of the procedures. First, a six-bar mechanism was designed and constructed to mimic the trajectory of children's ankles in walking. Second, system identification techniques were applied to obtain system transfer functions at different operating points by experiments. Third, robust control algorithms were used to design Hinfinity robust controllers for the system. Finally, the designed controllers were implemented to verify experimentally the system performance. From the results, the proposed robust control strategies are shown to be effective.

  17. Adaptive backstepping sliding mode control with fuzzy monitoring strategy for a kind of mechanical system.

    PubMed

    Song, Zhankui; Sun, Kaibiao

    2014-01-01

    A novel adaptive backstepping sliding mode control (ABSMC) law with fuzzy monitoring strategy is proposed for the tracking-control of a kind of nonlinear mechanical system. The proposed ABSMC scheme combining the sliding mode control and backstepping technique ensure that the occurrence of the sliding motion in finite-time and the trajectory of tracking-error converge to equilibrium point. To obtain a better perturbation rejection property, an adaptive control law is employed to compensate the lumped perturbation. Furthermore, we introduce fuzzy monitoring strategy to improve adaptive capacity and soften the control signal. The convergence and stability of the proposed control scheme are proved by using Lyaponov's method. Finally, numerical simulations demonstrate the effectiveness of the proposed control scheme. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Development of Chemical Process Design and Control for ...

    EPA Pesticide Factsheets

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy. The implemented control strategy combines a biologically inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. E.P.A.’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE) tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady-states obtained through implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose materi

  19. PSO Based PI Controller Design for a Solar Charger System

    PubMed Central

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713

  20. PSO based PI controller design for a solar charger system.

    PubMed

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).

  1. Theoretical and experimental study on active sound transmission control based on single structural mode actuation using point force actuators.

    PubMed

    Sanada, Akira; Tanaka, Nobuo

    2012-08-01

    This study deals with the feedforward active control of sound transmission through a simply supported rectangular panel using vibration actuators. The control effect largely depends on the excitation method, including the number and locations of actuators. In order to obtain a large control effect at low frequencies over a wide frequency, an active transmission control method based on single structural mode actuation is proposed. Then, with the goal of examining the feasibility of the proposed method, the (1, 3) mode is selected as the target mode and a modal actuation method in combination with six point force actuators is considered. Assuming that a single input single output feedforward control is used, sound transmission in the case minimizing the transmitted sound power is calculated for some actuation methods. Simulation results showed that the (1, 3) modal actuation is globally effective at reducing the sound transmission by more than 10 dB in the low-frequency range for both normal and oblique incidences. Finally, experimental results also showed that a large reduction could be achieved in the low-frequency range, which proves the validity and feasibility of the proposed method.

  2. The CLOSED trial; CLOnidine compared with midazolam for SEDation of paediatric patients in the intensive care unit: study protocol for a multicentre randomised controlled trial

    PubMed Central

    Neubert, Antje; Baarslag, Manuel Alberto; van Dijk, Monique; van Rosmalen, Joost; Standing, Joseph F; Sheng, Yucheng; Rascher, Wolfgang; Roberts, Deborah; Winslade, Jackie; Rawcliffe, Louise; Hanning, Sara M; Metsvaht, Tuuli; Giannuzzi, Viviana; Larsson, Peter; Pokorná, Pavla; Simonetti, Alessandra; Tibboel, Dick

    2017-01-01

    Introduction Sedation is an essential part of paediatric critical care. Midazolam, often in combination with opioids, is the current gold standard drug. However, as it is a far-from-ideal agent, clonidine is increasingly being used in children. This drug is prescribed off-label for this indication, as many drugs in paediatrics are. Therefore, the CLOSED trial aims to provide data on the pharmacokinetics, safety and efficacy of clonidine for the sedation of mechanically ventilated patients in order to obtain a paediatric-use marketing authorisation. Methods and analysis The CLOSED study is a multicentre, double-blind, randomised, active-controlled non-inferiority trial with a 1:1 randomisation between clonidine and midazolam. Both treatment groups are stratified according to age in three groups with the same size: <28 days (n=100), 28 days to <2 years (n=100) and 2–18 years (n=100). The primary end point is defined as the occurrence of sedation failure within the study period. Secondary end points include a pharmacokinetic/pharmacodynamic relationship, pharmacogenetics, occurrence of delirium and withdrawal syndrome, opioid consumption and neurodevelopment in the neonatal age group. Logistic regression will be used for the primary end point, appropriate statistics will be used for the secondary end points. Ethics Written informed consent will be obtained from the parents/caregivers. Verbal or deferred consent will be used in the sites where national legislation allows. The study has institutional review board approval at recruiting sites. The results will be published in a peer-reviewed journal and shared with the worldwide medical community. Trial Registration EudraCT: 2014-003582-24; Clinicaltrials.gov: NCT02509273; pre-results. PMID:28637741

  3. Wireless Channel Characterization: Modeling the 5 GHz Microwave Landing System Extension Band for Future Airport Surface Communications

    NASA Technical Reports Server (NTRS)

    Matolak, D. W.; Apaza, Rafael; Foore, Lawrence R.

    2006-01-01

    We describe a recently completed wideband wireless channel characterization project for the 5 GHz Microwave Landing System (MLS) extension band, for airport surface areas. This work included mobile measurements at large and small airports, and fixed point-to-point measurements. Mobile measurements were made via transmission from the air traffic control tower (ATCT), or from an airport field site (AFS), to a receiving ground vehicle on the airport surface. The point-to-point measurements were between ATCT and AFSs. Detailed statistical channel models were developed from all these measurements. Measured quantities include propagation path loss and power delay profiles, from which we obtain delay spreads, frequency domain correlation (coherence bandwidths), fading amplitude statistics, and channel parameter correlations. In this paper we review the project motivation, measurement coordination, and illustrate measurement results. Example channel modeling results for several propagation conditions are also provided, highlighting new findings.

  4. A travel time forecasting model based on change-point detection method

    NASA Astrophysics Data System (ADS)

    LI, Shupeng; GUANG, Xiaoping; QIAN, Yongsheng; ZENG, Junwei

    2017-06-01

    Travel time parameters obtained from road traffic sensors data play an important role in traffic management practice. A travel time forecasting model is proposed for urban road traffic sensors data based on the method of change-point detection in this paper. The first-order differential operation is used for preprocessing over the actual loop data; a change-point detection algorithm is designed to classify the sequence of large number of travel time data items into several patterns; then a travel time forecasting model is established based on autoregressive integrated moving average (ARIMA) model. By computer simulation, different control parameters are chosen for adaptive change point search for travel time series, which is divided into several sections of similar state.Then linear weight function is used to fit travel time sequence and to forecast travel time. The results show that the model has high accuracy in travel time forecasting.

  5. A method to approximate a closest loadability limit using multiple load flow solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yorino, Naoto; Harada, Shigemi; Cheng, Haozhong

    A new method is proposed to approximate a closest loadability limit (CLL), or closest saddle node bifurcation point, using a pair of multiple load flow solutions. More strictly, the obtainable points by the method are the stationary points including not only CLL but also farthest and saddle points. An operating solution and a low voltage load flow solution are used to efficiently estimate the node injections at a CLL as well as the left and right eigenvectors corresponding to the zero eigenvalue of the load flow Jacobian. They can be used in monitoring loadability margin, in identification of weak spotsmore » in a power system and in the examination of an optimal control against voltage collapse. Most of the computation time of the proposed method is taken in calculating the load flow solution pair. The remaining computation time is less than that of an ordinary load flow.« less

  6. A novel power converter for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Yuvarajan, S.; Yu, Dachuan; Xu, Shanguang

    A simple and economical power conditioner to convert the power available from solar panels into 60 Hz ac voltage is described. The raw dc voltage from the solar panels is converted to a regulated dc voltage using a boost converter and a large capacitor and the dc output is then converted to 60 Hz ac using a bridge inverter. The ratio between the load current and the short-circuit current of a PV panel at maximum power point is nearly constant for different insolation (light) levels and this property is utilized in designing a simple maximum power point tracking (MPPT) controller. The controller includes a novel arrangement for sensing the short-circuit current without disturbing the operation of the PV panel and implementing MPPT. The switching losses in the inverter are reduced by using snubbers. The results obtained on an experimental converter are presented.

  7. Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions

    NASA Astrophysics Data System (ADS)

    Netz, R. R.; Orland, H.

    2000-02-01

    We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.

  8. Analytically optimal parameters of dynamic vibration absorber with negative stiffness

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Peng, Haibo; Li, Xianghong; Yang, Shaopu

    2017-02-01

    In this paper the optimal parameters of a dynamic vibration absorber (DVA) with negative stiffness is analytically studied. The analytical solution is obtained by Laplace transform method when the primary system is subjected to harmonic excitation. The research shows there are still two fixed points independent of the absorber damping in the amplitude-frequency curve of the primary system when the system contains negative stiffness. Then the optimum frequency ratio and optimum damping ratio are respectively obtained based on the fixed-point theory. A new strategy is proposed to obtain the optimum negative stiffness ratio and make the system remain stable at the same time. At last the control performance of the presented DVA is compared with those of three existing typical DVAs, which were presented by Den Hartog, Ren and Sims respectively. The comparison results in harmonic and random excitation show that the presented DVA in this paper could not only reduce the peak value of the amplitude-frequency curve of the primary system significantly, but also broaden the efficient frequency range of vibration mitigation.

  9. Application of the nudged elastic band method to the point-to-point radio wave ray tracing in IRI modeled ionosphere

    NASA Astrophysics Data System (ADS)

    Nosikov, I. A.; Klimenko, M. V.; Bessarab, P. F.; Zhbankov, G. A.

    2017-07-01

    Point-to-point ray tracing is an important problem in many fields of science. While direct variational methods where some trajectory is transformed to an optimal one are routinely used in calculations of pathways of seismic waves, chemical reactions, diffusion processes, etc., this approach is not widely known in ionospheric point-to-point ray tracing. We apply the Nudged Elastic Band (NEB) method to a radio wave propagation problem. In the NEB method, a chain of points which gives a discrete representation of the radio wave ray is adjusted iteratively to an optimal configuration satisfying the Fermat's principle, while the endpoints of the trajectory are kept fixed according to the boundary conditions. Transverse displacements define the radio ray trajectory, while springs between the points control their distribution along the ray. The method is applied to a study of point-to-point ionospheric ray tracing, where the propagation medium is obtained with the International Reference Ionosphere model taking into account traveling ionospheric disturbances. A 2-dimensional representation of the optical path functional is developed and used to gain insight into the fundamental difference between high and low rays. We conclude that high and low rays are minima and saddle points of the optical path functional, respectively.

  10. Plasmacytoid dendritic cell and functional HIV Gag p55-specific T cells before treatment interruption can inform set-point plasma HIV viral load after treatment interruption in chronically suppressed HIV-1(+) patients.

    PubMed

    Papasavvas, Emmanouil; Foulkes, Andrea; Yin, Xiangfan; Joseph, Jocelin; Ross, Brian; Azzoni, Livio; Kostman, Jay R; Mounzer, Karam; Shull, Jane; Montaner, Luis J

    2015-07-01

    The identification of immune correlates of HIV control is important for the design of immunotherapies that could support cure or antiretroviral therapy (ART) intensification-related strategies. ART interruptions may facilitate this task through exposure of an ART partially reconstituted immune system to endogenous virus. We investigated the relationship between set-point plasma HIV viral load (VL) during an ART interruption and innate/adaptive parameters before or after interruption. Dendritic cell (DC), natural killer (NK) cell and HIV Gag p55-specific T-cell functional responses were measured in paired cryopreserved peripheral blood mononuclear cells obtained at the beginning (on ART) and at set-point of an open-ended interruption from 31 ART-suppressed chronically HIV-1(+) patients. Spearman correlation and linear regression modeling were used. Frequencies of plasmacytoid DC (pDC), and HIV Gag p55-specific CD3(+)  CD4(-)  perforin(+)  IFN-γ(+) cells at the beginning of interruption associated negatively with set-point plasma VL. Inclusion of both variables with interaction into a model resulted in the best fit (adjusted R(2)  = 0·6874). Frequencies of pDC or HIV Gag p55-specific CD3(+)  CD4(-)  CSFE(lo)  CD107a(+) cells at set-point associated negatively with set-point plasma VL. The dual contribution of pDC and anti-HIV T-cell responses to viral control, supported by our models, suggests that these variables may serve as immune correlates of viral control and could be integrated in cure or ART-intensification strategies. © 2015 John Wiley & Sons Ltd.

  11. Complex Interaction Mechanisms between Dislocations and Point Defects Studied in Pure Aluminium by a Two-Wave Acoustic Coupling Technique

    NASA Astrophysics Data System (ADS)

    Bremnes, O.; Progin, O.; Gremaud, G.; Benoit, W.

    1997-04-01

    Ultrasonic experiments using a two-wave coupling technique were performed on 99.999% pure Al in order to study the interaction mechanisms occurring between dislocations and point defects. The coupling technique consists in measuring the attenuation of ultrasonic waves during low-frequency stress cycles (t). One obtains closed curves () called signatures whose shape and evolution are characteristic of the interaction mechanism controlling the low-frequency dislocation motion. The signatures observed were attributed to the interaction of the dislocations with extrinsic point defects. A new interpretation of the evolution of the signatures measured below 200 K with respect to temperature and stress frequency had to be established: they are linked to depinning of immobile point defects, whereas a thermally activated depinning mechanism does not fit the observations. The signatures measured between 200 and 370 K were interpreted as dragging and depinning of extrinsic point defects which are increasingly mobile with temperature.

  12. Vibration of a spatial elastica constrained inside a straight tube

    NASA Astrophysics Data System (ADS)

    Chen, Jen-San; Fang, Joyce

    2014-04-01

    In this paper we study the dynamic behavior of a clamped-clamped spatial elastica under edge thrust constrained inside a straight cylindrical tube. Attention is focused on the calculation of the natural frequencies and mode shapes of the planar and spatial one-point-contact deformations. The main issue in determining the natural frequencies of a constrained rod is the movement of the contact point during vibration. In order to capture the physical essence of the contact-point movement, an Eulerian description of the equations of motion based on director theory is formulated. After proper linearization of the equations of motion, boundary conditions, and contact conditions, the natural frequencies and mode shapes of the elastica can be obtained by solving a system of eighteen first-order differential equations with shooting method. It is concluded that the planar one-point-contact deformation becomes unstable and evolves to a spatial deformation at a bifurcation point in both displacement and force control procedures.

  13. Poppet valve control of throat stability bypass to increase stable airflow range of a Mach 2.5. inlet with 60 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Sanders, B. W.

    1975-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. System variations included several stability bypass entrance configurations. Poppet valves controlled the bypass airflow. The inlet stable airflow range achieved with each configuration was determined for both steady state conditions and internal pulse transients. Results are compared with those obtained without a stability bypass system. Transient results were also obtained for the inlet with a choke point at the diffuser exit and for the inlet with large and small stability bypass plenum volumes. Poppet valves at the stability bypass exit provided the inlet with a stable airflow range of 20 percent or greater at all static and transient conditions.

  14. LPV control for the full region operation of a wind turbine integrated with synchronous generator.

    PubMed

    Cao, Guoyan; Grigoriadis, Karolos M; Nyanteh, Yaw D

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.

  15. LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator

    PubMed Central

    Grigoriadis, Karolos M.; Nyanteh, Yaw D.

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control. PMID:25884036

  16. Aircraft loss-of-control prevention and recovery: A hybrid control strategy

    NASA Astrophysics Data System (ADS)

    Dongmo, Jean-Etienne Temgoua

    The Complexity of modern commercial and military aircrafts has necessitated better protection and recovery systems. With the tremendous advances in computer technology, control theory and better mathematical models, a number of issues (Prevention, Reconfiguration, Recovery, Operation near critical points, ... etc) moderately addressed in the past have regained interest in the aeronautical industry. Flight envelope is essential in all flying aerospace vehicles. Typically, flying the vehicle means remaining within the flight envelope at all times. Operation outside the normal flight regime is usually subject to failure of components (Actuators, Engines, Deflection Surfaces) , pilots's mistakes, maneuverability near critical points and environmental conditions (crosswinds...) and in general characterized as Loss-Of-Control (LOC) because the aircraft no longer responds to pilot's inputs as expected. For the purpose of this work, (LOC) in aircraft is defined as the departure from the safe set (controlled flight) recognized as the maximum controllable (reachable) set in the initial flight envelope. The LOC can be reached either through failure, unintended maneuvers, evolution near irregular points and disturbances. A coordinated strategy is investigated and designed to ensure that the aircraft can maneuver safely in their constraint domain and can also recover from abnormal regime. The procedure involves the computation of the largest controllable (reachable) set (Safe set) contained in the initial prescribed envelope. The problem is posed as a reachability problem using Hamilton-Jacobi Partial Differential Equation (HJ-PDE) where a cost function is set to he minimized along trajectory departing from the given set. Prevention is then obtained by computing the controller which would allow the flight vehicle to remain in the maximum controlled set in a multi-objective set up. Then the recovery procedure is illustrated with a two-point boundary value problem. Once illustrate, a set of control strategies is designed for recovery purpose ranging from nonlinear smooth regulators with Hamilton Jacobi-Hellman (HJB) formulation to the switching controllers with High Order Sliding Mode Controllers (HOSMC). A coordinated strategy known as a high level supervisor is then implemented using the multi-models concept where models operate in specified safe regions of the state space.

  17. Knowledge and Practices of In-Home Pesticide Use: A Community Survey in Uganda

    PubMed Central

    Nalwanga, Eva; Ssempebwa, John C.

    2011-01-01

    Many communities in low-income countries use in-home pesticides for the control of pests. Such use is often inadequately controlled. In this study, 100 households in Kireka ward, Wakiso district in Uganda were involved in a cross-sectional survey to assess pests, knowledge, and use patterns of pesticides. A structured pretested questionnaire was administered via personal interviews, and observational checklists were used. Mosquitoes were the most prevalent pests (83%), followed by cockroaches (69%) and rats (52%). Pesticides were the most preferred method for pest control (98%), with insecticide spray being the most common form of application (71.4%). Pesticide application was inappropriately done in many households mainly due to inadequate knowledge on use. Only 48% of the respondents read manufacturer's instructions for use. Information on what pesticide to use was obtained from friends (53.1%), points of sales (48%). Educational interventions particularly at points of sale would be a critical avenue for promoting safe use of pesticides in households. PMID:21776435

  18. Drag reduction and thrust generation by tangential surface motion in flow past a cylinder

    NASA Astrophysics Data System (ADS)

    Mao, Xuerui; Pearson, Emily

    2018-03-01

    Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At Re=100 , when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (partial r \\hat{ζ } ) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.

  19. Tactile Acuity Charts: A Reliable Measure of Spatial Acuity

    PubMed Central

    Bruns, Patrick; Camargo, Carlos J.; Campanella, Humberto; Esteve, Jaume; Dinse, Hubert R.; Röder, Brigitte

    2014-01-01

    For assessing tactile spatial resolution it has recently been recommended to use tactile acuity charts which follow the design principles of the Snellen letter charts for visual acuity and involve active touch. However, it is currently unknown whether acuity thresholds obtained with this newly developed psychophysical procedure are in accordance with established measures of tactile acuity that involve passive contact with fixed duration and control of contact force. Here we directly compared tactile acuity thresholds obtained with the acuity charts to traditional two-point and grating orientation thresholds in a group of young healthy adults. For this purpose, two types of charts, using either Braille-like dot patterns or embossed Landolt rings with different orientations, were adapted from previous studies. Measurements with the two types of charts were equivalent, but generally more reliable with the dot pattern chart. A comparison with the two-point and grating orientation task data showed that the test-retest reliability of the acuity chart measurements after one week was superior to that of the passive methods. Individual thresholds obtained with the acuity charts agreed reasonably with the grating orientation threshold, but less so with the two-point threshold that yielded relatively distinct acuity estimates compared to the other methods. This potentially considerable amount of mismatch between different measures of tactile acuity suggests that tactile spatial resolution is a complex entity that should ideally be measured with different methods in parallel. The simple test procedure and high reliability of the acuity charts makes them a promising complement and alternative to the traditional two-point and grating orientation thresholds. PMID:24504346

  20. An improved maximum power point tracking method for a photovoltaic system

    NASA Astrophysics Data System (ADS)

    Ouoba, David; Fakkar, Abderrahim; El Kouari, Youssef; Dkhichi, Fayrouz; Oukarfi, Benyounes

    2016-06-01

    In this paper, an improved auto-scaling variable step-size Maximum Power Point Tracking (MPPT) method for photovoltaic (PV) system was proposed. To achieve simultaneously a fast dynamic response and stable steady-state power, a first improvement was made on the step-size scaling function of the duty cycle that controls the converter. An algorithm was secondly proposed to address wrong decision that may be made at an abrupt change of the irradiation. The proposed auto-scaling variable step-size approach was compared to some various other approaches from the literature such as: classical fixed step-size, variable step-size and a recent auto-scaling variable step-size maximum power point tracking approaches. The simulation results obtained by MATLAB/SIMULINK were given and discussed for validation.

  1. An improved DPSM technique for modelling ultrasonic fields in cracked solids

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Kundu, Tribikram; Placko, Dominique

    2007-04-01

    In recent years Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic field modelling problems. In conventional DPSM several point sources are placed near the transducer face, interface and anomaly boundaries. The ultrasonic or the electromagnetic field at any point is computed by superimposing the contributions of different layers of point sources strategically placed. The conventional DPSM modelling technique is modified in this paper so that the contributions of the point sources in the shadow region can be removed from the calculations. For this purpose the conventional point sources that radiate in all directions are replaced by Controlled Space Radiation (CSR) sources. CSR sources can take care of the shadow region problem to some extent. Complete removal of the shadow region problem can be achieved by introducing artificial interfaces. Numerically synthesized fields obtained by the conventional DPSM technique that does not give any special consideration to the point sources in the shadow region and the proposed modified technique that nullifies the contributions of the point sources in the shadow region are compared. One application of this research can be found in the improved modelling of the real time ultrasonic non-destructive evaluation experiments.

  2. Automated realization of the gallium melting and triple points

    NASA Astrophysics Data System (ADS)

    Yan, X.; Duan, Y.; Zhang, J. T.; Wang, W.

    2013-09-01

    In order to improve the automation and convenience of the process involved in realizing the gallium fixed points, an automated apparatus, based on thermoelectric and heat pipe technologies, was designed and developed. This paper describes the apparatus design and procedures for freezing gallium mantles and realizing gallium melting and triple points. Also, investigations on the melting behavior of a gallium melting point cell and of gallium triple point cells were carried out while controlling the temperature outside the gallium point cells at 30 °C, 30.5 °C, 31 °C, and 31.5 °C. The obtained melting plateau curves show dentate temperature oscillations on the melting plateaus for the gallium point cells when thermal couplings occurred between the outer and inner liquid-solid interfaces. The maximum amplitude of the temperature fluctuations was about 1.5 mK. Therefore, the temperature oscillations can be used to indicate the ending of the equilibrium phase transitions. The duration and amplitude of such temperature oscillations depend on the temperature difference between the setting temperature and the gallium point temperature; the smaller the temperature difference, the longer the duration of both the melting plateaus and the temperature fluctuations.

  3. Neural Modeling of Fuzzy Controllers for Maximum Power Point Tracking in Photovoltaic Energy Systems

    NASA Astrophysics Data System (ADS)

    Lopez-Guede, Jose Manuel; Ramos-Hernanz, Josean; Altın, Necmi; Ozdemir, Saban; Kurt, Erol; Azkune, Gorka

    2018-06-01

    One field in which electronic materials have an important role is energy generation, especially within the scope of photovoltaic energy. This paper deals with one of the most relevant enabling technologies within that scope, i.e, the algorithms for maximum power point tracking implemented in the direct current to direct current converters and its modeling through artificial neural networks (ANNs). More specifically, as a proof of concept, we have addressed the problem of modeling a fuzzy logic controller that has shown its performance in previous works, and more specifically the dimensionless duty cycle signal that controls a quadratic boost converter. We achieved a very accurate model since the obtained medium squared error is 3.47 × 10-6, the maximum error is 16.32 × 10-3 and the regression coefficient R is 0.99992, all for the test dataset. This neural implementation has obvious advantages such as a higher fault tolerance and a simpler implementation, dispensing with all the complex elements needed to run a fuzzy controller (fuzzifier, defuzzifier, inference engine and knowledge base) because, ultimately, ANNs are sums and products.

  4. Control of proliferation rate of N27 dopaminergic neurons using Transcranial Magnetic Stimulation orientation

    NASA Astrophysics Data System (ADS)

    Meng, Yiwen; Hadimani, Ravi; Anantharam, Vellareddy; Kanthasamy, Anumantha; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) has been used to investigate possible treatments for a variety of neurological disorders. However, the effect that magnetic fields have on neurons has not been well documented in the literature. We have investigated the effect of different orientation of magnetic field generated by TMS coils with a monophasic stimulator on the proliferation rate of N27 neuronal cells cultured in flasks and multi-well plates. The proliferation rate of neurons would increase by exposed horizontally adherent N27 cells to a magnetic field pointing upward through the neuronal proliferation layer compared with the control group. On the other hand, proliferation rate would decrease in cells exposed to a magnetic field pointing downward through the neuronal growth layer compared with the control group. We confirmed results obtained from the Trypan-blue and automatic cell counting methods with those from the CyQuant and MTS cell viability assays. Our findings could have important implications for the preclinical development of TMS treatments of neurological disorders and represents a new method to control the proliferation rate of neuronal cells.

  5. Control of quasi-monoenergetic electron beams from laser-plasma accelerators by adjusting shock density profile

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Swanson, Kelly K.; Lehe, Remi; Barber, Sam K.; Isono, Fumika; Otero, Jorge G.; Liu, Xinyao; Mao, Hann-Shin; Steinke, Sven; Tilborg, Jeroen Van; Geddes, Cameron G. R.; Leemans, Wim

    2017-10-01

    High-level control of a laser-plasma accelerator (LPA) using a shock injector was demonstrated by systematically varying the shock injector profile, including the shock angle, up-ramp width and shock position. Particle-in-cell (PIC) simulation explored how variations in the shock profile impacted the injection process and confirmed results obtained through acceleration experiments. These results establish that, by adjusting shock position, up-ramp, and angle, beam energy, energy spread, and pointing can be controlled. As a result, e-beam were highly tunable from 25 to 300 MeV with <8% energy spread, 1.5 mrad divergence and <1 mrad pointing fluctuation. This highly controllable LPA represents an ideal and compact beam source for the ongoing MeV Thomson photon experiments. Set-up and initial experimental design on a newly constructed one hundred TW laser system will be presented. This work is supported by the US DOE under Contract No. DE-AC02-05CH11231, and by the US DOE National Nuclear Security Administration, Defense Nuclear Nonproliferation R&D (NA22).

  6. Thermoelastic steam turbine rotor control based on neural network

    NASA Astrophysics Data System (ADS)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  7. Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System

    NASA Astrophysics Data System (ADS)

    Bendjeghaba, Omar

    2014-01-01

    This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.

  8. Balloonborne lidar experiment

    NASA Astrophysics Data System (ADS)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Brooke, R. W.; Hurd, A. G.

    1980-12-01

    The object of this contract was to design a balloonborne lidar experiment capable of performing nightime atmospheric density measurements in the 10 to 40 km altitude domain with a resolution of 100 meters. The payload includes a frequency-tripled Nd:YAG laser with outputs at 353 and 1064 nm, a telescoped receiver with PMT detectors, a command-controlled optical pointing system, and support systems, including thermal control, telemetry, command, and power. Density measurements would be made using the back-scattered 353 nm radiation data with aerosol corrections obtained from 1064 nm radiation scatterings.

  9. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    NASA Astrophysics Data System (ADS)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  10. Effects of dietary 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47) exposure on medaka (Oryzias latipes) swimming behavior.

    PubMed

    Sastre, Salvador; Fernández Torija, Carlos; Carbonell, Gregoria; Rodríguez Martín, José Antonio; Beltrán, Eulalia María; González-Doncel, Miguel

    2018-02-01

    A diet fortified with 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47: 0, 10, 100, and 1000 ng/g) was dosed to 4-7-day-old post-hatch medaka fish for 40 days to evaluate the effects on the swimming activity of fish using a miniaturized swimming flume. Chlorpyrifos (CF)-exposed fish were selected as the positive control to assess the validity and sensitivity of the behavioral findings. After 20 and 40 days of exposure, the locomotor activity was analyzed for 6 min in a flume section (arena). The CF positive control for each time point were fish exposed to 50 ng CF/ml for 48 h. Swimming patterns, presented as two-dimensional heat maps of fish movement and positioning, were obtained by geostatistical analyses. The heat maps of the control groups at time point 20 revealed visually comparable swimming patterns to those of the BDE-47-treated groups. For the comparative fish positioning analysis, both the arenas were divided into 15 proportional areas. No statistical differences were found between residence times in the areas from the control groups and those from the BDE-47-treated groups. At time point 40, the heat map overall patterns of the control groups differed visually from that of the 100-ng BDE-47/g-treated group, but a comparative analysis of the residence times in the corresponding 15 areas did not reveal consistent differences. The relative distances traveled by the control and treated groups at time points 20 and 40 were also comparable. The heat maps of CF-treated fish at both time points showed contrasting swim patterns with respect to those of the controls. These differential patterns were statistically supported with differences in the residence times for different areas. The relative distances traveled by the CF-treated fish were also significantly shorter. These results confirm the validity of the experimental design and indicate that a dietary BDE-47 exposure does not affect forced swimming in medaka at growing stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The SE role in establishing, verifying and controlling top-level program requirements

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W.

    1993-01-01

    The program objectives and requirements described in the preceding paragraphs emphasize mission demonstrations. Obtaining desired science or applications information is another type of program objective. The program requirements then state the need for specific data, usually specifying a particular instrument or instrument set; the operating conditions under which the data is to be obtained (e.g., orbit altitude, field of view, and pointing accuracy); and the data handling and use. Conversely, a new instrument may be conceived or created with the program objective to establish its use potential. The Multispectral Scanner employed in the Landsat program is an example.

  12. Application of a flight test and data analysis technique to flutter of a drone aircraft

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Abel, I.

    1981-01-01

    Modal identification results are presented that were obtained from recent flight flutter tests of a drone vehicle with a research wing equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surfaces on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  13. Prospective Durability Testing of a Vascular Access Phantom

    DTIC Science & Technology

    2010-09-01

    ultrasound guidance when obtaining central venous access.19,20 The increasing use of ultrasound guidance for vascular access has created an educational...with difficult intravenous access. Ann Emerg Med. 2005;46:456-61. 7. Gallieni M, Cozzolino M. Uncomplicated central vein catheterization of high risk...al. Randomized, controlled clinical trial of point-of-care limited ultrasonography assistance of central venous cannulation: The third sonography

  14. Precision Linear Actuator for Space Interferometry Mission (SIM) Siderostat Pointing

    NASA Technical Reports Server (NTRS)

    Cook, Brant; Braun, David; Hankins, Steve; Koenig, John; Moore, Don

    2008-01-01

    'SIM PlanetQuest will exploit the classical measuring tool of astrometry (interferometry) with unprecedented precision to make dramatic advances in many areas of astronomy and astrophysics'(1). In order to obtain interferometric data two large steerable mirrors, or Siderostats, are used to direct starlight into the interferometer. A gimbaled mechanism actuated by linear actuators is chosen to meet the unprecedented pointing and angle tracking requirements of SIM. A group of JPL engineers designed, built, and tested a linear ballscrew actuator capable of performing submicron incremental steps for 10 years of continuous operation. Precise, zero backlash, closed loop pointing control requirements, lead the team to implement a ballscrew actuator with a direct drive DC motor and a precision piezo brake. Motor control commutation using feedback from a precision linear encoder on the ballscrew output produced an unexpected incremental step size of 20 nm over a range of 120 mm, yielding a dynamic range of 6,000,000:1. The results prove linear nanometer positioning requires no gears, levers, or hydraulic converters. Along the way many lessons have been learned and will subsequently be shared.

  15. Chilean version of the INECO Frontal Screening (IFS-Ch): psychometric properties and diagnostic accuracy

    PubMed Central

    Jory, Josefina Ihnen; Bruna, Andrés Antivilo; Muñoz-Neira, Carlos; Chonchol, Andrea Slachevsky

    2013-01-01

    OBJECTIVE This study sought to analyze the psychometric properties and diagnostic accuracy of the Chilean version of the INECO Frontal Screening (IFS-Ch) in a sample of dementia patients and control subjects. METHODS After adapting the instrument to the Chilean context and obtaining content validity evidence through expert consultation, the IFS-Ch was administered to 31 dementia patients and 30 control subjects together with other executive assessments (Frontal Assessment Battery [FAB], Modified version of the Wisconsin Card Sorting Test [MCST], phonemic verbal fluencies [letters A and P] and semantic verbal fluency [animals]) and global cognitive efficiency tests (Mini mental State Examination [MMSE] and Addenbrooke's Cognitive Examination-Revised [ACE-R]). Caregivers of dementia patients and proxies of control subjects were interviewed with instruments measuring dysexecutive symptoms (Dysexecutive Questionnaire [DEX]), dementia severity (Clinical Dementia Rating Scale [CDR]) and functional status in activities of daily living (Activities of Daily Living Scale [IADL] and Technology-Activities of Daily Living Questionnaire [T-ADLQ]). Convergent and discriminant validity, internal consistency reliability, cut-off points, sensitivity and specificity for the IFS-Ch were estimated. RESULTS Evidence of content validity was obtained. Evidence of convergent validity was also found showing significant correlations (p<0.05) between the IFS-Ch and the other instruments measuring: executive functions (FAB, r=0.935; categories achieved in the MCST, r=0.791; perseverative errors in the MCST, r= -0.617; animal verbal fluency, r=0.728; "A" verbal fluency, r=0.681; and "P" verbal fluency, r=0.783), dysexecutive symptoms in daily living (DEX, r= -0.494), dementia severity (CDR, r= -0.75) and functional status in activities of daily living (T-ADLQ, r= -0.745; IADL, r=0.717). Regarding reliability, a Cronbach's alpha coefficient of 0.905 was obtained. For diagnostic accuracy, a cut-off point of 18 points (sensitivity=0.903; specificity=0.867) and an area under curve of 0.951 were estimated to distinguish between patients with dementia and control subjects. DISCUSSION The IFS-Ch showed acceptable psychometric properties, supported by evidence of validity and reliability for its use in the measurement of executive functions in patients with dementia. The diagnostic accuracy of the IFS-Ch for detecting dementia patients was also considered acceptable. PMID:29213818

  16. Optimal supplementary frequency controller design using the wind farm frequency model and controller parameters stability region.

    PubMed

    Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad

    2018-03-01

    In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry

    NASA Astrophysics Data System (ADS)

    Javernick, L.; Brasington, J.; Caruso, B.

    2014-05-01

    Recent advances in computer vision and image analysis have led to the development of a novel, fully automated photogrammetric method to generate dense 3d point cloud data. This approach, termed Structure-from-Motion or SfM, requires only limited ground-control and is ideally suited to imagery obtained from low-cost, non-metric cameras acquired either at close-range or using aerial platforms. Terrain models generated using SfM have begun to emerge recently and with a growing spectrum of software now available, there is an urgent need to provide a robust quality assessment of the data products generated using standard field and computational workflows. To address this demand, we present a detailed error analysis of sub-meter resolution terrain models of two contiguous reaches (1.6 and 1.7 km long) of the braided Ahuriri River, New Zealand, generated using SfM. A six stage methodology is described, involving: i) hand-held image acquisition from an aerial platform, ii) 3d point cloud extraction modeling using Agisoft PhotoScan, iii) georeferencing on a redundant network of GPS-surveyed ground-control points, iv) point cloud filtering to reduce computational demand as well as reduce vegetation noise, v) optical bathymetric modeling of inundated areas; and vi) data fusion and surface modeling to generate sub-meter raster terrain models. Bootstrapped geo-registration as well as extensive distributed GPS and sonar-based bathymetric check-data were used to quantify the quality of the models generated after each processing step. The results obtained provide the first quantified analysis of SfM applied to model the complex terrain of a braided river. Results indicate that geo-registration errors of 0.04 m (planar) and 0.10 m (elevation) and vertical surface errors of 0.10 m in non-vegetation areas can be achieved from a dataset of photographs taken at 600 m and 800 m above the ground level. These encouraging results suggest that this low-cost, logistically simple method can deliver high quality terrain datasets competitive with those obtained with significantly more expensive laser scanning, and suitable for geomorphic change detection and hydrodynamic modeling.

  18. Conception d'un controleur actif pour le retard de la transition de l'ecoulement laminaire au turbulent sur une aile a geometrie du profil variable dans le tunnel a vent

    NASA Astrophysics Data System (ADS)

    Popov, Andrei Vladimir

    The aerospace industry is motivated to reduce fuel consumption in large transport aircraft, mainly through drag reduction. The main objective of the global project is the development of an active control system of wing airfoil geometry during flight in order to allow drag reduction. Drag reduction on a wing can be achieved through modifications in the laminar-to-turbulent flow transition point position, which should be situated as close as possible to the trailing edge of the airfoil wing. As the transition point plays a crucial part in this project, this work focuses on the control of its position on the airfoil, as an effect of controlling the deflection of a morphing wing airfoil equipped with a flexible skin. The paper presents the modeling and the experimental testing of the aerodynamic performance of a morphing wing, starting from the design concept phase all the way to the bench and wind tunnel tests phases. Several wind tunnel test runs for various Mach numbers and angles of attack were performed in the 6 x 9 ft2 wind tunnel at the Institute for Aerospace Research at the National Research Council Canada. A rectangular finite aspect ratio wing, having a morphing airfoil cross-section due to a flexible skin installed on the upper surface of the wing, was instrumented with Kulite transducers. The Mach number varied from 0.2 to 0.3 and the angle of attack between -1° and 2°. Unsteady pressure signals were recorded and analyzed and a thorough comparison, in terms of mean pressure coefficients and their standard deviations, was performed against theoretical predictions, using the XFoil computational fluid dynamics code. The acquired pressure data was analyzed through custom-made software created with Matlab/Simulink in order to detect the noise magnitude in the surface airflow and to localize the transition point position on the wing upper surface. This signal processing was necessary in order to detect the Tollmien-Schlichting waves responsible for triggering the transition from laminar to turbulent flow. The flexible skin needed to morph its shape through two actuation points in order to obtain an optimized airfoil shape for several flow conditions in the wind tunnel. The two shape memory alloy actuators, having a non-linear behavior, drove the displacement of the two control points of the flexible skin towards the optimized airfoil shape. This thesis presents the methodology used and the results obtained from designing the controller of the two shape memory actuators as well as the methods used for morphing wing control in the wind tunnel tests designed to prove the concept and validity of the system in real time. Keywords: wing, morphing, laminar, turbulent, transition, control, wind tunnel

  19. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    PubMed

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. The Geodetic Monitoring of the Engineering Structure - A Practical Solution of the Problem in 3D Space

    NASA Astrophysics Data System (ADS)

    Filipiak-Kowszyk, Daria; Janowski, Artur; Kamiński, Waldemar; Makowska, Karolina; Szulwic, Jakub; Wilde, Krzysztof

    2016-12-01

    The study raises the issues concerning the automatic system designed for the monitoring of movement of controlled points, located on the roof covering of the Forest Opera in Sopot. It presents the calculation algorithm proposed by authors. It takes into account the specific design and location of the test object. High forest stand makes it difficult to use distant reference points. Hence the reference points used to study the stability of the measuring position are located on the ground elements of the sixmeter-deep concrete foundations, from which the steel arches are derived to support the roof covering (membrane) of the Forest Opera. The tacheometer used in the measurements is located in the glass body placed on a special platform attached to the steel arcs. Measurements of horizontal directions, vertical angles and distances can be additionally subject to errors caused by the laser beam penetration through the glass. Dynamic changes of weather conditions, including the temperature and pressure also have a significant impact on the value of measurement errors, and thus the accuracy of the final determinations represented by the relevant covariance matrices. The estimated coordinates of the reference points, controlled points and tacheometer along with the corresponding covariance matrices obtained from the calculations in the various epochs are used to determine the significance of acquired movements. In case of the stability of reference points, the algorithm assumes the ability to study changes in the position of tacheometer in time, on the basis of measurements performed on these points.

  1. Optimal control problem for linear fractional-order systems, described by equations with Hadamard-type derivative

    NASA Astrophysics Data System (ADS)

    Postnov, Sergey

    2017-11-01

    Two kinds of optimal control problem are investigated for linear time-invariant fractional-order systems with lumped parameters which dynamics described by equations with Hadamard-type derivative: the problem of control with minimal norm and the problem of control with minimal time at given restriction on control norm. The problem setting with nonlocal initial conditions studied. Admissible controls allowed to be the p-integrable functions (p > 1) at half-interval. The optimal control problem studied by moment method. The correctness and solvability conditions for the corresponding moment problem are derived. For several special cases the optimal control problems stated are solved analytically. Some analogies pointed for results obtained with the results which are known for integer-order systems and fractional-order systems describing by equations with Caputo- and Riemann-Liouville-type derivatives.

  2. Statistical plant set estimation using Schroeder-phased multisinusoidal input design

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.

    1992-01-01

    A frequency domain method is developed for plant set estimation. The estimation of a plant 'set' rather than a point estimate is required to support many methods of modern robust control design. The approach here is based on using a Schroeder-phased multisinusoid input design which has the special property of placing input energy only at the discrete frequency points used in the computation. A detailed analysis of the statistical properties of the frequency domain estimator is given, leading to exact expressions for the probability distribution of the estimation error, and many important properties. It is shown that, for any nominal parametric plant estimate, one can use these results to construct an overbound on the additive uncertainty to any prescribed statistical confidence. The 'soft' bound thus obtained can be used to replace 'hard' bounds presently used in many robust control analysis and synthesis methods.

  3. Maximum power point tracking for photovoltaic applications by using two-level DC/DC boost converter

    NASA Astrophysics Data System (ADS)

    Moamaei, Parvin

    Recently, photovoltaic (PV) generation is becoming increasingly popular in industrial applications. As a renewable and alternative source of energy they feature superior characteristics such as being clean and silent along with less maintenance problems compared to other sources of the energy. In PV generation, employing a Maximum Power Point Tracking (MPPT) method is essential to obtain the maximum available solar energy. Among several proposed MPPT techniques, the Perturbation and Observation (P&O;) and Model Predictive Control (MPC) methods are adopted in this work. The components of the MPPT control system which are P&O; and MPC algorithms, PV module and high gain DC-DC boost converter are simulated in MATLAB Simulink. They are evaluated theoretically under rapidly and slowly changing of solar irradiation and temperature and their performance is shown by the simulation results, finally a comprehensive comparison is presented.

  4. Model of two infectious diseases in nettle caterpillar population

    NASA Astrophysics Data System (ADS)

    Firdausi, F. Z.; Nuraini, N.

    2016-04-01

    Palm oil is a vital commodity to the economy of Indonesia. The area of oil palm plantations in Indonesia has increased from year to year. However, the effectiveness of palm oil production is reduced by pest infestation. One of the pest which often infests oil palm plantations is nettle caterpillar. The pest control used in this study is biological control, viz. biological agents given to oil palm trees. This paper describes a mathematical model of two infectious diseases in nettle caterpillar population. The two infectious diseases arise due to two biological agents, namely Bacillus thuringiensis bacterium and parasite which usually attack nettle caterpillars. The derivation of the model constructed in this paper is obtained from ordinary differential equations without time delay. The equilibrium points are analyzed. Two of three equilibrium points are stable if the Routh-Hurwitz criteria are fulfilled. In addition, this paper also presents the numerical simulation of the model which has been constructed.

  5. [Quantification of the gnostic sensitivity via measurement of the vibration threshold and of finger tip sensation].

    PubMed

    Oosterhuis, H J; Bouwsma, C; van Halsema, B; Hollander, R A; Kros, C J; Tombroek, I

    1992-10-03

    Quantification of vibration perception and fingertip sensation in routine neurological examination. Neurological Clinic, University Hospital, Groningen, the Netherlands. Prospective, controlled investigation. Vibration perception and fingertip sensation were quantified in a large group of normal control persons of various ages and in neurological patients and compared with the usual sensory tests at routine neurological examination. The vibration perception limit was measured with a biothesiometer without accelerometer, the fingertip sensation with a device for two-point discrimination slightly modified according to Renfrew ('Renfrew meter'). Concordance of the tests was studied by calculating kappa values. The normal values of both sensory qualities had a log-normal distribution and increased with age. The values obtained with the Renfrew meter correlated well with those of the two-point discrimination and stereognosis but were systematically higher than those indicated by Renfrew. Both methods appear useful at routine neurological examination if certain measuring precautions are taken.

  6. High speed FPGA-based Phasemeter for the far-infrared laser interferometers on EAST

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Liu, H.; Zou, Z.; Li, W.; Lian, H.; Jie, Y.

    2017-12-01

    The far-infrared laser-based HCN interferometer and POlarimeter/INTerferometer\\break (POINT) system are important diagnostics for plasma density measurement on EAST tokamak. Both HCN and POINT provide high spatial and temporal resolution of electron density measurement and used for plasma density feedback control. The density is calculated by measuring the real-time phase difference between the reference beams and the probe beams. For long-pulse operations on EAST, the calculation of density has to meet the requirements of Real-Time and high precision. In this paper, a Phasemeter for far-infrared laser-based interferometers will be introduced. The FPGA-based Phasemeter leverages fast ADCs to obtain the three-frequency signals from VDI planar-diode Mixers, and realizes digital filters and an FFT algorithm in FPGA to provide real-time, high precision electron density output. Implementation of the Phasemeter will be helpful for the future plasma real-time feedback control in long-pulse discharge.

  7. Construction and Start-up of a Large-Volume Thermostat for Dielectric-Constant Gas Thermometry

    NASA Astrophysics Data System (ADS)

    Merlone, A.; Moro, F.; Zandt, T.; Gaiser, C.; Fellmuth, B.

    2010-07-01

    A liquid-bath thermostat with a volume of about 800 L was designed to provide a suitable thermal environment for a dielectric-constant gas thermometer (DCGT) in the range from the triple point of mercury to the melting point of gallium. In the article, results obtained with the unique, huge thermostat without the DCGT measuring chamber are reported to demonstrate the capability of controlling the temperature of very large systems at a metrological level. First tests showed that the bath together with its temperature controller provide a temperature variation of less than ±0.5mK peak-to-peak. This temperature instability could be maintained over a period of several days. In the central working volume (diameter—500mm, height—650mm), in which the vacuum chamber containing the measuring system of the DCGT will be placed later, the temperature inhomogeneity has been demonstrated to be also well below 1mK.

  8. Optimal design of loudspeaker arrays for robust cross-talk cancellation using the Taguchi method and the genetic algorithm.

    PubMed

    Bai, Mingsian R; Tung, Chih-Wei; Lee, Chih-Chung

    2005-05-01

    An optimal design technique of loudspeaker arrays for cross-talk cancellation with application in three-dimensional audio is presented. An array focusing scheme is presented on the basis of the inverse propagation that relates the transducers to a set of chosen control points. Tikhonov regularization is employed in designing the inverse cancellation filters. An extensive analysis is conducted to explore the cancellation performance and robustness issues. To best compromise the performance and robustness of the cross-talk cancellation system, optimal configurations are obtained with the aid of the Taguchi method and the genetic algorithm (GA). The proposed systems are further justified by physical as well as subjective experiments. The results reveal that large number of loudspeakers, closely spaced configuration, and optimal control point design all contribute to the robustness of cross-talk cancellation systems (CCS) against head misalignment.

  9. Consumer attitude towards sodium reduction in meat products and acceptability of fermented sausages with reduced sodium content.

    PubMed

    Guàrdia, M D; Guerrero, L; Gelabert, J; Gou, P; Arnau, J

    2006-07-01

    Lowering salt content in meat products is possible from a technological and sensorial point of view, although little information is available about the consumers' attitude and acceptance of these products. Attitude towards low salt meat products, following the Theory of Planned Behaviour (TPB) proposed by Ajzen, was evaluated by 392 consumers. Acceptability of small calibre fermented sausages with 50% molar substitution of NaCl by six different mixtures of KCl (0-50%) and K-lactate (0-50%) and the control (22g NaCl/kg) was determined by 98 consumers. The preference of the previous best two treatments was compared to the batch control by 279 consumers. In general consumers had a positive attitude towards low salt meat products, being higher for women than for men. Women showed stronger ideas and higher Perceived Control on the Behaviour towards reduced sodium meat products than men. Smokers showed lower intense beliefs than non-smokers. Consumers with a basic level of education were more affected by what other people important for them thought they should do. The final model obtained using the Theory of Planned Behaviour showed a good predictive capacity (R(2)=0.60) and a good internal consistency. Regarding the acceptability study, batches with substitution levels of 50% and 40% by K-lactate, showed lower overall acceptance than the control batch. Significant differences in acceptability were found regarding the gender and place of residence of the consumers. The preference study showed no differences between the batch control and batches with 50% KCl and 40% KCl + 10% of K-lactate substitution levels. According to these results and from a sensorial point of view, it is possible to reduce NaCl content in small calibre fermented sausages by 50% and obtain a product acceptable for consumers.

  10. Structure-From for Calibration of a Vehicle Camera System with Non-Overlapping Fields-Of in AN Urban Environment

    NASA Astrophysics Data System (ADS)

    Hanel, A.; Stilla, U.

    2017-05-01

    Vehicle environment cameras observing traffic participants in the area around a car and interior cameras observing the car driver are important data sources for driver intention recognition algorithms. To combine information from both camera groups, a camera system calibration can be performed. Typically, there is no overlapping field-of-view between environment and interior cameras. Often no marked reference points are available in environments, which are a large enough to cover a car for the system calibration. In this contribution, a calibration method for a vehicle camera system with non-overlapping camera groups in an urban environment is described. A-priori images of an urban calibration environment taken with an external camera are processed with the structure-frommotion method to obtain an environment point cloud. Images of the vehicle interior, taken also with an external camera, are processed to obtain an interior point cloud. Both point clouds are tied to each other with images of both image sets showing the same real-world objects. The point clouds are transformed into a self-defined vehicle coordinate system describing the vehicle movement. On demand, videos can be recorded with the vehicle cameras in a calibration drive. Poses of vehicle environment cameras and interior cameras are estimated separately using ground control points from the respective point cloud. All poses of a vehicle camera estimated for different video frames are optimized in a bundle adjustment. In an experiment, a point cloud is created from images of an underground car park, as well as a point cloud of the interior of a Volkswagen test car is created. Videos of two environment and one interior cameras are recorded. Results show, that the vehicle camera poses are estimated successfully especially when the car is not moving. Position standard deviations in the centimeter range can be achieved for all vehicle cameras. Relative distances between the vehicle cameras deviate between one and ten centimeters from tachymeter reference measurements.

  11. Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound.

    PubMed

    de Senneville, Baudouin Denis; Mougenot, Charles; Moonen, Chrit T W

    2007-02-01

    Focused ultrasound (US) is a unique and noninvasive technique for local deposition of thermal energy deep inside the body. MRI guidance offers the additional benefits of excellent target visualization and continuous temperature mapping. However, treating a moving target poses severe problems because 1) motion-related thermometry artifacts must be corrected, 2) the US focal point must be relocated according to the target displacement. In this paper a complete MRI-compatible, high-intensity focused US (HIFU) system is described together with adaptive methods that allow continuous MR thermometry and therapeutic US with real-time tracking of a moving target, online motion correction of the thermometry maps, and regional temperature control based on the proportional, integral, and derivative method. The hardware is based on a 256-element phased-array transducer with rapid electronic displacement of the focal point. The exact location of the target during US firing is anticipated using automatic analysis of periodic motions. The methods were tested with moving phantoms undergoing either rigid body or elastic periodical motions. The results show accurate tracking of the focal point. Focal and regional temperature control is demonstrated with a performance similar to that obtained with stationary phantoms. Copyright (c) 2007 Wiley-Liss, Inc.

  12. A comparison of multi-view 3D reconstruction of a rock wall using several cameras and a laser scanner

    NASA Astrophysics Data System (ADS)

    Thoeni, K.; Giacomini, A.; Murtagh, R.; Kniest, E.

    2014-06-01

    This work presents a comparative study between multi-view 3D reconstruction using various digital cameras and a terrestrial laser scanner (TLS). Five different digital cameras were used in order to estimate the limits related to the camera type and to establish the minimum camera requirements to obtain comparable results to the ones of the TLS. The cameras used for this study range from commercial grade to professional grade and included a GoPro Hero 1080 (5 Mp), iPhone 4S (8 Mp), Panasonic Lumix LX5 (9.5 Mp), Panasonic Lumix ZS20 (14.1 Mp) and Canon EOS 7D (18 Mp). The TLS used for this work was a FARO Focus 3D laser scanner with a range accuracy of ±2 mm. The study area is a small rock wall of about 6 m height and 20 m length. The wall is partly smooth with some evident geological features, such as non-persistent joints and sharp edges. Eight control points were placed on the wall and their coordinates were measured by using a total station. These coordinates were then used to georeference all models. A similar number of images was acquired from a distance of between approximately 5 to 10 m, depending on field of view of each camera. The commercial software package PhotoScan was used to process the images, georeference and scale the models, and to generate the dense point clouds. Finally, the open-source package CloudCompare was used to assess the accuracy of the multi-view results. Each point cloud obtained from a specific camera was compared to the point cloud obtained with the TLS. The latter is taken as ground truth. The result is a coloured point cloud for each camera showing the deviation in relation to the TLS data. The main goal of this study is to quantify the quality of the multi-view 3D reconstruction results obtained with various cameras as objectively as possible and to evaluate its applicability to geotechnical problems.

  13. Effect finishing and polishing procedures on the surface roughness of IPS Empress 2 ceramic.

    PubMed

    Boaventura, Juliana Maria Capelozza; Nishida, Rodrigo; Elossais, André Afif; Lima, Darlon Martins; Reis, José Mauricio Santos Nunes; Campos, Edson Alves; de Andrade, Marcelo Ferrarezi

    2013-01-01

    To evaluate the surface roughness of IPS Empress 2 ceramic when treated with different finishing/polishing protocols. Sixteen specimens of IPS Empress 2 ceramic were made from wax patterns obtained using a stainless steel split mold. The specimens were glazed (Stage 0-S0, control) and divided into two groups. The specimens in Group 1 (G1) were finished/polished with a KG Sorensen diamond point (S1), followed by KG Sorensen siliconized points (S2) and final polishing with diamond polish paste (S3). In Group 2 (G2), the specimens were finished/polished using a Shofu diamond point (S1), as well as Shofu siliconized points (S2) and final polishing was performed using Porcelize paste (S3). After glazing (S0) and following each polishing procedure (S1, S2 or S3), the surface roughness was measured using TALYSURF Series 2. The average surface roughness results were analyzed using ANOVA followed by Tukey post-hoc tests (α = 0.01) RESULTS: All of the polishing procedures yielded higher surface roughness values when compared to the control group (S0). S3 yielded lower surface roughness values when compared to S1 and S2. The proposed treatments negatively affected the surface roughness of the glazed IPS Empress 2 ceramic.

  14. Photogrammetric analysis of horizon panoramas: The Pathfinder landing site in Viking orbiter images

    USGS Publications Warehouse

    Oberst, J.; Jaumann, R.; Zeitler, W.; Hauber, E.; Kuschel, M.; Parker, T.; Golombek, M.; Malin, M.; Soderblom, L.

    1999-01-01

    Tiepoint measurements, block adjustment techniques, and sunrise/sunset pictures were used to obtain precise pointing data with respect to north for a set of 33 IMP horizon images. Azimuth angles for five prominent topographic features seen at the horizon were measured and correlated with locations of these features in Viking orbiter images. Based on this analysis, the Pathfinder line/sample coordinates in two raw Viking images were determined with approximate errors of 1 pixel, or 40 m. Identification of the Pathfinder location in orbit imagery yields geological context for surface studies of the landing site. Furthermore, the precise determination of coordinates in images together with the known planet-fixed coordinates of the lander make the Pathfinder landing site the most important anchor point in current control point networks of Mars. Copyright 1999 by the American Geophysical Union.

  15. A New Approach for Inspection of Selected Geometric Parameters of a Railway Track Using Image-Based Point Clouds

    PubMed Central

    Sawicki, Piotr

    2018-01-01

    The paper presents the results of testing a proposed image-based point clouds measuring method for geometric parameters determination of a railway track. The study was performed based on a configuration of digital images and reference control network. A DSLR (digital Single-Lens-Reflex) Nikon D5100 camera was used to acquire six digital images of the tested section of railway tracks. The dense point clouds and the 3D mesh model were generated with the use of two software systems, RealityCapture and PhotoScan, which have implemented different matching and 3D object reconstruction techniques: Multi-View Stereo and Semi-Global Matching, respectively. The study found that both applications could generate appropriate 3D models. Final meshes of 3D models were filtered with the MeshLab software. The CloudCompare application was used to determine the track gauge and cant for defined cross-sections, and the results obtained from point clouds by dense image matching techniques were compared with results of direct geodetic measurements. The obtained RMS difference in the horizontal (gauge) and vertical (cant) plane was RMS∆ < 0.45 mm. The achieved accuracy meets the accuracy condition of measurements and inspection of the rail tracks (error m < 1 mm), specified in the Polish branch railway instruction Id-14 (D-75) and the European technical norm EN 13848-4:2011. PMID:29509679

  16. A New Approach for Inspection of Selected Geometric Parameters of a Railway Track Using Image-Based Point Clouds.

    PubMed

    Gabara, Grzegorz; Sawicki, Piotr

    2018-03-06

    The paper presents the results of testing a proposed image-based point clouds measuring method for geometric parameters determination of a railway track. The study was performed based on a configuration of digital images and reference control network. A DSLR (digital Single-Lens-Reflex) Nikon D5100 camera was used to acquire six digital images of the tested section of railway tracks. The dense point clouds and the 3D mesh model were generated with the use of two software systems, RealityCapture and PhotoScan, which have implemented different matching and 3D object reconstruction techniques: Multi-View Stereo and Semi-Global Matching, respectively. The study found that both applications could generate appropriate 3D models. Final meshes of 3D models were filtered with the MeshLab software. The CloudCompare application was used to determine the track gauge and cant for defined cross-sections, and the results obtained from point clouds by dense image matching techniques were compared with results of direct geodetic measurements. The obtained RMS difference in the horizontal (gauge) and vertical (cant) plane was RMS∆ < 0.45 mm. The achieved accuracy meets the accuracy condition of measurements and inspection of the rail tracks (error m < 1 mm), specified in the Polish branch railway instruction Id-14 (D-75) and the European technical norm EN 13848-4:2011.

  17. Evaluating the accuracy of low cost UAV generated topography and its effectiveness for geomorphic change detection

    NASA Astrophysics Data System (ADS)

    Cook, Kristen

    2015-04-01

    With the recent explosion in the use and availability of unmanned aerial vehicle platforms and development of easy to use structure from motion (SfM) software, UAV based photogrammetry is increasingly being adopted to produce high resolution topography for the study of surface processes. UAV systems can vary substantially in price and complexity, but the tradeoffs between these and the quality of the resulting data are not well constrained. We look at one end of this spectrum and evaluate the effectiveness of a simple low cost UAV setup for obtaining high resolution topography in a challenging field setting. Our study site is the Daan River gorge in western Taiwan, a rapidly eroding bedrock gorge that we have monitored with terrestrial Lidar since 2009. The site presents challenges for the generation and analysis of high resolution topography, including vertical gorge walls, vegetation, wide variation in surface roughness, and a complicated 3D morphology. In order to evaluate the accuracy of the UAV-derived topography, we compare it with terrestrial Lidar data collected during the same survey period. Our UAV setup combines a DJI Phantom 2 quadcopter with a 16 megapixel Canon Powershot camera for a total platform cost of less than 850. The quadcopter is flown manually, and the camera is programmed to take a photograph every 4 seconds, yielding 200-250 pictures per flight. We measured ground control points and targets for both the Lidar scans and the aerial surveys using a Leica RTK GPS with 1-2 cm accuracy. UAV derived point clouds were obtained using Agisoft Photoscan software. We conducted both Lidar and UAV surveys before and after the 2014 typhoon season, allowing us to evaluate the reliability of the UAV survey to detect geomorphic changes in the range of one to several meters. The accuracy of the SfM point clouds depends strongly on the characteristics of the surface being considered, with vegetation and small scale texture causing inaccuracies. However, we find that this simple UAV setup can yield point clouds with 78% of points within 20 cm and 60% within 10 cm of the Lidar point clouds, with the higher errors dominated by vegetation effects. Well-distributed and accurately located ground control points are critical, but we achieve good accuracy with even with relatively few ground control points (25) over a 150,000 sq m area. The large number of photographs taken during each flight also allows us to explore the reproducibility of the UAV-derived topography by generating point clouds from different subsets of photographs taken of the same area during a single survey. These results show the same pattern of higher errors due to vegetation, but bedrock surfaces generally have errors of less than 4 cm. These results suggest that even very basic UAV surveys can yield data suitable for measuring geomorphic change on the scale of a channel reach.

  18. Report on SNL RCBC control options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponciroli, R.; Vilim, R. B.

    The attractive performance of the S-CO 2 recompression cycle arises from the thermo-physical properties of carbon dioxide near the critical point. However, to ensure efficient operation of the cycle near the critical point, precise control of the heat removal rate by the Printed Circuit Heat Exchanger (PCHE) upstream of the main compressor is required. Accomplishing this task is not trivial because of the large variations in fluid properties with respect to temperature and pressure near the critical point. The use of a model-based approach for the design of a robust feedback regulator is being investigated to achieve acceptable control ofmore » heat removal rate at different operating conditions. A first step in this procedure is the development of a dynamic model of the heat exchanger. In this work, a one-dimensional (1-D) control-oriented model of the PCHE was developed using the General Plant Analyzer and System Simulator (GPASS) code. GPASS is a transient simulation code that supports analysis and control of power conversion cycles based on the S-CO 2 Brayton cycle. This modeling capability was used this fiscal year to analyze experiment data obtained from the heat exchanger in the SNL recompression Brayton cycle. The analysis suggested that the error in the water flowrate measurement was greater than required for achieving precise control of heat removal rate. Accordingly, a new water flowmeter was installed, significantly improving the quality of the measurement. Comparison of heat exchanger measurements in subsequent experiments with code simulations yielded good agreement establishing a reliable basis for the use of the GPASS PCHE model for future development of a model-based feedback controller.« less

  19. Thermodynamic evaluation of transonic compressor rotors using the finite volume approach

    NASA Technical Reports Server (NTRS)

    Moore, J.; Nicholson, S.; Moore, J. G.

    1985-01-01

    Research at NASA Lewis Research Center gave the opportunity to incorporate new control volumes in the Denton 3-D finite-volume time marching code. For duct flows, the new control volumes require no transverse smoothing and this allows calculations with large transverse gradients in properties without significant numerical total pressure losses. Possibilities for improving the Denton code to obtain better distributions of properties through shocks were demonstrated. Much better total pressure distributions through shocks are obtained when the interpolated effective pressure, needed to stabilize the solution procedure, is used to calculate the total pressure. This simple change largely eliminates the undershoot in total pressure down-stream of a shock. Overshoots and undershoots in total pressure can then be further reduced by a factor of 10 by adopting the effective density method, rather than the effective pressure method. Use of a Mach number dependent interpolation scheme for pressure then removes the overshoot in static pressure downstream of a shock. The stability of interpolation schemes used for the calculation of effective density is analyzed and a Mach number dependent scheme is developed, combining the advantages of the correct perfect gas equation for subsonic flow with the stability of 2-point and 3-point interpolation schemes for supersonic flow.

  20. Poor outcomes and satisfaction in adolescent idiopathic scoliosis surgery: the relevance of the body mass index and self-image.

    PubMed

    Pérez-Prieto, Daniel; Sánchez-Soler, Juan Francisco; Martínez-Llorens, Juana; Mojal, Sergi; Bagó, Joan; Cáceres, Enric; Ramírez, Manuel

    2015-02-01

    The purpose of this study was to evaluate patients with adolescent idiopathic scoliosis (AIS) to determine whether a low body mass index (BMI) influences surgery outcomes and satisfaction. There were 39 patients in this prospective 3-year cohort study. The BMI, Cobb angle, the Body Shape Questionnaire 14 (BSQ-14), the Scoliosis Research Society Questionnaire 22 (SRS-22) and eight satisfaction questions results were obtained. Having a BMI greater than or less than 18 kg/m(2) was used as a determiner to allocate patients to groups. As a low BMI is related to the presence of a disturbance in body perception, patients were also dichotomized by using the BSQ-14. All scales were worse in both slimmer patients and the group with a body perception disorder. The group with a BMI <18 kg/m(2) obtained a total of 82.31 points in the SRS-22, and it was 93.45 points for the group with a BMI >18 kg/m(2) (p = 0.001). In terms of satisfaction, the percentage of patients that would undergo surgery again was 30.8 vs 69.2 % (p = 0.054). Patients with an alteration of physical perception obtained a total SRS-22 of 82.90 points versus 96.10 points in the control group (p < 0.001). No differences in terms of the Cobb correction (p = 0.29) or the percentage of correction (p = 0.841) were found in any case. The alteration of physical perception and a low BMI negatively affect the outcomes in AIS surgery, regardless of the curve magnitude and the percentage of correction. Considerable care should be taken in recommending surgical correction to these patients.

  1. The impact of luteal phase support on endometrial estrogen and progesterone receptor expression: a randomized control trial

    PubMed Central

    2012-01-01

    Background To assess the impact of luteal phase support on the expression of estrogen receptor (ER) alpha and progesterone receptors B (PR-B) on the endometrium of oocyte donors undergoing controlled ovarian hyperstimulation (COH). Methods A prospective, randomized study was conducted in women undergoing controlled ovarian hyperstimulation for oocyte donation. Participants were randomized to receive no luteal support, vaginal progesterone alone, or vaginal progesterone plus orally administered 17 Beta estradiol. Endometrial biopsies were obtained at 4 time points in the luteal phase and evaluated by tissue microarray for expression of ER alpha and PR-B. Results One-hundred and eight endometrial tissue samples were obtained from 12 patients. No differences were found in expression of ER alpha and PR-B among all the specimens with the exception of one sample value. Conclusions The administration of progesterone during the luteal phase of COH for oocyte donor cycles, either with or without estrogen, does not significantly affect the endometrial expression of ER alpha and PR. PMID:22360924

  2. SU-E-T-216: TPS QC Supporting Program by a Third-Party Evaluation Agency in Japan.

    PubMed

    Fukata, K; Minemura, T; Kurokawa, C; Miyagishi, T; Itami, J

    2012-06-01

    To equalize the quality of radiation therapy in Japan by supporting quality control of radiation treatment planning system. Center for Cancer Control and Information Service in National Cancer Center supports the QA-QC of the cancer core hospitals in Japan as a third-party evaluation agency. Recently, a program for assessing the quality of treatment planning system (TPS) began as a part of our QA-QC supporting activities. In this program, a questionnaire about TPS was sent to 45 prefectural cancer core hospitals in Japan. The object of this questionnaire is to assess the proper commissioning, implement and applications of TPSs. The contents of the questionnaire are as follows; 1) calculate MUs which deliver 1000 cGy to the point of SSD = 100 cm, 10 cm depth with field sizes ranging from 5×5 to 30 × 30 cm 2 , and obtain doses at several depths for the calculated MUs, 2) calculate MUs which deliver 1000 cGy to the point of SSD = 100 cm, 10 cm depth for wedge fields whose angles are from 15 to 60 degrees, and obtain doses at several depths with the MUs, 3) calculate MU which deliver 1000 cGy to the point of STD = 100 cm, 10 cm depth with 10×10 cm 2 field size and obtain doses at several depths with the MU. In this program, 179 beam data from 44 facilities were collected. Data were compared in terms of dose per MU, output factor, wedge factor and TMR. It was found that 90% of the data agreed within 2%. The quality of the treatment planning system was investigated through the questionnaire including the information of essential beam data. We compared 179 beam data in TPSs sent from 44 facilities and 90% of the data showed good agreement. © 2012 American Association of Physicists in Medicine.

  3. Use of a Light Uav and Photogrammetric Techniques to Study the Evolution of a Landslide in JAÉN (southern Spain)

    NASA Astrophysics Data System (ADS)

    Fernández, T.; Pérez, J. L.; Cardenal, F. J.; López, A.; Gómez, J. M.; Colomo, C.; Delgado, J.; Sánchez, M.

    2015-08-01

    This paper presents a methodology for slope instability monitoring using photogrammetric techniques with very high resolution images from an unmanned aerial vehicle (UAV). An unstable area located in La Guardia (Jaen, Southern Spain), where an active mud flow has been identified, was surveyed between 2012 and 2014 by means of four UAV flights. These surveys were also compared with those data from a previous conventional aerial photogrammetric and LiDAR survey. The UAV was an octocopter equipped with GPS, inertial units and a mirrorless interchangeable-lens camera. The flight height was 90 m, which allowed covering an area of about 250 x 100 m with a ground pixel size of 2.5 cm. The orientation of the UAV flights were carried out by means of ground control points measured with GPS, but the previous aerial photogrammetric/LiDAR flight was oriented by means of direct georeferencing with in flight positioning and inertial data, although some common ground control points were used to adjust all flights in the same reference system. The DSMs of all surveys were obtained by automatic image correlation and then the differential models were calculated, allowing estimate changes in the surface. At the same time, orthophotos were obtained so horizontal and vertical displacements between relevant points were registered. Significant displacements were observed between some campaigns (some centimeters on the vertical and meters on the horizontal). Finally, we have analyzed the relation of displacements to rainfalls in recent years in the area, finding a significant temporal correlation between the two variables.

  4. Design of a broadband active silencer using μ-synthesis

    NASA Astrophysics Data System (ADS)

    Bai, Mingsian R.; Zeung, Pingshun

    2004-01-01

    A robust spatially feedforward controller is developed for broadband attenuation of noise in ducts. To meet the requirements of robust performance and robust stability in the presence of plant uncertainties, a μ-synthesis procedure via D- K iteration is exploited to obtain the optimal controller. This approach considers uncertainties as modelling errors of the nominal plant in high frequency and is implemented using a floating point digital signal processor (DSP). Experimental investigation was undertaken on a finite-length duct to justify the proposed controller. The μ- controller is compared to other control algorithms such as the H2 method, the H∞ method and the filtered-U least mean square (FULMS) algorithm. Experimental results indicate that the proposed system has attained 25.8 dB maximal attenuation in the band 250-650 Hz.

  5. A static model of a Sendzimir mill for use in shape control

    NASA Astrophysics Data System (ADS)

    Gunawardene, G. W. D. M.

    The design of shape control systems is an area of current interest in the steel industry. Shape is defined as the internal stress distribution resulting from a transverse variation in the reduction of the strip thickness. The object of shape control is to adjust the mill so that the rolled strip is free from internal stresses. Both static and dynamic models of the mill are required for the control system design.The subject of this thesis is the static model of the Sendzimir cold rolling mill, which is a 1-2-3-4 type cluster mill. The static model derived enables shape profiles to be calculated for a given set of actuator positions, and is used to generate the steady state mill gains. The method of calculation of these shape profiles is discussed. The shape profiles obtained for different mill schedules are plotted against the distance across the strip. The corresponding mill gains are calculated and these relate the shape changes to the actuator changes. These mill gains are presented in the form of a square matrix, obtained by measuring shape at eight points across the strip.

  6. Levels of thrombopoietin in aqueous humor of patients with noninfectious acute anterior uveitis

    PubMed Central

    Mondejar, José-Juan; Salom, David; Garcia-Delpech, Salvador; Diaz-Llopis, Manuel

    2015-01-01

    Purpose To measure thrombopoietin (TPO) levels in the serum and aqueous humors of patients with noninfectious acute anterior uveitis. Methods A prospective, comparative, controlled study. Serum and aqueous humors were obtained from the eyes of 16 patients with noninfectious acute anterior uveitis. TPO levels were measured using an enzyme-linked immunosorbent assay (ELISA). The results obtained were compared with those of a control group. Results Serum concentrations of TPO were not significantly different between control individuals and patients with active anterior uveitis. Aqueous humor TPO levels were 54.46±16.24 pg/mL in the eyes of patients with uveitis, and 34.32±11.63 pg/mL in the eyes of controls. The difference between the two groups was significant (Mann–Whitney U-test for independent data, P=0.0008), with uveitis patients exhibiting significantly higher levels of TPO. Conclusion The high levels of TPO in the aqueous humors of uveitis patients points toward a cytoprotective role of this factor in inflammatory repair processes and the recovery of tissue homeostasis. PMID:26203218

  7. Analysis and control on changeable wheel tool system of hybrid grinding and polishing machine tool for blade finishing

    NASA Astrophysics Data System (ADS)

    He, Qiuwei; Lv, Xingming; Wang, Xin; Qu, Xingtian; Zhao, Ji

    2017-01-01

    Blade is the key component in the energy power equipment of turbine, aircraft engines and so on. Researches on the process and equipment for blade finishing become one of important and difficult point. To control precisely tool system of developed hybrid grinding and polishing machine tool for blade finishing, the tool system with changeable wheel for belt polishing is analyzed in this paper. Firstly, the belt length and wrap angle of each wheel in different position of tension wheel swing angle in the process of changing wheel is analyzed. The reasonable belt length is calculated by using MATLAB, and relationships between wrap angle of each wheel and cylinder expansion amount of contact wheel are obtained. Then, the control system for changeable wheel tool structure is developed. Lastly, the surface roughness of blade finishing is verified by experiments. Theoretical analysis and experimental results show that reasonable belt length and wheel wrap angle can be obtained by proposed analysis method, the changeable wheel tool system can be controlled precisely, and the surface roughness of blade after grinding meets the design requirements.

  8. The Development of Point Doppler Velocimeter Data Acquisition and Processing Software

    NASA Technical Reports Server (NTRS)

    Cavone, Angelo A.

    2008-01-01

    In order to develop efficient and quiet aircraft and validate Computational Fluid Dynamic predications, aerodynamic researchers require flow parameter measurements to characterize flow fields about wind tunnel models and jet flows. A one-component Point Doppler Velocimeter (pDv), a non-intrusive, laser-based instrument, was constructed using a design/develop/test/validate/deploy approach. A primary component of the instrument is software required for system control/management and data collection/reduction. This software along with evaluation algorithms, advanced pDv from a laboratory curiosity to a production level instrument. Simultaneous pDv and pitot probe velocity measurements obtained at the centerline of a flow exiting a two-inch jet, matched within 0.4%. Flow turbulence spectra obtained with pDv and a hot-wire detected the primary and secondary harmonics with equal dynamic range produced by the fan driving the flow. Novel,hardware and software methods were developed, tested and incorporated into the system to eliminate and/or minimize error sources and improve system reliability.

  9. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    The effect of forward flight on the jet noise of coannular exhaust nozzles, suitable for Variable Stream Control Engines (VSCE), was investigated in a series of wind tunnel tests. The primary stream properties were maintained constant at 300 mps and 394 K. A total of 230 acoustic data points was obtained. Force measurement tests using an unheated air supply covered the same range of tunnel speeds and nozzle pressure ratios on each of the nozzle configurations. A total of 80 points was taken. The coannular nozzle OASPL and PNL noise reductions observed statically relative to synthesized values were basically retained under simulated flight conditions. The effect of fan to primary stream area ratio on flight effects was minor. At take-off speed, the peak jet noise for a VSCE was estimated to be over 6 PNdB lower than the static noise level. High static thrust coefficients were obtained for the basic coannular nozzles, with a decay of 0.75 percent at take-off speeds.

  10. Development towards compact nitrocellulose interferometric biochips for dry eye diagnosis based on MMP9, S100A6 and CST4 biomarkers using a Point-of-Care device

    NASA Astrophysics Data System (ADS)

    Santamaría, Beatriz; Laguna, María. Fe; López-Romero, David; López-Hernandez, A.; Sanza, F. J.; Lavín, A.; Casquel, R.; Maigler, M.; Holgado, M.

    2018-02-01

    A novel compact optical biochip based on a thin layer-sensing BICELL surface of nitrocellulose is used for in-situ labelfree detection of dry eye disease (DED). In this work the development of a compact biosensor that allows obtaining quantitative diagnosis with a limited volume of sample is reported. The designed sensors can be analyzed with an optical integrated Point-of-Care read-out system based on the "Increase Relative Optical Power" principle which enhances the performance and Limit of Detection. Several proteins involved with dry eye dysfunction have been validated as biomarkers. Presented biochip analyzes three of those biomarkers: MMP9, S100A6 and CST4. BICELLs based on nitrocellulose permit to immobilize antibodies for each biomarker recognition. The optical response obtained from the biosensor through the readout platform is capable to recognize specifically the desired proteins in the concentrations range for control eye (CE) and dry eye syndrome (DES). Preliminary results obtained will allow the development of a dry eye detection device useful in the area of ophthalmology and applicable to other possible diseases related to the eye dysfunction.

  11. Enhanced fluorescence microscope and its application

    NASA Astrophysics Data System (ADS)

    Wang, Susheng; Li, Qin; Yu, Xin

    1997-12-01

    A high gain fluorescence microscope is developed to meet the needs in medical and biological research. By the help of an image intensifier with luminance gain of 4 by 104 the sensitivity of the system can achieve 10-6 1x level and be 104 times higher than ordinary fluorescence microscope. Ultra-weak fluorescence image can be detected by it. The concentration of fluorescent label and emitting light intensity of the system are decreased as much as possible, therefore, the natural environment of the detected call can be kept. The CCD image acquisition set-up controlled by computer obtains the quantitative data of each point according to the gray scale. The relation between luminous intensity and output of CCD is obtained by using a wide range weak photometry. So the system not only shows the image of ultra-weak fluorescence distribution but also gives the intensity of fluorescence of each point. Using this system, we obtained the images of distribution of hypocrellin A (HA) in Hela cell, the images of Hela cell being protected by antioxidant reagent Vit. E, SF and BHT. The images show that the digitized ultra-sensitive fluorescence microscope is a useful tool for medical and biological research.

  12. Chimpanzees (Pan troglodytes) Transfer Tokens Repeatedly with a Partner to Accumulate Rewards in a Self-Control Task

    PubMed Central

    Parrish, Audrey E.; Perdue, Bonnie M.; Evans, Theodore A.; Beran, Michael J.

    2013-01-01

    There has been extensive research investigating self-control in humans and nonhuman animals, yet we know surprisingly little about how one’s social environment influences self-control. The present study examined the self-control of chimpanzees in a task that required active engagement with conspecifics. The task consisted of transferring a token back and forth with a partner animal in order to accumulate food rewards, one item per token transfer. Self-control was required because at any point in the trial, either chimpanzee could obtain their accumulated rewards, but doing so discontinued the food accumulation and ended the trial for both individuals. Chimpanzees readily engaged the task and accumulated the majority of available rewards before ending each trial, and they did so across a number of conditions that varied the identity of the partner, the presence/absence of the experimenter, and the means by which they could obtain rewards. A second experiment examined chimpanzees’ self-control when given the choice between immediately available food items and a potentially larger amount of rewards that could be obtained by engaging the token transfer task with a partner. Chimpanzees were flexible in their decision-making in this test, typically choosing the option representing the largest amount of food, even if it involved delayed accumulation of the rewards via the token transfer task. These results demonstrate that chimpanzees can exhibit self-control in situations involving social interactions, and they encourage further research into this important aspect of the self-control scenario. PMID:23381691

  13. USE OF THE SDO POINTING CONTROLLERS FOR INSTRUMENT CALIBRATION MANEUVERS

    NASA Technical Reports Server (NTRS)

    Vess, Melissa F.; Starin, Scott R.; Morgenstern, Wendy M.

    2005-01-01

    During the science phase of the Solar Dynamics Observatory mission, the three science instruments require periodic instrument calibration maneuvers with a frequency of up to once per month. The command sequences for these maneuvers vary in length from a handful of steps to over 200 steps, and individual steps vary in size from 5 arcsec per step to 22.5 degrees per step. Early in the calibration maneuver development, it was determined that the original attitude sensor complement could not meet the knowledge requirements for the instrument calibration maneuvers in the event of a sensor failure. Because the mission must be single fault tolerant, an attitude determination trade study was undertaken to determine the impact of adding an additional attitude sensor versus developing alternative, potentially complex, methods of performing the maneuvers in the event of a sensor failure. To limit the impact to the science data capture budget, these instrument calibration maneuvers must be performed as quickly as possible while maintaining the tight pointing and knowledge required to obtain valid data during the calibration. To this end, the decision was made to adapt a linear pointing controller by adjusting gains and adding an attitude limiter so that it would be able to slew quickly and still achieve steady pointing once on target. During the analysis of this controller, questions arose about the stability of the controller during slewing maneuvers due to the combination of the integral gain, attitude limit, and actuator saturation. Analysis was performed and a method for disabling the integral action while slewing was incorporated to ensure stability. A high fidelity simulation is used to simulate the various instrument calibration maneuvers.

  14. Non-rigid point set registration of curves: registration of the superficial vessel centerlines of the brain

    NASA Astrophysics Data System (ADS)

    Marreiros, Filipe M. M.; Wang, Chunliang; Rossitti, Sandro; Smedby, Örjan

    2016-03-01

    In this study we present a non-rigid point set registration for 3D curves (composed by 3D set of points). The method was evaluated in the task of registration of 3D superficial vessels of the brain where it was used to match vessel centerline points. It consists of a combination of the Coherent Point Drift (CPD) and the Thin-Plate Spline (TPS) semilandmarks. The CPD is used to perform the initial matching of centerline 3D points, while the semilandmark method iteratively relaxes/slides the points. For the evaluation, a Magnetic Resonance Angiography (MRA) dataset was used. Deformations were applied to the extracted vessels centerlines to simulate brain bulging and sinking, using a TPS deformation where a few control points were manipulated to obtain the desired transformation (T1). Once the correspondences are known, the corresponding points are used to define a new TPS deformation(T2). The errors are measured in the deformed space, by transforming the original points using T1 and T2 and measuring the distance between them. To simulate cases where the deformed vessel data is incomplete, parts of the reference vessels were cut and then deformed. Furthermore, anisotropic normally distributed noise was added. The results show that the error estimates (root mean square error and mean error) are below 1 mm, even in the presence of noise and incomplete data.

  15. SPS antenna pointing control

    NASA Technical Reports Server (NTRS)

    Hung, J. C.

    1980-01-01

    The pointing control of a microwave antenna of the Satellite Power System was investigated emphasizing: (1) the SPS antenna pointing error sensing method; (2) a rigid body pointing control design; and (3) approaches for modeling the flexible body characteristics of the solar collector. Accuracy requirements for the antenna pointing control consist of a mechanical pointing control accuracy of three arc-minutes and an electronic phased array pointing accuracy of three arc-seconds. Results based on the factors considered in current analysis, show that the three arc-minute overall pointing control accuracy can be achieved in practice.

  16. Sound controlled rotation of a cluster of small particles on an ultrasonically vibrating metal strip

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyi; Zheng, Yun; Hu, Junhui

    2008-01-01

    We show that a vibrating metal strip, mechanically driven by an ultrasonic transducer, can rotate a cluster of small particles around a fixed point, and the diameter of the cluster of small particles can reach a stable value (steady diameter) for a given driving condition. The rotation is very stable when the vibration of the metal strip is appropriate. The revolution speed, its direction, and steady diameter of the particle cluster can be controlled by the operating frequency of the ultrasonic transducer. For shrimp eggs, a revolution speed up to 360rpm can be obtained.

  17. Modeling and simulation of soft sensor design for real-time speed estimation, measurement and control of induction motor.

    PubMed

    Etien, Erik

    2013-05-01

    This paper deals with the design of a speed soft sensor for induction motor. The sensor is based on the physical model of the motor. Because the validation step highlight the fact that the sensor cannot be validated for all the operating points, the model is modified in order to obtain a fully validated sensor in the whole speed range. An original feature of the proposed approach is that the modified model is derived from stability analysis using automatic control theory. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Fractography of induction-hardened steel fractured in fatigue and overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, C.G.; Laird, C.

    1997-07-01

    The fracture surfaces of induction-hardened steel specimens obtained from an auto axle were characterized, macroscopically and microscopically, after being fractured in fatigue and monotonic overload. Specimens were tested in cyclic three-point bending under load control, and the S-N curve was established for specimens that had been notched by spark machining to facilitate fractography. Scanning electron microscopy of the fractured surfaces obtained for lives spanning the range 17,000 to 418,000 cycles revealed diverse fracture morphologies, including intergranular fracture and transgranular fatigue fracture. The results are being offered to assist in the analysis of complex field failures in strongly hardened steel.

  19. Optical spectroscopy and microscopy of radiation-induced light-emitting point defects in lithium fluoride crystals and films

    NASA Astrophysics Data System (ADS)

    Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.

    2012-08-01

    Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.

  20. Thermal form factor approach to the ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime

    NASA Astrophysics Data System (ADS)

    Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji

    2016-09-01

    We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.

  1. Breaking of scale invariance in the time dependence of correlation functions in isotropic and homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Tarpin, Malo; Canet, Léonie; Wschebor, Nicolás

    2018-05-01

    In this paper, we present theoretical results on the statistical properties of stationary, homogeneous, and isotropic turbulence in incompressible flows in three dimensions. Within the framework of the non-perturbative renormalization group, we derive a closed renormalization flow equation for a generic n-point correlation (and response) function for large wave-numbers with respect to the inverse integral scale. The closure is obtained from a controlled expansion and relies on extended symmetries of the Navier-Stokes field theory. It yields the exact leading behavior of the flow equation at large wave-numbers |p→ i| and for arbitrary time differences ti in the stationary state. Furthermore, we obtain the form of the general solution of the corresponding fixed point equation, which yields the analytical form of the leading wave-number and time dependence of n-point correlation functions, for large wave-numbers and both for small ti and in the limit ti → ∞. At small ti, the leading contribution at large wave-numbers is logarithmically equivalent to -α (ɛL ) 2 /3|∑tip→ i|2, where α is a non-universal constant, L is the integral scale, and ɛ is the mean energy injection rate. For the 2-point function, the (tp)2 dependence is known to originate from the sweeping effect. The derived formula embodies the generalization of the effect of sweeping to n-point correlation functions. At large wave-numbers and large ti, we show that the ti2 dependence in the leading order contribution crosses over to a |ti| dependence. The expression of the correlation functions in this regime was not derived before, even for the 2-point function. Both predictions can be tested in direct numerical simulations and in experiments.

  2. Comparison of point counts and territory mapping for detecting effects of forest management on songbirds

    USGS Publications Warehouse

    Newell, Felicity L.; Sheehan, James; Wood, Petra Bohall; Rodewald, Amanda D.; Buehler, David A.; Keyser, Patrick D.; Larkin, Jeffrey L.; Beachy, Tiffany A.; Bakermans, Marja H.; Boves, Than J.; Evans, Andrea; George, Gregory A.; McDermott, Molly E.; Perkins, Kelly A.; White, Matthew; Wigley, T. Bently

    2013-01-01

    Point counts are commonly used to assess changes in bird abundance, including analytical approaches such as distance sampling that estimate density. Point-count methods have come under increasing scrutiny because effects of detection probability and field error are difficult to quantify. For seven forest songbirds, we compared fixed-radii counts (50 m and 100 m) and density estimates obtained from distance sampling to known numbers of birds determined by territory mapping. We applied point-count analytic approaches to a typical forest management question and compared results to those obtained by territory mapping. We used a before–after control impact (BACI) analysis with a data set collected across seven study areas in the central Appalachians from 2006 to 2010. Using a 50-m fixed radius, variance in error was at least 1.5 times that of the other methods, whereas a 100-m fixed radius underestimated actual density by >3 territories per 10 ha for the most abundant species. Distance sampling improved accuracy and precision compared to fixed-radius counts, although estimates were affected by birds counted outside 10-ha units. In the BACI analysis, territory mapping detected an overall treatment effect for five of the seven species, and effects were generally consistent each year. In contrast, all point-count methods failed to detect two treatment effects due to variance and error in annual estimates. Overall, our results highlight the need for adequate sample sizes to reduce variance, and skilled observers to reduce the level of error in point-count data. Ultimately, the advantages and disadvantages of different survey methods should be considered in the context of overall study design and objectives, allowing for trade-offs among effort, accuracy, and power to detect treatment effects.

  3. A rocket telescope spectrometer with high precision pointing control.

    PubMed

    Bottema, M; Fastie, W G; Moos, H W

    1969-09-01

    One second of arc pointing accuracy has been achieved by servocontrolling the secondary mirror of a Dall-Kirkham telescope flown in an Aerobee 150 rocket. The primary mirror is weight-relieved, mounted at its nodal line and can resolve 2 arc sec. An objective LiF prism mounted near the focal plane provides a lowresolution far uv spectrum suitable for studying planetary atmospheres. Solar blind photomultiplier tubes with pulse counting electronics provide a dark current background of less than 1 count/sec. Spectra of Venus, Jupiter and eta Ursa Majoris (U Ma) were obtained in a flight from White Sands, New Mexico, on 5 December 1967. Further flights are planned with the recovered package.

  4. NIF Ignition Target 3D Point Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, O; Marinak, M; Milovich, J

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Syntheticmore » diagnostics.« less

  5. Nucleon Axial and Electromagnetic Form Factors

    NASA Astrophysics Data System (ADS)

    Jang, Yong-Chull; Bhattacharya, Tanmoy; Gupta, Rajan; Lin, Huey-Wen; Yoon, Boram

    2018-03-01

    We present results for the isovector axial, induced pseudoscalar, electric, and magnetic form factors of the nucleon. The calculations were done using 2 + 1 + 1-flavor HISQ ensembles generated by the MILC collaboration with lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and by comparing two-versus three-states in three-point correlators. The Q2 behavior is analyzed using the model independent z-expansion and the dipole ansatz. Final results for the charge radii and magnetic moment are obtained using a simultaneous fit in Mπ, lattice spacing a and finite volume.

  6. Integrated Power and Attitude Control for a Spacecraft with Flywheels and Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Bose, David M.

    2003-01-01

    A law is designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as all integrated set of actuators for attitude control. General. nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as it means of compensating for damping exerted by rotor bearings. Two flywheel 'steering laws' are developed such that torque commanded by all attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude and illustrate the benefits of kinetic energy error feedback.

  7. Fault-Tolerant Control of ANPC Three-Level Inverter Based on Order-Reduction Optimal Control Strategy under Multi-Device Open-Circuit Fault.

    PubMed

    Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang

    2017-10-31

    The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.

  8. User guide to a command and control system; a part of a prelaunch wind monitoring program

    NASA Technical Reports Server (NTRS)

    Cowgill, G. R.

    1976-01-01

    A set of programs called Command and Control System (CCS), intended as a user manual, is described for the operation of CCS by the personnel supporting the wind monitoring portion of the launch mission. Wind data obtained by tracking balloons is sent by electronic means using telephone lines to other locations. Steering commands are computed from a system called ADDJUST for the on-board computer and relays this data. Data are received and automatically stored in a microprocessor, then via a real time program transferred to the UNIVAC 1100/40 computer. At this point the data is available to be used by the Command and Control system.

  9. Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control.

    PubMed

    Li, Shanzhi; Wang, Haoping; Tian, Yang; Aitouch, Abdel; Klein, John

    2016-09-01

    This paper presents an intelligent proportional-integral sliding mode control (iPISMC) for direct power control of variable speed-constant frequency wind turbine system. This approach deals with optimal power production (in the maximum power point tracking sense) under several disturbance factors such as turbulent wind. This controller is made of two sub-components: (i) an intelligent proportional-integral module for online disturbance compensation and (ii) a sliding mode module for circumventing disturbance estimation errors. This iPISMC method has been tested on FAST/Simulink platform of a 5MW wind turbine system. The obtained results demonstrate that the proposed iPISMC method outperforms the classical PI and intelligent proportional-integral control (iPI) in terms of both active power and response time. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Registration algorithm of point clouds based on multiscale normal features

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua

    2015-01-01

    The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.

  11. Robust Classification and Segmentation of Planar and Linear Features for Construction Site Progress Monitoring and Structural Dimension Compliance Control

    NASA Astrophysics Data System (ADS)

    Maalek, R.; Lichti, D. D.; Ruwanpura, J.

    2015-08-01

    The application of terrestrial laser scanners (TLSs) on construction sites for automating construction progress monitoring and controlling structural dimension compliance is growing markedly. However, current research in construction management relies on the planned building information model (BIM) to assign the accumulated point clouds to their corresponding structural elements, which may not be reliable in cases where the dimensions of the as-built structure differ from those of the planned model and/or the planned model is not available with sufficient detail. In addition outliers exist in construction site datasets due to data artefacts caused by moving objects, occlusions and dust. In order to overcome the aforementioned limitations, a novel method for robust classification and segmentation of planar and linear features is proposed to reduce the effects of outliers present in the LiDAR data collected from construction sites. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a robust clustering method. A method is also proposed to robustly extract the points belonging to the flat-slab floors and/or ceilings without performing the aforementioned stages in order to preserve computational efficiency. The applicability of the proposed method is investigated in two scenarios, namely, a laboratory with 30 million points and an actual construction site with over 150 million points. The results obtained by the two experiments validate the suitability of the proposed method for robust segmentation of planar and linear features in contaminated datasets, such as those collected from construction sites.

  12. A new route for the synthesis of titanium silicalite-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasile, Aurelia, E-mail: aurelia_vasile@yahoo.com; Busuioc-Tomoiaga, Alina Maria; Catalysis Research Department, ChemPerformance SRL, Iasi 700337

    2012-01-15

    Graphical abstract: Well-prepared TS-1 was synthesized by an innovative procedure using inexpensive reagents such as fumed silica and TPABr as structure-directing agent. This is the first time when highly crystalline TS-1 is obtained in basic medium, using sodium hydroxide as HO{sup -} ion source required for the crystallization process. Hydrolysis of titanium source has been prevented by titanium complexation with acetylacetone before structuring gel. Highlights: Black-Right-Pointing-Pointer TS-1 was obtained using cheap reagents as fumed silica and tetrapropylammonium bromide. Black-Right-Pointing-Pointer First time NaOH was used as source of OH{sup -} ions required for crystallization process. Black-Right-Pointing-Pointer The hydrolysis Ti alkoxides wasmore » controlled by Ti complexation with 2,4-pentanedione. -- Abstract: A new and efficient route using inexpensive reagents such as fumed silica and tetrapropylammonium bromide is proposed for the synthesis of titanium silicalite-1. High crystalline titanium silicalite-1 was obtained in alkaline medium, using sodium hydroxide as HO{sup -} ion source required for the crystallization process. Hydrolysis of titanium source with formation of insoluble oxide species was prevented by titanium complexation with before structuring gel. The final solids were fully characterized by powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance, Raman and atomic absorption spectroscopies, as well as nitrogen sorption analysis. It was found that a molar ratio Ti:Si of about 0.04 in the initial reaction mixture is the upper limit to which well formed titanium silicalite-1 with channels free of crystalline or amorphous material can be obtained. Above this value, solids with MFI type structure containing both Ti isomorphously substituted in the network and extralattice anatase nanoparticles inside of channels is formed.« less

  13. Internal sensations as a source of fear: exploring a link between hypoxia and flight phobia.

    PubMed

    Vanden Bogaerde, Anouk; De Raedt, Rudi

    2013-01-01

    Although flight phobia is very common in the general population, knowledge of the underlying mechanisms is limited. The aim of the current study is to determine whether hypoxia is selectively associated with flight anxiety. We wanted to explore levels of oxygen saturation (SpO2) and the associated subjective somatic sensations in flight phobics and controls. The data collected in this study were obtained from 103 participants: 54 had flight phobia, 49 were controls. SpO2 as well as a subjective report of somatic sensations and anxiety were measured during short haul flights, both at ground level and at cruising altitude. Results indicated that both flight phobics and controls showed a comparable clinical significant decrease in SpO2 from sea level to cruising altitude. Next, at ground level the flight phobic group reported more somatic sensations, most likely due to the elevated levels of anxiety at that point. However, at cruising altitude the flight phobic group still reported more somatic sensations while the level of anxiety was no longer significantly different from controls. This finding points to altered symptom perception in flight phobia and stresses the importance of somatic sensations in this particular phobia.

  14. Cooperation-Controlled Learning for Explicit Class Structure in Self-Organizing Maps

    PubMed Central

    Kamimura, Ryotaro

    2014-01-01

    We attempt to demonstrate the effectiveness of multiple points of view toward neural networks. By restricting ourselves to two points of view of a neuron, we propose a new type of information-theoretic method called “cooperation-controlled learning.” In this method, individual and collective neurons are distinguished from one another, and we suppose that the characteristics of individual and collective neurons are different. To implement individual and collective neurons, we prepare two networks, namely, cooperative and uncooperative networks. The roles of these networks and the roles of individual and collective neurons are controlled by the cooperation parameter. As the parameter is increased, the role of cooperative networks becomes more important in learning, and the characteristics of collective neurons become more dominant. On the other hand, when the parameter is small, individual neurons play a more important role. We applied the method to the automobile and housing data from the machine learning database and examined whether explicit class boundaries could be obtained. Experimental results showed that cooperation-controlled learning, in particular taking into account information on input units, could be used to produce clearer class structure than conventional self-organizing maps. PMID:25309950

  15. SU-E-T-362: Automatic Catheter Reconstruction of Flap Applicators in HDR Surface Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzurovic, I; Devlin, P; Hansen, J

    2014-06-01

    Purpose: Catheter reconstruction is crucial for the accurate delivery of radiation dose in HDR brachytherapy. The process becomes complicated and time-consuming for large superficial clinical targets with a complex topology. A novel method for the automatic catheter reconstruction of flap applicators is proposed in this study. Methods: We have developed a program package capable of image manipulation, using C++class libraries of The-Visualization-Toolkit(VTK) software system. The workflow for automatic catheter reconstruction is: a)an anchor point is placed in 3D or in the axial view of the first slice at the tip of the first, last and middle points for the curvedmore » surface; b)similar points are placed on the last slice of the image set; c)the surface detection algorithm automatically registers the points to the images and applies the surface reconstruction filter; d)then a structured grid surface is generated through the center of the treatment catheters placed at a distance of 5mm from the patient's skin. As a result, a mesh-style plane is generated with the reconstructed catheters placed 10mm apart. To demonstrate automatic catheter reconstruction, we used CT images of patients diagnosed with cutaneous T-cell-lymphoma and imaged with Freiburg-Flap-Applicators (Nucletron™-Elekta, Netherlands). The coordinates for each catheter were generated and compared to the control points selected during the manual reconstruction for 16catheters and 368control point Results: The variation of the catheter tip positions between the automatically and manually reconstructed catheters was 0.17mm(SD=0.23mm). The position difference between the manually selected catheter control points and the corresponding points obtained automatically was 0.17mm in the x-direction (SD=0.23mm), 0.13mm in the y-direction (SD=0.22mm), and 0.14mm in the z-direction (SD=0.24mm). Conclusion: This study shows the feasibility of the automatic catheter reconstruction of flap applicators with a high level of positioning accuracy. Implementation of this technique has potential to decrease the planning time and may improve overall quality in superficial brachytherapy.« less

  16. Tangential acceleration feedback control of friction induced vibration

    NASA Astrophysics Data System (ADS)

    Nath, Jyayasi; Chatterjee, S.

    2016-09-01

    Tangential control action is studied on a phenomenological mass-on-belt model exhibiting friction-induced self-excited vibration attributed to the low-velocity drooping characteristics of friction which is also known as Stribeck effect. The friction phenomenon is modelled by the exponential model. Linear stability analysis is carried out near the equilibrium point and local stability boundary is delineated in the plane of control parameters. The system is observed to undergo a Hopf bifurcation as the eigenvalues determined from the linear stability analysis are found to cross the imaginary axis transversally from RHS s-plane to LHS s-plane or vice-versa as one varies the control parameters, namely non-dimensional belt velocity and the control gain. A nonlinear stability analysis by the method of Averaging reveals the subcritical nature of the Hopf bifurcation. Thus, a global stability boundary is constructed so that any choice of control parameters from the globally stable region leads to a stable equilibrium. Numerical simulations in a MATLAB SIMULINK model and bifurcation diagrams obtained in AUTO validate these analytically obtained results. Pole crossover design is implemented to optimize the filter parameters with an independent choice of belt velocity and control gain. The efficacy of this optimization (based on numerical results) in the delicate low velocity region is also enclosed.

  17. Thermodynamic behavior of a phase transition in a model for sympatric speciation

    NASA Astrophysics Data System (ADS)

    Luz-Burgoa, K.; Moss de Oliveira, S.; Schwämmle, Veit; Sá Martins, J. S.

    2006-08-01

    We investigate the macroscopic effects of the ingredients that drive the origin of species through sympatric speciation. In our model, sympatric speciation is obtained as we tune up the strength of competition between individuals with different phenotypes. As a function of this control parameter, we can characterize, through the behavior of a macroscopic order parameter, a phase transition from a nonspeciation to a speciation state of the system. The behavior of the first derivative of the order parameter with respect to the control parameter is consistent with a phase transition and exhibits a sharp peak at the transition point. For different resources distribution, the transition point is shifted, an effect similar to pressure in a PVT system. The inverse of the parameter related to a sexual selection strength behaves like an external field in the system and, as thus, is also a control parameter. The macroscopic effects of the biological parameters used in our model are a reminiscent of the behavior of thermodynamic quantities in a phase transition of an equilibrium physical system.

  18. Minimum energy control for a two-compartment neuron to extracellular electric fields

    NASA Astrophysics Data System (ADS)

    Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin

    2016-11-01

    The energy optimization of extracellular electric field (EF) stimulus for a neuron is considered in this paper. We employ the optimal control theory to design a low energy EF input for a reduced two-compartment model. It works by driving the neuron to closely track a prescriptive spike train. A cost function is introduced to balance the contradictory objectives, i.e., tracking errors and EF stimulus energy. By using the calculus of variations, we transform the minimization of cost function to a six-dimensional two-point boundary value problem (BVP). Through solving the obtained BVP in the cases of three fundamental bifurcations, it is shown that the control method is able to provide an optimal EF stimulus of reduced energy for the neuron to effectively track a prescriptive spike train. Further, the feasibility of the adopted method is interpreted from the point of view of the biophysical basis of spike initiation. These investigations are conducive to designing stimulating dose for extracellular neural stimulation, which are also helpful to interpret the effects of extracellular field on neural activity.

  19. A computer graphics system for visualizing spacecraft in orbit

    NASA Technical Reports Server (NTRS)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  20. An Analytical Design Method for a Regenerative Braking Control System for DC-electrified Railway Systems under Light Load Conditions

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuhito; Kondo, Keiichiro; Koseki, Takafumi

    A DC-electrified railway system that is fed by diode rectifiers at a substation is unable to return the electric power to an AC grid. Accordingly, the braking cars have to restrict regenerative braking power when the power consumption of the powering cars is not sufficient. However, the characteristics of a DC-electrified railway system, including the powering cars, is not known, and a mathematical model for designing a controller has not been established yet. Hence, the object of this study is to obtain the mathematical model for an analytical design method of the regenerative braking control system. In the first part of this paper, the static characteristics of this system are presented to show the position of the equilibrium point. The linearization of this system at the equilibrium point is then performed to describe the dynamic characteristics of the system. An analytical design method is then proposed on the basis of these characteristics. The proposed design method is verified by experimental tests with a 1kW class miniature model, and numerical simulations.

  1. Reliability of unstable periodic orbit based control strategies in biological systems.

    PubMed

    Mishra, Nagender; Hasse, Maria; Biswal, B; Singh, Harinder P

    2015-04-01

    Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.

  2. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanjilal, Oindrila, E-mail: oindrila@civil.iisc.ernet.in; Manohar, C.S., E-mail: manohar@civil.iisc.ernet.in

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the secondmore » explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations. - Highlights: • The distance minimizing control forces minimize a bound on the sampling variance. • Establishing Girsanov controls via solution of a two-point boundary value problem. • Girsanov controls via Volterra's series representation for the transfer functions.« less

  3. Reliability of unstable periodic orbit based control strategies in biological systems

    NASA Astrophysics Data System (ADS)

    Mishra, Nagender; Hasse, Maria; Biswal, B.; Singh, Harinder P.

    2015-04-01

    Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.

  4. Cholera outbreak caused by drinking lake water contaminated with human faeces in Kaiso Village, Hoima District, Western Uganda, October 2015.

    PubMed

    Oguttu, David W; Okullo, A; Bwire, G; Nsubuga, P; Ario, A R

    2017-10-10

    On 12 October 2015, a cholera outbreak involving 65 cases and two deaths was reported in a fishing village in Hoima District, Western Uganda. Despite initial response by the local health department, the outbreak persisted. We conducted an investigation to identify the source and mode of transmission, and recommend evidence-led interventions to control and prevent cholera outbreaks in this area. We defined a suspected case as the onset of acute watery diarrhoea from 1 October to 2 November 2015 in a resident of Kaiso Village. A confirmed case was a suspected case who had Vibrio cholerae isolated from stool. We found cases by record review and active community case finding. We performed descriptive epidemiologic analysis for hypothesis generation. In an unmatched case-control study, we compared exposure histories of 61 cases and 126 controls randomly selected among asymptomatic village residents. We also conducted an environmental assessment and obtained meteorological data from a weather station. We identified 122 suspected cases, of which six were culture-confirmed, 47 were confirmed positive with a rapid diagnostic test and two died. The two deceased cases had onset of the disease on 2 October and 10 October, respectively. Heavy rainfall occurred on 7-11 October; a point-source outbreak occurred on 12-15 October, followed by continuous community transmission for two weeks. Village residents usually collected drinking water from three lakeshore points - A, B and C: 9.8% (6/61) of case-persons and 31% (39/126) of control-persons were found to usually use point A, 21% (13/61) of case-persons and 37% (46/126) of control-persons were found to usually use point B (OR = 1.8, 95% CI: 0.64-5.3), and 69% (42/61) of case-persons and 33% (41/126) of control-persons were found to usually use point C (OR = 6.7; 95% CI: 2.5-17) for water collection. All case-persons (61/61) and 93% (117/126) of control-persons reportedly never treated/boiled drinking water (OR = ∞, 95% CI Fisher : 1.0 - ∞). The village's piped water system had been vandalised and open defecation was common due to a lack of latrines. The lake water was found to be contiminated due to a gully channel that washed the faeces into the lake at point C. This outbreak was likely caused by drinking lake water contaminated by faeces from a gully channel. We recommend treatment of drinking water, fixing the vandalised piped-water system and constructing latrines.

  5. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  6. Gain scheduled linear quadratic control for quadcopter

    NASA Astrophysics Data System (ADS)

    Okasha, M.; Shah, J.; Fauzi, W.; Hanouf, Z.

    2017-12-01

    This study exploits the dynamics and control of quadcopters using Linear Quadratic Regulator (LQR) control approach. The quadcopter’s mathematical model is derived using the Newton-Euler method. It is a highly manoeuvrable, nonlinear, coupled with six degrees of freedom (DOF) model, which includes aerodynamics and detailed gyroscopic moments that are often ignored in many literatures. The linearized model is obtained and characterized by the heading angle (i.e. yaw angle) of the quadcopter. The adopted control approach utilizes LQR method to track several reference trajectories including circle and helix curves with significant variation in the yaw angle. The controller is modified to overcome difficulties related to the continuous changes in the operating points and eliminate chattering and discontinuity that is observed in the control input signal. Numerical non-linear simulations are performed using MATLAB and Simulink to illustrate to accuracy and effectiveness of the proposed controller.

  7. Isolation strategy of a two-strain avian influenza model using optimal control

    NASA Astrophysics Data System (ADS)

    Mardlijah, Ariani, Tika Desi; Asfihani, Tahiyatul

    2017-08-01

    Avian influenza has killed many victims of both birds and humans. Most cases of avian influenza infection in humans have resulted transmission from poultry to humans. To prevent or minimize the patients of avian influenza can be done by pharmaceutical and non-pharmaceutical measures such as the use of masks, isolation, etc. We will be analyzed two strains of avian influenza models that focus on treatment of symptoms with insulation, then investigate the stability of the equilibrium point by using Routh-Hurwitz criteria. We also used optimal control to reduce the number of humans infected by making the isolation level as the control then proceeds optimal control will be simulated. The completion of optimal control used in this study is the Pontryagin Minimum Principle and for simulation we are using Runge Kutta method. The results obtained showed that the application of two control is more optimal compared to apply one control only.

  8. The development of optimal control laws for orbiting tethered platform systems

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Woodard, S.; Juang, J.-N.

    1986-01-01

    A mathematical model of the open and closed loop in-orbit plane dynamics of a space platform-tethered-subsatellite system is developed. The system consists of a rigid platform from which an (assumed massless) tether is deploying (retrieving) a subsatellite from an attachment point which is, in general, offset from the platform's mass center. A Lagrangian formulation yields equations describing platform pitch, subsatellite tether-line swing, and varying tether length motions. These equations are linearized about the nominal station keeping motion. Control can be provided by both modulation of the tether tension level and by a momentum type platform-mounted device; system controllability depends on the presence of both control inputs. Stability criteria are developed in terms of the control law gains, the platform inertia ratio, and tether offset parameter. Control law gains are obtained based on linear quadratic regulator techniques. Typical transient responses of both the state and required control effort are presented.

  9. The development of optimal control laws for orbiting tethered platform systems

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.

    1986-01-01

    A mathematical model of the open and closed loop in orbit plane dynamics of a space platform-tethered-subsatellite system is developed. The system consists of a rigid platform from which an (assumed massless) tether is deploying (retrieving) a subsatellite from an attachment point which is, in general, offset from the platform's mass center. A Langrangian formulation yields equations describing platform pitch, subsatellite tetherline swing, and varying tether length motions. These equations are linearized about the nominal station keeping motion. Control can be provided by both modulation of the tether tension level and by a momentum type platform-mounted device; system controllability depends on the presence of both control inputs. Stability criteria are developed in terms of the control law gains, the platform inertia ratio, and tether offset parameter. Control law gains are obtained based on linear quadratic regulator techniques. Typical transient responses of both the state and required control effort are presented.

  10. Passive and semi-active heave compensator: Project design methodology and control strategies.

    PubMed

    Cuellar Sanchez, William Humberto; Linhares, Tássio Melo; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa

    2017-01-01

    Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator.

  11. Passive and semi-active heave compensator: Project design methodology and control strategies

    PubMed Central

    Cuellar Sanchez, William Humberto; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa

    2017-01-01

    Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator. PMID:28813494

  12. A comparative effectiveness analysis of three continuous glucose monitors.

    PubMed

    Damiano, Edward R; El-Khatib, Firas H; Zheng, Hui; Nathan, David M; Russell, Steven J

    2013-02-01

    To compare three continuous glucose monitoring (CGM) devices in subjects with type 1 diabetes under closed-loop blood glucose (BG) control. Six subjects with type 1 diabetes (age 52 ± 14 years, diabetes duration 32 ± 14 years) each participated in two 51-h closed-loop BG control experiments in the hospital. Venous plasma glucose (PG) measurements (GlucoScout, International Biomedical) obtained every 15 min (2,360 values) were paired in time with corresponding CGM glucose (CGMG) measurements obtained from three CGM devices, the Navigator (Abbott Diabetes Care), the Seven Plus (DexCom), and the Guardian (Medtronic), worn simultaneously by each subject. Errors in paired PG-CGMG measurements and data reporting percentages were obtained for each CGM device. The Navigator had the best overall accuracy, with an aggregate mean absolute relative difference (MARD) of all paired points of 11.8 ± 11.1% and an average MARD across all 12 experiments of 11.8 ± 3.8%. The Seven Plus and Guardian produced aggregate MARDs of all paired points of 16.5 ± 17.8% and 20.3 ± 18.0%, respectively, and average MARDs across all 12 experiments of 16.5 ± 6.7% and 20.2 ± 6.8%, respectively. Data reporting percentages, a measure of reliability, were 76% for the Seven Plus and nearly 100% for the Navigator and Guardian. A comprehensive head-to-head-to-head comparison of three CGM devices for BG values from 36 to 563 mg/dL revealed marked differences in performance characteristics that include accuracy, precision, and reliability. The Navigator outperformed the other two in these areas.

  13. Dispersion-free pulse propagation in a negative-index material.

    PubMed

    D'Aguanno, Giuseppe; Akozbek, Neset; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J; Zheltikov, Aleksei M

    2005-08-01

    The possibility of controlling the spectral position of the zero group-velocity dispersion point of a negative-index material can be exploited by varying the ratio between the electric and the magnetic plasma frequency to obtain dispersion-free propagation in spectral regions otherwise inaccessible using conventional positive-index materials. Our predictions are confirmed by pulse propagation simulations where all the orders of the complex dispersion of the material are taken into account.

  14. Functional investigation of bone implant viability using radiotracers in a new model of osteonecrosis

    PubMed Central

    Schiper, Luis; Faintuch, Bluma Linkowski; da Silva Badaró, Roberto José; de Oliveira, Erica Aparecida; Chavez, Victor E. Arana; Chinen, Elisangela; Faintuch, Joel

    2016-01-01

    OBJECTIVES: Conventional imaging methods are excellent for the morphological characterization of the consequences of osteonecrosis; however, only specialized techniques have been considered useful for obtaining functional information. To explore the affinity of radiotracers for severely devascularized bone, a new mouse model of isolated femur implanted in a subcutaneous abdominal pocket was devised. To maintain animal mobility and longevity, the femur was harvested from syngeneic donors. Two technetium-99m-labeled tracers targeting angiogenesis and bone matrix were selected. METHODS: Medronic acid and a homodimer peptide conjugated with RGDfK were radiolabeled with technetium-99m, and biodistribution was evaluated in Swiss mice. The grafted and control femurs were evaluated after 15, 30 and 60 days, including computed tomography (CT) and histological analysis. RESULTS: Radiolabeling achieved high (>95%) radiochemical purity. The biodistribution confirmed good blood clearance 1 hour after administration. For 99mTc-hydrazinonicotinic acid (HYNIC)-E-[c(RGDfK)2, remarkable renal excretion was observed compared to 99mTc-methylene diphosphonate (MDP), but the latter, as expected, revealed higher bone uptake. The results obtained in the control femur were equal at all time points. In the implanted femur, 99mTc-HYNIC-E-[c(RGDfK)2 uptake was highest after 15 days, consistent with early angiogenesis. Regarding 99mTc-MDP in the implant, similar uptake was documented at all time points, consistent with sustained bone viability; however, the uptake was lower than that detected in the control femur, as confirmed by histology. CONCLUSIONS: 1) Graft viability was successfully diagnosed using radiotracers in severely ischemic bone at all time points. 2) Analogously, indirect information about angiogenesis could be gathered using 999mTc-HYNIC-E-[c(RGDfK)2. 3) These techniques appear promising and warrant further studies to determine their potential clinical applications. PMID:27759852

  15. Video noise reduction

    NASA Astrophysics Data System (ADS)

    Drewery, J. O.; Storey, R.; Tanton, N. E.

    1984-07-01

    A video noise and film grain reducer is described which is based on a first-order recursive temporal filter. Filtering of moving detail is avoided by inhibiting recursion in response to the amount of motion in a picture. Motion detection is based on the point-by-point power of the picture difference signal coupled with a knowledge of the noise statistics. A control system measures the noise power and adjusts the working point of the motion detector accordingly. A field trial of a manual version of the equipment at Television Center indicated that a worthwhile improvement in the quality of noisy or grainy pictures received by the viewer could be obtained. Subsequent trials of the automated version confirmed that the improvement could be maintained. Commercial equipment based on the design is being manufactured and marketed by Pye T.V.T. under license. It is in regular use on both the BBC1 and BBC2 networks.

  16. [New image of home nursing created by point of care testing (POCT) - examination of issues in the introduction of POCT].

    PubMed

    Hata, Kiyomi

    2014-12-01

    With the rising number of patients who rely on medical care, it is necessary to use evolving health care technology appropriately, to control health care costs, and to enhance the well-being of patients in the home care setting. Point of care testing (POCT)is instrumental system for such demands for home care; however, this term remains relatively unknown in Japan. For this research, I conducted a qualitative analysis of factors based on stories obtained through group interviews of 11 experienced home visiting nurses who work at three home-visit nursing stations for the purpose of clarifying issues in the introduction of POCT. The results of the research identified five categories and 16 subcategories for issues in the introduction of POCT. The identified categories are expected to be useful for the spread of POCT in the future. Key words: Point of care testing, Home care nursing.

  17. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators.

    PubMed

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-01

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  18. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi

    2013-09-15

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailedmore » description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.« less

  19. Hierarchical automated clustering of cloud point set by ellipsoidal skeleton: application to organ geometric modeling from CT-scan images

    NASA Astrophysics Data System (ADS)

    Banegas, Frederic; Michelucci, Dominique; Roelens, Marc; Jaeger, Marc

    1999-05-01

    We present a robust method for automatically constructing an ellipsoidal skeleton (e-skeleton) from a set of 3D points taken from NMR or TDM images. To ensure steadiness and accuracy, all points of the objects are taken into account, including the inner ones, which is different from the existing techniques. This skeleton will be essentially useful for object characterization, for comparisons between various measurements and as a basis for deformable models. It also provides good initial guess for surface reconstruction algorithms. On output of the entire process, we obtain an analytical description of the chosen entity, semantically zoomable (local features only or reconstructed surfaces), with any level of detail (LOD) by discretization step control in voxel or polygon format. This capability allows us to handle objects at interactive frame rates once the e-skeleton is computed. Each e-skeleton is stored as a multiscale CSG implicit tree.

  20. [Validation of the Eating Attitudes Test as a screening instrument for eating disorders in general population].

    PubMed

    Peláez-Fernández, María Angeles; Ruiz-Lázaro, Pedro Manuel; Labrador, Francisco Javier; Raich, Rosa María

    2014-02-20

    To validate the best cut-off point of the Eating Attitudes Test (EAT-40), Spanish version, for the screening of eating disorders (ED) in the general population. This was a transversal cross-sectional study. The EAT-40 Spanish version was administered to a representative sample of 1.543 students, age range 12 to 21 years, in the Region of Madrid. Six hundred and two participants (probable cases and a random sample of controls) were interviewed. The best diagnostic prediction was obtained with a cut-off point of 21, with sensitivity: 88.2%; specificity: 62.1%; positive predictive value: 17.7%; negative predictive value: 62.1%. Use of a cut-off point of 21 is recommended in epidemiological studies of eating disorders in the Spanish general population. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  1. Integration of Visual and Joint Information to Enable Linear Reaching Motions

    NASA Astrophysics Data System (ADS)

    Eberle, Henry; Nasuto, Slawomir J.; Hayashi, Yoshikatsu

    2017-01-01

    A new dynamics-driven control law was developed for a robot arm, based on the feedback control law which uses the linear transformation directly from work space to joint space. This was validated using a simulation of a two-joint planar robot arm and an optimisation algorithm was used to find the optimum matrix to generate straight trajectories of the end-effector in the work space. We found that this linear matrix can be decomposed into the rotation matrix representing the orientation of the goal direction and the joint relation matrix (MJRM) representing the joint response to errors in the Cartesian work space. The decomposition of the linear matrix indicates the separation of path planning in terms of the direction of the reaching motion and the synergies of joint coordination. Once the MJRM is numerically obtained, the feedfoward planning of reaching direction allows us to provide asymptotically stable, linear trajectories in the entire work space through rotational transformation, completely avoiding the use of inverse kinematics. Our dynamics-driven control law suggests an interesting framework for interpreting human reaching motion control alternative to the dominant inverse method based explanations, avoiding expensive computation of the inverse kinematics and the point-to-point control along the desired trajectories.

  2. Block Adjustment and Image Matching of WORLDVIEW-3 Stereo Pairs and Accuracy Evaluation

    NASA Astrophysics Data System (ADS)

    Zuo, C.; Xiao, X.; Hou, Q.; Li, B.

    2018-05-01

    WorldView-3, as a high-resolution commercial earth observation satellite, which is launched by Digital Global, provides panchromatic imagery of 0.31 m resolution. The positioning accuracy is less than 3.5 meter CE90 without ground control, which can use for large scale topographic mapping. This paper presented the block adjustment for WorldView-3 based on RPC model and achieved the accuracy of 1 : 2000 scale topographic mapping with few control points. On the base of stereo orientation result, this paper applied two kinds of image matching algorithm for DSM extraction: LQM and SGM. Finally, this paper compared the accuracy of the point cloud generated by the two image matching methods with the reference data which was acquired by an airborne laser scanner. The results showed that the RPC adjustment model of WorldView-3 image with small number of GCPs could satisfy the requirement of Chinese Surveying and Mapping regulations for 1 : 2000 scale topographic maps. And the point cloud result obtained through WorldView-3 stereo image matching had higher elevation accuracy, the RMS error of elevation for bare ground area is 0.45 m, while for buildings the accuracy can almost reach 1 meter.

  3. Continuum Limit of Total Variation on Point Clouds

    NASA Astrophysics Data System (ADS)

    García Trillos, Nicolás; Slepčev, Dejan

    2016-04-01

    We consider point clouds obtained as random samples of a measure on a Euclidean domain. A graph representing the point cloud is obtained by assigning weights to edges based on the distance between the points they connect. Our goal is to develop mathematical tools needed to study the consistency, as the number of available data points increases, of graph-based machine learning algorithms for tasks such as clustering. In particular, we study when the cut capacity, and more generally total variation, on these graphs is a good approximation of the perimeter (total variation) in the continuum setting. We address this question in the setting of Γ-convergence. We obtain almost optimal conditions on the scaling, as the number of points increases, of the size of the neighborhood over which the points are connected by an edge for the Γ-convergence to hold. Taking of the limit is enabled by a transportation based metric which allows us to suitably compare functionals defined on different point clouds.

  4. The CLOSED trial; CLOnidine compared with midazolam for SEDation of paediatric patients in the intensive care unit: study protocol for a multicentre randomised controlled trial.

    PubMed

    Neubert, Antje; Baarslag, Manuel Alberto; Dijk, Monique van; Rosmalen, Joost van; Standing, Joseph F; Sheng, Yucheng; Rascher, Wolfgang; Roberts, Deborah; Winslade, Jackie; Rawcliffe, Louise; Hanning, Sara M; Metsvaht, Tuuli; Giannuzzi, Viviana; Larsson, Peter; Pokorná, Pavla; Simonetti, Alessandra; Tibboel, Dick

    2017-06-21

    Sedation is an essential part of paediatric critical care. Midazolam, often in combination with opioids, is the current gold standard drug. However, as it is a far-from-ideal agent, clonidine is increasingly being used in children. This drug is prescribed off-label for this indication, as many drugs in paediatrics are. Therefore, the CLOSED trial aims to provide data on the pharmacokinetics, safety and efficacy of clonidine for the sedation of mechanically ventilated patients in order to obtain a paediatric-use marketing authorisation. The CLOSED study is a multicentre, double-blind, randomised, active-controlled non-inferiority trial with a 1:1 randomisation between clonidine and midazolam. Both treatment groups are stratified according to age in three groups with the same size: <28 days (n=100), 28 days to <2 years (n=100) and 2-18 years (n=100). The primary end point is defined as the occurrence of sedation failure within the study period. Secondary end points include a pharmacokinetic/pharmacodynamic relationship, pharmacogenetics, occurrence of delirium and withdrawal syndrome, opioid consumption and neurodevelopment in the neonatal age group. Logistic regression will be used for the primary end point, appropriate statistics will be used for the secondary end points. Written informed consent will be obtained from the parents/caregivers. Verbal or deferred consent will be used in the sites where national legislation allows. The study has institutional review board approval at recruiting sites. The results will be published in a peer-reviewed journal and shared with the worldwide medical community. EudraCT: 2014-003582-24; Clinicaltrials.gov: NCT02509273; pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Study of Automatic Image Rectification and Registration of Scanned Historical Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Chen, H. R.; Tseng, Y. H.

    2016-06-01

    Historical aerial photographs directly provide good evidences of past times. The Research Center for Humanities and Social Sciences (RCHSS) of Taiwan Academia Sinica has collected and scanned numerous historical maps and aerial images of Taiwan and China. Some maps or images have been geo-referenced manually, but most of historical aerial images have not been registered since there are no GPS or IMU data for orientation assisting in the past. In our research, we developed an automatic process of matching historical aerial images by SIFT (Scale Invariant Feature Transform) for handling the great quantity of images by computer vision. SIFT is one of the most popular method of image feature extracting and matching. This algorithm extracts extreme values in scale space into invariant image features, which are robust to changing in rotation scale, noise, and illumination. We also use RANSAC (Random sample consensus) to remove outliers, and obtain good conjugated points between photographs. Finally, we manually add control points for registration through least square adjustment based on collinear equation. In the future, we can use image feature points of more photographs to build control image database. Every new image will be treated as query image. If feature points of query image match the features in database, it means that the query image probably is overlapped with control images.With the updating of database, more and more query image can be matched and aligned automatically. Other research about multi-time period environmental changes can be investigated with those geo-referenced temporal spatial data.

  6. Finite-fault inversion of the Mw 5.9 2012 Emilia-Romagna earthquake (Northern Italy) using aftershocks as near-field Green's function approximations

    NASA Astrophysics Data System (ADS)

    Causse, Mathieu; Cultrera, Giovanna; Herrero, André; Courboulex, Françoise; Schiappapietra, Erika; Moreau, Ludovic

    2017-04-01

    On May 29, 2012 occurred a Mw 5.9 earthquake in the Emilia-Romagna region (Po Plain) on a thrust fault system. This shock, as well as hundreds of aftershocks, were recorded by 10 strong motion stations located less than 10 km away from the rupture plane, with 4 stations located within the surface rupture projection. The Po Plain is a very large EW trending syntectonic alluvial basin, delimited by the Alps and Apennines chains to the North and South. The Plio-Quaternary sedimentary sequence filling the Po Plain is characterized by an uneven thickness, ranging from several thousands of meters to a few tens of meters. This particular context results especially in a resonance basin below 1 Hz and strong surface waves, which makes it particularly difficult to model wave propagation and hence to obtain robust images of the rupture propagation. This study proposes to take advantage of the large set of recorded aftershocks, considered as point sources, to model wave propagation. Due to the heterogeneous distribution of the aftershocks on the fault plane, an interpolation technique is proposed to compute an approximation of the Green's function between each fault point and each strong motion station in the frequency range [0.2-1Hz]. We then use a Bayesian inversion technique (Monte Carlo Markov Chain algorithm) to obtain images of the rupture propagation from the strong motion data. We propose to retrieve the slip distribution by inverting the final slip value at some control points, which are allowed to move on the fault plane, and by interpolating the slip value between these points. We show that the use of 5 control points to describe the slip, coupled with the hypothesis of spatially constant rupture velocity and rise-time (that is 18 free source parameters), results in a good level of fit with the data. This indicates that despite their complexity, the strong motion data can be properly modeled up to 1 Hz using a relatively simple rupture. The inversion results also reveal that the rupture propagated slowly, at a speed of about 45% of the shear wave velocity.

  7. A levitation instrument for containerless study of molten materials.

    PubMed

    Nordine, Paul C; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert

    2012-12-01

    A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al(2)O(3) at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y(3)Al(5)O(12) far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al(2)O(3) as a function of temperature. Levitation of dense liquid HfO(2) at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.

  8. Action Priority: Early Neurophysiological Interaction of Conceptual and Motor Representations

    PubMed Central

    Koester, Dirk; Schack, Thomas

    2016-01-01

    Handling our everyday life, we often react manually to verbal requests or instruction, but the functional interrelations of motor control and language are not fully understood yet, especially their neurophysiological basis. Here, we investigated whether specific motor representations for grip types interact neurophysiologically with conceptual information, that is, when reading nouns. Participants performed lexical decisions and, for words, executed a grasp-and-lift task on objects of different sizes involving precision or power grips while the electroencephalogram was recorded. Nouns could denote objects that require either a precision or a power grip and could, thus, be (in)congruent with the performed grasp. In a control block, participants pointed at the objects instead of grasping them. The main result revealed an event-related potential (ERP) interaction of grip type and conceptual information which was not present for pointing. Incongruent compared to congruent conditions elicited an increased positivity (100–200 ms after noun onset). Grip type effects were obtained in response-locked analyses of the grasping ERPs (100–300 ms at left anterior electrodes). These findings attest that grip type and conceptual information are functionally related when planning a grasping action but such an interaction could not be detected for pointing. Generally, the results suggest that control of behaviour can be modulated by task demands; conceptual noun information (i.e., associated action knowledge) may gain processing priority if the task requires a complex motor response. PMID:27973539

  9. A levitation instrument for containerless study of molten materials

    NASA Astrophysics Data System (ADS)

    Nordine, Paul C.; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert

    2012-12-01

    A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al2O3 at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y3Al5O12 far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al2O3 as a function of temperature. Levitation of dense liquid HfO2 at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.

  10. Safe landing area determination for a Moon lander by reachability analysis

    NASA Astrophysics Data System (ADS)

    Arslantaş, Yunus Emre; Oehlschlägel, Thimo; Sagliano, Marco

    2016-11-01

    In the last decades developments in space technology paved the way to more challenging missions like asteroid mining, space tourism and human expansion into the Solar System. These missions result in difficult tasks such as guidance schemes for re-entry, landing on celestial bodies and implementation of large angle maneuvers for spacecraft. There is a need for a safety system to increase the robustness and success of these missions. Reachability analysis meets this requirement by obtaining the set of all achievable states for a dynamical system starting from an initial condition with given admissible control inputs of the system. This paper proposes an algorithm for the approximation of nonconvex reachable sets (RS) by using optimal control. Therefore subset of the state space is discretized by equidistant points and for each grid point a distance function is defined. This distance function acts as an objective function for a related optimal control problem (OCP). Each infinite dimensional OCP is transcribed into a finite dimensional Nonlinear Programming Problem (NLP) by using Pseudospectral Methods (PSM). Finally, the NLPs are solved using available tools resulting in approximated reachable sets with information about the states of the dynamical system at these grid points. The algorithm is applied on a generic Moon landing mission. The proposed method computes approximated reachable sets and the attainable safe landing region with information about propellant consumption and time.

  11. Superadiabatic driving of a three-level quantum system

    NASA Astrophysics Data System (ADS)

    Theisen, M.; Petiziol, F.; Carretta, S.; Santini, P.; Wimberger, S.

    2017-07-01

    We study superadiabatic quantum control of a three-level quantum system whose energy spectrum exhibits multiple avoided crossings. In particular, we investigate the possibility of treating the full control task in terms of independent two-level Landau-Zener problems. We first show that the time profiles of the elements of the full control Hamiltonian are characterized by peaks centered around the crossing times. These peaks decay algebraically for large times. In principle, such a power-law scaling invalidates the hypothesis of perfect separability. Nonetheless, we address the problem from a pragmatic point of view by studying the fidelity obtained through separate control as a function of the intercrossing separation. This procedure may be a good approach to achieve approximate adiabatic driving of a specific instantaneous eigenstate in realistic implementations.

  12. Obtaining an equivalent beam

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1990-01-01

    In modeling a complex structure the researcher was faced with a component that would have logical appeal if it were modeled as a beam. The structure was a mast of a robot controlled gantry crane. The structure up to this point already had a large number of degrees of freedom, so the idea of conserving grid points by modeling the mast as a beam was attractive. The researcher decided to make a separate problem of of the mast and model it in three dimensions with plates, then extract the equivalent beam properties by setting up the loading to simulate beam-like deformation and constraints. The results could then be used to represent the mast as a beam in the full model. A comparison was made of properties derived from models of different constraints versus manual calculations. The researcher shows that the three-dimensional model is ineffective in trying to conform to the requirements of an equivalent beam representation. If a full 3-D plate model were used in the complete representation of the crane structure, good results would be obtained. Since the attempt is to economize on the size of the model, a better way to achieve the same results is to use substructuring and condense the mast to equivalent end boundary and intermediate mass points.

  13. Diffusion length of non-equilibrium minority charge carriers in β-Ga2O3 measured by electron beam induced current

    NASA Astrophysics Data System (ADS)

    Yakimov, E. B.; Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Pearton, S. J.

    2018-05-01

    The spatial distribution of electron-hole pair generation in β-Ga2O3 as a function of scanning electron microscope (SEM) beam energy has been calculated by a Monte Carlo method. This spatial distribution is then used to obtain the diffusion length of charge carriers in high-quality epitaxial Ga2O3 films from the dependence of the electron beam induced current (EBIC) collection efficiency on the accelerating voltage of a SEM. The experimental results show, contrary to earlier theory, that holes are mobile in β-Ga2O3 and to a large extent determine the diffusion length of charge carriers. Diffusion lengths in the range 350-400 nm are determined for the as-grown Ga2O3, while processes like exposing the samples to proton irradiation essentially halve this value, showing the role of point defects in controlling minority carrier transport. The pitfalls related to using other popular EBIC-based methods assuming a point-like excitation function are demonstrated. Since the point defect type and the concentration in currently available Ga2O3 are dependent on the growth method and the doping concentration, accurate methods of diffusion length determination are critical to obtain quantitative comparisons of material quality.

  14. Boundary-Layer Transition Results from the F-16XL-2 Supersonic Laminar Flow Control Experiment

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.

    1999-01-01

    A variable-porosity suction glove has been flown on the F-16XL-2 aircraft to demonstrate the feasibility of this technology for the proposed High-Speed Civil Transport (HSCT). Boundary-layer transition data have been obtained on the titanium glove primarily at Mach 2.0 and altitudes of 53,000-55,000 ft. The objectives of this supersonic laminar flow control flight experiment have been to achieve 50- to 60-percent-chord laminar flow on a highly swept wing at supersonic speeds and to provide data to validate codes and suction design. The most successful laminar flow results have not been obtained at the glove design point (Mach 1.9 at an altitude of 50,000 ft). At Mach 2.0 and an altitude of 53,000 ft, which corresponds to a Reynolds number of 22.7 X 10(exp 6), optimum suction levels have allowed long runs of a minimum of 46-percent-chord laminar flow to be achieved. This paper discusses research variables that directly impact the ability to obtain laminar flow and techniques to correct for these variables.

  15. Pointing control for the International Comet Mission

    NASA Technical Reports Server (NTRS)

    Leblanc, D. R.; Schumacher, L. L.

    1980-01-01

    The design of the pointing control system for the proposed International Comet Mission, intended to fly by Comet Halley and rendezvous with Comet Tempel-2 is presented. Following a review of mission objectives and the spacecraft configuration, design constraints on the pointing control system controlling the two-axis gimballed scan platform supporting the science instruments are discussed in relation to the scientific requirements of the mission. The primary design options considered for the pointing control system design for the baseline spacecraft are summarized, and the design selected, which employs a target-referenced, inertially stabilized control system, is described in detail. The four basic modes of operation of the pointing control subsystem (target acquisition, inertial hold, target track and slew) are discussed as they relate to operations at Halley and Tempel-2. It is pointed that the pointing control system design represents a significant advance in the state of the art of pointing controls for planetary missions.

  16. 49 CFR 236.403 - Signals at controlled point.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signals at controlled point. 236.403 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.403 Signals at controlled point. Signals at controlled point shall be so...

  17. 49 CFR 236.403 - Signals at controlled point.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Signals at controlled point. 236.403 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.403 Signals at controlled point. Signals at controlled point shall be so...

  18. 49 CFR 236.403 - Signals at controlled point.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Signals at controlled point. 236.403 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.403 Signals at controlled point. Signals at controlled point shall be so...

  19. 49 CFR 236.403 - Signals at controlled point.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Signals at controlled point. 236.403 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.403 Signals at controlled point. Signals at controlled point shall be so...

  20. 49 CFR 236.403 - Signals at controlled point.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Signals at controlled point. 236.403 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.403 Signals at controlled point. Signals at controlled point shall be so...

  1. Effect finishing and polishing procedures on the surface roughness of IPS Empress 2 ceramic

    PubMed Central

    Nishida, Rodrigo; Elossais, André Afif; Lima, Darlon Martins; Reis, José Mauricio Santos Nunes; Campos, Edson Alves; de Andrade, Marcelo Ferrarezi

    2013-01-01

    Objective. To evaluate the surface roughness of IPS Empress 2 ceramic when treated with different finishing/polishing protocols. Materials and methods. Sixteen specimens of IPS Empress 2 ceramic were made from wax patterns obtained using a stainless steel split mold. The specimens were glazed (Stage 0–S0, control) and divided into two groups. The specimens in Group 1 (G1) were finished/polished with a KG Sorensen diamond point (S1), followed by KG Sorensen siliconized points (S2) and final polishing with diamond polish paste (S3). In Group 2 (G2), the specimens were finished/polished using a Shofu diamond point (S1), as well as Shofu siliconized points (S2) and final polishing was performed using Porcelize paste (S3). After glazing (S0) and following each polishing procedure (S1, S2 or S3), the surface roughness was measured using TALYSURF Series 2. The average surface roughness results were analyzed using ANOVA followed by Tukey post-hoc tests (α = 0.01) Results. All of the polishing procedures yielded higher surface roughness values when compared to the control group (S0). S3 yielded lower surface roughness values when compared to S1 and S2. Conclusions. The proposed treatments negatively affected the surface roughness of the glazed IPS Empress 2 ceramic. PMID:22724660

  2. NIM gas controlled sodium heat pipe

    NASA Astrophysics Data System (ADS)

    Yan, X.; Zhang, J. T.; Merlone, A.; Duan, Y.; Wang, W.

    2013-09-01

    Gas controlled heat pipes (GCHPs) provide a uniform, stable and reproducible temperature zone to calibrate thermometers and thermocouples, and to realize defining fixed points using a calorimetric method. Therefore, to perform such investigations, a GCHP furnace using sodium as its working fluid was constructed at the National Institute of Metrology (NIM), China. Also, investigations into the thermal characteristics of the NIM gas controlled sodium heat pipe were carried out. The temperature stability over 5 hours was better than ±0.25 mK while controlling the pressure at 111250 Pa. The temperature uniformity within 14 cm from the bottom of the thermometer well was within 0.3 mK. While keeping the pressure stable at the same value, 17 temperature determinations were performed over 14 days, obtaining a temperature reproducibility of 1.27 mK. Additionally, the NIM gas controlled sodium heat pipe was compared with the sodium heat pipe produced by INRiM. The temperature in the INRiM sodium heat pipe operating at 111250 Pa was determined, obtaining a difference of 21 mK with respect to the NIM GCHP. This difference was attributed to sodium impurities, pressure controller capabilities and reproducibility, and instabilities of high temperature standard platinum resistance thermometers (HTSPRTs). Further investigations will be carried out on extending the pressure/temperature range and connecting both GCHPs to the same pressure line.

  3. Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion.

    PubMed

    Ryan, Edward J; Kim, Chul-Ho; Muller, Matthew D; Bellar, David M; Barkley, Jacob E; Bliss, Matthew V; Jankowski-Wilkinson, Andrea; Russell, Morgan; Otterstetter, Ronald; Macander, Daniela; Glickman, Ellen L; Kamimori, Gary H

    2012-03-01

    Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion. The purpose of the current investigation was to examine the effect of low-dose caffeine (CAF) administered in chewing gum at 3 different time points during submaximal cycling exercise to exhaustion. Eight college-aged (26 ± 4 years), physically active (45.5 ± 5.7 ml·kg(-1)·min(-1)) volunteers participated in 4 experimental trials. Two pieces of caffeinated chewing gum (100 mg per piece, total quantity of 200 mg) were administered in a double-blind manner at 1 of 3 time points (-35, -5, and +15 minutes) with placebo at the other 2 points and at all 3 points in the control trial. The participants cycled at 85% of maximal oxygen consumption until volitional fatigue and time to exhaustion (TTE) were recorded in minutes. Venous blood samples were obtained at -40, -10, and immediately postexercise and analyzed for serum-free fatty acid and plasma catecholamine concentrations. Oxygen consumption, respiratory exchange ratio, heart rate, glucose, lactate, ratings of perceived exertion, and perceived leg pain measures were obtained at baseline and every 10 minutes during cycling. The results showed that there were no significant differences between the trials for any of the parameters measured including TTE. These findings suggest that low-dose CAF administered in chewing gum has no effect on TTE during cycling in recreational athletes and is, therefore, not recommended.

  4. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines

    PubMed Central

    Presas, Alexandre; Valero, Carme; Egusquiza, Eduard

    2018-01-01

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin. PMID:29601512

  5. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines.

    PubMed

    Presas, Alexandre; Valentin, David; Egusquiza, Mònica; Valero, Carme; Egusquiza, Eduard

    2018-03-30

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin.

  6. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  7. Density functional theory study of dopant effect on formation energy of intrinsic point defects in germanium crystals

    NASA Astrophysics Data System (ADS)

    Yamaoka, S.; Kobayashi, K.; Sueoka, K.; Vanhellemont, J.

    2017-09-01

    During the last decade the use of single crystal germanium (Ge) layers and structures in combination with silicon (Si) substrates has led to a revival of defect research on Ge. Ge is used because of the much higher carrier mobility compared to Si, allowing to design devices operating at much higher frequencies. A major issue for the use of Ge single crystal wafers is the fact that all Czochralski-grown Ge (CZ-Ge) crystals are vacancy-rich and contain vacancy clusters that are much larger than the ones in Si. In contrast to Si, control of intrinsic point defect concentrations has not yet been realized at the same level in Ge crystals due to the lack of experimental data especially on dopant effects. In this study, we have evaluated with density functional theory (DFT) calculations the dopant effect on the formation energy (Ef) of the uncharged vacancy (V) and self-interstitial (I) in Ge and compared the results with those for Si. The dependence of the total thermal equilibrium concentrations of point defects (sum of free V or I and V or I paired with dopant atoms) at melting temperature on the type and concentration of various dopants is obtained. It was found that (1) Ge crystals will be more V-rich by Tl, In, Sb, Sn, As and P doping, (2) Ge crystals will be more I-rich by Ga, C and B doping, (3) Si doping has negligible impact. The dopant impact on Ef of V and I in Ge has a narrower range and is smaller than that in Si. The obtained results are useful to control grown-in V and I concentrations, and will perhaps also allow to develop defect-free ;perfect; Ge crystals.

  8. 49 CFR 236.103 - Switch circuit controller or point detector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Switch circuit controller or point detector. 236.103 Section 236.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... controller or point detector. Switch circuit controller, circuit controller, or point detector operated by...

  9. 49 CFR 236.103 - Switch circuit controller or point detector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Switch circuit controller or point detector. 236.103 Section 236.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... controller or point detector. Switch circuit controller, circuit controller, or point detector operated by...

  10. 49 CFR 236.103 - Switch circuit controller or point detector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Switch circuit controller or point detector. 236.103 Section 236.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... controller or point detector. Switch circuit controller, circuit controller, or point detector operated by...

  11. 49 CFR 236.103 - Switch circuit controller or point detector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Switch circuit controller or point detector. 236.103 Section 236.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... controller or point detector. Switch circuit controller, circuit controller, or point detector operated by...

  12. 49 CFR 236.103 - Switch circuit controller or point detector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Switch circuit controller or point detector. 236.103 Section 236.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... controller or point detector. Switch circuit controller, circuit controller, or point detector operated by...

  13. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... identified food safety hazards, including as appropriate: (i) Critical control points designed to control... control points designed to control food safety hazards introduced outside the processing plant environment... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  14. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... identified food safety hazards, including as appropriate: (i) Critical control points designed to control... control points designed to control food safety hazards introduced outside the processing plant environment... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  15. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... identified food safety hazards, including as appropriate: (i) Critical control points designed to control... control points designed to control food safety hazards introduced outside the processing plant environment... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  16. Simulation of process identification and controller tuning for flow control system

    NASA Astrophysics Data System (ADS)

    Chew, I. M.; Wong, F.; Bono, A.; Wong, K. I.

    2017-06-01

    PID controller is undeniably the most popular method used in controlling various industrial processes. The feature to tune the three elements in PID has allowed the controller to deal with specific needs of the industrial processes. This paper discusses the three elements of control actions and improving robustness of controllers through combination of these control actions in various forms. A plant model is simulated using the Process Control Simulator in order to evaluate the controller performance. At first, the open loop response of the plant is studied by applying a step input to the plant and collecting the output data from the plant. Then, FOPDT of physical model is formed by using both Matlab-Simulink and PRC method. Then, calculation of controller’s setting is performed to find the values of Kc and τi that will give satisfactory control in closed loop system. Then, the performance analysis of closed loop system is obtained by set point tracking analysis and disturbance rejection performance. To optimize the overall physical system performance, a refined tuning of PID or detuning is further conducted to ensure a consistent resultant output of closed loop system reaction to the set point changes and disturbances to the physical model. As a result, the PB = 100 (%) and τi = 2.0 (s) is preferably chosen for setpoint tracking while PB = 100 (%) and τi = 2.5 (s) is selected for rejecting the imposed disturbance to the model. In a nutshell, selecting correlation tuning values is likewise depended on the required control’s objective for the stability performance of overall physical model.

  17. Simple microfluidic stagnation point flow geometries

    PubMed Central

    Dockx, Greet; Verwijlen, Tom; Sempels, Wouter; Nagel, Mathias; Moldenaers, Paula; Hofkens, Johan; Vermant, Jan

    2016-01-01

    A geometrically simple flow cell is proposed to generate different types of stagnation flows, using a separation flow and small variations of the geometric parameters. Flows with high local deformation rates can be changed from purely rotational, over simple shear flow, to extensional flow in a region surrounding a stagnation point. Computational fluid dynamic calculations are used to analyse how variations of the geometrical parameters affect the flow field. These numerical calculations are compared to the experimentally obtained streamlines of different designs, which have been determined by high speed confocal microscopy. As the flow type is dictated predominantly by the geometrical parameters, such simple separating flow devices may alleviate the requirements for flow control, while offering good stability for a wide variety of flow types. PMID:27462382

  18. High-NA optical CD metrology on small in-cell targets enabling improved higher order dose control and process control for logic

    NASA Astrophysics Data System (ADS)

    Cramer, Hugo; Mc Namara, Elliott; van Laarhoven, Rik; Jaganatharaja, Ram; de la Fuente, Isabel; Hsu, Sharon; Belletti, Filippo; Popadic, Milos; Tu, Ward; Huang, Wade

    2017-03-01

    The logic manufacturing process requires small in-device metrology targets to exploit the full dose correction potential of the modern scanners and process tools. A high-NA angular resolved scatterometer (YieldStar S-1250D) was modified to demonstrate the possibility of OCD measurements on 5x5µm2 targets. The results obtained on test wafers in a logic manufacturing environment, measured after litho and after core etch, showed a good correlation to larger reference targets and AEI to ADI intra-field CDU correlation, thereby demonstrating the feasibility of OCD on such small targets. The data was used to determine a reduction potential of 55% for the intra-field CD variation, using 145 points per field on a few inner fields, and 33% of the process induced across wafer CD variation using 16 points per field full wafer. In addition, the OCD measurements reveal valuable information on wafer-to-wafer layer height variations within a lot.

  19. Implementation of a non-lethal biopsy punch monitoring program for mercury in smallmouth bass, Micropterus dolomieu Lacepède, from the Eleven Point River, Missouri

    USGS Publications Warehouse

    Ackerson, J.R.; Schmitt, C.J.; McKee, M.J.; Brumbaugh, W.G.

    2013-01-01

    A non-lethal biopsy method for monitoring mercury (Hg) concentrations in smallmouth bass (Micropterus dolomieu; smallmouth) from the Eleven Point River in southern Missouri USA was evaluated. A biopsy punch was used to remove a muscle tissue plug from the area immediately below the anterior dorsal fin of 31 smallmouth. An additional 35 smallmouth (controls) were held identically except that no tissue plug was removed. After sampling, all fish were held in a concrete hatchery raceway for 6 weeks. Mean survival at the end of the holding period was 97 % for both groups. Smallmouth length, weight and Fulton’s condition factor at the end of the holding period were also similar between plugged and non-plugged controls, indicating that the biopsy procedure had minimal impact on growth under these conditions. Tissue plug Hg concentrations were similar to smallmouth Hg data obtained in previous years by removing the entire fillet for analysis.

  20. Implementation of a non-lethal biopsy punch monitoring program for mercury in smallmouth bass, Micropterus dolomieu Lacepede, from the Eleven Point River, Missouri

    USGS Publications Warehouse

    Ackerson, R.J.; McKee, J.M.; Schmitt, C.J.; Brumbaugh, William G.

    2014-01-01

    A non-lethal biopsy method for monitoring mercury (Hg) concentrations in smallmouth bass (Micropterus dolomieu; smallmouth) from the Eleven Point River in southern Missouri USA was evaluated. A biopsy punch was used to remove a muscle tissue plug from the area immediately below the anterior dorsal fin of 31 smallmouth. An additional 35 smallmouth (controls) were held identically except that no tissue plug was removed. After sampling, all fish were held in a concrete hatchery raceway for 6 weeks. Mean survival at the end of the holding period was 97 % for both groups. Smallmouth length, weight and Fulton’s condition factor at the end of the holding period were also similar between plugged and non-plugged controls, indicating that the biopsy procedure had minimal impact on growth under these conditions. Tissue plug Hg concentrations were similar to smallmouth Hg data obtained in previous years by removing the entire fillet for analysis.

  1. A new paper-based platform technology for point-of-care diagnostics.

    PubMed

    Gerbers, Roman; Foellscher, Wilke; Chen, Hong; Anagnostopoulos, Constantine; Faghri, Mohammad

    2014-10-21

    Currently, the Lateral flow Immunoassays (LFIAs) are not able to perform complex multi-step immunodetection tests because of their inability to introduce multiple reagents in a controlled manner to the detection area autonomously. In this research, a point-of-care (POC) paper-based lateral flow immunosensor was developed incorporating a novel microfluidic valve technology. Layers of paper and tape were used to create a three-dimensional structure to form the fluidic network. Unlike the existing LFIAs, multiple directional valves are embedded in the test strip layers to control the order and the timing of mixing for the sample and multiple reagents. In this paper, we report a four-valve device which autonomously directs three different fluids to flow sequentially over the detection area. As proof of concept, a three-step alkaline phosphatase based Enzyme-Linked ImmunoSorbent Assay (ELISA) protocol with Rabbit IgG as the model analyte was conducted to prove the suitability of the device for immunoassays. The detection limit of about 4.8 fm was obtained.

  2. DIPHTHERIA TOXIN OBTAINED ON MEDIA STERILIZED BY GAMMA RAYS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaulen, D.R.

    1959-08-01

    The possibility of radiation sterilization of liquid nntritive media for cultivating diphtheritic bacteria was studied. Gamma rays were employed at doses of 600,000, by irradiation does not deteriorate their nutritive properties, while the biochemical indices remain almost unchanged. The diphtheria toxin titer obtained on media sterilized by irradiation is not inferior to that derived from autoclaved media, while in a number of instances (irradiation with 600,000 r) it even surpasses it. Anatorins made of toxins from irradiated media were not inferior by their immunogenic and antigenic properties to the control preparations. These experimental data point to the possibility of cold''more » sterilization of liquid nutritive media. (auth)« less

  3. Application of a flight test and data analysis technique to flutter of a drone aircraft

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.

    1981-01-01

    Modal identification results presented were obtained from recent flight flutter tests of a drone vehicle with a research wing (DAST ARW-1 for Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing-1). This vehicle is equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surface on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  4. Combined structures-controls optimization of lattice trusses

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1991-01-01

    The role that distributed parameter model can play in CSI is demonstrated, in particular in combined structures controls optimization problems of importance in preliminary design. Closed form solutions can be obtained for performance criteria such as rms attitude error, making possible analytical solutions of the optimization problem. This is in contrast to the need for numerical computer solution involving the inversion of large matrices in traditional finite element model (FEM) use. Another advantage of the analytic solution is that it can provide much needed insight into phenomena that can otherwise be obscured or difficult to discern from numerical computer results. As a compromise in level of complexity between a toy lab model and a real space structure, the lattice truss used in the EPS (Earth Pointing Satellite) was chosen. The optimization problem chosen is a generic one: of minimizing the structure mass subject to a specified stability margin and to a specified upper bond on the rms attitude error, using a co-located controller and sensors. Standard FEM treating each bar as a truss element is used, while the continuum model is anisotropic Timoshenko beam model. Performance criteria are derived for each model, except that for the distributed parameter model, explicit closed form solutions was obtained. Numerical results obtained by the two model show complete agreement.

  5. Dynamic analysis and control PID path of a model type gantry crane

    NASA Astrophysics Data System (ADS)

    Ospina-Henao, P. A.; López-Suspes, Framsol

    2017-06-01

    This paper presents an alternate form for the dynamic modelling of a mechanical system that simulates in real life a gantry crane type, using Euler’s classical mechanics and Lagrange formalism, which allows find the equations of motion that our model describe. Moreover, it has a basic model design system using the SolidWorks software, based on the material and dimensions of the model provides some physical variables necessary for modelling. In order to verify the theoretical results obtained, a contrast was made between solutions obtained by simulation in SimMechanics-Matlab and Euler-Lagrange equations system, has been solved through Matlab libraries for solving equation’s systems of the type and order obtained. The force is determined, but not as exerted by the spring, as this will be the control variable. The objective is to bring the mass of the pendulum from one point to another with a specified distance without the oscillation from it, so that, the answer is overdamped. This article includes an analysis of PID control in which the equations of motion of Euler-Lagrange are rewritten in the state space, once there, they were implemented in Simulink to get the natural response of the system to a step input in F and then draw the desired trajectories.

  6. Field-controllable second harmonic generation at a graphene oxide heterointerface

    NASA Astrophysics Data System (ADS)

    Fernandes, Gustavo E.; Kim, Jin Ho; Osgood, Richard, III; Xu, Jimmy

    2018-03-01

    We report on the voltage-dependent SHG signal obtained in a reduced-graphene oxide (rGO)/p-type Si heterointerface. A simple qualitative model considering the interaction between the heterointerface depletion region potential and the naturally occurring surface dipole layer on the rGO is introduced to account for the characteristics of the SHG signal, specifically, a minimum point at ≈ -3 V bias on the rGO side of the interface. This feature-rich system has the potential to provide field-controllable surface-dipole moments and second-order nonlinearities, which may find applications in tunable nonlinear photonic devices for realizing second-harmonic generation and optical-rectification.

  7. Development and flight test evaluation of a pitch stability augmentation system for a relaxed stability L-1011

    NASA Technical Reports Server (NTRS)

    Rising, J. J.

    1982-01-01

    The L-1011 has been flight tested to demonstrate the relaxed static stability concept as a means of obtaining significant drag benefits to achieve a more energy efficient transport. Satisfactory handling qualities were maintained with the design of an active control horizontal tail for stability and control augmentation to allow operation of the L-1011 at centers of gravity close to the neutral point. Prior to flight test, a motion base visual flight simulator program was performed to optimize the augmentation system. The system was successfully demonstrated in a test program totaling forty-eight actual flight hours.

  8. Planetary maps

    USGS Publications Warehouse

    ,

    1992-01-01

    An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.

  9. Spacecraft Pointing and Position Control,

    DTIC Science & Technology

    1981-11-01

    GEOSTATIONARY ELEMENTS As the classical set of Keplerian elements (a,e,i,a,Q, M ) is inappropriate for geosta- tionary orbits because the angular...instead of E., the set E + AE (34) - a - -LP(t 0 is obtained. Since the orbital element vector has to be computed for each measurement time, a simple orbit ...depends on the stiffness terms effected by kinematic coupling with the orbit rate 0o and the set gain K The x-component of the disturbance torque, this

  10. Military and Veterans Rehabilitation and Recovery from Injury Network (MAVERICK): Chronic Effects of Neurotrauma Consortium (CENC)

    DTIC Science & Technology

    2014-10-01

    veterans with combat- related mTBI and non-TBI combat-exposed controls on comprehensive neuropsychological, neuroimaging, genomics , biomarkers, and...existing VA healthcare data to study the chronic effects of mild traumatic brain injury (mTBI) on neurodegenerative disease and other comorbidities... mice at different time points pre- and post- single mTBI and repetitive mTBI, and g. Began analysis of tissues samples obtained via the protocol. IX

  11. Active Optical Devices and Applications. Volume 228

    DTIC Science & Technology

    1980-04-01

    Research Center, Minneapolis, Minnesota 55413 Abstract In this paper a control engineer’s point of view of the Large Space Structure (LSS) problem is...CASSIOPEIA SUPERNOVA REMNANT GALAXIES IN VIRGO CLUSTER QUASAR 3C273 CRAB PULSAR Figure 2. A collage of images of X-ray sources obtained with the HEAO...Telescope. Yet ST will not be able to study vari- able stars (primary distance indicators) to the Virgo cluster of galaxies and beyond. This cluster is

  12. Learning to Obtain Reward, but Not Avoid Punishment, Is Affected by Presence of PTSD Symptoms in Male Veterans: Empirical Data and Computational Model

    PubMed Central

    Myers, Catherine E.; Moustafa, Ahmed A.; Sheynin, Jony; VanMeenen, Kirsten M.; Gilbertson, Mark W.; Orr, Scott P.; Beck, Kevin D.; Pang, Kevin C. H.; Servatius, Richard J.

    2013-01-01

    Post-traumatic stress disorder (PTSD) symptoms include behavioral avoidance which is acquired and tends to increase with time. This avoidance may represent a general learning bias; indeed, individuals with PTSD are often faster than controls on acquiring conditioned responses based on physiologically-aversive feedback. However, it is not clear whether this learning bias extends to cognitive feedback, or to learning from both reward and punishment. Here, male veterans with self-reported current, severe PTSD symptoms (PTSS group) or with few or no PTSD symptoms (control group) completed a probabilistic classification task that included both reward-based and punishment-based trials, where feedback could take the form of reward, punishment, or an ambiguous “no-feedback” outcome that could signal either successful avoidance of punishment or failure to obtain reward. The PTSS group outperformed the control group in total points obtained; the PTSS group specifically performed better than the control group on reward-based trials, with no difference on punishment-based trials. To better understand possible mechanisms underlying observed performance, we used a reinforcement learning model of the task, and applied maximum likelihood estimation techniques to derive estimated parameters describing individual participants’ behavior. Estimations of the reinforcement value of the no-feedback outcome were significantly greater in the control group than the PTSS group, suggesting that the control group was more likely to value this outcome as positively reinforcing (i.e., signaling successful avoidance of punishment). This is consistent with the control group’s generally poorer performance on reward trials, where reward feedback was to be obtained in preference to the no-feedback outcome. Differences in the interpretation of ambiguous feedback may contribute to the facilitated reinforcement learning often observed in PTSD patients, and may in turn provide new insight into how pathological behaviors are acquired and maintained in PTSD. PMID:24015254

  13. Simulation of the elementary evolution operator with the motional states of an ion in an anharmonic trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Ludovic; Vaeck, Nathalie; Justum, Yves

    2015-04-07

    Following a recent proposal of L. Wang and D. Babikov [J. Chem. Phys. 137, 064301 (2012)], we theoretically illustrate the possibility of using the motional states of a Cd{sup +} ion trapped in a slightly anharmonic potential to simulate the single-particle time-dependent Schrödinger equation. The simulated wave packet is discretized on a spatial grid and the grid points are mapped on the ion motional states which define the qubit network. The localization probability at each grid point is obtained from the population in the corresponding motional state. The quantum gate is the elementary evolution operator corresponding to the time-dependent Schrödingermore » equation of the simulated system. The corresponding matrix can be estimated by any numerical algorithm. The radio-frequency field which is able to drive this unitary transformation among the qubit states of the ion is obtained by multi-target optimal control theory. The ion is assumed to be cooled in the ground motional state, and the preliminary step consists in initializing the qubits with the amplitudes of the initial simulated wave packet. The time evolution of the localization probability at the grids points is then obtained by successive applications of the gate and reading out the motional state population. The gate field is always identical for a given simulated potential, only the field preparing the initial wave packet has to be optimized for different simulations. We check the stability of the simulation against decoherence due to fluctuating electric fields in the trap electrodes by applying dissipative Lindblad dynamics.« less

  14. Space shuttle (ATP configuration) abort staging investigation

    NASA Technical Reports Server (NTRS)

    Rampy, J. M.; Blackwell, K. L.; Allen, E. C., Jr.; Fossler, I.

    1973-01-01

    A wind tunnel test conducted in a 14-inch trisonic wind tunnel to determine the force and moment characteristics of the ATP Orbiter and modified ATP External Tank/SRB combination during abort staging conditions is discussed. Six component aerodynamic force and moment data were recorded for the orbiter and ET/SRB combination. Pitch polars were obtained for an angle of attack range from minus 10 to plus 10 degrees and orbiter incidence angles (orbiter relative to the ET/SRB combination) of 0 and 2 degrees. A limited amount of yaw data were obtained at 0 degree angle of attack and beta range from minus 10 to plus 10 degrees. In addition, orbiter pitch control effectiveness was determined at several grid points. These force and moment data were obtained for Mach numbers of 0.9, 1.2 and 2.0.

  15. Georeferencing UAS Derivatives Through Point Cloud Registration with Archived Lidar Datasets

    NASA Astrophysics Data System (ADS)

    Magtalas, M. S. L. Y.; Aves, J. C. L.; Blanco, A. C.

    2016-10-01

    Georeferencing gathered images is a common step before performing spatial analysis and other processes on acquired datasets using unmanned aerial systems (UAS). Methods of applying spatial information to aerial images or their derivatives is through onboard GPS (Global Positioning Systems) geotagging, or through tying of models through GCPs (Ground Control Points) acquired in the field. Currently, UAS (Unmanned Aerial System) derivatives are limited to meter-levels of accuracy when their generation is unaided with points of known position on the ground. The use of ground control points established using survey-grade GPS or GNSS receivers can greatly reduce model errors to centimeter levels. However, this comes with additional costs not only with instrument acquisition and survey operations, but also in actual time spent in the field. This study uses a workflow for cloud-based post-processing of UAS data in combination with already existing LiDAR data. The georeferencing of the UAV point cloud is executed using the Iterative Closest Point algorithm (ICP). It is applied through the open-source CloudCompare software (Girardeau-Montaut, 2006) on a `skeleton point cloud'. This skeleton point cloud consists of manually extracted features consistent on both LiDAR and UAV data. For this cloud, roads and buildings with minimal deviations given their differing dates of acquisition are considered consistent. Transformation parameters are computed for the skeleton cloud which could then be applied to the whole UAS dataset. In addition, a separate cloud consisting of non-vegetation features automatically derived using CANUPO classification algorithm (Brodu and Lague, 2012) was used to generate a separate set of parameters. Ground survey is done to validate the transformed cloud. An RMSE value of around 16 centimeters was found when comparing validation data to the models georeferenced using the CANUPO cloud and the manual skeleton cloud. Cloud-to-cloud distance computations of CANUPO and manual skeleton clouds were obtained with values for both equal to around 0.67 meters at 1.73 standard deviation.

  16. The Segmentation of Point Clouds with K-Means and ANN (artifical Neural Network)

    NASA Astrophysics Data System (ADS)

    Kuçak, R. A.; Özdemir, E.; Erol, S.

    2017-05-01

    Segmentation of point clouds is recently used in many Geomatics Engineering applications such as the building extraction in urban areas, Digital Terrain Model (DTM) generation and the road or urban furniture extraction. Segmentation is a process of dividing point clouds according to their special characteristic layers. The present paper discusses K-means and self-organizing map (SOM) which is a type of ANN (Artificial Neural Network) segmentation algorithm which treats the segmentation of point cloud. The point clouds which generate with photogrammetric method and Terrestrial Lidar System (TLS) were segmented according to surface normal, intensity and curvature. Thus, the results were evaluated. LIDAR (Light Detection and Ranging) and Photogrammetry are commonly used to obtain point clouds in many remote sensing and geodesy applications. By photogrammetric method or LIDAR method, it is possible to obtain point cloud from terrestrial or airborne systems. In this study, the measurements were made with a Leica C10 laser scanner in LIDAR method. In photogrammetric method, the point cloud was obtained from photographs taken from the ground with a 13 MP non-metric camera.

  17. Parental knowledge and metabolic control of children and young adults with type 1 diabetes

    PubMed Central

    Mysliwiec, Malgorzata; Adamkiewicz-Drozynska, Elzbieta

    2016-01-01

    Introduction The authors aimed to answer the following questions: 1) What level of knowledge of type 1 diabetes do the parents of children and young adults with this disease have? 2) Will this level of knowledge increase after 1 year of observation? 3) Does improving the knowledge of young adults and their parents result in better metabolic control of the patients? Material and methods This study included 227 patients between the ages of 5 and 20 years with type 1 diabetes. The research was conducted from March 2009 to June 2011. The following two time points were examined: the beginning of the study (test 1a) and one year later (test 1b). The knowledge levels of the patients and parents were obtained using a survey and a knowledge test. Results Comparison of the results from the two study time points showed that the respondents had a significantly higher level of knowledge after 1 year (p = 0.001). The comparison of glycated hemoglobin levels between the two time points in patients with type 1 diabetes revealed that the levels were significantly higher at test 1b compared to test 1a (p = 0.0005). Conclusions The parents of children and young adults with type 1 diabetes demonstrate a satisfactory level of theoretical knowledge of therapeutic conduct and self-monitoring principles. The test 1b results demonstrated a higher level of theoretical knowledge in all respondents and poorer metabolic control. Poorer metabolic control in some patients suggests that metabolic control in type 1 diabetes depends on factors other than education. Further research is necessary to determine these additional factors. PMID:29379532

  18. Nearly fully compressed 1053 nm pulses directly obtained from 800 nm laser-seeded photonic crystal fiber below zero dispersion point

    NASA Astrophysics Data System (ADS)

    Refaeli, Zaharit; Shamir, Yariv; Ofir, Atara; Marcus, Gilad

    2018-02-01

    We report a simple robust and broadly spectral-adjustable source generating near fully compressed 1053 nm 62 fs pulses directly out of a highly-nonlinear photonic crystal fiber. A dispersion-nonlinearity balance of 800 nm Ti:Sa 20 fs pulses was obtained initially by negative pre-chirping and then launching the pulses into the fibers' normal dispersion regime. Following a self-phase modulation spectral broadening, some energy that leaked below the zero dispersion point formed a soliton whose central wavelength could be tuned by Self-Frequency-Raman-Shift effect. Contrary to a common approach of power, or, fiber-length control over the shift, here we continuously varied the state of polarization, exploiting the Raman and Kerr nonlinearities responsivity for state of polarization. We obtained soliton pulses with central wavelength tuned over 150 nm, spanning from well below 1000 to over 1150 nm, of which we could select stable pulses around the 1 μm vicinity. With linewidth of > 20 nm FWHM Gaussian-like temporal-shape pulses with 62 fs duration and near flat phase structure we confirmed high quality pulse source. We believe such scheme can be used for high energy or high power glass lasers systems, such as Nd or Yb ion-doped amplifiers and systems.

  19. Multifocal visual evoked potential and automated perimetry abnormalities in strabismic amblyopes.

    PubMed

    Greenstein, Vivienne C; Eggers, Howard M; Hood, Donald C

    2008-02-01

    To compare visual field abnormalities obtained with standard automated perimetry (SAP) to those obtained with the multifocal visual evoked potential (mfVEP) technique in strabismic amblyopes. Humphrey 24-2 visual fields (HVF) and mfVEPs were obtained from each eye of 12 strabismic amblyopes. For the mfVEP, amplitudes and latencies were analyzed and probability plots were derived. Multifocal VEP and HVF hemifields were abnormal if they had clusters of two or more contiguous points at p < 0.01, or three or more contiguous points at p < 0.05 with at least one at p < 0.01. An eye was abnormal if it had an abnormal hemifield. On SAP, amblyopic eyes had significantly higher foveal thresholds (p = 0.003) and lower mean deviation values (p = 0.005) than fellow eyes. For the mfVEP, 11 amblyopic and 6 fellow eyes were abnormal. Of the 11 amblyopic eyes, 6 were abnormal on SAP. The deficits extended from the center to mid periphery. Monocular mfVEP latencies were significantly decreased for amblyopic eyes compared with control eyes (p < 0.0002). Both techniques revealed deficits in visual function across the visual field in strabismic amblyopes, but the mfVEP revealed deficits in fellow eyes and in more amblyopic eyes. In addition, mfVEP response latencies for amblyopic eyes were shorter than normal.

  20. Modelling and Model-Based-Designed PID Control of the JT-60SA Cryogenic System Using the Simcryogenics Library

    NASA Astrophysics Data System (ADS)

    Bonne, F.; Bonnay, P.; Hoa, C.; Mahoudeau, G.; Rousset, B.

    2017-02-01

    This papers deals with the Japan Torus-60 Super Advanced fusion experiment JT-60SA cryogenic system. A presentation of the JT-60SA cryogenic system model, from 300K to 4.4K -using the Matlab/Simulink/Simscape Simcryogenics library- will be given. As a first validation of our modelling strategy, the obtained operating point will be compared with the one obtained from HYSYS simulations. In the JT60-SA tokamak, pulsed heat loads are expected to be coming from the plasma and must be handled properly, using both appropriate refrigerator architecture and appropriate control model, to smooth the heat load. This paper presents model-based designed PID control schemes to control the helium mass inside the phase separator. The helium mass inside the phase separator as been chosen to be the variable of interest in the phase separator since it is independent of the pressure which can vary from 1 bar to 1.8 bar during load smoothing. Dynamics simulations will be shown to assess the legitimacy of the proposed strategy. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.

  1. Analysis of the postprandial lipid metabolism: use of a 3-point test.

    PubMed

    Guerci, B; Paul, J L; Hadjadj, S; Durlach, V; Vergès, B; Attia, N; Girard-Globa, A; Drouin, P

    2001-09-01

    The oral fat load tests used to study postprandial lipemia are complex and costly and time consuming. A simplified fat load test could be more convenient and more appropriate in routine clinical practice because of the number of lipid determinations required. We evaluated the capacity of a postprandial test model that reduced the number of blood samples taken in thirty three normal weight controls and 17 normotriglyceridemic obese patients (study 1), 10 normolipidemic type 2 diabetic patients and 7 healthy controls (study 2), and 10 hyperlipidemic type 2 diabetic patients studied before and after hypolipidemic therapy (study 3). Blood samples were taken before and up to 8 hours after giving the oral fat load containing retinol. Triglyceride (TG) and retinyl palmitate (RP) concentrations in the plasma, chylomicrons (CM) and non-chylomicron (nCM) fractions were measured. Postprandial lipid responses using conventional area under the curves (AUCc using 5 to 7 lipid determinations) were compared to a 3-point test that uses only three sample points to predict the area under the curve (AUCp: triglycerides at T0, triglycerides at average peak-time (T4), and triglycerides at T8). The AUCc and AUCp for triglycerides and retinyl palmitate were highly correlated in each of the groups and whatever the lipid subfraction (r=0.664 - 0.995, p<0.0001). When incremental AUC (iAUC) were used, the coefficients of correlation for triglycerides remained highly significant between iAUCc and iAUCp (r=0.718 - 0.979, p<0.01 - 0.0001). The same trend of differences was found between cases and controls when AUCp was used instead of AUCc. The means of differences between AUCc and AUCp for triglyceride values were small (0.34 - 0.74 mmol/L.h), and the confidence intervals were acceptable considering the range of the AUCs values (5.60 to 79.8 mmol/L.h for plasma triglycerides). We found that data obtained with a simplified model of AUC using only 3 points to analyse postprandial lipemia are well correlated with those obtained by conventional AUC, and that the AUCp allows to the same conclusions as AUCc when healthy subjects were compared to patients with altered postprandial metabolism. Thus AUCp may be a good evaluation of the AUCc, and the simplified 3-point protocol may well be used and suitable for studies on large groups of subjects who are eligible for an oral fat load test.

  2. Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behdadfar, Behshid, E-mail: bbehdadfar@ma.iut.ac.ir; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat

    Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids weremore » stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm{sup 2}/kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: Black-Right-Pointing-Pointer Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. Black-Right-Pointing-Pointer Citric acid acted as reducing agent and surfactant in the route. Black-Right-Pointing-Pointer This is a facile, low energy and environmental friendly route. Black-Right-Pointing-Pointer The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. Black-Right-Pointing-Pointer The calculated intrinsic loss power of the synthesized ferrofluids was very high.« less

  3. On computational experiments in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The results of mathematical modeling of effective heat and mass transfer on hypersonic aircraft permeable surfaces are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated. Some algorithms of control restoration are suggested for the interpolation and approximation statements of heat and mass transfer inverse problems. The differences between the methods applied for the problem solutions search for these statements are discussed. Both the algorithms are realized as programs. Many computational experiments were accomplished with the use of these programs. The parameters of boundary layer obtained by means of the A.A.Dorodnicyn's generalized integral relations method from solving the direct problems have been used to obtain the inverse problems solutions. Two types of blowing laws restoration for the inverse problem in interpolation statement are presented as the examples. The influence of the temperature factor on the blowing restoration is investigated. The different character of sensitivity of controllable parameters (the local heat flow and local tangent friction) respectively to step (discrete) changing of control (the blowing) and the switching point position is studied.

  4. Physical constraints, fundamental limits, and optimal locus of operating points for an inverted pendulum based actuated dynamic walker.

    PubMed

    Patnaik, Lalit; Umanand, Loganathan

    2015-10-26

    The inverted pendulum is a popular model for describing bipedal dynamic walking. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v0) and step angle (φm) chosen for a given walk. In this paper, using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the allowable region of operation of the walker in the v0-φm plane. A given average forward velocity vx,avg can be achieved by several combinations of v0 and φm. Only one of these combinations results in the minimum mechanical power consumption and can be considered the optimum operating point for the given vx,avg. This paper proposes a method for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various vx,avg, a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity.

  5. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...: (i) Critical control points designed to control food hazards that are reasonably likely to occur and could be introduced inside the processing plant environment; and (ii) Critical control points designed... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Hazard Analysis and Critical Control Point (HACCP...

  6. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: (i) Critical control points designed to control food hazards that are reasonably likely to occur and could be introduced inside the processing plant environment; and (ii) Critical control points designed... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Hazard Analysis and Critical Control Point (HACCP...

  7. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: (i) Critical control points designed to control food hazards that are reasonably likely to occur and could be introduced inside the processing plant environment; and (ii) Critical control points designed... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Hazard Analysis and Critical Control Point (HACCP...

  8. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: (i) Critical control points designed to control food hazards that are reasonably likely to occur and could be introduced inside the processing plant environment; and (ii) Critical control points designed... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Hazard Analysis and Critical Control Point (HACCP...

  9. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...: (i) Critical control points designed to control food hazards that are reasonably likely to occur and could be introduced inside the processing plant environment; and (ii) Critical control points designed... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hazard Analysis and Critical Control Point (HACCP...

  10. Triple point determinations of monomethylhydrazine and nitrogen tetroxide, 2.2 percent by weight nitric oxide

    NASA Technical Reports Server (NTRS)

    Smith, Irwin D.; Dhooge, Patrick M.

    1977-01-01

    A series of tests was performed to ascertain the triple points of monomethylhydrazine and nitrogen tetroxide. A laboratory method indicated a triple point for monomethylhydrazine, but tests in a large vacuum chamber indicated that a triple point does not occur in spacelike conditions because the mono-methylhydrazine tends to supercool. Instead, an effective freezing point (with agitation) was obtained. New experimental values for liquid monomethylhydrazine vapor pressure were determined for temperatures from 275.2 to 207.6 K. The values were used to derive vapor pressure equations. Tentative values were obtained for the effective freezing point of nitrogen tetroxide spacelike conditions.

  11. An in-situ measuring method for planar straightness error

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie

    2018-01-01

    According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.

  12. Ocean experiments and remotely sensed images of chemically dispersed oil spills

    NASA Technical Reports Server (NTRS)

    Croswell, W. F.; Fedors, J. C.; Hoge, F. E.; Swift, R. N.; Johnson, J. C.

    1983-01-01

    A series of experiments was performed at sea where the effectiveness of dispersants applied from a helicopter was tested on fresh and weathered crude oils released from a surface research vessel. In conjunction with these experiments, remote sensing measurements using an array of airborne optical and microwave sensors were performed in order to aid in the interpretation of the dispersant effectiveness and to obtain quantitative images of oil on the sea under controlled conditions. Surface oil thickness and volume are inferred from airborne measurements using a dual-channel microwave imaging radiometer, aerial color photography, and an airborne oceanographic lidar. The remotely sensed measurements are compared with point sampled data obtained using a research vessel. The mass balance computations of surface versus subsurface oil volume using remotely sensed and point sampled data are consistent with each other and with the volumes of oil released. Data collected by the several techniques concur in indicating that, for the oils used and under the sea conditions encountered, the dispersant and application method are primarily useful when applied to fresh oil.

  13. Reliability of unstable periodic orbit based control strategies in biological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Nagender; Singh, Harinder P.; Hasse, Maria

    2015-04-15

    Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry ofmore » the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.« less

  14. Evaluation of tunnel seismic prediction (TSP) result using the Japanese highway rock mass classification system for Pahang-Selangor Raw Water Transfer Tunnel

    NASA Astrophysics Data System (ADS)

    Von, W. C.; Ismail, M. A. M.

    2017-10-01

    The knowing of geological profile ahead of tunnel face is significant to minimize the risk in tunnel excavation work and cost control in preventative measure. Due to mountainous area, site investigation with vertical boring is not recommended to obtain the geological profile for Pahang-Selangor Raw Water Transfer project. Hence, tunnel seismic prediction (TSP) method is adopted to predict the geological profile ahead of tunnel face. In order to evaluate the TSP results, IBM SPSS Statistic 22 is used to run artificial neural network (ANN) analysis to back calculate the predicted Rock Grade Points (JH) from actual Rock Grade Points (JH) using Vp, Vs and Vp/Vs from TSP. The results show good correlation between predicted Rock Grade points and actual Rock Grade Points (JH). In other words, TSP can provide geological profile prediction ahead of tunnel face significantly while allowing continuously TBM excavation works. Identifying weak zones or faults ahead of tunnel face is crucial for preventative measures to be carried out in advance for a safer tunnel excavation works.

  15. The cislunar low-thrust trajectories via the libration point

    NASA Astrophysics Data System (ADS)

    Qu, Qingyu; Xu, Ming; Peng, Kun

    2017-05-01

    The low-thrust propulsion will be one of the most important propulsion in the future due to its large specific impulse. Different from traditional low-thrust trajectories (LTTs) yielded by some optimization algorithms, the gradient-based design methodology is investigated for LTTs in this paper with the help of invariant manifolds of LL1 point and Halo orbit near the LL1 point. Their deformations under solar gravitational perturbation are also presented to design LTTs in the restricted four-body model. The perturbed manifolds of LL1 point and its Halo orbit serve as the free-flight phase to reduce the fuel consumptions as much as possible. An open-loop control law is proposed, which is used to guide the spacecraft escaping from Earth or captured by Moon. By using a two-dimensional search strategy, the ON/OFF time of the low-thrust engine in the Earth-escaping and Moon-captured phases can be obtained. The numerical implementations show that the LTTs achieved in this paper are consistent with the one adopted by the SMART-1 mission.

  16. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains.

    PubMed

    Satomura, Atsushi; Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-03-17

    Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction.

  17. Variable Structure Control of a Hand-Launched Glider

    NASA Technical Reports Server (NTRS)

    Anderson, Mark R.; Waszak, Martin R.

    2005-01-01

    Variable structure control system design methods are applied to the problem of aircraft spin recovery. A variable structure control law typically has two phases of operation. The reaching mode phase uses a nonlinear relay control strategy to drive the system trajectory to a pre-defined switching surface within the motion state space. The sliding mode phase involves motion along the surface as the system moves toward an equilibrium or critical point. Analysis results presented in this paper reveal that the conventional method for spin recovery can be interpreted as a variable structure controller with a switching surface defined at zero yaw rate. Application of Lyapunov stability methods show that deflecting the ailerons in the direction of the spin helps to insure that this switching surface is stable. Flight test results, obtained using an instrumented hand-launched glider, are used to verify stability of the reaching mode dynamics.

  18. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    NASA Astrophysics Data System (ADS)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-12-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  19. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    PubMed

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  20. Experiments on active isolation using distributed PVDF error sensors

    NASA Technical Reports Server (NTRS)

    Lefebvre, S.; Guigou, C.; Fuller, C. R.

    1992-01-01

    A control system based on a two-channel narrow-band LMS algorithm is used to isolate periodic vibration at low frequencies on a structure composed of a rigid top plate mounted on a flexible receiving plate. The control performance of distributed PVDF error sensors and accelerometer point sensors is compared. For both sensors, high levels of global reduction, up to 32 dB, have been obtained. It is found that, by driving the PVDF strip output voltage to zero, the controller may force the structure to vibrate so that the integration of the strain under the length of the PVDF strip is zero. This ability of the PVDF sensors to act as spatial filters is especially relevant in active control of sound radiation. It is concluded that the PVDF sensors are flexible, nonfragile, and inexpensive and can be used as strain sensors for active control applications of vibration isolation and sound radiation.

  1. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    PubMed Central

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-01-01

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction. PMID:23673678

  2. Analysis of the accuracy and robustness of the leap motion controller.

    PubMed

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-05-14

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  3. Oilwell Power Controller (OPC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The Oil Well Power Controller (OPC) prototype units is nearing completion. This device is an oilwell beam pump controller and data logger. Applications for this device have been for an electrical power saving device, pump off control, parafffin detection, demand power load control, chemical treatment data, dynamometer and pump efficiency data. Preliminary results appear vary promising. A total of ten OPC rod pump controllers were assembled and installed on oilwells in several areas of Central and Western United States. Data was analyzed on these wells and forwarded to the participating oil companies. Cost savings on each individual oil well participatingmore » in the OPC testing vary considerably, savings on some situations have been outstanding. In situations where the pump efficiency was determined to be low, the cost savings have been considerable. Cost savings due to preventive maintenance are also present, but are difficult to pin point an exact dollar amount at the present time. A break out of actual cost data obtained on some of the oilwells controlled and monitored with the oilwell power controller.« less

  4. Gait Planning and Stability Control of a Quadruped Robot

    PubMed Central

    Li, Junmin; Wang, Jinge; Yang, Simon X.; Zhou, Kedong; Tang, Huijuan

    2016-01-01

    In order to realize smooth gait planning and stability control of a quadruped robot, a new controller algorithm based on CPG-ZMP (central pattern generator-zero moment point) is put forward in this paper. To generate smooth gait and shorten the adjusting time of the model oscillation system, a new CPG model controller and its gait switching strategy based on Wilson-Cowan model are presented in the paper. The control signals of knee-hip joints are obtained by the improved multi-DOF reduced order control theory. To realize stability control, the adaptive speed adjustment and gait switch are completed by the real-time computing of ZMP. Experiment results show that the quadruped robot's gaits are efficiently generated and the gait switch is smooth in the CPG control algorithm. Meanwhile, the stability of robot's movement is improved greatly with the CPG-ZMP algorithm. The algorithm in this paper has good practicability, which lays a foundation for the production of the robot prototype. PMID:27143959

  5. Gait Planning and Stability Control of a Quadruped Robot.

    PubMed

    Li, Junmin; Wang, Jinge; Yang, Simon X; Zhou, Kedong; Tang, Huijuan

    2016-01-01

    In order to realize smooth gait planning and stability control of a quadruped robot, a new controller algorithm based on CPG-ZMP (central pattern generator-zero moment point) is put forward in this paper. To generate smooth gait and shorten the adjusting time of the model oscillation system, a new CPG model controller and its gait switching strategy based on Wilson-Cowan model are presented in the paper. The control signals of knee-hip joints are obtained by the improved multi-DOF reduced order control theory. To realize stability control, the adaptive speed adjustment and gait switch are completed by the real-time computing of ZMP. Experiment results show that the quadruped robot's gaits are efficiently generated and the gait switch is smooth in the CPG control algorithm. Meanwhile, the stability of robot's movement is improved greatly with the CPG-ZMP algorithm. The algorithm in this paper has good practicability, which lays a foundation for the production of the robot prototype.

  6. Effect of Latent Myofascial Trigger Points on Strength Measurements of the Upper Trapezius: A Case-Controlled Trial

    PubMed Central

    Anshul

    2011-01-01

    ABSTRACT Purpose: The purpose of this article was to determine whether strength is altered in the upper trapezius in the presence of latent myofascial trigger points (MTrP). Methods: This study was case controlled and used convenience sampling. The sample recruited was homogeneous with respect to age, sex, height, and body mass. Participants were assessed for the presence of latent MTrP in the upper trapezius and placed into two groups: an experimental group that had latent MTrP in the upper trapezius and a control group that did not. Eighteen women (mean age 21.4 y, SD 1.89; mean height 156.9 cm, SD 4.03; and mean body mass 51.7 kg, SD 5.84) made up the experimental group, and 19 women (mean age 20.3 y, SD 1.86; mean height 158.6 cm, SD 3.14; and mean body mass 53.2 kg, SD 5.17) made up the control group. We obtained strength measurements of the non-dominant arm using a handheld dynamometer and compared them between the two groups. Results: The difference in the strength measurements between the two groups was not statistically significant (p=0.59). Conclusions: The presence of latent MTrPs may not affect the strength of the upper trapezius. PMID:22942517

  7. Automation of image data processing. (Polish Title: Automatyzacja proces u przetwarzania danych obrazowych)

    NASA Astrophysics Data System (ADS)

    Preuss, R.

    2014-12-01

    This article discusses the current capabilities of automate processing of the image data on the example of using PhotoScan software by Agisoft. At present, image data obtained by various registration systems (metric and non - metric cameras) placed on airplanes, satellites, or more often on UAVs is used to create photogrammetric products. Multiple registrations of object or land area (large groups of photos are captured) are usually performed in order to eliminate obscured area as well as to raise the final accuracy of the photogrammetric product. Because of such a situation t he geometry of the resulting image blocks is far from the typical configuration of images. For fast images georeferencing automatic image matching algorithms are currently applied. They can create a model of a block in the local coordinate system or using initial exterior orientation and measured control points can provide image georeference in an external reference frame. In the case of non - metric image application, it is also possible to carry out self - calibration process at this stage. Image matching algorithm is also used in generation of dense point clouds reconstructing spatial shape of the object (area). In subsequent processing steps it is possible to obtain typical photogrammetric products such as orthomosaic, DSM or DTM and a photorealistic solid model of an object . All aforementioned processing steps are implemented in a single program in contrary to standard commercial software dividing all steps into dedicated modules. Image processing leading to final geo referenced products can be fully automated including sequential implementation of the processing steps at predetermined control parameters. The paper presents the practical results of the application fully automatic generation of othomosaic for both images obtained by a metric Vexell camera and a block of images acquired by a non - metric UAV system

  8. Registration of opthalmic images using control points

    NASA Astrophysics Data System (ADS)

    Heneghan, Conor; Maguire, Paul

    2003-03-01

    A method for registering pairs of digital ophthalmic images of the retina is presented using anatomical features as control points present in both images. The anatomical features chosen are blood vessel crossings and bifurcations. These control points are identified by a combination of local contrast enhancement, and morphological processing. In general, the matching between control points is unknown, however, so an automated algorithm is used to determine the matching pairs of control points in the two images as follows. Using two control points from each image, rigid global transform (RGT) coefficients are calculated for all possible combinations of control point pairs, and the set of RGT coefficients is identified. Once control point pairs are established, registration of two images can be achieved by using linear regression to optimize an RGT, bilinear or second order polynomial global transform. An example of cross-modal image registration using an optical image and a fluorescein angiogram of an eye is presented to illustrate the technique.

  9. Analysis of sustainable pest control using a pesticide and a screened refuge.

    PubMed

    Ringland, John; George, Prasanth

    2011-05-01

    We describe and analyze a 'screened refuge' technique for indefinitely sustaining control of insect pests using transgenic pesticidal crops or an applied pesticide, even when resistance is not recessive. The screen is a physical barrier that restricts pest movement. In a deterministic discrete-time model of the use of this technique, we obtain asymptotic analytical formulas for the two important equilibria of the system in terms of the refuge size and the pest fitnesses, mutation rates, and mobility out of and into the refuge. One of the equilibria is stable and is the point at which the pest population is controlled. The other is a saddle whose stable manifold bounds the basin of attraction of the former: its location provides a measure of the tolerance of the control mechanism to perturbations in the resistant allele density.

  10. Baseline scheme for polarization preservation and control in the MEIC ion complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derbenev, Yaroslav S.; Lin, Fanglei; Morozov, Vasiliy

    2015-09-01

    The scheme for preservation and control of the ion polarization in the Medium-energy Electron-Ion Collider (MEIC) has been under active development in recent years. The figure-8 configuration of the ion rings provides a unique capability to control the polarization of any ion species including deuterons by means of "weak" solenoids rotating the particle spins by small angles. Insertion of "weak" solenoids into the magnetic lattices of the booster and collider rings solves the problem of polarization preservation during acceleration of the ion beam. Universal 3D spin rotators designed on the basis of "weak" solenoids allow one to obtain any polarizationmore » orientation at an interaction point of MEIC. This paper presents the baseline scheme for polarization preservation and control in the MEIC ion complex.« less

  11. Relationship between postural alignment in sitting by photogrammetry and seated postural control in post-stroke subjects.

    PubMed

    Iyengar, Y R; Vijayakumar, K; Abraham, J M; Misri, Z K; Suresh, B V; Unnikrishnan, B

    2014-01-01

    This study was executed to find out correlation between postural alignment in sitting measured through photogrammetry and postural control in sitting following stroke. A cross-sectional study with convenient sampling consisting of 45 subjects with acute and sub-acute stroke. Postural alignment in sitting was measured through photogrammetry and relevant angles were obtained through software MB Ruler (version 5.0). Seated postural control was measured through Function in Sitting Test (FIST). Correlation was obtained using Spearman's Rank Correlation co-efficient in SPSS software (version 17.0). Moderate positive correlation (r = 0.385; p < 0.01) was found between angle of lordosis and angle between acromion, lateral epicondyle and point between radius and ulna. Strong negative correlation (r = -0.435; p < 0.01) was found between cranio-vertebral angle and kyphosis. FIST showed moderate positive correlation (r = 0.3446; p < 0.05) with cranio-vertebral angle and strong positive correlation (r = 0.4336; p < 0.01) with Brunnstrom's stage of recovery in upper extremity. Degree of forward head posture in sitting correlates directly with seated postural control and inversely with degree of kyphosis in sitting post-stroke. Postural control in sitting post-stroke is directly related with Brunnstrom's stage of recovery in affected upper extremity in sitting.

  12. Modafinil May Alleviate Poststroke Fatigue: A Randomized, Placebo-Controlled, Double-Blinded Trial.

    PubMed

    Poulsen, Mai Bang; Damgaard, Bodil; Zerahn, Bo; Overgaard, Karsten; Rasmussen, Rune Skovgaard

    2015-12-01

    Poststroke fatigue is common and reduces quality of life. Current evidence for intervention is limited, and this is the first placebo-controlled trial to investigate treatment of poststroke fatigue with the wakefulness promoting drug modafinil. The trial was randomized, double-blinded, and placebo-controlled. Patients were treated with 400-mg modafinil or placebo for 90 days. Assessments were done at inclusion, 30, 90, and 180 days. The primary end point was fatigue at 90 days measured by the Multidimensional Fatigue Inventory-20 general fatigue domain. Secondary end points included the Fatigue Severity Scale, the Montreal Cognitive Assessment, the modified Rankin Scale and the Stroke-specific quality of Life questionnaire. Adult patients with a recent stroke achieving a score of ≥12 on the Multidimensional Fatigue Inventory-20 general fatigue domain were consecutively included. Exclusion criteria were severe cognitive disabilities and contraindications for modafinil treatment. One thousand one hundred twenty-one patients with stroke were screened and 41 patients included, 21 received modafinil. The primary end point, the Multidimensional Fatigue Inventory-20 general fatigue score, did not differ between groups. Patients in the modafinil group obtained better scores on the Fatigue Severity Scale (P=0.02) and in some subscales of the stroke-specific quality of life questionnaire (0.001

  13. Earth observing system instrument pointing control modeling for polar orbiting platforms

    NASA Technical Reports Server (NTRS)

    Briggs, H. C.; Kia, T.; Mccabe, S. A.; Bell, C. E.

    1987-01-01

    An approach to instrument pointing control performance assessment for large multi-instrument platforms is described. First, instrument pointing requirements and reference platform control systems for the Eos Polar Platforms are reviewed. Performance modeling tools including NASTRAN models of two large platforms, a modal selection procedure utilizing a balanced realization method, and reduced order platform models with core and instrument pointing control loops added are then described. Time history simulations of instrument pointing and stability performance in response to commanded slewing of adjacent instruments demonstrates the limits of tolerable slew activity. Simplified models of rigid body responses are also developed for comparison. Instrument pointing control methods required in addition to the core platform control system to meet instrument pointing requirements are considered.

  14. Generalized contractive mappings and weakly α-admissible pairs in G-metric spaces.

    PubMed

    Hussain, N; Parvaneh, V; Hoseini Ghoncheh, S J

    2014-01-01

    The aim of this paper is to present some coincidence and common fixed point results for generalized (ψ, φ)-contractive mappings using partially weakly G-α-admissibility in the setup of G-metric space. As an application of our results, periodic points of weakly contractive mappings are obtained. We also derive certain new coincidence point and common fixed point theorems in partially ordered G-metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results.

  15. Generalized Contractive Mappings and Weakly α-Admissible Pairs in G-Metric Spaces

    PubMed Central

    Hussain, N.; Parvaneh, V.; Hoseini Ghoncheh, S. J.

    2014-01-01

    The aim of this paper is to present some coincidence and common fixed point results for generalized (ψ, φ)-contractive mappings using partially weakly G-α-admissibility in the setup of G-metric space. As an application of our results, periodic points of weakly contractive mappings are obtained. We also derive certain new coincidence point and common fixed point theorems in partially ordered G-metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25202742

  16. Apparatus and method for optimal phase balancing using dynamic programming with spatial consideration

    DOEpatents

    Robertazzi, Thomas G.; Skiena, Steven; Wang, Kai

    2017-08-08

    Provided are an apparatus and method for load-balancing of a three-phase electric power distribution system having a multi-phase feeder, including obtaining topology information of the feeder identifying supply points for customer loads and feeder sections between the supply points, obtaining customer information that includes peak customer load at each of the points between each of the feeder sections, performing a phase balancing analysis, and recommending phase assignment at the customer load supply points.

  17. Point shear wave elastography of the pancreas in patients with cystic fibrosis: a comparison with healthy controls.

    PubMed

    Pfahler, Matthias Hermann Christian; Kratzer, Wolfgang; Leichsenring, Michael; Graeter, Tilmann; Schmidt, Stefan Andreas; Wendlik, Inka; Lormes, Elisabeth; Schmidberger, Julian; Fabricius, Dorit

    2018-02-19

    Manifestations of cystic fibrosis in the pancreas are gaining in clinical importance as patients live longer. Conventional ultrasonography and point shear wave elastography (pSWE) imaging are non-invasive and readily available diagnostic methods that are easy to perform. The aim of this study was to perform conventional ultrasonography and obtain pSWE values in the pancreases of patients with cystic fibrosis and to compare the findings with those of healthy controls. 27 patients with cystic fibrosis (13 women/14 men; mean age 27.7 ± 13.7 years; range 9-58 years) and 60 healthy control subjects (30 women/30 men; mean age 30.3 ± 10.0 years; range 22-55 years) underwent examinations of the pancreas with conventional ultrasound and pSWE imaging. Patients with cystic fibrosis have an echogenic pancreatic parenchyma. We found cystic lesions of the pancreas in six patients. pSWE imaging of the pancreatic parenchyma gave significantly lower shear wave velocities in patients with cystic fibrosis than in the control group (1.01 m/s vs 1.30 m/s; p < 0.001). Using pSWE imaging in vivo, we have shown that the pancreas is considerably softer in patients with cystic fibrosis than in a healthy control population.

  18. Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method.

    PubMed

    Bhaya, Amit; Kaszkurewicz, Eugenius

    2004-01-01

    It is pointed out that the so called momentum method, much used in the neural network literature as an acceleration of the backpropagation method, is a stationary version of the conjugate gradient method. Connections with the continuous optimization method known as heavy ball with friction are also made. In both cases, adaptive (dynamic) choices of the so called learning rate and momentum parameters are obtained using a control Liapunov function analysis of the system.

  19. Hormonal and metabolic responses of hypophysectomized rats with head-down suspension

    NASA Technical Reports Server (NTRS)

    Tipton, C. M.; Grindeland, R. E.; Woodman, C. R.; Gosselink, K.; Linderman, J. K.; Mukku, V. R.; Gooselink, K.

    1994-01-01

    The primary purpose of this investigation was to secure select anatomical and physiological measurements from hypophysectomized rats and their sham-operated control to determine how various endocrine influences could be modified by conditions of simulated microgravity. The focal point of the study was the exercise responses after head-down suspension; however, we were also interested in obtaining insights on nonexercise-related mechanisms. Since more details and information concerning this study will be published elsewhere, we will highlight those findings which warrant further research.

  20. Two-Channel Kondo Effect in a Modified Single Electron Transistor

    NASA Astrophysics Data System (ADS)

    Oreg, Yuval; Goldhaber-Gordon, David

    2003-04-01

    We suggest a simple system of two electron droplets which should display two-channel Kondo behavior at experimentally accessible temperatures. Stabilization of the two-channel Kondo fixed point requires fine control of the electrochemical potential in each droplet, which can be achieved by adjusting voltages on nearby gate electrodes. We study the conditions for obtaining this type of two-channel Kondo behavior, discuss the experimentally observable consequences, and explore the gener­alization to the multichannel Kondo case.

  1. Stability of controlled inverted pendulum under permanent horizontal perturbations of the supporting point

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. V.; Reyes-Romero, M.; Sidorenko, G. Yu.; Temoltzi-Auila, R.

    2010-04-01

    We consider the problem of choosing a test perturbation of a movable foundation of a single-link inverted pendulum so as to test a vestibular prosthesis prototype located at the top of this pendulum in an extreme situation. The obtained results permit concluding that the information transmitted from otolithic organs of the human vestibular system to muscles of the locomotor apparatus is very important and improves the quality of stabilization of the human vertical posture preventing the possible fall.

  2. Using virtual reality and game technology to assist command and control

    NASA Astrophysics Data System (ADS)

    Riead, Lorien H.; Straub, James; Mangino, Joseph

    2017-04-01

    Recent improvements in virtual reality hardware have brought this technology to the point where easily-obtained commercial equipment can conceivably provide an affordable and relatively unexplored alternative to the traditional monitor and keyboard view of the tactical space. In addition, commercially available game engines provide several advantages for tactical applications. Using these technologies, we have created a concept of a low-cost display that allows for real-time immersive planning and strategy, with suggestions for further exploration.

  3. Military Review: The Professional Journal of the U.S. Army, August 2008. Special Edition: Counterinsurgency Reader II

    DTIC Science & Technology

    2008-08-01

    method to obtain the information Soldiers need to succeed in counterinsurgency. 133 Paper and COIN: Exploiting the Enemy’s Documents Major Vernie...people (IDPs) Use technicians to make DVDs and web site Extortion: provide “protection” merchant’s vehicles Pass info tea shop grid 17S12345678...merchant who provides printing and materials for paper TCP: Traffic Control Point, SAF: Small Arms Fire, MNF-I: Multi-National Forces-Iraq from local

  4. Recommendations and Privacy Requirements for a Bring-Your-Own-Device User Policy and Agreement

    DTIC Science & Technology

    2015-03-01

    manipulate data from non-traditional workplaces to support mission requirements. The United States Marine Corps (USMC) has started a pilot BYOD program, but...contrasted to obtain a starting point to develop a user agreement for the USMC. The security controls identified within these case studies were also...participating in a BYOD program. A. MARINE CORPS PILOT PROGRAM Starting in January 2015 and at the behest of the USMC, the Marine Corps Network Operations and

  5. Diffusion in the system K2O-SrO-SiO2. II - Cation self-diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Varshneya, A. K.; Cooper, A. R.

    1972-01-01

    The self-diffusion coefficients were measured by introducing a slab of glass previously irradiated in a reactor between two slabs of unirradiated glass. By heating the specimens, etching them sequentially and determining the radioactivity, self-diffusion coefficients for K and Sr were measured. It is pointed out that the results obtained in the investigations appear to support the proposal that the network of the base glass predominantly controls the activation energy for the diffusion of ions.

  6. Design and Production of Color Calibration Targets for Digital Input Devices

    DTIC Science & Technology

    2000-07-01

    gamuts . Fourth, color transform form CIELCH to sRGB will be described. Fifth, the relevant target mockups will be created. Sixth, the quality will be...Implement statistical _ • process controls Print, process and measure •, reject Transfer the measured CIEXYZ of I the target patches to SRGB a Genterate...Kodak Royal VII paper and sRGB . This plot shows all points on the a*-b* plane without information about the L*. The sRGB’s color gamut is obtained from

  7. 47 CFR 22.325 - Control points.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Control points. 22.325 Section 22.325... Operational and Technical Requirements Operational Requirements § 22.325 Control points. Each station in the Public Mobile Services must have at least one control point and a person on duty who is responsible for...

  8. 47 CFR 22.325 - Control points.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Control points. 22.325 Section 22.325... Operational and Technical Requirements Operational Requirements § 22.325 Control points. Each station in the Public Mobile Services must have at least one control point and a person on duty who is responsible for...

  9. 47 CFR 22.325 - Control points.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Control points. 22.325 Section 22.325... Operational and Technical Requirements Operational Requirements § 22.325 Control points. Each station in the Public Mobile Services must have at least one control point and a person on duty who is responsible for...

  10. 47 CFR 22.325 - Control points.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Control points. 22.325 Section 22.325... Operational and Technical Requirements Operational Requirements § 22.325 Control points. Each station in the Public Mobile Services must have at least one control point and a person on duty who is responsible for...

  11. 47 CFR 22.325 - Control points.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Control points. 22.325 Section 22.325... Operational and Technical Requirements Operational Requirements § 22.325 Control points. Each station in the Public Mobile Services must have at least one control point and a person on duty who is responsible for...

  12. Angiogram, fundus, and oxygen saturation optic nerve head image fusion

    NASA Astrophysics Data System (ADS)

    Cao, Hua; Khoobehi, Bahram

    2009-02-01

    A novel multi-modality optic nerve head image fusion approach has been successfully designed. The new approach has been applied on three ophthalmologic modalities: angiogram, fundus, and oxygen saturation retinal optic nerve head images. It has achieved an excellent result by giving the visualization of fundus or oxygen saturation images with a complete angiogram overlay. During this study, two contributions have been made in terms of novelty, efficiency, and accuracy. The first contribution is the automated control point detection algorithm for multi-sensor images. The new method employs retina vasculature and bifurcation features by identifying the initial good-guess of control points using the Adaptive Exploratory Algorithm. The second contribution is the heuristic optimization fusion algorithm. In order to maximize the objective function (Mutual-Pixel-Count), the iteration algorithm adjusts the initial guess of the control points at the sub-pixel level. A refinement of the parameter set is obtained at the end of each loop, and finally an optimal fused image is generated at the end of the iteration. It is the first time that Mutual-Pixel-Count concept has been introduced into biomedical image fusion area. By locking the images in one place, the fused image allows ophthalmologists to match the same eye over time and get a sense of disease progress and pinpoint surgical tools. The new algorithm can be easily expanded to human or animals' 3D eye, brain, or body image registration and fusion.

  13. Study on the initial value for the exterior orientation of the mobile version

    NASA Astrophysics Data System (ADS)

    Yu, Zhi-jing; Li, Shi-liang

    2011-10-01

    Single mobile vision coordinate measurement system is in the measurement site using a single camera body and a notebook computer to achieve three-dimensional coordinates. To obtain more accurate approximate values of exterior orientation calculation in the follow-up is very important in the measurement process. The problem is a typical one for the space resection, and now studies on this topic have been widely conducted in research. Single-phase space resection mainly focuses on two aspects: of co-angular constraint based on the method, its representatives are camera co-angular constraint pose estimation algorithm and the cone angle law; the other is a direct linear transformation (DLT). One common drawback for both methods is that the CCD lens distortion is not considered. When the initial value was calculated with the direct linear transformation method, the distribution and abundance of control points is required relatively high, the need that control points can not be distributed in the same plane must be met, and there are at least six non- coplanar control points. However, its usefulness is limited. Initial value will directly influence the convergence and convergence speed of the ways of calculation. This paper will make the nonlinear of the total linear equations linearized by using the total linear equations containing distorted items and Taylor series expansion, calculating the initial value of the camera exterior orientation. Finally, the initial value is proved to be better through experiments.

  14. Image registration with auto-mapped control volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreibmann, Eduard; Xing Lei

    2006-04-15

    Many image registration algorithms rely on the use of homologous control points on the two input image sets to be registered. In reality, the interactive identification of the control points on both images is tedious, difficult, and often a source of error. We propose a two-step algorithm to automatically identify homologous regions that are used as a priori information during the image registration procedure. First, a number of small control volumes having distinct anatomical features are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find their correspondences in the reference image through user interaction,more » in the proposed method, each of the control regions is mapped to the corresponding part of the reference image by using an automated image registration algorithm. A normalized cross-correlation (NCC) function or mutual information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was employed to optimize the function to find the optimal mapping. For rigid registration, the transformation parameters of the system are obtained by averaging that derived from the individual control volumes. In our deformable calculation, the mapped control volumes are treated as the nodes or control points with known positions on the two images. If the number of control volumes is not enough to cover the whole image to be registered, additional nodes are placed on the model image and then located on the reference image in a manner similar to the conventional BSpline deformable calculation. For deformable registration, the established correspondence by the auto-mapped control volumes provides valuable guidance for the registration calculation and greatly reduces the dimensionality of the problem. The performance of the two-step registrations was applied to three rigid registration cases (two PET-CT registrations and a brain MRI-CT registration) and one deformable registration of inhale and exhale phases of a lung 4D CT. Algorithm convergence was confirmed by starting the registration calculations from a large number of initial transformation parameters. An accuracy of {approx}2 mm was achieved for both deformable and rigid registration. The proposed image registration method greatly reduces the complexity involved in the determination of homologous control points and allows us to minimize the subjectivity and uncertainty associated with the current manual interactive approach. Patient studies have indicated that the two-step registration technique is fast, reliable, and provides a valuable tool to facilitate both rigid and nonrigid image registrations.« less

  15. Dynamic phase transitions of the Blume-Emery-Griffiths model under an oscillating external magnetic field by the path probability method

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume-Emery-Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.

  16. Instrument Pointing Control System for the Stellar Interferometry Mission - Planet Quest

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul B.; Kang, Bryan

    2006-01-01

    This paper describes the high precision Instrument Pointing Control System (PCS) for the Stellar Interferometry Mission (SIM) - Planet Quest. The PCS system provides front-end pointing, compensation for spacecraft motion, and feedforward stabilization, which are needed for proper interference. Optical interferometric measurements require very precise pointing (0.03 as, 1-(sigma) radial) for maximizing the interference pattern visibility. This requirement is achieved by fine pointing control of articulating pointing mirrors with feedback from angle tracking cameras. The overall pointing system design concept is presentcd. Functional requirements and an acquisition concept are given. Guide and Science pointing control loops are discussed. Simulation analyses demonstrate the feasibility of the design.

  17. Preliminary Retrospective Analysis of Daily Tomotherapy Output Constancy Checks Using Statistical Process Control.

    PubMed

    Mezzenga, Emilio; D'Errico, Vincenzo; Sarnelli, Anna; Strigari, Lidia; Menghi, Enrico; Marcocci, Francesco; Bianchini, David; Benassi, Marcello

    2016-01-01

    The purpose of this study was to retrospectively evaluate the results from a Helical TomoTherapy Hi-Art treatment system relating to quality controls based on daily static and dynamic output checks using statistical process control methods. Individual value X-charts, exponentially weighted moving average charts, and process capability and acceptability indices were used to monitor the treatment system performance. Daily output values measured from January 2014 to January 2015 were considered. The results obtained showed that, although the process was in control, there was an out-of-control situation in the principal maintenance intervention for the treatment system. In particular, process capability indices showed a decreasing percentage of points in control which was, however, acceptable according to AAPM TG148 guidelines. Our findings underline the importance of restricting the acceptable range of daily output checks and suggest a future line of investigation for a detailed process control of daily output checks for the Helical TomoTherapy Hi-Art treatment system.

  18. Nickel recovery from electronic waste II electrodeposition of Ni and Ni-Fe alloys from diluted sulfate solutions.

    PubMed

    Robotin, B; Ispas, A; Coman, V; Bund, A; Ilea, P

    2013-11-01

    This study focuses on the electrodeposition of Ni and Ni-Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni(2+)/Fe(2+) ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits' thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni-Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni-Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni-Fe, the obtained data points are best fitted to an instantaneous nucleation model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Molecular control mechanisms of lysine and threonine biosynthesis in amino acid-producing corynebacteria: redirecting carbon flow.

    PubMed

    Malumbres, M; Martín, J F

    1996-10-01

    Threonine and lysine are two of the economically most important essential amino acids. They are produced industrially by species of the genera Corynebacterium and Brevibacterium. The branched biosynthetic pathway of these amino acids in corynebacteria is unusual in gene organization and in the control of key enzymatic steps with respect to other microorganisms. This article reviews the molecular control mechanisms of the biosynthetic pathways leading to threonine and lysine in corynebacteria, and their implications in the production of these amino acids. Carbon flux can be redirected at branch points by gene disruption of the competing pathways for lysine or threonine. Removal of bottlenecks has been achieved by amplification of genes which encode feedback resistant aspartokinase and homoserine dehydrogenase (obtained by in vitro directed mutagenesis).

  20. Unified dead-time compensation structure for SISO processes with multiple dead times.

    PubMed

    Normey-Rico, Julio E; Flesch, Rodolfo C C; Santos, Tito L M

    2014-11-01

    This paper proposes a dead-time compensation structure for processes with multiple dead times. The controller is based on the filtered Smith predictor (FSP) dead-time compensator structure and it is able to control stable, integrating, and unstable processes with multiple input/output dead times. An equivalent model of the process is first computed in order to define the predictor structure. Using this equivalent model, the primary controller and the predictor filter are tuned to obtain an internally stable closed-loop system which also attempts some closed-loop specifications in terms of set-point tracking, disturbance rejection, and robustness. Some simulation case studies are used to illustrate the good properties of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Multi-objective design of fuzzy logic controller in supply chain

    NASA Astrophysics Data System (ADS)

    Ghane, Mahdi; Tarokh, Mohammad Jafar

    2012-08-01

    Unlike commonly used methods, in this paper, we have introduced a new approach for designing fuzzy controllers. In this approach, we have simultaneously optimized both objective functions of a supply chain over a two-dimensional space. Then, we have obtained a spectrum of optimized points, each of which represents a set of optimal parameters which can be chosen by the manager according to the importance of objective functions. Our used supply chain model is a member of inventory and order-based production control system family, a generalization of the periodic review which is termed `Order-Up-To policy.' An auto rule maker, based on non-dominated sorting genetic algorithm-II, has been applied to the experimental initial fuzzy rules. According to performance measurement, our results indicate the efficiency of the proposed approach.

  2. Compensated control loops for a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1976-01-01

    The vaporizer dynamic control characteristics of a 30-cm diameter mercury ion thruster were determined by operating the thruster in an open loop steady state mode and then introducing a small sinusoidal signal on the main, cathode, or neutralizer vaporizer current and observing the response of the beam current, discharge voltage, and neutralizer keeper voltage, respectively. This was done over a range of frequencies and operating conditions. From these data, Bode plots for gain and phase were made and mathematical models were obtained. The Bode plots and mathematical models were analyzed for stability and appropriate compensation networks determined. The compensated control loops were incorporated into a power processor and operated with a thruster. The time responses of the compensated loops to changes in set points and recovery from arc conditions are presented.

  3. A high speed buffer for LV data acquisition

    NASA Technical Reports Server (NTRS)

    Cavone, Angelo A.; Sterlina, Patrick S.; Clemmons, James I., Jr.; Meyers, James F.

    1987-01-01

    The laser velocimeter (autocovariance) buffer interface is a data acquisition subsystem designed specifically for the acquisition of data from a laser velocimeter. The subsystem acquires data from up to six laser velocimeter components in parallel, measures the times between successive data points for each of the components, establishes and maintains a coincident condition between any two or three components, and acquires data from other instrumentation systems simultaneously with the laser velocimeter data points. The subsystem is designed to control the entire data acquisition process based on initial setup parameters obtained from a host computer and to be independent of the computer during the acquisition. On completion of the acquisition cycle, the interface transfers the contents of its memory to the host under direction of the host via a single 16-bit parallel DMA channel.

  4. Anti-streptococcal, tubulin, and dopamine receptor 2 antibodies in children with PANDAS and Tourette syndrome: single-point and longitudinal assessments.

    PubMed

    Morris-Berry, C M; Pollard, M; Gao, S; Thompson, C; Singer, H S

    2013-11-15

    Single-point-in-time ELISA optical densities for three putative antibodies identified in Sydenham's chorea, the streptococcal group A carbohydrate antigen, N-acetyl-beta-d-glucosamine, tubulin, and the dopamine 2 receptor, showed no differences in children with PANDAS (n=44) or Tourette syndrome (n=40) as compared to controls (n=24). Anti-tubulin and D2 receptor antibodies assessed in serial samples from 12 PANDAS subjects obtained prior to a documented exacerbation, during the exacerbation (with or without a temporally associated streptococcal infection), and following the exacerbation, showed no evidence of antibody levels correlating with a clinical exacerbation. These data do not support hypotheses suggesting an autoimmune hypothesis in either TS or PANDAS. © 2013.

  5. Data acquisition and path selection decision making for an autonomous roving vehicle. [laser pointing control system for vehicle guidance

    NASA Technical Reports Server (NTRS)

    Shen, C. N.; YERAZUNIS

    1979-01-01

    The feasibility of using range/pointing angle data such as might be obtained by a laser rangefinder for the purpose of terrain evaluation in the 10-40 meter range on which to base the guidance of an autonomous rover was investigated. The decision procedure of the rapid estimation scheme for the detection of discrete obstacles has been modified to reinforce the detection ability. With the introduction of the logarithmic scanning scheme and obstacle identification scheme, previously developed algorithms are combined to demonstrate the overall performance of the intergrated route designation system using laser rangefinder. In an attempt to cover a greater range, 30 m to 100 mm, the problem estimating gradients in the presence of positioning angle noise at middle range is investigated.

  6. Applying the Manning equation to determine the critical distance in non-point source pollution using remotely sensed data and cartographic modelling

    NASA Astrophysics Data System (ADS)

    de Oliveira, Lília M.; Santos, Nádia A. P.; Maillard, Philippe

    2013-10-01

    Non-point source pollution (NPSP) is perhaps the leading cause of water quality problems and one of the most challenging environmental issues given the difficulty of modeling and controlling it. In this article, we applied the Manning equation, a hydraulic concept, to improve models of non-point source pollution and determine its influence as a function of slope - land cover roughness for runoff to reach the stream. In our study the equation is somewhat taken out of its usual context to be applies to the flow of an entire watershed. Here a digital elevation model (DEM) from the SRTM satellite was used to compute the slope and data from the RapidEye satellite constellation was used to produce a land cover map later transformed into a roughness surface. The methodology is applied to a 1433 km2 watershed in Southeast Brazil mostly covered by forest, pasture, urban and wetlands. The model was used to create slope buffer of varying width in which the proportions of land cover and roughness coefficient were obtained. Next we correlated these data, through regression, with four water quality parameters measured in situ: nitrate, phosphorous, faecal coliform and turbidity. We compare our results with the ones obtained by fixed buffer. It was found that slope buffer outperformed fixed buffer with higher coefficients of determination up to 15%.

  7. Reconstruction of measurable three-dimensional point cloud model based on large-scene archaeological excavation sites

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Sen; Zhang, Meng-Meng; Zhang, Wei-Xing

    2017-01-01

    This paper outlines a low-cost, user-friendly photogrammetric technique with nonmetric cameras to obtain excavation site digital sequence images, based on photogrammetry and computer vision. Digital camera calibration, automatic aerial triangulation, image feature extraction, image sequence matching, and dense digital differential rectification are used, combined with a certain number of global control points of the excavation site, to reconstruct the high precision of measured three-dimensional (3-D) models. Using the acrobatic figurines in the Qin Shi Huang mausoleum excavation as an example, our method solves the problems of little base-to-height ratio, high inclination, unstable altitudes, and significant ground elevation changes affecting image matching. Compared to 3-D laser scanning, the 3-D color point cloud obtained by this method can maintain the same visual result and has advantages of low project cost, simple data processing, and high accuracy. Structure-from-motion (SfM) is often used to reconstruct 3-D models of large scenes and has lower accuracy if it is a reconstructed 3-D model of a small scene at close range. Results indicate that this method quickly achieves 3-D reconstruction of large archaeological sites and produces heritage site distribution of orthophotos providing a scientific basis for accurate location of cultural relics, archaeological excavations, investigation, and site protection planning. This proposed method has a comprehensive application value.

  8. Ultrasonic Fingerprinting of Structural Materials: Spent Nuclear Fuel Containers Case-Study

    NASA Astrophysics Data System (ADS)

    Sednev, D.; Lider, A.; Demyanuk, D.; Kroening, M.; Salchak, Y.

    Nowadays, NDT is mainly focused on safety purposes, but it seems possible to apply those methods to provide national and IAEA safeguards. The containment of spent fuel in storage casks could be dramatically improved in case of development of so-called "smart" spent fuel storage and transfer casks. Such casks would have tamper indicating and monitoring/tracking features integrated directly into the cask design. The microstructure of the containers material as well as of the dedicated weld seam is applied to the lid and the cask body and provides a unique fingerprint of the full container, which can be reproducibly scanned by using an appropriate technique. The echo-sounder technique, which is the most commonly used method for material inspection, was chosen for this project. The main measuring parameter is acoustic noise, reflected from material's artefacts. The purpose is to obtain structural fingerprinting. Reference measurement and additional measurement results were compared. Obtained results have verified the appliance of structural fingerprint and the chosen control method. The successful authentication demonstrates the levels of the feature points' compliance exceeding the given threshold which differs considerably from the percentage of the concurrent points during authentication from other points. Since reproduction or doubling of the proposed unique identification characteristics is impossible at the current state science and technology, application of this technique is considered to identify the interference into the nuclear materials displacement with high accuracy.

  9. Predicting Transition from Laminar to Turbulent Flow over a Surface

    NASA Technical Reports Server (NTRS)

    Sturdza, Peter (Inventor); Rajnarayan, Dev (Inventor)

    2013-01-01

    A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of boundary-layer properties at the point are obtained from a steady-state solution of a fluid flow in a region adjacent to the point. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For each instability mode in the plurality of instability modes, a covariance vector is determined, which is the covariance of a predicted local growth rate with the known instability growth rates. Each covariance vector is used with the vector of regressor weights to determine a predicted local growth rate at the point. Based on the predicted local growth rates, an n-factor envelope at the point is determined.

  10. Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen-Grossberg BAM neural networks with impulses.

    PubMed

    Yang, Wengui; Yu, Wenwu; Cao, Jinde; Alsaadi, Fuad E; Hayat, Tasawar

    2018-02-01

    This paper investigates the stability and lag synchronization for memristor-based fuzzy Cohen-Grossberg bidirectional associative memory (BAM) neural networks with mixed delays (asynchronous time delays and continuously distributed delays) and impulses. By applying the inequality analysis technique, homeomorphism theory and some suitable Lyapunov-Krasovskii functionals, some new sufficient conditions for the uniqueness and global exponential stability of equilibrium point are established. Furthermore, we obtain several sufficient criteria concerning globally exponential lag synchronization for the proposed system based on the framework of Filippov solution, differential inclusion theory and control theory. In addition, some examples with numerical simulations are given to illustrate the feasibility and validity of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Study of the thermal-induced intensity balanced Nd:GdVO4 microchip dual-frequency laser

    NASA Astrophysics Data System (ADS)

    Cai, Meiling; Hu, Miao; Zhou, Xuefang; Lu, Yang; Zeng, Ran; Li, Qiliang; Wei, Yizhen

    2018-01-01

    The intensity balance ratio (IBR) tuning mechanism of Nd:GdVO4 monolithic microchip dual-frequency laser (DFL) is presented. The intensity balanced DFL signals are obtained by precisely controlling the heat sink temperature of the Nd:GdVO4 crystal. In experiments, the DFL signal with frequency separation at 64 GHz and IBR above 0.99 is realized with the temperature at 47.6 °C. The other balanced intensity distribution can be reached at -0.9 °C before mode hopping. Moreover, utilizing the fluorescence spectrum and the intensity balance points of Nd:GdVO4 DFL, we obtain the temperature difference between internal and external of Nd:GdVO4 crystal ΔT = 24.0 °C.

  12. Development of high Tc (greater than 100 K) Bi, Tl and Y-based materials as superconducting circuit elements

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Grabert, Gregory; Gilmour, Phillip

    1993-01-01

    Results on this project over the past three years have shown that the Bi and Tl-based superconducting materials in bulk form are noticeably different from the Y-based 123 material in that superconductivity is considerably harder to achieve, maintain and reproduce. This is due primarily to the difficulty in obtaining the higher Tc phase in pure form since it commonly co-exists with other undesirable, lower Tc phases. In particular, it has been found that long processing times for calcining and firing (20 - 200 hrs.) and close control of temperatures which are very near the melting point are required in order to obtain higher proportions of the desirable, high Tc (2223) phase.

  13. Comparison of the dose distribution obtained from dosimetric systems with intensity modulated radiotherapy planning system in the treatment of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gökçe, M., E-mail: mgokce@adu.edu.tr; Uslu, D. Koçyiğit; Ertunç, C.

    The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3more » percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.« less

  14. The Modulus of Rupture from a Mathematical Point of View

    NASA Astrophysics Data System (ADS)

    Quintela, P.; Sánchez, M. T.

    2007-04-01

    The goal of this work is to present a complete mathematical study about the three-point bending experiments and the modulus of rupture of brittle materials. We will present the mathematical model associated to three-point bending experiments and we will use the asymptotic expansion method to obtain a new formula to calculate the modulus of rupture. We will compare the modulus of rupture of porcelain obtained with the previous formula with that obtained by using the classic theoretical formula. Finally, we will also present one and three-dimensional numerical simulations to compute the modulus of rupture.

  15. WHO Melting-Point Reference Substances

    PubMed Central

    Bervenmark, H.; Diding, N. Å.; Öhrner, B.

    1963-01-01

    Batches of 13 highly purified chemicals, intended for use as reference substances in the calibration of apparatus for melting-point determinations, have been subjected to a collaborative assay by 15 laboratories in 13 countries. All the laboratories performed melting-point determinations by the capillary methods described in the proposed text for the second edition of the Pharmacopoea Internationalis and some, in addition, carried out determinations by the microscope hot stage (Kofler) method, using both the “going-through” and the “equilibrium” technique. Statistical analysis of the data obtained by the capillary method showed that the within-laboratory variation was small and that the between-laboratory variation, though constituting the greatest part of the whole variance, was not such as to warrant the exclusion of any laboratory from the evaluation of the results. The average values of the melting-points obtained by the laboratories can therefore be used as constants for the substances in question, which have accordingly been established as WHO Melting-Point Reference Substances and included in the WHO collection of authentic chemical substances. As to the microscope hot stage method, analysis of the results indicated that the values obtained by the “going-through” technique did not differ significantly from those obtained by the capillary method, but the values obtained by the “equilibrium” technique were mostly significantly lower. PMID:20604137

  16. Generic Bluetooth Data Module

    DTIC Science & Technology

    2002-09-01

    to Ref (1). 34 RS232.java Serial Coomunication port class To Bluetooth module HCI.java Host Control Interface class L2CAP.java Logical Link Control...standard protocol for transporting IP datagrams over point-to-point link . It is designed to run over RFCOMM to accomplish point-to-point connections...Control and Adaption Host Controller Interface Link Manager Baseband / Link Controller Radio Figure 2. Bluetooth layers (From Ref. [3].) C

  17. HOS cell adhesion on Ti6Al4V surfaces texturized by laser engraving

    NASA Astrophysics Data System (ADS)

    Sandoval Amador, A.; Carreño Garcia, H.; Escobar Rivero, P.; Peña Ballesteros, D. Y.; Estupiñán Duran, H. A.

    2016-02-01

    The cell adhesion of the implant is determinate by the chemical composition, topography, wettability, surface energy and biocompatibility of the biomaterial. In this work the interaction between human osteosarcoma HOS cells and textured Ti6Al4V surfaces were evaluated. Ti6Al4V surfaces were textured using a CO2 laser in order to obtain circular spots on the surfaces. Test surfaces were uncoated (C1) used as a control surface, and surfaces with points obtained by laser engraving, with 1mm spacing (C2) and 0.5mm (C3). The HOS cells were cultured in RPMI-1640 medium with 10% fetal bovine serum and 1% antibiotics. No cells toxicity after one month incubation time occurred. The increased cell adhesion and cell spreading was observed after 1, 3 and 5 days without significant differences between the sample surfaces (C2 and C3) and control (uncoated) at the end of the experiment.

  18. Local Kernel for Brains Classification in Schizophrenia

    NASA Astrophysics Data System (ADS)

    Castellani, U.; Rossato, E.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P.

    In this paper a novel framework for brain classification is proposed in the context of mental health research. A learning by example method is introduced by combining local measurements with non linear Support Vector Machine. Instead of considering a voxel-by-voxel comparison between patients and controls, we focus on landmark points which are characterized by local region descriptors, namely Scale Invariance Feature Transform (SIFT). Then, matching is obtained by introducing the local kernel for which the samples are represented by unordered set of features. Moreover, a new weighting approach is proposed to take into account the discriminative relevance of the detected groups of features. Experiments have been performed including a set of 54 patients with schizophrenia and 54 normal controls on which region of interest (ROI) have been manually traced by experts. Preliminary results on Dorso-lateral PreFrontal Cortex (DLPFC) region are promising since up to 75% of successful classification rate has been obtained with this technique and the performance has improved up to 85% when the subjects have been stratified by sex.

  19. Rapid Airplane Parametric Input Design(RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Bloor, Malcolm I. G.; Wilson, Michael J.; Thomas, Almuttil M.

    2004-01-01

    An efficient methodology is presented for defining a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. A small set of design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tail, horizontal tail, and canard components. The wing, tail, and canard components are manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. Grid sensitivity is obtained by applying the automatic differentiation precompiler ADIFOR to software for the grid generation. The computed surface grids, volume grids, and sensitivity derivatives are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations.

  20. Relationship between resolution and accuracy of four intraoral scanners in complete-arch impressions

    PubMed Central

    Pascual-Moscardó, Agustín; Camps, Isabel

    2018-01-01

    Background The scanner does not measure the dental surface continually. Instead, it generates a point cloud, and these points are then joined to form the scanned object. This approximation will depend on the number of points generated (resolution), which can lead to low accuracy (trueness and precision) when fewer points are obtained. The purpose of this study is to determine the resolution of four intraoral digital imaging systems and to demonstrate the relationship between accuracy and resolution of the intraoral scanner in impressions of a complete dental arch. Material and Methods A master cast of the complete maxillary arch was prepared with different dental preparations. Using four digital impression systems, the cast was scanned inside of a black methacrylate box, obtaining a total of 40 digital impressions from each scanner. The resolution was obtained by dividing the number of points of each digital impression by the total surface area of the cast. Accuracy was evaluated using a three-dimensional measurement software, using the “best alignment” method of the casts with a highly faithful reference model obtained from an industrial scanner. Pearson correlation was used for statistical analysis of the data. Results Of the intraoral scanners, Omnicam is the system with the best resolution, with 79.82 points per mm2, followed by True Definition with 54.68 points per mm2, Trios with 41.21 points per mm2, and iTero with 34.20 points per mm2. However, the study found no relationship between resolution and accuracy of the study digital impression systems (P >0.05), except for Omnicam and its precision. Conclusions The resolution of the digital impression systems has no relationship with the accuracy they achieve in the impression of a complete dental arch. The study found that the Omnicam scanner is the system that obtains the best resolution, and that as the resolution increases, its precision increases. Key words:Trueness, precision, accuracy, resolution, intraoral scanner, digital impression. PMID:29750097

  1. New organophilic kaolin clays based on single-point grafted 3-aminopropyl dimethylethoxysilane.

    PubMed

    Zaharia, A; Perrin, F-X; Teodorescu, M; Radu, A-L; Iordache, T-V; Florea, A-M; Donescu, D; Sarbu, A

    2015-10-14

    In this study, the organophilization procedure of kaolin rocks with a monofunctional ethoxysilane- 3 aminopropyl dimethyl ethoxysilane (APMS) is depicted for the first time. The two-step organophilization procedure, including dimethyl sulfoxide intercalation and APMS grafting onto the inner hydroxyl surface of kaolinite (the mineral) layers was tested for three sources of kaolin rocks (KR, KC and KD) with various morphologies and kaolinite compositions. The load of APMS in the kaolinite interlayer space was higher than that of 3-aminopropyl triethoxysilane (APTS) due to the single-point grafting nature of the organophilization reaction. A higher long-distance order of kaolinite layers with low staking was obtained for the APMS, due to a more controllable organiphilization reaction. Last but not least, the solid state (29)Si-NMR tests confirmed the single-point grafting mechanism of APMS, corroborating monodentate fixation on the kaolinite hydroxyl facets, with no contribution to the bidentate or tridentate fixation as observed for APTS.

  2. Control of Superelastic Behavior of NiTi Wires Aided by Thermomechanical Treatment with Reference to Three-Point Bending

    NASA Astrophysics Data System (ADS)

    Shahmir, Hamed; Nili-Ahmadabadi, Mahmoud; Naghdi, Fariba; Habibi-Parsa, Mohammad; Haririan, Ismaeil

    2014-04-01

    The aim of this study is to investigate the effect of thermomechanical treatment on the superelastic behavior of a Ti-50.5 at.%Ni wire in terms of loading/unloading plateau, mechanical hysteresis, and permanent set to optimize these parameters for orthodontic applications. A new three-point bending fixture, oral cavity configuration three-point bending (OCTPB) test, was utilized to determine the superelastic property in clinical condition, and therefore, the tests were carried out at 37 °C. The results indicate that the thermomechanical treatment is crucial for thermal transformation and mechanically induced transformation characteristics of the wire. Annealing of thermomechanically treated specimens at 300 and 400 °C for 1/2 and 1 h leads to good superelasticity for orthodontic applications. However, the best superelasticity at body temperature is obtained after annealing at 300 °C for 1/2 h with regard to low and constant unloading force and minimum permanent set.

  3. The effect of project-based learning on students' statistical literacy levels for data representation

    NASA Astrophysics Data System (ADS)

    Koparan, Timur; Güven, Bülent

    2015-07-01

    The point of this study is to define the effect of project-based learning approach on 8th Grade secondary-school students' statistical literacy levels for data representation. To achieve this goal, a test which consists of 12 open-ended questions in accordance with the views of experts was developed. Seventy 8th grade secondary-school students, 35 in the experimental group and 35 in the control group, took this test twice, one before the application and one after the application. All the raw scores were turned into linear points by using the Winsteps 3.72 modelling program that makes the Rasch analysis and t-tests, and an ANCOVA analysis was carried out with the linear points. Depending on the findings, it was concluded that the project-based learning approach increases students' level of statistical literacy for data representation. Students' levels of statistical literacy before and after the application were shown through the obtained person-item maps.

  4. Lunar Reconnaissance Orbiter (LRO) Guidance, Navigation and Control (GN&C) Overview

    NASA Technical Reports Server (NTRS)

    Garrick, Joseph; Simpson, James; Shah, Neerav

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle and into a direct insertion trajectory to the oon. LRO, which was designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. The mission has a nominal life of 1 year as its seven instruments find safe landing sites, locate potential resources, characterize the radiation environment, and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera of the Apollo landing sites appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Guidance, Navigation and Control (GN&C) subsystem is made up of an onboard attitude control system (ACS) and a hardware suite of sensors and actuators. The LRO onboard ACS is a collection of algorithms based on high level and derived requirements, and reflect the science and operational events throughout the mission lifetime. The primary control mode is the Observing mode, which maintains the lunar pointing orientation and any offset pointing from this baseline. It is within this mode that all science instrument calibrations, slews and science data is collected. Because of a high accuracy requirement for knowledge and pointing, the Observing mode makes use of star tracker (ST) measurement data to determine an instantaneous attitude pointing. But even the star trackers alone do not meet the tight requirements, so a six-state Kalman Filter is employed to improve the noisy measurement data. The Observing mode obtains its rate information from an inertial reference unit (IRU) and in the event of an IRU failure, the rate data is be derived from the star tracker, but with degraded pointing performance. The Delta-V control mode responsibility is to maintain attitude pointing during the cruise trajectory, insertion burns and lunar orbit maintenance by adjustments made to the spacecraft s velocity magnitude and vector direction. The ACS also provides for a thruster based system momentum management algorithm (known as Delta-H) to maintain the system and wheel momentum to within acceptable levels. In the event an anomaly causes the LRO spacecraft to lose the ability to maintain its current attitude pointing, a Sun Safe mode is included in the ACS for the purpose of providing a known power and thermally safe coarse inertial sun attitude for an indefinite period of time, within the manageable limits of the reaction wheels. The Sun Safe mode is also the initial spacecraft control mode off of the launch vehicle and provides for a means to null tip-off rates immediately after separation. The nominal configuration is to use the IRU for rate information in the controller. In the event of a gyro failure a gyroless control mode was developed that computes rate information from the CSS data.

  5. State of the art in crystal oscillators - Present and future

    NASA Astrophysics Data System (ADS)

    Rosati, V. J.; Filler, R. L.; Schodowski, S. S.; Vig, J. R.

    It is pointed out that most military communication, navigation, surveillance and IFF systems which are currently under development require stable oscillators for frequency control and/or timing. Examples of such systems are the Single Channel Ground and Airborne Radio System (SINCGARS), MILSTAR, the Global Positioning System (GPS), the Combat Identification System (CIS), and several radar systems. In 1981, a survey and evaluation program was initiated with the aim to determine the state-of-the-art of both TCXOs (temperature compensated crystal oscillators) and OCXOs (oven controlled crystal oscillators). This program is continuing. The results obtained to date are considered because they can provide useful guidance to system users on the availability of stable oscillators.

  6. Colloidal polymers with controlled sequence and branching constructed from magnetic field assembled nanoparticles.

    PubMed

    Bannwarth, Markus B; Utech, Stefanie; Ebert, Sandro; Weitz, David A; Crespy, Daniel; Landfester, Katharina

    2015-03-24

    The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sintering. The remarkable variety of polymer-analogue architectures that arises from this simple process ranges from statistical and block copolymer-like sequencing to branched chains and networks. This library of architectures can be realized by controlling the sequencing of the particles and the junction points via a size-dependent self-assembly of the single building blocks.

  7. Geometrical verification system using Adobe Photoshop in radiotherapy.

    PubMed

    Ishiyama, Hiromichi; Suzuki, Koji; Niino, Keiji; Hosoya, Takaaki; Hayakawa, Kazushige

    2005-02-01

    Adobe Photoshop is used worldwide and is useful for comparing portal films with simulation films. It is possible to scan images and then view them simultaneously with this software. The purpose of this study was to assess the accuracy of a geometrical verification system using Adobe Photoshop. We prepared the following two conditions for verification. Under one condition, films were hanged on light boxes, and examiners measured distances between the isocenter on simulation films and that on portal films by adjusting the bony structures. Under the other condition, films were scanned into a computer and displayed using Adobe Photoshop, and examiners measured distances between the isocenter on simulation films and those on portal films by adjusting the bony structures. To obtain control data, lead balls were used as a fiducial point for matching the films accurately. The errors, defined as the differences between the control data and the measurement data, were assessed. Errors of the data obtained using Adobe Photoshop were significantly smaller than those of the data obtained from films on light boxes (p < 0.007). The geometrical verification system using Adobe Photoshop is available on any PC with this software and is useful for improving the accuracy of verification.

  8. Spirometry as a motivational tool to improve smoking cessation rates: a systematic review of the literature.

    PubMed

    Wilt, Timothy J; Niewoehner, Dennis; Kane, Robert L; MacDonald, Roderick; Joseph, Anne M

    2007-01-01

    Obtaining spirometric testing and providing those results to individuals who smoke has been advocated as a motivational tool to improve smoking cessation. However, its effectiveness is not known. We conducted a systematic review to determine if this approach improves rates of smoking cessation. Data sources included MEDLINE (1966 to October 2005), the Cochrane Library, and experts in the field. Eligible randomized controlled trials (RCTs) enrolled at least 25 smokers per arm, evaluated spirometry with associated counseling or in combination with other treatments, followed subjects at least 6 months, and provided smoking abstinence rates. Results from nonrandomized studies also were summarized. The primary outcome was patient-reported long-term (at least 6 months) sustained abstinence with biological validation. Additional outcomes included self-reported abstinence and point-prevalence abstinence. Seven RCTs (N = 6,052 subjects) met eligibility criteria. Follow-up duration ranged from 9 to 36 months. In six trials, the intervention group received concomitant treatments previously demonstrated to increase cessation independently. The range of abstinence was 3%-14% for control subjects and 7%-39% among intervention groups, statistically significantly in favor of intervention in four studies. The only RCT that assessed the independent contribution of spirometry in combination with counseling demonstrated a nonsignificant 1% improvement in patient-reported point-prevalence abstinence at 12 months in the group that received spirometry plus counseling versus counseling alone (6.5% versus 5.5%). Findings from observational studies were mixed, and the lack of controls makes interpretation problematic. Available evidence is insufficient to determine whether obtaining spirometric values and providing that information to patients improves smoking cessation compared with other smoking cessation methods. Spirometric values are of limited benefit as a predictor of smoking cessation or as a tool to "customize" smoking cessation strategies.

  9. Mesoporous silicon oxide films and their uses as templates in obtaining nanostructured conductive polymers

    NASA Astrophysics Data System (ADS)

    Salgado, R.; Arteaga, G. C.; Arias, J. M.

    2018-04-01

    Obtaining conductive polymers (CPs) for the manufacture of OLEDs, solar cells, electrochromic devices, sensors, etc., has been possible through the use of electrochemical techniques that allow obtaining films of controlled thickness with positive results in different applications. Current trends point towards the manufacture of nanomaterials, and therefore it is necessary to develop methods that allow obtaining CPs with nanostructured morphology. This is possible by using a porous template to allow the growth of the polymeric materials. However, prior and subsequent treatments are required to separate the material from the template so that it can be evaluated in the applications mentioned above. This is why mesoporous silicon oxide films (template) are essential for the synthesis of nanostructured polymers since both the template and the polymer are obtained on the electrode surface, and therefore it is not necessary to separate the material from the template. Thus, the material can be evaluated directly in the applications mentioned above. The dimensions of the resulting nanostructures will depend on the power, time and technique used for electropolymerization as well as the monomer and the surfactant of the mesoporous film.

  10. 46 CFR 153.297 - Emergency actuators at the point of cargo control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Emergency actuators at the point of cargo control. 153... and Equipment Piping Systems and Cargo Handling Equipment § 153.297 Emergency actuators at the point of cargo control. (a) The point from which cargo transfer is controlled must have the same actuators...

  11. Photogrammetric Method and Software for Stream Planform Identification

    NASA Astrophysics Data System (ADS)

    Stonedahl, S. H.; Stonedahl, F.; Lohberg, M. M.; Lusk, K.; Miller, D.

    2013-12-01

    Accurately characterizing the planform of a stream is important for many purposes, including recording measurement and sampling locations, monitoring change due to erosion or volumetric discharge, and spatial modeling of stream processes. While expensive surveying equipment or high resolution aerial photography can be used to obtain planform data, our research focused on developing a close-range photogrammetric method (and accompanying free/open-source software) to serve as a cost-effective alternative. This method involves securing and floating a wooden square frame on the stream surface at several locations, taking photographs from numerous angles at each location, and then post-processing and merging data from these photos using the corners of the square for reference points, unit scale, and perspective correction. For our test field site we chose a ~35m reach along Black Hawk Creek in Sunderbruch Park (Davenport, IA), a small, slow-moving stream with overhanging trees. To quantify error we measured 88 distances between 30 marked control points along the reach. We calculated error by comparing these 'ground truth' distances to the corresponding distances extracted from our photogrammetric method. We placed the square at three locations along our reach and photographed it from multiple angles. The square corners, visible control points, and visible stream outline were hand-marked in these photos using the GIMP (open-source image editor). We wrote an open-source GUI in Java (hosted on GitHub), which allows the user to load marked-up photos, designate square corners and label control points. The GUI also extracts the marked pixel coordinates from the images. We also wrote several scripts (currently in MATLAB) that correct the pixel coordinates for radial distortion using Brown's lens distortion model, correct for perspective by forcing the four square corner pixels to form a parallelogram in 3-space, and rotate the points in order to correctly orient all photos of the same square location. Planform data from multiple photos (and multiple square locations) are combined using weighting functions that mitigate the error stemming from the markup-process, imperfect camera calibration, etc. We have used our (beta) software to mark and process over 100 photos, yielding an average error of only 1.5% relative to our 88 measured lengths. Next we plan to translate the MATLAB scripts into Python and release their source code, at which point only free software, consumer-grade digital cameras, and inexpensive building materials will be needed for others to replicate this method at new field sites. Three sample photographs of the square with the created planform and control points

  12. Constant speed control of four-stroke micro internal combustion swing engine

    NASA Astrophysics Data System (ADS)

    Gao, Dedong; Lei, Yong; Zhu, Honghai; Ni, Jun

    2015-09-01

    The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE. The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid model is proposed to model the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.

  13. Active disturbance rejection controller of fine tracking system for free space optical communication

    NASA Astrophysics Data System (ADS)

    Cui, Ning; Liu, Yang; Chen, Xinglin; Wang, Yan

    2013-08-01

    Free space optical communication is one of the best approaches in future communications. Laser beam's acquisition, pointing and tracking are crucial technologies of free space optical communication. Fine tracking system is important component of APT (acquisition, pointing and tracking) system. It cooperates with the coarse pointing system in executing the APT mission. Satellite platform vibration and disturbance, which reduce received optical power, increase bit error rate and affect seriously the natural performance of laser communication. For the characteristic of satellite platform, an active disturbance rejection controller was designed to reduce the vibration and disturbance. There are three major contributions in the paper. Firstly, the effects of vibration on the inter satellite optical communications were analyzed, and the reasons and characters of vibration of the satellite platform were summarized. The amplitude-frequency response of a filter was designed according to the power spectral density of platform vibration of SILEX (Semiconductor Inter-satellite Laser Experiment), and then the signals of platform vibration were generated by filtering white Gaussian noise using the filter. Secondly, the fast steering mirror is a key component of the fine tracking system for optical communication. The mechanical design and model analysis was made to the tip/tilt mirror driven by the piezoelectric actuator and transmitted by the flexure hinge. The transfer function of the fast steering mirror, camera, D/A data acquisition card was established, and the theory model of transfer function of this system was further obtained. Finally, an active disturbance rejection control method is developed, multiple parallel extended state observers were designed for estimation of unknown dynamics and external disturbance, and the estimated states were used for nonlinear feedback control and compensation to improve system performance. The simulation results show that the designed controller not only accurately estimates and compensates the disturbances, but also realizes the robustness to estimation of unknown dynamics. The controller can satisfy the requirement of fine tracking accuracy for free space optical communication system.

  14. Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation

    NASA Astrophysics Data System (ADS)

    Peter, Simon; Leine, Remco I.

    2017-11-01

    Phase resonance testing is one method for the experimental extraction of nonlinear normal modes. This paper proposes a novel method for nonlinear phase resonance testing. Firstly, the issue of appropriate excitation is approached on the basis of excitation power considerations. Therefore, power quantities known from nonlinear systems theory in electrical engineering are transferred to nonlinear structural dynamics applications. A new power-based nonlinear mode indicator function is derived, which is generally applicable, reliable and easy to implement in experiments. Secondly, the tuning of the excitation phase is automated by the use of a Phase-Locked-Loop controller. This method provides a very user-friendly and fast way for obtaining the backbone curve. Furthermore, the method allows to exploit specific advantages of phase control such as the robustness for lightly damped systems and the stabilization of unstable branches of the frequency response. The reduced tuning time for the excitation makes the commonly used free-decay measurements for the extraction of backbone curves unnecessary. Instead, steady-state measurements for every point of the curve are obtained. In conjunction with the new mode indicator function, the correlation of every measured point with the associated nonlinear normal mode of the underlying conservative system can be evaluated. Moreover, it is shown that the analysis of the excitation power helps to locate sources of inaccuracies in the force appropriation process. The method is illustrated by a numerical example and its functionality in experiments is demonstrated on a benchmark beam structure.

  15. Institutional point-of-care glucometer identifies population trends in blood glucose associated with war.

    PubMed

    Boaz, Mona; Matas, Zipora; Chaimy, Tova; Landau, Zohar; Bar Dayan, Yosefa; Berlovitz, Yitzhak; Wainstein, Julio

    2013-11-01

    Acute physiological stress has been shown to impair glucose homeostasis. War is a period of acute psychological stress, and its effect on glucose control is unknown. In this study random point-of-care (POC) glucose levels were measured using an automated, institutional glucometer in hospitalized adult patients prior to versus during the Israeli Pillar of Defense campaign (November 7-10, 2012). Random POC glucose values measured with the institutional blood glucose monitoring system were obtained 1 week prior to the Pillar of Defense campaign (November 7-10, 2012) and compared with values to those obtained during the first 4 days of the war (November 14-17, 2012). In total, 3,573 POC glucose measures were included: 1,865 during the pre-war period and 1,708 during the campaign. POC glucose measures were significantly higher during the war compared with the week preceding the war: 9.7±4.7 versus 9.3±4.2 mmol/L (P=0.02). In a general linear model, period (pre-war vs. during war) persisted as a significant predictor of POC glucose even after controlling for age, sex, and department type (internal medicine vs. surgical). Acute stress, such as a wartime situation, is associated with a significant increase in random blood glucose values in a population of hospitalized adults. Long-term follow-up of the individuals hospitalized during these two periods can reveal differences in morbidity and mortality trends.

  16. Low aerial imagery - an assessment of georeferencing errors and the potential for use in environmental inventory

    NASA Astrophysics Data System (ADS)

    Smaczyński, Maciej; Medyńska-Gulij, Beata

    2017-06-01

    Unmanned aerial vehicles are increasingly being used in close range photogrammetry. Real-time observation of the Earth's surface and the photogrammetric images obtained are used as material for surveying and environmental inventory. The following study was conducted on a small area (approximately 1 ha). In such cases, the classical method of topographic mapping is not accurate enough. The geodetic method of topographic surveying, on the other hand, is an overly precise measurement technique for the purpose of inventorying the natural environment components. The author of the following study has proposed using the unmanned aerial vehicle technology and tying in the obtained images to the control point network established with the aid of GNSS technology. Georeferencing the acquired images and using them to create a photogrammetric model of the studied area enabled the researcher to perform calculations, which yielded a total root mean square error below 9 cm. The performed comparison of the real lengths of the vectors connecting the control points and their lengths calculated on the basis of the photogrammetric model made it possible to fully confirm the RMSE calculated and prove the usefulness of the UAV technology in observing terrain components for the purpose of environmental inventory. Such environmental components include, among others, elements of road infrastructure, green areas, but also changes in the location of moving pedestrians and vehicles, as well as other changes in the natural environment that are not registered on classical base maps or topographic maps.

  17. Limited Impact of Music Therapy on Patient Anxiety with the Large Loop Excision of Transformation Zone Procedure - a Randomized Controlled Trial.

    PubMed

    Kongsawatvorakul, Chompunoot; Charakorn, Chuenkamon; Paiwattananupant, Krissada; Lekskul, Navamol; Rattanasiri, Sasivimol; Lertkhachonsuk, Arb-Aroon

    2016-01-01

    Many studies have pointed to strategies to cope with patient anxiety in colposcopy. Evidence shows that patients experienced considerable distress with the large loop excision of transformation zone (LLETZ) procedure and suitable interventions should be introduced to reduce anxiety. This study aimed to investigate the effects of music therapy in patients undergoing LLETZ. A randomized controlled trial was conducted with patients undergoing LLETZ performed under local anesthesia in an out patient setting at Ramathibodi Hospital, Bangkok, Thailand, from February 2015 to January 2016. After informed consent and demographic data were obtained, we assessed the anxiety level using State Anxiety Inventory pre and post procedures. Music group patients listened to classical songs through headphones, while the control group received the standard care. Pain score was evaluated with a visual analog scale (VAS). Statistical analysis was conducted using Pearson Chi-square, Fisher's Exact test and T-Test and p-values less than 0.05 were considered statistically significant. A total of 73 patients were enrolled and randomized, resulting in 36 women in the music group and 37 women in the non-music control group. The preoperative mean anxiety score was higher in the music group (46.8 VS 45.8 points). The postoperative mean anxiety scores in the music and the non-music groups were 38.7 and 41.3 points, respectively. VAS was lower in music group (2.55 VS 3.33). The percent change of anxiety was greater in the music group, although there was no significant difference between two groups. Music therapy did not significantly reduce anxiety in patients undergoing the LLETZ procedure. However, different interventions should be developed to ease the patients' apprehension during this procedure.

  18. Evaluating a Control System Architecture Based on a Formally Derived AOCS Model

    NASA Astrophysics Data System (ADS)

    Ilic, Dubravka; Latvala, Timo; Varpaaniemi, Kimmo; Vaisanen, Pauli; Troubitsyna, Elena; Laibinis, Linas

    2010-08-01

    Attitude & Orbit Control System (AOCS) refers to a wider class of control systems which are used to determine and control the attitude of the spacecraft while in orbit, based on the information obtained from various sensors. In this paper, we propose an approach to evaluate a typical (yet somewhat simplified) AOCS architecture using formal development - based on the Event-B method. As a starting point, an Ada specification of the AOCS is translated into a formal specification and further refined to incorporate all the details of its original source code specification. This way we are able not only to evaluate the Ada specification by expressing and verifying specific system properties in our formal models, but also to determine how well the chosen modelling framework copes with the level of detail required for an actual implementation and code generation from the derived models.

  19. Neurocysticercosis: regional status, epidemiology, impact and control measures in the Americas.

    PubMed

    Flisser, Ana; Sarti, Elsa; Lightowlers, Marshall; Schantz, Peter

    2003-06-01

    The analysis of epidemiological data concerning human cysticercosis point to important advances in understanding the magnitude and distribution of this parasitic disease in Latin America, as well as the relationship of the elements that conform the life cycle of Taenia solium. The data indicate that the main risk factor for acquiring human neurocysticercosis and swine cysticercosis is the presence of the tapeworm carrier in the household. Therefore, several intervention measures for the control of cysticercosis have been evaluated: mass treatment in order to cure tapeworm carriers, health education towards understanding the risk factors, pig control by restraining them, experimental vaccination of pigs and treatment of swine cysticercosis. In this paper, we review the information obtained in these areas. We hope it will be useful in other endemic countries that wish to elaborate an action plan for the control and ultimate eradication of T. solium.

  20. Control Law Synthesis for Vertical Fin Buffeting Alleviation Using Strain Actuation

    NASA Technical Reports Server (NTRS)

    Nitzsche, F.; Zimcik, D. G.; Ryall, T. G.; Moses, R. W.; Henderson, D. A.

    1999-01-01

    In the present investigation, the results obtained during the ground test of a closed-loop control system conducted on a full-scale fighter to attenuate vertical fin buffeting response using strain actuation are presented. Two groups of actuators consisting of piezoelectric elements distributed over the structure were designed to achieve authority over the first and second modes of the vertical fin. The control laws were synthesized using the Linear Quadratic Gaussian (LQG) method for a time-invariant control system. Three different pairs of sensors including strain gauges and accelerometers at different locations were used to close the feedback loop. The results demonstrated that measurable reductions in the root-mean-square (RMS) values of the fin dynamic response identified by the strain transducer at the critical point for fatigue at the root were achieved under the most severe buffet condition. For less severe buffet conditions, reductions of up to 58% were achieved.

  1. Synchronous Controlled Switching by VCB with Electromagnetic Operation Mechanism

    NASA Astrophysics Data System (ADS)

    Horinouchi, Katsuhiko; Tsukima, Mitsuru; Tohya, Nobumoto; Inoue, Ryuuichi; Sasao, Hiroyuki

    Synchronously controlled switching to suppress transient overvoltage and overcurrent resulting from when the circuit breakers on medium voltage systems are closed is described. Firstly, by simulation it is found that if the closing time is synchronously controlled so that the contacts of the circuit breaker close completely at the instant when the voltage across contacts of the breaker at each of the three individual phases are zero, the resulting overvoltage and overcurrent is significantly suppressed when compared to conventional three phase simultaneous closing. Next, an algorithm for determining the closing timing based on a forecasted voltage zero waveform, obtained from voltage sampling data, is presented. Finally, a synchronous closing experiment of voltage 22kV utilizing a controller to implement the algorithm and a VCB with an electromagnetic operation mechanism is presented. The VCB was successfully closed at the zero point within a tolerance range of 200 microseconds.

  2. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... circuit controller operated by switch points or by switch locking mechanism. 236.303 Section 236.303... § 236.303 Control circuits for signals, selection through circuit controller operated by switch points or by switch locking mechanism. The control circuit for each aspect with indication more favorable...

  3. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... circuit controller operated by switch points or by switch locking mechanism. 236.303 Section 236.303... § 236.303 Control circuits for signals, selection through circuit controller operated by switch points or by switch locking mechanism. The control circuit for each aspect with indication more favorable...

  4. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... circuit controller operated by switch points or by switch locking mechanism. 236.303 Section 236.303... § 236.303 Control circuits for signals, selection through circuit controller operated by switch points or by switch locking mechanism. The control circuit for each aspect with indication more favorable...

  5. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... circuit controller operated by switch points or by switch locking mechanism. 236.303 Section 236.303... § 236.303 Control circuits for signals, selection through circuit controller operated by switch points or by switch locking mechanism. The control circuit for each aspect with indication more favorable...

  6. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... circuit controller operated by switch points or by switch locking mechanism. 236.303 Section 236.303... § 236.303 Control circuits for signals, selection through circuit controller operated by switch points or by switch locking mechanism. The control circuit for each aspect with indication more favorable...

  7. Hidden Attractors in Dynamical Systems. From Hidden Oscillations in Hilbert-Kolmogorov Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits

    NASA Astrophysics Data System (ADS)

    Leonov, G. A.; Kuznetsov, N. V.

    From a computational point of view, in nonlinear dynamical systems, attractors can be regarded as self-excited and hidden attractors. Self-excited attractors can be localized numerically by a standard computational procedure, in which after a transient process a trajectory, starting from a point of unstable manifold in a neighborhood of equilibrium, reaches a state of oscillation, therefore one can easily identify it. In contrast, for a hidden attractor, a basin of attraction does not intersect with small neighborhoods of equilibria. While classical attractors are self-excited, attractors can therefore be obtained numerically by the standard computational procedure. For localization of hidden attractors it is necessary to develop special procedures, since there are no similar transient processes leading to such attractors. At first, the problem of investigating hidden oscillations arose in the second part of Hilbert's 16th problem (1900). The first nontrivial results were obtained in Bautin's works, which were devoted to constructing nested limit cycles in quadratic systems, that showed the necessity of studying hidden oscillations for solving this problem. Later, the problem of analyzing hidden oscillations arose from engineering problems in automatic control. In the 50-60s of the last century, the investigations of widely known Markus-Yamabe's, Aizerman's, and Kalman's conjectures on absolute stability have led to the finding of hidden oscillations in automatic control systems with a unique stable stationary point. In 1961, Gubar revealed a gap in Kapranov's work on phase locked-loops (PLL) and showed the possibility of the existence of hidden oscillations in PLL. At the end of the last century, the difficulties in analyzing hidden oscillations arose in simulations of drilling systems and aircraft's control systems (anti-windup) which caused crashes. Further investigations on hidden oscillations were greatly encouraged by the present authors' discovery, in 2010 (for the first time), of chaotic hidden attractor in Chua's circuit. This survey is dedicated to efficient analytical-numerical methods for the study of hidden oscillations. Here, an attempt is made to reflect the current trends in the synthesis of analytical and numerical methods.

  8. SPCOLA: Combining laser altimetry and stereophotoclinometery to obtain topography for Bennu

    NASA Astrophysics Data System (ADS)

    Roberts, J. H.; Barnouin, O. S.; Palmer, E. E.; Gaskell, R. W.; Weirich, J. R.; Daly, M. G.; Seabrook, J.; Nair, H.; Espiritu, R. C.; Lauretta, D. S.; Perry, M. E.

    2017-12-01

    The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission will return pristine samples of carbonaceous material from the surface of asteroid (101955) Bennu. Two instruments on OSIRIS-REx enable independent determination of topography: the OSIRIS-REx Laser Altimeter (OLA) and the OSIRIS-REx Camera Suite (OCAMS). OLA is a scanning lidar that ranges to the surface, returning altimetry information. OCAMS returns imaging data that are used to perform stereophotoclinometery (SPC) on these images to construct slope and albedo "maplets", small patches of the surface with central control points. Here we present a technique to combine topographic maplets generated using SPC with a compatible set of "mapolas" generated from OLA data. This "SPCOLA" process leverages the strengths of both while mitigating their respective weaknesses. A key advantage of SPC is that it allows a solution of the topography at accuracies similar to those of the best images used. SPC can make use of images at a wide range of viewing geometries and resolutions to simultaneously solve for slope and albedo. SPC also provides precise control point location from large stereo separation over multiple trajectories and can fill in gaps where point-based lidar data may not exist. Key strengths of lidar ranging include the ability to operate under any illumination conditions (including in the dark), insensitivity to albedo variations, robustness over large changes in slope, and provision of an absolute measurement of the range constraint to the surface. This range can be used to derive a control network for SPC, to improve the knowledge of the spacecraft position, to provide an independent scale for imagery and spectral data, and to provide constraints for any gravity solution obtained with radio science. Our goal in combining OLA data sets with image-based data is to generate Digital Elevation Models (DEMs) with higher accuracy than those using either data set alone. However, this combination requires careful coordination to ensure compatible formats, and some care in appropriately weighting them to achieve meaningful improvement of the DEMs.

  9. Corticospinal control of antagonistic muscles in the cat.

    PubMed

    Ethier, Christian; Brizzi, Laurent; Giguère, Dominic; Capaday, Charles

    2007-09-01

    We recently suggested that movement-related inter-joint muscle synergies are recruited by selected excitation and selected release from inhibition of cortical points. Here we asked whether a similar cortical mechanism operates in the functional linking of antagonistic muscles. To this end experiments were done on ketamine-anesthetized cats. Intracortical microstimulation (ICMS) and intramuscular electromyographic recordings were used to find and characterize wrist, elbow and shoulder antagonistic motor cortical points. Simultaneous ICMS applied at two cortical points, each evoking activity in one of a pair of antagonistic muscles, produced co-contraction of antagonistic muscle pairs. However, we found an obvious asymmetry in the strength of reciprocal inhibition; it was always significantly stronger on physiological extensors than flexors. Following intravenous injection of a single bolus of strychnine, a cortical point at which only a physiological flexor was previously activated also elicited simultaneous activation of its antagonist. This demonstrates that antagonistic corticospinal neurons are closely grouped, or intermingled. To test whether releasing a cortical point from inhibition allows it to be functionally linked with an antagonistic cortical point, one of three GABA(A) receptor antagonists, bicuculline, gabazine or picrotoxin, was injected iontophoretically at one cortical point while stimulation was applied to an antagonistic cortical point. This coupling always resulted in co-contraction of the represented antagonistic muscles. Thus, antagonistic motor cortical points are linked by excitatory intracortical connections held in check by local GABAergic inhibition, with reciprocal inhibition occurring at the spinal level. Importantly, the asymmetry of cortically mediated reciprocal inhibition would appear significantly to bias muscle maps obtained by ICMS in favor of physiological flexors.

  10. LIDAR Point Cloud Data Extraction and Establishment of 3D Modeling of Buildings

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    This paper takes the method of Shepard’s to deal with the original LIDAR point clouds data, and generate regular grid data DSM, filters the ground point cloud and non ground point cloud through double least square method, and obtains the rules of DSM. By using region growing method for the segmentation of DSM rules, the removal of non building point cloud, obtaining the building point cloud information. Uses the Canny operator to extract the image segmentation is needed after the edges of the building, uses Hough transform line detection to extract the edges of buildings rules of operation based on the smooth and uniform. At last, uses E3De3 software to establish the 3D model of buildings.

  11. Minimum energy control for in vitro neurons.

    PubMed

    Nabi, Ali; Stigen, Tyler; Moehlis, Jeff; Netoff, Theoden

    2013-06-01

    To demonstrate the applicability of optimal control theory for designing minimum energy charge-balanced input waveforms for single periodically-firing in vitro neurons from brain slices of Long-Evans rats. The method of control uses the phase model of a neuron and does not require prior knowledge of the neuron's biological details. The phase model of a neuron is a one-dimensional model that is characterized by the neuron's phase response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at various phase values. Based on the measured PRC, continuous-time, charge-balanced, minimum energy control waveforms have been designed to regulate the next firing time of the neuron upon application at the onset of an action potential. The designed waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy levels that are lower than those of conventional monophasic pulsatile inputs of past studies by at least an order of magnitude. They also provide the advantage of being charge-balanced. The energy efficiency of these waveforms is also shown by performing several supporting simulations that compare the performance of the designed waveforms against that of phase shuffled surrogate inputs, variants of the minimum energy waveforms obtained from suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It was found that the minimum energy waveforms perform better than all other stimuli both in terms of control and in the amount of energy used. Specifically, it was seen that these charge-balanced waveforms use at least an order of magnitude less energy than conventional monophasic pulsatile stimuli. The significance of this work is that it uses concepts from the theory of optimal control and introduces a novel approach in designing minimum energy charge-balanced input waveforms for neurons that are robust to noise and implementable in electrophysiological experiments.

  12. Minimum energy control for in vitro neurons

    NASA Astrophysics Data System (ADS)

    Nabi, Ali; Stigen, Tyler; Moehlis, Jeff; Netoff, Theoden

    2013-06-01

    Objective. To demonstrate the applicability of optimal control theory for designing minimum energy charge-balanced input waveforms for single periodically-firing in vitro neurons from brain slices of Long-Evans rats. Approach. The method of control uses the phase model of a neuron and does not require prior knowledge of the neuron’s biological details. The phase model of a neuron is a one-dimensional model that is characterized by the neuron’s phase response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at various phase values. Based on the measured PRC, continuous-time, charge-balanced, minimum energy control waveforms have been designed to regulate the next firing time of the neuron upon application at the onset of an action potential. Main result. The designed waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy levels that are lower than those of conventional monophasic pulsatile inputs of past studies by at least an order of magnitude. They also provide the advantage of being charge-balanced. The energy efficiency of these waveforms is also shown by performing several supporting simulations that compare the performance of the designed waveforms against that of phase shuffled surrogate inputs, variants of the minimum energy waveforms obtained from suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It was found that the minimum energy waveforms perform better than all other stimuli both in terms of control and in the amount of energy used. Specifically, it was seen that these charge-balanced waveforms use at least an order of magnitude less energy than conventional monophasic pulsatile stimuli. Significance. The significance of this work is that it uses concepts from the theory of optimal control and introduces a novel approach in designing minimum energy charge-balanced input waveforms for neurons that are robust to noise and implementable in electrophysiological experiments.

  13. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karve, A.A.; Rizwan-uddin; Dorning, J.J.

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcationmore » occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shumin; Tian Hongwei; Pei Yanhui

    A novel hedgehog-like core/shell structure, consisting of a high density of vertically aligned graphene sheets and a thin graphene shell/a copper core (VGs-GS/CC), has been synthesized via a simple one-step synthesis route using radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Scanning and transmission electron microscopy investigations show that the morphology of this core/shell material could be controlled by deposition time. For a short deposition time, only multilayer graphene shell tightly surrounds the copper particle, while as the deposition time is relative long, graphene sheets extend from the surface of GS/CC. The GS can protect CC particles from oxidation. The growth mechanismmore » for the obtained GS/CC and VGs-GS/CC has been revealed. Compared to VGs, VGs-GS/CC material exhibits a better electron field emission property. This investigation opens a possibility for designing a core/shell structure of different carbon-metal hybrid materials for a wide variety of practical applications. - Graphical abstract: With increasing deposition time, graphene sheets extend from the surface of GS/CC, causing the multilayer graphene encapsulated copper to be converted into vertically aligned graphene sheets-graphene shell/copper core structure. Highlights: Black-Right-Pointing-Pointer A novel hedgehog-like core/shell structure has been synthesized. Black-Right-Pointing-Pointer The structure consists of vertical graphene sheets-graphene shell and copper core. Black-Right-Pointing-Pointer The morphology of VGs-GS/CC can be controlled by choosing a proper deposition time. Black-Right-Pointing-Pointer With increasing deposition time, graphene sheets extend from the surface of GS/CC. Black-Right-Pointing-Pointer VGs-GS/CC exhibits a better electron field emission property as compared with VGs.« less

  15. Filtering method of star control points for geometric correction of remote sensing image based on RANSAC algorithm

    NASA Astrophysics Data System (ADS)

    Tan, Xiangli; Yang, Jungang; Deng, Xinpu

    2018-04-01

    In the process of geometric correction of remote sensing image, occasionally, a large number of redundant control points may result in low correction accuracy. In order to solve this problem, a control points filtering algorithm based on RANdom SAmple Consensus (RANSAC) was proposed. The basic idea of the RANSAC algorithm is that using the smallest data set possible to estimate the model parameters and then enlarge this set with consistent data points. In this paper, unlike traditional methods of geometric correction using Ground Control Points (GCPs), the simulation experiments are carried out to correct remote sensing images, which using visible stars as control points. In addition, the accuracy of geometric correction without Star Control Points (SCPs) optimization is also shown. The experimental results show that the SCPs's filtering method based on RANSAC algorithm has a great improvement on the accuracy of remote sensing image correction.

  16. Onboard utilization of ground control points for image correction. Volume 3: Ground control point simulation software design

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The software developed to simulate the ground control point navigation system is described. The Ground Control Point Simulation Program (GCPSIM) is designed as an analysis tool to predict the performance of the navigation system. The system consists of two star trackers, a global positioning system receiver, a gyro package, and a landmark tracker.

  17. Anatomy of an experimental two-link flexible manipulator under end-point control

    NASA Technical Reports Server (NTRS)

    Oakley, Celia M.; Cannon, Robert H., Jr.

    1990-01-01

    The design and experimental implementation of an end-point controller for two-link flexible manipulators are presented. The end-point controller is based on linear quadratic Gaussian (LQG) theory and is shown to exhibit significant improvements in trajectory tracking over a conventional controller design. To understand the behavior of the manipulator structure under end-point control, a strobe sequence illustrating the link deflections during a typical slew maneuver is included.

  18. Standardized Fault-Tolerant Sensing Nodes for an Intelligent Turbine Engine Control System (Preprint)

    DTIC Science & Technology

    2013-05-01

    representation of a centralized control system on a turbine engine. All actuators and sensors are point-to-point cabled to the controller ( FADEC ) which...electronics themselves. Figure 1: Centralized Control System Each function resides within the FADEC and uses Unique Point-to-Point Analog...distributed control system on the same turbine engine. The actuators and sensors interface to Smart Nodes which, in turn communicate to the FADEC via

  19. Vibrational energies for HFCO using a neural network sum of exponentials potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Ekadashi; Brown, Alex, E-mail: alex.brown@ualberta.ca

    2016-05-07

    A six-dimensional potential energy surface (PES) for formyl fluoride (HFCO) is fit in a sum-of-products form using neural network exponential fitting functions. The ab initio data upon which the fit is based were computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12]/cc-pVTZ-F12 level of theory. The PES fit is accurate (RMSE = 10 cm{sup −1}) up to 10 000 cm{sup −1} above the zero point energy and covers most of the experimentally measured IR data. The PES is validated by computing vibrational energies for both HFCO and deuterated formyl fluoride (DFCO) using block improved relaxationmore » with the multi-configuration time dependent Hartree approach. The frequencies of the fundamental modes, and all other vibrational states up to 5000 cm{sup −1} above the zero-point energy, are more accurate than those obtained from the previous MP2-based PES. The vibrational frequencies obtained on the PES are compared to anharmonic frequencies at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels of theory obtained using second-order vibrational perturbation theory. The new PES will be useful for quantum dynamics simulations for both HFCO and DFCO, e.g., studies of intramolecular vibrational redistribution leading to unimolecular dissociation and its laser control.« less

  20. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

Top