Science.gov

Sample records for control promotes pancreatic

  1. Pleiotrophin promotes perineural invasion in pancreatic cancer.

    PubMed

    Yao, Jun; Hu, Xiu-Feng; Feng, Xiao-Shan; Gao, She-Gan

    2013-10-21

    Perineural invasion (PNI) in pancreatic cancer is an important cause of local recurrence, but little is known about its mechanism. Pleiotrophin (PTN) is an important neurotrophic factor. It is of interest that our recent experimental data showed its involvement in PNI of pancreatic cancer. PTN strongly presents in the cytoplasm of pancreatic cancer cells, and high expression of PTN and its receptor may contribute to the high PNI of pancreatic cancer. Correspondingly, PNI is prone to happen in PTN-positive tumors. We thus hypothesize that, as a neurite growth-promoting factor, PTN may promote PNI in pancreatic cancer. PTN is released at the time of tumor cell necrosis, and binds with its high-affinity receptor, N-syndecan on pancreatic nerves, to promote neural growth in pancreatic cancer. Furthermore, neural destruction leads to a distorted neural homeostasis. Neurons and Schwann cells produce more N-syndecan in an effort to repair the pancreatic nerves. However, the abundance of N-syndecan attracts further PTN-positive cancer cells to the site of injury, creating a vicious cycle. Ultimately, increased PTN and N-syndecan levels, due to the continuous nerve injury, may promote cancer invasion and propagation along the neural structures. Therefore, it is meaningful to discuss the relationship between PTN/N-syndecan signaling and PNI in pancreatic cancer, which may lead to a better understanding of the mechanism of PNI in pancreatic cancer.

  2. MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Mikamori, Manabu; Yamada, Daisaku; Eguchi, Hidetoshi; Hasegawa, Shinichiro; Kishimoto, Tomoya; Tomimaru, Yoshito; Asaoka, Tadafumi; Noda, Takehiro; Wada, Hiroshi; Kawamoto, Koichi; Gotoh, Kunihito; Takeda, Yutaka; Tanemura, Masahiro; Mori, Masaki; Doki, Yuichiro

    2017-01-01

    The cancer drug gemcitabine (GEM) is a key drug for treating pancreatic ductal adenocarcinoma (PDAC), but PDAC cells develop chemoresistance after long-term administration. Since the tolerance was immediately spread to every PDAC tissue in a patient, it is assumed that some certain efficient mechanisms underlay in the development of chemoresistance. Changes in the levels of particular microRNAs or alterations in intercellular communication play a dominant role in chemoresistance development, and recent data also suggest that exosomes play an important role in this process. In this study, we revealed that the loop conferred chemoresistance in PDAC cells. The loop was as follows; 1, The long-term exposure of GEM increased miR-155 expression in PDAC cells. 2, The increase of miR-155 induced two different functions; exosome secretion and chemoresistance ability via facilitating the anti-apoptotic activity. 3, Exosome deliver the miR-155 into the other PDAC cells and induce the following function. The target therapy to miR-155 or the exosome secretion effectively attenuated the chemoresistance, and these results were validated with both clinical samples and in vivo experiments. This mechanism represents a novel therapeutic target in GEM treatment to PDAC. PMID:28198398

  3. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis

    PubMed Central

    Xue, Jing; Sharma, Vishal; Hsieh, Michael H.; Chawla, Ajay; Murali, Ramachandran; Pandol, Stephen J.; Habtezion, Aida

    2015-01-01

    Chronic pancreatitis (CP) is a progressive and irreversible inflammatory and fibrotic disease with no cure. Unlike acute pancreatitis, we find that alternatively activated macrophages (AAMs) are dominant in mouse and human CP. AAMs are dependent on IL-4 and IL-13 signaling and we show that mice lacking IL-4Rα, myeloid specific IL-4Rα, and IL-4/IL-13 were less susceptible to pancreatic fibrosis. Furthermore, we demonstrate that mouse and human pancreatic stellate cells (PSCs) are a source of IL-4/IL-13. Notably, we show that pharmacologic inhibition of IL-4/IL-13 in human ex-vivo studies as well as in established mouse CP decreases pancreatic AAMs and fibrosis. We identify a critical role for macrophages in pancreatic fibrosis and in turn PSCs as important inducers of macrophage alternative activation. Our study challenges and identifies pathways involved in cross talk between macrophages and PSCs that can be targeted to reverse or halt pancreatic fibrosis progression. PMID:25981357

  4. Overexpression of ankyrin1 promotes pancreatic cancer cell growth

    PubMed Central

    Omura, Noriyuki; Mizuma, Masamichi; MacGregor, Anne; Hong, Seung-Mo; Ayars, Michael; Almario, Jose Alejandro; Borges, Michael; Kanda, Mitsuro; Li, Ang; Vincent, Audrey; Maitra, Anirban; Goggins, Michael

    2016-01-01

    The methylation status of a promoter influences gene expression and aberrant methylation during tumor development has important functional consequences for pancreatic and other cancers. Using methylated CpG island amplification and promoter microarrays, we identified ANK1 as hypomethylated in pancreatic cancers. Expression analysis determined ANK1 as commonly overexpressed in pancreatic cancers relative to normal pancreas. ANK1 was co-expressed with miR-486 in pancreatic cancer cells. Stable knockdown of ANK1 in the pancreatic cancer cell line AsPC1 led to changes in cell morphology, and decreases in colony formation. Stable knockdown of ANK1 also marked reduced the growth of tumors in athymic nude mice. Among patients undergoing pancreaticoduodenectomy, those with pancreatic cancers expressing ANK1 had a poorer prognosis than those without ANK1 expression. These findings indicate a role for ANK1 overexpression in mediating pancreatic cancer tumorigenicity. PMID:27144336

  5. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    SciTech Connect

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered

  6. Kindlin-2 in pancreatic stellate cells promotes the progression of pancreatic cancer.

    PubMed

    Yoshida, Naoki; Masamune, Atsushi; Hamada, Shin; Kikuta, Kazuhiro; Takikawa, Tetsuya; Motoi, Fuyuhiko; Unno, Michiaki; Shimosegawa, Tooru

    2017-04-01

    Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis associated with pancreatic ductal adenocarcinoma (PDAC). Kindlin-2 is a focal adhesion protein that regulates the activation of integrins. This study aimed to clarify the role of kindlin-2 in PSCs in pancreatic cancer. Kindlin-2 expression in 79 resected pancreatic cancer tissues was examined by immunohistochemical staining. Kindlin-2-knockdown immortalized human PSCs were established using small interfering RNA. Pancreatic cancer cells were treated with conditioned media of PSCs, and the cell proliferation and migration were examined. SUIT-2 pancreatic cancer cells were subcutaneously injected into nude mice alone or with PSCs and the size of the tumors was monitored. Kindlin-2 expression was observed in PDAC and the peritumoral stroma. Stromal kindlin-2 expression was associated with shorter recurrence-free survival time after R0 resection. Knockdown of kindlin-2 resulted in decreased proliferation, migration, and cytokine expression in PSCs. The PSC-induced proliferation and migration of pancreatic cancer cells were suppressed by kindlin-2 knockdown in PSCs. In vivo, co-injection of PSCs increased the size of the tumors, but this effect was abolished by kindlin-2 knockdown in PSCs. In conclusion, kindlin-2 in PSCs promoted the progression of pancreatic cancer.

  7. APC promoter is frequently methylated in pancreatic juice of patients with pancreatic carcinomas or periampullary tumors

    PubMed Central

    Ginesta, Mireia M.; Diaz-Riascos, Zamira Vanessa; Busquets, Juli; Pelaez, Núria; Serrano, Teresa; Peinado, Miquel Àngel; Jorba, Rosa; García-Borobia, Francisco Javier; Capella, Gabriel; Fabregat, Joan

    2016-01-01

    Early detection of pancreatic and periampullary neoplasms is critical to improve their clinical outcome. The present authors previously demonstrated that DNA hypermethylation of adenomatous polyposis coli (APC), histamine receptor H2 (HRH2), cadherin 13 (CDH13), secreted protein acidic and cysteine rich (SPARC) and engrailed-1 (EN-1) promoters is frequently detected in pancreatic tumor cells. The aim of the present study was to assess their prevalence in pancreatic juice of carcinomas of the pancreas and periampullary area. A total of 135 pancreatic juices obtained from 85 pancreatic cancer (PC), 26 ampullary carcinoma (AC), 10 intraductal papillary mucinous neoplasm (IPMN) and 14 chronic pancreatitis (CP) patients were analyzed. The methylation status of the APC, HRH2, CDH13, SPARC and EN-1 promoters was analyzed using methylation specific-melting curve analysis (MS-MCA). Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were also tested with allele-specific quantitative polymerase chain reaction amplification. Out of the 5 promoters analyzed, APC (71%) and HRH2 (65%) were the most frequently methylated in PC juice. APC methylation was also detected at a high frequency in AC (76%) and IPMN (80%), but only occasionally observed in CP (7%). APC methylation had a high sensitivity (71–80%) for all types of cancer analyzed. The panel (where a sample scored as positive when ≥2 markers were methylated) did not outperform APC as a single marker. Finally, KRAS detection in pancreatic juice offered a lower sensitivity (50%) and specificity (71%) for detection of any cancer. APC hypermethylation in pancreatic juice, as assessed by MS-MCA, is a frequent event of potential clinical usefulness in the diagnosis of pancreatic and periampullary neoplasms. PMID:27602165

  8. Molecular Pathways Controlling Autophagy in Pancreatic Cancer

    PubMed Central

    New, Maria; Van Acker, Tim; Long, Jaclyn S.; Sakamaki, Jun-ichi; Ryan, Kevin M.; Tooze, Sharon A.

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the few cancer types where the 5-year survival rate shows no improvement. Despite conflicting evidence, the majority of data points to an essential role for autophagy in PDAC growth and survival, in particular constitutively activated autophagy, can provide crucial fuel to PDAC tumor cells in their nutrient-deprived environment. Autophagy, which is required for cell homeostasis, can both suppress and promote tumorigenesis and tumor survival in a context-dependent manner. Protein by protein, the mystery of how PDAC abuses the cell’s homeostasis system for its malignant growth has recently begun to be unraveled. In this review, we focus on how autophagy is responsible for growth and development of PDAC tumors and where autophagy and the mechanisms controlling it fit into PDAC metabolism. Understanding the range of pathways controlling autophagy and their interplay in PDAC could open the way for new therapeutic avenues. PMID:28316954

  9. Molecular Pathways Controlling Autophagy in Pancreatic Cancer.

    PubMed

    New, Maria; Van Acker, Tim; Long, Jaclyn S; Sakamaki, Jun-Ichi; Ryan, Kevin M; Tooze, Sharon A

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the few cancer types where the 5-year survival rate shows no improvement. Despite conflicting evidence, the majority of data points to an essential role for autophagy in PDAC growth and survival, in particular constitutively activated autophagy, can provide crucial fuel to PDAC tumor cells in their nutrient-deprived environment. Autophagy, which is required for cell homeostasis, can both suppress and promote tumorigenesis and tumor survival in a context-dependent manner. Protein by protein, the mystery of how PDAC abuses the cell's homeostasis system for its malignant growth has recently begun to be unraveled. In this review, we focus on how autophagy is responsible for growth and development of PDAC tumors and where autophagy and the mechanisms controlling it fit into PDAC metabolism. Understanding the range of pathways controlling autophagy and their interplay in PDAC could open the way for new therapeutic avenues.

  10. Chlamydia pneumoniae promotes dysfunction of pancreatic beta cells.

    PubMed

    Rodriguez, Annette R; Plascencia-Villa, Germán; Witt, Colleen M; Yu, Jieh-Juen; José-Yacamán, Miguel; Chambers, James P; Perry, George; Guentzel, M Neal; Arulanandam, Bernard P

    2015-06-01

    The human pathogen Chlamydia pneumoniae has been implicated in chronic inflammatory diseases including type 2 diabetes. Therefore, we designed a study to evaluate pancreatic beta cells and mast cells during chlamydial infection. Our study revealed that C. pneumoniae infected mast cells significantly (p<0.005) decreased beta cell ATP and insulin production, in contrast to uninfected mast cells co-cultured with beta cells. Infected mast cells exhibited pyknotic nuclei and active caspase-3 and caspase-1 expression. Additionally, ex vivo analyses of tissues collected from C. pneumoniae infected mice showed increased interleukin-1β production in splenocytes and pancreatic tissues as was observed with in vitro mast cell-beta cell co-cultures during C. pneumoniae infection. Notably, infected mast cells promoted beta cell destruction. Our findings reveal the negative effect of C. pneumoniae on mast cells, and the consequential impact on pancreatic beta cell function and viability.

  11. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis

    PubMed Central

    Zambirinis, Constantinos P.; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H.; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D.; Tuveson, David

    2015-01-01

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. PMID:26481685

  12. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.

    PubMed

    Zambirinis, Constantinos P; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D; Tuveson, David; Miller, George

    2015-11-16

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis.

  13. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    SciTech Connect

    Yu, Ge; Wan, Rong; Hu, Yanling; Ni, Jianbo; Yin, Guojian; Xing, Miao; Shen, Jie; Tang, Maochun; Chen, Congying; Fan, Yuting; Xiao, Wenqin; Zhao, Yan; Wang, Xingpeng; and others

    2014-01-31

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.

  14. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression

    PubMed Central

    Xie, Dacheng; Cui, Jiujie; Xia, Tian; Jia, Zhiliang; Wang, Liang; Wei, Wenfei; Zhu, Anna; Gao, Yong; Xie, Keping; Quan, Ming

    2015-01-01

    Transcriptional co-activator with PDZ binding motif (TAZ) is a transducer of the Hippo pathway and promotes cancer development and progression. In the present study, we sought to determine the roles and underlying mechanisms of elevated expression and activation of TAZ in pancreatic cancer development and progression. The mechanistic role of TAZ and Hippo signaling in promotion of pancreatic cancer development and progression was examined using cell culture, molecular biology, and mouse models. The relevance of our experimental and mechanistic findings was validated using human pancreatic tumor specimens. We found that TAZ expression was markedly higher in pancreatic tumors than in normal pancreatic tissue. Further analysis of the correlation of TAZ expression with tissue microarray clinicopathologic parameters revealed that this expression was positively associated with tumor differentiation. Also, TAZ expression was higher in pancreatic cancer cell lines than in pancreatic ductal epithelial cells. TAZ activation in pancreatic cancer cells promoted their proliferation, migration, invasion, and epithelial-mesenchymal transition. Further mechanistic studies demonstrated that aberrant expression and activation of TAZ in pancreatic cancer cells resulted from suppression of the expression of Merlin, a positive regulator upstream of the Hippo pathway, and that the oncogenic function of TAZ in pancreatic cancer cells was mediated by TEA/ATTS domain transcription factors. Therefore, TAZ functioned as an oncogene and promoted pancreatic cancer epithelial-mesenchymal transition and progression. TAZ thus may be a target for effective therapeutic strategies for pancreatic cancer. PMID:26416426

  15. A simian virus 40 large T-antigen segment containing amino acids 1 to 127 and expressed under the control of the rat elastase-1 promoter produces pancreatic acinar carcinomas in transgenic mice.

    PubMed Central

    Tevethia, M J; Bonneau, R H; Griffith, J W; Mylin, L

    1997-01-01

    The simian virus 40 large T antigen induces tumors in a wide variety of tissues in transgenic mice, the precise tissues depending on the tissue specificity of the upstream region controlling T-antigen expression. Expression of mutant T antigens that contain a subset of the protein's activities restricts the spectrum of tumors induced. Others showed previously that expression of a mutant large T antigen containing the N-terminal 121 amino acids (T1-121) under control of the lymphotropic papovavirus promoter resulted in slow-growing choroid plexus tumors, whereas full-length T antigen under the same promoter induced rapidly growing CPR tumors, T-cell lymphomas, and B-cell lymphomas. In those instances, the alteration in tumor induction or progression correlated with inability of the mutant large T antigen to bind the tumor suppressor p53. In the study reported here, we investigated the capacity of an N-terminal T antigen segment (T1-127) expressed in conjunction with small t antigen under control of the rat elastase-1 (E1) promoter to induce pancreatic tumors. The results show that pancreases of transgenic mice expressing T1-127 and small t antigen display acinar cell dysplasia at birth that progresses to neoplasia. The average age to death in these mice is within the range reported for transgenic mice expressing full-length T antigen under control of the E1 promoter. These results indicate that sequestering p53 by binding is not required for the development of rapidly growing acinar cell carcinomas. In addition, we provide evidence that small t antigen is unlikely to be required. Finally, we show that the p53 protein in acinar cell carcinomas is wild type in conformation. PMID:9343166

  16. Pancreatic tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization.

    PubMed

    Maity, Gargi; Mehta, Smita; Haque, Inamul; Dhar, Kakali; Sarkar, Sandipto; Banerjee, Sushanta K; Banerjee, Snigdha

    2014-05-16

    The complex signaling networks between cancer cells and adjacent endothelial cells make it challenging to unravel how cancer cells send extracellular messages to promote aberrant vascularization or tumor angiogenesis. Here, in vitro and in vivo models show that pancreatic cancer cell generated unique microenvironments can underlie endothelial cell migration and tumor angiogenesis. Mechanistically, we find that pancreatic cancer cell secreted CCN1/Cyr61 matricellular protein rewires the microenvironment to promote endothelial cell migration and tumor angiogenesis. This event can be overcome by Sonic Hedgehog (SHh) antibody treatment. Collectively, these studies identify a novel CCN1 signaling program in pancreatic cancer cells which activates SHh through autocrine-paracrine circuits to promote endothelial cell migration and tumor angiogenesis and suggests that CCN1 signaling of pancreatic cancer cells is vital for the regulation of tumor angiogenesis. Thus CCN1 signaling could be an ideal target for tumor vascular disruption in pancreatic cancer.

  17. SIRT1 promotes the proliferation and metastasis of human pancreatic cancer cells.

    PubMed

    Jin, Jianguang; Chu, Zhijie; Ma, Pengfei; Meng, Yuanpu; Yang, Yanhui

    2017-03-01

    SIRT1 plays an important role in human malignant progression, inducing cancer cell proliferation and metastasis by regulating downstream gene expressions. However, little is known about the underlying mechanisms in which SIRT1 promotes pancreatic cancer tumorigenesis. The aim of this study is to investigate the SIRT1 expression levels and biological functions in promoting pancreatic cancer progression. We first investigated the expression of SIRT1 in a series of pancreatic cancer tissues as well as in a panel of pancreatic cancer cell lines. The effect of SIRT1 on cell activity was explored by knockdown experiments. Cell growth was measured using the MTT assay and colony-formation assay. Migration and invasion were tested using transwell assay. Our results showed that the expression of SIRT1 was significantly up-regulated both in pancreatic cancer tissues and cell lines. Knockdown of SIRT1 suppressed cell proliferation and migration of pancreatic cancer cells. This is the first report to disclose the role of SIRT1 in regulation of pancreatic cancer cell proliferation and migration, which may provide a potential therapeutic target for pancreatic cancer patients.

  18. Control of beta-cell differentiation by the pancreatic mesenchyme.

    PubMed

    Attali, Myriam; Stetsyuk, Volodymyr; Basmaciogullari, Annie; Aiello, Virginie; Zanta-Boussif, Maria A; Duvillie, Bertrand; Scharfmann, Raphael

    2007-05-01

    The importance of mesenchymal-epithelial interactions for normal development of the pancreas was recognized in the early 1960s, and mesenchymal signals have been shown to control the proliferation of early pancreatic progenitor cells. The mechanisms by which the mesenchyme coordinates cell proliferation and differentiation to produce the normal number of differentiated pancreatic cells are not fully understood. Here, we demonstrate that the mesenchyme positively controls the final number of beta-cells that develop from early pancreatic progenitor cells. In vitro, the number of beta-cells that developed from rat embryonic pancreatic epithelia was larger in cultures with mesenchyme than without mesenchyme. The effect of mesenchyme was not due to an increase in beta-cell proliferation but was due to increased proliferation of early pancreatic duodenal homeobox-1 (PDX1)-positive progenitor cells, as confirmed by bromodeoxyuridine incorporation. Consequently, the window during which early PDX1(+) pancreatic progenitor cells differentiated into endocrine progenitor cells expressing Ngn3 was extended. Fibroblast growth factor 10 mimicked mesenchyme effects on proliferation of early PDX1(+) progenitor cells and induction of Ngn3 expression. Taken together, our results indicate that expansion of early PDX1(+) pancreatic progenitor cells represents a way to increase the final number of beta-cells developing from early embryonic pancreas.

  19. Chidamide Inhibits Aerobic Metabolism to Induce Pancreatic Cancer Cell Growth Arrest by Promoting Mcl-1 Degradation

    PubMed Central

    Wang, Yanbing; Kuai, Qiyuan; Li, Changlan; Wang, Yu; Jiang, Xingwei; Wang, Xuanlin; Li, Weijing; He, Min; Ren, Suping; Yu, Qun

    2016-01-01

    Pancreatic cancer is a fatal malignancy worldwide and urgently requires valid therapies. Previous research showed that the HDAC inhibitor chidamide is a promising anti-cancer agent in pancreatic cancer cell lines. In this study, we elucidate a probable underlying anti-cancer mechanism of chidamide involving the degradation of Mcl-1. Mcl-1 is frequently upregulated in human cancers, which has been demonstrated to participate in oxidative phosphorylation, in addition to its anti-apoptotic actions as a Bcl-2 family member. The pancreatic cancer cell lines BxPC-3 and PANC-1 were treated with chidamide, resulting in Mcl-1 degradation accompanied by induction of Mcl-1 ubiquitination. Treatment with MG132, a proteasome inhibitor reduced Mcl-1 degradation stimulated by chidamide. Chidamide decreased O2 consumption and ATP production to inhibit aerobic metabolism in both pancreatic cancer cell lines and primary cells, similar to knockdown of Mcl-1, while overexpression of Mcl-1 in pancreatic cancer cells could restore the aerobic metabolism inhibited by chidamide. Furthermore, chidamide treatment or Mcl-1 knockdown significantly induced cell growth arrest in pancreatic cancer cell lines and primary cells, and Mcl-1 overexpression could reduce this cell growth inhibition. In conclusion, our results suggest that chidamide promotes Mcl-1 degradation through the ubiquitin-proteasome pathway, suppressing the maintenance of mitochondrial aerobic respiration by Mcl-1, and resulting in inhibition of pancreatic cancer cell proliferation. Our work supports the claim that chidamide has therapeutic potential for pancreatic cancer treatment. PMID:27875574

  20. Transgenic expression of the human growth hormone minigene promotes pancreatic β-cell proliferation.

    PubMed

    Baan, Mieke; Kibbe, Carly R; Bushkofsky, Justin R; Harris, Ted W; Sherman, Dawn S; Davis, Dawn Belt

    2015-10-01

    Transgenic mouse models are designed to study the role of specific proteins. To increase transgene expression the human growth hormone (hGH) minigene, including introns, has been included in many transgenic constructs. Until recently, it was thought that the hGH gene was not spliced, transcribed, and translated to produce functional hGH protein. We generated a transgenic mouse with the transcription factor Forkhead box M1 (FoxM1) followed by the hGH minigene, under control of the mouse insulin promoter (MIP) to target expression specifically in the pancreatic β-cell. Expression of FoxM1 in isolated pancreatic islets in vitro stimulates β-cell proliferation. We aimed to investigate the effect of FoxM1 on β-cell mass in a mouse model for diabetes mellitus. However, we found inadvertent coexpression of hGH protein from a spliced, bicistronic mRNA. MIP-FoxM1-hGH mice had lower blood glucose and higher pancreatic insulin content, due to increased β-cell proliferation. hGH signals through the murine prolactin receptor, and expression of its downstream targets tryptophan hydroxylase-1 (Tph1), tryptophan hydroxylase-2 (Tph2), and cytokine-inducible SH2 containing protein (Cish) was increased. Conversely, transcriptional targets of FoxM1 were not upregulated. Our data suggest that the phenotype of MIP-FoxM1-hGH mice is due primarily to hGH activity and that the FoxM1 protein remains largely inactive. Over the past decades, multiple transgenic mouse strains were generated that make use of the hGH minigene to increase transgene expression. Our work suggests that each will need to be carefully screened for inadvertent hGH production and critically evaluated for the use of proper controls.

  1. GSH2 promoter methylation in pancreatic cancer analyzed by quantitative methylation-specific polymerase chain reaction

    PubMed Central

    GAO, FEI; HUANG, HAO-JIE; GAO, JUN; LI, ZHAO-SHEN; MA, SHU-REN

    2015-01-01

    Tumor suppressor gene silencing via promoter hypermethylation is an important event in pancreatic cancer pathogenesis. Aberrant DNA hypermethylation events are highly tumor specific, and may provide a diagnostic tool for pancreatic cancer patients. The objective of the current study was to identify novel methylation-related genes that may potentially be used to establish novel therapeutic and diagnostic strategies against pancreatic cancer. The methylation status of the GS homeobox 2 (GSH2) gene was analyzed using the sodium bisulfite sequencing method. The GSH2 methylation ratio was examined in primary carcinomas and corresponding normal tissues derived from 47 patients with pancreatic cancer, using quantitative methylation-specific polymerase chain reaction. Methylation ratios were found to be associated with the patient's clinicopathological features. GSH2 gene methylation was detected in 26 (55.3%) of the 47 pancreatic cancer patients, indicating that it occurs frequently in pancreatic cancer. A significant association with methylation was observed for tumor-node-metastasis stage (P=0.031). GSH2 may be a novel methylation-sensitive tumor suppressor gene in pancreatic cancer and may be a tumor-specific biomarker of the disease. PMID:26171036

  2. Influence of matrix metalloproteinase-1 gene -1607 (1G/2G) (rs1799750) promoter polymorphism on circulating levels of MMP-1 in chronic pancreatitis.

    PubMed

    Sri Manjari, K; Nallari, Pratibha; Balakrishna, N; Vidyasagar, A; Prabhakar, B; Jyothy, A; Venkateshwari, A

    2013-08-01

    This study investigated the role of -1607 (1G/2G) (rs1799750) polymorphism of the MMP-1 gene in chronic pancreatitis. We genotyped 100 patients with chronic pancreatitis and 100 control subjects using tetra-primer ARMS-PCR followed by agarose gel electrophoresis. Serum levels of MMP-1 were determined by Elisa. Statistical analysis was applied to test the significance of the results. The genotypic and allelic distribution varied significantly between the disease group and the control subjects [OD = 1.981 (1.236-3.181), p = 0.004]. MMP-1 levels were higher in subjects homozygous for the 2G allele than in subjects with the 1G allele. The present study revealed a significant association of the MMP-1 -1607 1G/2G (rs1799750) gene promoter polymorphism with chronic pancreatitis, and it can be considered a biological marker in the etiology of chronic pancreatitis.

  3. Calmodulin antagonists promote TRA-8 therapy of resistant pancreatic cancer

    PubMed Central

    Yuan, Kaiyu; Yong, Sun; Xu, Fei; Zhou, Tong; McDonald, Jay M; Chen, Yabing

    2015-01-01

    Pancreatic cancer is highly malignant with limited therapy and a poor prognosis. TRAIL-activating therapy has been promising, however, clinical trials have shown resistance and limited responses of pancreatic cancers. We investigated the effects of calmodulin(CaM) antagonists, trifluoperazine(TFP) and tamoxifen(TMX), on TRA-8-induced apoptosis and tumorigenesis of TRA-8-resistant pancreatic cancer cells, and underlying mechanisms. TFP or TMX alone did not induce apoptosis of resistant PANC-1 cells, while they dose-dependently enhanced TRA-8-induced apoptosis. TMX treatment enhanced efficacy of TRA-8 therapy on tumorigenesis in vivo. Analysis of TRA-8-induced death-inducing-signaling-complex (DISC) identified recruitment of survival signals, CaM/Src, into DR5-associated DISC, which was inhibited by TMX/TFP. In contrast, TMX/TFP increased TRA-8-induced DISC recruitment/activation of caspase-8. Consistently, caspase-8 inhibition blocked the effects of TFP/TMX on TRA-8-induced apoptosis. Moreover, TFP/TMX induced DR5 expression. With a series of deletion/point mutants, we identified CaM antagonist-responsive region in the putative Sp1-binding domain between −295 to −300 base pairs of DR5 gene. Altogether, we have demonstrated that CaM antagonists enhance TRA-8-induced apoptosis of TRA-8-resistant pancreatic cancer cells by increasing DR5 expression and enhancing recruitment of apoptotic signal while decreasing survival signals in DR5-associated DISC. Our studies support the use of these readily available CaM antagonists combined with TRAIL-activating agents for pancreatic cancer therapy. PMID:26320171

  4. Establishment of a novel, eco-friendly transgenic pig model using porcine pancreatic amylase promoter-driven fungal cellulase transgenes.

    PubMed

    Lin, Y S; Yang, C C; Hsu, C C; Hsu, J T; Wu, S C; Lin, C J; Cheng, W T K

    2015-02-01

    Competition between humans and livestock for cereal and legume grains makes it challenging to provide economical feeds to livestock animals. Recent increases in corn and soybean prices have had a significant impact on the cost of feed for pig producers. The utilization of byproducts and alternative ingredients in pig diets has the potential to reduce feed costs. Moreover, unlike ruminants, pigs have limited ability to utilize diets with high fiber content because they lack endogenous enzymes capable of breaking down nonstarch polysaccharides into simple sugars. Here, we investigated the feasibility of a transgenic strategy in which expression of the fungal cellulase transgene was driven by the porcine pancreatic amylase promoter in pigs. A 2,488 bp 5'-flanking region of the porcine pancreatic amylase gene was cloned by the genomic walking technique, and its structural features were characterized. Using GFP as a reporter, we found that this region contained promoter activity and had the potential to control heterologous gene expression. Transgenic pigs were generated by pronuclear microinjection. Founders and offspring were identified by PCR and Southern blot analyses. Cellulase mRNA and protein showed tissue-specific expression in the pancreas of F1 generation pigs. Cellulolytic enzyme activity was also identified in the pancreas of transgenic pigs. These results demonstrated the establishment of a tissue-specific promoter of the porcine pancreatic amylase gene. Transgenic pigs expressing exogenous cellulase may represent a way to increase the intake of low-cost, fiber-rich feeds.

  5. Hyperglycemia Promotes the Epithelial-Mesenchymal Transition of Pancreatic Cancer via Hydrogen Peroxide

    PubMed Central

    Jiang, Zhengdong

    2016-01-01

    Diabetes mellitus (DM) and pancreatic cancer are intimately related, as approximately 85% of patients diagnosed with pancreatic cancer have impaired glucose tolerance or even DM. Our previous studies have indicated that high glucose could promote the invasive and migratory abilities of pancreatic cancer cells. We therefore explored the underlying mechanism that hyperglycemia modulates the metastatic potential of pancreatic cancer. Our data showed that streptozotocin- (STZ-) treated diabetic nude mice exhibit larger tumor size than that of the euglycemic mice. The number of nude mice that develop liver metastasis or ascites is much more in the STZ-treated group than that in the euglycemic group. Hyperglycemic mice contain a higher plasma H2O2-level than that from euglycemic mice. The injection of polyethylene glycol-conjugated catalase (PEG-CAT), an H2O2 scavenger, may reverse hyperglycemia-induced tumor metastasis. In addition, hyperglycemia could also modulate the expression of epithelial-mesenchymal transition- (EMT-) related factors in pancreatic tumor tissues, as the E-cadherin level is decreased and the expression of mesenchymal markers N-cadherin and vimentin as well as transcription factor snail is strongly increased. The injection of PEG-CAT could also reverse hyperglycemia-induced EMT. These results suggest that the association between hyperglycemia and poor prognosis of pancreatic cancer can be attributed to the alterations of EMT through the production of hydrogen peroxide. PMID:27433288

  6. Pancreatitis

    MedlinePlus

    ... removal is sometimes performed along with a sphincterotomy. Stent placement. Using the endoscope, the doctor places a ... a narrowed pancreatic or bile duct. A temporary stent may be placed for a few months to ...

  7. Pancreatic Cancer

    MedlinePlus

    ... hormones that help control blood sugar levels. Pancreatic cancer usually begins in the cells that produce the juices. Some risk factors for developing pancreatic cancer include Smoking Long-term diabetes Chronic pancreatitis Certain ...

  8. [Chronic pancreatitis, acute pancreatitis].

    PubMed

    Mabuchi, T; Katada, N; Nishimura, D; Hoshino, H; Shimizu, F; Suzuki, R; Sano, H; Kato, K

    1998-11-01

    MRCP has been recognized as a safe and noninvasive diagnostic method. In the present study we evaluated the usefulness of MRCP in diagnosis of chronic and acute pancreatitis. Two-dimensional fast asymmetric spin-echo (FASE) MRCP was performed in 40 patients with chronic pancreatitis and 13 with acute pancreatitis. In 29 patients (72.5%) with chronic pancreatitis and 9 (66.7%) with acute pancreatitis, main pancreatic duct (MPD) was visualized entirely. MRCP could demonstrate the characteristic findings of chronic pancreatitis such as dilatation and irregularity of MPD in most cases. In acute pancreatitis, MRCP indicated that MPD was normal in diameter, but irregular in configuration compared with that of the control group. MRCP may facilitate the diagnosis of chronic and acute pancreatitis.

  9. Furin promotes epithelial-mesenchymal transition in pancreatic cancer cells via Hippo-YAP pathway.

    PubMed

    Zhang, Youli; Zhou, Meng; Wei, Hong; Zhou, Hailang; He, Junbo; Lu, Ying; Wang, Dawei; Chen, Baoding; Zeng, Jian; Peng, Wanxin; Du, Fengyi; Gong, Aihua; Xu, Min

    2017-04-01

    Furin, a well-characterized proprotein convertase, plays an important role in many diseases and links to tumor metastasis. However, the role of furin in pancreatic cancer progression remains to be elucidated. In the present study, we found that furin promotes the growth and the epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. First, we found that furin knockdown significantly inhibited proliferation, invasion and migration in BxPC3 and SW1990 cells, while furin overexpression promoted the above behavior in PANC1 and PaTu8988 cells. Further evidence revealed that furin knockdown resulted in the upregulation of E-cadherin (epithelial marker), and the downregulation of N-cadherin and Vimentin (mesenchymal markers) in BxPC3 and SW1990 cells, whereas furin overexpression remarkably led to the opposite effects in PANC1 and PaTu8988 cells. Furthermore, our data showed that Furin knockdown, furin inhibitor D6R or overexpression significantly affected YAP phosphoration level and total YAP protein level, indicating that furin was involved in Hippo-YAP pathway. It is suggested that furin promotes epithelial-mesenchymal transition in pancreatic cancer cells probably via Hippo-YAP pathway and may be a potential target for anti-pancreatic cancer.

  10. H19-Promoter-Targeted Therapy Combined with Gemcitabine in the Treatment of Pancreatic Cancer

    PubMed Central

    Sorin, Vladimir; Ohana, Patricia; Gallula, Jennifer; Birman, Tatiana; Matouk, Imad; Hubert, Ayala; Gilon, Michal; Hochberg, Avraham; Czerniak, Abraham

    2012-01-01

    Pancreatic cancer is the eighth cancer leading cause of cancer-related death in the world and has a 5-year survival rate of 1–4% only. Gemcitabine is a first line agent for advanced pancreatic therapy; however, its efficacy is limited by its poor intracellular metabolism and chemoresistance. Studies have been conducted in an effort to improve gemcitabine treatment results by adding other chemotherapeutic agents, but none of them showed any significant advantage over gemcitabine monotherapy. We found that 85% of human pancreatic tumors analyzed by in situ hybridization analyses showed moderated to strong expression of the H19 gene. We designed a preclinical study combining gemcitabine treatment and a DNA-based therapy for pancreatic cancer using a non viral vector BC-819 (also known as DTA-H19), expressing the diphtheria toxin A chain under the control of the H19 gene regulatory sequences. The experiments conducted either in an orthotopic and heterotopic pancreatic carcinoma animal model showed better antitumor activity following the sequential administration of the vector BC-819 and gemcitabine as compared to the effect of each of them alone. The results presented in the current study indicate that treatment with BC-819 in combination with gemcitabine might be a viable new therapeutic option for patients with advanced pancreatic cancer. PMID:22701803

  11. H19-promoter-targeted therapy combined with gemcitabine in the treatment of pancreatic cancer.

    PubMed

    Sorin, Vladimir; Ohana, Patricia; Gallula, Jennifer; Birman, Tatiana; Matouk, Imad; Hubert, Ayala; Gilon, Michal; Hochberg, Avraham; Czerniak, Abraham

    2012-01-01

    Pancreatic cancer is the eighth cancer leading cause of cancer-related death in the world and has a 5-year survival rate of 1-4% only. Gemcitabine is a first line agent for advanced pancreatic therapy; however, its efficacy is limited by its poor intracellular metabolism and chemoresistance. Studies have been conducted in an effort to improve gemcitabine treatment results by adding other chemotherapeutic agents, but none of them showed any significant advantage over gemcitabine monotherapy. We found that 85% of human pancreatic tumors analyzed by in situ hybridization analyses showed moderated to strong expression of the H19 gene. We designed a preclinical study combining gemcitabine treatment and a DNA-based therapy for pancreatic cancer using a non viral vector BC-819 (also known as DTA-H19), expressing the diphtheria toxin A chain under the control of the H19 gene regulatory sequences. The experiments conducted either in an orthotopic and heterotopic pancreatic carcinoma animal model showed better antitumor activity following the sequential administration of the vector BC-819 and gemcitabine as compared to the effect of each of them alone. The results presented in the current study indicate that treatment with BC-819 in combination with gemcitabine might be a viable new therapeutic option for patients with advanced pancreatic cancer.

  12. Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer Through GTPase Signaling Pathways

    PubMed Central

    Padavano, Julianna; Henkhaus, Rebecca S; Chen, Hwudaurw; Skovan, Bethany A; Cui, Haiyan; Ignatenko, Natalia A

    2015-01-01

    Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies, characterized by the local invasion into surrounding tissues and early metastasis to distant organs. Oncogenic mutations of the K-RAS gene occur in more than 90% of human pancreatic cancers. The goal of this study was to investigate the functional significance and downstream effectors of mutant K-RAS oncogene in the pancreatic cancer invasion and metastasis. We applied the homologous recombination technique to stably disrupt K-RAS oncogene in the human pancreatic cell line MiaPaCa-2, which carries the mutant K-RASG12C oncogene in both alleles. Using in vitro assays, we found that clones with disrupted mutant K-RAS gene exhibited low RAS activity, reduced growth rates, increased sensitivity to the apoptosis inducing agents, and suppressed motility and invasiveness. In vivo assays showed that clones with decreased RAS activity had reduced tumor formation ability in mouse xenograft model and increased survival rates in the mouse orthotopic pancreatic cancer model. We further examined molecular pathways downstream of mutant K-RAS and identified RhoA GTP activating protein 5, caveolin-1, and RAS-like small GTPase A (RalA) as key effector molecules, which control mutant K-RAS-dependent migration and invasion in MiaPaCa-2 cells. Our study provides rational for targeting RhoA and RalA GTPase signaling pathways for inhibition of pancreatic cancer metastasis. PMID:26512205

  13. Interleukin-9 Promotes Pancreatic Cancer Cells Proliferation and Migration via the miR-200a/Beta-Catenin Axis

    PubMed Central

    Hu, Bangli; Qiu-lan, Huang; Lei, Rong-e; Shi, Cheng; Jiang, Hai-xing

    2017-01-01

    Background. Both IL-9 and miR-200a are involved in the pathogenesis of cancers; however, the role of IL-9 in pancreatic cancer and the possible underlying mechanisms remain unknown. The aim of this study was to investigate the effect of IL-9 on pancreatic cancer cells and its interaction with miR-200a. Methods. Pancreatic cancer cells (PANC-1 and AsPC-1) were treated with IL-9 and the expression of miR-200a and β-catenin in pancreatic cancer cells was measured. β-Catenin was examined as a target gene of miR-200a in pancreatic cancer cells. The interaction between IL-9 and miR-200a in pancreatic cancer cells was determined by infecting miR-200a mimics prior to IL-9 treatment and then measuring miR-200a and β-catenin expression. Results. IL-9 significantly promoted the proliferation, invasion, and migration of pancreatic cancer cells; however, the effect on pancreatic cancer cell apoptosis was insignificant. β-Catenin was verified as a target gene of miR-200a in pancreatic cancer cells. Overexpression of miR-200a in pancreatic cancer cells significantly attenuated proliferation and metastasis and reduced β-catenin expression. IL-9 treatment of pancreatic cancer cells decreased miR-200a expression and increased β-catenin expression. The effect of miR-200a on pancreatic cancer cells decreased following IL-9 treatment. Conclusions. IL-9 promotes proliferation and metastasis in pancreatic cancer cells; this effect may partly involve regulation of the miR-200a/β-catenin axis. PMID:28349057

  14. Nuclear localization of tricellulin promotes the oncogenic property of pancreatic cancer

    PubMed Central

    Takasawa, Akira; Murata, Masaki; Takasawa, Kumi; Ono, Yusuke; Osanai, Makoto; Tanaka, Satoshi; Nojima, Masanori; Kono, Tsuyoshi; Hirata, Koichi; Kojima, Takashi; Sawada, Norimasa

    2016-01-01

    Accumulating evidence has shown that dysregulation of tight junctions (TJs) is involved in tumor development and progression. In this study, we investigated the expression and subcellular distribution of tricellulin, which constitutes tricellular TJs, using human pancreatic adenocarcinomas. In well-differentiated pancreatic adenocarcinoma tissues, tricellulin immunostaining was prominent in the cytoplasm and the plasma membrane. In contrast, in poorly differentiated tissues, its immunostaining was predominantly observed in the nuclei and was almost absent in the plasma membrane. The distinct immunostaining of tricellulin successfully distinguished poorly differentiated adenocarcinoma from moderately and well-differentiated adenocarcinomas with high levels of sensitivity and specificity. Nuclear tricellulin expression significantly correlated with lymph node metastasis, lymphatic invasion and poor survival. In pancreatic cancer cell lines, tricellulin localization shifted from the membrane to nucleus with decreasing differentiation status. Nuclear localization of tricellulin promoted cell proliferation and invasiveness possibly in association with MAPK and PKC pathways in pancreatic cancers. Our results provide new insights into the function of tricellulin, and its nuclear localization may become a new prognostic factor for pancreatic cancers. PMID:27641742

  15. MiR-451 Promotes Cell Proliferation and Metastasis in Pancreatic Cancer through Targeting CAB39

    PubMed Central

    Gu, Jianhua; Zhang, Zhibin

    2017-01-01

    Emerging evidence shows that microRNAs (miRNAs) play important roles in the regulation of various biological and pathologic processes in human cancers and the aberrant expression of miRNAs contributes to the tumor development. In this study, our findings indicate that miR-451 is significantly overexpressed in pancreatic cancer tissues and cell lines and elevated expression of miR-451 contributes to promoted cell viability (in vitro and in vivo). Moreover, overexpression of miR-451 is closely linked to poor prognosis and lymphatic metastasis. Inhibition of miR-451 dramatically suppresses cell viability and invasion, promotes cell apoptosis, and induces cell cycle arrest. Furthermore, miR-451 directly targets CAB39 and negatively regulates its expression and inhibition of CAB39 contributes to the promoted cell viability and invasion. Our findings improve our understanding of the function of miR-451 in the identification and therapy of pancreatic cancer. PMID:28197410

  16. CCN1 promotes tumorigenicity through Rac1/Akt/NF-κB signaling pathway in pancreatic cancer.

    PubMed

    Wang, Xuqing; Deng, Yuezhen; Mao, Zhengfa; Ma, Xiaoyan; Fan, Xin; Cui, Lei; Qu, Jianguo; Xie, Dong; Zhang, Jianxin

    2012-10-01

    Aberrant CCN1 expression has been reported to play an important role in the tumor development. However, the pattern and the role of CCN1 in pancreatic cancer remain largely unknown. Therefore, we further deciphered the role CCN1 played in pancreatic cancer. We first evaluated the CCN1 expression in human pancreatic cancer tissues and pancreatic cancer cells. Then we forced expression and silenced CCN1 expression in pancreatic cancer cell lines MIA PaCa2 and PANC-1 respectively, using lentivirus vectors. We characterized the stable cells in vitro and in vivo using a nude mouse xenograft model. In this study, we found that CCN1 expression was significantly higher in cancer specimens which positively correlated with the expression level of phosphorylated Akt and p65. and poorer outcome. Moreover, our results demonstrated that CCN1 positively regulated pancreatic cell growth in vitro and in vivo and helped cancer cells resist to tumor necrosis factor alpha-induced apoptosis. Furthermore, we disclosed that activation of CCN1/ras-related c3 botulinum toxin substrate 1 (Rac1)/V-akt murine thymoma viral oncogene homolog (Akt)/nuclear factor-kappa B pathway inhibited apoptosis in pancreatic cancer cells. CCN1 is upregulated in pancreatic cancer and promotes the survival of pancreatic cancer cells. Taken together, these results indicate that CCN1 may be a potential target for pancreatic cancer therapy.

  17. The pancreatitis-associated protein VMP1, a key regulator of inducible autophagy, promotes KrasG12D-mediated pancreatic cancer initiation

    PubMed Central

    Loncle, C; Molejon, M I; Lac, S; Tellechea, J I; Lomberk, G; Gramatica, L; Fernandez Zapico, M F; Dusetti, N; Urrutia, R; Iovanna, J L

    2016-01-01

    Both clinical and experimental evidence have firmly established that chronic pancreatitis, in particular in the context of Kras oncogenic mutations, predisposes to pancreatic ductal adenocarcinoma (PDAC). However, the repertoire of molecular mediators of pancreatitis involved in Kras-mediated initiation of pancreatic carcinogenesis remains to be fully defined. In this study we demonstrate a novel role for vacuole membrane protein 1 (VMP1), a pancreatitis-associated protein critical for inducible autophagy, in the regulation of Kras-induced PDAC initiation. Using a newly developed genetically engineered model, we demonstrate that VMP1 increases the ability of Kras to give rise to preneoplastic lesions, pancreatic intraepithelial neoplasias (PanINs). This promoting effect of VMP1 on PanIN formation is due, at least in part, by an increase in cell proliferation combined with a decrease in apoptosis. Using chloroquine, an inhibitor of autophagy, we show that this drug antagonizes the effect of VMP1 on PanIN formation. Thus, we conclude that VMP1-mediated autophagy cooperate with Kras to promote PDAC initiation. These findings are of significant medical relevance, molecules targeting autophagy are currently being tested along chemotherapeutic agents to treat PDAC and other tumors in human trials. PMID:27415425

  18. IL-17 functions through the novel REG3β-JAK2-STAT3 inflammatory pathway to promote the transition from chronic pancreatitis to pancreatic cancer

    PubMed Central

    Loncle, Celine; Bonjoch, Laia; Folch-Puy, Emma; Lopez-Millan, Maria Belen; Lac, Sophie; Molejon, Maria Inés; Chuluyan, Eduardo; Cordelier, Pierre; Dubus, Pierre; Lomberk, Gwen; Urrutia, Raul; Closa, Daniel; Iovanna, Juan L

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) offers an optimal model for discovering “druggable” molecular pathways that participate in inflammation-associated cancer development. Chronic pancreatitis, a common prolonged inflammatory disease, behaves as a well-known premalignant condition that contributes to PDAC development. Although the mechanisms underlying the pancreatitis-to-cancer transition remain to be fully elucidated, emerging evidence supports the hypothesis that the actions of proinflammatory mediators on cells harboring Kras mutations promote neoplastic transformation. Recent elegant studies demonstrated that the IL-17 pathway mediates this phenomenon and can be targeted with antibodies, but the downstream mechanisms by which IL-17 functions during this transition are currently unclear. In this study, we demonstrate that IL-17 induces the expression of REG3β, a well-known mediator of pancreatitis, during acinar-to-ductal metaplasia and in early PanIN lesions. Furthermore, we found that REG3β promotes cell growth and decreases sensitivity to cell death through activation of the gp130-JAK2-STAT3-dependent pathway. Genetic inactivation of REG3β in the context of oncogenic Kras-driven PDAC resulted in reduced PanIN formation, an effect that could be rescued by administration of exogenous REG3β. Taken together, our findings provide mechanistic insight into the pathways underlying inflammation-associated pancreatic cancer, revealing a dual and contextual pathophysiological role for REG3β during pancreatitis and PDAC initiation. PMID:26404002

  19. Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas.

    PubMed

    Saponara, Enrica; Grabliauskaite, Kamile; Bombardo, Marta; Buzzi, Raphael; Silva, Alberto B; Malagola, Ermanno; Tian, Yinghua; Hehl, Adrian B; Schraner, Elisabeth M; Seleznik, Gitta M; Zabel, Anja; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-12-01

    The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone-stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation-mediated tissue injury. Specifically, lack of serotonin resulted in delayed up-regulation of progenitor genes and delayed the formation of acinar-to-ductal metaplasia and defective acinar cell proliferation. We identified serotonin-dependent acinar secretion as a key step in progenitor-based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1-Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells.

  20. PanScan, the Pancreatic Cancer Cohort Consortium, and the Pancreatic Cancer Case-Control Consortium

    Cancer.gov

    The Pancreatic Cancer Cohort Consortium consists of more than a dozen prospective epidemiologic cohort studies within the NCI Cohort Consortium, whose leaders work together to investigate the etiology and natural history of pancreatic cancer.

  1. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    SciTech Connect

    Gao Xiaodong; Song Lujun; Shen Kuntang; Wang Hongshan; Niu Weixin Qin Xinyu

    2008-06-20

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed {beta} cells were in the process of proliferation. BrdU{sup +} insulin{sup -} PDX-1{sup +} cells, Ngn3{sup +} cells and insulin{sup +} glucagon{sup +} cells, which showed stem cells, were also found during {beta}-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34{sup +} cells can promote repair of pancreatic islets. Moreover, both proliferation of {beta} cells and differentiation of pancreatic stem cells contribute to the regeneration of {beta} cells.

  2. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice.

    PubMed

    Gao, Xiaodong; Song, Lujun; Shen, Kuntang; Wang, Hongshan; Niu, Weixin; Qin, Xinyu

    2008-06-20

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed beta cells were in the process of proliferation. BrdU(+) insulin(-) PDX-1(+) cells, Ngn3(+) cells and insulin(+) glucagon(+) cells, which showed stem cells, were also found during beta-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34(+) cells can promote repair of pancreatic islets. Moreover, both proliferation of beta cells and differentiation of pancreatic stem cells contribute to the regeneration of beta cells.

  3. TM4SF1 Promotes Metastasis of Pancreatic Cancer via Regulating the Expression of DDR1

    PubMed Central

    Yang, Jia-chun; Zhang, Yi; He, Si-jia; Li, Ming-ming; Cai, Xiao-lei; Wang, Hui; Xu, Lei-ming; Cao, Jia

    2017-01-01

    Transmembrane-4-L-six-family-1(TM4SF1), a four-transmembrane L6 family member, is highly expressed in various pancreatic cancer cell lines and promotes cancer cells metastasis. However, the TM4SF1-associated signaling network in metastasis remains unknown. In the present study, we found that TM4SF1 affected the formation and function of invadopodia. Silencing of TM4SF1 reduced the expression of DDR1 significantly in PANC-1 and AsPC-1 cells. Through double fluorescence immuno-staining and Co-immunoprecipitation, we also found that TM4SF1 colocalized with DDR1 and had an interaction with DDR1. In addition, upregulating the expression of DDR1 rescued the inhibitory effects of cell migration and invasion, the expression of MMP2 and MMP9 and the formation and function of invadopodia when TM4SF1 silenced. In pancreatic cancer tissues, qRT-PCR and scatter plots analysis further determined that TM4SF1 had a correlation with DDR1. Collectively, our study provides a novel regulatory pathway involving TM4SF1, DDR1, MMP2 and MMP9, which promotes the formation and function of invadopodia to support cell migration and invasion in pancreatic cancer. PMID:28368050

  4. TM4SF1 Promotes Metastasis of Pancreatic Cancer via Regulating the Expression of DDR1.

    PubMed

    Yang, Jia-Chun; Zhang, Yi; He, Si-Jia; Li, Ming-Ming; Cai, Xiao-Lei; Wang, Hui; Xu, Lei-Ming; Cao, Jia

    2017-04-03

    Transmembrane-4-L-six-family-1(TM4SF1), a four-transmembrane L6 family member, is highly expressed in various pancreatic cancer cell lines and promotes cancer cells metastasis. However, the TM4SF1-associated signaling network in metastasis remains unknown. In the present study, we found that TM4SF1 affected the formation and function of invadopodia. Silencing of TM4SF1 reduced the expression of DDR1 significantly in PANC-1 and AsPC-1 cells. Through double fluorescence immuno-staining and Co-immunoprecipitation, we also found that TM4SF1 colocalized with DDR1 and had an interaction with DDR1. In addition, upregulating the expression of DDR1 rescued the inhibitory effects of cell migration and invasion, the expression of MMP2 and MMP9 and the formation and function of invadopodia when TM4SF1 silenced. In pancreatic cancer tissues, qRT-PCR and scatter plots analysis further determined that TM4SF1 had a correlation with DDR1. Collectively, our study provides a novel regulatory pathway involving TM4SF1, DDR1, MMP2 and MMP9, which promotes the formation and function of invadopodia to support cell migration and invasion in pancreatic cancer.

  5. TGF-β1 promotes acinar to ductal metaplasia of human pancreatic acinar cells

    PubMed Central

    Liu, Jun; Akanuma, Naoki; Liu, Chengyang; Naji, Ali; Halff, Glenn A.; Washburn, William K.; Sun, Luzhe; Wang, Pei

    2016-01-01

    Animal studies suggest that pancreatitis-induced acinar-to-ductal metaplasia (ADM) is a key event for pancreatic ductal adenocarcinoma (PDAC) initiation. However, there has not been an adequate system to explore the mechanisms of human ADM induction. We have developed a flow cytometry-based, high resolution lineage tracing method and 3D culture system to analyse ADM in human cells. In this system, well-known mouse ADM inducers did not promote ADM in human cells. In contrast, TGF-β1 efficiently converted human acinar cells to duct-like cells (AD) in a SMAD-dependent manner, highlighting fundamental differences between the species. Functionally, AD cells gained transient proliferative capacity. Furthermore, oncogenic KRAS did not induce acinar cell proliferation, but did sustain the proliferation of AD cells, suggesting that oncogenic KRAS requires ADM-associated-changes to promote PDAC initiation. This ADM model provides a novel platform to explore the mechanisms involved in the development of human pancreatic diseases. PMID:27485764

  6. ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth.

    PubMed

    Rath, Nicola; Morton, Jennifer P; Julian, Linda; Helbig, Lena; Kadir, Shereen; McGhee, Ewan J; Anderson, Kurt I; Kalna, Gabriela; Mullin, Margaret; Pinho, Andreia V; Rooman, Ilse; Samuel, Michael S; Olson, Michael F

    2017-02-01

    Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death; identifying PDAC enablers may reveal potential therapeutic targets. Expression of the actomyosin regulatory ROCK1 and ROCK2 kinases increased with tumor progression in human and mouse pancreatic tumors, while elevated ROCK1/ROCK2 expression in human patients, or conditional ROCK2 activation in a Kras(G12D)/p53(R172H) mouse PDAC model, was associated with reduced survival. Conditional ROCK1 or ROCK2 activation promoted invasive growth of mouse PDAC cells into three-dimensional collagen matrices by increasing matrix remodeling activities. RNA sequencing revealed a coordinated program of ROCK-induced genes that facilitate extracellular matrix remodeling, with greatest fold-changes for matrix metalloproteinases (MMPs) Mmp10 and Mmp13 MMP inhibition not only decreased collagen degradation and invasion, but also reduced proliferation in three-dimensional contexts. Treatment of Kras(G12D)/p53(R172H) PDAC mice with a ROCK inhibitor prolonged survival, which was associated with increased tumor-associated collagen. These findings reveal an ancillary role for increased ROCK signaling in pancreatic cancer progression to promote extracellular matrix remodeling that facilitates proliferation and invasive tumor growth.

  7. NFAT Targets Signaling Molecules to Gene Promoters in Pancreatic β-Cells

    PubMed Central

    Borenstein-Auerbach, Nofit; McGlynn, Kathleen; Kunnathodi, Faisal; Shahbazov, Rauf; Syed, Ilham; Kanak, Mazhar; Takita, Morihito; Levy, Marlon F.; Naziruddin, Bashoo

    2015-01-01

    Nuclear factor of activated T cells (NFAT) is activated by calcineurin in response to calcium signals derived by metabolic and inflammatory stress to regulate genes in pancreatic islets. Here, we show that NFAT targets MAPKs, histone acetyltransferase p300, and histone deacetylases (HDACs) to gene promoters to differentially regulate insulin and TNF-α genes. NFAT and ERK associated with the insulin gene promoter in response to glucagon-like peptide 1, whereas NFAT formed complexes with p38 MAPK (p38) and Jun N-terminal kinase (JNK) upon promoters of the TNF-α gene in response to IL-1β. Translocation of NFAT and MAPKs to gene promoters was calcineurin/NFAT dependent, and complex stability required MAPK activity. Knocking down NFATc2 expression, eliminating NFAT DNA binding sites, or interfering with NFAT nuclear import prevented association of MAPKs with gene promoters. Inhibiting p38 and JNK activity increased NFAT-ERK association with promoters, which repressed TNF-α and enhanced insulin gene expression. Moreover, inhibiting p38 and JNK induced a switch from NFAT-p38/JNK-histone acetyltransferase p300 to NFAT-ERK-HDAC3 complex formation upon the TNF-α promoter, which resulted in gene repression. Histone acetyltransferase/HDAC exchange was reversed on the insulin gene by p38/JNK inhibition in the presence of glucagon-like peptide 1, which enhanced gene expression. Overall, these data indicate that NFAT directs signaling enzymes to gene promoters in islets, which contribute to protein-DNA complex stability and promoter regulation. Furthermore, the data suggest that TNF-α can be repressed and insulin production can be enhanced by selectively targeting signaling components of NFAT-MAPK transcriptional/signaling complex formation in pancreatic β-cells. These findings have therapeutic potential for suppressing islet inflammation while preserving islet function in diabetes and islet transplantation. PMID:25496032

  8. Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer

    PubMed Central

    Reynoird, Nicolas; Mazur, Pawel K.; Stellfeld, Timo; Flores, Natasha M.; Lofgren, Shane M.; Carlson, Scott M.; Brambilla, Elisabeth; Hainaut, Pierre; Kaznowska, Ewa B.; Arrowsmith, Cheryl H.; Khatri, Purvesh; Stresemann, Carlo; Gozani, Or; Sage, Julien

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a lethal form of cancer with few therapeutic options. We found that levels of the lysine methyltransferase SMYD2 (SET and MYND domain 2) are elevated in PDAC and that genetic and pharmacological inhibition of SMYD2 restricts PDAC growth. We further identified the stress response kinase MAPKAPK3 (MK3) as a new physiologic substrate of SMYD2 in PDAC cells. Inhibition of MAPKAPK3 impedes PDAC growth, identifying a potential new kinase target in PDAC. Finally, we show that inhibition of SMYD2 cooperates with standard chemotherapy to treat PDAC cells and tumors. These findings uncover a pivotal role for SMYD2 in promoting pancreatic cancer. PMID:26988419

  9. Radiation promotes epithelial-to-mesenchymal transition and invasion of pancreatic cancer cell by activating carcinoma-associated fibroblasts

    PubMed Central

    Li, Doudou; Qu, Chao; Ning, Zhouyu; Wang, Haiyong; Zang, Kun; Zhuang, Liping; Chen, Lianyu; Wang, Peng; Meng, Zhiqiang

    2016-01-01

    The tumor microenvironment is of crucial importance affecting treatment and prognosis. High degree of carcinoma-associated fibroblast (CAF) infiltration occurs in pancreatic cancer, though its effect on radiotherapy remains unclear. In this study, we demonstrated that radiation enhanced the migration- and invasion-promoting capacity of CAFs both in vitro and in vivo in a lung metastasis model. Radiation exposure increased the expression of CXCL12 by CAFs. CAF-derived CXCL12 promoted tumor cell EMT and invasion directly, acting through CXCR4 on pancreatic cancer cells. In addition, we showed that CXCL12-CXCR4 signaling promoted pancreatic cancer cell EMT and invasion by activating the P38 pathway. Therefore, our study concluded that radiation promoted pancreatic cancer cell invasion and EMT by activating CAFs, while inhibiting the CXCL12/CXCR4 interaction between pancreatic cancer cells and CAFs could potentially attenuate tumor cell invasion induced by radiation, which provides an opportunity for the development of novel therapeutic targets to improve the prognosis for human pancreatic cancer treated with radiation therapy. PMID:27822411

  10. Exendin-4 promotes pancreatic β-cell proliferation via inhibiting the expression of Wnt5a.

    PubMed

    Wu, Xinger; Liang, Weiwei; Guan, Hongyu; Liu, Juan; Liu, Liehua; Li, Hai; He, Xiaoying; Zheng, Jing; Chen, Jie; Cao, Xiaopei; Li, Yanbing

    2017-02-01

    Exendin-4, a glucagon-like peptide-1 receptor agonist, is currently regarded as an effective therapeutic strategy for type-2 diabetes. Previous studies indicated that exendin-4 promoted β cell proliferation. However, the underlying mechanisms remain largely unknown. Recently it was reported that exendin-4 promoted pancreatic β cell proliferation by regulating the expression level of Wnt4. The present study was designed to investigate whether other Wnt isoforms take part in accommodation of β-cell proliferation. We found that exendin-4 promotes the proliferation and suppresses the expression of Wnt5a in INS-1 cell line and C57Bl/6 mouse pancreatic β-cells. Further mechanistic study demonstrated that exendin-4 promoted INS-1 cell proliferation partly through down-regulating the expression of Wnt5a. Furthermore, Wnt5a could induce the activation of calmodulin-dependent protein kinase II in INS-1 cells, thereby decreasing the cellular stable β-catenin and its nuclear translocation, and finally reduce the expression of cyclin D1. In addition, we also found that both of the receptors (Frz-2 and Ror-2) mediated the effect of Wnt5a on β cell line INS-1 proliferation. Taken together, this study suggests that Wnt5a plays a critical role in exendin-4-induced β-cell proliferation, indicating that Wnt5a might be a novel regulator in counterbalance of β cell mass.

  11. Role of injured pancreatic extract promotes bone marrow-derived mesenchymal stem cells efficiently differentiate into insulin-producing cells.

    PubMed

    Xie, Hongbin; Wang, Yunshuai; Zhang, Hui; Qi, Hui; Zhou, Hanxin; Li, Fu-Rong

    2013-01-01

    Mesenchymal stem cells (MSCs) can be successfully induced to differentiate into insulin-producing cells (IPCs) by a variety of small molecules and cytokines in vitro. However, problems remain, such as low transdifferentiation efficiency and poor maturity of trans-differentiated cells. The damaged pancreatic cells secreted a large amount of soluble proteins, which were able to promote pancreative islet regeneration and MSCs differentiation. In this study, we utilized the rat injured pancreatic tissue extract to modulate rat bone marrow-derived MSCs differentiation into IPCs by the traditional two-step induction. Our results showed that injured pancreatic tissue extract could effectively promote the trans-differentiation efficiency and maturity of IPCs by the traditional induction. Moreover, IPCs were able to release more insulin in a glucose-dependent manner and ameliorate better the diabetic conditions of streptozotocin (STZ)-treated rats. Our study provides a new strategy to induce an efficient and directional differentiation of MSCs into IPCs.

  12. TM4SF1 Promotes Gemcitabine Resistance of Pancreatic Cancer In Vitro and In Vivo

    PubMed Central

    Ramachandran, Vijaya; Arumugam, Thiruvengadam; Deng, Defeng; Li, Zhaoshen; Xu, Leiming; Logsdon, Craig D.

    2015-01-01

    Background TM4SF1 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and affects the development of this cancer. Also, multidrug resistance (MDR) is generally associated with tumor chemoresistance in pancreatic cancer. However, the correlation between TM4SF1 and MDR remains unknown. This research aims to investigate the effect of TM4SF1 on gemcitabine resistance in PDAC and explore the possible molecular mechanism between TM4SF1 and MDR. Methods The expression of TM4SF1 was evaluated in pancreatic cancer cell lines and human pancreatic duct epithelial (HPDE) cell lines by quantitative RT-PCR. TM4SF1 siRNA transfection was carried out using Hiperfect transfection reagent to knock down TM4SF1. The transcripts were analyzed by quantitative RT-PCR, RT-PCR and western blotting for further study. The cell proliferation and apoptosis were obtained to investigate the sensitivity to gemcitabine of pancreatic cancer cells after silencing TM4SF1 in vitro. We demonstrated that cell signaling of TM4SF1 mediated chemoresistance in cancer cells by assessing the expression of multidrug resistance (MDR) genes using quantitative RT-PCR. In vivo, we used orthotopic pancreatic tumor models to investigate the effect of proliferation after silencing TM4SF1 by a lentivirus-mediated shRNA in MIA PaCa-2 cell lines. Results The mRNA expression of TM4SF1 was higher in seven pancreatic cancer cell lines than in HPDE cell lines. In three gemcitabine-sensitive cell lines (L3.6pl, BxPC-3, SU86.86), the expression of TM4SF1 was lower than that in four gemcitabine-resistant cell lines (MIA PaCa-2, PANC-1, Hs766T, AsPC-1). We evaluated that TM4SF1 was a putative target for gemcitabine resistance in pancreatic cancer cells. Using AsPC-1, MIA PaCa-2 and PANC-1, we investigated that TM4SF1 silencing affected cell proliferation and increased the percentages of cell apoptosis mediated by treatment with gemcitabine compared with cells which were treated with negative control. This resistance was

  13. Lipocalin-2 Promotes Pancreatic Ductal Adenocarcinoma by Regulating Inflammation in the Tumor Microenvironment.

    PubMed

    Gomez-Chou, Sobeyda; Swidnicka-Siergiejko, Agnieszka; Badi, Niharika; Chavez-Tomar, Myrriah; Lesinski, Gregory B; Bekaii-Saab, Tanios; Farren, Matthew R; Mace, Thomas A; Schmidt, Carl; Liu, Yan; Deng, Defeng; Hwang, Rosa F; Zhou, Liran; Moore, Todd T; Chatterjee, Deyali; Wang, Huamin; Leng, Xiaohong; Arlinghaus, Ralph B; Logsdon, Craig D; Cruz-Monserrate, Zobeida

    2017-03-01

    Lipocalin-2 (LCN2) promotes malignant development in many cancer types. LCN2 is upregulated in patients with pancreatic ductal adenocarcinoma (PDAC) and in obese individuals, but whether it contributes to PDAC development is unclear. In this study, we investigated the effects of Lcn2 depletion on diet-induced obesity, inflammation and PDAC development. Mice with acinar cell-specific expression of KrasG12D were crossed with Lcn2-depleted animals and fed isocaloric diets with varying amounts of fat content. Pancreas were collected and analyzed for inflammation, pancreatic intraepithelial neoplasia (PanIN) and PDAC. We also used a syngeneic orthotopic PDAC mouse model to study tumor growth in the presence or absence of Lcn2 expression. In addition, to understand the mechanistic role of how LCN2 could be mediating PDAC, we studied LCN2 and its specific receptor solute carrier family 22 member 17 (SLC22A17) in human pancreatic cancer stellate cells (PSC), key mediators of the PDAC stroma. Depletion of Lcn2 diminished extracellular matrix deposition, immune cell infiltration, PanIN formation and tumor growth. Notably, it also increased survival in both obesity-driven and syngeneic orthotopic PDAC mouse models. LCN2 modulated the secretion of pro-inflammatory cytokines in PSC of the PDAC tumor microenvironment, while downregulation of LCN2-specific receptor SLC22A17 blocked these effects. Our results reveal how LCN2 acts in the tumor microenvironment links obesity, inflammation and PDAC development.

  14. Adrenomedullin promotes the growth of pancreatic ductal adenocarcinoma through recruitment of myelomonocytic cells

    PubMed Central

    Zhang, Shaosen; Ma, Xuhui; Wang, Shan; Wang, Chunying; Fu, Yan; Luo, Yongzhang

    2016-01-01

    Stromal infiltration of myelomonocytic cells is a hallmark of pancreatic ductal adenocarcinoma (PDAC) and is related to a poor prognosis. However, the detailed mechanism for the recruitment of myelomonocytic cells to pancreatic cancer tissue remains unclear. In the present study, pancreatic cancer cells secreted high levels of adrenomedullin (ADM), and CD11b+ myelomonocytic cells expressed all components of ADM receptors, including GPR182, CRLR, RAMP2 and RAMP3. ADM enhanced the migration and invasion of myelomonocytic cells through activation of the MAPK, PI3K/Akt and eNOS signaling pathways, as well as the expression and activity of MMP-2. ADM also promoted the adhesion and trans-endothelial migration of myelomonocytic cells by increasing expression of VCAM-1 and ICAM-1 in endothelial cells. In addition, ADM induced macrophages and myeloid-derived suppressor cells (MDSCs) to express pro-tumor phenotypes. ADM knockdown in tumor-bearing mice or administration of AMA, an ADM antagonist, significantly inhibited the recruitment of myelomonocytic cells and tumor angiogenesis. Moreover, in vivo depletion of myelomonocytic cells using clodronate liposomes suppressed the progression of PDAC. These results reveal a novel function of ADM in PDAC, and suggest ADM is a promising target in the treatment of PDAC. PMID:27391260

  15. The Aurora-A-Twist1 axis promotes highly aggressive phenotypes in pancreatic carcinoma.

    PubMed

    Wang, Jing; Nikhil, Kumar; Viccaro, Keith; Chang, Lei; Jacobsen, Max; Sandusky, George; Shah, Kavita

    2017-03-15

    We uncovered a crucial role for the Aurora kinase A (AURKA)-Twist1 axis in promoting epithelial-to-mesenchymal transition (EMT) and chemoresistance in pancreatic cancer. Twist1 is the first EMT-specific target of AURKA that was identified using an innovative screen. AURKA phosphorylates Twist1 at three sites, which results in its multifaceted regulation - AURKA inhibits its ubiquitylation, increases its transcriptional activity and favors its homodimerization. Twist1 reciprocates and prevents AURKA degradation, thereby triggering a feedback loop. Ablation of either AURKA or Twist1 completely inhibits EMT, highlighting both proteins as central players in EMT progression. Phosphorylation-dead Twist1 serves as a dominant-negative and fully reverses the EMT phenotype induced by Twist1, underscoring the crucial role of AURKA-mediated phosphorylation in mediating Twist1-induced malignancy. Likewise, Twist1-overexpressing BxPC3 cells formed large tumors in vivo, whereas expression of phosphorylation-dead Twist1 fully abrogated this effect. Furthermore, immunohistochemical analysis of pancreatic cancer specimens revealed a 3-fold higher level of Twist1 compared to that seen in healthy normal tissues. This is the first study that links Twist1 in a feedback loop with its activating kinase, which indicates that concurrent inhibition of AURKA and Twist1 will be synergistic in inhibiting pancreatic tumorigenesis and metastasis.

  16. SerpinB1 Promotes Pancreatic β Cell Proliferation

    SciTech Connect

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O’Donnell, Eileen; Kulkarni, Rohit N.

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  17. Promoting Effect of a High-Fat/High-Protein Diet in DMBA-Induced Ductal Pancreatic Cancer in Rats

    PubMed Central

    Z’graggen, Kaspar; Warshaw, Andrew L.; Werner, Jens; Graeme-Cook, Fiona; Jimenez, Ramon E.; Fernández-del Castillo, Carlos

    2001-01-01

    Objective To investigate whether a high-fat/high-protein diet (HFPD) acts as a promoter of the natural course of cancer growth in the 7,12-dimethylbenzanthracene (DMBA)-induced ductal pancreatic cancer model in rats. Summary Background Data DMBA implantation to the rat pancreas induces ductal adenocarcinoma. Information regarding the effects of diet and the presence of K-ras mutation in this model is not available. Methods Rats were randomly assigned to regular rat chow or a diet with a 30% content in fat and protein (HFPD). The presentation of cancer, the histologic spectrum of neoplasia at 1 and 9 months, and the prevalence of cancer in relation to diet were assessed. Histologic specimens comprising normal ducts, hyperplasia, dysplasia/carcinoma in situ, or carcinoma were designated by a pathologist and microdissected. Genomic DNA was extracted, and K-ras and H-ras gene mutations were determined by a mutant-enriched polymerase chain reaction assay and direct sequencing. Results Rats fed HFPD increased their weight significantly compared with controls. DMBA induced characteristic stages of neoplasia at the implant site but not elsewhere. Macroscopic cancers of the pancreatic head presented regularly with common bile duct and gastric outlet obstruction. The prevalence of K-ras mutations was proportional to the degree of epithelial abnormality. K-ras mutations were significantly more frequent in cancer than in normal and hyperplastic ducts. H-ras mutations were not found. At 1 month in the HFPD-fed rats, the prevalence of cancer (16%) and dysplasia (16%) was not significantly different from the prevalence of cancer (29%) and dysplasia (8%) in the chow-fed rats. At 9 months the prevalence of cancer in the HFPD-fed rats increased to 29%, whereas that in the chow-fed rats decreased to 17%. The combined prevalence of cancer and dysplasia at 9 months in the HFPD-fed rats (34%) significantly exceeded that in the chow-fed rats. Conclusions DMBA induces characteristic

  18. High Rab11-FIP4 expression predicts poor prognosis and exhibits tumor promotion in pancreatic cancer

    PubMed Central

    He, Yun; Ye, Mengsi; Zhou, Lingling; Shan, Yunfeng; Lu, Guangrong; Zhou, Yuhui; Zhong, Jinwei; Zheng, Jihang; Xue, Zhanxiong; Cai, Zhenzhai

    2017-01-01

    Some studies have demonstrated that Rab11-family interacting proteins (Rab11-FIPs) are connected with the tumorigenesis, and they may act as tumor promoters in some cancers. The clinicopathological significance of Rab11-family interacting protein 4 (Rab11-FIP4) expression and its possible effects on pancreatic cancer (PC) are still undiscovered. In this study, Rab11-FIP4 protein expression level in 60 PC specimens and pair-matched non-cancerous samples were detected by immunohistochemistry analysis. The results were analysed and compared with each patients' clinical data. Rab11-FIP4 expression in PC tissues increased significantly more than that of adjacent non-cancerous tissues (P=0.0001). Overexpression of Rab11-FIP4 in the PC tissues was significantly related to tumor size (P=0.0001), histological grade (P=0.028), metastasis (P=0.001) and TNM stage (P=0.004) but not with age (P=0.832), gender (P=0.228) or tumor site (P=0.875). Kaplan-Meier survival analysis showed that overexpression of Rab11-FIP4 was significantly related to overall survival time (P=0.0036). In addition, Rab11-FIP4 in PANC-1 pancreatic cancer cells were successfully knocked-out using the CRISPR/Cas9 system. Rab11-FIP4 knockout in PANC-1 cells inhibited cell growth, invasion and metastasis, and arrested cell cycle progression, but did not alter apoptosis. Our findings suggest that overexpression of Rab11-FIP4 predicts poor clinical outcomes for pancreatic cancer and contributes to pancreatic tumor progression. PMID:28035375

  19. miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation.

    PubMed

    He, Gengsheng; Zhang, Lei; Li, Qing; Yang, Longqiu

    2014-02-01

    Pancreatic cancer is one of the most common types of cancers in the whole world with a poor prognosis. Finding out how the cancer form and develop is the most important way to cure this cancer. miRNAs, 21-22 nucleotides regulatory small non-coding RNAs, have been found to be critical involved in the growth of pancreatic cancer. In this study, we found that miR-92a was up regulated in three kinds of human pancreatic cancer cell lines. There is a correlation between miR-92a and malignant degree of human pancreatic cancer cell lines. Then we found that miR-92a was essential for promoting cell proliferation in human pancreatic cancer. Inhibition of the function of miR-92a repressed the proliferation of pancreatic cancer cells. Further, we found that miR-92a enhanced the activation of JNK signalling pathway by directly targeting the JNK signalling inhibitor DUSP10. DUSP10 is responsible for miR-92a induced JNK signalling and cell proliferation. Altogether, our study showed a miR-92a/DUSP10/JNK signalling pathway that plays an important role in regulating the proliferation of pancreatic cancer cells.

  20. Hypothyroidism Affects Vascularization and Promotes Immune Cells Infiltration into Pancreatic Islets of Female Rabbits.

    PubMed

    Rodríguez-Castelán, Julia; Martínez-Gómez, Margarita; Castelán, Francisco; Cuevas, Estela

    2015-01-01

    Thyroidectomy induces pancreatic edema and immune cells infiltration similarly to that observed in pancreatitis. In spite of the controverted effects of hypothyroidism on serum glucose and insulin concentrations, the number and proliferation of Langerhans islet cells as well as the presence of extracellular matrix are affected depending on the islet size. In this study, we evaluated the effect of methimazole-induced hypothyroidism on the vascularization and immune cells infiltration into islets. A general observation of pancreas was also done. Twelve Chinchilla-breed female adult rabbits were divided into control (n = 6) and hypothyroid groups (n = 6, methimazole, 0.02% in drinking water for 30 days). After the treatment, rabbits were sacrificed and their pancreas was excised, histologically processed, and stained with Periodic Acid-Schiff (PAS) or Masson's Trichrome techniques. Islets were arbitrarily classified into large, medium, and small ones. The external and internal portions of each islet were also identified. Student-t-test and Mann-Whitney-U test or two-way ANOVAs were used to compare variables between groups. In comparison with control rabbits, hypothyroidism induced a strong infiltration of immune cells and a major presence of collagen and proteoglycans in the interlobular septa. Large islets showed a high vascularization and immune cells infiltration. The present results show that hypothyroidism induces pancreatitis and insulitis.

  1. Hypothyroidism Affects Vascularization and Promotes Immune Cells Infiltration into Pancreatic Islets of Female Rabbits

    PubMed Central

    Rodríguez-Castelán, Julia; Martínez-Gómez, Margarita; Castelán, Francisco; Cuevas, Estela

    2015-01-01

    Thyroidectomy induces pancreatic edema and immune cells infiltration similarly to that observed in pancreatitis. In spite of the controverted effects of hypothyroidism on serum glucose and insulin concentrations, the number and proliferation of Langerhans islet cells as well as the presence of extracellular matrix are affected depending on the islet size. In this study, we evaluated the effect of methimazole-induced hypothyroidism on the vascularization and immune cells infiltration into islets. A general observation of pancreas was also done. Twelve Chinchilla-breed female adult rabbits were divided into control (n = 6) and hypothyroid groups (n = 6, methimazole, 0.02% in drinking water for 30 days). After the treatment, rabbits were sacrificed and their pancreas was excised, histologically processed, and stained with Periodic Acid-Schiff (PAS) or Masson's Trichrome techniques. Islets were arbitrarily classified into large, medium, and small ones. The external and internal portions of each islet were also identified. Student-t-test and Mann-Whitney-U test or two-way ANOVAs were used to compare variables between groups. In comparison with control rabbits, hypothyroidism induced a strong infiltration of immune cells and a major presence of collagen and proteoglycans in the interlobular septa. Large islets showed a high vascularization and immune cells infiltration. The present results show that hypothyroidism induces pancreatitis and insulitis. PMID:26175757

  2. S100A6 binds to annexin 2 in pancreatic cancer cells and promotes pancreatic cancer cell motility

    PubMed Central

    Nedjadi, T; Kitteringham, N; Campbell, F; Jenkins, R E; Park, B K; Navarro, P; Ashcroft, F; Tepikin, A; Neoptolemos, J P; Costello, E

    2009-01-01

    Background: High levels of S100A6 have been associated with poor outcome in pancreatic cancer patients. The functional role of S100A6 is, however, poorly understood. Methods: Immunoprecipitation followed by two-dimensional gel electrophoresis and mass spectrometry were undertaken to identify S100A6 interacting proteins in pancreatic cancer cells. Immunohistochemistry and coimmunofluorescence were performed to examine expression or colocalisation of proteins. siRNA was used to deplete specific proteins and effects on motility were measured using Boyden Chamber and wound healing assays. Results: Our proteomic screen to identify S100A6 interacting proteins revealed annexin 11, annexin 2, tropomyosin β and a candidate novel interactor lamin B1. Of these, annexin 2 was considered particularly interesting, as, like S100A6, it is expressed early in the development of pancreatic cancer and overexpression occurs with high frequency in invasive cancer. Reciprocal immunoprecipitation confirmed the interaction between annexin 2 and S100A6 and the proteins colocalised, particularly in the plasma membrane of cultured pancreatic cancer cells and primary pancreatic tumour tissue. Analysis of primary pancreatic cancer specimens (n=55) revealed a strong association between high levels of cytoplasmic S100A6 and the presence of annexin 2 in the plasma membrane of cancer cells (P=0.009). Depletion of S100A6 was accompanied by diminished levels of membrane annexin 2 and caused a pronounced reduction in the motility of pancreatic cancer cells. Conclusion: These findings point towards a functional role for S100A6 that may help explain the link between S100A6 expression in pancreatic cancer and aggressive disease. PMID:19724273

  3. The miR-24-Bim pathway promotes tumor growth and angiogenesis in pancreatic carcinoma.

    PubMed

    Liu, Rui; Zhang, Haiyang; Wang, Xia; Zhou, Likun; Li, Hongli; Deng, Ting; Qu, Yanjun; Duan, Jingjing; Bai, Ming; Ge, Shaohua; Ning, Tao; Zhang, Le; Huang, Dingzhi; Ba, Yi

    2015-12-22

    miRNAs are a group of small RNAs that have been reported to play a key role at each stage of tumorigenesis and are believed to have future practical value. We now demonstrate that Bim, which stimulates cell apoptosis, is obviously down-regulated in pancreatic cancer (PaC) tissues and cell lines. And Bim-related miR-24 is significantly up-regulated in PaC. The repressed expression of Bim is proved to be a result of miR-24, thus promoting cell growth of both cancer and vascular cells, and accelerating vascular ring formation. By using mouse tumor model, we clearly showed that miR-24 promotes tumor growth and angiogenesis by suppressing Bim expression in vivo. Therefore, a new pathway comprising miR-24 and Bim can be used in the exploration of drug-target therapy of PaC.

  4. An inhibitor of fibroblast growth factor receptor-1 (FGFR1) promotes late-stage terminal differentiation from NGN3+ pancreatic endocrine progenitors

    PubMed Central

    Yamashita-Sugahara, Yzumi; Matsumoto, Masahito; Ohtaka, Manami; Nishimura, Ken; Nakanishi, Mahito; Mitani, Kohnosuke; Okazaki, Yasushi

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) provide a potential resource for regenerative medicine. To identify the signalling pathway(s) contributing to the development of functional β cells, we established a tracing model consisting of dual knock-in hiPSCs (INS-Venus/NGN3-mCherry) (hIveNry) expressing the fluorescent proteins Venus and mCherry under the control of intrinsic insulin (INS) and neurogenin 3 (NGN3) promoters, respectively. hIveNry iPSCs differentiated into NGN3- and mCherry-positive endocrine progenitors and then into Venus-positive β cells expressing INS, PDX1, NKX6.1, and glucokinase (GCK). Using these cells, we conducted high-throughput screening of chemicals and identified a specific kinase inhibitor of fibroblast growth factor receptor 1 (FGFR1) that acted in a stage-dependent manner to promote the terminal differentiation of pancreatic endocrine cells, including β cells, from the intermediate stage of pancreatic endocrine progenitors while blocking the early development of pancreatic progenitors. This FGFR1 inhibitor augmented the expression of functional β cell markers (SLC30A8 and ABCC8) and improved glucose-stimulated INS secretion. Our findings indicate that the hIveNry model could provide further insights into the mechanisms of hiPS-derived β cell differentiation controlled by FGFR1-mediated regulatory pathways in a temporal-dependent fashion. PMID:27786288

  5. Pancreatic Stenting Reduces Post-ERCP Pancreatitis and Biliary Sepsis in High-Risk Patients: A Randomized, Controlled Study

    PubMed Central

    Wu, Hai-En; Li, Qi-Xiang; Wang, Wei; Ou, Wei-Lin; Xia, Harry Hua-Xiang

    2016-01-01

    Background. Endoscopic retrograde cholangiopancreatography (ERCP) is an established treatment modality for bile duct disorders, but patients have a risk of post-ERCP pancreatitis (PEP) and biliary sepsis. Aim. To evaluate the effectiveness and safety of pancreatic stent for prophylaxis of PEP and biliary sepsis in high-risk patients with complicating common bile duct (CBD) disorders. Methods. Two hundred and six patients with complicating confirmed or suspected CBD disorders were randomly assigned to receive ERCP with pancreatic stenting (experimental group) or without stenting (control group). Primary outcome measure was frequency of PEP, and secondary outcome measures included operative time, blood loss, postoperative recovery times, and other ERCP-associated morbidities. Results. Baseline age, sex, CBD etiology, concomitant medical/surgical conditions, cannulation difficulty, and ERCP success were comparable between the two groups (all P > 0.05). Compared to the control group, the experimental group had a significantly lower frequency of PEP (7.7% versus 17.7%, P < 0.05) and positive bile microbial culture (40.4% versus 62.7%, P < 0.05). However, the two groups were similar in operative time, blood loss, postoperative recovery times, and other ERCP-associated morbidities (all P > 0.05). Conclusions. Pancreatic stenting can reduce the occurrence of PEP and biliary sepsis in high-risk patients with complicating CBD disorders but does not increase other ERCP-associated morbidities. This trial is registered with the Chinese Clinical Trial Registry (registration identifier ChiCTR-OCH-14005134). PMID:27057161

  6. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression.

    PubMed

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-04-14

    Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells

  7. Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer.

    PubMed

    Xu, Qinhong; Wang, Zheng; Chen, Xin; Duan, Wanxing; Lei, Jianjun; Zong, Liang; Li, Xuqi; Sheng, Liang; Ma, Jiguang; Han, Liang; Li, Wei; Zhang, Lun; Guo, Kun; Ma, Zhenhua; Wu, Zheng; Wu, Erxi; Ma, Qingyong

    2015-03-10

    Perineural invasion (PNI) is considered as an alternative route for the metastatic spread of pancreatic cancer cells; however, the molecular changes leading to PNI are still poorly understood. In this study, we show that the CXCL12/CXCR4 axis plays a pivotal role in the neurotropism of pancreatic cancer cells to local peripheral nerves. Immunohistochemical staining results revealed that CXCR4 elevation correlated with PNI in 78 pancreatic cancer samples. Both in vitro and in vivo PNI models were applied to investigate the function of the CXCL12/CXCR4 signaling in PNI progression and pathogenesis. The results showed that the activation of the CXCL12/CXCR4 axis significantly increased pancreatic cancer cells invasion and promoted the outgrowth of the dorsal root ganglia. CXCL12 derived from the peripheral nerves stimulated the invasion and chemotactic migration of CXCR4-positive cancer cells in a paracrine manner, eventually leading to PNI. In vivo analyses revealed that the abrogation of the activated signaling inhibited tumor growth and invasion of the sciatic nerve toward the spinal cord. These data indicate that the CXCL12/CXCR4 axis may be a novel therapeutic target to prevent the perineural dissemination of pancreatic cancer.

  8. Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices.

    PubMed

    Johansson, Ulrika; Ria, Massimiliano; Åvall, Karin; Dekki Shalaly, Nancy; Zaitsev, Sergei V; Berggren, Per-Olof; Hedhammar, My

    2015-01-01

    Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk to support islets in vitro after isolation. The spider silk protein 4RepCT was formulated into three different formats; 2D-film, fiber mesh and 3D-foam, in order to provide a matrix that can give the islets physical support in vitro. Moreover, cell-binding motifs from laminin were incorporated into the silk protein in order to create matrices that mimic the natural cell environment. Pancreatic mouse islets were thoroughly analyzed for adherence, necrosis and function after in vitro maintenance on the silk matrices. To investigate their suitability for transplantation, we utilized an eye model which allows in vivo imaging of engraftment. Interestingly, islets that had been maintained on silk foam during in vitro culture showed improved revascularization. This coincided with the observation of preserved islet architecture with endothelial cells present after in vitro culture on silk foam. Selected matrices were further evaluated for long-term preservation of human islets. Matrices with the cell-binding motif RGD improved human islet maintenance (from 36% to 79%) with preserved islets architecture and function for over 3 months in vitro. The islets established cell-matrix contacts and formed vessel-like structures along the silk. Moreover, RGD matrices promoted formation of new, insulin-positive islet-like clusters that were connected to the original islets via endothelial cells. On silk matrices with islets from younger donors (<35 year), the amount of newly formed islet-like clusters found after 1 month in culture were almost double compared to the initial number of islets

  9. Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices

    PubMed Central

    Johansson, Ulrika; Dekki Shalaly, Nancy; Zaitsev, Sergei V.; Berggren, Per-Olof; Hedhammar, My

    2015-01-01

    Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk to support islets in vitro after isolation. The spider silk protein 4RepCT was formulated into three different formats; 2D-film, fiber mesh and 3D-foam, in order to provide a matrix that can give the islets physical support in vitro. Moreover, cell-binding motifs from laminin were incorporated into the silk protein in order to create matrices that mimic the natural cell environment. Pancreatic mouse islets were thoroughly analyzed for adherence, necrosis and function after in vitro maintenance on the silk matrices. To investigate their suitability for transplantation, we utilized an eye model which allows in vivo imaging of engraftment. Interestingly, islets that had been maintained on silk foam during in vitro culture showed improved revascularization. This coincided with the observation of preserved islet architecture with endothelial cells present after in vitro culture on silk foam. Selected matrices were further evaluated for long-term preservation of human islets. Matrices with the cell-binding motif RGD improved human islet maintenance (from 36% to 79%) with preserved islets architecture and function for over 3 months in vitro. The islets established cell-matrix contacts and formed vessel-like structures along the silk. Moreover, RGD matrices promoted formation of new, insulin-positive islet-like clusters that were connected to the original islets via endothelial cells. On silk matrices with islets from younger donors (<35 year), the amount of newly formed islet-like clusters found after 1 month in culture were almost double compared to the initial number of islets

  10. Role of Injured Pancreatic Extract Promotes Bone Marrow-Derived Mesenchymal Stem Cells Efficiently Differentiate into Insulin-Producing Cells

    PubMed Central

    Xie, Hongbin; Wang, Yunshuai; Zhang, Hui; Qi, Hui; Zhou, Hanxin; Li, Fu-Rong

    2013-01-01

    Mesenchymal stem cells (MSCs) can be successfully induced to differentiate into insulin-producing cells (IPCs) by a variety of small molecules and cytokines in vitro. However, problems remain, such as low transdifferentiation efficiency and poor maturity of trans-differentiated cells. The damaged pancreatic cells secreted a large amount of soluble proteins, which were able to promote pancreative islet regeneration and MSCs differentiation. In this study, we utilized the rat injured pancreatic tissue extract to modulate rat bone marrow-derived MSCs differentiation into IPCs by the traditional two-step induction. Our results showed that injured pancreatic tissue extract could effectively promote the trans-differentiation efficiency and maturity of IPCs by the traditional induction. Moreover, IPCs were able to release more insulin in a glucose-dependent manner and ameliorate better the diabetic conditions of streptozotocin (STZ)-treated rats. Our study provides a new strategy to induce an efficient and directional differentiation of MSCs into IPCs. PMID:24058711

  11. Aberrant methylation of MUC1 and MUC4 promoters are potential prognostic biomarkers for pancreatic ductal adenocarcinomas

    PubMed Central

    Yokoyama, Seiya; Higashi, Michiyo; Kitamoto, Sho; Oeldorf, Monika; Knippschild, Uwe; Kornmann, Marko; Maemura, Kosei; Kurahara, Hiroshi; Wiest, Edwin; Hamada, Tomofumi; Kitazono, Ikumi; Goto, Yuko; Tasaki, Takashi; Hiraki, Tsubasa; Hatanaka, Kazuhito; Mataki, Yuko; Taguchi, Hiroki; Hashimoto, Shinichi; Batra, Surinder K.; Tanimoto, Akihide; Yonezawa, Suguru; Hollingsworth, Michael A.

    2016-01-01

    Pancreatic cancer is still a disease of high mortality despite availability of diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic neoplasms. MUC1 and MUC4 are high molecular weight transmembrane mucins. These are overexpressed in many carcinomas, and high expression of these molecules is a risk factor associated with poor prognosis. We evaluated the methylation status of MUC1 and MUC4 promoter regions in pancreatic tissue samples from 169 patients with various pancreatic lesions by the methylation specific electrophoresis (MSE) method. These results were compared with expression of MUC1 and MUC4, several DNA methylation/demethylation factors (e.g. ten-eleven translocation or TET, and activation-induced cytidine deaminase or AID) and CAIX (carbonic anhydrase IX, as a hypoxia biomarker). These results were also analyzed with clinicopathological features including time of overall survival of PDAC patients. We show that the DNA methylation status of the promoters of MUC1 and MUC4 in pancreatic tissue correlates with the expression of MUC1 and MUC4 mRNA. In addition, the expression of several DNA methylation/demethylation factors show a significant correlation with MUC1 and MUC4 methylation status. Furthermore, CAIX expression significantly correlates with the expression of MUC1 and MUC4. Interestingly, our results indicate that low methylation of MUC1 and/or MUC4 promoters correlates with decreased overall survival. This is the first report to show a relationship between MUC1 and/or MUC4 methylation status and prognosis. Analysis of epigenetic changes in mucin genes may be of diagnostic utility and one of the prognostic predictors for patients with PDAC. PMID:27283771

  12. Use of methimazole and risk of acute pancreatitis: A case–control study in Taiwan

    PubMed Central

    Lai, Shih-Wei; Lin, Cheng-Li; Liao, Kuan-Fu

    2016-01-01

    Objective: Some cases of acute pancreatitis have been reported to be associated with use of methimazole. The aim of this study was to investigate the relationship between use of methimazole and risk of acute pancreatitis on the basis of a systematic analysis. Methods: This was a population-based case–control study analyzing the database of the Taiwan National Health Insurance Program. There were 5764 individuals aged 20–84 years with a first attack of acute pancreatitis from 1998 to 2011 as the cases and 23,056 randomly selected sex- and age-matched individuals without acute pancreatitis as the controls. Use of methimazole was categorized as “never use” and “ever use.” We estimated the relative risk of acute pancreatitis associated with the use of methimazole by calculating the odds ratio (OR) with 95% confidence interval (CI) using a multivariable logistic regression model. Results: After adjustment for confounding factors, the OR of acute pancreatitis was 0.91 in individuals with ever use of methimazole, when compared with individuals with never use of methimazole (95% CI, 0.60–1.38). Unlike methimazole use, alcohol-related disease, biliary stone, cardiovascular disease, chronic obstructive pulmonary disease, diabetes mellitus, hepatitis B, hepatitis C, and hypertriglyceridemia were factors significantly associated with acute pancreatitis. Conclusions: Our study does not detect a substantial association between the use of methimazole and risk of acute pancreatitis on the basis of systematic analysis. There appears to be a discrepancy between case reports and our systematic analysis about the association between the use of methimazole and risk of acute pancreatitis. PMID:27127323

  13. Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner.

    PubMed

    Zhao, Hejun; Wei, Rui; Wang, Liang; Tian, Qing; Tao, Ming; Ke, Jing; Liu, Ye; Hou, Wenfang; Zhang, Lin; Yang, Jin; Hong, Tianpei

    2014-06-15

    Glucagon-like peptide-1 (GLP-1) promotes pancreatic β-cell regeneration through GLP-1 receptor (GLP-1R) activation. However, whether it promotes exocrine pancreas growth and thereby increases the risk of pancreatic cancer has been a topic of debate in recent years. Clinical data and animal studies published so far have been controversial. In the present study, we report that GLP-1R activation with liraglutide inhibited growth and promoted apoptosis in human pancreatic cancer cell lines in vitro and attenuated pancreatic tumor growth in a mouse xenograft model in vivo. These effects of liraglutide were mediated through activation of cAMP production and consequent inhibition of Akt and ERK1/2 signaling pathways in a GLP-1R-dependent manner. Moreover, we examined GLP-1R expression in human pancreatic cancer tissues and found that 43.3% of tumor tissues were GLP-1R-null. In the GLP-1R-positive tumor tissues (56.7%), the level of GLP-1R was lower compared with that in tumor-adjacent normal pancreatic tissues. Furthermore, the GLP-1R-positive tumors were significantly smaller than the GLP-1R-null tumors. Our study shows for the first time that GLP-1R activation has a cytoreductive effect on human pancreatic cancer cells in vitro and in vivo, which may help address safety concerns of GLP-1-based therapies in the context of human pancreatic cancer.

  14. PREX2 promotes the proliferation, invasion and migration of pancreatic cancer cells by modulating the PI3K signaling pathway

    PubMed Central

    Yang, Jianyi; Gong, Xuejun; Ouyang, Lu; He, Wen; Xiao, Rou; Tan, Li

    2016-01-01

    Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchanger factor 2 (PREX2) is a novel regulator of the small guanosine triphosphatase Rac, and has been observed to be implicated in human cancer by inhibiting the activity of phosphatase and tensin homolog (PTEN), thus upregulating the activity of the phosphoinositide 3-kinase (PI3K) signaling pathway. However, the exact role of PREX2 in pancreatic cancer has not been reported to date. In the present study, the expression levels of PREX2 were observed to be frequently increased in pancreatic cancer specimens compared with those in their matched adjacent normal tissues. In addition, PREX2 expression was also frequently upregulated in several pancreatic cancer cell lines, including AsPC-1, BxPC-3, PANC-1 and CFAPC-1, compared with that in the normal pancreatic epithelial cell line HPC-Y5. Overexpression of PREX2 significantly promoted the proliferation, invasion and migration of pancreatic cancer PANC-1 cells, while small interfering RNA-induced knockdown of PREX2 expression significantly inhibited the proliferation, invasion and migration of these cells. Investigation of the molecular mechanism revealed that the overexpression of PREX2 upregulated the phosphorylation levels of PTEN, indicating that the activity of PTEN was reduced, which further increased the phosphorylation levels of AKT, which indicated that the activity of the PI3K signaling pathway was upregulated. By contrast, knockdown of PREX2 upregulated the activity of PTEN and inhibited the activity of the PI3K signaling pathway. In conclusion, the present study demonstrated that PREX2 regulates the proliferation, invasion and migration of pancreatic cancer cells, probably at least via modulation of the activity of PTEN and the PI3K signaling pathway. PMID:27446408

  15. Tumor Cell-derived MMP-3 Orchestrates Rac1b and Tissue Alterations that Promote Pancreatic Adenocarcinoma

    PubMed Central

    Mehner, Christine; Miller, Erin; Khauv, Davitte; Nassar, Aziza; Oberg, Ann L.; Bamlet, William R.; Zhang, Lizhi; Waldmann, Jens; Radisky, Evette S.; Crawford, Howard C.; Radisky, Derek C.

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDA) arises at the convergence of genetic alterations in KRAS with a fostering microenvironment shaped by immune cell influx and fibrotic changes; identification of the earliest tumorigenic molecular mediators evokes the proverbial chicken and egg problem. Matrix metalloproteinases (MMPs) are key drivers of tumor progression that originate primarily from stromal cells activated by the developing tumor. Here matrix metalloproteinase-3 (MMP3), known to be expressed in PDA, was found to be associated with expression of Rac1b, a tumorigenic splice isoform of Rac1, in all stages of pancreatic cancer. Using a large cohort of human PDA tissue biopsies specimens, both MMP3 and Rac1b are expressed in PDA cells, that the expression levels of the two markers are highly correlated, and that the subcellular distribution of Rac1b in PDA is significantly associated with patient outcome. Using transgenic mouse models, co-expression of MMP3 with activated KRAS in pancreatic acinar cells stimulates metaplasia and immune cell infiltration, priming the stromal microenvironment for early tumor development. Finally, exposure of cultured pancreatic cancer cells to recombinant MMP3 stimulates expression of Rac1b, increases cellular invasiveness, and activation of tumorigenic transcriptional profiles. Implications MMP3 acts as a co-conspirator of oncogenic KRAS in pancreatic cancer tumorigenesis and progression, both through Rac1b-mediated phenotypic control of pancreatic cancer cells themselves, and by giving rise to the tumorigenic microenvironment; these findings also point to inhibition of this pathway as a potential therapeutic strategy for pancreatic cancer. PMID:24850902

  16. Controlled clinical trial of selective decontamination for the treatment of severe acute pancreatitis.

    PubMed Central

    Luiten, E J; Hop, W C; Lange, J F; Bruining, H A

    1995-01-01

    OBJECTIVE: A randomized, controlled, multicenter trial was undertaken in 102 patients with objective evidence of severe acute pancreatitis to evaluate whether selective decontamination reduces mortality. SUMMARY BACKGROUND DATA: Secondary pancreatic infection is the major cause of death in patients with acute necrotizing pancreatitis. Controlled clinical trials to study the effect of selective decontamination in such patients are not available. METHODS: Between April 22, 1990 and April 19, 1993, 102 patients with severe acute pancreatitis were admitted to 16 participating hospitals. Patients were entered into the study if severe acute pancreatitis was indicated, on admission, by multiple laboratory criteria (Imrie score > or = 3) and/or computed tomography criteria (Balthazar grade D or E). Patients were randomly assigned to receive standard treatment (control group) or standard treatment plus selective decontamination (norfloxacin, colistin, amphotericin; selective decontamination group). All patients received full supportive treatment, and surveillance cultures were taken in both groups. RESULTS: Fifty patients were assigned to the selective decontamination group and 52 were assigned to the control group. There were 18 deaths in the control group (35%), compared with 11 deaths (22%) in the selective decontamination group (adjusted for Imrie score and Balthazar grade: p = 0.048). This difference was mainly caused by a reduction of late mortality (> 2 weeks) due to significant reduction of gram-negative pancreatic infection (p = 0.003). The average number of laparotomies per patient was reduced in patients treated with selective decontamination (p < 0.05). Failure of selective decontamination to prevent secondary gram-negative pancreatic infection with subsequent death was seen in only three patients (6%) and transient gram-negative pancreatic infection was seen in one (2%). In both groups of patients, all gram-negative aerobic pancreatic infection was preceded by

  17. Pancreatic cancer control: is vitamin D the answer?

    PubMed

    Iqbal, Sarah; Naseem, Imrana

    2016-05-01

    Pancreatic cancer is characterized by late detection, resistance to therapy, poor prognosis, and an exceptionally high mortality rate. Epidemiology ascribes a chemopreventive role to vitamin D in several cancers including pancreatic cancer. Vitamin D therapy has been ascribed a role previously in tumor inhibition and differentiation in addition to reduction of inflammation and angiogenesis. However, the role of vitamin D in pancreatic cancer prevention or therapy remains elusive to date. Studies have shown a negative correlation between the risk of pancreatic cancer and serum vitamin D levels. It is believed that vitamin D binding to certain conserved sequences called vitamin D response elements in the DNA can alter the expression of genes involved in tumorigenesis. Recent research has elucidated the role of zinc in carcinogenesis, which in turn is found to be affected by vitamin D supplementation. In the light of numerous new-found roles for vitamin D, we review and evaluate the potential actions of the sunshine vitamin with respect to pancreatic cancer prevention and therapy.

  18. Human pancreatic stellate cells modulate 3D collagen alignment to promote the migration of pancreatic ductal adenocarcinoma cells.

    PubMed

    Drifka, Cole R; Loeffler, Agnes G; Esquibel, Corinne R; Weber, Sharon M; Eliceiri, Kevin W; Kao, W John

    2016-12-01

    A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the ability for cancer cells to aggressively infiltrate and navigate through a dense stroma during the metastatic process. Key features of the PDAC stroma include an abundant population of activated pancreatic stellate cells (PSCs) and highly aligned collagen fibers; however, important questions remain regarding how collagen becomes aligned and what the biological manifestations are. To better understand how PSCs, aligned collagen, and PDAC cells might cooperate during the transition to invasion, we utilized a microchannel-based in vitro tumor model and advanced imaging technologies to recreate and examine in vivo-like heterotypic interactions. We found that PSCs participate in a collaborative process with cancer cells by orchestrating the alignment of collagen fibers that, in turn, are permissive to enhanced cell migration. Additionally, direct contact between PSCs, collagen, and PDAC cells is critical to invasion and co-migration of both cell types. This suggests PSCs may accompany and assist in navigating PDAC cells through the stromal terrain. Together, our data provides a new role for PSCs in stimulating the metastatic process and underscores the importance of collagen alignment in cancer progression.

  19. Poorly controlled type 2 diabetes complicated by an episode of severe hypertriglyceridaemia-induced pancreatitis.

    PubMed

    Denecker, Nathalie; Decochez, Katelijn

    2013-04-29

    A 23-year-old woman with a history of type 2 diabetes and non-compliance presented to the emergency department with abdominal epigastric pain and nausea. Laboratory examination revealed a mild ketoacidosis while an abdominal CT scan performed the following day demonstrated a severe acute pancreatitis of the body and tail (Balthazar grade E) despite normal amylase serum levels on admission. The presence of a lactescent serum was the clue to an extremely high triglyceride level (>10 000 mg/dl) causing the pancreatitis. The hypertriglyceridaemia itself was attributed mainly to the diabetic ketoacidosis. There was no family history of hypertriglyceridaemia. The triad consisting of diabetic ketoacidosis, hypertriglyceridaemia and acute pancreatitis is an unusual presentation of poorly controlled diabetes which can occur in type 1 as well as type 2 diabetic adults and children. Treatment with intravenous insulin and hydration successfully resolved the ketoacidosis and hypertriglyceridaemia and reversed the episode of acute pancreatitis.

  20. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells

    PubMed Central

    Calabretta, Sara; Bielli, Pamela; Passacantilli, Ilaria; Pilozzi, Emanuela; Fendrich, Volker; Capurso, Gabriele; Delle Fave, Gianfranco; Sette, Claudio

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and incurable disease. Poor prognosis is due to multiple reasons, including acquisition of resistance to gemcitabine, the first line chemotherapeutic approach. Thus, there is a strong need for novel therapies, targeting more directly the molecular aberrations of this disease. We found that chronic exposure of PDAC cells to gemcitabine selected a subpopulation of cells that are drug-resistant (DR-PDAC cells). Importantly, alternative splicing of the pyruvate kinase gene (PKM) was differentially modulated in DR-PDAC cells, resulting in promotion of the cancer-related PKM2 isoform, whose high expression also correlated with shorter recurrence free survival in PDAC patients. Switching PKM splicing by antisense oligonucleotides to favour the alternative PKM1 variant rescued sensitivity of DR-PDAC cells to gemcitabine and cisplatin, suggesting that PKM2 expression is required to withstand drug-induced genotoxic stress. Mechanistically, up-regulation of the polypyrimidine-tract binding protein (PTBP1), a key modulator of PKM splicing, correlated with PKM2 expression in DR-PDAC cell lines. PTBP1 was recruited more efficiently to PKM pre-mRNA in DR- than in parental PDAC cells. Accordingly, knockdown of PTBP1 in DR-PDAC cells reduced its recruitment to the PKM pre-mRNA, promoted splicing of the PKM1 variant and abolished drug resistance. Thus, chronic exposure to gemcitabine leads to up-regulation of PTBP1 and modulation of PKM alternative splicing in PDAC cells, conferring resistance to the drug. These findings point to PKM2 and PTBP1 as new potential therapeutic targets to improve response of PDAC to chemotherapy. PMID:26234680

  1. Nicotine/Cigarette-smoke Promotes Metastasis of Pancreatic Cancer Through α7nAChR-mediated MUC4 Up-regulation

    PubMed Central

    Momi, Navneet; Ponnusamy, Moorthy P.; Kaur, Sukhwinder; Rachagani, Satyanarayana; Kunigal, Sateesh S; Chellappan, Srikumar; Ouellette, Michel M; Batra, Surinder K

    2012-01-01

    Despite evidence that long-term smoking is the leading risk factor for pancreatic malignancies, the underlying mechanism(s) for cigarette-smoke (CS)-induced pancreatic cancer (PC) pathogenesis has not been well-established. Our previous studies revealed an aberrant expression of the MUC4 mucin in PC as compared to the normal pancreas and its association with cancer progression and metastasis. Interestingly, here we explore a potential link between MUC4 expression and smoking-mediated PC pathogenesis and report that both cigarette-smoke-extract (CSE) and nicotine, which is the major component of CS, significantly up-regulates MUC4 in PC cells. This nicotine-mediated MUC4 overexpression was via α7 subunit of nicotinic acetylcholine receptor (nAChR) stimulation and subsequent activation of the JAK2/STAT3 downstream signaling cascade in cooperation with the MEK/ERK1/2 pathway; this effect was blocked by the α7nAChR antagonists, α-bungarotoxin and mecamylamine, and by specific siRNA-mediated STAT3 inhibition. Additionally, we demonstrated that nicotine-mediated MUC4 up-regulation promotes the PC cell migration through the activation of the downstream effectors such as HER2, c-Src and FAK; this effect was attenuated by shRNA-mediated MUC4 abrogation, further implying that these nicotine-mediated pathological effects on PC cells are MUC4 dependent. Furthermore, the in-vivo studies demonstrated a dramatic increase in the mean pancreatic tumor weight [low-dose (100 mg/m3 TSP), p=0.014; high-dose (247 mg/m3 TSP), p=0.02] and significant tumor metastasis to various distant organs in the CS-exposed-mice, orthotopically implanted with luciferase-transfected PC cells, as compared to the sham-controls. Moreover, the CS-exposed mice had elevated levels of serum cotinine [low-dose, 155.88±35.96 ng/ml; high-dose, 216.25±29.95 ng/ml] and increased MUC4, α7nAChR and pSTAT3 expression in the pancreatic tumor tissues. Altogether, our findings revealed for the first time that CS up

  2. Downregulation of the CCK-B receptor in pancreatic cancer cells blocks proliferation and promotes apoptosis

    PubMed Central

    Fino, Kristin K.; Matters, Gail L.; McGovern, Christopher O.; Gilius, Evan L.

    2012-01-01

    Gastrin stimulates the growth of pancreatic cancer cells through the activation of the cholecystokinin-B receptor (CCK-BR), which has been found to be overexpressed in pancreatic cancer. In this study, we proposed that the CCK-BR drives growth of pancreatic cancer; hence, interruption of CCK-BR activity could potentially be an ideal target for cancer therapeutics. The effect of CCK-BR downregulation in the human pancreatic adenocarcinoma cells was examined by utilizing specific CCK-BR-targeted RNA interference reagents. The CCK-BR receptor expression was both transiently and stably downregulated by transfection with selective CCK-BR small-interfering RNA or short-hairpin RNA, respectively, and the effects on cell growth and apoptosis were assessed. CCK-BR downregulation resulted in reduced cancer cell proliferation, decreased DNA synthesis, and cell cycle arrest as demonstrated by an inhibition of G1 to S phase progression. Furthermore, CCK-BR downregulation increased caspase-3 activity, TUNEL-positive cells, and decreased X-linked inhibitor of apoptosis protein expression, suggesting apoptotic activity. Pancreatic cancer cell mobility was decreased when the CCK-BR was downregulated, as assessed by a migration assay. These results show the importance of the CCK-BR in regulation of growth and apoptosis in pancreatic cancer. Strategies to decrease the CCK-BR expression and activity may be beneficial for the development of new methods to improve the treatment for patients with pancreatic cancer. PMID:22442157

  3. Inhibitory effect of green tea extract on the process of pancreatic carcinogenesis induced by N-nitrosobis-(2-oxypropyl)amine (BOP) and on tumor promotion after transplantation of N-nitrosobis-(2-hydroxypropyl)amine (BHP)-induced pancreatic cancer in Syrian hamsters.

    PubMed

    Hiura, A; Tsutsumi, M; Satake, K

    1997-10-01

    Epidemiologic studies have shown a lower risk of gastrointestinal cancer in green tea drinkers. In the present study, the inhibitory effect of green tea extract (GTE) on the process of pancreatic carcinogenesis induced by N-nitrosobis-(2-oxypropyl)amine (BOP) and on tumor promotion after transplantation of N-nitrosobis-(2-hydroxypropyl)amine (BHP)-induced pancreatic cancer were investigated in hamsters. In the first experiment, shortly after the initiation of pancreatic carcinogenesis by BOP, the animals in the GTE group were given GTE (0.5 mg/L) in their drinking water and the control group was given tap water. All animals were sacrificed 24 weeks later. There were no significant differences in body weight, water intake, or food consumption between the two groups during the experiments. GTE consumption was approximately 1.25 mg/day/100 g body weight during this experiment. Seven of the 13 hamsters (54%) in the control group were found to have pancreatic tumors, versus six of the 18 hamsters (33%) in the GTE group. The average number of tumors in the control group was 1.0/hamster, compared with 0.5/hamster in the GTE group. The overall incidence of macroscopic pancreatic tumors in the GTE group was about half that in the control group. The incidence of pancreatic cancer was 54% (12/13) in the control group and 44% (8/18) in the GTE group. The number of pancreatic cancers, including invasive carcinoma and carcinoma in situ, in the GTE group was 0.88/hamster, significantly lower than in the control group (1.68/hamster) (p < 0.05). The incidence of atypical ductal hyperplasia, which is thought to be an early pancreatic cancer, was also significantly lower in the GTE group than in the control group (1.50/hamster vs. 4.65/hamster) (p < 0.05). In the second experiment, 1-mm3 pieces of BHP-induced pancreatic cancer were transplanted into the back of hamsters. The control group (N = 16) was maintained on the basal diet and tap water throughout the experiment, and the GTE

  4. Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice

    PubMed Central

    Li, Ning; Wu, Xuefeng; Holzer, Ryan G.; Lee, Jun-Hee; Todoric, Jelena; Park, Eek-Joong; Ogata, Hisanobu; Gukovskaya, Anna S.; Gukovsky, Ilya; Pizzo, Donald P.; VandenBerg, Scott; Tarin, David; Atay, Çiǧdem; Arkan, Melek C.; Deerinck, Thomas J.; Moscat, Jorge; Diaz-Meco, Maria; Dawson, David; Erkan, Mert; Kleeff, Jörg; Karin, Michael

    2013-01-01

    Chronic pancreatitis is an inflammatory disease that causes progressive destruction of pancreatic acinar cells and, ultimately, loss of pancreatic function. We investigated the role of IκB kinase α (IKKα) in pancreatic homeostasis. Pancreas-specific ablation of IKKα (IkkαΔpan) caused spontaneous and progressive acinar cell vacuolization and death, interstitial fibrosis, inflammation, and circulatory release of pancreatic enzymes, clinical signs resembling those of human chronic pancreatitis. Loss of pancreatic IKKα causes defective autophagic protein degradation, leading to accumulation of p62-mediated protein aggregates and enhanced oxidative and ER stress in acinar cells, but none of these effects is related to NF-κB. Pancreas-specific p62 ablation prevented ER and oxidative stresses and attenuated pancreatitis in IkkαΔpan mice, suggesting that cellular stress induced by p62 aggregates promotes development of pancreatitis. Importantly, downregulation of IKKα and accumulation of p62 aggregates were also observed in chronic human pancreatitis. Our studies demonstrate that IKKα, which may control autophagic protein degradation through its interaction with ATG16L2, plays a critical role in maintaining pancreatic acinar cell homeostasis, whose dysregulation promotes pancreatitis through p62 aggregate accumulation. PMID:23563314

  5. FAM83A is amplified and promotes cancer stem cell-like traits and chemoresistance in pancreatic cancer.

    PubMed

    Chen, S; Huang, J; Liu, Z; Liang, Q; Zhang, N; Jin, Y

    2017-03-13

    Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), contribute to tumorigenesis, resistance to chemoradiotherapy and recurrence in human cancers, suggesting targeting CSCs may represent a potential therapeutic strategy. In the current study, we found family with sequence similarity 83, member A (FAM83A) is significantly overexpressed and associated with poorer overall survival and disease-free survival in pancreatic cancer. Overexpression of FAM83A markedly promoted, whereas inhibition of FAM83A decreased, CSC-like traits and chemoresistance both in vitro and in an in vivo mouse model of pancreatic cancer. Furthermore, overexpression of FAM83A activated the well-characterized CSC-associated pathways transforming growth factor-β (TGF-β) signaling and Wnt/β-catenin signaling. Importantly, the FAM83A locus was amplified in a number of human cancers and silencing FAM83A in associated cancer cell lines inhibited activation of the WNT/β-catenin and TGF-β signaling pathways and reduced tumorigenicity. Taken together, these results indicate that FAM83A has a vital oncogenic role to promote pancreatic cancer progression and may represent a potential clinical target.

  6. MYB Promotes Desmoplasia in Pancreatic Cancer through Direct Transcriptional Up-regulation and Cooperative Action of Sonic Hedgehog and Adrenomedullin.

    PubMed

    Bhardwaj, Arun; Srivastava, Sanjeev K; Singh, Seema; Tyagi, Nikhil; Arora, Sumit; Carter, James E; Khushman, Moh'd; Singh, Ajay P

    2016-07-29

    Extensive desmoplasia is a prominent pathological characteristic of pancreatic cancer (PC) that not only impacts tumor development, but therapeutic outcome as well. Recently, we demonstrated a novel role of MYB, an oncogenic transcription factor, in PC growth and metastasis. Here we studied its effect on pancreatic tumor histopathology and associated molecular and biological mechanisms. Tumor-xenografts derived from orthotopic-inoculation of MYB-overexpressing PC cells exhibited far-greater desmoplasia in histological analyses compared with those derived from MYB-silenced PC cells. These findings were further confirmed by immunostaining of tumor-xenograft sections with collagen-I, fibronectin (major extracellular-matrix proteins), and α-SMA (well-characterized marker of myofibroblasts or activated pancreatic stellate cells (PSCs)). Likewise, MYB-overexpressing PC cells provided significantly greater growth benefit to PSCs in a co-culture system as compared with the MYB-silenced cells. Interrogation of deep-sequencing data from MYB-overexpressing versus -silenced PC cells identified Sonic-hedgehog (SHH) and Adrenomedullin (ADM) as two differentially-expressed genes among others, which encode for secretory ligands involved in tumor-stromal cross-talk. In-silico analyses predicted putative MYB-binding sites in SHH and ADM promoters, which was later confirmed by chromatin-immunoprecipitation. A cooperative role of SHH and ADM in growth promotion of PSCs was confirmed in co-culture by using their specific-inhibitors and exogenous recombinant-proteins. Importantly, while SHH acted exclusively in a paracrine fashion on PSCs and influenced the growth of PC cells only indirectly, ADM could directly impact the growth of both PC cells and PSCs. In summary, we identified MYB as novel regulator of pancreatic tumor desmoplasia, which is suggestive of its diverse roles in PC pathobiology.

  7. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    SciTech Connect

    Laurila, Eeva; Vuorinen, Elisa; Savinainen, Kimmo; Rauhala, Hanna; Kallioniemi, Anne

    2014-03-10

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700T pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy.

  8. Mast Cell Tryptase Contributes to Pancreatic Cancer Growth through Promoting Angiogenesis via Activation of Angiopoietin-1.

    PubMed

    Guo, Xiangjie; Zhai, Liqin; Xue, Ruobing; Shi, Jieru; Zeng, Qiang; Gao, Cairong

    2016-05-27

    Pancreatic cancer is a highly lethal malignancy and one of the leading causes of cancer-related death. During the development and progression of cancer, tumor angiogenesis plays a crucial role. A great deal of evidence has revealed that human mast cells (MCs) contributed to tumor angiogenesis through releasing several pro-angiogenetic factors, among which tryptase is one of the most active. However, the role of mast cell tryptase (MCT) in human pancreatic cancer angiogenesis is still not well documented. In this study, we examined the MCT levels in serum from pancreatic cancer patients and evaluated the correlationship of the MCT level and tumor angiogenesis. In addition, the effect of MCT on endothelial cell proliferation and tube formation was investigated both in vitro and in nude mice bearing pancreatic tumor. It was found that MCT contributes to endothelial cell growth and tube formation via up-regulation of angiopoietin-1 expression. Moreover, using the MCT inhibitor nafamostat, tryptase-induced angiogenesis was obviously suppressed both in vitro and in vivo. Our findings suggest that MCT plays an important role in pancreatic cancer angiogenesis and tumor growth via activating the angiopoietin-1 pathway, and tryptase inhibitors may be evaluated as an effective anti-angiogenetic approach in pancreatic cancer therapy.

  9. miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-β signalling pathway

    PubMed Central

    Zhu, Z; Xu, Y; Zhao, J; Liu, Q; Feng, W; Fan, J; Wang, P

    2015-01-01

    Background: Aberrant Smad7 expression contributes to the invasion and metastasis of pancreatic cancer cells. However, the potential mechanism underlying aberrant Smad7 expression in human pancreatic ductal adenocarcinoma (PDAC) remains largely unknown. Methods: Bioinformatic prediction programmes and luciferase reporter assay were used to identify microRNAs regulating Smad7. The association between miR-367 expression and the overall survival of PDAC patients was evaluated by Kaplan–Meier analysis. The effects of miR-367 and Smad7 on the invasion and metastasis of pancreatic cancer cells were investigated both in vitro and in vivo. Results: We found that miR-367 downregulated Smad7 expression by directly targeting its 3′-UTR in human pancreatic cancer cells. High level of miR-367 expression correlated with poor prognosis of PDAC patients. Functional studies showed that miR-367 promoted pancreatic cancer invasion in vitro and metastasis in vivo through downregulating Smad7. In addition, we showed that miR-367 promoted epithelial-to-mesenchymal transition by increasing transforming growth factor-β (TGF-β)-induced transcriptional activity. Conclusions: The present study identified and characterised a signalling pathway, the miR-367/Smad7-TGF-β pathway, which is involved in the invasion and metastasis of pancreatic cancer cells. Our results suggest that miR-367 may be a promising therapeutic target for the treatment of human pancreatic cancer. PMID:25867271

  10. Overexpression of GalNAc-transferase GalNAc-T3 Promotes Pancreatic Cancer Cell Growth

    PubMed Central

    Taniuchi, Keisuke; Cerny, Ronald L.; Tanouchi, Aki; Kohno, Kimitoshi; Kotani, Norihiro; Honke, Koichi; Saibara, Toshiji; Hollingsworth, Michael A.

    2011-01-01

    O-linked glycans of secreted and membrane bound proteins play an important role in the pathogenesis of pancreatic cancer by modulating immune responses, inflammation, and tumorigenesis. A critical aspect of O-glycosylation, the position at which proteins are glycosylated with N-acetyl-galactosamine on serine and threonine residues, is regulated by the substrate specificity of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases (GalNAc-Ts). Thus, GalNAc-Ts regulate the first committed step in O-glycosylated protein biosynthesis, determine sites of O-glycosylation on proteins, and are important for understanding normal and carcinoma-associated O-glycosylation. We have found that one of these enzymes, GalNAc-T3, is overexpressed in human pancreatic cancer tissues, and suppression of GalNAc-T3 significantly attenuates growth of pancreatic cancer cells in vitro and in vivo. In addition, suppression of GalNAc-T3 induces apoptosis of pancreatic cancer cells. Our results indicate that GalNAc-T3 is likely to be involved in pancreatic carcinogenesis. Modification of cellular glycosylation occurs in nearly all types of cancer as a result of alterations in the expression levels of glycosyltransferases. We report guanine nucleotide binding protein, alpha transducing activity polypeptide 1 (GNAT1) as a possible substrate protein of GalNAc-T3. GalNAc-T3 is associated with O-glycosylation of GNAT1, and affects the subcellular distribution of GNAT1. Knocking down endogenous GNAT1 significantly suppresses the growth/survival of PDAC cells. Our results imply that GalNAc-T3 contributes to the function of O-glycosylated proteins and thereby affects the growth and survival of pancreatic cancer cells. Thus, substrate proteins of GalNAc-T3 should serve as important therapeutic targets for pancreatic cancers. PMID:21625220

  11. Overexpression of GalNAc-transferase GalNAc-T3 promotes pancreatic cancer cell growth.

    PubMed

    Taniuchi, K; Cerny, R L; Tanouchi, A; Kohno, K; Kotani, N; Honke, K; Saibara, T; Hollingsworth, M A

    2011-12-08

    O-linked glycans of secreted and membrane-bound proteins have an important role in the pathogenesis of pancreatic cancer by modulating immune responses, inflammation and tumorigenesis. A critical aspect of O-glycosylation, the position at which proteins are glycosylated with N-acetyl-galactosamine on serine and threonine residues, is regulated by the substrate specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferases (GalNAc-Ts). Thus, GalNAc-Ts regulate the first committed step in O-glycosylated protein biosynthesis, determine sites of O-glycosylation on proteins and are important for understanding normal and carcinoma-associated O-glycosylation. We have found that one of these enzymes, GalNAc-T3, is overexpressed in human pancreatic cancer tissues and suppression of GalNAc-T3 significantly attenuates the growth of pancreatic cancer cells in vitro and in vivo. In addition, suppression of GalNAc-T3 induces apoptosis of pancreatic cancer cells. Our results indicate that GalNAc-T3 is likely involved in pancreatic carcinogenesis. Modification of cellular glycosylation occurs in nearly all types of cancer as a result of alterations in the expression levels of glycosyltransferases. We report guanine the nucleotide-binding protein, α-transducing activity polypeptide-1 (GNAT1) as a possible substrate protein of GalNAc-T3. GalNAc-T3 is associated with O-glycosylation of GNAT1 and affects the subcellular distribution of GNAT1. Knocking down endogenous GNAT1 significantly suppresses the growth/survival of PDAC cells. Our results imply that GalNAc-T3 contributes to the function of O-glycosylated proteins and thereby affects the growth and survival of pancreatic cancer cells. Thus, substrate proteins of GalNAc-T3 should serve as important therapeutic targets for pancreatic cancers.

  12. Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells.

    PubMed

    Zhao, Hengqiang; Duan, Qingke; Zhang, Zhengle; Li, Hehe; Wu, Heshui; Shen, Qiang; Wang, Chunyou; Yin, Tao

    2017-02-28

    Cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT)-type cells are considered as underlying causes of chemoresistance, tumour recurrence and metastasis in pancreatic cancer. We aimed to describe the mechanisms - particularly glycolysis - involved in the regulation of the CSC and EMT phenotypes. We used a gemcitabine-resistant (GR) Patu8988 cell line, which exhibited clear CSC and EMT phenotypes and showed reliance on glycolysis. Inhibition of glycolysis using 2-deoxy-D-glucose (2-DG) significantly enhanced the cytotoxicity of gemcitabine and inhibited the CSC and EMT phenotypes in GR cells both in vitro and in vivo. Intriguingly, the use of the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) restored the CSC and EMT phenotypes. H2 O2 produced changes similar to those of 2-DG, indicating that ROS were involved in the acquired cancer stemness and EMT phenotypes of GR cells. Moreover, doublecortin-like kinase 1 (DCLK1), a pancreatic CSC marker, was highly expressed and regulated the stemness and EMT phenotypes in GR cell. Both 2-DG and H2 O2 treatment suppressed DCLK1 expression, which was also rescued by NAC. Together, these findings revealed that glycolysis promotes the expression of DCLK1 and maintains the CSC and EMT phenotypes via maintenance of low ROS levels in chemoresistant GR cells. The glycolysis-ROS-DCLK1 pathway may be potential targets for reversing the malignant behaviour of pancreatic cancer.

  13. SIRT 1 Overexpression is Associated with Metastasis of Pancreatic Ductal Adenocarcinoma (PDAC) and Promotes Migration and Growth of PDAC Cells.

    PubMed

    Li, Siqin; Hong, Hua; Lv, Huicheng; Wu, Guozhu; Wang, Zhigang

    2016-05-12

    BACKGROUND SIRT 1, as a class III histone deacetylase (HDAC), is implicated in the initiation and progression of malignancies. However, the association of SIRT 1 with tumorigenesis or progression of pancreatic ductal adenocarcinoma (PDAC) is not clear. MATERIAL AND METHODS In our study we investigated SIRT 1 expression in PDAC samples and evaluated the association of SIRT 1 level with the clinical and pathological characteristics of PDAC patients. We investigated the role of SIRT 1 in the migration and growth of PDAC PANC-1 or BxPC-3 cells using gain-of-function and loss-of-function approach. RESULTS We demonstrated that SIRT 1 mRNA level was significantly promoted in intra-tumor tissues compared to peri-tumor tissues of PDAC; and SIRT 1 overexpression was markedly associated with distant or lymph node (LN) metastasis of these PDAC tissues. Moreover, the in vitro wound healing assay demonstrated that SIRT 1 overexpression with lentivirus vector markedly promoted the migration of PANC-1 or BxPC-3 cells, whereas SIRT 1 knockdown using SIRT 1 specific siRNA transfection significantly inhibited the migration of PDAC cells. The colony forming assay confirmed SIRT 1 promotion of the growth of PANC-1 or BxPC-3 cells. CONCLUSIONS In summary, SIRT 1 overexpression is significantly associated with metastasis of PDAC, and overexpressed SIRT 1 plays an important role in pancreatic cancer cell migration and growth. Our data warrants further studies on SIRT 1 as a novel chemotherapeutic target in PDAC.

  14. Tumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression

    PubMed Central

    Huang, Chongbiao; Li, Na; Li, Zengxun; Chang, Antao; Chen, Yanan; Zhao, Tiansuo; Li, Yang; Wang, Xiuchao; Zhang, Wei; Wang, Zhimin; Luo, Lin; Shi, Jingjing; Yang, Shengyu; Ren, He; Hao, Jihui

    2017-01-01

    Interleukin 35 (IL-35) is a novel member of the IL-12 family, consisting of an EBV-induced gene 3 (EBI3) subunit and a P35 subunit. IL-35 is an immune-suppressive cytokine mainly produced by regulatory T cells. However, the role of IL-35 in cancer metastasis and progression is not well understood. Here we demonstrate that IL-35 is overexpressed in human pancreatic ductal adenocarcinoma (PDAC) tissues, and that IL-35 overexpression is associated with poor prognosis in PDAC patients. IL-35 has critical roles in PDAC cell extravasation and metastasis by facilitating the adhesion to endothelial cells and transendothelial extravasation. Mechanistically, IL-35 promotes ICAM1 overexpression through a GP130-STAT1 signalling pathway, which facilitates endothelial adhesion and transendothelial migration via an ICAM1–fibrinogen–ICAM1 bridge. In an orthotopic xenograft model, IL-35 promotes spontaneous pancreatic cancer metastasis in an ICAM1-dependent manner. Together, our results indicate additional functions of IL-35 in promoting PDAC metastasis through mediating ICAM1 expression. PMID:28102193

  15. Pancreatic STAT3 protects mice against caerulein-induced pancreatitis via PAP1 induction.

    PubMed

    Shigekawa, Minoru; Hikita, Hayato; Kodama, Takahiro; Shimizu, Satoshi; Li, Wei; Uemura, Akio; Miyagi, Takuya; Hosui, Atsushi; Kanto, Tatsuya; Hiramatsu, Naoki; Tatsumi, Tomohide; Takeda, Kiyoshi; Akira, Shizuo; Takehara, Tetsuo

    2012-12-01

    The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that controls expressions of several genes involved in cell survival, proliferation and differentiation, and tissue inflammation. However, the significance of pancreatic STAT3 in acute pancreatitis remains unclear. We generated conditional STAT3 knockout (stat3(Δ/Δ)) mice by crossing stat3(flox/flox) mice with Pdx1-promoter Cre transgenic mice. Caerulein administration activated pancreatic STAT3 and induced acute pancreatitis as early as 3 hours in wild-type mice, and full recovery from the induced pancreatic injury was observed within 7 days. The levels of serum amylase and lipase and histologic scores of pancreatic necrosis and inflammatory cell infiltration were significantly higher at 3 hours in stat3(Δ/Δ) mice than in stat3(flox/flox) mice. Pancreatic recovery after pancreatitis was significantly delayed in stat3(Δ/Δ) mice compared with stat3(flox/flox) mice. Although stat3(flox/flox) mice had marked production in the pancreas of pancreatitis-associated protein 1 (PAP1), a serum acute phase protein, this induction was completely abrogated in stat3(Δ/Δ) mice. Enforced production of PAP1 by a hydrodynamic procedure in the liver significantly suppressed pancreatic necrosis and inflammation and also promoted pancreatic regeneration and recovery in stat3(Δ/Δ) mice to levels similar to those observed in stat3(flox/flox) mice. In conclusion, pancreatic STAT3 is indispensable for PAP1 production, and this STAT3/PAP1 pathway plays a protective role in caerulein-induced pancreatitis.

  16. Successful Control of Liver Metastases From Pancreatic Solid-Pseudopapillary Neoplasm (SPN) Using Hepatic Arterial Embolization

    SciTech Connect

    Violari, Elena G. Brody, Lynn A.; Covey, Anne M.; Erinjeri, Joseph P.; Getrajdman, George I.; Sofocleous, Constantinos T.; Reidy, Diane L.; Jarnagin, William R.; Brown, Karen T.

    2015-04-15

    No systemic agents that are known to be effective for the treatment of solid-pseudopapillary neoplasm (SPN) are available. We report the prolonged and sustained control of metastatic pancreatic SPN to the liver using hepatic arterial embolization (HAE), where a total of 13 HAE sessions were performed over a 6-year period.

  17. A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function.

    PubMed

    Broichhagen, J; Frank, J A; Johnston, N R; Mitchell, R K; Šmid, K; Marchetti, P; Bugliani, M; Rutter, G A; Trauner, D; Hodson, D J

    2015-04-07

    Azobenzene photoresponsive elements can be installed on sulfonylureas, yielding optical control over pancreatic beta cell function and insulin release. An obstacle to such photopharmacological approaches remains the use of ultraviolet-blue illumination. Herein, we synthesize and test a novel yellow light-activated sulfonylurea based on a heterocyclic azobenzene bearing a push-pull system.

  18. Toll Like Receptor 2, 4, and 9 Signaling Promotes Autoregulative Tumor Cell Growth and VEGF/PDGF Expression in Human Pancreatic Cancer

    PubMed Central

    Grimmig, Tanja; Moench, Romana; Kreckel, Jennifer; Haack, Stephanie; Rueckert, Felix; Rehder, Roberta; Tripathi, Sudipta; Ribas, Carmen; Chandraker, Anil; Germer, Christoph T.; Gasser, Martin; Waaga-Gasser, Ana Maria

    2016-01-01

    Toll like receptor (TLR) signaling has been suggested to play an important role in the inflammatory microenvironment of solid tumors and through this inflammation-mediated tumor growth. Here, we studied the role of tumor cells in their process of self-maintaining TLR expression independent of inflammatory cells and cytokine milieu for autoregulative tumor growth signaling in pancreatic cancer. We analyzed the expression of TLR2, -4, and -9 in primary human cancers and their impact on tumor growth via induced activation in several established pancreatic cancers. TLR-stimulated pancreatic cancer cells were specifically investigated for activated signaling pathways of VEGF/PDGF and anti-apoptotic Bcl-xL expression as well as tumor cell growth. The primary pancreatic cancers and cell lines expressed TLR2, -4, and -9. TLR-specific stimulation resulted in activated MAP-kinase signaling, most likely via autoregulative stimulation of demonstrated TLR-induced VEGF and PDGF expression. Moreover, TLR activation prompted the expression of Bcl-xL and has been demonstrated for the first time to induce tumor cell proliferation in pancreatic cancer. These findings strongly suggest that pancreatic cancer cells use specific Toll like receptor signaling to promote tumor cell proliferation and emphasize the particular role of TLR2, -4, and -9 in this autoregulative process of tumor cell activation and proliferation in pancreatic cancer. PMID:27941651

  19. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB.

    PubMed

    Zhang, Yanling; Zhen, Wei; Maechler, Pierre; Liu, Dongmin

    2013-04-01

    Chronic hyperlipidemia causes β-cell apoptosis and dysfunction, thereby contributing to the pathogenesis of type 2 diabetes (T2D). Thus, searching for agents to promote pancreatic β-cell survival and improve its function could be a promising strategy to prevent and treat T2D. We investigated the effects of kaempferol, a small molecule isolated from ginkgo biloba, on apoptosis and function of β-cells and further determined the mechanism underlying its actions. Kaempferol treatment promoted viability, inhibited apoptosis and reduced caspase-3 activity in INS-1E cells and human islets chronically exposed to palmitate. In addition, kaempferol prevented the lipotoxicity-induced down-regulation of antiapoptotic proteins Akt and Bcl-2. The cytoprotective effects of kaempferol were associated with improved insulin secretion, synthesis, and pancreatic and duodenal homeobox-1 (PDX-1) expression. Chronic hyperlipidemia significantly diminished cyclic adenosine monophosphate (cAMP) production, protein kinase A (PKA) activation, cAMP-responsive element binding protein (CREB) phosphorylation and its regulated transcriptional activity in β-cells, all of which were restored by kaempferol treatment. Disruption of CREB expression by transfection of CREB siRNA in INS-1E cells or adenoviral transfer of dominant-negative forms of CREB in human islets ablated kaempferol protection of β-cell apoptosis and dysfunction caused by palmitate. Incubation of INS-1E cells or human islets with kaempferol for 48h induced PDX-1 expression. This effect of kaempferol on PDX-1 expression was not shared by a host of structurally related flavonoid compounds. PDX-1 gene knockdown reduced kaempferol-stimulated cAMP generation and CREB activation in INS-1E cells. These findings demonstrate that kaempferol is a novel survivor factor for pancreatic β-cells via up-regulating the PDX-1/cAMP/PKA/CREB signaling cascade.

  20. An angiopoietin-like protein 2 autocrine signaling promotes EMT during pancreatic ductal carcinogenesis

    PubMed Central

    Carbone, Carmine; Piro, Geny; Fassan, Matteo; Tamburrino, Anna; Mina, Maria Mihaela; Zanotto, Marco; Chiao, Paul J; Bassi, Claudio; Scarpa, Aldo; Tortora, Giampaolo; Melisi, Davide

    2015-01-01

    The identification of the earliest molecular events responsible for the metastatic dissemination of pancreatic ductal adenocarcinoma (PDAC) remains critical for early detection, prevention, and treatment interventions. In this study, we hypothesized that an autocrine signaling between Angiopoietin-like Protein (ANGPTL)2 and its receptor leukocyte immunoglobulin-like receptor B2 (LILRB2) might be responsible for the epithelial-to-mesenchymal transition (EMT) and, the early metastatic behavior of cells in pancreatic preneoplastic lesions. We demonstrated that the sequential activation of KRAS, expression of HER2 and silencing of p16/p14 are sufficient to progressively and significantly increase the secretion of ANGPTL2, and the expression of LILRB2. Silencing the expression of ANGPTL2 reverted EMT and reduced migration in these cell lines. Blocking ANGPTL2 receptor LILRB2 in KRAS, and KRAS/HER2/p16p14shRNA LILRB2- expressing cells reduced ANGPTL2-induced cell proliferation and invasion. An increasingly significant overexpression of ANGPTL2 was observed in in a series of 68 different human PanIN and 27 PDAC lesions if compared with normal pancreatic parenchyma. These findings showed that the autocrine signaling of ANGPTL2 and its receptor LILRB2 plays key roles in sustaining EMT and the early metastatic behavior of cells in pancreatic preneoplastic lesions supporting the potential role of ANGPTL2 for early detection, metastasis prevention, and treatment in PDAC. PMID:25360865

  1. KRAS mutations in blood circulating cell-free DNA: a pancreatic cancer case-control

    PubMed Central

    Le Calvez-Kelm, Florence; Foll, Matthieu; Wozniak, Magdalena B.; Delhomme, Tiffany M.; Durand, Geoffroy; Chopard, Priscilia; Pertesi, Maroulio; Fabianova, Eleonora; Adamcakova, Zora; Holcatova, Ivana; Foretova, Lenka; Janout, Vladimir; Vallee, Maxime P.; Rinaldi, Sabina; Brennan, Paul; McKay, James D.; Byrnes, Graham B.; Scelo, Ghislaine

    2016-01-01

    The utility of KRAS mutations in plasma circulating cell-free DNA (cfDNA) samples as non-invasive biomarkers for the detection of pancreatic cancer has never been evaluated in a large case-control series. We applied a KRAS amplicon-based deep sequencing strategy combined with analytical pipeline specifically designed for the detection of low-abundance mutations to screen plasma samples of 437 pancreatic cancer cases, 141 chronic pancreatitis subjects, and 394 healthy controls. We detected mutations in 21.1% (N=92) of cases, of whom 82 (89.1%) carried at least one mutation at hotspot codons 12, 13 or 61, with mutant allelic fractions from 0.08% to 79%. Advanced stages were associated with an increased proportion of detection, with KRAS cfDNA mutations detected in 10.3%, 17,5% and 33.3% of cases with local, regional and systemic stages, respectively. We also detected KRAS cfDNA mutations in 3.7% (N=14) of healthy controls and in 4.3% (N=6) of subjects with chronic pancreatitis, but at significantly lower allelic fractions than in cases. Combining cfDNA KRAS mutations and CA19-9 plasma levels on a limited set of case-control samples did not improve the overall performance of the biomarkers as compared to CA19-9 alone. Whether the limited sensitivity and specificity observed in our series of KRAS mutations in plasma cfDNA as biomarkers for pancreatic cancer detection are attributable to methodological limitations or to the biology of cfDNA should be further assessed in large case-control series. PMID:27705932

  2. Calcitriol enhances gemcitabine antitumor activity in vitro and in vivo by promoting apoptosis in a human pancreatic carcinoma model system

    PubMed Central

    Yu, Wei-Dong; Ma, Yingyu; Flynn, Geraldine; Muindi, Josephia R; Kong, Rui-Xian; Trump, Donald L

    2010-01-01

    Gemcitabine is the standard care chemotherapeutic agent to treat pancreatic cancer. Previously we demonstrated that calcitriol (1, 25-dihydroxycholecalciferol) has significant anti-proliferative effects in vitro and in vivo in multiple tumor models and enhances the activity of a variety of chemotherapeutic agents. We therefore investigated whether calcitriol could potentiate the cytotoxic activity of gemcitabine in the human pancreatic cancer Capan-1 model system. Isobologram analysis revealed that calcitriol and gemcitabine had synergistic antiproliferative effect over a wide range of drug concentrations. Calcitriol did not reduce the cytidine deaminase activity in Capan-1 tumors nor in the livers of Capan-1 tumor bearing mice. Calcitriol and gemcitabine combination promoted apoptosis in Capan-1 cells compared with either agent alone. The combination treatment also increased the activation of caspases-8, -9, -6 and -3 in Capan-1 cells. This result was confirmed by substrate-based caspase activity assay. Akt phosphorylation was reduced by calcitriol and gemcitabine combination treatment compared to single agent treatment. However, ERK1/2 phosphorylation was not modulated by either agent alone or by the combination. Tumor regrowth delay studies showed that calcitriol in combination with gemcitabine resulted in a significant reduction of Capan-1 tumor volume compared to single agent treatment. Our study suggests that calcitriol and gemcitabine in combination promotes caspase-dependent apoptosis, which may contribute to increased anti-tumor activity compared to either agent alone. PMID:20699664

  3. Case-control Study of Aspirin Use and Risk of Pancreatic Cancer

    PubMed Central

    Streicher, Samantha A.; Yu, Herbert; Lu, Lingeng; Kidd, Mark S.; Risch, Harvey A.

    2014-01-01

    Background Pancreas-cancer prognosis is dismal, with 5-year survival less than 5%. Significant relationships between aspirin use and decreased pancreas-cancer incidence and mortality have been shown in four of 13 studies. Methods To evaluate further a possible association between aspirin use and risk of pancreatic cancer, we used data from a population-based Connecticut study conducted from January 2005-August 2009, of 362 pancreas-cancer cases frequency matched to 690 randomly sampled controls. Results Overall, regular use of aspirin was associated with reduced risk of pancreatic cancer (odds ratio [OR], 0.52; 95% CI, 0.39–0.69). Increments of decreasing risk of pancreatic cancer were observed for each year of low-dose or regular-dose aspirin use (OR, 0.94; 95% CI, 0.91–0.98 and OR, 0.98; 95% CI, 0.96–1.01, respectively) and for increasing years in the past that low-dose or regular-dose aspirin use had started (OR, 0.95; 95% CI, 0.92–0.99 and OR, 0.98; 95% CI, 0.96–1.00, respectively). Reduced risk of pancreatic cancer was seen in most categories of calendar time period of aspirin use, for both low-dose aspirin and regular-dose aspirin use. Relative to continuing use at the time of interview, termination of aspirin use within 2 years of interview was associated with increased risk of pancreatic cancer (OR, 3.24; 95% CI, 1.58–6.65). Conclusions Our results provide some support that a daily aspirin regimen may reduce risk of developing pancreatic cancer. Impact Long-term aspirin use has benefits for both cardiovascular disease and cancer, but appreciable bleeding complications that necessitate risk-benefit analysis for individual applications. PMID:24969230

  4. An octamer motif is required for activation of the inducible nitric oxide synthase promoter in pancreatic beta-cells.

    PubMed

    Darville, Martine I; Terryn, Sara; Eizirik, Décio L

    2004-03-01

    Nitric oxide, generated by the inducible form of nitric oxide synthase (iNOS), is a potential mediator of cytokine-induced beta-cell dysfunction in type 1 diabetes mellitus. We have previously shown that cytokine-induced iNOS expression is cycloheximide (CHX) sensitive and requires nuclear factor-kappa B (NF-kappa B) activation. In the present study, we show that an octamer motif located 20 bp downstream of the proximal NF-kappa B binding site in the rat iNOS promoter is critical for IL-1 beta and interferon-gamma induction of promoter activity in rat primary beta-cells and insulin-producing RINm5F cells. In gel shift assays, the octamer motif bound constitutively the transcription factor Oct1. Neither Oct1 nor NF-kappa B binding activities were blocked by CHX, suggesting that other factor(s) synthesized in response to IL-1 beta contribute to iNOS promoter induction. The high mobility group (HMG)-I(Y) protein also bound the proximal iNOS promoter region. HMG-I(Y) binding was decreased in cells treated with CHX and HMG-I(Y) silencing by RNA interference reduced IL-1 beta-induced iNOS promoter activity. These results suggest that Oct1, NF-kappa B, and HMG-I(Y) cooperate for transactivation of the iNOS promoter in pancreatic beta-cells.

  5. The PRKD1 promoter is a target of the KRas-NF-κB pathway in pancreatic cancer

    PubMed Central

    Döppler, Heike; Panayiotou, Richard; Reid, Elizabeth M.; Maimo, Willibroad; Bastea, Ligia; Storz, Peter

    2016-01-01

    Increased expression of PRKD1 and its gene product protein kinase D1 (PKD1) are linked to oncogenic signaling in pancreatic ductal adenocarcinoma, but a direct functional relationship to oncogenic KRas has not been established so far. We here describe the PRKD1 gene promoter as a target for oncogenic KRas signaling. We demonstrate that KRas-induced activation of the canonical NF-κB pathway is one mechanism of how PRKD1 expression is increased and identify the binding sites for NF-κB in the PRKD1 promoter. Altogether, these results describe a novel mechanism governing PRKD1 gene expression in PDA and provide a functional link between oncogenic KRas, NF-κB and expression of PRKD1. PMID:27649783

  6. Ion channels in control of pancreatic stellate cell migration

    PubMed Central

    Storck, Hannah; Hild, Benedikt; Schimmelpfennig, Sandra; Sargin, Sarah; Nielsen, Nikolaj; Zaccagnino, Angela; Budde, Thomas; Novak, Ivana; Kalthoff, Holger; Schwab, Albrecht

    2017-01-01

    Pancreatic stellate cells (PSCs) play a critical role in the progression of pancreatic ductal adenocarcinoma (PDAC). Once activated, PSCs support proliferation and metastasis of carcinoma cells. PSCs even co-metastasise with carcinoma cells. This requires the ability of PSCs to migrate. In recent years, it has been established that almost all “hallmarks of cancer” such as proliferation or migration/invasion also rely on the expression and function of ion channels. So far, there is only very limited information about the function of ion channels in PSCs. Yet, there is growing evidence that ion channels in stromal cells also contribute to tumor progression. Here we investigated the function of KCa3.1 channels in PSCs. KCa3.1 channels are also found in many tumor cells of different origin. We revealed the functional expression of KCa3.1 channels by means of Western blot, immunofluorescence and patch clamp analysis. The impact of KCa3.1 channel activity on PSC function was determined with live-cell imaging and by measuring the intracellular Ca2+ concentration ([Ca2+]i). KCa3.1 channel blockade or knockout prevents the stimulation of PSC migration and chemotaxis by reducing the [Ca2+]i and calpain activity. KCa3.1 channels functionally cooperate with TRPC3 channels that are upregulated in PDAC stroma. Knockdown of TRPC3 channels largely abolishes the impact of KCa3.1 channels on PSC migration. In summary, our results clearly show that ion channels are crucial players in PSC physiology and pathophysiology. PMID:27903970

  7. Aspirin, nonsteroidal anti-inflammatory drugs, acetaminophen, and pancreatic cancer risk: a clinic-based case-control study.

    PubMed

    Tan, Xiang-Lin; Reid Lombardo, Kaye M; Bamlet, William R; Oberg, Ann L; Robinson, Dennis P; Anderson, Kristin E; Petersen, Gloria M

    2011-11-01

    Aspirin and other nonsteroidal anti-inflammatory drugs (NSAID) show indisputable promise as cancer chemoprevention agents. However, studies have been inconsistent as to whether aspirin has a protective effect in development of pancreatic cancer. To further evaluate the association between aspirin, NSAID, and acetaminophen use with pancreatic cancer risk, we used a clinic-based case-control study of 904 rapidly ascertained histologically or clinically documented pancreatic ductal adenocarcinoma cases, and 1,224 age- and sex-matched healthy controls evaluated at Mayo Clinic from April 2004 to September 2010. Overall, there is no relationship between non-aspirin NSAID or acetaminophen use and risk of pancreatic cancer. Aspirin use for 1 d/mo or greater was associated with a significantly decreased risk of pancreatic cancer (OR = 0.74, 95% CI: 0.60-0.91, P = 0.005) compared with never or less than 1 d/mo. Analysis by frequency and frequency-dosage of use categories showed reduced risk (P = 0.007 and 0.022, respectively). This inverse association was also found for those who took low-dose aspirin for heart disease prevention (OR = 0.67, 95% CI: 0.49-0.92, P = 0.013). In subgroup analyses, the association between aspirin use and pancreatic cancer was not significantly affected by pancreatic cancer stage, smoking status, or body mass index. Our data suggest that aspirin use, but not non-aspirin NSAID use, is associated with lowered risk of developing pancreatic cancer.

  8. Endogenously Expressed IL-4Rα Promotes the Malignant Phenotype of Human Pancreatic Cancer In Vitro and In Vivo.

    PubMed

    Traub, Benno; Sun, Lie; Ma, Yongsu; Xu, Pengfei; Lemke, Johannes; Paschke, Stephan; Henne-Bruns, Doris; Knippschild, Uwe; Kornmann, Marko

    2017-03-28

    Exogenous interleukin-4 (IL-4) has been demonstrated to affect the growth of different human malignancies including pancreatic cancer cells. The aim of our study was to determine the role of endogenously expressed IL-4-receptor-α-chain (IL-4Rα) in pancreatic cancer cells. IL-4Rα-suppression was achieved by generating Capan-1 cells stably expressing shRNA targeting IL-4Rα. The malignant phenotype was characterized by assessing growth properties, directional and non-directional cell movement in vitro and tumor growth in vivo. Signaling pathways were analyzed upon IL-4 and IL-13 stimulation of wildtype (WT) and control-transfected cells compared to IL-4Rα-knockdown cells. Silencing of IL-4Rα resulted in reduced anchorage-dependent cell growth (p < 0.05) and reduced anchorage-independent colony size (p < 0.001) in vitro. Moreover, cell movement and migration was inhibited. IL-4 and IL-13 stimulation of Capan-1-WT cells induced activation of similar pathways like stimulation with Insulin-like growth factor (IGF)-I. This activation was reduced after IL-4Rα downregulation while IGF-I signaling seemed to be enhanced in knockdown-clones. Importantly, IL-4Rα silencing also significantly suppressed tumor growth in vivo. The present study indicates that endogenously expressed IL-4 and IL-4Rα contribute to the malignant phenotype of pancreatic cancer cells by activating diverse pro-oncogenic signaling pathways. Addressing these pathways may contribute to the treatment of the disease.

  9. IL-13 promotes the proliferation of rat pancreatic stellate cells through the suppression of NF-{kappa}B/TGF-{beta}{sub 1} pathway

    SciTech Connect

    Shinozaki, Satoshi; Mashima, Hirosato; Ohnishi, Hirohide; Sugano, Kentaro

    2010-02-26

    In chronic pancreatitis, pancreatic stellate cells (PSCs) play a central role in tissue fibrogenesis. Transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}) and the Th2 lymphokines such as interleukin (IL)-13 are major profibrogenic cytokines in many organs. Activated PSCs produce various inflammatory cytokines including TGF-{beta}{sub 1}. In this study, we investigated whether IL-13 affects pancreatic fibrogenesis by modulating the functions of PSCs. IL-13 promoted PSCs proliferation without activation through the suppression of autocrine TGF-{beta}{sub 1}. IL-13 enhanced Stat6 phosphorylation in PSCs but Stat6 was not involved in the suppression of TGF-{beta}{sub 1}. IL-13 inhibited the transcriptional activity of NF-{kappa}B, and the expression of mutant I-{kappa}B reproduced the suppression of autocrine TGF-{beta}{sub 1} and promoted PSCs proliferation. Taken together, we demonstrated that IL-13 promotes PSCs proliferation through the suppression of the transcriptional activity of NF-{kappa}B, resulting in the decrease of autocrine TGF-{beta}{sub 1}. This finding provides an unequivocal evidence of IL-13 participation in pancreatic fibrosis, illustrating a new strategy for chronic pancreatitis.

  10. Treatment with near-infrared radiation promotes apoptosis in pancreatic cancer cells

    PubMed Central

    OBAYASHI, TOMOHIKO; FUNASAKA, KOHEI; OHNO, EIZABURO; MIYAHARA, RYOJI; HIROOKA, YOSHIKI; HAMAGUCHI, MICHINARI; GOTO, HIDEMI; SENGA, TAKESHI

    2015-01-01

    Cancer remains one of the leading causes of human mortality worldwide. Radiation and chemotherapy are commonly used for cancer treatment; however, the combination of these therapies and surgery do not completely eradicate cancer cells. Near-infrared radiation (NIR) is a low-energy form of radiation that exerts multiple effects on mammalian cells. Previous studies have reported that NIR induces DNA double-strand breaks and apoptosis of cancer cells. In the present study, a 915-nm laser was used to examine the effects of NIR on pancreatic cancer cells. Irradiation of pancreatic cancer cells using a 915-nm laser significantly induced caspase-3 activation and apoptosis. In addition, the combination of gemcitabine treatment and a 915-nm laser synergistically increased the number of apoptotic cells. The results of the present study indicate the use of infrared irradiation and chemotherapy may be a possible therapy for the treatment of cancer. PMID:26622761

  11. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality.

    PubMed

    Zhang, Hong; Neuhöfer, Patrick; Song, Liang; Rabe, Björn; Lesina, Marina; Kurkowski, Magdalena U; Treiber, Matthias; Wartmann, Thomas; Regnér, Sara; Thorlacius, Henrik; Saur, Dieter; Weirich, Gregor; Yoshimura, Akihiko; Halangk, Walter; Mizgerd, Joseph P; Schmid, Roland M; Rose-John, Stefan; Algül, Hana

    2013-03-01

    Acute lung injury (ALI) is an inflammatory disease with a high mortality rate. Although typically seen in individuals with sepsis, ALI is also a major complication in severe acute pancreatitis (SAP). The pathophysiology of SAP-associated ALI is poorly understood, but elevated serum levels of IL-6 is a reliable marker for disease severity. Here, we used a mouse model of acute pancreatitis-associated (AP-associated) ALI to determine the role of IL-6 in ALI lethality. Il6-deficient mice had a lower death rate compared with wild-type mice with AP, while mice injected with IL-6 were more likely to develop lethal ALI. We found that inflammation-associated NF-κB induced myeloid cell secretion of IL-6, and the effects of secreted IL-6 were mediated by complexation with soluble IL-6 receptor, a process known as trans-signaling. IL-6 trans-signaling stimulated phosphorylation of STAT3 and production of the neutrophil attractant CXCL1 in pancreatic acinar cells. Examination of human samples revealed expression of IL-6 in combination with soluble IL-6 receptor was a reliable predictor of ALI in SAP. These results demonstrate that IL-6 trans-signaling is an essential mediator of ALI in SAP across species and suggest that therapeutic inhibition of IL-6 may prevent SAP-associated ALI.

  12. Liposomal insulin promoter-thymidine kinase gene therapy followed by ganciclovir effectively ablates human pancreatic cancer in mice.

    PubMed

    Wu, James X; Liu, Shi-He; Nemunaitis, John J; Brunicardi, F Charles

    2015-04-10

    PDX1 is overexpressed in pancreatic cancer, and activates the insulin promoter (IP). Adenoviral IP-thymidine kinase and ganciclovir (TK/GCV) suppresses human pancreatic ductal carcinoma (PDAC) in mice, but repeated doses carry significant toxicity. We hypothesized that multiple cycles of liposomal IP-TK/GCV ablate human PDAC in SCID mice with minimal toxicity compared to adenoviral IP-TK/GCV. SCID mice with intraperitoneal human pancreatic cancer PANC-1 tumor implants were given a single cycle of 35 µg iv L-IP-TK, or four cycles of 1, 10, 20, 30, or 35 µg iv L-IP-TK (n = 20 per group), followed by intraperitoneal GCV. Insulin and glucose levels were monitored in mice treated with four cycles of 35 µg iv L-IP-TK. We found that four cycles of 10-35 µg L-IP-TK/GCV ablated more PANC-1 tumor volume compared to a single cycle with 35 µg. Mice that received four cycles of 10 µg L-IP-TK demonstrated the longest survival (P < 0.05), with a median survival of 126 days. In comparison, mice that received a single cycle of 35 µg L-IP-TK/GCV or GCV alone survived a median of 92 days and 68.7 days, respectively. There were no significant changes in glucose or insulin levels following treatment. In conclusion, multiple cycles of liposomal IP-TK/GCV ablate human PDAC in SCID mice with minimal toxicity, suggesting non-viral vectors are superior to adenoviral vectors for IP-gene therapy.

  13. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling.

    PubMed

    Campbell, Paul M; Groehler, Angela L; Lee, Kwang M; Ouellette, Michel M; Khazak, Vladimir; Der, Channing J

    2007-03-01

    Mutational activation of the K-Ras oncogene is well established as a key genetic step in the development and growth of pancreatic adenocarcinomas. However, the mechanism by which aberrant Ras signaling promotes uncontrolled pancreatic tumor cell growth remains to be fully elucidated. The recent use of primary human cells to study Ras-mediated oncogenesis provides important model cell systems to dissect this mechanism. We have used a model of telomerase-immortalized human pancreatic duct-derived cells (E6/E7/st) to study mechanisms of Ras growth transformation. First, we found that human papillomavirus E6 and E7 oncogenes, which block the function of the p53 and Rb tumor suppressors, respectively, and SV40 small t antigen were required to allow mutant K-Ras(12D) growth transformation. Second, K-Ras(12D) caused growth transformation in vitro, including enhanced growth rate and loss of density dependency for growth, anchorage independence, and invasion through reconstituted basement membrane proteins, and tumorigenic transformation in vivo. Third, we determined that the Raf, phosphatidylinositol 3-kinase (PI3K), and Ral guanine nucleotide exchange factor effector pathways were activated, although extracellular signal-regulated kinase (ERK) activity was not up-regulated persistently. Finally, pharmacologic inhibition of Raf/mitogen-activated protein kinase/ERK and PI3K signaling impaired K-Ras-induced anchorage-independent growth and invasion. In summary, our studies established, characterized, and validated E6/E7/st cells for the study of Ras-induced oncogenesis.

  14. Vitamin D–binding protein and pancreatic cancer: a nested case-control study12345

    PubMed Central

    Piper, Marina R; Freedman, D Michal; Robien, Kim; Kopp, William; Rager, Helen; Horst, Ronald L

    2015-01-01

    Background: Vitamin D–binding protein (DBP) is the primary carrier of 25-hydroxyvitamin D [25(OH)D] in the circulation. One prospective study in male smokers found a protective association between DBP and pancreatic cancer, particularly among men with higher 25(OH)D concentrations. Objective: The objective was to examine the association between DBP and pancreatic cancer risk in an American population. Design: We conducted a nested case-control study in the Prostate, Lung, Colorectal, and Ovarian Cancer screening trial cohort of men and women aged 55–74 y at baseline. Between 1993 and 2010, 295 incident pancreatic adenocarcinoma cases were reported (follow-up to 15.1 y). Two controls (n = 590) were matched to each case by age, race, sex, and month of blood draw. We calculated smoking- and diabetes-adjusted ORs and 95% CIs with the use of conditional logistic regression. Results: DBP concentration was not significantly associated with pancreatic cancer overall [highest (≥7149.4 nmol/L) vs. lowest (<3670.4 nmol/L) quintile; OR: 1.75; 95% CI: 0.91, 3.37; P-trend = 0.25]. For serum 25(OH)D compared with the referent (50 to <75 nmol/L), individuals in the highest group had a significantly higher risk (≥100 nmol/L; OR: 3.23; 95% CI: 1.24, 8.44), whereas those in the lowest group had no significant association (<25 nmol/L; OR: 2.50; 95% CI: 0.92, 6.81). Further adjustment for DBP did not alter this association. Conclusion: Our results do not support the hypothesis that serum DBP or 25(OH)D plays a protective role in pancreatic cancer. This trial was registered at clinicaltrials.gov as NCT00339495. PMID:25904602

  15. Pathogenic mechanisms of pancreatitis.

    PubMed

    Manohar, Murli; Verma, Alok Kumar; Venkateshaiah, Sathisha Upparahalli; Sanders, Nathan L; Mishra, Anil

    2017-02-06

    Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancreatitis with acute inflammatory responses and; chronic pancreatitis characterized by marked stroma formation with a high number of infiltrating granulocytes (such as neutrophils, eosinophils), monocytes, macrophages and pancreatic stellate cells (PSCs). These inflammatory cells are known to play a central role in initiating and promoting inflammation including pancreatic fibrosis, i.e., a major risk factor for pancreatic cancer. A number of inflammatory cytokines are known to involve in promoting pancreatic pathogenesis that lead pancreatic fibrosis. Pancreatic fibrosis is a dynamic phenomenon that requires an intricate network of several autocrine and paracrine signaling pathways. In this review, we have provided the details of various cytokines and molecular mechanistic pathways (i.e., Transforming growth factor-β/SMAD, mitogen-activated protein kinases, Rho kinase, Janus kinase/signal transducers and activators, and phosphatidylinositol 3 kinase) that have a critical role in the activation of PSCs to promote chronic pancreatitis and trigger the phenomenon of pancreatic fibrogenesis. In this review of literature, we discuss the involvement of several pro-inflammatory and anti-inflammatory cytokines, such as in interleukin (IL)-1, IL-1β, IL-6, IL-8 IL-10, IL-18, IL-33 and tumor necrosis factor-α, in the pathogenesis of disease. Our review also highlights the significance of several experimental animal models that have an important role in dissecting the mechanistic pathways operating in the development of chronic pancreatitis, including pancreatic fibrosis. Additionally, we provided several intermediary molecules that are involved in major signaling pathways that might provide target molecules for future therapeutic treatment strategies for

  16. Pathogenic mechanisms of pancreatitis

    PubMed Central

    Manohar, Murli; Verma, Alok Kumar; Venkateshaiah, Sathisha Upparahalli; Sanders, Nathan L; Mishra, Anil

    2017-01-01

    Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancreatitis with acute inflammatory responses and; chronic pancreatitis characterized by marked stroma formation with a high number of infiltrating granulocytes (such as neutrophils, eosinophils), monocytes, macrophages and pancreatic stellate cells (PSCs). These inflammatory cells are known to play a central role in initiating and promoting inflammation including pancreatic fibrosis, i.e., a major risk factor for pancreatic cancer. A number of inflammatory cytokines are known to involve in promoting pancreatic pathogenesis that lead pancreatic fibrosis. Pancreatic fibrosis is a dynamic phenomenon that requires an intricate network of several autocrine and paracrine signaling pathways. In this review, we have provided the details of various cytokines and molecular mechanistic pathways (i.e., Transforming growth factor-β/SMAD, mitogen-activated protein kinases, Rho kinase, Janus kinase/signal transducers and activators, and phosphatidylinositol 3 kinase) that have a critical role in the activation of PSCs to promote chronic pancreatitis and trigger the phenomenon of pancreatic fibrogenesis. In this review of literature, we discuss the involvement of several pro-inflammatory and anti-inflammatory cytokines, such as in interleukin (IL)-1, IL-1β, IL-6, IL-8 IL-10, IL-18, IL-33 and tumor necrosis factor-α, in the pathogenesis of disease. Our review also highlights the significance of several experimental animal models that have an important role in dissecting the mechanistic pathways operating in the development of chronic pancreatitis, including pancreatic fibrosis. Additionally, we provided several intermediary molecules that are involved in major signaling pathways that might provide target molecules for future therapeutic treatment strategies for

  17. RABL6A Promotes Oxaliplatin Resistance in Tumor Cells and Is a New Marker of Survival for Resected Pancreatic Ductal Adenocarcinoma Patients.

    PubMed

    Muniz, Viviane P; Askeland, Ryan W; Zhang, Xuefeng; Reed, Sara M; Tompkins, Van S; Hagen, Jussara; McDowell, Bradley D; Button, Anna; Smith, Brian J; Weydert, Jamie A; Mezhir, James J; Quelle, Dawn E

    2013-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by early recurrence following pancreatectomy, rapid progression, and chemoresistance. Novel prognostic and predictive biomarkers are urgently needed to both stratify patients for clinical trials and select patients for adjuvant therapy regimens. This study sought to determine the biological significance of RABL6A (RAB, member RAS oncogene family-like protein 6 isoform A), a novel pancreatic protein, in PDAC. Analyses of RABL6A protein expression in PDAC specimens from 73 patients who underwent pancreatic resection showed that RABL6A levels are altered in 74% of tumors relative to adjacent benign ductal epithelium. Undetectable RABL6A expression, found in 7% (5/73) of patients, correlated with improved overall survival (range 41 to 118 months with 3/5 patients still living), while patients with RABL6A expression had a worse outcome (range 3.3 to 100 months, median survival 20.3 months) (P = 0.0134). In agreement with those findings, RABL6A expression was increased in pancreatic cancer cell lines compared to normal pancreatic epithelial cells, and its knockdown inhibited pancreatic cancer cell proliferation and induced apoptosis. Moreover, RABL6A depletion selectively sensitized cells to oxaliplatin-induced arrest and death. This work reveals that RABL6A promotes the proliferation, survival, and oxaliplatin resistance of PDAC cells, whereas its loss is associated with extended survival in patients with resected PDAC. Such data suggest RABL6A is a novel biomarker of PDAC and potential target for anticancer therapy.

  18. Serum CA19-9 Level Associated with Metabolic Control and Pancreatic Beta Cell Function in Diabetic Patients

    PubMed Central

    Yu, Haoyong; Li, Ruixia; Zhang, Lei; Chen, Haibing; Bao, Yuqian; Jia, Weiping

    2012-01-01

    CA19-9 is a tumor-associated antigen. It is also a marker of pancreatic tissue damage that might be caused by diabetes. Long-term poor glycemic control may lead to pancreatic beta cell dysfunction which is reflected by elevated serum CA19-9 level. Intracellular cholesterol accumulation leads to islet dysfunction and impaired insulin secretion which provide a new lipotoxic model. This study firstly found total cholesterol was one of the independent contributors to CA19-9. Elevated serum CA19-9 level in diabetic patients may indicate further investigations of glycemic control, pancreatic beta cell function, and total cholesterol level. PMID:22778715

  19. Allergies and risk of pancreatic cancer: a pooled analysis from the Pancreatic Cancer Case-Control Consortium.

    PubMed

    Olson, Sara H; Hsu, Meier; Satagopan, Jaya M; Maisonneuve, Patrick; Silverman, Debra T; Lucenteforte, Ersilia; Anderson, Kristin E; Borgida, Ayelet; Bracci, Paige M; Bueno-de-Mesquita, H Bas; Cotterchio, Michelle; Dai, Qi; Duell, Eric J; Fontham, Elizabeth H; Gallinger, Steven; Holly, Elizabeth A; Ji, Bu-Tian; Kurtz, Robert C; La Vecchia, Carlo; Lowenfels, Albert B; Luckett, Brian; Ludwig, Emmy; Petersen, Gloria M; Polesel, Jerry; Seminara, Daniela; Strayer, Lori; Talamini, Renato

    2013-09-01

    In order to quantify the risk of pancreatic cancer associated with history of any allergy and specific allergies, to investigate differences in the association with risk according to age, gender, smoking status, or body mass index, and to study the influence of age at onset, we pooled data from 10 case-control studies. In total, there were 3,567 cases and 9,145 controls. Study-specific odds ratios and 95% confidence intervals were calculated by using unconditional logistic regression adjusted for age, gender, smoking status, and body mass index. Between-study heterogeneity was assessed by using the Cochran Q statistic. Study-specific odds ratios were pooled by using a random-effects model. The odds ratio for any allergy was 0.79 (95% confidence interval (CI): 0.62, 1.00) with heterogeneity among studies (P < 0.001). Heterogeneity was attributable to one study; with that study excluded, the pooled odds ratio was 0.73 (95% CI: 0.64, 0.84) (Pheterogeneity = 0.23). Hay fever (odds ratio = 0.74, 95% CI: 0.56, 0.96) and allergy to animals (odds ratio = 0.62, 95% CI: 0.41, 0.94) were related to lower risk, while there was no statistically significant association with other allergies or asthma. There were no major differences among subgroups defined by age, gender, smoking status, or body mass index. Older age at onset of allergies was slightly more protective than earlier age.

  20. SIRT 1 Overexpression is Associated with Metastasis of Pancreatic Ductal Adenocarcinoma (PDAC) and Promotes Migration and Growth of PDAC Cells

    PubMed Central

    Li, Siqin; Hong, Hua; Lv, Huicheng; Wu, Guozhu; Wang, Zhigang

    2016-01-01

    Background SIRT 1, as a class III histone deacetylase (HDAC), is implicated in the initiation and progression of malignancies. However, the association of SIRT 1 with tumorigenesis or progression of pancreatic ductal adenocarcinoma (PDAC) is not clear. Material/Methods In our study we investigated SIRT 1 expression in PDAC samples and evaluated the association of SIRT 1 level with the clinical and pathological characteristics of PDAC patients. We investigated the role of SIRT 1 in the migration and growth of PDAC PANC-1 or BxPC-3 cells using gain-of-function and loss-of-function approach. Results We demonstrated that SIRT 1 mRNA level was significantly promoted in intra-tumor tissues compared to peri-tumor tissues of PDAC; and SIRT 1 overexpression was markedly associated with distant or lymph node (LN) metastasis of these PDAC tissues. Moreover, the in vitro wound healing assay demonstrated that SIRT 1 overexpression with lentivirus vector markedly promoted the migration of PANC-1 or BxPC-3 cells, whereas SIRT 1 knockdown using SIRT 1 specific siRNA transfection significantly inhibited the migration of PDAC cells. The colony forming assay confirmed SIRT 1 promotion of the growth of PANC-1 or BxPC-3 cells. Conclusions In summary, SIRT 1 overexpression is significantly associated with metastasis of PDAC, and overexpressed SIRT 1 plays an important role in pancreatic cancer cell migration and growth. Our data warrants further studies on SIRT 1 as a novel chemotherapeutic target in PDAC. PMID:27170223

  1. Long noncoding RNA uc.345 promotes tumorigenesis of pancreatic cancer by upregulation of hnRNPL expression

    PubMed Central

    Yuan, Xiaoyuan; Qian, Wenli; Zhang, Bosen; Shi, Minmin; Xie, Junjie; Shen, Baiyong; Xu, Hong; Hou, Zhaoyuan; Chen, Hao

    2016-01-01

    Increasing evidence points to an important functional or regulatory role of long noncoding RNA in cellular processes as well as cancer diseases resulted from the aberrant lncRNA expression. LncRNA could participate in the cancer progression and develop a significant role through the interaction with proteins. In the present study, we report a lncRNA termed uc.345 that is up-regulated in tumor tissues, compared to the corresponding noncancerous tissues. We found that a higher uc.345 expression level was more frequently observed in tissues with increased depth of invasion and advanced TNM tumor node metastasis T stage. Moreover, uc.345 could be used as an independent risk factor for the overall survival (OS) of the pancreatic cancer patients. By employing soft agar assays and tumor xenograft models, we showed that uc.345 could accelerate tumor growth. Further, we discovered that uc.345 could upregulate the hnRNPL expression and that inhibition of (hnRNPL) dampens the tumorigenesis capability of uc.345. Collectively, these results demonstrate that uc.345 functions as an oncogenic lncRNA that promotes tumor progression and serves as a poor predictor for pancreatic cancer patients' overall survival. PMID:27689400

  2. TERT promoter mutations in pancreatic endocrine tumours are rare and mainly found in tumours from patients with hereditary syndromes

    PubMed Central

    Vinagre, João; Nabais, Joana; Pinheiro, Jorge; Batista, Rui; Oliveira, Rui Caetano; Gonçalves, António Pedro; Pestana, Ana; Reis, Marta; Mesquita, Bárbara; Pinto, Vasco; Lyra, Joana; Cipriano, Maria Augusta; Ferreira, Miguel Godinho; Lopes, José Manuel; Sobrinho-Simões, Manuel; Soares, Paula

    2016-01-01

    One of the hallmarks of cancer is its unlimited replicative potential that needs a compensatory mechanism for the consequential telomere erosion. Telomerase promoter (TERTp) mutations were recently reported as a novel mechanism for telomerase re-activation/expression in order to maintain telomere length. Pancreatic endocrine tumors (PETs) were so far recognized to rely mainly on the alternative lengthening of telomeres (ALT) mechanism. It was our objective to study if TERTp mutations were present in pancreatic endocrine tumors (PET) and could represent an alternative mechanism to ALT. TERTp mutations were detected in 7% of the cases studied and were mainly associated to patients harbouring hereditary syndromes. In vitro, using PET-derived cell lines and by luciferase reporter assay, these mutations confer a 2 to 4-fold increase in telomerase transcription activity. These novel alterations are able to recruit ETS transcription factor members, in particular GABP-α and ETV1, to the newly generated binding sites. We report for the first time TERTp mutations in PETs and PET-derived cell lines. Additionally, our data indicate that these mutations serve as an alternative mechanism and in an exclusive manner to ALT, in particular in patients with hereditary syndromes. PMID:27411289

  3. Promoter Hypermethylation and Decreased Expression of Syncytin-1 in Pancreatic Adenocarcinomas

    PubMed Central

    Senkowski, Christopher; Tang, Zuoqing; Wang, Jianhao; Huang, Tianhe; Wang, Xue; Terry, Karen; Brower, Steven; Glasgow, Wayne; Chen, Haibin; Jiang, Shi-Wen

    2015-01-01

    Syncytin-1 is a member of human endogenous retroviral W gene family (HERVW1). Known to be expressed in human placental trophoblast, syncytin-1 protein mediates the fusion of cytotrophoblasts for the formation of syncytiotrophoblasts, the terminally differentiated form of trophoblast lineage. In addition, in vitro studies indicate that syncytin-1 possessed nonfusogenic functions such as those for immune suppression, cell cycle regulation and anti-apoptotic activities. Overexpression of syncytin-1 has been observed in various malignant tissues including breast, endometrial and ovarian cancers. It was reported that syncytin-1 gene expression is associated with dynamic changes of DNA hypomethylation in the 5’ LTR. In this study, applying the real-time PCR, Western blot analysis and immunohistochemistry methods, we demonstrate a constitutive expression of syncytin-1 in normal pancreas tissues as well as normal tissues adjacent to cancer lesions. Moreover, a reduced expression is found in the pancreatic adenocarcinoma tissues. The expression levels of syncytin-1 are not correlated with the stage, historical grade and gender, but inversely correlated with patients’ age. Furthermore, COBRA and bisulfite sequencing results indicated that the lower expression of syncytin-1 is correlated with the hypermethylation of two CpG dinucleotides in the 5’ LTR of syncytin-1 gene. The nonfusogenic function of syncytin-1 in normal pancreas as well as its role(s) in the pathogenesis and progression of pancreatic cancers remains to be investigated. Identification of the two CpG dinucleotides around transcription start site as key epigenetic elements has provided valuable information for further studies on the epigenetic regulation of syncytin-1 in pancreatic cancer cells. PMID:26230721

  4. Clonidine promotes the accumulation of /sup 45/Ca in pancreatic beta-cell organelles

    SciTech Connect

    Andersson, T.; Nygren, P.

    1983-12-01

    Glucose-stimulated insulin release from pancreatic islets of ob/ob-mice was inhibited by 10(-9) M of the alpha 2-adrenergic agonist clonidine. This inhibitory effect was abolished by 10(-7) M of the antagonist yohimbine. Loading the islets with /sup 45/Ca during the clonidine exposure followed by isolation of subcellular fractions under conditions known to minimize the /sup 45/Ca redistribution resulted in increased accumulation of the isotope in the mitochondrial and microsomal fractions. It is suggested that clonidine inhibits glucose-stimulated insulin release by increasing the organelle sequestration of Ca2+.

  5. Hereditary Pancreatitis

    MedlinePlus

    ... meals throughout the day that are high in carbohydrates and low in protein and fat. Pancreatic enzymes ... the Pancreas NPF Centers Pancreatitis Centers Pancreatitis Center Application Pancreatic Cancer Centers Diagnosis of Pancreatic Cancer Pancreas ...

  6. Genetic deletion of the desmosomal component desmoplakin promotes tumor microinvasion in a mouse model of pancreatic neuroendocrine carcinogenesis.

    PubMed

    Chun, Matthew G H; Hanahan, Douglas

    2010-09-16

    We used the RIP1-Tag2 (RT2) mouse model of islet cell carcinogenesis to profile the transcriptome of pancreatic neuroendocrine tumors (PNET) that were either non-invasive or highly invasive, seeking to identify pro- and anti-invasive molecules. Expression of multiple components of desmosomes, structures that help maintain cellular adhesion, was significantly reduced in invasive carcinomas. Genetic deletion of one of these desmosomal components, desmoplakin, resulted in increased local tumor invasion without affecting tumor growth parameters in RT2 PNETs. Expression of cadherin 1, a component of the adherens junction adhesion complex, was maintained in these tumors despite the genetic deletion of desmoplakin. Our results demonstrate that loss of desmoplakin expression and resultant disruption of desmosomal adhesion can promote increased local tumor invasion independent of adherens junction status.

  7. Prevalence of Small Intestinal Bacterial Overgrowth among Chronic Pancreatitis Patients: A Case-Control Study

    PubMed Central

    Bouchard, Simon; Sidani, Sacha

    2016-01-01

    Background. Patients with chronic pancreatitis (CP) exhibit numerous risk factors for the development of small intestinal bacterial overgrowth (SIBO). Objective. To determine the prevalence of SIBO in patients with CP. Methods. Prospective, single-centre case-control study conducted between January and September 2013. Inclusion criteria were age 18 to 75 years and clinical and radiological diagnosis of CP. Exclusion criteria included history of gastric, pancreatic, or intestinal surgery or significant clinical gastroparesis. SIBO was detected using a standard lactulose breath test (LBT). A healthy control group also underwent LBT. Results. Thirty-one patients and 40 controls were included. The patient group was significantly older (53.8 versus 38.7 years; P < 0.01). The proportion of positive LBTs was significantly higher in CP patients (38.7 versus 2.5%: P < 0.01). A trend toward a higher proportion of positive LBTs in women compared with men was observed (66.6 versus 27.3%; P = 0.056). The subgroups with positive and negative LBTs were comparable in demographic and clinical characteristics, use of opiates, pancreatic enzymes replacement therapy (PERT), and severity of symptoms. Conclusion. The prevalence of SIBO detected using LBT was high among patients with CP. There was no association between clinical features and the risk for SIBO. PMID:27446865

  8. Optogenetic control of insulin secretion by pancreatic β-cells in vitro and in vivo.

    PubMed

    Kushibiki, T; Okawa, S; Hirasawa, T; Ishihara, M

    2015-07-01

    The present study assessed the ability of optogenetics techniques to provide a better understanding of the control of insulin secretion, particularly regarding pancreatic β-cell function in homeostasis and pathological conditions such as diabetes mellitus (DM). We used optogenetics to investigate whether insulin secretion and blood glucose homeostasis could be controlled by regulating intracellular calcium ion concentrations ([Ca(2+)]i) in a mouse pancreatic β-cell line (MIN6) transfected with the optogenetic protein channelrhodopsin-2 (ChR2). The ChR2-transfected MIN6 (ChR2-MIN6) cells secreted insulin following irradiation with a laser (470 nm). The increase in [Ca(2+)]i was accompanied by elevated levels of messenger RNAs that encode calcium/calmodulin-dependent protein kinase II delta and adenylate cyclase 1. ChR2-MIN6 cells suspended in matrigel were inoculated into streptozotocin-induced diabetic mice that were then subjected to a glucose tolerance test. Laser irradiation of these mice caused a significant decrease in blood glucose, and the irradiated implanted cells expressed insulin. These findings demonstrate the power of optogenetics to precisely and efficiently controlled insulin secretion by pancreatic β-cells 'on demand', in contrast to techniques using growth factors or chemical inducers. Optogenetic technology shows great promise for understanding the mechanisms of glucose homeostasis and for developing treatments for metabolic diseases such as DM.

  9. Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters.

    PubMed

    Van Hoof, Dennis; Mendelsohn, Adam D; Seerke, Rina; Desai, Tejal A; German, Michael S

    2011-05-01

    Pancreatic β-cells function optimally when clustered in islet-like structures. However, nutrient and oxygen deprivation limits the viability of cells at the core of excessively large clusters. Hence, production of functional β-cells from human embryonic stem cells (hESCs) for patients with diabetes would benefit from the growth and differentiation of these cells in size-controlled aggregates. In this study, we controlled cluster size by seeding hESCs onto glass cover slips patterned by the covalent microcontact-printing of laminin in circular patches of 120 μm in diameter. These were used as substrates to grow and differentiate hESCs first into SOX17-positive/SOX7-negative definitive endoderm, after which many clusters released and formed uniformly sized three-dimensional clusters. Both released clusters and those that remained attached differentiated into HNF1β-positive primitive gut tube-like cells with high efficiency. Further differentiation yielded pancreatic endoderm-like cells that co-expressed PDX1 and NKX6.1. Controlling aggregate size allows efficient production of uniformly-clustered pancreatic endocrine precursors for in vivo engraftment or further in vitro maturation.

  10. Trimeprazine increases IRS2 in human islets and promotes pancreatic β cell growth and function in mice

    PubMed Central

    Kuznetsova, Alexandra; Yu, Yue; Hollister-Lock, Jennifer; Opare-Addo, Lynn; Rozzo, Aldo; Sadagurski, Marianna; Norquay, Lisa; Reed, Jessica E.; El Khattabi, Ilham; Bonner-Weir, Susan; Weir, Gordon C.; Sharma, Arun

    2016-01-01

    The capacity of pancreatic β cells to maintain glucose homeostasis during chronic physiologic and immunologic stress is important for cellular and metabolic homeostasis. Insulin receptor substrate 2 (IRS2) is a regulated adapter protein that links the insulin and IGF1 receptors to downstream signaling cascades. Since strategies to maintain or increase IRS2 expression can promote β cell growth, function, and survival, we conducted a screen to find small molecules that can increase IRS2 mRNA in isolated human pancreatic islets. We identified 77 compounds, including 15 that contained a tricyclic core. To establish the efficacy of our approach, one of the tricyclic compounds, trimeprazine tartrate, was investigated in isolated human islets and in mouse models. Trimeprazine is a first-generation antihistamine that acts as a partial agonist against the histamine H1 receptor (H1R) and other GPCRs, some of which are expressed on human islets. Trimeprazine promoted CREB phosphorylation and increased the concentration of IRS2 in islets. IRS2 was required for trimeprazine to increase nuclear Pdx1, islet mass, β cell replication and function, and glucose tolerance in mice. Moreover, trimeprazine synergized with anti-CD3 Abs to reduce the progression of diabetes in NOD mice. Finally, it increased the function of human islet transplants in streptozotocin-induced (STZ-induced) diabetic mice. Thus, trimeprazine, its analogs, or possibly other compounds that increase IRS2 in islets and β cells without adverse systemic effects might provide mechanism-based strategies to prevent the progression of diabetes. PMID:27152363

  11. Reg proteins promote acinar-to-ductal metaplasia and act as novel diagnostic and prognostic markers in pancreatic ductal adenocarcinoma

    PubMed Central

    Zogopoulos, George; Shao, Qin; Dong, Kun; Lv, Fudong; Nwilati, Karam; Gui, Xian-yong; Cuggia, Adeline; Liu, Jun-Li; Gao, Zu-hua

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignant tumor. Acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) are both precursor lesions that lead to the development of PDAC. Reg family proteins (Reg1A, 1B, 3A/G, 4) are a group of calcium-dependent lectins that promote islet growth in response to inflammation and/or injuries. The aim of this study was to establish a role for Reg proteins in the development of PDAC and their clinical value as biomarkers. We found that Reg1A and Reg3A/G were highly expressed in the ADM tissues by immunohistochemistry. In the 3-dimensional culture of mouse acinar cells, Reg3A promoted ADM formation with concurrent activation of mitogen-acitvated protein kinase. Upregulation of Reg1A and Reg1B levels was observed as benign ductal epithelium progresses from PanIN to invasive PDAC. Patients with PDAC showed significantly higher serum levels of Reg1A and Reg1B than matching healthy subjects. These results were further validated by the quantification of Reg 1A and 1B mRNA levels in the microdissected tissues (22- and 6-fold increases vs. non-tumor tissues). Interestingly, patients with higher levels of Reg1A and 1B exhibited improved survival rate than those with lower levels. Furthermore, tissue expressions of Reg1A, Reg1B, and Reg4 could differentiate metastatic PDAC in the liver from intrahepatic cholangiocarcinoma with 92% sensitivity and 95% specificity. Overall, our results demonstrate the upregulation of Reg proteins during PDAC development. If validated in larger scale, Reg1A and Reg1B could become clinical markers for detecting early stages of PDAC, monitoring therapeutic response, and/or predicting patient's prognosis. PMID:27788482

  12. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality

    PubMed Central

    Zhang, Hong; Neuhöfer, Patrick; Song, Liang; Rabe, Björn; Lesina, Marina; Kurkowski, Magdalena U.; Treiber, Matthias; Wartmann, Thomas; Regnér, Sara; Thorlacius, Henrik; Saur, Dieter; Weirich, Gregor; Yoshimura, Akihiko; Halangk, Walter; Mizgerd, Joseph P.; Schmid, Roland M.; Rose-John, Stefan; Algül, Hana

    2013-01-01

    Acute lung injury (ALI) is an inflammatory disease with a high mortality rate. Although typically seen in individuals with sepsis, ALI is also a major complication in severe acute pancreatitis (SAP). The pathophysiology of SAP-associated ALI is poorly understood, but elevated serum levels of IL-6 is a reliable marker for disease severity. Here, we used a mouse model of acute pancreatitis–associated (AP-associated) ALI to determine the role of IL-6 in ALI lethality. Il6-deficient mice had a lower death rate compared with wild-type mice with AP, while mice injected with IL-6 were more likely to develop lethal ALI. We found that inflammation-associated NF-κB induced myeloid cell secretion of IL-6, and the effects of secreted IL-6 were mediated by complexation with soluble IL-6 receptor, a process known as trans-signaling. IL-6 trans-signaling stimulated phosphorylation of STAT3 and production of the neutrophil attractant CXCL1 in pancreatic acinar cells. Examination of human samples revealed expression of IL-6 in combination with soluble IL-6 receptor was a reliable predictor of ALI in SAP. These results demonstrate that IL-6 trans-signaling is an essential mediator of ALI in SAP across species and suggest that therapeutic inhibition of IL-6 may prevent SAP-associated ALI. PMID:23426178

  13. Pancreatitis of biliary origin, optimal timing of cholecystectomy (PONCHO trial): study protocol for a randomized controlled trial

    PubMed Central

    2012-01-01

    Background After an initial attack of biliary pancreatitis, cholecystectomy minimizes the risk of recurrent biliary pancreatitis and other gallstone-related complications. Guidelines advocate performing cholecystectomy within 2 to 4 weeks after discharge for mild biliary pancreatitis. During this waiting period, the patient is at risk of recurrent biliary events. In current clinical practice, surgeons usually postpone cholecystectomy for 6 weeks due to a perceived risk of a more difficult dissection in the early days following pancreatitis and for logistical reasons. We hypothesize that early laparoscopic cholecystectomy minimizes the risk of recurrent biliary pancreatitis or other complications of gallstone disease in patients with mild biliary pancreatitis without increasing the difficulty of dissection and the surgical complication rate compared with interval laparoscopic cholecystectomy. Methods/Design PONCHO is a randomized controlled, parallel-group, assessor-blinded, superiority multicenter trial. Patients are randomly allocated to undergo early laparoscopic cholecystectomy, within 72 hours after randomization, or interval laparoscopic cholecystectomy, 25 to 30 days after randomization. During a 30-month period, 266 patients will be enrolled from 18 hospitals of the Dutch Pancreatitis Study Group. The primary endpoint is a composite endpoint of mortality and acute re-admissions for biliary events (that is, recurrent biliary pancreatitis, acute cholecystitis, symptomatic/obstructive choledocholithiasis requiring endoscopic retrograde cholangiopancreaticography including cholangitis (with/without endoscopic sphincterotomy), and uncomplicated biliary colics) occurring within 6 months following randomization. Secondary endpoints include the individual endpoints of the composite endpoint, surgical and other complications, technical difficulty of cholecystectomy and costs. Discussion The PONCHO trial is designed to show that early laparoscopic cholecystectomy

  14. Inflammation marker and risk of pancreatic cancer: a nested case–control study within the EPIC cohort

    PubMed Central

    Grote, V A; Kaaks, R; Nieters, A; Tjønneland, A; Halkjær, J; Overvad, K; Skjelbo Nielsen, M R; Boutron-Ruault, M C; Clavel-Chapelon, F; Racine, A; Teucher, B; Becker, S; Pischon, T; Boeing, H; Trichopoulou, A; Cassapa, C; Stratigakou, V; Palli, D; Krogh, V; Tumino, R; Vineis, P; Panico, S; Rodríguez, L; Duell, E J; Sánchez, M-J; Dorronsoro, M; Navarro, C; Gurrea, A B; Siersema, P D; HM Peeters, P; Ye, W; Sund, M; Lindkvist, B; Johansen, D; Khaw, K-T; Wareham, N; Allen, N E; Travis, R C; Fedirko, V; Jenab, M; Michaud, D S; Chuang, S-C; Romaguera, D; Bueno-de-Mesquita, H B; Rohrmann, S

    2012-01-01

    Background: Established risk factors for pancreatic cancer include smoking, long-standing diabetes, high body fatness, and chronic pancreatitis, all of which can be characterised by aspects of inflammatory processes. However, prospective studies investigating the relation between inflammatory markers and pancreatic cancer risk are scarce. Methods: We conducted a nested case–control study within the European Prospective Investigation into Cancer and Nutrition, measuring prediagnostic blood levels of C-reactive protein (CRP), interleukin-6 (IL-6), and soluble receptors of tumour necrosis factor-α (sTNF-R1, R2) in 455 pancreatic cancer cases and 455 matched controls. Odds ratios (ORs) were estimated using conditional logistic regression models. Results: None of the inflammatory markers were significantly associated with risk of pancreatic cancer overall, although a borderline significant association was observed for higher circulating sTNF-R2 (crude OR=1.52 (95% confidence interval (CI) 0.97–2.39), highest vs lowest quartile). In women, however, higher sTNF-R1 levels were significantly associated with risk of pancreatic cancer (crude OR=1.97 (95% CI 1.02–3.79)). For sTNF-R2, risk associations seemed to be stronger for diabetic individuals and those with a higher BMI. Conclusion: Prospectively, CRP and IL-6 do not seem to have a role in our study with respect to risk of pancreatic cancer, whereas sTNF-R1 seemed to be a risk factor in women and sTNF-R2 might be a mediator in the risk relationship between overweight and diabetes with pancreatic cancer. Further large prospective studies are needed to clarify the role of proinflammatory proteins and cytokines in the pathogenesis of exocrine pancreatic cancer. PMID:22617158

  15. The transcription factor HNF1α induces expression of angiotensin-converting enzyme 2 (ACE2) in pancreatic islets from evolutionarily conserved promoter motifs.

    PubMed

    Pedersen, Kim Brint; Chhabra, Kavaljit H; Nguyen, Van K; Xia, Huijing; Lazartigues, Eric

    2013-11-01

    Pancreatic angiotensin-converting enzyme 2 (ACE2) has previously been shown to be critical for maintaining glycemia and β-cell function. Efforts to maintain or increase ACE2 expression in pancreatic β-cells might therefore have therapeutic potential for treating diabetes. In our study, we investigated the transcriptional role of hepatocyte nuclear factor 1α (HNF1α) and hepatocyte nuclear factor 1β (HNF1β) in induction of ACE2 expression in insulin-secreting cells. A deficient allele of HNF1α or HNF1β causes maturity-onset diabetes of the young (MODY) types 3 and 5, respectively, in humans. We found that ACE2 is primarily transcribed from the proximal part of the ACE2 promoter in the pancreas. In the proximal part of the human ACE2 promoter, we further identified three functional HNF1 binding sites, as they have binding affinity for HNF1α and HNF1β and are required for induction of promoter activity by HNF1β in insulinoma cells. These three sites are well-conserved among mammalian species. Both HNF1α and HNF1β induce expression of ACE2 mRNA and lead to elevated levels of ACE2 protein and ACE2 enzymatic activity in insulinoma cells. Furthermore, HNF1α dose-dependently increases ACE2 expression in primary pancreatic islet cells. We conclude that HNF1α can induce the expression of ACE2 in pancreatic islet cells via evolutionarily conserved HNF1 binding sites in the ACE2 promoter. Potential therapeutics aimed at counteracting functional HNF1α depletion in diabetes and MODY3 will thus have ACE2 induction in pancreatic islets as a likely beneficial effect.

  16. BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages

    PubMed Central

    Rosati, Alessandra; Basile, Anna; D'Auria, Raffaella; d'Avenia, Morena; De Marco, Margot; Falco, Antonia; Festa, Michelina; Guerriero, Luana; Iorio, Vittoria; Parente, Roberto; Pascale, Maria; Marzullo, Liberato; Franco, Renato; Arra, Claudio; Barbieri, Antonio; Rea, Domenica; Menichini, Giulio; Hahne, Michael; Bijlsma, Maarten; Barcaroli, Daniela; Sala, Gianluca; di Mola, Fabio Francesco; di Sebastiano, Pierluigi; Todoric, Jelena; Antonucci, Laura; Corvest, Vincent; Jawhari, Anass; Firpo, Matthew A; Tuveson, David A; Capunzo, Mario; Karin, Michael; De Laurenzi, Vincenzo; Turco, Maria Caterina

    2015-01-01

    The incidence and death rate of pancreatic ductal adenocarcinoma (PDAC) have increased in recent years, therefore the identification of novel targets for treatment is extremely important. Interactions between cancer and stromal cells are critically involved in tumour formation and development of metastasis. Here we report that PDAC cells secrete BAG3, which binds and activates macrophages, inducing their activation and the secretion of PDAC supporting factors. We also identify IFITM-2 as a BAG3 receptor and show that it signals through PI3K and the p38 MAPK pathways. Finally, we show that the use of an anti-BAG3 antibody results in reduced tumour growth and prevents metastasis formation in three different mouse models. In conclusion, we identify a paracrine loop involved in PDAC growth and metastatic spreading, and show that an anti-BAG3 antibody has therapeutic potential. PMID:26522614

  17. Inflammatory stimuli promote growth and invasion of pancreatic cancer cells through NF-κB pathway dependent repression of PP2Ac

    PubMed Central

    Tao, Min; Liu, Lu; Shen, Meng; Zhi, Qiaoming; Gong, Fei-Ran; Zhou, Binhua P.; Wu, Yadi; Liu, Haiyan; Chen, Kai; Shen, Bairong; Wu, Meng-Yao; Shou, Liu-Mei; Li, Wei

    2016-01-01

    ABSTRACT Previous studies have indicated that inflammatory stimulation represses protein phosphatase 2A (PP2A), a well-known tumor suppressor. However, whether PP2A repression participates in pancreatic cancer progression has not been verified. We used lipopolysaccharide (LPS) and macrophage-conditioned medium (MCM) to establish in vitro inflammation models, and investigated whether inflammatory stimuli affect pancreatic cancer cell growth and invasion PP2A catalytic subunit (PP2Ac)-dependently. Via nude mouse models of orthotopic tumor xenografts and dibutyltin dichloride (DBTC)-induced chronic pancreatitis, we evaluated the effect of an inflammatory microenvironment on PP2Ac expression in vivo. We cloned the PP2Acα and PP2Acβ isoform promoters to investigate the PP2Ac transcriptional regulation mechanisms. MCM accelerated pancreatic cancer cell growth; MCM and LPS promoted cell invasion. DBTC promoted xenograft growth and metastasis, induced tumor-associated macrophage infiltration, promoted angiogenesis, activated the nuclear factor-κB (NF-κB) pathway, and repressed PP2Ac expression. In vitro, LPS and MCM downregulated PP2Ac mRNA and protein. PP2Acα overexpression attenuated JNK, ERK, PKC, and IKK phosphorylation, and impaired LPS/MCM-stimulated cell invasion and MCM-promoted cell growth. LPS and MCM activated the NF-κB pathway in vitro. LPS and MCM induced IKK and IκB phosphorylation, leading to p65/RelA nuclear translocation and transcriptional activation. Overexpression of the dominant negative forms of IKKα attenuated LPS and MCM downregulation of PP2Ac, suggesting inflammatory stimuli repress PP2Ac expression NF-κB pathway–dependently. Luciferase reporter gene assay verified that LPS and MCM downregulated PP2Ac transcription through an NF-κB–dependent pathway. Our study presents a new mechanism in inflammation-driven cancer progression through NF-κB pathway–dependent PP2Ac repression. PMID:26761431

  18. Satellite RNAs promote pancreatic oncogenic processes via the dysfunction of YBX1

    PubMed Central

    Kishikawa, Takahiro; Otsuka, Motoyuki; Yoshikawa, Takeshi; Ohno, Motoko; Ijichi, Hideaki; Koike, Kazuhiko

    2016-01-01

    Highly repetitive tandem arrays at the centromeric and pericentromeric regions in chromosomes, previously considered silent, are actively transcribed, particularly in cancer. This aberrant expression occurs even in K-ras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To examine the biological roles of the satellite RNAs in carcinogenesis, we construct mouse PanIN-derived cells expressing major satellite (MajSAT) RNA and show increased malignant properties. We find an increase in frequency of chromosomal instability and point mutations in both genomic and mitochondrial DNA. We identify Y-box binding protein 1 (YBX1) as a protein that binds to MajSAT RNA. MajSAT RNA inhibits the nuclear translocation of YBX1 under stress conditions, thus reducing its DNA-damage repair function. The forced expression of YBX1 significantly decreases the aberrant phenotypes. These findings indicate that during the early stage of cancer development, satellite transcripts may act as ‘intrinsic mutagens' by inducing YBX1 dysfunction, which may be crucial in oncogenic processes. PMID:27667193

  19. TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer

    PubMed Central

    GRIMMIG, TANJA; MATTHES, NIELS; HOELAND, KATHARINA; TRIPATHI, SUDIPTA; CHANDRAKER, ANIL; GRIMM, MARTIN; MOENCH, ROMANA; MOLL, EVA-MARIA; FRIESS, HELMUT; TSAUR, IGOR; BLAHETA, ROMAN A.; GERMER, CRISTOPH T.; WAAGA-GASSER, ANA MARIA; GASSER, MARTIN

    2015-01-01

    Chronic inflammation as an important epigenetic and environmental factor for putative tumorigenesis and tumor progression may be associated with specific activation of Toll-like receptors (TLR). Recently, carcinogenesis has been suggested to be dependent on TLR7 signaling. In the present study, we determined the role of both TLR7 and TLR8 expression and signaling in tumor cell proliferation and chemoresistance in pancreatic cancer. Expression of TLR7/TLR8 in UICC stage I–IV pancreatic cancer, chronic pancreatitis, normal pancreatic tissue and human pancreatic (PANC1) cancer cell line was examined. For in vitro/in vivo studies TLR7/TLR8 overexpressing PANC1 cell lines were generated and analyzed for effects of (un-)stimulated TLR expression on tumor cell proliferation and chemoresistance. TLR expression was increased in pancreatic cancer, with stage-dependent upregulation in advanced tumors, compared to earlier stages and chronic pancreatitis. Stimulation of TLR7/TLR8 overexpressing PANC1 cells resulted in elevated NF-κB and COX-2 expression, increased cancer cell proliferation and reduced chemosensitivity. More importantly, TLR7/TLR8 expression increased tumor growth in vivo. Our data demonstrate a stage-dependent upregulation of both TLR7 and TLR8 expression in pancreatic cancer. Functional analysis in human pancreatic cancer cells point to a significant role of both TLRs in chronic inflammation-mediated TLR7/TLR8 signaling leading to tumor cell proliferation and chemoresistance. PMID:26134824

  20. Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis | Office of Cancer Genomics

    Cancer.gov

    The existence of adult pancreatic progenitor cells has been debated. While some favor the concept of facultative progenitors involved in homeostasis and repair, neither a location nor markers for such cells have been defined. Using genetic lineage tracing, we show that Doublecortin-like kinase-1 (Dclk1) labels a rare population of long-lived, quiescent pancreatic cells. In vitro, Dclk1+ cells proliferate readily and sustain pancreatic organoid growth. In vivo, Dclk1+ cells are necessary for pancreatic regeneration following injury and chronic inflammation.

  1. COUP-TFII Controls Mouse Pancreatic β-Cell Mass through GLP-1-β-Catenin Signaling Pathways

    PubMed Central

    Boutant, Marie; Ramos, Oscar Henrique Pereira; Tourrel-Cuzin, Cécile; Movassat, Jamileh; Ilias, Anissa; Vallois, David; Planchais, Julien; Pégorier, Jean-Paul; Schuit, Frans; Petit, Patrice X.; Bossard, Pascale; Maedler, Kathrin; Grapin-Botton, Anne; Vasseur-Cognet, Mireille

    2012-01-01

    Background The control of the functional pancreatic β-cell mass serves the key homeostatic function of releasing the right amount of insulin to keep blood sugar in the normal range. It is not fully understood though how β-cell mass is determined. Methodology/Principal Findings Conditional chicken ovalbumin upstream promoter transcription factor II (COUP-TFII)-deficient mice were generated and crossed with mice expressing Cre under the control of pancreatic duodenal homeobox 1 (pdx1) gene promoter. Ablation of COUP-TFII in pancreas resulted in glucose intolerance. Beta-cell number was reduced at 1 day and 3 weeks postnatal. Together with a reduced number of insulin-containing cells in the ductal epithelium and normal β-cell proliferation and apoptosis, this suggests decreased β-cell differentiation in the neonatal period. By testing islets isolated from these mice and cultured β-cells with loss and gain of COUP-TFII function, we found that COUP-TFII induces the expression of the β-catenin gene and its target genes such as cyclin D1 and axin 2. Moreover, induction of these genes by glucagon-like peptide 1 (GLP-1) via β-catenin was impaired in absence of COUP-TFII. The expression of two other target genes of GLP-1 signaling, GLP-1R and PDX-1 was significantly lower in mutant islets compared to control islets, possibly contributing to reduced β-cell mass. Finally, we demonstrated that COUP-TFII expression was activated by the Wnt signaling-associated transcription factor TCF7L2 (T-cell factor 7-like 2) in human islets and rat β-cells providing a feedback loop. Conclusions/Significance Our findings show that COUP-TFII is a novel component of the GLP-1 signaling cascade that increases β-cell number during the neonatal period. COUP-TFII is required for GLP-1 activation of the β-catenin-dependent pathway and its expression is under the control of TCF7L2. PMID:22292058

  2. RABL6A Promotes Oxaliplatin Resistance in Tumor Cells and Is a New Marker of Survival for Resected Pancreatic Ductal Adenocarcinoma Patients

    PubMed Central

    Muniz, Viviane P.; Askeland, Ryan W.; Zhang, Xuefeng; Reed, Sara M.; Tompkins, Van S.; Hagen, Jussara; McDowell, Bradley D.; Button, Anna; Smith, Brian J.; Weydert, Jamie A.; Mezhir, James J.

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by early recurrence following pancreatectomy, rapid progression, and chemoresistance. Novel prognostic and predictive biomarkers are urgently needed to both stratify patients for clinical trials and select patients for adjuvant therapy regimens. This study sought to determine the biological significance of RABL6A (RAB, member RAS oncogene family-like protein 6 isoform A), a novel pancreatic protein, in PDAC. Analyses of RABL6A protein expression in PDAC specimens from 73 patients who underwent pancreatic resection showed that RABL6A levels are altered in 74% of tumors relative to adjacent benign ductal epithelium. Undetectable RABL6A expression, found in 7% (5/73) of patients, correlated with improved overall survival (range 41 to 118 months with 3/5 patients still living), while patients with RABL6A expression had a worse outcome (range 3.3 to 100 months, median survival 20.3 months) (P = 0.0134). In agreement with those findings, RABL6A expression was increased in pancreatic cancer cell lines compared to normal pancreatic epithelial cells, and its knockdown inhibited pancreatic cancer cell proliferation and induced apoptosis. Moreover, RABL6A depletion selectively sensitized cells to oxaliplatin-induced arrest and death. This work reveals that RABL6A promotes the proliferation, survival, and oxaliplatin resistance of PDAC cells, whereas its loss is associated with extended survival in patients with resected PDAC. Such data suggest RABL6A is a novel biomarker of PDAC and potential target for anticancer therapy. PMID:24167655

  3. Pancreatic Satellite Cells Derived Galectin-1 Increase the Progression and Less Survival of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Gao, Jun; Wang, Sen; Ye, Nianyuan; Li, Ping; Gao, Sujun; Miao, Yi; Wang, Daorong; Jiang, Kuirong

    2014-01-01

    Background Galectin-1, a member of carbohydrate-binding proteins with a polyvalent function on tumor progression, was found strongly expressed in pancreatic satellite cells (PSCs), which partner in crime with cancer cells and promote the development of pancreatic ductal adenocarcinoma (PDAC). We evaluated the effects of PSCs derived Galectin-1 on the progression of PDAC, as well as the tumor establishment and development in mouse xenografts. Methods The relationship between immunohistochemistry staining intensity of Galectin-1 and clinicopathologic variables were assessed in 66 PDAC tissues, 18 chronic pancreatitis tissues and 10 normal controls. The roles of PSCs isolated from PDAC and normal pancreas on the proliferative activity, MMP2 and MMP9 expression, and the invasion of CFPAC-1 in the co-cultured system, as well as on the tumor establishment and development in mouse xenografts by mixed implanting with CFPAC-1 subcutaneously were evaluated. Results Galectin-1 expression was gradually increased from normal pancreas (negative), chronic pancreatitis (weak) to PDAC (strong), in which Galectin-1 expression was also increased from well, moderately to poorly differentiated PDAC. Galectin-1 staining intensity of pancreatic cancer tissue was associated with increase in tumor size, lymph node metastasis, perineural invasion and differentiation and UICC stage, and served as the independent prognostic indicator of poor survival of pancreatic cancer. In vitro and in vivo experiments indicated that TGF-β1 upregulated Galectin-1 expression in PSCs, which could further promotes the proliferative activity, MMP2 and MMP9 expression, and invasion of pancreatic cancer cells, as well as the tumor establishment and growth. Conclusion Galectin-1 expression in stromal cells of pancreatic cancer suggests that this protein plays a role in the promotion of cancer cells invasion and metastasis and provides a therapeutic target for the treatment of pancreatic cancer. PMID:24595374

  4. Pancreatitis - discharge

    MedlinePlus

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... fluids through an intravenous (IV) tube in your vein and nutrition through a feeding tube or IV. ...

  5. Chronic pancreatitis

    MedlinePlus

    Chronic pancreatitis - chronic; Pancreatitis - chronic - discharge; Pancreatic insufficiency - chronic; Acute pancreatitis - chronic ... hospital for: Pain medicines Fluids given through a vein (IV) Stopping food or fluid by mouth to ...

  6. Desferrioxamine Attenuates Pancreatic Injury after Major Hepatectomy under Vascular Control of the Liver: Experimental Study in Pigs

    PubMed Central

    Varsos, Panagiotis; Nastos, Constantinos; Papoutsidakis, Nikolaos; Kalimeris, Konstantinos; Defterevos, George; Nomikos, Tzortzis; Pafiti, Agathi; Fragulidis, George; Economou, Emmanuel; Kostopanagiotou, Georgia; Smyrniotis, Vassilios; Arkadopoulos, Nikolaos

    2012-01-01

    Introduction. Pancreatic injury can manifest after major hepatectomy under vascular control. The main mechanism involved seems to be remote oxidative injury due to “spillage” of reactive oxygen species and cytokines from the liver. The aim of this study is to evaluate the role of desferrioxamine in the prevention of pancreatic injury following major hepatectomy. Methods. Twelve Landrace pigs were subjected to a combination of major hepatectomy (70–75%), using the Pringle maneuver for 150 minutes, after constructing a porta-caval side-to-side anastomosis. The duration of reperfusion was 24 hours. Animals were randomly divided into a control group (n = 6) and a desferrioxamine group (DFX, n = 6). DFX animals were treated with continuous IV infusion of desferrioxamine 100 mg/kg. Pancreatic tissue injury, c-peptide and amylase concentrations, and pancreatic tissue oxidative markers were evaluated. Results. Desferrioxamine-treated animals showed decreased c-peptide levels, decreased acinar cell necrosis, and decreased tissue malondialdehyde levels 24 hours after reperfusion compared with the control group. There was no difference in portal pressure or serum amylase levels between the groups. Conclusions. Desferrioxamine seems to attenuate pancreatic injury after major hepatectomy under vascular control possibly by preventing and reversing production and circulation of oxidative products. PMID:22791933

  7. Pyruvate kinase, muscle isoform 2 promotes proliferation and insulin secretion of pancreatic β-cells via activating Wnt/CTNNB1 signaling

    PubMed Central

    Wang, Suijun; Yang, Zhen; Gao, Ying; Li, Quanzhong; Su, Yong; Wang, Yanfang; Zhang, Yun; Man, Hua; Liu, Hongxia

    2015-01-01

    Failure of pancreatic β-cells is closely associated with type 2 diabetes mellitus (T2DM), an intractable disease affecting numerous patients. Pyruvate kinase, muscle isoform 2 (PKM2) is a potential modulator of insulin secretion in β-cells. This study aims at revealing roles and possible mechanisms of PKM2 in pancreatic β-cells. Mouse pancreatic β-cell line NIT-1 was used for high glucose treatment and PKM2 overexpression by its specific expression vector. Cell proliferation by Thiazolyl blue assay, cell apoptosis by annexin V-fluorescein isothiocyanate/prodium iodide staining and insulin secretion assay by ELISA were performed in each group. The mRNA and protein levels of related factors were analyzed by real-time quantitative PCR and western blot. Results showed that Pkm2 was inhibited under high glucose conditions compared to the untreated cells (P < 0.01). Its overexpression significantly suppressed NIT-1 cell apoptosis (P < 0.01), and induced cell proliferation (P < 0.05) and insulin secretion (P < 0.05). Related factors showed consistent mRNA expression changes. Protein levels of β-catenin (CTNNB1), insulin receptor substrate 1 (IRS1) and IRS2 were all promoted by PKM2 overexpression (P < 0.01), indicating the activated Wnt/CTNNB1 signaling. These results indicated the inductive roles of PKM2 in pancreatic β-cell NIT-1, including promoting cell proliferation and insulin secretion, and inhibiting cell apoptosis, which might be achieved via activating the Wnt/CTNNB1 signaling and downstream factors. This study offers basic information on the role and mechanism of PKM2 in pancreatic β-cells, and lays the foundation for using PKM2 as a potential therapeutic target in T2DM. PMID:26823761

  8. Pyruvate kinase, muscle isoform 2 promotes proliferation and insulin secretion of pancreatic β-cells via activating Wnt/CTNNB1 signaling.

    PubMed

    Wang, Suijun; Yang, Zhen; Gao, Ying; Li, Quanzhong; Su, Yong; Wang, Yanfang; Zhang, Yun; Man, Hua; Liu, Hongxia

    2015-01-01

    Failure of pancreatic β-cells is closely associated with type 2 diabetes mellitus (T2DM), an intractable disease affecting numerous patients. Pyruvate kinase, muscle isoform 2 (PKM2) is a potential modulator of insulin secretion in β-cells. This study aims at revealing roles and possible mechanisms of PKM2 in pancreatic β-cells. Mouse pancreatic β-cell line NIT-1 was used for high glucose treatment and PKM2 overexpression by its specific expression vector. Cell proliferation by Thiazolyl blue assay, cell apoptosis by annexin V-fluorescein isothiocyanate/prodium iodide staining and insulin secretion assay by ELISA were performed in each group. The mRNA and protein levels of related factors were analyzed by real-time quantitative PCR and western blot. Results showed that Pkm2 was inhibited under high glucose conditions compared to the untreated cells (P < 0.01). Its overexpression significantly suppressed NIT-1 cell apoptosis (P < 0.01), and induced cell proliferation (P < 0.05) and insulin secretion (P < 0.05). Related factors showed consistent mRNA expression changes. Protein levels of β-catenin (CTNNB1), insulin receptor substrate 1 (IRS1) and IRS2 were all promoted by PKM2 overexpression (P < 0.01), indicating the activated Wnt/CTNNB1 signaling. These results indicated the inductive roles of PKM2 in pancreatic β-cell NIT-1, including promoting cell proliferation and insulin secretion, and inhibiting cell apoptosis, which might be achieved via activating the Wnt/CTNNB1 signaling and downstream factors. This study offers basic information on the role and mechanism of PKM2 in pancreatic β-cells, and lays the foundation for using PKM2 as a potential therapeutic target in T2DM.

  9. Negative oncologic impact of poor postoperative pain control in left-sided pancreatic cancer

    PubMed Central

    Min, Eun-Ki; Chong, Jae Uk; Hwang, Ho Kyoung; Pae, Sang Joon; Kang, Chang Moo; Lee, Woo Jung

    2017-01-01

    AIM To investigate the association between postoperative pain control and oncologic outcomes in resected pancreatic ductal adenocarcinoma (PDAC). METHODS From January 2009 to December 2014, 221 patients were diagnosed with PDAC and underwent resection with curative intent. Retrospective review of the patients was performed based on electronic medical records system. One patient without records of numerical rating scale (NRS) pain intensity scores was excluded and eight patients who underwent total pancreatectomy were also excluded. NRS scores during 7 postoperative days following resection of PDAC were reviewed along with clinicopathologic characteristics. Patients were stratified into a good pain control group and a poor pain control group according to the difference in average pain intensity between the early (POD 1, 2, 3) and late (POD 5, 7) postoperative periods. Cox-proportional hazards multivariate analysis was performed to determine association between postoperative pain control and oncologic outcomes. RESULTS A total of 212 patients were dichotomized into good pain control group (n = 162) and poor pain control group (n = 66). Median follow-up period was 17 mo. A negative impact of poor postoperative pain control on overall survival (OS) was observed in the group of patients receiving distal pancreatectomy (DP group; 42.0 mo vs 5.0 mo, P = 0.001). Poor postoperative pain control was also associated with poor disease-free survival (DFS) in the DP group (18.0 mo vs 8.0 mo, P = 0.001). Patients undergoing pancreaticoduodenectomy or pylorus-preserving pancreaticoduodenectomy (PD group) did not show associations between postoperative pain control and oncologic outcomes. Poor patients’ perceived pain control was revealed as an independent risk factor of both DFS (HR = 4.157; 95%CI: 1.938-8.915; P < 0.001) and OS (HR = 4.741; 95%CI: 2.214-10.153; P < 0.001) in resected left-sided pancreatic cancer. CONCLUSION Adequate postoperative pain relief during the early

  10. Human Pancreatic Cancer Cells Induce a MyD88-Dependent Stromal Response to Promote a Tumor-Tolerant Immune Microenvironment.

    PubMed

    Delitto, Daniel; Delitto, Andrea E; DiVita, Bayli B; Pham, Kien; Han, Song; Hartlage, Emily R; Newby, Brittney N; Gerber, Michael H; Behrns, Kevin E; Moldawer, Lyle L; Thomas, Ryan M; George, Thomas J; Brusko, Todd M; Mathews, Clayton E; Liu, Chen; Trevino, Jose G; Hughes, Steven J; Wallet, Shannon M

    2017-02-01

    Cancer cells exert mastery over the local tumor-associated stroma (TAS) to configure protective immunity within the tumor microenvironment. The immunomodulatory character of pancreatic lysates of patients with cancer differs from those with pancreatitis. In this study, we evaluated the cross-talk between pancreatic cancer and its TAS in primary human cell culture models. Upon exposure of TAS to pancreatic cancer cell-conditioned media, we documented robust secretion of IL6 and IL8. This TAS response was MyD88-dependent and sufficient to directly suppress both CD4(+) and CD8(+) T-cell proliferation, inducing Th17 polarization at the expense of Th1. We found that patients possessed a similar shift in circulating effector memory Th17:Th1 ratios compared with healthy controls. The TAS response also directly suppressed CD8(+) T-cell-mediated cytotoxicity. Overall, our results demonstrate how TAS contributes to the production of an immunosuppressive tumor microenvironment in pancreatic cancer. Cancer Res; 77(3); 672-83. ©2016 AACR.

  11. Early pancreatic islet fate and maturation is controlled through RBP-Jκ

    PubMed Central

    Cras-Méneur, Corentin; Conlon, Megan; Zhang, Yaqing; Pasca Di Magliano, Marina; Bernal-Mizrachi, Ernesto

    2016-01-01

    Notch signaling is known to control early pancreatic differentiation through Ngn3 repression. In later stages, downstream of Notch, the Presenilins are still required to maintain the endocrine fate allocation. Amongst their multiple targets, it remains unclear which one actually controls the maintenance of the fate of the early islets. Conditional deletions of the Notch effector RBP-Jκ with lineage tracing in Presenilin-deficient endocrine progenitors, demonstrated that this factor is central to the control of the fate through a non-canonical Notch mechanism. RBP-Jκ mice exhibit normal islet morphogenesis and function, however, a fraction of the progenitors fails to differentiate and develop into disorganized masses resembling acinar to ductal metaplasia and chronic pancreatitis. A subsequent deletion of RBP-Jκ in forming β-cells led to the transdifferentiation into the other endocrine cells types, indicating that this factor still mediates the maintenance of the fate within the endocrine lineage itself. These results highlight the dual importance of Notch signaling for the endocrine lineage. Even after Ngn3 expression, Notch activity is required to maintain both fate and maturation of the Ngn3 progenitors. In a subset of the cells, these alterations of Notch signaling halt their differentiation and leads to acinar to ductal metaplasia. PMID:27240887

  12. Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes Cell Proliferation and Motility in Pancreatic Cancer

    PubMed Central

    2016-01-01

    Identifying a target molecule that is crucially involved in pancreatic tumor growth and metastasis is necessary in developing an effective treatment. The study aimed to investigate the role of the eukaryotic translation initiation factor 3a (eIF3a) in the cell proliferation and motility in pancreatic cancer. Our data showed that the expression of eIF3a was upregulated in pancreatic ductal adenocarcinoma as compared with its expression in normal pancreatic tissues. Knockdown of eIF3a by a specific shRNA caused significant decreases in cell proliferation and clonogenic abilities in pancreatic cancer SW1990 and Capan-1 cells. Consistently, the pancreatic cancer cell growth rates were also impaired in xenotransplanted mice. Moreover, wound-healing assay showed that depletion of eIF3a significantly slowed down the wound recovery processes in SW1990 and Capan-1 cells. Transwell migration and invasion assays further showed that cell migration and invasion abilities were significantly inhibited by knockdown of eIF3a in SW1990 and Capan-1 cells. Statistical analysis of eIF3a expression in 140 cases of pancreatic ductal adenocarcinoma samples revealed that eIF3a expression was significantly associated with tumor metastasis and TNM staging. These analyses suggest that eIF3a contributes to cell proliferation and motility in pancreatic ductal adenocarcinoma. PMID:27550487

  13. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells.

    PubMed

    Oström, Maria; Loffler, Kelly A; Edfalk, Sara; Selander, Lars; Dahl, Ulf; Ricordi, Camillo; Jeon, Jongmin; Correa-Medina, Mayrin; Diez, Juan; Edlund, Helena

    2008-07-30

    The identification of secreted factors that can selectively stimulate the generation of insulin producing beta-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based beta-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of beta-cells during normal pancreatic development such putative factors may be identified. In the mouse, beta-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of beta-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when beta-cells are generated. We also provide evidence that RA induces the generation of Ngn3(+) endocrine progenitor cells and stimulates their further differentiation into beta-cells by activating a program of cell differentiation that recapitulates the normal temporal program of beta-cell differentiation.

  14. Elevated COX-2 Expression Promotes Angiogenesis Through EGFR/p38-MAPK/Sp1-Dependent Signalling in Pancreatic Cancer.

    PubMed

    Hu, Hai; Han, Ting; Zhuo, Meng; Wu, Lei-Lei; Yuan, Cuncun; Wu, Lixia; Lei, Wang; Jiao, Feng; Wang, Li-Wei

    2017-03-28

    Cyclooxygenase-2 (COX-2) was stated to be overexpression in various human malignancies associating with angiogenesis, metastasis and chemoresistence. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease displaying many of these characteristics. A common abnormality of PDAC is overexpression of specificity protein-1 (Sp1), which was said to correlate with malignant phenotypes of human cancers. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we found that Sp1 expression was positively correlated with that of COX-2 in PDAC, and that the inhibition or overexpression of Sp1 in PDAC cells leads to decreased or elevated COX-2 expression. Luciferase reporter gene and chromatin immunoprecipitation (ChIP) assays revealed that elevated transcription of COX-2 requires Sp1 binding to sequence positions around -245/-240 of COX-2 promoter. Activated epidermal growth factor receptor (EGFR) and downstream p38 mitogen-activated protein kinase (p38-MAPK) were also profoundly altered in PDAC. The inhibition of EGFR/p38-MAPK signaling resulted in reduced Sp1 activation, decreased COX-2 and vascular endothelial growth factor (VEGF) expression. Thus, Sp1 could transcriptionally activate COX-2 expression in a process relies on activated EGFR/p38-MAPK signaling. Finally, we found that the inhibition of COX-2 leads to decreased angiogenesis in a process dependent on VEGF, which link COX-2 to angiogenesis in PDAC.

  15. USP39, a direct target of microRNA-133a, promotes progression of pancreatic cancer via the AKT pathway.

    PubMed

    Cai, Jing; Liu, Tiande; Huang, Peng; Yan, Wei; Guo, Changkuo; Xiong, Le; Liu, Anwen

    2017-04-22

    Ubiquitin specific protease 39 (USP39) is one of the deubiquitinating enzymes without ubiquitin protease activity, which has been implicated in the progression of several cancers. However, the role of USP39 in pancreatic cancer (PC) is largely unknown. In present study, we found that USP39 expression was elevated in PC tissues than adjacent non-tumor tissues. Importantly, we demonstrated that overexpression of USP39 is closely correlated with tumor progression and poor survival in PC patients. Furthermore, high USP39 expression was observed in PC cell lines and ectopic expression of USP39 significantly enhanced in vitro cell proliferation and promoted in vivo tumor growth, whereas silencing USP39 suppressed growth of PC cells. Besides, our experimental data revealed that knockdown of USP39 induced cell apoptosis through inhibition of AKT signaling pathway in PC cells. Moreover, USP39 was a direct target of miR-133a, a microRNA that has been reported to be involved in progression of PC. Taken together, our data provide a novel PC regulatory axis that is miR-133a/USP39, the dysfunction of which drives diverse aspects of the progression of PC.

  16. Generation and Characterization of Transgenic Mice Expressing Mouse Ins1 Promoter for Pancreatic β-Cell-Specific Gene Overexpression and Knockout.

    PubMed

    Cheng, Yulong; Su, Yutong; Shan, Aijing; Jiang, Xiuli; Ma, Qinyun; Wang, Weiqing; Ning, Guang; Cao, Yanan

    2015-07-01

    The technologies for pancreatic β-cell-specific gene overexpression or knockout are fundamental for investigations of functional genes in vivo. Here we generated the Ins1-Cre-Dsred and Ins1-rtTA mouse models, which expressed the Cre recombinase or reverse tetracycline regulatable transactivator (rtTA) without hGH minigene under the control of mouse Ins1 promoter. Our data showed that the Cre-mediated recombination and rtTA-mediated activation could be efficiently detected at embryonic day 13.5 when these models were crossed with the reporter mice (ROSA(mT/mG) or tetO-HIST1H2BJ/GFP). The Cre and rtTA expression was restricted to β-cells without leakage in the brain and other tissues. Moreover, both the transgenic lines showed normal glucose tolerance and insulin secretion. These results suggested that the Ins1-Cre-Dsred and Ins1-rtTA mice could be used to knock out or overexpress target genes in embryos and adults to facilitate β-cell researches.

  17. RABL6A promotes G1-S phase progression and pancreatic neuroendocrine tumor cell proliferation in an Rb1-dependent manner

    PubMed Central

    Hagen, Jussara; Muniz, Viviane P.; Falls, Kelly; Reed, Sara M.; Taghiyev, Agshin F.; Quelle, Frederick W.; Gourronc, Francoise; Klingelhutz, Aloysius J.; Major, Heather J.; Askeland, Ryan; Sherman, Scott K.; O'Dorisio, Thomas M.; Bellizzi, Andrew M.; Howe, James R.; Darbro, Benjamin W.; Quelle, Dawn E.

    2014-01-01

    Mechanisms of neuroendocrine tumor (NET) proliferation are poorly understood and therapies that effectively control NET progression and metastatic disease are limited. We found amplification of a putative oncogene, RABL6A, in primary human pancreatic NETs(PNETs) that correlated with high level RABL6A protein expression. Consistent with those results, stable silencing of RABL6A in cultured BON-1 PNET cells revealed that it is essential for their proliferation and survival. Cells lacking RABL6A predominantly arrested in G1 phase with a moderate mitotic block. Pathway analysis of microarray data suggested activation of the p53 and retinoblastoma (Rb1) tumor suppressor pathways in the arrested cells. Loss of p53 had no effect on the RABL6A knockdown phenotype, indicating RABL6A functions independent of p53 in this setting. By comparison, Rb1 inactivation partially restored G1 to S phase progression in RABL6A knockdown cells although it was insufficient to override the mitotic arrest and cell death caused by RABL6A loss. Thus, RABL6A promotes G1 progression in PNET cells by inactivating Rb1, an established suppressor of PNET proliferation and development. This work identifies RABL6A as a novel negative regulator of Rb1 that is essential for PNET proliferation and survival. We suggest RABL6A is a new potential biomarker and target for anticancer therapy in PNET patients. PMID:25273089

  18. RABL6A promotes G1-S phase progression and pancreatic neuroendocrine tumor cell proliferation in an Rb1-dependent manner.

    PubMed

    Hagen, Jussara; Muniz, Viviane P; Falls, Kelly C; Reed, Sara M; Taghiyev, Agshin F; Quelle, Frederick W; Gourronc, Francoise A; Klingelhutz, Aloysius J; Major, Heather J; Askeland, Ryan W; Sherman, Scott K; O'Dorisio, Thomas M; Bellizzi, Andrew M; Howe, James R; Darbro, Benjamin W; Quelle, Dawn E

    2014-11-15

    Mechanisms of neuroendocrine tumor (NET) proliferation are poorly understood, and therapies that effectively control NET progression and metastatic disease are limited. We found amplification of a putative oncogene, RABL6A, in primary human pancreatic NETs (PNET) that correlated with high-level RABL6A protein expression. Consistent with those results, stable silencing of RABL6A in cultured BON-1 PNET cells revealed that it is essential for their proliferation and survival. Cells lacking RABL6A predominantly arrested in G1 phase with a moderate mitotic block. Pathway analysis of microarray data suggested activation of the p53 and retinoblastoma (Rb1) tumor-suppressor pathways in the arrested cells. Loss of p53 had no effect on the RABL6A knockdown phenotype, indicating that RABL6A functions independent of p53 in this setting. By comparison, Rb1 inactivation partially restored G1 to S phase progression in RABL6A-knockdown cells, although it was insufficient to override the mitotic arrest and cell death caused by RABL6A loss. Thus, RABL6A promotes G1 progression in PNET cells by inactivating Rb1, an established suppressor of PNET proliferation and development. This work identifies RABL6A as a novel negative regulator of Rb1 that is essential for PNET proliferation and survival. We suggest RABL6A is a new potential biomarker and target for anticancer therapy in PNET patients.

  19. CXCL8/IL-8 and CXCL12/SDF-1α Co-operatively Promote Invasiveness and Angiogenesis in Pancreatic Cancer

    PubMed Central

    Matsuo, Yoichi; Ochi, Nobuo; Sawai, Hirozumi; Yasuda, Akira; Takahashi, Hiroki; Funahashi, Hitoshi; Takeyama, Hiromitsu; Tong, Zhimin; Guha, Sushovan

    2009-01-01

    CXC-chemokines are involved in the chemotaxis of neutrophils, lymphocytes and monocytes. However, role of these chemokines in tumorigenesis, especially with regard to interaction between tumor and its microenvironment, has not been clearly elucidated. The purpose of this study was to analyze the co-operative role of CXCL8 and CXCL12 in the tumor-stromal interaction in pancreatic cancer (PaCa). Using ELISA and RT-PCR, we initially confirmed the expression of ligands and receptors, respectively, of CXC-chemokines in PaCa and stromal cells. We examined the co-operative role of CXCL8 and CXCL12 in proliferation/invasion of PaCa and human umbilical vein endothelial cells (HUVECs), and in HUVEC tube-formations through tumor-stromal interaction by MTS, Matrigel invasion, and angiogenesis assays, respectively. We detected expression of CXCR4, but not CXCR2, in all PaCa cells and fibroblasts. PaCa cells secreted CXCL8, and fibroblast cells secreted CXCL12. CXCL8 production in PaCa was significantly enhanced by CXCL12, and CXCL12 production in fibroblasts was significantly enhanced by co-culturing with PaCa. CXCL8 enhanced proliferation/invasion of HUVECs but did not promote proliferation/invasion of PaCa. Both recombinant and PaCa-derived CXCL8 enhanced tube formation of HUVECs that were co-cultured with fibroblast cells. CXCL12 enhanced the proliferation/invasion of HUVECs and the invasion of PaCa cells but had no effect on tube formation of HUVEC. We showed that PaCa-derived CXCL8 and fibroblast-derived CXCL12 cooperatively induced angiogenesis in vitro by promoting HUVEC proliferation, invasion, and tube formation. Thus, corresponding receptors CXCR2 and CXCR4 are potential antiangiogenic and antimetastatic therapeutic targets in PaCa. PMID:19035451

  20. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    SciTech Connect

    Nakabayashi, Hiroko; Ohta, Yasuharu Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio

    2013-05-03

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1{sup −/−} A{sup y}/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the

  1. Obestatin Accelerates the Recovery in the Course of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats

    PubMed Central

    Bukowczan, Jakub; Warzecha, Zygmunt; Ceranowicz, Piotr; Kuśnierz-Cabala, Beata; Tomaszewska, Romana

    2015-01-01

    Objective Several previous studies have shown that obestatin exhibits protective and regenerative effects in some organs including the stomach, kidney, and the brain. In the pancreas, pretreatment with obestatin inhibits the development of cerulein-induced acute pancreatitis, and promotes survival of pancreatic beta cells and human islets. However, no studies investigated the effect of obestatin administration following the onset of experimental acute pancreatitis. Aim The aim of this study was to evaluate the impact of obestatin therapy in the course of ischemia/reperfusion-induced pancreatitis. Moreover, we tested the influence of ischemia/reperfusion-induced acute pancreatitis and administration of obestatin on daily food intake and pancreatic exocrine secretion. Methods Acute pancreatitis was induced by pancreatic ischemia followed by reperfusion of the pancreas. Obestatin (8nmol/kg/dose) was administered intraperitoneally twice a day, starting 24 hours after the beginning of reperfusion. The effect of obestatin in the course of necrotizing pancreatitis was assessed between 2 and 14 days, and included histological, functional, and biochemical analyses. Secretory studies were performed on the third day after sham-operation or induction of acute pancreatitis in conscious rats equipped with chronic pancreatic fistula. Results Treatment with obestatin ameliorated morphological signs of pancreatic damage including edema, vacuolization of acinar cells, hemorrhages, acinar necrosis, and leukocyte infiltration of the gland, and led to earlier pancreatic regeneration. Structural changes were accompanied by biochemical and functional improvements manifested by accelerated normalization of interleukin-1β level and activity of myeloperoxidase and lipase, attenuation of the decrease in pancreatic DNA synthesis, and by an improvement of pancreatic blood flow. Induction of acute pancreatitis by pancreatic ischemia followed by reperfusion significantly decreased daily food

  2. Insights into the control of geminiviral promoters.

    PubMed

    Borah, B K; Zarreen, F; Baruah, G; Dasgupta, I

    2016-08-01

    Geminiviruses constitute one of the largest groups of plant viruses, having characteristic twinned geminate particles encapsidating small circular single-stranded DNA molecules. Geminiviral promoters are generally located within the intergenic region, although promoters have also been detected within the genes. Similarly, the geminivirus-associated betasatellite also harbours a promoter element for driving the expression of its only ORF. These regulatory elements of geminiviral and satellite origins have been subject of great interest to develop heterologous gene expression modules. Geminiviral promoter and regulatory elements show a complex regulation that is mediated by several host as well as viral proteins. Here, the structural and functional features of geminiviral and satellite promoters are discussed along with their regulation by plant and viral proteins. Although generalization in many cases is difficult and demands further studies, a pattern is seen to emerge on the regulation of the promoters.

  3. Transcriptional control of the autophagy-lysosome system in pancreatic cancer

    PubMed Central

    Perera, Rushika M.; Stoykova, Svetlana; Nicolay, Brandon N.; Ross, Kenneth N.; Fitamant, Julien; Boukhali, Myriam; Lengrand, Justine; Deshpande, Vikram; Selig, Martin K.; Ferrone, Cristina R.; Settleman, Jeff; Stephanopoulos, Gregory; Dyson, Nicholas J.; Zoncu, Roberto; Ramaswamy, Sridhar; Haas, Wilhelm; Bardeesy, Nabeel

    2016-01-01

    Activation of cellular stress response pathways to maintain metabolic homeostasis is emerging as a critical growth and survival mechanism in many cancers1. The pathogenesis of pancreatic ductal adenocarcinoma (PDA) requires high levels of autophagy2–4, a conserved self-degradative process5. However, the regulatory circuits that activate autophagy and reprogram PDA cell metabolism are unknown. We now show that autophagy induction in PDA occurs as part of a broader transcriptional program that coordinates activation of lysosome biogenesis and function, and nutrient scavenging, mediated by the MiT/TFE family transcription factors. In PDA cells, the MiT/TFE proteins6 – MITF, TFE3 and TFEB – are decoupled from regulatory mechanisms that control their cytoplasmic retention. Increased nuclear import in turn drives the expression of a coherent network of genes that induce high levels of lysosomal catabolic function essential for PDA growth. Unbiased global metabolite profiling reveals that MiT/TFE-dependent autophagy-lysosomal activation is specifically required to maintain intracellular amino acid (AA) pools. These results identify the MiT/TFE transcription factors as master regulators of metabolic reprogramming in pancreatic cancer and demonstrate activation of clearance pathways converging on the lysosome as a novel hallmark of aggressive malignancy. PMID:26168401

  4. Loss of Tyrosine Phosphatase Dependent Inhibition Promotes Activation of Tyrosine Kinase c-Src in Detached Pancreatic Cells

    PubMed Central

    Connelly, Sarah F.; Isley, Beth A.; Baker, Cheryl H.; Gallick, Gary E.; Summy, Justin M.

    2010-01-01

    Despite an intense focus on novel therapeutic strategies, pancreatic adenocarcinoma remains one of the deadliest human malignancies. The frequent and rapid mortality associated with pancreatic cancer may be attributed to several factors, including late diagnosis, rapid tumor invasion into surrounding tissues, and formation of distant metastases. Both local invasion and metastasis require disruption of tumor cell contacts with the extracellular matrix. Detachment of normal cells from the extracellular matrix leads to a form of programmed cell death termed anoikis. Pancreatic cancer cells avert anoikis by activation of signaling pathways that allow for adhesion-independent survival. In the present studies, cellular signaling pathways activated in detached pancreatic cancer cells were examined. We demonstrate a rapid and robust activation of Src kinase in detached pancreatic cancer cells, relative to adherent. Src autophosphorylation rapidly returned to baseline levels upon reattachment to tissue culture plastic, in the presence or absence of specific extracellular matrix proteins. Treatment of pancreatic cancer cells with tyrosine phosphatase inhibitors increased steady-state Src autophosphorylation in adherent cells and abrogated the detachment-induced increase in Src autophosphorylation. Src was found to co-immunoprecipitate with the Src Homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP-2) in pancreatic cancer cells, suggesting that SHP-2 may participate in regulation of Src autophosphorylation in adherent cells. Src family kinase (SFK) dependent increases in Akt and Jun N-terminal kinase (JNK) phosphorylation were observed in detached cells, indicating the potential for Src-dependent activation of survival and stress pathways in pancreatic cancer cells that have detached from the extracellular matrix. PMID:20945416

  5. LKB1 Haploinsufficiency Cooperates With Kras to Promote Pancreatic Cancer Through Suppression of p21-Dependent Growth Arrest

    PubMed Central

    Morton, Jennifer P.; Jamieson, Nigel B.; Karim, Saadia A.; Athineos, Dimitris; Ridgway, Rachel A.; Nixon, Colin; McKay, Colin J.; Carter, Ross; Brunton, Valerie G.; Frame, Margaret C.; Ashworth, Alan; Oien, Karin A.; Evans, T.R. Jeffry; Sansom, Owen J.

    2010-01-01

    Background & Aims Patients carrying germline mutations of LKB1 have an increased risk of pancreatic cancer; however, it is unclear whether down-regulation of LKB1 is an important event in sporadic pancreatic cancer. In this study, we aimed to investigate the impact of LKB1 down-regulation for pancreatic cancer in mouse and human and to elucidate the mechanism by which Lkb1 deregulation contributes to this disease. Methods We first investigated the consequences of Lkb1 deficiency in a genetically modified mouse model of pancreatic cancer, both in terms of disease progression and at the molecular level. To test the relevance of our findings to human pancreatic cancer, we investigated levels of LKB1 and its potential targets in human pancreatic cancer. Results We definitively show that Lkb1 haploinsufficiency can cooperate with oncogenic KrasG12D to cause pancreatic ductal adenocarcinoma (PDAC) in the mouse. Mechanistically, this was associated with decreased p53/p21-dependent growth arrest. Haploinsufficiency for p21 (Cdkn1a) also synergizes with KrasG12D to drive PDAC in the mouse. We also found that levels of LKB1 expression were decreased in around 20% of human PDAC and significantly correlated with low levels of p21 and a poor prognosis. Remarkably, all tumors that had low levels of LKB1 had low levels of p21, and these tumors did not express mutant p53. Conclusions We have identified a novel LKB1-p21 axis that suppresses PDAC following Kras mutation in vivo. Down-regulation of LKB1 may therefore serve as an alternative to p53 mutation to drive pancreatic cancer in vivo. PMID:20452353

  6. Polycomb complex protein BMI-1 promotes invasion and metastasis of pancreatic cancer stem cells by activating PI3K/AKT signaling, an ex vivo, in vitro, and in vivo study.

    PubMed

    Wang, Min-Cong; Jiao, Min; Wu, Tao; Jing, Li; Cui, Jie; Guo, Hui; Tian, Tao; Ruan, Zhi-ping; Wei, Yong-Chang; Jiang, Li-Li; Sun, Hai-Feng; Huang, Lan-Xuan; Nan, Ke-Jun; Li, Chun-Li

    2016-02-23

    Cancer stem cell theory indicates cancer stem cells are the key to promote tumor invasion and metastasis. Studies showed that BMI-1 could promote self-renew, differentiation and tumor formation of CSCs and invasion/metastasis of human cancer. However, whether BMI-1 could regulate invasion and metastasis ability of CSCs is still unclear. In our study, we found that up-regulated expression of BMI-1 was associated with tumor invasion, metastasis and poor survival of pancreatic cancer patients. CD133+ cells were obtained by using magnetic cell sorting and identified of CSCs properties such as self-renew, multi-differentiation and tumor formation ability. Then, we found that BMI-1 expression was up-regulated in pancreatic cancer stem cells. Knockdown of BMI-1 expression attenuated invasion ability of pancreatic cancer stem cells in Transwell system and liver metastasis capacity in nude mice which were injected CSCs through the caudal vein. We are the first to reveal that BMI-1 could promote invasion and metastasis ability of pancreatic cancer stem cells. Finally, we identified that BMI-1 expression activating PI3K/AKT singing pathway by negative regulating PTEN was the main mechanism of promoting invasion and metastasis ability of pancreatic CSCs. In summary, our findings indicate that BMI-1 could be used as the therapeutic target to inhibiting CSCs-mediated pancreatic cancer metastasis.

  7. Polycomb complex protein BMI-1 promotes invasion and metastasis of pancreatic cancer stem cells by activating PI3K/AKT signaling, an ex vivo, in vitro, and in vivo study

    PubMed Central

    Wang, Min-Cong; Jiao, Min; Wu, Tao; Jing, Li; Cui, Jie; Guo, Hui; Tian, Tao; Ruan, Zhi-ping; Wei, Yong-Chang; Jiang, Li-Li; Sun, Hai-Feng; Huang, Lan-Xuan; Nan, Ke-Jun; Li, Chun-Li

    2016-01-01

    Cancer stem cell theory indicates cancer stem cells are the key to promote tumor invasion and metastasis. Studies showed that BMI-1 could promote self-renew, differentiation and tumor formation of CSCs and invasion/metastasis of human cancer. However, whether BMI-1 could regulate invasion and metastasis ability of CSCs is still unclear. In our study, we found that up-regulated expression of BMI-1 was associated with tumor invasion, metastasis and poor survival of pancreatic cancer patients. CD133+ cells were obtained by using magnetic cell sorting and identified of CSCs properties such as self-renew, multi-differentiation and tumor formation ability. Then, we found that BMI-1 expression was up-regulated in pancreatic cancer stem cells. Knockdown of BMI-1 expression attenuated invasion ability of pancreatic cancer stem cells in Transwell system and liver metastasis capacity in nude mice which were injected CSCs through the caudal vein. We are the first to reveal that BMI-1 could promote invasion and metastasis ability of pancreatic cancer stem cells. Finally, we identified that BMI-1 expression activating PI3K/AKT singing pathway by negative regulating PTEN was the main mechanism of promoting invasion and metastasis ability of pancreatic CSCs. In summary, our findings indicate that BMI-1 could be used as the therapeutic target to inhibiting CSCs-mediated pancreatic cancer metastasis. PMID:26840020

  8. CacyBP/SIP protein promotes proliferation and G1/S transition of human pancreatic cancer cells.

    PubMed

    Chen, Xiong; Mo, Ping; Li, Xiaohua; Zheng, Peichan; Zhao, Lina; Xue, Zengfu; Ren, Gui; Han, Guohong; Wang, Xin; Fan, Daiming

    2011-10-01

    Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP), a component of the ubiquitin-mediated proteolysis, could participate in beta-catenin degradation, which was found to be related to the malignant phenotypes of pancreatic cancer previously. However, the role of CacyBP/SIP itself in pancreatic cancer has not been investigated. In the present study, CacyBP/SIP expression was assayed and manipulated to reveal the potential mechanism in pancreatic cancer carcinogenesis. Here, we show that CacyBP/SIP is over-expressed in pancreatic cancer cells. Down-regulation of CacyBP/SIP by small interference RNA (siRNA) severely suppresses the proliferation and tumorigenesis in pancreatic cancer. G1/S transition arrest induced by inhibition of CacyBP/SIP is at least partly mediated by down-regulation of Cyclin E and CDK2 as well as up-regulation of p27 and Rb. Collectively, CacyBP/SIP as an enhancer of pancreatic cancer malignance might develop into another possible therapeutic target.

  9. FTO Inhibits Insulin Secretion and Promotes NF-κB Activation through Positively Regulating ROS Production in Pancreatic β cells

    PubMed Central

    Fan, Hong-Qi; He, Wei; Xu, Kuan-Feng; Wang, Zhi-Xiao; Xu, Xin-Yu; Chen, Heng

    2015-01-01

    FTO (Fat mass and obesity-associated) is associated with increased risk of obesity and type 2 diabetes incurrence. Pancreas islet β cells dysfunction and insulin resistance are major causes of type 2 diabetes. However, whether FTO plays an important functional role in pancreatic β cells as well as the related molecular mechanism is still unclear. In the present study, the tissue expression profile of FTO was firstly determined using quantitative PCR and western blot. FTO is widely expressed in various tissues and presented with relative high expression in pancreas tissue, especially in endocrine pancreas. FTO overexpression in MIN6 cells achieved by lentivirus delivery significantly inhibits insulin secretion in the presence of glucose stimulus as well as KCl. FTO silence has no effect on insulin secretion of MIN6 cells. However, FTO overexpression doesn’t affect the transcription of insulin gene. Furthermore, reactive oxygen species (ROS) production and NF-κB activation are significantly promoted by FTO overexpression. Inhibition of intracellular ROS production by N-acetyl-L-cysteine (NAC) can alleviate NF-κB activation and restore the insulin secretion mediated by FTO overexpression. A whole transcript-microarray is employed to analyze the differential gene expression mediated by FTO overexpression. The genes which are modulated by FTO are involved in many important biological pathways such as G-protein coupled receptor signaling and NF-κB signaling. Therefore, our study indicates that FTO may contribute to pancreas islet β cells dysfunction and the inhibition of FTO activity is a potential target for the treatment of diabetes. PMID:26018652

  10. FTO Inhibits Insulin Secretion and Promotes NF-κB Activation through Positively Regulating ROS Production in Pancreatic β cells.

    PubMed

    Fan, Hong-Qi; He, Wei; Xu, Kuan-Feng; Wang, Zhi-Xiao; Xu, Xin-Yu; Chen, Heng

    2015-01-01

    FTO (Fat mass and obesity-associated) is associated with increased risk of obesity and type 2 diabetes incurrence. Pancreas islet β cells dysfunction and insulin resistance are major causes of type 2 diabetes. However, whether FTO plays an important functional role in pancreatic β cells as well as the related molecular mechanism is still unclear. In the present study, the tissue expression profile of FTO was firstly determined using quantitative PCR and western blot. FTO is widely expressed in various tissues and presented with relative high expression in pancreas tissue, especially in endocrine pancreas. FTO overexpression in MIN6 cells achieved by lentivirus delivery significantly inhibits insulin secretion in the presence of glucose stimulus as well as KCl. FTO silence has no effect on insulin secretion of MIN6 cells. However, FTO overexpression doesn't affect the transcription of insulin gene. Furthermore, reactive oxygen species (ROS) production and NF-κB activation are significantly promoted by FTO overexpression. Inhibition of intracellular ROS production by N-acetyl-L-cysteine (NAC) can alleviate NF-κB activation and restore the insulin secretion mediated by FTO overexpression. A whole transcript-microarray is employed to analyze the differential gene expression mediated by FTO overexpression. The genes which are modulated by FTO are involved in many important biological pathways such as G-protein coupled receptor signaling and NF-κB signaling. Therefore, our study indicates that FTO may contribute to pancreas islet β cells dysfunction and the inhibition of FTO activity is a potential target for the treatment of diabetes.

  11. Pancreatic α-Amylase Controls Glucose Assimilation by Duodenal Retrieval through N-Glycan-specific Binding, Endocytosis, and Degradation.

    PubMed

    Date, Kimie; Satoh, Ayano; Iida, Kaoruko; Ogawa, Haruko

    2015-07-10

    α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na(+)/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104-23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption

  12. Resistin is not an appropriate biochemical marker to predict severity of acute pancreatitis: A case-controlled study

    PubMed Central

    Al-Maramhy, Hamdi; Abdelrahman, Abdelrahman I; Sawalhi, Samer

    2014-01-01

    AIM: To assess levels of serum resistin upon hospital admission as a predictor of acute pancreatitis (AP) severity. METHODS: AP is both a common and serious disease, with severe cases resulting in a high mortality rate. Several predictive inflammatory markers have been used clinically to assess severity. This prospective study collected data from 102 patients who were diagnosed with an initial acute biliary pancreatitis between March 2010 and February 2013. Measurements of body mass index (BMI) and waist circumference (WC) were obtained and serum resistin levels were analyzed at the time of hospital admission using enzyme-linked immunosorbent assay. Additionally, resistin levels were measured from a control group after matching gender, BMI and age. RESULTS: A total of 102 patients (60 females and 42 males) were diagnosed with acute gallstone-induced pancreatitis. The mean age was 45 years, and mean BMI value was 30.5 kg/m2 (Obese, class I). Twenty-two patients (21.6%) had severe AP, while eighty-eight patients had mild pancreatitis (78.4%). Our results showed that BMI significantly correlated with pancreatitis severity (P = 0.007). Serum resistin did not correlate with BMI, weight or WC. Furthermore, serum resistin was significantly higher in patients with AP compared to control subjects (P < 0.0001). The mean resistin values upon admission were 17.5 ng/mL in the severe acute biliary pancreatitis group and 16.82 ng/mL in the mild AP group (P = 0.188), indicating that resistin is not an appropriate predictive marker of clinical severity. CONCLUSION: We demonstrate that obesity is a risk factor for developing severe AP. Further, although there is a correlation between serum resistin levels and AP at the time of hospital admission, resistin does not adequately serve as a predictive marker of clinical severity. PMID:25386084

  13. Risk Factors for Early-Onset and Very-Early-Onset Pancreatic Adenocarcinoma: A Pancreatic Cancer Case-Control Consortium (PanC4) Analysis

    PubMed Central

    McWilliams, Robert R; Maisonneuve, Patrick; Bamlet, William R; Petersen, Gloria M; Li, Donghui; Risch, Harvey; Yu, Herbert; Fontham, Elizabeth TH; Luckett, Brian; Bosetti, Cristina; Negri, Eva; La Vecchia, Carlo; Talamini, Renato; Bueno de Mesquita, H Bas; Bracci, Paige; Gallinger, Steven; Neale, Rachel E; Lowenfels, Albert B

    2015-01-01

    Objectives While pancreatic cancer (PC) most often affects older adults, to date, there has been no comprehensive assessment of risk factors among PC patients under age 60. Methods We defined early onset PC (EOPC) and very early onset PC (VEOPC) as diagnosis of PC under ages 60 and 45, respectively. We pooled data from eight case-control studies, including 1,954 patients with EOPC and 3,278 age- and sex-matched controls. Logistic regression analysis was performed to identify associations with EOPC and VEOPC. Results Family history of PC, diabetes mellitus, smoking, obesity, and pancreatitis were associated with EOPC. Alcohol use ≥26 g daily also was associated with increased risk for EOPC (OR 1.49, 95% CI 1.21-1.84), and there appeared to be a dose-and age-dependent effect of alcohol on risk. The point estimate for risk for VEOPC was OR 2.18, (95% CI 1.17-4.09). Conclusion The established risk factors for PC, including smoking, diabetes, family history of PC, and obesity also apply to EOPC. Alcohol intake appeared to have an age-dependent effect; the strongest association was with VEOPC. PMID:26646264

  14. Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells.

    PubMed

    Cengel, Keith A; Voong, K Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B; Stanbridge, Eric; Kao, Gary D; McKenna, W Gillies; Bernhard, Eric J

    2007-04-01

    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor alpha was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers.

  15. Oncogenic K-Ras Signals through Epidermal Growth Factor Receptor and Wild-Type H-Ras to Promote Radiation Survival in Pancreatic and Colorectal Carcinoma Cells1

    PubMed Central

    Cengel, Keith A.; Voong, K. Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B.; Stanbridge, Eric; Kao, Gary D.; McKenna, W. Gillies; Bernhard, Eric J.

    2007-01-01

    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor α was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers. PMID:17460778

  16. Pancreatic pseudocyst

    MedlinePlus

    ... More Acute pancreatitis Chronic pancreatitis Pancreatic abscess Shock Review Date 10/27/2015 Updated by: Subodh K. ... gastroenterologist with Gastrointestinal Specialists of Georgia, Austell, GA. Review provided by VeriMed Healthcare Network. Also reviewed by ...

  17. Epigenetic inhibition of miR-663b by long non-coding RNA HOTAIR promotes pancreatic cancer cell proliferation via up-regulation of insulin-like growth factor 2

    PubMed Central

    Chen, Xuemin; Sun, Donglin; Chen, Tongbing; Peng, Yan; Zhu, Feng; Jiang, Yong; He, Xiaozhou

    2016-01-01

    Pancreatic cancer is one of the most deadly cancers with a poor prognosis. Although microRNAs are involving in the carcinogenesis and development of pancreatic cancer, little information is known regarding the role of miR-663b in pancreatic cancer. In this study, the expression of miR-663b in pancreatic cancer cells was down-regulated by hypermethylation in its putative promoter region, and overexpression of miR-663b repressed cell proliferation, invasion and migration, and induced apoptosis in pancreatic cancer cells. Bioinformatics analysis, luciferase report assay and rescue experiments showed that insulin-like growth factor 2 (IGF2) was a direct target of miR-663b. Results from clinical samples showed that the expression level of miR-663b correlated with the pathological grading, and the expression of miR-663b was down-regulated and was inversely correlated with IGF2 expression level in pancreatic cancer tissues. More importantly, the long non-coding RNA, HOX transcript antisense RNA (HOTAIR), was up-regulated in both pancreatic cancer cells and tissues, and HOTAIR suppressed the expression of miR-663b in pancreatic cancer by histone modification on H3K4me3 and H3K27me3 on miR-663b promoter. Further in vivo studies demonstrated that the stable overexpression of miR-663b or knock-down of HOTAIR inhibited tumor growth and was associated with IGF2 expression. In summary, our studies demonstrated that miR-663b is epigenetically repressed by HOTAIR and exerts its tumor-suppressive function via targeting IGF2 in pancreatic cancer. PMID:27895308

  18. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    SciTech Connect

    Deng, Lin; Lu, Yuanyuan; Zhao, Xiaodi; Sun, Yi; Shi, Yongquan; Fan, Hongwei; Liu, Changhao; Zhou, Jinfeng; Nie, Yongzhan; Wu, Kaichun; Fan, Daiming; Guo, Xuegang

    2013-10-18

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3.

  19. Cyr61/CCN1 signaling is critical for epithelial-mesenchymal transition and stemness and promotes pancreatic carcinogenesis

    PubMed Central

    2011-01-01

    Background Despite recent advances in outlining the mechanisms involved in pancreatic carcinogenesis, precise molecular pathways and cellular lineage specification remains incompletely understood. Results We show here that Cyr61/CCN1 play a critical role in pancreatic carcinogenesis through the induction of EMT and stemness. Cyr61 mRNA and protein were detected in the early precursor lesions and their expression intensified with disease progression. Cyr61/CCN1 expression was also detected in different pancreatic cancer cell lines. The aggressive cell lines, in which the expressions of mesenchymal/stem cell molecular markers are predominant; exhibit more Cyr61/CCN1 expression. Cyr61 expression is exorbitantly higher in cancer stem/tumor initiating Panc-1-side-population (SP) cells. Upon Cyr61/CCN1 silencing, the aggressive behaviors are reduced by obliterating interlinking pathobiological events such as reversing the EMT, blocking the expression of stem-cell-like traits and inhibiting migration. In contrast, addition of Cyr61 protein in culture medium augments EMT and stemness features in relatively less aggressive BxPC3 pancreatic cancer cells. Using a xenograft model we demonstrated that cyr61/CCN1 silencing in Panc-1-SP cells reverses the stemness features and tumor initiating potency of these cells. Moreover, our results imply a miRNA-based mechanism for the regulation of aggressive behaviors of pancreatic cancer cells by Cyr61/CCN1. Conclusions In conclusion, the discovery of the involvement of Cyr61/CCN1 in pancreatic carcinogenesis may represent an important marker for PDAC and suggests Cyr61/CCN1 can be a potential cancer therapeutic target. PMID:21232118

  20. Prominent pancreatic endocrinopathy and altered control of food intake disrupt energy homeostasis in prion diseases

    USGS Publications Warehouse

    Bailey, J.D.; Berardinelli, J.G.; Rocke, T.E.; Bessen, R.A.

    2008-01-01

    Prion diseases are fatal neurodegenerative diseases that can induce endocrinopathies. The basis of altered endocrine function in prion diseases is not well understood, and the purpose of this study was to investigate the spatiotemporal relationship between energy homeostasis and prion infection in hamsters inoculated with either the 139H strain of scrapie agent, which induces preclinical weight gain, or the HY strain of transmissible mink encephalopathy (TME), which induces clinical weight loss. Temporal changes in body weight, feed, and water intake were measured as well as both non-fasted and fasted concentrations of serum glucose, insulin, glucagon, ??-ketones, and leptin. In 139H scrapie-infected hamsters, polydipsia, hyperphagia, non-fasted hyperinsulinemia with hyperglycemia, and fasted hyperleptinemia were found at preclinical stages and are consistent with an anabolic syndrome that has similarities to type II diabetes mellitus and/or metabolic syndrome X. In HY TME-infected hamsters, hypodipsia, hypersecretion of glucagon (in both non-fasted and fasted states), increased fasted ??-ketones, fasted hypoglycemia, and suppressed non-fasted leptin concentrations were found while feed intake was normal. These findings suggest a severe catabolic syndrome in HY TME infection mediated by chronic increases in glucagon secretion. In both models, alterations of pancreatic endocrine function were not associated with PrPSc deposition in the pancreas. The results indicate that prominent endocrinopathy underlies alterations in body weight, pancreatic endocrine function, and intake of food. The prion-induced alterations of energy homeostasis in 139H scrapie- or HY TME-infected hamsters could occur within areas of the hypothalamus that control food satiety and/or within autonomic centers that provide neural outflow to the pancreas. ?? 2008 Society for Endocrinology.

  1. Controlled Film Architectures to Detect a Biomarker for Pancreatic Cancer Using Impedance Spectroscopy.

    PubMed

    Soares, Andrey C; Soares, Juliana C; Shimizu, Flavio M; Melendez, Matias E; Carvalho, André L; Oliveira, Osvaldo N

    2015-11-25

    The need for analytical devices for detecting cancer at early stages has motivated research into nanomaterials where synergy is sought to achieve high sensitivity and selectivity in low-cost biosensors. In this study, we developed a film architecture combining self-assembled monolayer (SAM) and layer-by-layer (LbL) films of polysaccharide chitosan and the protein concanavalin A, on which a layer of anti-CA19-9 antibody was adsorbed. Using impedance spectroscopy with this biosensor, we were capable of detecting low concentrations of the antigen CA19-9, an important biomarker for pancreatic cancer. The limit of detection of 0.69U/mL reached is sufficient for detecting pancreatic cancer at very early stages. The selectivity of the biosensor was inferred from a series of control experiments with samples of cell lines that were tested positive (HT29) and negative (SW620) for the biomarker CA19-9, in addition to the lack of changes in the capacitance value for other analytes and antigen that are not related to this type of cancer. The high sensitivity and selectivity are ascribed to the very specific antigen-antibody interaction, which was confirmed with PM-IRRAS and atomic force microscopy. Also significant is that used information visualization methods to show that different cell lines and commercial samples containing distinct concentrations of CA19-9 and other analytes can be easily distinguished from each other. These computational methods are generic and may be used in optimization procedures to tailor biosensors for specific purposes, as we demonstrated here by comparing the performance of two film architectures in which the concentration of chitosan was varied.

  2. Acute Pancreatitis and Pregnancy

    MedlinePlus

    ... Pancreatitis Acute Pancreatitis and Pregnancy Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is defined as ... pancreatitis in pregnancy. Reasons for Acute Pancreatitis and Pregnancy While acute pancreatitis is responsible for almost 1 ...

  3. DISTRIBUTION OF CCK-B RECEPTOR GENOTYPE BETWEEN PANCREATIC CANCER PATIENTS AND CONTROLS AND ITS IMPACT ON SURVIVAL

    PubMed Central

    Smith, Jill P.; Whitcomb, David C.; Matters, Gail L.; Brand, Randall E.; Liao, Jiangang; Huang, Yu-Jing; Frazier, Marsha L.

    2014-01-01

    Objective Cholecystokinin (CCK) and gastrin stimulate growth of pancreatic cancer through the CCK-B receptor (CCK-BR). A splice variant of the CCK-BR that results from a single nucleotide polymorphism (SNP) has been identified. Since the splice variant receptor has an extended 3rd intracellular loop, an area involved in cell signaling and growth, we hypothesized that this genetic variant could contribute to the poor prognosis and short survival of this malignancy. Methods DNA from 931 patients with pancreatic cancer was evaluated for the SNP (C >A; rs1800843) in the CCK-BR gene. For statistical analysis, the Fisher’s exact test was used to compare the genotype and allele frequency between the cancer cohort and normal controls and the dependence of genotype on factors, such as stage of disease and age, was analyzed using Cox’s proportional hazard models. Results Compared to the normal cohort, the frequency of the A-allele in pancreatic cancer subjects was increased (p=0.01123; OR=2.283). Even after adjustment for stage of disease, survival of subjects with the minor allele was significantly shorter than those with the wild-genotype (HR=1.83; p =3.11×10−11). Conclusion The CCK-BR SNP predicts survival and should be studied as a candidate genetic biomarker for those at risk for pancreatic cancer. PMID:25469546

  4. Risk Factors for Sporadic Pancreatic Neuroendocrine Tumors: A Case-Control Study

    PubMed Central

    Ben, Qiwen; Zhong, Jie; Fei, Jian; Chen, Haitao; Yv, Lifen; Tan, Jihong; Yuan, Yaozong

    2016-01-01

    The current study examined risk factors for sporadic pancreatic neuroendocrine tumors (PNETs), including smoking, alcohol use, first-degree family history of any cancer (FHC), and diabetes in the Han Chinese ethnic group. In this clinic-based case-control analysis on 385 patients with sporadic PNETs and 614 age- and sex-matched controls, we interviewed subjects using a specific questionnaire on demographics and potential risk factors. An unconditional multivariable logistic regression analysis was used to estimate adjusted odds ratios (AORs). No significant differences were found between patients and controls in terms of demographic variables. Most of the patients with PNETs had well-differentiated PNETs (G1, 62.9%) and non-advanced European Neuroendocrine Tumor Society (ENETS) stage (stage I or II, 83.9%). Ever/heavy smoking, a history of diabetes and a first-degree FHC were independent risk factors for non-functional PNETs. Only heavy drinking was found to be an independent risk factor for functional PNETs (AOR = 1.87; 95% confidence interval [CI], 1.01–3.51). Ever/heavy smoking was also associated with advanced ENETS staging (stage III or IV) at the time of diagnosis. This study identified first-degree FHC, ever/heavy smoking, and diabetes as risk factors for non-functional PNETs, while heavy drinking as a risk factor for functional PNETs. PMID:27782199

  5. Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pancreatic islet contains high levels of zinc in granular vesicles of beta-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense core in secretory granules. In insulin-containing secretory granules, zin...

  6. Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pancreatic islet contains high levels of zinc in granular vesicles of ß-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense cores in secretory granules. In insulin-containing secretory granules, zinc ...

  7. Chronic pancreatitis: relation to acute pancreatitis and pancreatic cancer.

    PubMed

    Uomo, G; Rabitti, P G

    2000-01-01

    The relationship between chronic pancreatitis (CP) and other pancreatic diseases, such as acute pancreatitis (AP) and pancreatic cancer (PK), remains a fairly debated question. The progression from alcoholic AP to CP is controversial, and some long-term epidemiological studies suggest that alcoholic CP might be the result of recurrent alcoholic AP (necrosis-fibrosis sequence) and a subgroup of alcoholics may present recurrent AP without progression to CP. Other predisposing factors (genetic, nutritional, environmental) seems to be important in inducing different outcomes of pancreatic damage due to alcohol. However, recurrent episodes of AP are clearly involved in pathophysiology of CP in patients with hereditary pancreatitis. A relationship between CP and subsequent PK development has long been suspected, but we actually don't know whether this association is direct or is the result of confounding factors, such as alcohol intake or cigarette smoking. Many issues should be considered as indicators of a causal association, and several of them are not fulfilled. Nonetheless, epidemiological studies (case-control or cohort studies) showed that the risk of PK is increased in patients with CP; the risk is significantly higher in tropical calcifying CP and hereditary pancreatitis. Studies on growth factors, oncogenes, tumor-suppressor genes, and angiogenesis suggest that the sequence PC-KP is plausible from the biological standpoint.

  8. Pancreatic abscesses.

    PubMed

    Shi, E C; Yeo, B W; Ham, J M

    1984-09-01

    This paper presents the clinical features and problems in the management of 34 patients with pancreatic abscesses. In the majority of patients the abscesses developed following an attack of pancreatitis due to alcohol or gallstones. The abscesses were usually multilocular, and often had spread widely in the retroperitoneal space. Invasion into surrounding viscera or the peritoneal cavity occurred in 12 instances, and eight patients developed major bleeding into the abscess cavity. Obstructive complications (affecting bowel, common bile duct and large veins) occurred in eight patients. Twelve of the 34 patients (35 per cent) died, most deaths being due to failure to control sepsis (seven patients) or to massive bleeding from the abscess cavity (three patients). The mortality of this condition is likely to remain high, but may be reduced by better drainage techniques at the initial exploration. The importance of the infra-mesocolic approach for drainage is emphasized.

  9. Promoter control of translation in Xenopus oocytes.

    PubMed Central

    Gunkel, N; Braddock, M; Thorburn, A M; Muckenthaler, M; Kingsman, A J; Kingsman, S M

    1995-01-01

    The HIV-1 promoter directs the high level production of transcripts in Xenopus oocytes. However, despite being exported to the cytoplasm, the transcripts are not translated [M. Braddock, A. M. Thorburn, A. Chambers, G. D. Elliott, G. J. Anderson, A. J. Kingsman and S. M. Kingsman (1990) Cell, 62, 1123-1133]. We have shown previously that this is a function of promoter sequences and is independent of the TAR RNA element that is normally located at the 5' end of all HIV mRNAs. We now show that a three nucleotide substitution at position -340, upstream of the RNA start site, reverses the translation inhibition. This site coincides with a sequence that can bind the haematopoietic transcription factor GATA. The inhibition of translation can also be reversed by treatment with inhibitors of casein kinase II or by injection into the nucleus of antibodies specific for the FRGY2 family of RNP proteins. We suggest that the -340 site influences the quality of the transcription complex such that transcripts are diverted to a nucleus-dependent translation inhibition pathway. Images PMID:7885836

  10. Corticosteroid therapy for severe acute pancreatitis: a meta-analysis of randomized, controlled trials

    PubMed Central

    Dong, Li-Hua; Liu, Zhong-Min; Wang, Shi-Ji; Zhao, Shu-Jie; Zhang, Dong; Chen, Ying; Wang, Yu-Shan

    2015-01-01

    Background: Recent reports about the benefits of corticosteroid therapy in patients with severe acute pancreatitis (SAP) have shown conflicting results. We aimed to explore the effects of corticosteroid therapy in SAP patients on patient outcomes by performing a meta-analysis. Methods: Databases (Medline, EMBASE, Web of Science, PubMed, Cochrane Library, Chinese Biomedicine Database, and China Academic Journal Full-Text Database) were queried for all relevant, randomized, controlled trials investigating corticosteroid therapy in patients with SAP. Results: Six randomized, controlled trials including 430 SAP patients were identified. Corticosteroid therapy for SAP was associated with reductions in the length of hospital stay, the need for surgical intervention, and the mortality rate (weighted mean difference [WMD]: -9.47, 95% confidence interval [CI]: -16.91 to -2.04, P = 0.01; odds ratio [OR]: 0.35, 95% CI: 0.18-0.67, P = 0.002; OR: 0.45, 95% CI: 0.22-0.94, P = 0.03). There were no significant differences in the complication rates or Physiology and Chronic Health Evaluation II (APACHE II) scores in patients with or without corticosteroid therapy. Conclusion: Corticosteroid therapy may improve outcomes in patients with SAP. PMID:26339332

  11. Predator control promotes invasive dominated ecological states.

    PubMed

    Wallach, Arian D; Johnson, Christopher N; Ritchie, Euan G; O'Neill, Adam J

    2010-08-01

    Invasive species are regarded as one of the top five drivers of the global extinction crisis. In response, extreme measures have been applied in an attempt to control or eradicate invasives, with little success overall. We tested the idea that state shifts to invasive dominance are symptomatic of losses in ecosystem resilience, due to the suppression of apex predators. This concept was investigated in Australia where the high rate of mammalian extinctions is largely attributed to the destructive influence of invasive species. Intensive pest control is widely applied across the continent, simultaneously eliminating Australia's apex predator, the dingo (Canis lupus dingo). We show that predator management accounts for shifts between two main ecosystem states. Lethal control fractures dingo social structure and leads to bottom-up driven increases in invasive mesopredators and herbivores. Where control is relaxed, dingoes re-establish top-down regulation of ecosystems, allowing for the recovery of biodiversity and productivity.

  12. Relationship between tea consumption and pancreatic cancer risk: a meta-analysis based on prospective cohort studies and case-control studies.

    PubMed

    Chen, Ke; Zhang, Qi; Peng, Min; Shen, Yanping; Wan, Peng; Xie, Guoming

    2014-09-01

    The aim of this study was to evaluate the relationship between regular tea consumption and the risk of pancreatic cancer by a meta-analysis. Two investigators independently performed a computer retrieve on the electronic databases of Embase, PubMed, and Ovidsp for prospective cohort studies and case-control studies on regular tea consumption and the risk of pancreatic cancer incidence. The keywords using for search were ('Pancreas' OR 'pancreatic') AND ('neoplasms' OR 'carcinoma' OR 'cancer') AND 'tea'. Risk ratios (RRs) and 95% confidence interval (CI) were used to determine the effect of tea consumption on pancreatic cancer. A total of 14 studies were included (8078 pancreatic cancer patients, with a total of 859 783 patients) in the present meta-analysis. The pooled results of effect size indicated that tea consumption has no significant relationship with risk of pancreatic cancer (RR=0.99, 95% CI: 0.89-1.11, P=0.922). However, the subgroup analysis of different countries showed a statistical decrease in pancreatic cancer risk by high consumption of tea in a Chinese population (RR=0.76, 95% CI: 0.59-0.98, P=0.036). Similar results were found in the elderly (>60 years old) (RR=0.76, 95% CI: 0.60-0.96, P=0.023). In conclusion, the present meta-analysis of 14 studies suggests that the correlation between tea consumption and the risk of pancreatic cancer in the general population is not significant, but an increase in tea consumption can reduce the risk of pancreatic cancer disease in Chinese populations and in individuals older than 60 years of age. It is necessary to formulate more rigorous designs of regional studies to further confirm the relationship between tea consumption and pancreatic cancer.

  13. [The basic plan to promote cancer control in Japan].

    PubMed

    Monden, Morito

    2013-05-01

    Cancer has been the leading cause of death in Japan since 1981. The Japanese government implemented the Comprehensive 10-year Strategy for Cancer Control in 1984, following which the Second- and Third-term Comprehensive 10-year Strategy for Cancer Control have been implemented every 10years to promote cancer research and disseminate high-quality cancer medical services. The Cancer Control Act was approved in June 2006, and the law has been implemented since April 2007. Based on this law, the Basic Plan to Promote Cancer Control program was discussed by the Cancer Control Promotion Council and approved by the Cabinet of Japan in June 2007. This plan was launched in June 2007, and covered 5 fiscal years from 2007 to 2011. It also provides a model for developing the Prefectural Plan to Promote Cancer Control. The Basic Plan needs to be updated at least every 5 years under the Cancer Control Act; therefore, the Phase Two Basic Plan was approved by the Japanese Cabinet in June 2012. Although the first plan was limited to medicine or medical care, the second plan was broadened to include social undertakings such as patient support in terms of job acquisition or student education for an indepth understanding of cancer. This paper includes the history of cancer control promotion in Japan and viewpoints on the basic plan for cancer control.

  14. Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim

    PubMed Central

    Ren, Xiaoxia; Zhao, Wenjing; Du, Yongxing; Zhang, Taiping; You, Lei; Zhao, Yupei

    2016-01-01

    Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells. PMID:28105181

  15. Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim.

    PubMed

    Ren, Xiaoxia; Zhao, Wenjing; Du, Yongxing; Zhang, Taiping; You, Lei; Zhao, Yupei

    2016-12-01

    Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells.

  16. Analysis of Local Control in Patients Receiving IMRT for Resected Pancreatic Cancers

    SciTech Connect

    Yovino, Susannah; Maidment, Bert W.; Herman, Joseph M.; Pandya, Naimish; Goloubeva, Olga; Wolfgang, Chris; Schulick, Richard; Laheru, Daniel; Hanna, Nader; Alexander, Richard; Regine, William F.

    2012-07-01

    Purpose: Intensity-modulated radiotherapy (IMRT) is increasingly incorporated into therapy for pancreatic cancer. A concern regarding this technique is the potential for geographic miss and decreased local control. We analyzed patterns of first failure among patients treated with IMRT for resected pancreatic cancer. Methods and Materials: Seventy-one patients who underwent resection and adjuvant chemoradiation for pancreas cancer are included in this report. IMRT was used for all to a median dose of 50.4 Gy. Concurrent chemotherapy was 5-FU-based in 72% of patients and gemcitabine-based in 28%. Results: At median follow-up of 24 months, 49/71 patients (69%) had failed. The predominant failure pattern was distant metastases in 35/71 patients (49%). The most common site of metastases was the liver. Fourteen patients (19%) developed locoregional failure in the tumor bed alone in 5 patients, regional nodes in 4 patients, and concurrently with metastases in 5 patients. Median overall survival (OS) was 25 months. On univariate analysis, nodal status, margin status, postoperative CA 19-9 level, and weight loss during treatment were predictive for OS. On multivariate analysis, higher postoperative CA19-9 levels predicted for worse OS on a continuous basis (p < 0.01). A trend to worse OS was seen among patients with more weight loss during therapy (p = 0.06). Patients with positive nodes and positive margins also had significantly worse OS (HR for death 2.8, 95% CI 1.1-7.5; HR for death 2.6, 95% CI 1.1-6.2, respectively). Grade 3-4 nausea and vomiting was seen in 8% of patients. Late complication of small bowel obstruction occurred in 4 (6%) patients. Conclusions: This is the first comprehensive report of patterns of failure among patients treated with adjuvant IMRT for pancreas cancer. IMRT was not associated with an increase in local recurrences in our cohort. These data support the use of IMRT in the recently activated EORTC/US Intergroup/RTOG 0848 adjuvant pancreas

  17. Safety Constraints in an Artificial Pancreatic β Cell: An Implementation of Model Predictive Control with Insulin on Board

    PubMed Central

    Ellingsen, Christian; Dassau, Eyal; Zisser, Howard; Grosman, Benyamin; Percival, Matthew W.; Jovanovič, Lois; Doyle, Francis J.

    2009-01-01

    Background Type 1 diabetes mellitus (T1DM) is characterized by the destruction of pancreatic β cells, resulting in the inability to produce sufficient insulin to maintain normoglycemia. As a result, people with T1DM depend on exogenous insulin that is given either by multiple daily injections or by an insulin pump to control their blood glucose. A challenging task is to design the next step in T1DM therapy: a fully automated insulin delivery system consisting of an artificial pancreatic β cell that shall provide both safe and effective therapy. The core of such a system is a control algorithm that calculates the insulin dose based on automated glucose measurements. Methods A model predictive control (MPC) algorithm was designed to control glycemia by controlling exogenous insulin delivery. The MPC algorithm contained a dynamic safety constraint, insulin on board (IOB), which incorporated the clinical values of correction factor and insulin-to-carbohydrate ratio along with estimated insulin action decay curves as part of the optimal control solution. Results The results emphasized the ability of the IOB constraint to significantly improve the glucose/insulin control trajectories in the presence of aggressive control actions. The simulation results indicated that 50% of the simulations conducted without the IOB constraint resulted in hypoglycemic events, compared to 10% of the simulations that included the IOB constraint. Conclusions Achieving both efficacy and safety in an artificial pancreatic β cell calls for an IOB safety constraint that is able to override aggressive control moves (large insulin doses), thereby minimizing the risk of hypoglycemia. PMID:20144293

  18. Ice skating promotes postural control in children.

    PubMed

    Keller, M; Röttger, K; Taube, W

    2014-12-01

    High fall rates causing injury and enormous financial costs are reported for children. However, only few studies investigated the effects of balance training in children and these studies did not find enhanced balance performance in postural (transfer) tests. Consequently, it was previously speculated that classical balance training might not be stimulating enough for children to adequately perform these exercises. Therefore, the aim of this study is to evaluate the influence of ice skating as an alternative form of balance training. Volunteers of an intervention (n = 17; INT: 13.1 ± 0.4 years) and a control group (n = 13; CON: 13.2 ± 0.3 years) were tested before and after training in static and dynamic postural transfer tests. INT participated in eight sessions of ice skating during education lessons, whereas CON participated in normal physical education. Enhanced balance performance was observed in INT but not in CON when tested on an unstable free-swinging platform (P < 0.05) or when performing a functional reach test (P < 0.001). This is the first study showing significantly enhanced balance performance after ice skating in children. More importantly, participating children improved static and dynamic balance control in postural tasks that were not part of the training.

  19. Chronic Pancreatitis in Children

    MedlinePlus

    ... Chronic Pancreatitis in Children Childhood Inherited Disorders Pancreatic Cancer Pancreatic Cancer Risks and Symptoms Staging of Pancreatic Cancer Treatment of Pancreatic Cancer Whipple Procedure Complementary Therapies Pancreatic Cancer Support ...

  20. Acute Pancreatitis in Children

    MedlinePlus

    ... Chronic Pancreatitis in Children Childhood Inherited Disorders Pancreatic Cancer Pancreatic Cancer Risks and Symptoms Staging of Pancreatic Cancer Treatment of Pancreatic Cancer Whipple Procedure Complementary Therapies Pancreatic Cancer Support ...

  1. Controlled Heat Stress Promotes Myofibrillogenesis during Myogenesis

    PubMed Central

    Guo, Qiongyu; Miller, Devin; An, Hongying; Wang, Howard; Lopez, Joseph; Lough, Denver; He, Ling; Kumar, Anand

    2016-01-01

    Hyperthermia therapy has recently emerged as a clinical modality used to finely tune heat stress inside the human body for various biomedical applications. Nevertheless, little is known regarding the optimal timing or temperature of heat stress that is needed to achieve favorable results following hyperthermia therapy for muscle regeneration purposes. The regeneration of skeletal muscle after injury is a highly complex and coordinated process that involves a multitude of cellular mechanisms. The main objective of this study was to characterize the effects of hyperthermal therapy on the overall behavior of myoblasts during myogenic differentiation. Various cellular processes, including myogenesis, myofibrillogenesis, hypertrophy/atrophy, and mitochondrial biogenesis, were studied using systematic cellular, morphological, and pathway-focused high-throughput gene expression profiling analyses. We found that C2C12 myoblasts exhibited distinctive time and temperature-dependence in biosynthesis and regulatory events during myogenic differentiation. Specifically, we for the first time observed that moderate hyperthermia at 39°C favored the growth of sarcomere in myofibrils at the late stage of myogenesis, showing universal up-regulation of characteristic myofibril proteins. Characteristic myofibrillogenesis genes, including heavy polypeptide 1 myosin, heavy polypeptide 2 myosin, alpha 1 actin, nebulin and titin, were all significantly upregulated (p<0.01) after C2C12 cells differentiated at 39°C over 5 days compared with the control cells cultured at 37°C. Furthermore, moderate hyperthermia enhanced myogenic differentiation, with nucleus densities per myotube showing 2.2-fold, 1.9-fold and 1.6-fold increases when C2C12 cells underwent myogenic differentiation at 39°C over 24 hours, 48 hours and 72 hours, respectively, as compared to the myotubes that were not exposed to heat stress. Yet, atrophy genes were sensitive even to moderate hyperthermia, indicating that

  2. Controlled Heat Stress Promotes Myofibrillogenesis during Myogenesis.

    PubMed

    Guo, Qiongyu; Miller, Devin; An, Hongying; Wang, Howard; Lopez, Joseph; Lough, Denver; He, Ling; Kumar, Anand

    2016-01-01

    Hyperthermia therapy has recently emerged as a clinical modality used to finely tune heat stress inside the human body for various biomedical applications. Nevertheless, little is known regarding the optimal timing or temperature of heat stress that is needed to achieve favorable results following hyperthermia therapy for muscle regeneration purposes. The regeneration of skeletal muscle after injury is a highly complex and coordinated process that involves a multitude of cellular mechanisms. The main objective of this study was to characterize the effects of hyperthermal therapy on the overall behavior of myoblasts during myogenic differentiation. Various cellular processes, including myogenesis, myofibrillogenesis, hypertrophy/atrophy, and mitochondrial biogenesis, were studied using systematic cellular, morphological, and pathway-focused high-throughput gene expression profiling analyses. We found that C2C12 myoblasts exhibited distinctive time and temperature-dependence in biosynthesis and regulatory events during myogenic differentiation. Specifically, we for the first time observed that moderate hyperthermia at 39°C favored the growth of sarcomere in myofibrils at the late stage of myogenesis, showing universal up-regulation of characteristic myofibril proteins. Characteristic myofibrillogenesis genes, including heavy polypeptide 1 myosin, heavy polypeptide 2 myosin, alpha 1 actin, nebulin and titin, were all significantly upregulated (p<0.01) after C2C12 cells differentiated at 39°C over 5 days compared with the control cells cultured at 37°C. Furthermore, moderate hyperthermia enhanced myogenic differentiation, with nucleus densities per myotube showing 2.2-fold, 1.9-fold and 1.6-fold increases when C2C12 cells underwent myogenic differentiation at 39°C over 24 hours, 48 hours and 72 hours, respectively, as compared to the myotubes that were not exposed to heat stress. Yet, atrophy genes were sensitive even to moderate hyperthermia, indicating that

  3. Plasma carotenoids, vitamin C, retinol and tocopherols levels and pancreatic cancer risk within the European Prospective Investigation into Cancer and Nutrition: a nested case-control study: plasma micronutrients and pancreatic cancer risk.

    PubMed

    Jeurnink, Suzanne M; Ros, Martine M; Leenders, Max; van Duijnhoven, Franzel J B; Siersema, Peter D; Jansen, Eugene H J M; van Gils, Carla H; Bakker, Marije F; Overvad, Kim; Roswall, Nina; Tjønneland, Anne; Boutron-Ruault, Marie-Christine; Racine, Antoine; Cadeau, Claire; Grote, Verena; Kaaks, Rudolf; Aleksandrova, Krasimira; Boeing, Heiner; Trichopoulou, Antonia; Benetou, Vasiliki; Valanou, Elisavet; Palli, Domenico; Krogh, Vittorio; Vineis, Paolo; Tumino, Rosario; Mattiello, Amalia; Weiderpass, Elisabete; Skeie, Guri; Castaño, José María Huerta; Duell, Eric J; Barricarte, Aurelio; Molina-Montes, Esther; Argüelles, Marcial; Dorronsoro, Mire; Johansen, Dorthe; Lindkvist, Björn; Sund, Malin; Crowe, Francesca L; Khaw, Kay-Tee; Jenab, Mazda; Fedirko, Veronika; Riboli, E; Bueno-de-Mesquita, H B

    2015-03-15

    Evidence of a protective effect of several antioxidants and other nutrients on pancreatic cancer risk is inconsistent. The aim of this study was to investigate the association for prediagnostic plasma levels of carotenoids, vitamin C, retinol and tocopherols with risk of pancreatic cancer in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). 446 incident exocrine pancreatic cancer cases were matched to 446 controls by age at blood collection, study center, sex, date and time of blood collection, fasting status and hormone use. Plasma carotenoids (α- and β-carotene, lycopene, β-cryptoxanthin, canthaxanthin, zeaxanthin and lutein), α- and γ-tocopherol and retinol were measured by reverse phase high-performance liquid chromatography and plasma vitamin C by a colorimetric assay. Incidence rate ratios (IRRs) with 95% confidence intervals (95%CIs) for pancreatic cancer risk were estimated using a conditional logistic regression analysis, adjusted for smoking status, smoking duration and intensity, waist circumference, cotinine levels and diabetes status. Inverse associations with pancreatic cancer risk were found for plasma β-carotene (IRR highest vs. lowest quartile 0.52, 95%CI 0.31-0.88, p for trend = 0.02), zeaxanthin (IRR highest vs. lowest quartile 0.53, 95%CI 0.30-0.94, p for trend = 0.06) and α-tocopherol (IRR highest vs. lowest quartile 0.62, 95%CI 0.39-0.99, p for trend = 0.08. For α- and β-carotene, lutein, sum of carotenoids and γ-tocopherol, heterogeneity between geographical regions was observed. In conclusion, our results show that higher plasma concentrations of β-carotene, zeaxanthin and α-tocopherol may be inversely associated with risk of pancreatic cancer, but further studies are warranted.

  4. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2

    PubMed Central

    Peng, Shuang; Gerasimenko, Julia V.; Tsugorka, Tatiana; Gryshchenko, Oleksiy; Samarasinghe, Sujith; Gerasimenko, Oleg V.

    2016-01-01

    Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca2+ signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca2+ elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca2+ signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5–10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca2+ release followed by Ca2+ entry and also substantially reduced Ca2+ extrusion because of decreased intracellular ATP levels. The toxic Ca2+ signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca2+ signals and necrosis. We tested the effects of inhibiting the Ca2+ release-activated Ca2+ entry by the Ca2+ channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca2+ entry and also protected effectively against the development of necrosis. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377732

  5. Protein-Binding Function of RNA-Dependent Protein Kinase Promotes Proliferation through TRAF2/RIP1/NF-κB/c-Myc Pathway in Pancreatic β cells

    PubMed Central

    Gao, LiLi; Tang, Wei; Ding, ZhengZheng; Wang, DingYu; Qi, XiaoQiang; Wu, HuiWen; Guo, Jun

    2015-01-01

    Double-stranded RNA-dependent protein kinase (PKR), an intracellular pathogen recognition receptor, is involved both in insulin resistance in peripheral tissues and in downregulation of pancreatic β-cell function in a kinase-dependent manner, indicating PKR as a core component in the progression of type 2 diabetes. PKR also acts as an adaptor protein via its protein-binding domain. Here, the PKR protein-binding function promoted β-cell proliferation without its kinase activity, which is associated with enhanced physical interaction with tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. In addition, the transcription of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-dependent survival gene c-Myc was upregulated significantly and is necessary for proliferation. Upregulation of the PKR protein-binding function induced the NF-κB pathway, as observed by dose-dependent degradation of IκBα, induced nuclear translocation of p65 and elevated NF-κB-dependent reporter gene expression. NF-κB-dependent reporter activity and β-cell proliferation both were suppressed by TRAF2-siRNA, but not by TRAF6-siRNA. TRAF2-siRNA blocked the ubiquitination of receptor-interacting serine/threonine-protein kinase 1 (RIP1) induced by PKR protein binding. Furthermore, RIP1-siRNA inhibited β-cell proliferation. Proinflammatory cytokines (TNFα) and glucolipitoxicity also promoted the physical interaction of PKR with TRAF2. Collectively, these data indicate a pivotal role for PKR’s protein-binding function on the proliferation of pancreatic β cells through TRAF2/RIP1/NF-κB/c-Myc pathways. Therapeutic opportunities for type 2 diabetes may arise when its kinase catalytic function, but not its protein-binding function, is downregulated. PMID:25715336

  6. Pancreatic cancer

    MedlinePlus

    ... cancer, cystic pancreatic neoplasms, and other nonendocrine pancreatic tumors. In: Feldman M, Friedman LS, Brandt LJ, ... by: Yi-Bin Chen, MD, Leukemia/Bone Marrow Transplant Program, Massachusetts General Hospital, Boston, MA. ...

  7. Up-regulation of MBD1 promotes pancreatic cancer cell epithelial-mesenchymal transition and invasion by epigenetic down-regulation of E-cadherin.

    PubMed

    Xu, J; Zhu, W; Xu, W; Yao, W; Zhang, B; Xu, Y; Ji, S; Liu, C; Long, J; Ni, Q; Yu, X

    2013-03-01

    Methyl-CpG binding domain protein 1 (MBD1) has been implicated in transcriptional regulation, heterochromatin formation, genomic stability, cell-cycle progression and development. It is also predicted that MBD1 might be involved in tumor development and progression. However, whether and how MBD1 is involved in tumorigenesis, especially in pancreatic cancer (PC), is currently unknown. We found that MBD1 was significantly up-regulated in PC tissues compared with the surrounding normal tissues according to RT-PCR data. Tissue microarray (TMA) based immunohistochemical study from 58 surgically resected PC specimens indicated that higher MBD1 expression correlated with lymph node metastasis and poor survival in PC patients. Gain- and loss-of-function studies in vitro validated MBD1 as a potent oncogene promoting PC cell invasion as well as epithelial-mesenchymal transition (EMT). Mechanistically, MBD1 is associated with Twist and NAD-dependent deacetylase sirtuin-1 (SIRT1), thereby forming the Twist-MBD1-SIRT1 complex on the CDH1 promoter, which resulted in reduced E-cadherin transcription activity and increased cell EMT ability. Significantly, targeting MBD1 reversed the EMT phenotype of PC and restored sensitivity to chemotherapy. Taken together, the results of our study revealed a novel function of MBD1 in PC invasion and metastasis by providing a molecular mechanism underlying MBD1-promoted EMT. Thus MBD1 may serve as a potential therapeutic target for PC.

  8. High Intensity Interval Training Improves Glycaemic Control and Pancreatic β Cell Function of Type 2 Diabetes Patients

    PubMed Central

    Madsen, Søren Møller; Thorup, Anne Cathrine; Overgaard, Kristian; Jeppesen, Per Bendix

    2015-01-01

    Physical activity improves the regulation of glucose homeostasis in both type 2 diabetes (T2D) patients and healthy individuals, but the effect on pancreatic β cell function is unknown. We investigated glycaemic control, pancreatic function and total fat mass before and after 8 weeks of low volume high intensity interval training (HIIT) on cycle ergometer in T2D patients and matched healthy control individuals. Study design/method: Elderly (56 yrs±2), non-active T2D patients (n = 10) and matched (52 yrs±2) healthy controls (CON) (n = 13) exercised 3 times (10×60 sec. HIIT) a week over an 8 week period on a cycle ergometer. Participants underwent a 2-hour oral glucose tolerance test (OGTT). On a separate day, resting blood pressure measurement was conducted followed by an incremental maximal oxygen uptake (V˙O2max) cycle ergometer test. Finally, a whole body dual X-ray absorptiometry (DXA) was performed. After 8 weeks of training, the same measurements were performed. Results: in the T2D-group, glycaemic control as determined by average fasting venous glucose concentration (p = 0.01), end point 2-hour OGTT (p = 0.04) and glycosylated haemoglobin (p = 0.04) were significantly reduced. Pancreatic homeostasis as determined by homeostatic model assessment of insulin resistance (HOMA-IR) and HOMA β cell function (HOMA-%β) were both significantly ameliorated (p = 0.03 and p = 0.03, respectively). Whole body insulin sensitivity as determined by the disposition index (DI) was significantly increased (p = 0.03). During OGTT, the glucose continuum was significantly reduced at -15 (p = 0.03), 30 (p = 0.03) and 120 min (p = 0.03) and at -10 (p = 0.003) and 0 min (p = 0.003) with an additional improvement (p = 0.03) of its 1st phase (30 min) area under curve (AUC). Significant abdominal fat mass losses were seen in both groups (T2D: p = 0.004 and CON: p = 0.02) corresponding to a percentage change of -17.84%±5.02 and -9.66%±3.07, respectively. Conclusion: these results

  9. Tight glycemic control using an artificial endocrine pancreas may play an important role in preventing infection after pancreatic resection.

    PubMed

    Hanazaki, Kazuhiro

    2012-08-07

    It is well known that perioperative hyperglycemia is the main cause of infectious complications after surgery. To improve perioperative glycemic control, we wish to highlight and comment on an interesting paper published recently by the Annals of Surgery entitled: "Early postoperative hyperglycemia is associated with postoperative complications after pancreatoduodenectomy (PD)" by Eshuis et al. The authors concluded that early postoperative glucose levels more than 140 mg/dL was significantly associated with complications after PD. Since we recommend that perioperative tight glycemic control (TGC) is an effective method to prevent postoperative complications including surgical site infection after distal, proximal, and total pancreatic resection, we support strongly this conclusion drawn in this article. However, if early postoperative glucose control in patients undergoing PD was administrated by conventional method such as sliding scale approach as described in this article, it is difficult to maintain TGC. Therefore, we introduce a novel perioperative glycemic control using an artificial endocrine pancreas against pancreatogenic diabetes after pancreatic resection including PD.

  10. Loss of SOD3 (EcSOD) expression promotes an aggressive phenotype in human pancreatic ductal adenocarcinoma

    PubMed Central

    O’Leary, Brianne R.; Fath, Melissa A.; Bellizzi, Andrew M.; Hrabe, Jennifer E.; Button, Anna M.; Allen, Bryan G.; Case, Adam J.; Altekruse, Sean; Wagner, Brett A.; Buettner, Garry R.; Lynch, Charles F.; Hernandez, Brenda Y.; Cozen, Wendy; Beardsley, Robert A.; Keene, Jeffery; Henry, Michael D.; Domann, Frederick E.; Spitz, Douglas R.; Mezhir, James J.

    2015-01-01

    Purpose Pancreatic ductal adenocarcinoma (PDA) cells are known to produce excessive amounts of reactive oxygen species (ROS), particularly superoxide, which may contribute to the aggressive and refractory nature of this disease. Extracellular superoxide dismutase (EcSOD) is an antioxidant enzyme that catalyzes the dismutation of superoxide in the extracellular environment. The current work tests the hypothesis that EcSOD modulates PDA growth and invasion by modifying the redox balance in PDA. Experimental Design We evaluated the prognostic significance of EcSOD in a human tissue microarray of patients with PDA. EcSOD overexpression was performed in PDA cell lines and animal models of disease. The impact of EcSOD on PDA cell lines was evaluated with Matrigel invasion in combination with a superoxide-specific SOD mimic and a nitric oxide synthase inhibitor to determine the mechanism of action of EcSOD in PDA. Results Loss of EcSOD expression is a common event in PDA, which correlated with worse disease biology. Overexpression of EcSOD in PDA cell lines resulted in decreased invasiveness that appeared to be related to reactions of superoxide with nitric oxide. Pancreatic cancer xenografts overexpressing EcSOD also demonstrated slower growth and peritoneal metastasis. Over-expression of EcSOD or treatment with a superoxide-specific SOD mimic caused significant decreases in PDA cell invasive capacity. Conclusions These results support the hypothesis that loss of EcSOD leads to increased reactions of superoxide with nitric oxide which contributes to the invasive phenotype. These results allow for the speculation that superoxide dismutase mimetics might inhibit PDA progression in human clinical disease. PMID:25634994

  11. Food habits and pancreatic cancer: a case-control study of the Francophone community in Montreal, Canada.

    PubMed

    Ghadirian, P; Baillargeon, J; Simard, A; Perret, C

    1995-12-01

    In a population-based case-control study of pancreatic cancer and nutrition among the Francophone population of Montreal (Quebec, Canada), a total of 179 cases and 239 controls matched for age, sex, and language (French) were interviewed between 1984 and 1988. Data on food habits, methods of food preparation and preservation, and related information were obtained through a questionnaire. The study found an increased risk of pancreatic cancer associated with a high consumption of salt [relative risk (RR) = 4.28; 95% confidence interval (CI) = 2.20-8.36], smoked meat (RR = 4.68; CI = 2.05-10.69), dehydrated food (RR = 3.10; 95% CI = 1.55-6.22), fried food (RR= 3.84; 95% CI = 1.74-8.48), and refined sugar (RR = 2.81; 95% CI = 0.94-8.45). An inverse association was found with the consumption of food with no preservatives or additives (RR = 0.08; 95% CI = 0.01-0.59), raw food (RR = 0.28; 95% CI = 0.10-0.75), and food prepared by presto or high-pressure cooking (RR = 0.35% 95% CI = 0.15-0.81), electricity (RR = 0.30; 95% CI = 0.90), or microwave oven (RR = 0.56; 95% CI = 0.34-0.92). Cooking with firewood was associated with a significantly higher risk for pancreatic cancer (RR = 4.63; 95% CI = 1.15-16.52). The results of this study suggest that food habits may play an important role in the etiology of cancer of the pancreas among French Canadians in Montreal, whereas other food habits may reduce the risk of this disease.

  12. Alcohol and smoking as risk factors in chronic pancreatitis and pancreatic cancer.

    PubMed

    Talamini, G; Bassi, C; Falconi, M; Sartori, N; Salvia, R; Rigo, L; Castagnini, A; Di Francesco, V; Frulloni, L; Bovo, P; Vaona, B; Angelini, G; Vantini, I; Cavallini, G; Pederzoli, P

    1999-07-01

    The aim of this study was to compare alcohol and smoking as risk factors in the development of chronic pancreatitis and pancreatic cancer. We considered only male subjects: (1) 630 patients with chronic pancreatitis who developed 12 pancreatic and 47 extrapancreatic cancers; (2) 69 patients with histologically well documented pancreatic cancer and no clinical history of chronic pancreatitis; and (3) 700 random controls taken from the Verona polling list and submitted to a complete medical check-up. Chronic pancreatitis subjects drink more than control subjects and more than subjects with pancreatic cancer without chronic pancreatitis (P<0.001). The percentage of smokers in the group with chronic pancreatitis is significantly higher than that in the control group [odds ratio (OR) 17.3; 95% CI 12.6-23.8; P<0.001] and in the group with pancreatic carcinomas but with no history of chronic pancreatitis (OR 5.3; 95% CI 3.0-9.4; P<0.001). In conclusion, our study shows that: (1) the risk of chronic pancreatitis correlates both with alcohol intake and with cigarette smoking with a trend indicating that the risk increases with increased alcohol intake and cigarette consumption; (2) alcohol and smoking are statistically independent risk factors for chronic pancreatitis; and (3) the risk of pancreatic cancer correlates positively with cigarette smoking but not with drinking.

  13. Helicobacter pylori infection, chronic corpus atrophic gastritis and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort: A nested case-control study.

    PubMed

    Huang, Jiaqi; Zagai, Ulrika; Hallmans, Göran; Nyrén, Olof; Engstrand, Lars; Stolzenberg-Solomon, Rachael; Duell, Eric J; Overvad, Kim; Katzke, Verena A; Kaaks, Rudolf; Jenab, Mazda; Park, Jin Young; Murillo, Raul; Trichopoulou, Antonia; Lagiou, Pagona; Bamia, Christina; Bradbury, Kathryn E; Riboli, Elio; Aune, Dagfinn; Tsilidis, Konstantinos K; Capellá, Gabriel; Agudo, Antonio; Krogh, Vittorio; Palli, Domenico; Panico, Salvatore; Weiderpass, Elisabete; Tjønneland, Anne; Olsen, Anja; Martínez, Begoña; Redondo-Sanchez, Daniel; Chirlaque, Maria-Dolores; Hm Peeters, Petra; Regnér, Sara; Lindkvist, Björn; Naccarati, Alessio; Ardanaz, Eva; Larrañaga, Nerea; Boutron-Ruault, Marie-Christine; Rebours, Vinciane; Barré, Amélie; Bueno-de-Mesquita, H B As; Ye, Weimin

    2017-04-15

    The association between H. pylori infection and pancreatic cancer risk remains controversial. We conducted a nested case-control study with 448 pancreatic cancer cases and their individually matched control subjects, based on the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, to determine whether there was an altered pancreatic cancer risk associated with H. pylori infection and chronic corpus atrophic gastritis. Conditional logistic regression models were applied to calculate odds ratios (ORs) and corresponding 95% confidence intervals (CIs), adjusted for matching factors and other potential confounders. Our results showed that pancreatic cancer risk was neither associated with H. pylori seropositivity (OR = 0.96; 95% CI: 0.70, 1.31) nor CagA seropositivity (OR = 1.07; 95% CI: 0.77, 1.48). We also did not find any excess risk among individuals seropositive for H. pylori but seronegative for CagA, compared with the group seronegative for both antibodies (OR = 0.94; 95% CI: 0.63, 1.38). However, we found that chronic corpus atrophic gastritis was non-significantly associated with an increased pancreatic cancer risk (OR = 1.35; 95% CI: 0.77, 2.37), and although based on small numbers, the excess risk was particularly marked among individuals seronegative for both H. pylori and CagA (OR = 5.66; 95% CI: 1.59, 20.19, p value for interaction < 0.01). Our findings provided evidence supporting the null association between H. pylori infection and pancreatic cancer risk in western European populations. However, the suggested association between chronic corpus atrophic gastritis and pancreatic cancer risk warrants independent verification in future studies, and, if confirmed, further studies on the underlying mechanisms.

  14. Pre-Study protocol MagPEP: a multicentre randomized controlled trial of magnesium sulphate in the prevention of post-ERCP pancreatitis

    PubMed Central

    2013-01-01

    Background Acute pancreatitis is the most common complication of diagnostic and therapeutic endoscopic retrograde cholangiopancreatography (ERCP). In spite of continuing research, no pharmacologic agent capable of effectively reducing the incidence of ERCP-induced pancreatitis has found its way into clinical practise. A number of experimental studies suggest that intrapancreatic calcium concentrations play an important role in the initiation of intracellular protease activation, an initiating step in the course of acute pancreatitis. Magnesium can act as a calcium-antagonist and counteracts effects in calcium signalling. It can thereby attenuate the intracellular activation of proteolytic digestive enzymes in the pancreas and reduces the severity of experimental pancreatitis when administered either intravenously or as a food supplement. Methods We designed a randomized, double-blind, placebo-controlled phase III study to test whether the administration of intravenous magnesium sulphate before and after ERCP reduces the incidence and the severity of post-ERCP pancreatitis. A total of 502 adult patients with a medical indication for ERCP are to be randomized to receive either 4930 mg magnesium sulphate (= 20 mmol magnesium) or placebo 60 min before and 6 hours after ERCP. The incidence of clinical post-ERCP pancreatitis, hyperlipasemia, pain levels, use of analgetics and length of hospital stay will be evaluated. Conclusions If magnesium sulphate is found to be effective in preventing post-ERCP pancreatitis, this inexpensive agent with limited adverse effects could be used as a routine pharmacological prophylaxis. Trial registration Current Controlled Trials ISRCTN46556454 PMID:23320650

  15. SLC26 transporters and the inhibitory control of pancreatic ductal bicarbonate secretion.

    PubMed

    Hegyi, Péter; Rakonczay, Zoltán; Tiszlavicz, László; Varró, András; Tóth, András; Rácz, Gábor; Varga, Gábor; Gray, Michael A; Argent, Barry E

    2006-01-01

    SLC26 anion exchangers (probably SLC26A3 and SLC26A6) are expressed on the apical membrane of pancreatic duct cells and play a key role in HCO3- secretion; a process that is inhibited by the neuropeptide, substance P (SP). SP had no effect on basolateral HCO3- transporters in the duct cell or on CFTR Cl- channels, but inhibited a Cl- -dependent HCO3- efflux step on the apical membrane. In microperfused ducts, luminal H2DIDS (0.5mM) caused intracellular pH to alkalinize (consistent with inhibition of HCO3- efflux) and, like SP, inhibited HCO3- secretion. SP did not reduce HCO3- secretion further when H2DIDS was applied to the duct lumen, suggesting that SP and H2DIDS inhibit the same transporter on the apical membrane. As SLC26A6 is DIDS-sensitive, this isoform is the likely target for SP. The inhibitory effect of SP was mimicked by phorbol 12,13-dibutyrate (PDBu), an activator of protein kinase C (PKC). Moreover, bisindolylmaleimide, a blocker of PKC, relieved the inhibitory effect of both SP and PDBu on HCO3- secretion. Western blot analysis revealed that guinea pig pancreatic ducts express the alpha, beta1, delta, epsilon, eta, theta, zeta and mu isoforms o f PKC. We conclude that PKC is a negative regulator of SLC26 activity in pancreatic duct cells.

  16. Pentoxifylline Treatment in Acute Pancreatitis (AP)

    ClinicalTrials.gov

    2016-09-14

    Acute Pancreatitis (AP); Gallstone Pancreatitis; Alcoholic Pancreatitis; Post-ERCP/Post-procedural Pancreatitis; Trauma Acute Pancreatitis; Hypertriglyceridemia Acute Pancreatitis; Idiopathic (Unknown) Acute Pancreatitis; Medication Induced Acute Pancreatitis; Cancer Acute Pancreatitis; Miscellaneous (i.e. Acute on Chronic Pancreatitis)

  17. Corydalis edulis Maxim. Promotes Insulin Secretion via the Activation of Protein Kinase Cs (PKCs) in Mice and Pancreatic β Cells

    PubMed Central

    Zheng, Jiao; Zhao, Yunfang; Lun, Qixing; Song, Yuelin; Shi, Shepo; Gu, Xiaopan; Pan, Bo; Qu, Changhai; Li, Jun; Tu, Pengfei

    2017-01-01

    Corydalis edulis Maxim., a widely grown plant in China, had been proposed for the treatment for type 2 diabetes mellitus. In this study, we found that C. edulis extract (CE) is protective against diabetes in mice. The treatment of hyperglycemic and hyperlipidemic apolipoprotein E (ApoE)−/− mice with a high dose of CE reduced serum glucose by 28.84% and serum total cholesterol by 17.34% and increased insulin release. We also found that CE significantly enhanced insulin secretion in a glucose-independent manner in hamster pancreatic β cell (HIT-T15). Further investigation revealed that CE stimulated insulin exocytosis by a protein kinase C (PKC)-dependent signaling pathway and that CE selectively activated novel protein kinase Cs (nPKCs) and atypical PKCs (aPKCs) but not conventional PKCs (cPKCs) in HIT-T15 cells. To the best of our knowledge, our study is the first to identify the PKC pathway as a direct target and one of the major mechanisms underlying the antidiabetic effect of CE. Given the good insulinotropic effect of this herbal medicine, CE is a promising agent for the development of new drugs for treating diabetes. PMID:28091547

  18. A TLR9 agonist promotes IL-22-dependent pancreatic islet allograft survival in type 1 diabetic mice

    PubMed Central

    Tripathi, Deepak; Venkatasubramanian, Sambasivan; Cheekatla, Satyanarayana S.; Paidipally, Padmaja; Welch, Elwyn; Tvinnereim, Amy R.; Vankayalapati, Ramakrishna

    2016-01-01

    Pancreatic islet transplantation is a promising potential cure for type 1 diabetes (T1D). Islet allografts can survive long term in the liver parenchyma. Here we show that liver NK1.1+ cells induce allograft tolerance in a T1D mouse model. The tolerogenic effects of NK1.1+ cells are mediated through IL-22 production, which enhances allograft survival and increases insulin secretion. Increased expression of NKG2A by liver NK1.1+ cells in islet allograft-transplanted mice is involved in the production of IL-22 and in the reduced inflammatory response to allografts. Vaccination of T1D mice with a CpG oligonucleotide TLR9 agonist (ODN 1585) enhances expansion of IL-22-producing CD3-NK1.1+ cells in the liver and prolongs allograft survival. Our study identifies a role for liver NK1.1+ cells, IL-22 and CpG oligonucleotides in the induction of tolerance to islet allografts in the liver parenchyma. PMID:27982034

  19. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    SciTech Connect

    Bian, Yong; Yu, Yun; Wang, Shanshan; Li, Lin

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  20. Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic β -Cell Mass in Middle-Aged Obese Diabetic Mice.

    PubMed

    Alkhalidy, Hana; Moore, William; Zhang, Yanling; McMillan, Ryan; Wang, Aihua; Ali, Mostafa; Suh, Kyung-Shin; Zhen, Wei; Cheng, Zhiyong; Jia, Zhenquan; Hulver, Matthew; Liu, Dongmin

    2015-01-01

    Insulin resistance and a progressive decline in functional β-cell mass are hallmarks of developing type 2 diabetes (T2D). Thus, searching for natural, low-cost compounds to target these two defects could be a promising strategy to prevent the pathogenesis of T2D. Here, we show that dietary intake of flavonol kaempferol (0.05% in the diet) significantly ameliorated hyperglycemia, hyperinsulinemia, and circulating lipid profile, which were associated with the improved peripheral insulin sensitivity in middle-aged obese mice fed a high-fat (HF) diet. Kaempferol treatment reversed HF diet impaired glucose transport-4 (Glut4) and AMP-dependent protein kinase (AMPK) expression in both muscle and adipose tissues from obese mice. In vitro, kaempferol increased lipolysis and prevented high fatty acid-impaired glucose uptake, glycogen synthesis, AMPK activity, and Glut4 expression in skeletal muscle cells. Using another mouse model of T2D generated by HF diet feeding and low doses of streptozotocin injection, we found that kaempferol treatment significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in obese diabetic mice, which are associated with the improved islet β-cell mass. These results demonstrate that kaempferol may be a naturally occurring anti-diabetic agent by improving peripheral insulin sensitivity and protecting against pancreatic β-cell dysfunction.

  1. CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells

    PubMed Central

    Wang, Zhe; von Au, Anja; Schnölzer, Martina; Hackert, Thilo; Zöller, Margot

    2016-01-01

    Cancer-initiating cells (CIC) account for metastatic spread, which may rely mostly on CIC exosomes (TEX) that affect host cells and can transfer CIC features into Non-CIC. The CIC marker CD44 variant isoform v6 (CD44v6) being known for metastasis-promotion, we elaborated in cells its contribution to migration and invasion and in TEX the tranfer of migratory and invasive capacity to Non-CIC, using a CD44v6 knockdown (CD44v6kd) as Non-CIC model. A CD44v6kd in human pancreatic and colorectal cancer (PaCa, CoCa) lines led to loss of CIC characteristics including downregulation of additional CIC markers, particularly Tspan8. This aggravated the loss of CD44v6-promoted motility and invasion. Loss of motility relies on the distorted cooperation of CD44v6 and Tspan8 with associated integrins and loss of invasiveness on reduced protease expression. These deficits, transferred into TEX, severely altered the CD44v6kd-TEX composition. As a consequence, unlike the CIC-TEX, CD44v6kd TEX were not taken up by CD44v6kd cells and CIC. The uptake of CIC-TEX was accompanied by partial correction of CIC marker and protease expression in CD44v6kd cells, which regained migratory, invasive and metastatic competence. CIC-TEX also fostered angiogenesis and expansion of myeloid cells, likely due to a direct impact of CIC-TEX on the host, which could be supported by reprogrammed CD44v6kd cells. Taken together, the striking loss of tumor progression by a CD44v6kd relies on the capacity of CD44v6 to cooperate with associating integrins and proteases and its promotion of additional CIC marker expression. The defects by a CD44v6kd are efficiently corrected upon CIC-TEX uptake. PMID:27419629

  2. CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells.

    PubMed

    Wang, Zhe; von Au, Anja; Schnölzer, Martina; Hackert, Thilo; Zöller, Margot

    2016-08-23

    Cancer-initiating cells (CIC) account for metastatic spread, which may rely mostly on CIC exosomes (TEX) that affect host cells and can transfer CIC features into Non-CIC. The CIC marker CD44 variant isoform v6 (CD44v6) being known for metastasis-promotion, we elaborated in cells its contribution to migration and invasion and in TEX the tranfer of migratory and invasive capacity to Non-CIC, using a CD44v6 knockdown (CD44v6kd) as Non-CIC model.A CD44v6kd in human pancreatic and colorectal cancer (PaCa, CoCa) lines led to loss of CIC characteristics including downregulation of additional CIC markers, particularly Tspan8. This aggravated the loss of CD44v6-promoted motility and invasion. Loss of motility relies on the distorted cooperation of CD44v6 and Tspan8 with associated integrins and loss of invasiveness on reduced protease expression. These deficits, transferred into TEX, severely altered the CD44v6kd-TEX composition. As a consequence, unlike the CIC-TEX, CD44v6kd TEX were not taken up by CD44v6kd cells and CIC. The uptake of CIC-TEX was accompanied by partial correction of CIC marker and protease expression in CD44v6kd cells, which regained migratory, invasive and metastatic competence. CIC-TEX also fostered angiogenesis and expansion of myeloid cells, likely due to a direct impact of CIC-TEX on the host, which could be supported by reprogrammed CD44v6kd cells.Taken together, the striking loss of tumor progression by a CD44v6kd relies on the capacity of CD44v6 to cooperate with associating integrins and proteases and its promotion of additional CIC marker expression. The defects by a CD44v6kd are efficiently corrected upon CIC-TEX uptake.

  3. Histone deacetylase class-I inhibition promotes epithelial gene expression in pancreatic cancer cells in a BRD4- and MYC-dependent manner.

    PubMed

    Mishra, Vivek Kumar; Wegwitz, Florian; Kosinsky, Robyn Laura; Sen, Madhobi; Baumgartner, Roland; Wulff, Tanja; Siveke, Jens T; Schildhaus, Hans-Ulrich; Najafova, Zeynab; Kari, Vijayalakshmi; Kohlhof, Hella; Hessmann, Elisabeth; Johnsen, Steven A

    2017-03-27

    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a particularly dismal prognosis. Histone deacetylases (HDAC) are epigenetic modulators whose activity is frequently deregulated in various cancers including PDAC. In particular, class-I HDACs (HDAC 1, 2, 3 and 8) have been shown to play an important role in PDAC. In this study, we investigated the effects of the class I-specific HDAC inhibitor (HDACi) 4SC-202 in multiple PDAC cell lines in promoting tumor cell differentiation. We show that 4SC-202 negatively affects TGFβ signaling and inhibits TGFβ-induced epithelial-to-mesenchymal transition (EMT). Moreover, 4SC-202 markedly induced p21 (CDKN1A) expression and significantly attenuated cell proliferation. Mechanistically, genome-wide studies revealed that 4SC-202-induced genes were enriched for Bromodomain-containing Protein-4 (BRD4) and MYC occupancy. BRD4, a well-characterized acetyllysine reader, has been shown to play a major role in regulating transcription of selected subsets of genes. Importantly, BRD4 and MYC are essential for the expression of a subgroup of genes induced by class-I HDACi. Taken together, our study uncovers a previously unknown role of BRD4 and MYC in eliciting the HDACi-mediated induction of a subset of genes and provides molecular insight into the mechanisms of HDACi action in PDAC.

  4. Specific transduction and labeling of pancreatic ducts by targeted recombinant viral infusion into mouse pancreatic ducts.

    PubMed

    Guo, Ping; Xiao, Xiangwei; El-Gohary, Yousef; Criscimanna, Angela; Prasadan, Krishna; Rymer, Christopher; Shiota, Chiyo; Wiersch, John; Gaffar, Iliana; Esni, Farzad; Gittes, George K

    2013-11-01

    Specific labeling of pancreatic ducts has proven to be quite difficult. Such labeling has been highly sought after because of the power it would confer to studies of pancreatic ductal carcinogenesis, as well as studies of the source of new insulin-producing β-cells. Cre-loxp recombination could, in theory, lineage-tag pancreatic ducts, but results have been conflicting, mainly due to low labeling efficiencies. Here, we achieved a high pancreatic duct labeling efficiency using a recombinant adeno-associated virus (rAAV) with a duct-specific sox9 promoter infused into the mouse common biliary/pancreatic duct. We saw rapid, diffuse duct-specific labeling, with 50 and 89% labeling in the pancreatic tail and head region, respectively. This highly specific labeling of ducts should greatly enhance our ability to study the role of pancreatic ducts in numerous aspects of pancreatic growth, development and function.

  5. Acute Pancreatitis

    PubMed Central

    Geokas, Michael C.

    1972-01-01

    For many decades two types of acute pancreatitis have been recognized: the edematous or interstitial and the hemorrhagic or necrotic. In most cases acute pancreatitis is associated with alcoholism or biliary tract disease. Elevated serum or urinary α-amylase is the most important finding in diagnosis. The presence of methemalbumin in serum and in peritoneal or pleural fluid supports the diagnosis of the hemorrhagic form of the disease in patients with a history and enzyme studies suggestive of pancreatitis. There is no characteristic clinical picture in acute pancreatitis, and its complications are legion. Pancreatic pseudocyst is probably the most common and pancreatic abscess is the most serious complication. The pathogenetic principle is autodigestion, but the precise sequence of biochemical events is unclear, especially the mode of trypsinogen activation and the role of lysosomal hydrolases. A host of metabolic derangements have been identified in acute pancreatitis, involving lipid, glucose, calcium and magnesium metabolism and changes of the blood clotting mechanism, to name but a few. Medical treatment includes intestinal decompression, analgesics, correction of hypovolemia and other supportive and protective measures. Surgical exploration is advisable in selected cases, when the diagnosis is in doubt, and is considered imperative in the presence of certain complications, especially pancreatic abscess. PMID:4559467

  6. Necrotizing pancreatitis: challenges and solutions

    PubMed Central

    Bendersky, Victoria A; Mallipeddi, Mohan K; Perez, Alexander; Pappas, Theodore N

    2016-01-01

    Acute pancreatitis is a common disease that can progress to gland necrosis, which imposes significant risk of morbidity and mortality. In general, the treatment for pancreatitis is a supportive therapy. However, there are several reasons to escalate to surgery or another intervention. This review discusses the pathophysiology as well as medical and interventional management of necrotizing pancreatitis. Current evidence suggests that patients are best served by delaying interventions for at least 4 weeks, draining as a first resort, and debriding recalcitrant tissue using minimally invasive techniques to promote or enhance postoperative recovery while reducing wound-related complications. PMID:27826206

  7. [Promoting sustainable behavior change in body weight control].

    PubMed

    Camolas, José; Santos, Osvaldo; Moreira, Pedro; do Carmo, Isabel

    2014-01-01

    There is a wide acknowledgement of obesity as a relevant clinical entity. Such relevance can be inferred by the huge worldwide amount of research and related health promotion and clinical efforts. Though the evidence sustains some cues for the therapeutic success, the overall long-term effectiveness of obesity treatment tends to be not so satisfactory. Scientific literature is not unequivocal in key areas of nutritional intervention, such as the magnitude of caloric restriction, proportion of macronutrients, meal frequency, among others. The same applies to the area of physical activity recommendation for weight control. As a correlate of this scenario of incertitude, there is a proliferation of interventions and there is a clear need to integrate the scientific and clinical evidence. This paper presents a narrative literature review of key issues of clinical practice in obesity, regarding a set of actions that, in the overall, have as main purpose the promotion of reduction and/or control of body weight. The role of the health professional is highlighted as a facilitator of acquisition of habits that favor weight control, by integrating the professional's scientific knowledge with the patient's readiness for and capacity to change.

  8. MicroRNA-222 Controls Human Pancreatic Cancer Cell Line Capan-2 Proliferation by P57 Targeting

    PubMed Central

    Zhao, Yingying; Wang, Yuqiong; Yang, Yuefeng; Liu, Jingqi; Song, Yang; Cao, Yan; Chen, Xiaoyu; Yang, Wenzhuo; Wang, Fei; Gao, Jun; Li, Zhaoshen; Yang, Changqing

    2015-01-01

    Pancreatic cancer (PC) is one of the most common cancers and has a poor prognosis due to late diagnosis and ineffective therapeutic multimodality. MicroRNAs (miRNAs, miRs) are a group of non-coding, small RNAs with active biological activities. In our investigation, human pancreatic cancer cell line Capan-2 were transfected with miR-222 mimics, inhibitors or their negative controls. Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8), EdU incorporation assay and cell cycle determination by flow cytometry. MiR-222 and putative target gene expression levels including p27, p57 and PTEN were determined using quantitative reverse transcription polymerase chain reactions and Western blotting. Our results showed that miR-222 could lead to increased vitality and proliferative rate of Capan-2 cells, and also higher S-phase and lower G1-phase of cell cycle. Further, we found p57 at protein level, but not p27 nor PTEN, was regulated by miR-222 in Capan-2 cells. Finally, we co-transfected miR-222 inhibitor and p57 si-RNA into Capan-2 cells, and found that proliferation-suppressing effects of miR-222 inhibitor on Capan-2 cells could be partially reversed by silencing p57. Our results indicate that miR-222 controls Capan-2 cell proliferation by targeting p57. This study provides a novel idea for developing effective therapeutic strategy for PC patients through inhibiting miR-222. PMID:26535064

  9. MicroRNA-222 Controls Human Pancreatic Cancer Cell Line Capan-2 Proliferation by P57 Targeting.

    PubMed

    Zhao, Yingying; Wang, Yuqiong; Yang, Yuefeng; Liu, Jingqi; Song, Yang; Cao, Yan; Chen, Xiaoyu; Yang, Wenzhuo; Wang, Fei; Gao, Jun; Li, Zhaoshen; Yang, Changqing

    2015-01-01

    Pancreatic cancer (PC) is one of the most common cancers and has a poor prognosis due to late diagnosis and ineffective therapeutic multimodality. MicroRNAs (miRNAs, miRs) are a group of non-coding, small RNAs with active biological activities. In our investigation, human pancreatic cancer cell line Capan-2 were transfected with miR-222 mimics, inhibitors or their negative controls. Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8), EdU incorporation assay and cell cycle determination by flow cytometry. MiR-222 and putative target gene expression levels including p27, p57 and PTEN were determined using quantitative reverse transcription polymerase chain reactions and Western blotting. Our results showed that miR-222 could lead to increased vitality and proliferative rate of Capan-2 cells, and also higher S-phase and lower G1-phase of cell cycle. Further, we found p57 at protein level, but not p27 nor PTEN, was regulated by miR-222 in Capan-2 cells. Finally, we co-transfected miR-222 inhibitor and p57 si-RNA into Capan-2 cells, and found that proliferation-suppressing effects of miR-222 inhibitor on Capan-2 cells could be partially reversed by silencing p57. Our results indicate that miR-222 controls Capan-2 cell proliferation by targeting p57. This study provides a novel idea for developing effective therapeutic strategy for PC patients through inhibiting miR-222.

  10. Chronic Pancreatitis

    PubMed Central

    DiMagno, Matthew J.; DiMagno, Eugene P.

    2012-01-01

    Purpose of review We review important new clinical observations in chronic pancreatitis (CP) reported in 2011. Recent findings Smoking increases the risk of non-gallstone acute pancreatitis (AP) and the progression of AP to CP. Binge drinking during Oktoberfest did not associate with increased hospital admissions for AP. The unfolded protein response is an adaptive mechanism to maintain pancreatic health in response to noxious stimuli such as alcohol. Onset of diabetes mellitus in CP is likely due to progressive disease rather than individual variables. Insufficient pancreatic enzyme dosing is common for treatment of pancreatic steatorrhea; 90,000 USP U of lipase should be given with meals. Surgical drainage provides sustained, superior pain relief compared to endoscopic treatment in patients advanced CP with a dilated main duct +/− pancreatic stones. The central acting gabapentoid pregabalin affords a modest 12% pain reduction in patients with CP but ~30% of patients have significant side effects. Summary Patients with non-gallstone related AP or CP of any etiology should cease smoking. Results of this year’s investigations further elucidated the pancreatic pathobiology due to alcohol, onset of diabetes mellitus in CP, and the mechanisms and treatment of neuropathic pain in CP. PMID:22782018

  11. Chronic pancreatitis.

    PubMed

    Lindley, Keith J

    2006-10-01

    Chronic pancreatitis (CP) is characterised by pancreatic inflammation and fibrosis leading eventually to destruction of pancreatic parenchyma and loss of exocrine and endocrine function. A model of interactions between environmental triggers of pancreatic inflammation and disease susceptibility or modifying genes (including PRSS1, SPINK1 and CFTR) provides a framework within which to understand disease pathogenesis. Early in the disease, when fibrosis is mild and pancreatic damage limited, it is difficult to distinguish CP from recurrent acute pancreatitis (RAP) although it is likely these represent opposite ends of a spectrum of disease with a common aetiology in which CP represents either a later disease stage or disease in individuals predisposed to generate a chronic fibrogenic inflammatory response. Pain is a dominant feature resulting in part from neuroimmune interactions within the pancreas. Diagnosis at an early stage of disease is challenging, though in later stages is dependent upon the demonstration of pancreatic fibrosis and duct ectasia using one or more imaging modalities including transabdominal and endoscopic ultrasound, CT and MRCP or ERCP. Current treatments are largely supportive and reactive. The challenge for pediatricians is to achieve diagnosis at an early stage of the disease and to develop treatments that can alter its natural history.

  12. Cadmium exposure and risk of pancreatic cancer: A meta-analysis of prospective cohort studies and case-control studies among individuals without occupational exposure history

    PubMed Central

    Chen, Cheng; Xun, Pengcheng; Nishijo, Muneko; Sekikawa, Akira

    2015-01-01

    Pancreatic cancer is one of the most deadly types of cancer for both genders. Classified as a human carcinogen, cadmium has been related to diverse cancers. However, the association between cadmium exposure and the risk of pancreatic cancer is still unclear. We quantitatively reviewed the observational studies on the association of cadmium exposure with pancreatic cancer risk among individuals without occupational exposure history published through July 2014 in PubMed by using a fixed–effects model. Four prospective cohort studies (112,934 participants with 335 events) and two case-control studies (177 cases and 539 controls) were identified. The summarized relative risk (RR) with a 95% confidence interval (CI) was 2.05 (95% CI=1.58 – 2.66), comparing the highest to the lowest category of cadmium exposure. This positive association persisted in men (RR=1.78; 95% CI=1.04 – 3.05), but not in women (RR=1.02; 95% CI=0.63 – 1.65). Further research is needed to provide more solid evidence on the association of cadmium exposure with pancreatic cancer risk and to elucidate the underlying biological mechanism of the potential gender difference. PMID:26423282

  13. Cadmium exposure and risk of pancreatic cancer: a meta-analysis of prospective cohort studies and case-control studies among individuals without occupational exposure history.

    PubMed

    Chen, Cheng; Xun, Pengcheng; Nishijo, Muneko; Sekikawa, Akira; He, Ka

    2015-11-01

    Pancreatic cancer is one of the most deadly types of cancer for both genders. Classified as a human carcinogen, cadmium has been related to diverse cancers. However, the association between cadmium exposure and the risk of pancreatic cancer is still unclear. We quantitatively reviewed the observational studies on the association of cadmium exposure with pancreatic cancer risk among individuals without occupational exposure history published through July 2014 in PubMed by using a fixed-effect model. Four prospective cohort studies (112,934 participants with 335 events) and two case-control studies (177 cases and 539 controls) were identified. The summarized relative risk (RR) with a 95% confidence interval (CI) was 2.05 (95% CI = 1.58-2.66), comparing the highest to the lowest category of cadmium exposure. This positive association persisted in men (RR = 1.78, 95% CI = 1.04-3.05) but not in women (RR = 1.02, 95% CI = 0.63-1.65). Further research is needed to provide more solid evidence on the association of cadmium exposure with pancreatic cancer risk and to elucidate the underlying biological mechanism of the potential gender difference.

  14. Cortactin promotes exosome secretion by controlling branched actin dynamics

    PubMed Central

    Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Seiki, Motoharu; Tyska, Matthew J.

    2016-01-01

    Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. PMID:27402952

  15. Historical controls for metastatic pancreatic cancer: benchmarks for planning and analyzing single-arm phase II trials.

    PubMed

    Philip, Philip A; Chansky, Kari; LeBlanc, Michael; Rubinstein, Lawrence; Seymour, Lesley; Ivy, S Percy; Alberts, Steven R; Catalano, Paul J; Crowley, John

    2014-08-15

    We compiled and analyzed a database of cooperative group trials in advanced pancreatic cancer to develop historical benchmarks for overall survival (OS) and progression-free survival (PFS). Such benchmarks are essential for evaluating new therapies in a single-arm setting. The analysis included patients with untreated metastatic pancreatic cancer receiving regimens that included gemcitabine, between 1995 and 2005. Prognostic baseline factors were selected by their significance in Cox regression analysis. Outlier trial arms were identified by comparing individual 6-month OS and PFS rates against the entire group. The dataset selected for the generation of OS and PFS benchmarks was then tested for intertrial arm variability using a logistic-normal model with the selected baseline prognostic factors as fixed effects and the individual trial arm as a random effect. A total of 1,132 cases from eight trials qualified. Performance status and sex were independently significant for OS, and performance status was prognostic for PFS. Outcomes for one trial (NCCTG-034A) were significantly different from the other trial arms. When this trial was excluded, the remaining trial arms were homogeneous for OS and PFS outcomes after adjusting for performance status and sex. Benchmark values for 6-month OS and PFS are reported along with a method for using these values in future study design and analysis. The benchmark survival values were generated from a dataset that was homogeneous between trials. The benchmarks can be used to enable single-arm phase II trials using a gemcitabine platform, especially under certain circumstances. Such circumstances might be when a randomized control arm is not practically feasible, an early signal of activity of an experimental agent is being explored such as in expansion cohorts of phase I studies, and in patients who are not candidates for combination cytotoxic therapy.

  16. Long non-coding RNA CCAT1 that can be activated by c-Myc promotes pancreatic cancer cell proliferation and migration

    PubMed Central

    Yu, Qiuyun; Zhou, Xinfeng; Xia, Qing; Shen, Jia; Yan, Jia; Zhu, Jiuting; Li, Xiang; Shu, Ming

    2016-01-01

    This study aimed to investigate the potential role of lncRNA CCAT1 in the progression of pancreatic cancer (PC) and to reveal its possible molecular mechanism. The expression of CCAT1 was analyzed in PC tissues and their adjacent normal tissues from patients diagnosed with PC and in two pancreas cancer cell lines, namely PANC-1 and Aspc-1 using real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. The effects of CCAT1 expression on cell proliferation, cell cycle, and migration were analyzed using MTT assay, flow cytometry, and transwell assay, respectively. The effects of c-Myc expression on the expression of CCAT1 and E-box were also analyzed using RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays, respectively. The results showed that CCAT1 was highly expressed in PC tissues compared to the adjacent tissues (P<0.01) and was also overexpressed in PANC-1 and Aspc-1 cells (P<0.05). The silencing of CCAT1 significantly inhibited cell proliferation and migration (P<0.05), arrested cell cycle at G0/G1 stage, and decreased cyclin D1 expression (P<0.05). An increased expression of c-Myc was observed in the PC tissues compared to the adjacent tissues. We found that suppression of c-Myc altered CCAT1 expression by targeting its promoter at E-box. This study demonstrated that c-Myc-activated CCAT1 may contribute to tumorigenesis and metastasis of PC, which may serve as a potential target for the therapy of PC. PMID:28078015

  17. Promoting effect of arachidonic acid supplementation on N-methyl-N-nitrosourea-induced pancreatic acinar cell hyperplasia in young Lewis rats.

    PubMed

    Yoshizawa, Katsuhiko; Uehara, Norihisa; Kimura, Ayako; Emoto, Yuko; Kinoshita, Yuichi; Yuri, Takashi; Takada, Hideho; Moriguchi, Toru; Hamazaki, Tomohito; Tsubura, Airo

    2013-01-01

    Arachidonic acid (AA) is naturally found in human breast milk. AA, together with docosahexaenoic acid, is commonly added as a functional food ingredient to commercial infant formula worldwide, in accordance with the international standard of Codex Alimentarius. However, few studies have been performed that are concerned with the possible carcinogenic effects of AA supplementation during neonatal life. The effect of dietary AA supplementation in dams, during gestation and lactation, was investigated in N-methyl-N-nitrosourea (MNU)-induced preneoplastic lesions in the exocrine pancreas of young Lewis rats. Dams were fed either an AA (2.0% AA) or a basal (<0.01% AA) diet. On postnatal day 0 (at birth), male and female pups received a single intraperitoneal injection of either 35 mg/kg MNU or vehicle. The morphology and proliferating activity of the exocrine pancreas were examined by proliferative cell nuclear antigen immunohistochemistry 7, 14, 21, 28 and/or 60 days post-MNU. Histopathologically, acinar cell hyperplasia (ACH) occurred in the MNU-treated groups 60 days after MNU injection, irrespecitive of whether the rats had been fed an AA diet. Morphometrically, the number and area of ACH per 1 mm(2) in MNU-treated rats increased significantly in the AA diet-fed rats, compared with basal diet-fed rats. The number of proliferative cell nuclear antigen-positive acinar cells in both the normal and hyperplastic areas of MNU-treated rats increased significantly in the AA diet-fed rats. In conclusion, providing dams with an AA-rich diet during gestation and lactation promotes MNU-induced pancreatic ACH in young Lewis rats.

  18. Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion.

    PubMed

    Gundry, Christine; Marco, Sergi; Rainero, Elena; Miller, Bryan; Dornier, Emmanuel; Mitchell, Louise; Caswell, Patrick T; Campbell, Andrew D; Hogeweg, Anna; Sansom, Owen J; Morton, Jennifer P; Norman, Jim C

    2017-03-15

    The Rab GTPase effector, Rab-coupling protein (RCP) is known to promote invasive behaviour in vitro by controlling integrin and receptor tyrosine kinase (RTK) trafficking, but how RCP influences metastasis in vivo is unclear. Here we identify an RTK of the Eph family, EphA2, to be a cargo of an RCP-regulated endocytic pathway which controls cell:cell repulsion and metastasis in vivo. Phosphorylation of RCP at Ser(435) by Lemur tyrosine kinase-3 (LMTK3) and of EphA2 at Ser(897) by Akt are both necessary to promote Rab14-dependent (and Rab11-independent) trafficking of EphA2 which generates cell:cell repulsion events that drive tumour cells apart. Genetic disruption of RCP or EphA2 opposes cell:cell repulsion and metastasis in an autochthonous mouse model of pancreatic adenocarcinoma-whereas conditional knockout of another RCP cargo, α5 integrin, does not suppress pancreatic cancer metastasis-indicating a role for RCP-dependent trafficking of an Eph receptor to drive tumour dissemination in vivo.

  19. Hydrocarbon exposure, pancreatitis, and bile acids.

    PubMed Central

    Hotz, P; Pilliod, J; Bourgeois, R; Boillat, M A

    1990-01-01

    The data on hydrocarbon induced pancreatitis are conflicting. This question was therefore studied in a non-selected population exposed to hydrocarbons and in "formerly" exposed workers. Neither the past clinical history nor the pancreatic tests provided any evidence for a causal relation between exposure and pancreatitis. No signs of hydrocarbon induced liver damage were seen either. As a healthy worker effect cannot be totally excluded, however, a case-control study in a group of patients suffering from non-alcohol induced pancreatitis could give useful indications for finally excluding the possibility of pancreatitis being induced by hydrocarbons. PMID:2271391

  20. Pancreatic Cysts

    MedlinePlus

    ... fluid can be collected from the cyst for analysis in a laboratory for possible signs of cancer. The characteristics and location of the pancreatic cyst, with your age and sex, can help doctors pinpoint the type of cyst ...

  1. Acute pancreatitis

    MedlinePlus

    ... mg/dL Injury to the pancreas from an accident Other causes include: After certain procedures used to ... pressure Rapid heart rate Rapid breathing (respiratory) rate Lab tests that show the release of pancreatic enzymes ...

  2. Pancreatitis - children

    MedlinePlus

    ... an organ or bone marrow transplant Cystic fibrosis Crohn disease and other disorders when the body's immune system ... lab tests to check the release of pancreatic enzymes. These include tests to check the: Blood amylase ...

  3. Pancreatic abscess

    MedlinePlus

    ... high. Possible Complications Complications may include: Multiple abscesses Sepsis When to Contact a Medical Professional Call your ... 2016:chap 144. Read More Abscess Pancreatic pseudocyst Sepsis Review Date 10/27/2015 Updated by: Subodh ...

  4. Minimally invasive 'step-up approach' versus maximal necrosectomy in patients with acute necrotising pancreatitis (PANTER trial): design and rationale of a randomised controlled multicenter trial [ISRCTN38327949

    PubMed Central

    Besselink, Marc GH; van Santvoort, Hjalmar C; Nieuwenhuijs, Vincent B; Boermeester, Marja A; Bollen, Thomas L; Buskens, Erik; Dejong, Cornelis HC; van Eijck, Casper HJ; van Goor, Harry; Hofker, Sijbrand S; Lameris, Johan S; van Leeuwen, Maarten S; Ploeg, Rutger J; van Ramshorst, Bert; Schaapherder, Alexander FM; Cuesta, Miguel A; Consten, Esther CJ; Gouma, Dirk J; van der Harst, Erwin; Hesselink, Eric J; Houdijk, Lex PJ; Karsten, Tom M; van Laarhoven, Cees JHM; Pierie, Jean-Pierre EN; Rosman, Camiel; Bilgen, Ernst Jan Spillenaar; Timmer, Robin; van der Tweel, Ingeborg; de Wit, Ralph J; Witteman, Ben JM; Gooszen, Hein G

    2006-01-01

    Background The initial treatment of acute necrotizing pancreatitis is conservative. Intervention is indicated in patients with (suspected) infected necrotizing pancreatitis. In the Netherlands, the standard intervention is necrosectomy by laparotomy followed by continuous postoperative lavage (CPL). In recent years several minimally invasive strategies have been introduced. So far, these strategies have never been compared in a randomised controlled trial. The PANTER study (PAncreatitis, Necrosectomy versus sTEp up appRoach) was conceived to yield the evidence needed for a considered policy decision. Methods/design 88 patients with (suspected) infected necrotizing pancreatitis will be randomly allocated to either group A) minimally invasive 'step-up approach' starting with drainage followed, if necessary, by videoscopic assisted retroperitoneal debridement (VARD) or group B) maximal necrosectomy by laparotomy. Both procedures are followed by CPL. Patients will be recruited from 20 hospitals, including all Dutch university medical centres, over a 3-year period. The primary endpoint is the proportion of patients suffering from postoperative major morbidity and mortality. Secondary endpoints are complications, new onset sepsis, length of hospital and intensive care stay, quality of life and total (direct and indirect) costs. To demonstrate that the 'step-up approach' can reduce the major morbidity and mortality rate from 45 to 16%, with 80% power at 5% alpha, a total sample size of 88 patients was calculated. Discussion The PANTER-study is a randomised controlled trial that will provide evidence on the merits of a minimally invasive 'step-up approach' in patients with (suspected) infected necrotizing pancreatitis. PMID:16606471

  5. Autoimmune pancreatitis

    PubMed Central

    2016-01-01

    Autoimmune pancreatitis (AIP) is a rare, distinct and increasingly recognized form of pancreatitis which has autoimmune features. The international consensus diagnostic criteria (ICDC) for AIP recently described two subtypes; type 1[lymphoplasmacytic sclerosing pancreatitis (LPSP)] and type 2 [idiopathic duct-centric pancreatitis (IDCP) or AIP with granulocytic epithelial lesion (GEL)]. Type 1 is the more common form of the disease worldwide and current understanding suggests that it is a pancreatic manifestation of immunoglobulin G4-related disease (IgG4-RD). In contrast, type 2 AIP is a pancreas-specific disease not associated with IgG4 and mostly without the overt extra-pancreatic organ involvement seen in type 1. The pathogenesis of AIP is not completely understood and its clinical presentation is non-specific. It shares overlapping features with more sinister pathologies such as cancer of the pancreas, which continues to pose a diagnostic challenge for clinicians. The diagnostic criteria requires a variable combination of histopathological, imaging and serological features in the presence of typical extrapancreatic lesions and a predictable response to steroids. PMID:27294040

  6. Pancreatic cancer, inflammation, and microbiome.

    PubMed

    Zambirinis, Constantinos P; Pushalkar, Smruti; Saxena, Deepak; Miller, George

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers worldwide. No effective screening methods exist, and available treatment modalities do not effectively treat the disease. Inflammatory conditions such as pancreatitis represent a well-known risk factor for pancreatic cancer development. Yet only in the past 2 decades has pancreatic cancer been recognized as an inflammation-driven cancer, and the precise mechanisms underlying the pathogenic role of inflammation are beginning to be explored in detail. A substantial amount of preclinical and clinical evidence suggests that bacteria are likely to influence this process by activating immune receptors and perpetuating cancer-associated inflammation. The recent explosion of investigations of the human microbiome have highlighted how perturbations of commensal bacterial populations can promote inflammation and promote disease processes, including carcinogenesis. The elucidation of the interplay between inflammation and microbiome in the context of pancreatic carcinogenesis will provide novel targets for intervention to prevent and treat pancreatic cancer more efficiently. Further studies toward this direction are urgently needed.

  7. Towards Evidence-Based, Quality-Controlled Health Promotion: The Dutch Recognition System for Health Promotion Interventions

    ERIC Educational Resources Information Center

    Brug, Johannes; van Dale, Djoeke; Lanting, Loes; Kremers, Stef; Veenhof, Cindy; Leurs, Mariken; van Yperen, Tom; Kok, Gerjo

    2010-01-01

    Registration or recognition systems for best-practice health promotion interventions may contribute to better quality assurance and control in health promotion practice. In the Netherlands, such a system has been developed and is being implemented aiming to provide policy makers and professionals with more information on the quality and…

  8. Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms.

    PubMed

    Kaneko, Kazuma; Ueki, Kohjiro; Takahashi, Noriko; Hashimoto, Shinji; Okamoto, Masayuki; Awazawa, Motoharu; Okazaki, Yukiko; Ohsugi, Mitsuru; Inabe, Kazunori; Umehara, Toshihiro; Yoshida, Masashi; Kakei, Masafumi; Kitamura, Tadahiro; Luo, Ji; Kulkarni, Rohit N; Kahn, C Ronald; Kasai, Haruo; Cantley, Lewis C; Kadowaki, Takashi

    2010-12-01

    Type 2 diabetes is characterized by insulin resistance and pancreatic β cell dysfunction, the latter possibly caused by a defect in insulin signaling in β cells. Inhibition of class IA phosphatidylinositol 3-kinase (PI3K), using a mouse model lacking the pik3r1 gene specifically in β cells and the pik3r2 gene systemically (βDKO mouse), results in glucose intolerance and reduced insulin secretion in response to glucose. β cells of βDKO mice had defective exocytosis machinery due to decreased expression of soluble N-ethylmaleimide attachment protein receptor (SNARE) complex proteins and loss of cell-cell synchronization in terms of Ca(2+) influx. These defects were normalized by expression of a constitutively active form of Akt in the islets of βDKO mice, preserving insulin secretion in response to glucose. The class IA PI3K pathway in β cells in vivo is important in the regulation of insulin secretion and may be a therapeutic target for type 2 diabetes.

  9. Human Pancreatic β Cell lncRNAs Control Cell-Specific Regulatory Networks.

    PubMed

    Akerman, Ildem; Tu, Zhidong; Beucher, Anthony; Rolando, Delphine M Y; Sauty-Colace, Claire; Benazra, Marion; Nakic, Nikolina; Yang, Jialiang; Wang, Huan; Pasquali, Lorenzo; Moran, Ignasi; Garcia-Hurtado, Javier; Castro, Natalia; Gonzalez-Franco, Roser; Stewart, Andrew F; Bonner, Caroline; Piemonti, Lorenzo; Berney, Thierry; Groop, Leif; Kerr-Conte, Julie; Pattou, Francois; Argmann, Carmen; Schadt, Eric; Ravassard, Philippe; Ferrer, Jorge

    2017-02-07

    Recent studies have uncovered thousands of long non-coding RNAs (lncRNAs) in human pancreatic β cells. β cell lncRNAs are often cell type specific and exhibit dynamic regulation during differentiation or upon changing glucose concentrations. Although these features hint at a role of lncRNAs in β cell gene regulation and diabetes, the function of β cell lncRNAs remains largely unknown. In this study, we investigated the function of β cell-specific lncRNAs and transcription factors using transcript knockdowns and co-expression network analysis. This revealed lncRNAs that function in concert with transcription factors to regulate β cell-specific transcriptional networks. We further demonstrate that the lncRNA PLUTO affects local 3D chromatin structure and transcription of PDX1, encoding a key β cell transcription factor, and that both PLUTO and PDX1 are downregulated in islets from donors with type 2 diabetes or impaired glucose tolerance. These results implicate lncRNAs in the regulation of β cell-specific transcription factor networks.

  10. Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche

    PubMed Central

    Bankaitis, Eric D.; Bechard, Matthew E.; Wright, Christopher V.E.

    2015-01-01

    In the mammalian pancreas, endocrine cells undergo lineage allocation upon emergence from a bipotent duct/endocrine progenitor pool, which resides in the “trunk epithelium.” Major questions remain regarding how niche environments are organized within this epithelium to coordinate endocrine differentiation with programs of epithelial growth, maturation, and morphogenesis. We used EdU pulse-chase and tissue-reconstruction approaches to analyze how endocrine progenitors and their differentiating progeny are assembled within the trunk as it undergoes remodeling from an irregular plexus of tubules to form the eventual mature, branched ductal arbor. The bulk of endocrine progenitors is maintained in an epithelial “plexus state,” which is a transient intermediate during epithelial maturation within which endocrine cell differentiation is continually robust and surprisingly long-lived. Within the plexus, local feedback effects derived from the differentiating and delaminating endocrine cells nonautonomously regulate the flux of endocrine cell birth as well as proliferative growth of the bipotent cell population using Notch-dependent and Notch-independent influences, respectively. These feedback effects in turn maintain the plexus state to ensure prolonged allocation of endocrine cells late into gestation. These findings begin to define a niche-like environment guiding the genesis of the endocrine pancreas and advance current models for how differentiation is coordinated with the growth and morphogenesis of the developing pancreatic epithelium. PMID:26494792

  11. Pancreatic Cancer Early Detection Program

    ClinicalTrials.gov

    2014-07-30

    Pancreatic Cancer; Pancreas Cancer; Pancreatic Adenocarcinoma; Familial Pancreatic Cancer; BRCA 1/2; HNPCC; Lynch Syndrome; Hereditary Pancreatitis; FAMMM; Familial Atypical Multiple Mole Melanoma; Peutz Jeghers Syndrome

  12. Lack of association between the pancreatitis risk allele CEL-HYB and pancreatic cancer.

    PubMed

    Shindo, Koji; Yu, Jun; Suenaga, Masaya; Fesharakizadeh, Shahriar; Tamura, Koji; Almario, Jose Alejandro Navarro; Brant, Aaron; Borges, Michael; Siddiqui, Abdulrehman; Datta, Lisa; Wolfgang, Christopher L; Hruban, Ralph H; Klein, Alison Patricia; Goggins, Michael

    2017-02-07

    CEL-HYB is a hybrid allele that arose from a crossover between the 3' end of the Carboxyl ester lipase (CEL) gene and the nearby CEL pseudogene (CELP) and was recently identified as a risk factor for chronic pancreatitis. Since chronic pancreatitis is a risk factor for the development of pancreatic cancer, we compared the prevalence of the CEL-HYB allele in patients with pancreatic ductal adenocarcinoma to spousal controls and disease controls. The CEL-HYB allele was detected using Sanger and next generation sequencing. There was no significant difference in the prevalence of the CEL-HYB allele between cases with pancreatic ductal adenocarcinoma compared to controls; 2.6% (22/850) vs. 1.8% (18/976) (p=0.35). CEL-HYB carriers were not more likely to report a history of pancreatitis. Patients with pancreatic cancer are not more likely than controls to be carriers of the CEL-HYB allele.

  13. Diabetes and pancreatic cancer.

    PubMed

    Burney, Saira; Irfan, Khadija; Saif, Muhammad Wasif; Masud, Faisal

    2014-07-28

    Research suggests a possible link between type 2 diabetes and several malignancies. Animal models have shown that hyperinsulinemic state underlying diabetes promotes tumor formation through stimulation of insulin-IGF-1 pathway; a possible role of inflammation is also proposed. One such link which has been under considerable study for years is that between diabetes and pancreatic cancer. Although epidemiological evidence points towards a reciprocal link between the two, the cause-effect relationship still remains unclear. This link was the subject of a large German epidemiological study presented at the American Society of Clinical Oncology Annual Meeting 2014 (Abstract #1604), which underscored the link between diabetes and some cancers. Schmidt et al. performed a retrospective database analysis over a 12 year period and reported an increased risk of certain types of cancer in diabetic patients. The most significant association (HR 2.17) was found for pancreatic cancer. Given the high mortality of pancreatic cancer, prevention through timely screening could play an important role in improving prognosis. Older subjects with recent-onset diabetes represent a high-risk group and hence are potential targets for pancreatic cancer screening thereby enabling its early diagnosis at a curable stage.

  14. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  15. Gut microbiota promote hematopoiesis to control bacterial infection.

    PubMed

    Khosravi, Arya; Yáñez, Alberto; Price, Jeremy G; Chow, Andrew; Merad, Miriam; Goodridge, Helen S; Mazmanian, Sarkis K

    2014-03-12

    The commensal microbiota impacts specific immune cell populations and their functions at peripheral sites, such as gut mucosal tissues. However, it remains unknown whether gut microbiota control immunity through regulation of hematopoiesis at primary immune sites. We reveal that germ-free mice display reduced proportions and differentiation potential of specific myeloid cell progenitors of both yolk sac and bone marrow origin. Homeostatic innate immune defects may lead to impaired early responses to pathogens. Indeed, following systemic infection with Listeria monocytogenes, germ-free and oral-antibiotic-treated mice display increased pathogen burden and acute death. Recolonization of germ-free mice with a complex microbiota restores defects in myelopoiesis and resistance to Listeria. These findings reveal that gut bacteria direct innate immune cell development via promoting hematopoiesis, contributing to our appreciation of the deep evolutionary connection between mammals and their microbiota.

  16. Targeting of metastasis-promoting tumor-associated fibroblasts and modulation of pancreatic tumor-associated stroma with a carboxymethylcellulose-docetaxel nanoparticle.

    PubMed

    Ernsting, Mark J; Hoang, Bryan; Lohse, Ines; Undzys, Elijus; Cao, Pinjiang; Do, Trevor; Gill, Bethany; Pintilie, Melania; Hedley, David; Li, Shyh-Dar

    2015-05-28

    Pancreatic ductal adenocarcinomas are characterized by the desmoplastic reaction, a dense fibrous stroma that has been shown to be supportive of tumor cell growth, invasion, and metastasis, and has been associated with resistance to chemotherapy and reduced patient survival. Here, we investigated targeted depletion of stroma for pancreatic cancer therapy via taxane nanoparticles. Cellax-DTX polymer is a conjugate of docetaxel (DTX), polyethylene glycol (PEG), and acetylated carboxymethylcellulose, a construct which condenses into well-defined 120nm particles in an aqueous solution, and is suitable for intravenous injection. We examined Cellax-DTX treatment effects in highly stromal primary patient-derived pancreatic cancer xenografts and in a metastatic PAN02 mouse model of pancreatic cancer, focusing on specific cellular interactions in the stroma, pancreatic tumor growth and metastasis. Greater than 90% of Cellax-DTX particles accumulate in smooth muscle actin (SMA) positive cancer-associated fibroblasts which results in long-term depletion of this stromal cell population, an effect not observed with Nab-paclitaxel (Nab-PTX). The reduction in stromal density leads to a >10-fold increase in tumor perfusion, reduced tumor weight and a reduction in metastasis. Consentingly, Cellax-DTX treatment increased survival when compared to treatment with gemcitabine or Nab-PTX in a metastatic PAN02 mouse model. Cellax-DTX nanoparticles interact with the tumor-associated stroma, selectively interacting with and depleting SMA positive cells and macrophage, effects of which are associated with significant changes in tumor progression and metastasis.

  17. Heterogeneity of metastatic pancreatic adenocarcinoma: Lung metastasis show better prognosis than liver metastasis—a case control study

    PubMed Central

    Claire, Decoster; Marine, Gilabert; Aurélie, Autret; Olivier, Turrini; Sandrine, Oziel-Taieb; Flora, Poizat; Marc, Giovannini; Patrice, Viens; Juan, Iovanna; Jean-Luc, Raoul

    2016-01-01

    The prognosis of metastatic pancreatic ductal adenocarcinoma (PDAC) is grim, with a median overall survival of under 1 year. In our clinical practice, we observed a few cases of isolated lung metastases from PDAC with unusually long outcomes. We compared these cases in a case-control study of lung-only vs. liver-only metastases from PDAC. From our database, we found 37 cases of lung-only metastases and paired them with 37 cases of liver-only metastases by age, tumor location and treatment. The lung-only group differed significantly from the liver-only group with respect to the following parameters: female predominance, more metachronous cases, fewer nodules per patient, and smaller increases in tumor markers. Local invasion parameters (i.e., arterial or venous involvement) were not significantly different. The outcomes were significantly different, with a median overall survival from the occurrence of metastases of 20.8 vs. 9.1 months and a median progression-free survival of 11 vs. 3.5 months. In conclusion, this case-control study seemed to confirm that lung-only PDAC metastases have prognoses different from those of liver-only metastases. A better understanding of the mechanisms underlying these differences will help identify abnormalities associated with tumor aggressiveness. PMID:27286454

  18. Sensing and Sensibility: Single-Islet-based Quality Control Assay of Cryopreserved Pancreatic Islets with Functionalized Hydrogel Microcapsules.

    PubMed

    Chen, Wanyu; Shu, Zhiquan; Gao, Dayong; Shen, Amy Q

    2016-01-21

    Despite decades of research and clinical studies of islet transplantations, finding simple yet reliable islet quality assays that correlate accurately with in vivo potency is still a major challenge, especially for real-time and single-islet-based quality assessment. Herein, proof-of-concept studies of a cryopreserved microcapsule-based quality control assays are presented for single islets. Individual rat pancreatic islets and fluorescent oxygen-sensitive dye (FOSD) are encapsulated in alginate hydrogel microcapsules via a microfluidic device. To test the susceptibility of the microcapsules and the FOSD to cryopreservation, the islet microcapsules containing FOSD are cryopreserved and the islet functionalities (adenosine triphosphate, static insulin release measurement, and oxygen consumption rate) are assessed after freezing and thawing steps. The cryopreserved islet capsules with FOSD remain functional after encapsulation and freezing/thawing procedures, validating a simple yet reliable individual-islet-based quality control method for the entire islet processing procedure prior to transplantation. This work also demonstrates that the functionality of cryopreserved islets can be improved by introducing trehalose into the routinely used cryoprotectant dimethyl sulfoxide. The functionalized alginate hydrogel microcapsules with embedded FOSD and optimized cryopreservation protocol presented in this work serve as a versatile islet quality assay and offer tremendous promise for tackling existing challenges in islet transplantation procedures.

  19. Chk1 promotes replication fork progression by controlling replication initiation.

    PubMed

    Petermann, Eva; Woodcock, Mick; Helleday, Thomas

    2010-09-14

    DNA replication starts at initiation sites termed replication origins. Metazoan cells contain many more potential origins than are activated (fired) during each S phase. Origin activation is controlled by the ATR checkpoint kinase and its downstream effector kinase Chk1, which suppresses origin firing in response to replication blocks and during normal S phase by inhibiting the cyclin-dependent kinase Cdk2. In addition to increased origin activation, cells deficient in Chk1 activity display reduced rates of replication fork progression. Here we investigate the causal relationship between increased origin firing and reduced replication fork progression. We use the Cdk inhibitor roscovitine or RNAi depletion of Cdc7 to inhibit origin firing in Chk1-inhibited or RNAi-depleted cells. We report that Cdk inhibition and depletion of Cdc7 can alleviate the slow replication fork speeds in Chk1-deficient cells. Our data suggest that increased replication initiation leads to slow replication fork progression and that Chk1 promotes replication fork progression during normal S phase by controlling replication origin activity.

  20. Organic agriculture promotes evenness and natural pest control.

    PubMed

    Crowder, David W; Northfield, Tobin D; Strand, Michael R; Snyder, William E

    2010-07-01

    Human activity can degrade ecosystem function by reducing species number (richness) and by skewing the relative abundance of species (evenness). Conservation efforts often focus on restoring or maintaining species number, reflecting the well-known impacts of richness on many ecological processes. In contrast, the ecological effects of disrupted evenness have received far less attention, and developing strategies for restoring evenness remains a conceptual challenge. In farmlands, agricultural pest-management practices often lead to altered food web structure and communities dominated by a few common species, which together contribute to pest outbreaks. Here we show that organic farming methods mitigate this ecological damage by promoting evenness among natural enemies. In field enclosures, very even communities of predator and pathogen biological control agents, typical of organic farms, exerted the strongest pest control and yielded the largest plants. In contrast, pest densities were high and plant biomass was low when enemy evenness was disrupted, as is typical under conventional management. Our results were independent of the numerically dominant predator or pathogen species, and so resulted from evenness itself. Moreover, evenness effects among natural enemy groups were independent and complementary. Our results strengthen the argument that rejuvenation of ecosystem function requires restoration of species evenness, rather than just richness. Organic farming potentially offers a means of returning functional evenness to ecosystems.

  1. Enhanced glucose-induced intracellular signaling promotes insulin hypersecretion: pancreatic beta-cell functional adaptations in a model of genetic obesity and prediabetes.

    PubMed

    Irles, Esperanza; Ñeco, Patricia; Lluesma, Mónica; Villar-Pazos, Sabrina; Santos-Silva, Junia Carolina; Vettorazzi, Jean F; Alonso-Magdalena, Paloma; Carneiro, Everardo M; Boschero, Antonio C; Nadal, Ángel; Quesada, Ivan

    2015-03-15

    Obesity is associated with insulin resistance and is known to be a risk factor for type-2 diabetes. In obese individuals, pancreatic beta-cells try to compensate for the increased insulin demand in order to maintain euglycemia. Most studies have reported that this adaptation is due to morphological changes. However, the involvement of beta-cell functional adaptations in this process needs to be clarified. For this purpose, we evaluated different key steps in the glucose-stimulated insulin secretion (GSIS) in intact islets from female ob/ob obese mice and lean controls. Obese mice showed increased body weight, insulin resistance, hyperinsulinemia, glucose intolerance and fed hyperglycemia. Islets from ob/ob mice exhibited increased glucose-induced mitochondrial activity, reflected by enhanced NAD(P)H production and mitochondrial membrane potential hyperpolarization. Perforated patch-clamp examination of beta-cells within intact islets revealed several alterations in the electrical activity such as increased firing frequency and higher sensitivity to low glucose concentrations. A higher intracellular Ca(2+) mobilization in response to glucose was also found in ob/ob islets. Additionally, they displayed a change in the oscillatory pattern and Ca(2+) signals at low glucose levels. Capacitance experiments in intact islets revealed increased exocytosis in individual ob/ob beta-cells. All these up-regulated processes led to increased GSIS. In contrast, we found a lack of beta-cell Ca(2+) signal coupling, which could be a manifestation of early defects that lead to beta-cell malfunction in the progression to diabetes. These findings indicate that beta-cell functional adaptations are an important process in the compensatory response to obesity.

  2. Physiological concentrations of interleukin-6 directly promote insulin secretion, signal transduction, nitric oxide release, and redox status in a clonal pancreatic β-cell line and mouse islets.

    PubMed

    da Silva Krause, Mauricio; Bittencourt, Aline; Homem de Bittencourt, Paulo Ivo; McClenaghan, Neville H; Flatt, Peter R; Murphy, Colin; Newsholme, Philip

    2012-09-01

    Interleukin-6 (IL6) has recently been reported to promote insulin secretion in a glucagon-like peptide-1-dependent manner. Herein, the direct effects of IL6 (at various concentrations from 0 to 1000 pg/ml) on pancreatic β-cell metabolism, AMP-activated protein kinase (AMPK) signaling, insulin secretion, nitrite release, and redox status in a rat clonal β-cell line and mouse islets are reported. Chronic insulin secretion (in μg/mg protein per 24  h) was increased from 128·7±7·3 (no IL6) to 178·4±7·7 (at 100  pg/ml IL6) in clonal β-cells and increased significantly in islets incubated in the presence of 5·5  mM glucose for 2  h, from 0·148 to 0·167±0·003  ng/islet. Pretreatment with IL6 also induced a twofold increase in basal and nutrient-stimulated insulin secretion in subsequent 20 min static incubations. IL6 enhanced both glutathione (GSH) and glutathione disulphide (GSSG) by nearly 20% without changing intracellular redox status (GSSG/GSH). IL6 dramatically increased iNOS expression (by ca. 100-fold) with an accompanying tenfold rise in nitrite release in clonal β-cells. Phosphorylated AMPK levels were elevated approximately twofold in clonal β-cells and mouse islet cells. Calmodulin-dependent protein kinase kinase levels (CaMKK), an upstream kinase activator of AMPK, were also increased by 50% after IL6 exposure (in β-cells and islets). Our data have demonstrated that IL6 can stimulate β-cell-dependent insulin secretion via direct cell-based mechanisms. AMPK, CaMKK (an upstream kinase activator of AMPK), and the synthesis of nitric oxide appear to alter cell metabolism to benefit insulin secretion. In summary, IL6 exerts positive effects on β-cell signaling, metabolism, antioxidant status, and insulin secretion.

  3. [Acute pancreatitis].

    PubMed

    Hecker, M; Mayer, K; Askevold, I; Collet, P; Weigand, M A; Krombach, G A; Padberg, W; Hecker, A

    2014-03-01

    Acute pancreatitis is a potentially fatal disease with individually differing expression of systemic involvement. For this reason early diagnosis with subsequent risk stratification is essential in the clinical management of this frequent gastroenterological disorder. Severe forms of acute pancreatitis occur in approximately 20 % of cases often requiring intensive care monitoring and interdisciplinary therapeutic approaches. In the acute phase adequate fluid replacement and sufficient analgesic therapy is of major therapeutic importance. Concerning the administration of antibiotics and the nutritional support of patients with acute pancreatitis a change in paradigms could be observed in recent years. Furthermore, endoscopic, radiological or surgical interventions can be necessary depending on the severity of the disease and potential complications.

  4. [Pancreatic ultrasonography].

    PubMed

    Fernández-Rodríguez, T; Segura-Grau, A; Rodríguez-Lorenzo, A; Segura-Cabral, J M

    2015-04-01

    Despite the recent technological advances in imaging, abdominal ultrasonography continues to be the first diagnostic test indicated in patients with a suspicion of pancreatic disease, due to its safety, accessibility and low cost. It is an essential technique in the study of inflammatory processes, since it not only assesses changes in pancreatic parenchyma, but also gives an indication of the origin (bile or alcoholic). It is also essential in the detection and tracing of possible complications as well as being used as a guide in diagnostic and therapeutic punctures. It is also the first technique used in the study of pancreatic tumors, detecting them with a sensitivity of around 70% and a specificity of 90%.

  5. A comparison of enteric coated microspheres with enteric coated tablet pancreatic enzyme preparations in cystic fibrosis. A controlled study.

    PubMed

    Vyas, H; Matthew, D J; Milla, P J

    1990-01-01

    A comparative study of the efficacy of pH sensitive enteric coated microspheres (ECM) with an enteric coated tablet (ECT) pancreatic enzyme preparation was carried out in 20 children with cystic fibrosis in a double-blind double-placebo crossover manner. Steatorrhoea was assessed by 3 day faecal fat analysis and dosage of medication, stool frequency and consistency; abdominal pain and appetite were documented by a patient-kept diary card. ECM controlled steatorrhoea (11.8 +/- 9.2 g vs 23.2 +/- 18.9 g, P less than 0.02), stool frequency (1.7 +/- 0.6 vs 2.1 +/- 0.9, P less than 0.01) and abdominal pain (8.8 +/- 13.8 vs 23.4 +/- 24.1, P less than 0.05) significantly better than ECT. Out of 20 patients 17 preferred ECM to ECT (P less than 0.00036). ECM preparations should allow more satisfactory dietary management of patients with cystic fibrosis with longterm beneficial effect.

  6. A distal intergenic region controls pancreatic endocrine differentiation by acting as a transcriptional enhancer and as a polycomb response element.

    PubMed

    van Arensbergen, Joris; Dussaud, Sebastien; Pardanaud-Glavieux, Corinne; García-Hurtado, Javier; Sauty, Claire; Guerci, Aline; Ferrer, Jorge; Ravassard, Philippe

    2017-01-01

    Lineage-selective expression of developmental genes is dependent on the interplay between activating and repressive mechanisms. Gene activation is dependent on cell-specific transcription factors that recognize transcriptional enhancer sequences. Gene repression often depends on the recruitment of Polycomb group (PcG) proteins, although the sequences that underlie the recruitment of PcG proteins, also known as Polycomb response elements (PREs), remain poorly understood in vertebrates. While distal PREs have been identified in mammals, a role for positive-acting enhancers in PcG-mediated repression has not been described. Here we have used a highly efficient procedure based on lentiviral-mediated transgenesis to carry out in vivo fine-mapping of, cis-regulatory sequences that control lineage-specific activation of Neurog3, a master regulator of pancreatic endocrine differentiation. Our findings reveal an enhancer region that is sufficient to drive correct spacio-temporal expression of Neurog3 and demonstrate that this same region serves as a PRE in alternative lineages where Neurog3 is inactive.

  7. A distal intergenic region controls pancreatic endocrine differentiation by acting as a transcriptional enhancer and as a polycomb response element

    PubMed Central

    Pardanaud-Glavieux, Corinne; García-Hurtado, Javier; Sauty, Claire; Guerci, Aline; Ferrer, Jorge

    2017-01-01

    Lineage-selective expression of developmental genes is dependent on the interplay between activating and repressive mechanisms. Gene activation is dependent on cell-specific transcription factors that recognize transcriptional enhancer sequences. Gene repression often depends on the recruitment of Polycomb group (PcG) proteins, although the sequences that underlie the recruitment of PcG proteins, also known as Polycomb response elements (PREs), remain poorly understood in vertebrates. While distal PREs have been identified in mammals, a role for positive-acting enhancers in PcG-mediated repression has not been described. Here we have used a highly efficient procedure based on lentiviral-mediated transgenesis to carry out in vivo fine-mapping of, cis-regulatory sequences that control lineage-specific activation of Neurog3, a master regulator of pancreatic endocrine differentiation. Our findings reveal an enhancer region that is sufficient to drive correct spacio-temporal expression of Neurog3 and demonstrate that this same region serves as a PRE in alternative lineages where Neurog3 is inactive. PMID:28225770

  8. [The association study of the promoter polymorphism -308G>A of tumor necrosis factor gene with the development and severity of acute pancreatitis in Russian population of Kursk region].

    PubMed

    Samgina, T A; Bushueva, O Iu; Ivanov, V P; Solodilova, M A; Nazarenko, P M; Polonikov, A V

    2014-01-01

    The aim of this study was to investigate the relationship between the polymorphism -308G>A of tumor necrosis factor (TNF) gene and the risk and severity of acute pancreatitis (AP) in unrelated Russians from Kursk region. DNA samples were obtained from 190 AP patients and 217 healthy controls for genotyping the polymorphism through a TaqMan allelic discrimination assay. Although -308G>A genotypes did not show a significant association with disease risk, the genotype -308GA was found to be associated only with non-severe type of acute alcohol-related pancreatitis (odds ratio 1.81 (95% CI 1.02-3.23 p=0.04).

  9. Rhizobacterial characterization for quality control of eucalyptus biogrowth promoter products.

    PubMed

    Zarpelon, Talyta Galafassi; Guimarães, Lúcio Mauro da Silva; Alfenas-Zerbini, Poliane; Lopes, Eli Sidney; Mafia, Reginaldo Gonçalves; Alfenas, Acelino Couto

    Plant growth-promoting rhizobacteria strains from special formulations have been used to optimize eucalyptus cutting production. To undertake quality control for the formulated products, the rhizobacterial strains should be characterized to assess their purity and authentication. In the present study, we characterized nine strains of rhizobacteria, including three Bacillus subtilis (S1, S2 and 3918), two Pseudomonas sp. (MF4 and FL2), P. putida (MF2), P. fulva (Ca), Frateuria aurantia (R1), and Stenotrophomonas maltophilia (CIIb). The strains were differentiated by colony morphology after 24h of incubation in three different solid state culture media (glucose-nutritive agar, 523 medium and yeast extract-mannitol agar), sensitivity to a panel of 28 antibiotics (expressed according to the formation of inhibition halos of bacterial growth in the presence of antibiotics), and PCR-RFLP profiles of the 16S rDNA gene produced using nine restriction enzymes. It was possible to differentiate all nine strains of rhizobacteria using their morphological characteristics and sensitivity to antibiotics. The molecular analysis allowed us to separate the strains CIIb, FL2 and R1 from the strains belonging to the genera Bacillus and Pseudomonas. By using these three methods concomitantly, we were able to determine strain purity and perform the authentication.

  10. Antagonism of microRNA-99a promotes cell invasion and down-regulates E-cadherin expression in pancreatic cancer cells by regulating mammalian target of rapamycin.

    PubMed

    Li, Dan; Li, Xiaohan; Cao, Wei; Qi, Yafei; Yang, Xianghong

    2014-06-01

    MicroRNA-99a (miRNA-99a), a potential tumor suppressor, has been implicated in tumorigenesis of many human malignancies. However, the role of miRNA-99a in pancreatic cancer remains unclear. In the present study, we transfected miRNA-99a antagonism into human pancreatic cancer AsPC-1 cells to inhibit miRNA-99a expression and investigated its influence on cell migration and invasion as well as the underlying possible mechanisms. We found that miRNA-99a antagonism significantly increased proliferation, migration and invasion abilities of AsPC-1 cells, which was accompanied by increased expression of mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and α-SMA), and decreased expression of epithelial phenotype cell biomarker (E-cadherin). Interestingly, small interfering RNA (siRNA)-mediated knockdown of mammalian target of rapamycin (mTOR) remarkably restored miRNA-99a antagonism-induced down-regulation of E-cadherin. In conclusion, our data suggest that miRNA-99a is involved in pancreatic cancer migration and invasion by regulating mTOR, and may provide a target for effective therapies against pancreatic cancer.

  11. Autoimmune pancreatitis mimicking pancreatic tumor

    PubMed Central

    Dede, Kristóf; Salamon, Ferenc; Taller, András; Teknős, Dániel; Bursics, Attila

    2012-01-01

    Autoimmune pancreatitis (AIP) is a rare disease of unknown pathomechanism. It belongs to the IgG4-related disease family and responds well to steroids, although the relapse rate can reach up to 20–30%. Differentiating AIP from the more common pancreatic cancer can be very challenging. About 20% of AIP is diagnosed postoperatively during final histological examination. Each of the investigative tools can add something to the definitive diagnosis; the question remains whether it is possible to prevent an unnecessary resection. Through our case we would like to demonstrate the differential diagnostic opportunities and present the literary background of this issue. In conclusion, we can state that whenever a focal pancreatic lesion is encountered AIP should always be considered. PMID:24968399

  12. Bone Marrow-Derived Mesenchymal Stem Cells Repair Necrotic Pancreatic Tissue and Promote Angiogenesis by Secreting Cellular Growth Factors Involved in the SDF-1α/CXCR4 Axis in Rats

    PubMed Central

    Qian, Daohai; Gong, Jian; He, Zhigang; Hua, Jie; Lin, Shengping; Xu, Chenglei; Meng, Hongbo; Song, Zhenshun

    2015-01-01

    Acute pancreatitis (AP), a common acute abdominal disease, 10%–20% of which can evolve into severe acute pancreatitis (SAP), is of significant morbidity and mortality. Bone marrow-derived mesenchymal stem cells (BMSCs) have been reported to have a potential therapeutic role on SAP, but the specific mechanism is unclear. Therefore, we conducted this experiment to shed light on the probable mechanism. We validated that SDF-1α significantly stimulated the expressions of VEGF, ANG-1, HGF, TGF-β, and CXCR4 in BMSCs, which were inhibited by its receptor agonist, AMD3100. The capacities of proliferation, migration, and repair of human umbilical vein endothelial cells were enhanced by BMSCs supernatant. Meanwhile, BMSCs supernatant could also promote angiogenesis, especially after the stimulation with SDF-1α. In vivo, the migration of BMSCs was regulated by SDF-1α/CXCR4 axis. Moreover, transplanted BMSCs could significantly alleviate SAP, reduce the systematic inflammation (TNF-α↓, IL-1β↓, IL-6↓, IL-4↑, IL-10↑, and TGF-β↑), and promote tissue repair and angiogenesis (VEGF↑, ANG-1↑, HGF↑, TGF-β↑, and CD31↑), compared with the SAP and anti-CXCR4 groups. Taken together, the results showed that BMSCs ameliorated SAP and the SDF-1α/CXCR4 axis was involved in the repair and regeneration process. PMID:25810724

  13. Exocrine Pancreatic Carcinogenesis and Autotaxin Expression

    PubMed Central

    Kadekar, Sandeep; Silins, Ilona; Korhonen, Anna; Dreij, Kristian; Al-Anati, Lauy; Högberg, Johan; Stenius, Ulla

    2012-01-01

    Exocrine pancreatic cancer is an aggressive disease with an exceptionally high mortality rate. Genetic analysis suggests a causative role for environmental factors, but consistent epidemiological support is scarce and no biomarkers for monitoring the effects of chemical pancreatic carcinogens are available. With the objective to identify common traits for chemicals inducing pancreatic tumors we studied the National Toxicology Program (NTP) bioassay database. We found that male rats were affected more often than female rats and identified eight chemicals that induced exocrine pancreatic tumors in males only. For a hypothesis generating process we used a text mining tool to analyse published literature for suggested mode of actions (MOA). The resulting MOA analysis suggested inflammatory responses as common feature. In cell studies we found that all the chemicals increased protein levels of the inflammatory protein autotaxin (ATX) in Panc-1, MIA PaCa-2 or Capan-2 cells. Induction of MMP-9 and increased invasive migration were also frequent effects, consistent with ATX activation. Testosterone has previously been implicated in pancreatic carcinogenesis and we found that it increased ATX levels. Our data show that ATX is a target for chemicals inducing pancreatic tumors in rats. Several lines of evidence implicate ATX and its product lysophosphatidic acid in human pancreatic cancer. Mechanisms of action may include stimulated invasive growth and metastasis. ATX may interact with hormones or onco- or suppressor-genes often deregulated in exocrine pancreatic cancer. Our data suggest that ATX is a target for chemicals promoting pancreatic tumor development. PMID:22952646

  14. GPER Promoter Methylation Controls GPER Expression in Breast Cancer Patients.

    PubMed

    Weissenborn, Christine; Ignatov, Tanja; Nass, Norbert; Kalinski, Thomas; Dan Costa, Serban; Zenclussen, Ana Claudia; Ignatov, Atanas

    2017-02-07

    Recently, we found that G-protein-coupled estrogen receptor (GPER) protein expression decreased during breast carcinogenesis, and that GPER promoter is methylated. Here we analyzed GPER promoter methylation in 260 primary breast cancer specimens by methylation-specific polymerized chain reaction. The results demonstrated that GPER protein down-regulation significantly correlated with GPER promoter hypermethylation (p < .001). Comparison of 108 tumors and matched normal breast tissues indicated a significant GPER down-regulation in cancer tissues correlating with GPER promoter hypermethylation (p < .001). The latter was an unfavorable factor for overall survival of patients with triple-negative breast cancer (p = .025). Thus GPER promoter hypermethylation might be used as a prognostic factor.

  15. Moesin-dependent cytoskeleton remodelling is associated with an anaplastic phenotype of pancreatic cancer.

    PubMed

    Abiatari, Ivane; Esposito, Irene; Oliveira, Tiago De; Felix, Klaus; Xin, Hong; Penzel, Roland; Giese, Thomas; Friess, Helmut; Kleeff, Jörg

    2010-05-01

    Cell motility is controlled by the dynamic cytoskeleton and its related proteins, such as members of the ezrin/radixin/moesin (ERM) family, which act as signalling molecules inducing cytoskeleton remodelling. Although ERM proteins have been identified as important factors in various malignancies, functional redundancy between these proteins has hindered the dissection of their individual contribution. The aim of the present study was to analyse the functional role of moesin in pancreatic malignancies. Cancer cells of different malignant lesions of human and transgenic mice pancreata were evaluated by immunohistochemistry. For functional analysis, cell growth, adhesion and invasion assays were carried out after transient and stable knock-down of moesin expression in pancreatic cancer cells. In vivo tumourigenicity was determined using orthotopic and metastatic mouse tumour models. We now show that moesin knock-down increases migration, invasion and metastasis and influences extracellular matrix organization of pancreatic cancer. Moesin-regulated migratory activities of pancreatic cancer cells were in part promoted through cellular translocation of beta-catenin, and re-distribution and organization of the cytoskeleton. Analysis of human and different transgenic mouse pancreatic cancers demonstrated that moesin is a phenotypic marker for anaplastic carcinoma, suggesting that this ERM protein plays a specific role in pancreatic carcinogenesis.

  16. Sweating the small stuff: microRNAs and genetic changes define pancreatic cancer.

    PubMed

    Tang, Siuwah; Bonaroti, Jillian; Unlu, Sebnem; Liang, Xiaoyan; Tang, Daolin; Zeh, Herbert J; Lotze, Michael T

    2013-07-01

    MicroRNAs (miRNAs) are 18- to 22-nucleotide-long, single-stranded, noncoding RNAs that regulate important biological processes including differentiation, proliferation, and response to cellular stressors such as hypoxia, nutrient depletion, and traversion of the cell cycle by controlling protein expression within the cell. Many investigators have profiled cancer tissue and serum miRNAs to identify potential therapeutic targets, understand the pathways involved in tumorigenesis, and identify diagnostic tumor signatures. In the setting of pancreatic cancer, obtaining pancreatic tissue is invasive and impractical for early diagnosis. Several groups have profiled miRNAs that are present in the blood as a means to diagnose tumor progression and predict prognosis/survival or drug resistance. Several miRNA signatures found in pancreatic tissue and the peripheral blood, as well as the pathways that are associated with pancreatic cancer, are reviewed here in detail. Three miRNA biomarkers (miR-21, miR-155, and miR-200) have been repetitively identified in both pancreatic cancer tissue and patients' blood. Those miRNAs regulate and are regulated by the central genetic and epigenetic changes observed in pancreatic cancer including p53, transforming growth factor β, p16(INK4A), BRCA1/2, and Kras. These miRNAs are involved in DNA repair, cell cycle, and cell invasion and also play important roles in promoting metastases.

  17. Is Pancreatic Cancer Hereditary?

    MedlinePlus

    ... Trials Database Supporting Research Raising Awareness Our Blog Patient Education Pancreas News Basics of Pancreatic Cancer FAQs The ... Detection- Goggins Lab Sol Goldman Center Discussion Board Patient Education / Basics of Pancreatic Cancer Is pancreatic cancer hereditary? ...

  18. Acute Pancreatitis and Pregnancy

    MedlinePlus

    ... and Pregnancy Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is defined as the sudden inflammation ... the incidence of recurrent attacks minimized. Timothy Gardner, MD is Director of Pancreatic Disorders at Dartmouth-Hitchcock ...

  19. Central Control of Circadian Phase in Arousal-Promoting Neurons

    PubMed Central

    Mahoney, Carrie E.; McKinley Brewer, Judy; Bittman, Eric L.

    2013-01-01

    Cells of the dorsomedial/lateral hypothalamus (DMH/LH) that produce hypocretin (HCRT) promote arousal in part by activation of cells of the locus coeruleus (LC) which express tyrosine hydroxylase (TH). The suprachiasmatic nucleus (SCN) drives endogenous daily rhythms, including those of sleep and wakefulness. These circadian oscillations are generated by a transcriptional-translational feedback loop in which the Period (Per) genes constitute critical components. This cell-autonomous molecular clock operates not only within the SCN but also in neurons of other brain regions. However, the phenotype of such neurons and the nature of the phase controlling signal from the pacemaker are largely unknown. We used dual fluorescent in situ hybridization to assess clock function in vasopressin, HCRT and TH cells of the SCN, DMH/LH and LC, respectively, of male Syrian hamsters. In the first experiment, we found that Per1 expression in HCRT and TH oscillated in animals held in constant darkness with a peak phase that lagged that in AVP cells of the SCN by several hours. In the second experiment, hamsters induced to split their locomotor rhythms by exposure to constant light had asymmetric Per1 expression within cells of the middle SCN at 6 h before activity onset (AO) and in HCRT cells 9 h before and at AO. We did not observe evidence of lateralization of Per1 expression in the LC. We conclude that the SCN communicates circadian phase to HCRT cells via lateralized neural projections, and suggests that Per1 expression in the LC may be regulated by signals of a global or bilateral nature. PMID:23826226

  20. Acute pancreatitis in children and adolescents

    PubMed Central

    Suzuki, Mitsuyoshi; Sai, Jin Kan; Shimizu, Toshiaki

    2014-01-01

    In this Topic Highlight, the causes, diagnosis, and treatment of acute pancreatitis in children are discussed. Acute pancreatitis should be considered during the differential diagnosis of abdominal pain in children and requires prompt treatment because it may become life-threatening. The etiology, clinical manifestations, and course of acute pancreatitis in children are often different than in adults. Therefore, the specific features of acute pancreatitis in children must be considered. The etiology of acute pancreatitis in children is often drugs, infections, trauma, or anatomic abnormalities. Diagnosis is based on clinical symptoms (such as abdominal pain and vomiting), serum pancreatic enzyme levels, and imaging studies. Several scoring systems have been proposed for the assessment of severity, which is useful for selecting treatments and predicting prognosis. The basic pathogenesis of acute pancreatitis does not greatly differ between adults and children, and the treatments for adults and children are similar. In large part, our understanding of the pathology, optimal treatment, assessment of severity, and outcome of acute pancreatitis in children is taken from the adult literature. However, we often find that the common management of adult pancreatitis is difficult to apply to children. With advances in diagnostic techniques and treatment methods, severe acute pancreatitis in children is becoming better understood and more controllable. PMID:25400985

  1. Effect of endogenous cholecystokinin on the course of acute pancreatitis in rats

    PubMed Central

    Jia, Dongmei; Yamamoto, Mitsuyoshi; Otsuki, Makoto

    2015-01-01

    AIM: To examine the effects of pancreatic rest, stimulation and rest/stimulation on the natural course of recovery after acute pancreatitis. METHODS: Acute hemorrhagic pancreatitis (AP) was induced in male rats by intraductal infusion of 40 μL/100 g body weight of 3% sodium taurocholate. All rats took food ad libitum. At 24 h after induction of AP, rats were divided into four groups: control (AP-C), pancreas rest (AP-R), stimulation (AP-S), and rest/stimulation (AP-R/S). Rats in the AP-C, AP-R and AP-S groups received oral administration of 2 mL/kg body weight saline, cholecystokinin (CCK)-1 receptor antagonist, and endogenous CCK release stimulant, respectively, twice daily for 10 d, while those in the AP-R/S group received twice daily CCK-1 receptor antagonist for the first 5 d followed by twice daily CCK release stimulant for 5 d. Rats without any treatment were used as control group (Control). Biochemical and histological changes in the pancreas, and secretory function were evaluated on day 12 at 24 h after the last treatment. RESULTS: Feeding ad libitum (AP-C) delayed biochemical, histological and functional recovery from AP. In AP-C rats, bombesin-stimulated pancreatic secretory function and HOMA-β-cell score were significantly lower than those in other groups of rats. In AP-R rats, protein per DNA ratio and pancreatic exocrine secretory function were significantly low compared with those in Control rats. In AP-S and AP-R/S rats, the above parameters recovered to the Control levels. Bombesin-stimulated pancreatic exocrine response in AP-R/S rats was higher than in AP-S rats and almost returned to control levels. In the pancreas of AP-C rats, destruction of pancreatic acini, marked infiltration of inflammatory cells, and strong expression of α-smooth muscle actin, tumor necrosis factor-α and interleukin-1β were seen. Pancreatic rest reversed these histological alterations, but not atrophy of pancreatic acini and mild infiltration of inflammatory cells. In

  2. Transcriptional Control of Tight Junction Proteins via a Protein Kinase C Signal Pathway in Human Telomerase Reverse Transcriptase-Transfected Human Pancreatic Duct Epithelial Cells

    PubMed Central

    Yamaguchi, Hiroshi; Kojima, Takashi; Ito, Tatsuya; Kimura, Yasutoshi; Imamura, Masafumi; Son, Seiichi; Koizumi, Jun-ichi; Murata, Masaki; Nagayama, Minoru; Nobuoka, Takayuki; Tanaka, Satoshi; Hirata, Koichi; Sawada, Norimasa

    2010-01-01

    In human pancreatic cancer, integral membrane proteins of tight junction claudins are abnormally regulated, making these proteins promising molecular diagnostic and therapeutic targets. However, the regulation of claudin-based tight junctions remains unknown not only in the pancreatic cancer cells but also in normal human pancreatic duct epithelial (HPDE) cells. To investigate the regulation of tight junction molecules including claudins in normal HPDE cells, we introduced the human telomerase reverse transcriptase (hTERT) gene into HPDE cells in primary culture. The hTERT-transfected HPDE (hTERT-HPDE) cells were positive for the pancreatic duct epithelial markers such as CK7, CK19, and carbonic anhydrase isozyme 2 and expressed epithelial tight junction molecules claudin-1, -4, -7 and, -18, occludin, JAM-A, ZO-1, ZO-2, and tricellulin. By treatment with fetal bovine serum or 12-O-tetradecanoylphorbol 13-acetate (TPA), the tight junction molecules were up-regulated at the transcriptional level via a protein kinase C (PKC) signal pathway. A PKC-α inhibitor, Gö6976, prevented up-regulation of claudin-4 by TPA. Furthermore, a PKC-δ inhibitor, rottlerin, prevented up-regulation of claudin-7, occludin, ZO-1, and ZO-2 by TPA. By GeneChip analysis, up-regulation of the transcription factor ELF3 was observed in both fetal bovine serum- and TPA-treated cells. Treatment with small interfering RNAs of ELF3 prevented up-regulation of claudin-7 by TPA. These data suggest that tight junctions of normal HPDE cells were at least in part regulated via a PKC signal pathway by transcriptional control. PMID:20566751

  3. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk

    PubMed Central

    Campa, Daniele; Pastore, Manuela; Gentiluomo, Manuel; Talar-Wojnarowska, Renata; Kupcinskas, Juozas; Malecka-Panas, Ewa; Neoptolemos, John P.; Niesen, Willem; Vodicka, Pavel; Fave, Gianfranco Delle; Bueno-de-Mesquita, H. Bas; Gazouli, Maria; Pacetti, Paola; Di Leo, Milena; Ito, Hidemi; Klüter, Harald; Soucek, Pavel; Corbo, Vincenzo; Yamao, Kenji; Hosono, Satoyo; Kaaks, Rudolf; Vashist, Yogesh; Gioffreda, Domenica; Strobel, Oliver; Shimizu, Yasuhiro; Dijk, Frederike; Andriulli, Angelo; Ivanauskas, Audrius; Bugert, Peter; Tavano, Francesca; Vodickova, Ludmila; Zambon, Carlo Federico; Lovecek, Martin; Landi, Stefano; Key, Timothy J.; Boggi, Ugo; Pezzilli, Raffaele; Jamroziak, Krzysztof; Mohelnikova-Duchonova, Beatrice; Mambrini, Andrea; Bambi, Franco; Busch, Olivier; Pazienza, Valerio; Valente, Roberto; Theodoropoulos, George E.; Hackert, Thilo; Capurso, Gabriele; Cavestro, Giulia Martina; Pasquali, Claudio; Basso, Daniela; Sperti, Cosimo; Matsuo, Keitaro; Büchler, Markus; Khaw, Kay-Tee; Izbicki, Jakob; Costello, Eithne; Katzke, Verena; Michalski, Christoph; Stepien, Anna; Rizzato, Cosmeri; Canzian, Federico

    2016-01-01

    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk. PMID:27486979

  4. Notch Signaling in Pancreatic Development

    PubMed Central

    Li, Xu-Yan; Zhai, Wen-Jun; Teng, Chun-Bo

    2015-01-01

    The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways. PMID:26729103

  5. Impact of Circulating Vitamin D Binding Protein Levels on the Association Between 25-Hydroxyvitamin D and Pancreatic Cancer Risk: A Nested Case-Control Study

    PubMed Central

    Weinstein, Stephanie J.; Stolzenberg-Solomon, Rachael Z.; Kopp, William; Rager, Helen; Virtamo, Jarmo; Albanes, Demetrius

    2012-01-01

    High concentrations of circulating 25-hydroxyvitamin D [25(OH)D] have been associated with elevated pancreatic cancer risk. As this is contrary to an expected inverse association between vitamin D status and cancer, we examined whether vitamin D binding protein (DBP), the primary carrier of vitamin D compounds in circulation, plays a role in this relationship. Prediagnostic serum DBP and 25(OH)D were studied in relation to risk of pancreatic cancer in a nested case-control study of 234 pancreatic cancer cases and 234 controls in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study of Finnish men. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression, and statistical tests were two-sided. We found that DBP and 25(OH)D were correlated (r=0.27; p<0.0001), and DBP was inversely associated with pancreatic cancer risk (OR=0.66, 95% CI=0.39–1.12, for the highest vs. lowest quartile; p-trend=0.02). Importantly, this association appeared to have a threshold between quartiles 2–4 and quartile 1, and was primarily evident among men with concurrent high 25(OH)D concentrations (OR=0.33, 95% CI=0.16–0.70 for highest vs. lowest quartile; p-trend=0.002), with no association in men with lower serum 25(OH)D (OR=1.28, 95% CI=0.62–2.61 for highest vs. lowest quartile, p-trend 0.63, p-interaction= 0.01). Men with higher 25(OH)D concentrations and serum DBP below the median showed greatly elevated risk of pancreatic cancer (OR=5.01, 95% CI 2.33–10.78, for highest vs. lowest quartile; p-trend < 0.0001), while risk was weakly inversely associated with serum 25(OH)D when DBP concentrations were higher (p-interaction = 0.001). Taken together, our findings indicate that higher DBP concentrations may sequester more 25(OH)D and reduce free 25(OH)D bioavailability. Simultaneous examination of DBP and 25(OH)D may be important in determining the association of vitamin D with cancer risk. PMID:22232734

  6. Oral Food Intake Versus Fasting on Postoperative Pancreatic Fistula After Distal Pancreatectomy: A Multi-Institutional Randomized Controlled Trial.

    PubMed

    Fujii, Tsutomu; Yamada, Suguru; Murotani, Kenta; Okamura, Yukiyasu; Ishigure, Kiyoshi; Kanda, Mitsuro; Takeda, Shin; Morita, Satoshi; Nakao, Akimasa; Kodera, Yasuhiro

    2015-12-01

    The usefulness of enteral nutrition via a nasointestinal tube for patients who develop postoperative pancreatic fistula (POPF) after miscellaneous pancreatectomy procedures has been reported. However, no clear evidence regarding whether oral intake is beneficial or harmful during management of POPF after distal pancreatectomy (DP) is currently available.To investigate the effects of oral food intake on the healing process of POPF after DP.Multi-institutional randomized controlled trial in Nagoya University Hospital and 4 affiliated hospitals.Patients who developed POPF were randomly assigned to the dietary intake (DI) group (n = 15) or the fasted group (no dietary intake [NDI] group) (n = 15). The primary endpoint was the length of drain placement.No significant differences were found in the length of drain placement between the DI and NDI groups (12 [6-58] and 12 [7-112] days, respectively; P = 0.786). POPF progressed to a clinically relevant status (grade B/C) in 5 patients in the DI group and 4 patients in the NDI group (P = 0.690). POPF-related intra-abdominal hemorrhage was found in 1 patient in the NDI group but in no patients in the DI group (P = 0.309). There were no significant differences in POPF-related intra-abdominal hemorrhage, the incidence of other complications, or the length of the postoperative hospital stay between the 2 groups.Food intake did not aggravate POPF and did not prolong drain placement or hospital stay after DP. There may be no need to avoid oral DI in patients with POPF.

  7. [On PACAP-aggravated experimental acute pancreatitis].

    PubMed

    Chen, Youdai; Zhou, Zongguang; Chen, Youqin; Wang, Zhao; Gao, Hongkai; Zheng, Xuelian

    2004-12-01

    The role of PACAP (pituitary adenylate cyclase activating polypeptide), a peptidergic transmitter, in the pathogenesis of acute pancreatitis is not yet clear. This experiment was conducted to examine the action of exogenous PACAP on rat pancreas and on the course of experimental acute pancreatitis. The results showed that 5-30 microg/kg of PACAP slightly raised the serum amylase level, induced pancreatic edema (23.88% +/- 2.532%-25.86% +/- 1.974% of experiment groups versus 29.21% +/- 5.657% of control group), inflammatory cell infiltration, vacuolization of acinar cells, and occasionally fatty and parenchymal necroses. 15-30 microg/kg of PACAP aggravated cerulein-induced acute pancreatitis; the pancreatic edema became more marked (13.45% +/- 2.045%-17.66% +/- 4.652% of expreiment groups versus 21.83% +/- 3.013% of cerulein group, P<0.05), the serum amylase level became higher; and ascites, pancreatic bleeding, fatty and parenchymal necroses, and extensive vacuolization of acinar cells appeared. For sodium taurocholate-induced pancreatitis, 5-10 microg/kg of PACAP mildly attenuated the pancreatic edema, reduced the serum amylase level (1986.91 +/- 710.97-2944.33 +/- 1182.47 IU/L vs 3690.87 +/- 2277.99 IU/L, P<0.05), whereas it caused multifocal hemorrhage and prominent necrosis in pancreas. Except the cerulein-induced pancreatitis groups, other groups were found to have reduced pancreatic functional capillary density (FCD); when pancreatic edema was taken into consideration and calibrated FCD was introduced (FCD weighted against pancreatic wet/dry ratio), all groups revealed increases in pancreatic functional capillaries when compared with normal control. In conclusion, PACAP is proinflammatory in the pathogenesis of acute pancreatitis, PACAP plus cerulein can induce acute hemorrhagic/necrotizing pancreatitis, and the action of PACAP on cerulein-induced panceatitis may differ from that on sodium taurocholate-induced one. In this experiment, pancreatic FCD was

  8. Pancreatic regeneration: basic research and gene regulation.

    PubMed

    Okita, Kenji; Mizuguchi, Toru; Shigenori, Ota; Ishii, Masayuki; Nishidate, Toshihiko; Ueki, Tomomi; Meguro, Makoto; Kimura, Yasutoshi; Tanimizu, Naoki; Ichinohe, Norihisa; Torigoe, Toshihiko; Kojima, Takashi; Mitaka, Toshihiro; Sato, Noriyuki; Sawada, Norimasa; Hirata, Koichi

    2016-06-01

    Pancreatic regeneration (PR) is an interesting phenomenon that could provide clues as to how the control of diabetes mellitus might be achieved. Due to the different regenerative abilities of the pancreas and liver, the molecular mechanism responsible for PR is largely unknown. In this review, we describe five representative murine models of PR and thirteen humoral mitogens that stimulate β-cell proliferation. We also describe pancreatic ontogenesis, including the molecular transcriptional differences between α-cells and β-cells. Furthermore, we review 14 murine models which carry defects in genes related to key transcription factors for pancreatic ontogenesis to gain further insight into pancreatic development.

  9. Finasteride use and acute pancreatitis in Taiwan.

    PubMed

    Lai, Shih-Wei; Lai, Hsueh-Chou; Lin, Cheng-Li; Liao, Kuan-Fu

    2015-06-01

    The aim of this study was to examine whether there is an association between finasteride use and the risk of acute pancreatitis. This population-based case-control study used the database of the Taiwan National Health Insurance Program. There were 2,530 male subjects aged 40-84 years with a first-attack of acute pancreatitis during the period of 1998-2011 as the case group and 10,119 randomly selected subjects without acute pancreatitis as the control group. Both groups were matched by age and index year of diagnosing acute pancreatitis. Subjects who never had finasteride prescription were defined as "never use." Subjects who at least received 1 prescription for finasteride before the date of diagnosing acute pancreatitis were defined as "ever use." The association of acute pancreatitis with finasteride use was examined by the odds ratio (OR) and 95% confidence interval (CI) using the multivariable unconditional logistic regression model. The crude OR of acute pancreatitis was 1.78 (95%CI 1.33, 2.39) for subjects with ever use of finasteride, when compared with subjects with never use of finasteride. After adjusting for potential confounders, the adjusted OR of acute pancreatitis decreased to 1.25 (95%CI 0.90, 1.73) for subjects with ever use of finasteride, but no statistical significance was seen. No association can be detected between finasteride use and the risk of acute pancreatitis.

  10. Anx7 is required for nutritional control of gene expression in mouse pancreatic islets of Langerhans.

    PubMed Central

    Srivastava, Meera; Eidelman, Ofer; Leighton, Ximena; Glasman, Mirta; Goping, Gertrude; Pollard, Harvey B.

    2002-01-01

    BACKGROUND: Gene expression in islets of Langerhans is profoundly sensitive to glucose and other nutrients. Islets of Langerhans in the Anx7(+/-) knockout mouse exhibit a profound reduction in ITPR3 protein expression, defective intracellular calcium signaling, and defective insulin secretion. Additional data presented here also show that mRNA for ITPR3 is virtually undetectable in isolated Anx7(+/-) islets. IP3Receptor type 3 (ITPR3) expression in islets of Langerhans is closely regulated by secretory stimuli, and it has been suggested that the level of the ITPR3 expression controls the ability of the islets to respond to nutritional signals. We report that although control islets respond to glucose in vitro by a transient increment in ITPR3 mRNA, the islets from the Anx7(+/-) mouse remain low. We therefore hypothesized that the Anx7/IP3 Receptor(3)/Ca(2+) signaling pathway plays a role in beta cell responses to glucose, and that in the absence of the Anx7/ITPR3 signaling system, the islets would be unable to discriminate between fed or fasted states in vivo. MATERIALS AND METHODS: To test this hypothesis, we subjected Anx7(+/-) and control mice to either food and water ad libidum or to an overnight fast with access to water only. We then isolated the respective islets and compared nutrient-dependent changes in global gene expression under the four conditions using genome-based microarray technology. RESULTS: Anx7 protein expression in these islets is only about 50% of control levels in normal littermate controls, and IPTR3 message and protein are virtually zero. cDNA microarray analyses show that in control animals gene expression is significantly affected by the fasting state. Many of the affected genes have historical relevance to development and differentiation of islets. These include preproglucagon, APOJ, cadherin2, phosphoglucoisomerase, oncostatin M, PAX6, HGF, and cytokeratin 18. However, there are also many other nutritionally sensitive genes in control

  11. Pancreatic Exocrine Insufficiency in Pancreatic Cancer.

    PubMed

    Vujasinovic, Miroslav; Valente, Roberto; Del Chiaro, Marco; Permert, Johan; Löhr, J-Matthias

    2017-02-23

    Abstract: Cancer patients experience weight loss for a variety of reasons, commencing with the tumor's metabolism (Warburg effect) and proceeding via cachexia to loss of appetite. In pancreatic cancer, several other factors are involved, including a loss of appetite with a particular aversion to meat and the incapacity of the pancreatic gland to function normally when a tumor is present in the pancreatic head. Pancreatic exocrine insufficiency is characterized by a deficiency of the enzymes secreted from the pancreas due to the obstructive tumor, resulting in maldigestion. This, in turn, contributes to malnutrition, specifically a lack of fat-soluble vitamins, antioxidants, and other micronutrients. Patients with pancreatic cancer and pancreatic exocrine insufficiency have, overall, an extremely poor prognosis with regard to surgical outcome and overall survival. Therefore, it is crucial to be aware of the mechanisms involved in the disease, to be able to diagnose pancreatic exocrine insufficiency early on, and to treat malnutrition appropriately, for example, with pancreatic enzymes.

  12. Pancreatic and Pancreatic-Like Microbial Proteases Accelerate Gut Maturation in Neonatal Rats

    PubMed Central

    Prykhodko, Olena; Pierzynowski, Stefan G.; Nikpey, Elham; Arevalo Sureda, Ester; Fedkiv, Olexandr; Weström, Björn R.

    2015-01-01

    Objectives Postnatal gut maturation in neonatal mammals, either at natural weaning or after precocious inducement, is coinciding with enhanced enzymes production by exocrine pancreas. Since the involvement of enzymes in gut functional maturation was overlooked, the present study aimed to investigate the role of enzymes in gut functional maturation using neonatal rats. Methods Suckling rats (Rattus norvegicus) were instagastrically gavaged with porcine pancreatic enzymes (Creon), microbial-derived amylase, protease, lipase and mixture thereof, while controls received α-lactalbumin or water once per day during 14–16 d of age. At 17 d of age the animals were euthanized and visceral organs were dissected, weighed and analyzed for structural and functional properties. For some of the rats, gavage with the macromolecular markers such as bovine serum albumin and bovine IgG was performed 3 hours prior to blood collection to assess the intestinal permeability. Results Gavage with the pancreatic or pancreatic-like enzymes resulted in stimulated gut growth, increased gastric acid secretion and switched intestinal disaccharidases, with decreased lactase and increased maltase and sucrase activities. The fetal-type vacuolated enterocytes were replaced by the adult-type in the distal intestine, and macromolecular transfer to the blood was declined. Enzyme exposure also promoted pancreas growth with increased amylase and trypsin production. These effects were confined to the proteases in a dose-dependent manner. Conclusion Feeding exogenous enzymes, containing proteases, induced precocious gut maturation in suckling rats. This suggests that luminal exposure to proteases by oral loading or, possibly, via enhanced pancreatic secretion involves in the gut maturation of young mammals. PMID:25658606

  13. Serum markers and clinical data in diagnosing pancreatic cancer: a contrastive approach.

    PubMed

    Fabris, C; Del Favero, G; Basso, D; Piccoli, A; Meggiato, T; Angonese, C; Plebani, M; Leandro, G; Burlina, A; Naccarato, R

    1988-05-01

    In order to assess the value of serum markers and simple clinical data in the differential diagnosis of pancreatic cancer, we studied 32 control subjects and 28 patients with pancreatic cancer, 26 with chronic pancreatitis, and 37 with extra-pancreatic diseases. CA 19-9 was found to be the best marker in detecting pancreatic cancer. Among the clinical data, presence and onset of pain attacks, age, and weight loss were selected as the most informative in assessing chronic pancreatic disease. Clinical data correctly classified 88.5% of chronic pancreatitis and 75.0% of pancreatic cancer; serum markers identified pancreatic tumor in 67.9% of the patients. The adjunct of serum markers to clinical data did not improve accuracy in diagnosing chronic pancreatic disease. Since clinical data and serum markers generally become positive at an advanced stage of the disease, early diagnosis of pancreatic cancer is a goal still to be attained.

  14. Retraction: "Activated K-Ras and INK4a/Arf Deficiency Promote Aggressiveness of Pancreatic Cancer by Induction of EMT Consistent With Cancer Stem Cell Phenotype" by Wang et al.

    PubMed

    2016-10-01

    The above article, published online on November 23, 2012 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the first author and the corresponding author that found Figure 4B and C to be inappropriately manipulated and re-labeled. Literature Cited Wang Z, Ali S, Banerjee S, Bao B, Li Y, Azmi AS, Korc M, Sarkar FH. 2013. Activated K-Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype. J Cell Physiol 228:556-562; doi: 10.1002/jcp.24162.

  15. Duct Cells Contribute to Regeneration of Endocrine and Acinar Cells Following Pancreatic Damage in Adult Mice

    PubMed Central

    CRISCIMANNA, ANGELA; SPEICHER, JULIE A.; HOUSHMAND, GOLBAHAR; SHIOTA, CHIYO; PRASADAN, KRISHNA; Ji, BAOAN; LOGSDON, CRAIG D.; GITTES, GEORGE K.; ESNI, FARZAD

    2015-01-01

    BACKGROUND & AIMS There have been conflicting results on a cell of origin in pancreatic regeneration. These discrepancies predominantly stem from lack of specific markers for the pancreatic precursors/stem cells, as well as differences in the targeted cells and severity of tissue injury in the experimental models so far proposed. We attempted to create a model that used diphtheria toxin receptor (DTR) to ablate specific cell populations, control the extent of injury, and avoid induction of the inflammatory response. METHODS To target specific types of pancreatic cells, we crossed R26DTR or R26dtR/lacZ mice with transgenic mice that express the Cre recombinase in the pancreas, under control of the Pdx1 (global pancreatic) or elastase (acinar-specific) promoters. RESULTS Exposure of PdxCre;R26DTR mice to diphtheria toxin resulted in extensive ablation of acinar and endocrine tissues but not ductal cells. Surviving cells within the ductal compartment contributed to regeneration of endocrine and acinar cells via recapitulation of the embryonic pancreatic developmental program. However, following selective ablation of acinar tissue in ElaCre-ERT2;R26DTR mice, regeneration likely occurred by reprogramming of ductal cells to acinar lineage. CONCLUSIONS In the pancreas of adult mice, epithelial cells within the ductal compartment contribute to regeneration of endocrine and acinar cells. The severity of injury determines the regenerative mechanisms and cell types that contribute to this process. PMID:21763240

  16. Cerulein-induced acute pancreatitis in rats--does bacterial translocation occur via a transperitoneal pathway?

    PubMed

    Arendt, T; Wendt, M; Olszewski, M; Falkenhagen, U; Stoffregen, C; Fölsch, U R

    1997-10-01

    Bacterial infectious complications are the most common cause of morbidity and mortality associated with acute pancreatitis. Most pathogens are common gastrointestinal flora, indicating that the gut is the source of pancreatitis-related infections. However, the route whereby the microorganisms reach distant organs remains speculative. We tested the hypothesis that spread of bacteria occurs via a transperitoneal pathway. Acute interstitial pancreatitis (AIP) was induced in antibiotic (gentamicin, bacithracin, neomycin)-decontaminated rats by intravenous infusion of cerulein. Effects of pancreatic necrosis (PN) were studied in rats that received additional injections into the peritoneal cavity of pancreatic tissue obtained from donor rats. The rats were inoculated with Escherichia coli (O2:KN:H18) resistant to the antibiotics used for decontamination either orally (10(12) microorganisms; experiment I) or intraperitoneally (10(8) microorganisms; experiment II). Moreover, the rat peritoneal cavity wash was inoculated with 10(8) E. coli in vitro (experiment III). In rats with AIP and PN, recovery of the bacteria from liver, spleen, pancreas, lung, and blood following oral inoculation demonstrated that acute pancreatitis promotes bacterial translocation from the gut. The absence of E. coli in these organs following intraperitoneal inoculation showed that the bacteria do not spread from the peritoneal cavity. Rats with PN cleared E. coli from the peritoneal cavity in a shorter period than rats with AIP and controls (5 vs. 7 and 8 days; p < 0.05). The multiplication rate of E. coli in peritoneal cavity wash was lower in rats with PN than in rats with AIP and controls (p < 0.01). We conclude that (1) translocation of E. coli from the gut during cerulein-induced acute pancreatitis occurs via nonperitoneal pathways, (2) the peritoneal cavity acts as a trap for the bacteria rather than a source of bacterial seeding, and (3) PN impairs survival of E. coli in the peritoneal

  17. The over expression of long non-coding RNA ANRIL promotes epithelial-mesenchymal transition by activating the ATM-E2F1 signaling pathway in pancreatic cancer: an in vivo and in vitro study.

    PubMed

    Chen, Shi; Zhang, Jia-Qiang; Chen, Jiang-Zhi; Chen, Hui-Xing; Qiu, Fu-Nan; Yan, Mao-Lin; Chen, Yan-Ling; Peng, Cheng-Hong; Tian, Yi-Feng; Wang, Yao-Dong

    2017-03-23

    This study aims to investigate the roles of lncRNA ANRIL in epithelial-mesenchymal transition (EMT) by regulating the ATM-E2F1 signaling pathway in pancreatic cancer (PC). PC rat models were established and ANRIL overexpression and interference plasmids were transfected. The expression of ANRIL, EMT markers (E-cadherin, N-cadherin and Vimentin) and ATM-E2F1 signaling pathway-related proteins (ATM, E2F1, INK4A, INK4B and ARF) were detected. Small molecule drugs were applied to activate and inhibit the ATM-E2F1 signaling pathway. Transwell assay and the scratch test were adopted to detect cell invasion and migration abilities. ANRIL expression in the PC cells was higher than in normal pancreatic duct epithelial cells. In the PC rat models and PC cells, ANRIL interference promoted the expressions of INK4B, INK4A, ARF and E-cadherin, while reduced N-cadherin and Vimentin expression. Over-expressed ANRIL decreased the expression of INK4B, INK4A, ARF and E-cadherin, but raised N-cadherin and Vimentin expressions. By inhibiting the ATM-E2F1 signaling pathway in PC cells, E-cadherin expression increased but N-cadherin and Vimentin expressions decreased. After ANRIL was silenced or the ATM-E2F1 signaling pathway inhibited, PC cell migration and invasion abilities were decreased. In conclusion, over-expression of lncRNA ANRIL can promote EMT of PC cells by activating the ATM-E2F1 signaling pathway.

  18. Arterio-Pancreatic Syndrome

    PubMed Central

    Lee, Ser Yee; Ng, Kheng Hong; Sebastian, Mathew George

    2011-01-01

    Acute pancreatitis is a single-organ disorder that has multi-organ sequelae. As a result, it can have varied presentations. Acute pancreatitis presenting as acute limb ischemia is rare. We present a patient with acute pancreatitis presenting with bilateral lower limb ischemia. The episode of acute pancreatitis resolved but the acute lower limb ischemia precipitated as the pancreatitis progressed, and necessitated bilateral above-knee amputations. We review the literature and discuss the pathogenesis of such a phenomenon. PMID:22347150

  19. Fatty Acids Found in Dairy, Protein, and Unsaturated Fatty Acids Are Associated with Risk of Pancreatic Cancer in a Case-Control Study

    PubMed Central

    Jansen, Rick J.; Robinson, Dennis P.; Frank, Ryan D.; Anderson, Kristin E.; Bamlet, William R.; Oberg, Ann L.; Rabe, Kari G.; Olson, Janet E.; Sinha, Rashmi; Petersen, Gloria M.; Stolzenberg-Solomon, Rachael Z.

    2013-01-01

    Although many studies have investigated meat and total fat in relation to pancreatic cancer risk, few have investigated dairy, fish and specific fatty acids. We evaluated the association between intake of meat, fish, dairy, specific fatty acids and related nutrients and pancreatic cancer. In our American-based Mayo Clinic case-control study 384 cases and 983 controls frequency matched on recruitment age, race, sex, and residence area (Minnesota, Wisconsin, or Iowa, United States) between 2004 and 2009. All subjects provided demographic information and completed 144-item food frequency questionnaire. Logistic regression calculated odds ratios (OR) and 95% confidence intervals (95% CI) were adjusted for age, sex, cigarette smoking, body mass index, and diabetes mellitus. Significant inverse association (trend p-value < 0.05) between pancreatic cancer and the groupings (highest vs. lowest consumption quintile OR [95% CI]): meat replacement (0.67 [0.43–1.02]), total protein (0.58 [0.39–0.86]), vitamin B12 (0.67 [0.44, 1.01]), zinc (0.48 [0.32, 0.71]), phosphorus (0.62 [0.41, 0.93]), vitamin E (0.51 [0.33, 0.78]), polyunsaturated fatty acids (0.64 [0.42, 0.98]), and Linoleic Acid (fatty acid 18:2) (0.62 [0.40–0.95]). Increased risk associations were observed for saturated fatty acids (1.48 [0.97–2.23]), Butyric Acid (fatty acid 4:0) (1.77 [1.19–2.64]), Caproic Acid (fatty acid 6:0) (2.15 [1.42–3.27]), Caprylic Acid (fatty acid 8:0) (1.87 [1.27–2.76]), and Capric Acid (fatty acid 10:0) (1.83 [1.23–2.74]). Our study suggests that eating a diet high in total protein and certain unsaturated fatty acids is associated with decreased risk of developing pancreatic cancer in a dose dependent manner whereas fats found in dairy increase risk. PMID:24590454

  20. Randomized controlled phase I/II study to investigate immune stimulatory effects by low dose radiotherapy in primarily operable pancreatic cancer

    PubMed Central

    2011-01-01

    Background The efficiencies of T cell based immunotherapies are affected by insufficient migration and activation of tumor specific effector T cells in the tumor. Accumulating evidence exists on the ability of ionizing radiation to modify the tumor microenvironment and generate inflammation. The aim of this phase I/II clinical trial is to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with pancreatic cancer. Methods/Design This trial has been designed as an investigator initiated; prospective randomised, 4-armed, controlled Phase I/II trial. Patients who are candidates for resection of pancreatic cancer will be randomized into 4 arms. A total of 40 patients will be enrolled. The patients receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation precisely targeted to their pancreatic carcinoma. Radiation will be delivered by external beam radiotherapy using a 6 MV Linac with IMRT technique 48 h prior to the surgical resection. The primary objective is the determination of an active local external beam radiation dose, leading to tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include local tumor control and recurrence patterns, survival, radiogenic treatment toxicity and postoperative morbidity and mortality, as well as quality of life. Further, frequencies of tumor reactive T cells in blood and bone marrow as well as whole blood cell transcriptomics and plasma-proteomics will be correlated with clinical outcome. An interim analysis will be performed after the enrolment of 20 patients for safety reasons. The evaluation of the primary endpoint will start four weeks after the last patient's enrolment. Discussion This trial will answer the question whether a low dose radiotherapy localized to the pancreatic tumor only can increase the number of tumor infiltrating T cells and thus potentially enhance the antitumor immune response. The study will also

  1. The Pancreatic Islet Regulome Browser

    PubMed Central

    Mularoni, Loris; Ramos-Rodríguez, Mireia; Pasquali, Lorenzo

    2017-01-01

    The pancreatic islet is a highly specialized tissue embedded in the exocrine pancreas whose primary function is that of controlling glucose homeostasis. Thus, understanding the transcriptional control of islet-cell may help to puzzle out the pathogenesis of glucose metabolism disorders. Integrative computational analyses of transcriptomic and epigenomic data allows predicting genomic coordinates of putative regulatory elements across the genome and, decipher tissue-specific functions of the non-coding genome. We herein present the Islet Regulome Browser, a tool that allows fast access and exploration of pancreatic islet epigenomic and transcriptomic data produced by different labs worldwide. The Islet Regulome Browser is now accessible on the internet or may be installed locally. It allows uploading custom tracks as well as providing interactive access to a wealth of information including Genome-Wide Association Studies (GWAS) variants, different classes of regulatory elements, together with enhancer clusters, stretch-enhancers and transcription factor binding sites in pancreatic progenitors and adult human pancreatic islets. Integration and visualization of such data may allow a deeper understanding of the regulatory networks driving tissue-specific transcription and guide the identification of regulatory variants. We believe that such tool will facilitate the access to pancreatic islet public genomic datasets providing a major boost to functional genomics studies in glucose metabolism related traits including diabetes. PMID:28261261

  2. A randomized controlled trial to promote volunteering in older adults.

    PubMed

    Warner, Lisa M; Wolff, Julia K; Ziegelmann, Jochen P; Wurm, Susanne

    2014-12-01

    Volunteering is presumed to confer health benefits, but interventions to encourage older adults to volunteer are sparse. Therefore, a randomized controlled trial with 280 community-dwelling older German adults was conducted to test the effects of a theory-based social-cognitive intervention against a passive waiting-list control group and an active control intervention designed to motivate physical activity. Self-reports of weekly volunteering minutes were assessed at baseline (5 weeks before the intervention) as well as 2 and 6 weeks after the intervention. Participants in the treatment group increased their weekly volunteering minutes to a greater extent than participants in the control groups 6 weeks after the intervention. We conclude that a single, face-to-face group session can increase volunteering among older community-dwelling adults. However, the effects need some time to unfold because changes in volunteering were not apparent 2 weeks after the intervention.

  3. RACK1-mediated translation control promotes liver fibrogenesis

    SciTech Connect

    Liu, Min; Peng, Peike; Wang, Jiajun; Wang, Lan; Duan, Fangfang; Jia, Dongwei; Ruan, Yuanyuan; Gu, Jianxin

    2015-07-31

    Activation of quiescent hepatic stellate cells (HSCs) is the central event of liver fibrosis. The translational machinery is an optimized molecular network that affects cellular homoeostasis and diseases, whereas the role of protein translation in HSCs activation and liver fibrosis is little defined. Our previous report suggests that up-regulation of receptor for activated C-kinase 1(RACK1) in HSCs is critical for liver fibrogenesis. In this study, we found that RACK1 promoted macrophage conditioned medium (MCM)-induced assembly of eIF4F and phosphorylation of eIF4E in primary HSCs. RACK1 enhanced the translation and expression of pro-fibrogenic factors collagen 1α1, snail and cyclin E1 induced by MCM. Administration of PP242 or knock-down of eIF4E suppressed RACK1-stimulated collagen 1α1 production, proliferation and migration in primary HSCs. In addition, depletion of eIF4E attenuated thioacetamide (TAA)-induced liver fibrosis in vivo. Our data suggest that RACK1-mediated stimulation of cap-dependent translation plays crucial roles in HSCs activation and liver fibrogenesis, and targeting translation initiation could be a promising strategy for the treatment of liver fibrosis. - Highlights: • RACK1 induces the assembly of eIF4F and phosphorylation of eIF4E in primary HSCs. • RACK1 stimulates the translation of collagen 1α1, snail and cyclin E1 in HSCs. • RACK1 promotes HSCs activation via cap-mediated translation. • Depletion of eIF4E suppresses liver fibrogenesis in vivo.

  4. Control of Insulin Secretion by Production of Reactive Oxygen Species: Study Performed in Pancreatic Islets from Fed and 48-Hour Fasted Wistar Rats

    PubMed Central

    Riva, Patrícia; Simões, Daniel; Curi, Rui; Carpinelli, Angelo Rafael

    2016-01-01

    Mitochondria and NADPH oxidase are important sources of reactive oxygen species in particular the superoxide radical (ROS) in pancreatic islets. These molecules derived from molecular oxygen are involved in pancreatic β-cells signaling and control of insulin secretion. We examined the involvement of ROS produced through NADPH oxidase in the leucine- and/or glucose-induced insulin secretion by pancreatic islets from fed or 48-hour fasted rats. Glucose-stimulated insulin secretion (GSIS) in isolated islets was evaluated at low (2.8 mM) or high (16.7 mM) glucose concentrations in the presence or absence of leucine (20 mM) and/or NADPH oxidase inhibitors (VAS2870–20 μM or diphenylene iodonium—DPI—5 μM). ROS production was determined in islets treated with dihydroethidium (DHE) or MitoSOX Red reagent for 20 min and dispersed for fluorescence measurement by flow cytometry. NADPH content variation was examined in INS-1E cells (an insulin secreting cell line) after incubation in the presence of glucose (2.8 or 16.7 mM) and leucine (20 mM). At 2.8 mM glucose, VAS2870 and DPI reduced net ROS production (by 30%) and increased GSIS (by 70%) in a negative correlation manner (r = -0.93). At 16.7 mM glucose or 20 mM leucine, both NADPH oxidase inhibitors did not alter insulin secretion neither net ROS production. Pentose phosphate pathway inhibition by treatment with DHEA (75 μM) at low glucose led to an increase in net ROS production in pancreatic islets from fed rats (by 40%) and induced a marked increase (by 144%) in islets from 48-hour fasted rats. The NADPH/NADP+ ratio was increased when INS-1E cells were exposed to high glucose (by 4.3-fold) or leucine (by 3-fold). In conclusion, increased ROS production through NADPH oxidase prevents the occurrence of hypoglycemia in fasting conditions, however, in the presence of high glucose or high leucine levels, the increased production of NADPH and the consequent enhancement of the activity of the antioxidant defenses

  5. [External pancreatic fistulas management].

    PubMed

    Stepan, E V; Ermolov, A S; Rogal', M L; Teterin, Yu S

    2017-01-01

    The main principles of treatment of external postoperative pancreatic fistulas are viewed in the article. Pancreatic trauma was the reason of pancreatic fistula in 38.7% of the cases, operations because of acute pancreatitis - in 25.8%, and pancreatic pseudocyst drainage - in 35.5%. 93 patients recovered after the treatment. Complex conservative treatment of EPF allowed to close fistulas in 74.2% of the patients with normal patency of the main pancreatic duct (MPD). The usage of octreotide 600-900 mcg daily for at least 5 days to decrease pancreatic secretion was an important part of the conservative treatment. Endoscopic papillotomy was performed in patients with major duodenal papilla obstruction and interruption of transporting of pancreatic secretion to duodenum. Stent of the main pancreatic duct was indicated in patients with extended pancreatic duct stenosis to normalize transport of pancreatic secretion to duodenum. Surgical formation of anastomosis between distal part of the main pancreatic duct and gastro-intestinal tract was carried out when it was impossible to fulfill endoscopic stenting of pancreatic duct either because of its interruption and diastasis between its ends, or in the cases of unsuccessful conservative treatment of external pancreatic fistula caused by drainage of pseudocyst.

  6. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets.

    PubMed

    Sordi, Valeria; Malosio, Maria Luisa; Marchesi, Federica; Mercalli, Alessia; Melzi, Raffaella; Giordano, Tiziana; Belmonte, Nathalie; Ferrari, Giuliana; Leone, Biagio Eugenio; Bertuzzi, Federico; Zerbini, Gianpaolo; Allavena, Paola; Bonifacio, Ezio; Piemonti, Lorenzo

    2005-07-15

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are stromal cells with the ability to proliferate and differentiate into many tissues. Although they represent powerful tools for several therapeutic settings, mechanisms regulating their migration to peripheral tissues are still unknown. Here, we report chemokine receptor expression on human BM-MSCs and their role in mediating migration to tissues. A minority of BM-MSCs (2% to 25%) expressed a restricted set of chemokine receptors (CXC receptor 4 [CXCR4], CX3C receptor 1 [CX3CR1], CXCR6, CC chemokine receptor 1 [CCR1], CCR7) and, accordingly, showed appreciable chemotactic migration in response to the chemokines CXC ligand 12 (CXCL12), CX3CL1, CXCL16, CC chemokine ligand 3 (CCL3), and CCL19. Using human pancreatic islets as an in vitro model of peripheral tissue, we showed that islet supernatants released factors able to attract BM-MSCs in vitro, and this attraction was principally mediated by CX3CL1 and CXCL12. Moreover, cells with features of BM-MSCs were detected within the pancreatic islets of mice injected with green fluorescent protein (GFP)-positive BM. A population of bona fide MSCs that also expressed CXCR4, CXCR6, CCR1, and CCR7 could be isolated from normal adult human pancreas. This study defines the chemokine receptor repertoire of human BM-MSCs that determines their migratory activity. Modulation of homing capacity may be instrumental for harnessing the therapeutic potential of BM-MSCs.

  7. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    SciTech Connect

    Hamada, Shin; Masamune, Atsushi; Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa; Hamada, Hirofumi; Kobune, Masayoshi; Satoh, Kennichi; Shimosegawa, Tooru

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  8. Patient-Reported Outcomes as a Component of the Primary Endpoint in a Double-Blind, Placebo-Controlled Trial in Advanced Pancreatic Cancer

    PubMed Central

    Eckhardt, S. Gail; De Porre, Peter; Smith, David; Maurel, Joan; Steward, William P.; Bouche, Olivier; van de Velde, Helgi; Michiels, Bart; Bugat, Roland

    2010-01-01

    In this randomized, double-blind, placebo-controlled study comparing gemcitabine + tipifarnib (G + t) or gemcitabine + placebo (G + p) in patients with pancreatic cancer, the primary endpoint of time to deterioration (TTD) was based primarily on patient-reported outcomes. Deterioration was defined as death or worsening of disease-related symptoms, based on patient-reported outcomes of pain intensity and analgesic use in a daily diary, plus investigator-rated weekly performance status. Secondary endpoints included survival and safety. Two hundred and forty-four patients were treated for a total of 4780 weeks, during which the diary was completed daily. Overall, the completion of the diary was found to be feasible: patients completed approximately 95% of scheduled diary entries. Baseline characteristics were well balanced between the two treatment arms. The primary endpoint of TTD was not significantly different between the G + t arm (69 days) and the G + p arm (91 days, P = 0.40). Survival was not significantly different between the G + t arm (202 days) and the G + p arm (221 days, P = 0.66). The combination of G + t had an acceptable toxicity profile, with primarily neutropenia and thrombocytopenia. Methodologically, measurement of patient-reported outcomes is feasible and useful in assessing the effect of anti-cancer therapy in pancreatic cancer if comprehensive initial and ongoing training is provided to all people involved, including not only the patients but also the study personnel. PMID:18723314

  9. Disease management to promote blood pressure control among African Americans.

    PubMed

    Brennan, Troyen; Spettell, Claire; Villagra, Victor; Ofili, Elizabeth; McMahill-Walraven, Cheryl; Lowy, Elizabeth J; Daniels, Pamela; Quarshie, Alexander; Mayberry, Robert

    2010-04-01

    African Americans have a higher prevalence of hypertension and poorer cardiovascular and renal outcomes than white Americans. The objective of this study was to determine whether a telephonic nurse disease management (DM) program designed for African Americans is more effective than a home monitoring program alone to increase blood pressure (BP) control among African Americans enrolled in a national health plan. A prospective randomized controlled study (March 2006-December 2007) was conducted, with 12 months of follow-up on each subject. A total of 5932 health plan members were randomly selected from the population of self-identified African Americans, age 23 and older, in health maintenance organization plans, with hypertension; 954 accepted, 638 completed initial assessment, and 485 completed follow-up assessment. The intervention consisted of telephonic nurse DM (intervention group) including educational materials, lifestyle and diet counseling, and home BP monitor vs. home BP monitor alone (control group). Measurements included proportion with BP < 120/80, mean systolic BP, mean diastolic BP, and frequency of BP self-monitoring. Results revealed that systolic BP was lower in the intervention group (adjusted means 123.6 vs. 126.7 mm Hg, P = 0.03); there was no difference for diastolic BP. The intervention group was 50% more likely to have BP in control (odds ratio [OR] = 1.50, 95% confidence interval [CI] 0.997-2.27, P = 0.052) and 46% more likely to monitor BP at least weekly (OR 1.46, 95% CI 1.07-2.00, P = 0.02) than the control group. A nurse DM program tailored for African Americans was effective at decreasing systolic BP and increasing the frequency of self-monitoring of BP to a greater extent than home monitoring alone. Recruitment and program completion rates could be improved for maximal impact.

  10. miR-1181 inhibits invasion and proliferation via STAT3 in pancreatic cancer

    PubMed Central

    Wang, Jie; Guo, Xing-Jun; Ding, You-Ming; Jiang, Jian-Xin

    2017-01-01

    AIM To examine the role of microRNA 1181 (miR-1181) in invasion and proliferation in pancreatic cancer. METHODS We analyzed the expression of miR-1181 in several pancreatic cancer cell lines and generated stable MIA-PaCa-2 and PANC-1 cell lines with up-regulated miR-1181 expression using an adenovirus delivery system. We then investigated miR-1181's effect on invasion and proliferation of pancreatic cancer cells by transwell assay, wound healing assay, cell counting kit-8 assay and colony-forming assay, and explored any underlying mechanisms by western bolt. Beyond that, we observed the change of the PANC-1 cell's cytoskeleton by immunofluorescence staining. RESULTS Our data showed that miR-1181 was relatively down-regulated in pancreatic cancer cell lines compared with normal pancreatic ductal epithelial cells. And miR-1181 inhibited the migration, invasion and proliferation activities of MIA-PaCa-2 and PANC-1 cells. Notably, after over-expressing of miR-1181 in PANC-1 cells, F-actin depolymerized. Immunofluorescence staining shows decreased F-actin and β-tubulin expression in PANC-1 cells over-expressing miR-1181 compared with the control cells. Furthermore, we found that over-expressing miR-1181 inhibited the expression of signal transducer and activator of transcription 3 (STAT3) while knocking-down miR-1181 up-regulated the expression of STAT3. Knocking-down miR-1181 promoted the invasion and proliferation of pancreatic cancer cells. And inhibition of STAT3 blocked the promotion effects of knocking-down miR-1181 on proliferation and invasion in pancreatic cancer. CONCLUSION Together our findings suggest that miR-1181 may be involved in pancreatic cancer cell invasion and proliferation by targeting STAT3 and indicate that miR-1181 may be a potential therapeutic agent for pancreatic cancer. PMID:28321160

  11. Morphological assessment of pancreatic islet hormone content following aerobic exercise training in rats with poorly controlled Type 1 diabetes mellitus.

    PubMed

    McDonald, Matthew W; Murray, Michael R; Hall, Katharine E; Noble, Earl G; Melling, C W James

    2014-01-01

    Regular exercise has been shown to improve many complications of Type 1 diabetes mellitus (T1DM) including enhanced glucose tolerance and increased cardiac function. While exercise training has been shown to increase insulin content in pancreatic islets of rats with T1DM, experimental models were severely hyperglycemic and not undergoing insulin treatment. Further, research to date has yet to determine how exercise training alters glucagon content in pancreatic islets. The purpose of the present investigation was to determine the impact of a 10-week aerobic training program on pancreatic islet composition in insulin-treated rats with T1DM. Second, it was determined whether the acute, exercise-mediated reduction in blood glucose experienced in rats with T1DM would become larger in magnitude following aerobic exercise training. Diabetes was induced in male Sprague-Dawley rats by multiple low dose injections of streptozotocin (20mg/kg i.p.) and moderate intensity aerobic exercise training was performed on a motorized treadmill for one hour per day for a total of 10 weeks. Rats with T1DM demonstrated significantly less islet insulin, and significantly more islet glucagon hormone content compared with non-T1DM rats, which did not significantly change following aerobic training. The reduction in blood glucose in response to a single exercise bout was similar across 10 weeks of training. Results also support the view that different subpopulations of islets exist, as small islets (<50 μm diameter) had significantly more insulin and glucagon in rats with and without T1DM.

  12. Fluid resuscitation in acute pancreatitis

    PubMed Central

    Aggarwal, Aakash; Manrai, Manish; Kochhar, Rakesh

    2014-01-01

    Acute pancreatitis remains a clinical challenge, despite an exponential increase in our knowledge of its complex pathophysiological changes. Early fluid therapy is the cornerstone of treatment and is universally recommended; however, there is a lack of consensus regarding the type, rate, amount and end points of fluid replacement. Further confusion is added with the newer studies reporting better results with controlled fluid therapy. This review focuses on the pathophysiology of fluid depletion in acute pancreatitis, as well as the rationale for fluid replacement, the type, optimal amount, rate of infusion and monitoring of such patients. The basic goal of fluid epletion should be to prevent or minimize the systemic response to inflammatory markers. For this review, various studies and reviews were critically evaluated, along with authors’ recommendations, for predicted severe or severe pancreatitis based on the available evidence. PMID:25561779

  13. Hypothyroidism in utero stimulates pancreatic beta cell proliferation and hyperinsulinaemia in the ovine fetus during late gestation.

    PubMed

    Harris, Shelley E; De Blasio, Miles J; Davis, Melissa A; Kelly, Amy C; Davenport, Hailey M; Wooding, F B Peter; Blache, Dominique; Meredith, David; Anderson, Miranda; Fowden, Abigail L; Limesand, Sean W; Forhead, Alison J

    2017-01-31

    Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of T3 , insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T3 in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T3 , insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. This article is protected by copyright. All rights reserved.

  14. Fusarial wilt control and growth promotion of pigeon pea through bioactive metabolites produced by two plant growth promoting rhizobacteria.

    PubMed

    Dutta, S; Morang, P; Nishanth Kumar, S; Dileep Kumar, B S

    2014-03-01

    The bioactive metabolites produced by two plant growth promoting rhizobacteria strains, a Pseudomonas aeruginosa strain RRLJ 04 and a Bacillus cereus strain BS 03, which showed growth promotion and disease control in pigeon pea against Fusarium udum, were isolated and screened for their efficacy to control fusarial wilt of pigeon pea under gnotobiotic and nursery condition. Bioactive metabolites viz., BM 1 and BM 2 from RRLJ 04 and BM 3 from BS 03 also showed in vitro antibiosis against F. udum. Seeds treated with 50 μl seed⁻¹ of BM 1, 30 μl seed⁻¹ of BM 2 and 70 μl seed⁻¹ of BM 3 and grown in pathogen infested soil showed suppression of wilt disease besides growth enhancement. Per cent disease control was 90 % with BM 2 application as compared to 87 and 83 %, respectively in BM 1 and BM 3 after 90 days of growth. BM 2 treated plants were more resistant to the pathogen as compared to the other fractions tested. Mycelial dry weight was found to be reduced on treatment with the bioactive metabolites. Formation of chlamydospore-like structures was observed in the pathogen mycelium treated with BM 3. The analytical studies confirmed that two of these metabolites are phenazine derivatives.

  15. Practice of contemporary dance promotes stochastic postural control in aging.

    PubMed

    Ferrufino, Lena; Bril, Blandine; Dietrich, Gilles; Nonaka, Tetsushi; Coubard, Olivier A

    2011-01-01

    As society ages and the frequency of falls increases, counteracting gait and posture decline is a challenging issue for countries of the developed world. Previous studies have shown that exercise and hazard management help to improve balance and/or decrease the risks for falling in normal aging. Motor activity based on motor-skill learning, particularly dance, can also benefit balance and decreases falls with age. Recent studies have suggested that older dancers have better balance, posture, or gait than non-dancers. Additionally, clinical or laboratory measures have shown improvements in some aspects of balance after dance interventions in elderly trainees. This study examined the impact of contemporary dance (CD) and of fall prevention (FP) programs on postural control of older adults. Posturography of quiet upright stance was performed in 41 participants aged 59-86 years before and after 4.4-month training in either CD or FP once a week. Though classical statistic scores failed to show any effect, dynamic analyses of the center-of-pressure displacements revealed significant changes after training. Specifically, practice of CD enhanced the critical time interval in diffusion analysis, and reduced recurrence and mathematical stability in recurrence quantification analysis, whereas practice of FP induced or tended to induce the reverse patterns. Such effects were obtained only in the eyes open condition. We suggest that CD training based on motor improvisation favored stochastic posture inducing plasticity in motor control, while FP training based on more stereotyped behaviors did not.

  16. Practice of Contemporary Dance Promotes Stochastic Postural Control in Aging

    PubMed Central

    Ferrufino, Lena; Bril, Blandine; Dietrich, Gilles; Nonaka, Tetsushi; Coubard, Olivier A.

    2011-01-01

    As society ages and the frequency of falls increases, counteracting gait and posture decline is a challenging issue for countries of the developed world. Previous studies have shown that exercise and hazard management help to improve balance and/or decrease the risks for falling in normal aging. Motor activity based on motor-skill learning, particularly dance, can also benefit balance and decreases falls with age. Recent studies have suggested that older dancers have better balance, posture, or gait than non-dancers. Additionally, clinical or laboratory measures have shown improvements in some aspects of balance after dance interventions in elderly trainees. This study examined the impact of contemporary dance (CD) and of fall prevention (FP) programs on postural control of older adults. Posturography of quiet upright stance was performed in 41 participants aged 59–86 years before and after 4.4-month training in either CD or FP once a week. Though classical statistic scores failed to show any effect, dynamic analyses of the center-of-pressure displacements revealed significant changes after training. Specifically, practice of CD enhanced the critical time interval in diffusion analysis, and reduced recurrence and mathematical stability in recurrence quantification analysis, whereas practice of FP induced or tended to induce the reverse patterns. Such effects were obtained only in the eyes open condition. We suggest that CD training based on motor improvisation favored stochastic posture inducing plasticity in motor control, while FP training based on more stereotyped behaviors did not. PMID:22232582

  17. Pancreatic protein hypersecretion and elevated plasma CCK: prerequisites for increased pancreatic growth?

    PubMed

    Rivard, N; Guan, D; Maouyo, D; Morisset, J

    1993-09-01

    This study was undertaken to establish if a correlation exists between chronic elevated pancreatic secretion and growth of the pancreas. Rats provided with jugular, pancreatic, biliary, duodenal, or ileal cannulas were fed throughout the experiment with a liquid diet continuously infused into the duodenum. Four days after surgery, control rats and those infused with cerulein (CE) 0.45 microgram/kg/h had their pancreatic juice returned into the duodenum. Two other groups had their pancreatic juice either totally diverted outside (DO) or returned into the ileum (DI). In all groups, bile was returned into the duodenum. Pancreatic juice was collected every 4 h for 4 days with volume and protein determined. After 4 days, rats were killed and their pancreata were evaluated for weight and contents of DNA, RNA, protein, amylase, and chymotrypsinogen. The average volumes/4 h were significantly increased by 259, 241, and 270% in DO, DI, and CE rats, respectively. Protein output remained at control levels in DO rats, whereas increases of 200 and 90% above control values were observed in DI and CE rats, respectively, during the last periods of collection. Constant drainage of pancreatic juice outside (DO) had no effect on pancreatic growth; on the contrary, its reinfusion into the ileum and constant cerulein infusion were associated with impressive growth of the pancreas, with cerulein being the most potent stimulus. In conclusion these data support the hypothesis that increased protein output is associated with pancreatic growth, a phenomenon mediated by endogenous cholecystokinin.

  18. Pancreatic Cancer Stage 3

    MedlinePlus

    ... 3 Description: Stage III pancreatic cancer; drawing shows cancer in the pancreas, common hepatic artery, and portal vein. Also shown ... and superior mesenteric artery. Stage III pancreatic cancer. Cancer ... near the pancreas. These include the superior mesenteric artery, celiac axis, ...

  19. Surgery for pancreatic cancer

    MedlinePlus

    ... medlineplus.gov/ency/article/007649.htm Surgery for pancreatic cancer To use the sharing features on this page, ... surgery are used in the surgical treatment of pancreatic cancer. Whipple procedure: This is the most common surgery ...

  20. Pancreatic pseudocysts and aneurysms

    PubMed Central

    Andrén-Sandberg, Åke

    2010-01-01

    A number of methods are available for the drainage of pancreatic pseudocysts, including percutaneous, endoscopic and open approaches. The author reviewed the most rently reports, and and summarized the latest advances in the pancreatic pseudocysts. PMID:22558566

  1. Workforce insights on how health promotion is practised in an Aboriginal Community Controlled Health Service.

    PubMed

    McFarlane, Kathryn; Devine, Sue; Judd, Jenni; Nichols, Nina; Watt, Kerrianne

    2017-02-03

    Aboriginal Community Controlled Health Services deliver holistic and culturally appropriate primary health care to over 150 communities in Australia. Health promotion is a core function of comprehensive primary health care; however, little has been published on what enables or challenges health promotion practice in an Aboriginal Community Controlled Health Service. Apunipima Cape York Health Council (Apunipima) delivers primary health care to 11 remote north Queensland communities. The workforce includes medical, allied health, Aboriginal and Torres Strait Islander health workers and health practitioners and corporate support staff. This study aimed to identify current health promotion practices at Apunipima, and the enablers and challenges identified by the workforce, which support or hinder health promotion practice. Sixty-three staff from across this workforce completed an online survey in February 2015 (42% response rate). Key findings were: (1) health promotion is delivered across a continuum of one-on-one approaches through to population advocacy and policy change efforts; (2) the attitude towards health promotion was very positive; and (3) health promotion capacity can be enhanced at both individual and organisational levels. Workforce insights have identified areas for continued support and areas that, now identified, can be targeted to strengthen the health promotion capacity of Apunipima.

  2. RON is not a prognostic marker for resectable pancreatic cancer

    PubMed Central

    2012-01-01

    Background The receptor tyrosine kinase RON exhibits increased expression during pancreatic cancer progression and promotes migration, invasion and gemcitabine resistance of pancreatic cancer cells in experimental models. However, the prognostic significance of RON expression in pancreatic cancer is unknown. Methods RON expression was characterized in several large cohorts, including a prospective study, totaling 492 pancreatic cancer patients and relationships with patient outcome and clinico-pathologic variables were assessed. Results RON expression was associated with outcome in a training set, but this was not recapitulated in the validation set, nor was there any association with therapeutic responsiveness in the validation set or the prospective study. Conclusions Although RON is implicated in pancreatic cancer progression in experimental models, and may constitute a therapeutic target, RON expression is not associated with prognosis or therapeutic responsiveness in resected pancreatic cancer. PMID:22958871

  3. A Minimally Invasive Approach for Postoperative Pancreatic Fistula

    SciTech Connect

    Yamazaki, Shintaro Kuramoto, Kenmei; Itoh, Yutaka; Watanabe, Yoshika; Ueda, Toshisada

    2003-11-15

    Pancreas fistula is a well-known and severe complication of pancreaticoduodenectomy. It is difficult to control with conservative therapy, inducing further complications and severe morbidity. Until now, re-operation has been the only way to resolve pancreatic fistula causing complete dehiscence of the pancreatic-enteric anastomosis (complete pancreatic fistula). Percutaneous transgastric fistula drainage is one of the treatments for pancreatic fistula. This procedure allows both pancreas juice drainage and anastomosis re-construction at the same time. This is effective and minimally invasive but difficult to adapt to a long or complicated fistula. In particular, dilatation of the main pancreatic duct is indispensable. This paper reports the successful resolution of a postoperative pancreatic fistula by a two-way-approach percutaneous transgastric fistula drainage procedure. Using a snare catheter from the fistula and a flexible guidewire from the transgastric puncture needle, it can be performed either with or without main pancreatic duct dilatation.

  4. Endoscopic ultrasound in the diagnosis and treatment of pancreatic disease

    PubMed Central

    Teshima, Christopher W; Sandha, Gurpal S

    2014-01-01

    Endoscopic ultrasound (EUS) is an important part of modern gastrointestinal endoscopy and now has an integral role in the diagnostic evaluation of pancreatic diseases. Furthermore, as EUS technology has advanced, it has increasingly become a therapeutic procedure, and the prospect of multiple applications of interventional EUS for the pancreas is truly on the near horizon. However, this review focuses on the established diagnostic and therapeutic roles of EUS that are used in current clinical practice. In particular, the diagnostic evaluation of acute pancreatitis, chronic pancreatitis, cystic pancreatic lesions and solid masses of the pancreas are discussed. The newer enhanced imaging modalities of elastography and contrast enhancement are evaluated in this context. The main therapeutic aspects of pancreatic EUS are then considered, namely celiac plexus block and celiac plexus neurolysis for pain control in chronic pancreatitis and pancreas cancer, and EUS-guided drainage of pancreatic fluid collections. PMID:25110426

  5. Four Inducible Promoters for Controlled Gene Expression in the Oleaginous Yeast Rhodotorula toruloides

    PubMed Central

    Johns, Alexander M. B.; Love, John; Aves, Stephen J.

    2016-01-01

    Rhodotorula (Rhodosporidium) toruloides is an oleaginous yeast with great biotechnological potential, capable of accumulating lipid up to 70% of its dry biomass, and of carotenoid biosynthesis. However, few molecular genetic tools are available for manipulation of this basidiomycete yeast and its high genomic GC content can make routine cloning difficult. We have developed plasmid vectors for transformation of R. toruloides which include elements for Saccharomyces cerevisiae in-yeast assembly; this method is robust to the assembly of GC-rich DNA and of large plasmids. Using such vectors we screened for controllable promoters, and identified inducible promoters from the genes NAR1, ICL1, CTR3, and MET16. These four promoters have independent induction/repression conditions and exhibit different levels and rates of induction in R. toruloides, making them appropriate for controllable transgene expression in different experimental situations. Nested deletions were used to identify regulatory regions in the four promoters, and to delimit the minimal inducible promoters, which are as small as 200 bp for the NAR1 promoter. The NAR1 promoter shows very tight regulation under repressed conditions as determined both by an EGFP reporter gene and by conditional rescue of a leu2 mutant. These new tools facilitate molecular genetic manipulation and controllable gene expression in R. toruloides. PMID:27818654

  6. Keratin 8 sequence variants in patients with pancreatitis and pancreatic cancer.

    PubMed

    Treiber, Matthias; Schulz, Hans-Ulrich; Landt, Olfert; Drenth, Joost P H; Castellani, Carlo; Real, Francisco X; Akar, Nejat; Ammann, Rudolf W; Bargetzi, Mario; Bhatia, Eesh; Demaine, Andrew Glenn; Battagia, Cinzia; Kingsnorth, Andrew; O'Reilly, Derek; Truninger, Kaspar; Koudova, Monika; Spicak, Julius; Cerny, Milos; Menzel, Hans-Jürgen; Moral, Pedro; Pignatti, Pier Franco; Romanelli, Maria Grazia; Rickards, Olga; De Stefano, Gian Franco; Zarnescu, Narcis Octavian; Choudhuri, Gourdas; Sikora, Sadiq S; Jansen, Jan B M J; Weiss, Frank Ulrich; Pietschmann, Matthias; Teich, Niels; Gress, Thomas M; Ockenga, Johann; Schmidt, Hartmut; Kage, Andreas; Halangk, Juliane; Rosendahl, Jonas; Groneberg, David Alexander; Nickel, Renate; Witt, Heiko

    2006-12-01

    Keratin 8 (KRT8) is one of the major intermediate filament proteins expressed in single-layered epithelia of the gastrointestinal tract. Transgenic mice over-expressing human KRT8 display pancreatic mononuclear infiltration, interstitial fibrosis and dysplasia of acinar cells resulting in exocrine pancreatic insufficiency. These experimental data are in accordance with a recent report describing an association between KRT8 variations and chronic pancreatitis. This prompted us to investigate KRT8 polymorphisms in patients with pancreatic disorders. The KRT8 Y54H and G62C polymorphisms were assessed in a cohort of patients with acute and chronic pancreatitis of various aetiologies or pancreatic cancer originating from Austria (n=16), the Czech Republic (n=90), Germany (n=1698), Great Britain (n=36), India (n=60), Italy (n=143), the Netherlands (n=128), Romania (n=3), Spain (n=133), and Switzerland (n=129). We also studied 4,234 control subjects from these countries and 1,492 control subjects originating from Benin, Cameroon, Ethiopia, Ecuador, and Turkey. Polymorphisms were analysed by melting curve analysis with fluorescence resonance energy transfer probes. The frequency of G62C did not differ between patients with acute or chronic pancreatitis, pancreatic adenocarcinoma and control individuals. The frequency of G62C varied in European populations from 0.4 to 3.8%, showing a northwest to southeast decline. The Y54H alteration was not detected in any of the 2,436 patients. Only 3/4,580 (0.07%) European, Turkish and Indian control subjects were heterozygous for Y54H in contrast to 34/951 (3.6%) control subjects of African descent. Our data suggest that the KRT8 alterations, Y54H and G62C, do not predispose patients to the development of pancreatitis or pancreatic cancer.

  7. Protective effect of Mimosa pudica L. in an L-arginine model of acute necrotising pancreatitis in rats.

    PubMed

    Kaur, Jagdeep; Sidhu, Shabir; Chopra, Kanwaljit; Khan, M U

    2016-07-01

    Mimosa pudica is used in traditional medicine for treating various disorders such as inflammatory conditions, diarrhoea, insomnia, alopecia, urogenital infections and wounds. The present study investigated the effect of M. pudica extract (MPE) on L-arginine-induced acute necrotising pancreatitis in rats. The ethanolic extract of M. pudica leaves was studied for the presence of quercetin and gallic acid using high-performance liquid chromatography. Four groups were employed-normal control rats, L-arginine control rats (two intraperitoneal [i.p.] injections of 2 g/kg at an interval of 1 h), MPE-treated rats (400 mg/kg orally) and melatonin-treated rats (positive control 10 mg/kg i.p.), which were further divided into subgroups according to time points (24 h, 3 days and 14 days). Serum amylase, lipase, tumour necrosis factor-α (TNF-α), pancreatic amylase, nucleic acid content, protein, transforming growth factor-β1 (TGF-β1), thiobarbituric reactive substances, glutathione, nitrite/nitrate, collagen content and histopathological examination were carried out. MPE significantly improved acute necrotising pancreatitis by modulating diagnostic markers of pancreatitis such as serum lipase and pancreatic amylase, inflammation (TNF-α), and oxidative and nitrosative stress. Moreover, MPE administration induced regenerative changes in the pancreas evidenced by increased levels of pancreatic proteins, nucleic acid content and histopathology report. In addition, MPE improved TGF-β1 and collagen levels thereby preventing fibrosis. The current investigation indicates the novel role of MPE in reducing the severity of acute necrotising pancreatitis by plausible mechanisms such as anti-inflammatory and anti-fibrotic activity and by promoting repair and regeneration of the pancreas.

  8. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion.

    PubMed

    Ravassard, Philippe; Hazhouz, Yasmine; Pechberty, Séverine; Bricout-Neveu, Emilie; Armanet, Mathieu; Czernichow, Paul; Scharfmann, Raphael

    2011-09-01

    Despite intense efforts over the past 30 years, human pancreatic β cell lines have not been available. Here, we describe a robust technology for producing a functional human β cell line using targeted oncogenesis in human fetal tissue. Human fetal pancreatic buds were transduced with a lentiviral vector that expressed SV40LT under the control of the insulin promoter. The transduced buds were then grafted into SCID mice so that they could develop into mature pancreatic tissue. Upon differentiation, the newly formed SV40LT-expressing β cells proliferated and formed insulinomas. The resulting β cells were then transduced with human telomerase reverse transcriptase (hTERT), grafted into other SCID mice, and finally expanded in vitro to generate cell lines. One of these cell lines, EndoC-βH1, expressed many β cell-specific markers without any substantial expression of markers of other pancreatic cell types. The cells secreted insulin when stimulated by glucose or other insulin secretagogues, and cell transplantation reversed chemically induced diabetes in mice. These cells represent a unique tool for large-scale drug discovery and provide a preclinical model for cell replacement therapy in diabetes. This technology could be generalized to generate other human cell lines when the cell type-specific promoter is available.

  9. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression.

    PubMed

    Li, Ying-Yi; Mukaida, Naofumi

    2014-07-28

    Pim-3 is a member of the provirus integration site for Moloney murine leukemia virus (Pim) family proteins that exhibit serine/threonine kinase activity. Similar to the other Pim kinases (Pim-1 and Pim-2), Pim-3 is involved in many cellular processes, including cell proliferation, survival, and protein synthesis. Although Pim-3 is expressed in normal vital organs, it is overexpressed particularly in tumor tissues of endoderm-derived organs, including the liver, pancreas, and colon. Silencing of Pim-3 expression can retard in vitro cell proliferation of hepatocellular, pancreatic, and colon carcinoma cell lines by promoting cell apoptosis. Pim-3 lacks the regulatory domains similarly as Pim-1 and Pim-2 lack, and therefore, Pim-3 can exhibit its kinase activity once it is expressed. Pim-3 expression is regulated at transcriptional and post-transcriptional levels by transcription factors (e.g., Ets-1) and post-translational modifiers (e.g., translationally-controlled tumor protein), respectively. Pim-3 could promote growth and angiogenesis of human pancreatic cancer cells in vivo in an orthotopic nude mouse model. Furthermore, a Pim-3 kinase inhibitor inhibited cell proliferation when human pancreatic cancer cells were injected into nude mice, without inducing any major adverse effects. Thus, Pim-3 kinase may serve as a novel molecular target for developing targeting drugs against pancreatic and other types of cancer.

  10. Circulating microRNAs in Pancreatic Juice as Candidate Biomarkers of Pancreatic Cancer.

    PubMed

    Wang, Jin; Raimondo, Massimo; Guha, Sushovan; Chen, Jinyun; Diao, Lixia; Dong, Xiaoqun; Wallace, Michael B; Killary, Ann M; Frazier, Marsha L; Woodward, Timothy A; Wang, Jing; Sen, Subrata

    2014-01-01

    Development of sensitive and specific biomarkers, preferably those circulating in body fluids is critical for early diagnosis of cancer. This study performed profiling of microRNAs (miRNAs) in exocrine pancreatic secretions (pancreatic juice) by microarray analysis utilizing pancreatic juice from 6 pancreatic ductal adenocarcinoma (PDAC) patients and two pooled samples from 6 non-pancreatic, non-healthy (NPNH) as controls. Differentially circulating miRNAs were subsequently validated in 88 pancreatic juice samples from 50 PDAC, 19 chronic pancreatitis (CP) patients and 19 NPNH controls. A marked difference in the profiles of four circulating miRNAs (miR-205, miR-210, miR-492, and miR-1427) was observed in pancreatic juice collected from patients with PDAC and those without pancreatic disease. Elevated levels of the four miRNAs together predicted PDAC with a specificity of 88% and sensitivity of 87%. Inclusion of serum CA19-9 level increased the sensitivity to 91% and the specificity to 100%. Enrichment of the four miRNAs in pancreatic juice was associated with decreased OS, as was the combination of miR-205 and miR-210. Higher contents of miR-205 and miR-210 were also associated with lymph node metastasis. Elevated levels of circulating miR-205, miR-210, miR-492, and miR-1247 in pancreatic juice are, therefore, promising candidate biomarkers of disease and poor prognosis in patients with PDAC.

  11. Thymoquinone Promotes Pancreatic Cancer Cell Death and Reduction of Tumor Size through Combined Inhibition of Histone Deacetylation and Induction of Histone Acetylation

    PubMed Central

    Relles, Daniel; Gong, Qiaoke

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is virtually therapy-resistant. As noninvasive lesions progress to malignancy, the precursor period provides a window for cancer therapies that can interfere with neoplastic progression. Thymoquinone (Tq), a major bioactive component of essential oil from Nigella sativa's seeds, has demonstrated antineoplastic activities in multiple cancers. In this study, we investigated antineoplastic potential of Tq in human PDAC cell lines, AsPC-1 and MiaPaCa-2. Tq (10–50 μM) inhibited cell viability and proliferation and caused partial G2 cycle arrest in dose-dependent manner in both cell lines. Cells accumulated in subG0/G1 phase, indicating apoptosis. This was associated with upregulation of p53 and downregulation of Bcl-2. Independently of p53, Tq increased p21 mRNA expression 12-fold. Tq also induced H4 acetylation (lysine 12) and downregulated HDACs activity, reducing expression of HDACs 1, 2, and 3 by 40–60%. In vivo, Tq significantly reduced tumor size in 67% of established tumor xenografts (P < 0.05), along with increased H4 acetylation and reduced HDACs expression. Our results showed that Tq mediated posttranslational modification of histone acetylation, inhibited HDACs expression, and induced proapoptotic signaling pathways. These molecular targets demonstrate rationale for using Tq as a promising antineoplastic agent to prevent postoperative cancer recurrence and to prolong survival of PDAC patients after surgical resection. PMID:28105374

  12. Exendin-4 Promotes Survival of Mouse Pancreatic β-Cell Line in Lipotoxic Conditions, through the Extracellular Signal-Related Kinase 1/2 Pathway

    PubMed Central

    Gu, Jianqiu; Wei, Qian; Meng, Xin; Zhang, Jin

    2016-01-01

    Type 2 diabetes is a heterogeneous disorder that develops as a result of relatively inappropriate insulin secretion and insulin resistance. Increased levels of free fatty acids (FFAs) are one of the important factors for the pathogenesis of type 2 diabetes and contribute to defective β-cell proliferation and increased β-cell apoptosis. Recently, glucagon-like peptide-1 (GLP-1) receptor agonists have been shown to possess an antiapoptotic effect, by increasing β-cell mass and improving β-cell function. However, their effects on β-cells in vitro against lipotoxicity have not been elucidated completely. In this study, we investigated whether the GLP-1 receptor agonist exendin-4 displays prosurvival effects in pancreatic β-cells exposed to chronic elevated FFAs. Results showed that exendin-4 inhibited apoptosis induced by palmitate in MIN6 cells. After 24 h of incubation, exendin-4 caused rapid activation of extracellular signal-related kinase 1/2 (ERK1/2) under lipotoxic conditions. The ERK1/2 inhibitor PD98059 blocked the antilipotoxic effect of exendin-4 on MIN6 cells. Exendin-4 also inhibited the mitochondrial pathway of apoptosis. This inhibition is associated with upregulation of BCL-2. Our findings suggested that exendin-4 may exert cytoprotective effects through activation of ERK1/2 and inhibition of the mitochondrial apoptosis pathway. PMID:27656657

  13. Experimental Models of Pancreatitis

    PubMed Central

    Hyun, Jong Jin

    2014-01-01

    Acute pancreatitis is an inflammatory disease characterized by interstitial edema, inflammatory cell infiltration, and acinar cell necrosis, depending on its severity. Regardless of the extent of tissue injury, acute pancreatitis is a completely reversible process with evident normal tissue architecture after recovery. Its pathogenic mechanism has been known to be closely related to intracellular digestive enzyme activation. In contrast to acute pancreatitis, chronic pancreatitis is characterized by irreversible tissue damage such as acinar cell atrophy and pancreatic fibrosis that results in exocrine and endocrine insufficiency. Recently, many studies of chronic pancreatitis have been prompted by the discovery of the pancreatic stellate cell, which has been identified and distinguished as the key effector cell of pancreatic fibrosis. However, investigations into the pathogenesis and treatment of pancreatitis face many obstacles because of its anatomical location and disparate clinical course. Due to these difficulties, most of our knowledge on pancreatitis is based on research conducted using experimental models of pancreatitis. In this review, several experimental models of pancreatitis will be discussed in terms of technique, advantages, and limitations. PMID:24944983

  14. Control and choice in English prisons: developing health-promoting prisons.

    PubMed

    Woodall, James; Dixey, Rachael; South, Jane

    2014-09-01

    The 'health-promoting prison' has been informed by a broader settings-based philosophy to health promotion which conceptualizes health as the responsibility for all social settings. Though in its relative infancy, the notion of a health-promoting prison has gained political backing from international organizations like the World Health Organization, but the implementation of the policy rhetoric has not translated across all prison environments. The aim of this paper is to consider how key elements of health promotion discourse-choice, control and implicitly, empowerment-can apply in the context of imprisonment. These concepts were examined in three category-C (secure) prisons in England, through interviews with 36 male prisoners and 19 prison staff conducted by the first author. Analysis showed that prisoners negotiated the norms, structures and strictures of prison life by both relinquishing control and also by taking control, showing resistance and exercising some element of choice. The paradox is that, as most prisoners are expected to be released at some point they need to exercise some agency, control and choice, but these learning experiences may be constrained whilst 'inside'. The paper argues that if a settings approach in prison is truly to move forward, both conceptually and practically, then health promoters should seek to embed the key values of health promotion within the prison setting.

  15. Cholecystokinin and pancreatic cancer: the chicken or the egg?

    PubMed

    Smith, Jill P; Solomon, Travis E

    2014-01-01

    The gastrointestinal peptide cholecystokinin (CCK) causes the release of pancreatic digestive enzymes and growth of the normal pancreas. Exogenous CCK administration has been used in animal models to study pancreatitis and also as a promoter of carcinogen-induced or Kras-driven pancreatic cancer. Defining CCK receptors in normal human pancreas has been problematic because of its retroperitoneal location, high concentrations of pancreatic proteases, and endogenous RNase. Most studies indicate that the predominant receptor in human pancreas is the CCK-B type, and CCK-A is the predominant form in rodent pancreas. In pancreatic cancer cells and tumors, the role of CCK is better established because receptors are often overexpressed by these cancer cells and stimulation of such receptors promotes growth. Furthermore, in established cancer, endogenous production of CCK and/or gastrin occurs and their actions stimulate the synthesis of more receptors plus growth by an autocrine mechanism. Initially it was thought that the mechanism by which CCK served to potentiate carcinogenesis was by interplay with inflammation in the pancreatic microenvironment. But with the recent findings of CCK receptors on early PanIN (pancreatic intraepithelial neoplasia) lesions and on stellate cells, the question has been raised that perhaps CCK actions are not the result of cancer but an early driving promoter of cancer. This review will summarize what is known regarding CCK, its receptors, and pancreatic cancer, and also what is unknown and requires further investigation to determine which comes first, the chicken or the egg, "CCK or the cancer."

  16. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration

    PubMed Central

    Wodziak, Dariusz; Dong, Aiwen; Basin, Michael F.; Lowe, Anson W.

    2016-01-01

    A recently published study identified Anterior Gradient 2 (AGR2) as a regulator of EGFR signaling by promoting receptor presentation from the endoplasmic reticulum to the cell surface. AGR2 also promotes tissue regeneration in amphibians and fish. Whether AGR2-induced EGFR signaling is essential for tissue regeneration in higher vertebrates was evaluated using a well-characterized murine model for pancreatitis. The impact of AGR2 expression and EGFR signaling on tissue regeneration was evaluated using the caerulein-induced pancreatitis mouse model. EGFR signaling and cell proliferation were examined in the context of the AGR2-/- null mouse or with the EGFR-specific tyrosine kinase inhibitor, AG1478. In addition, the Hippo signaling coactivator YAP1 was evaluated in the context of AGR2 expression during pancreatitis. Pancreatitis-induced AGR2 expression enabled EGFR translocation to the plasma membrane, the initiation of cell signaling, and cell proliferation. EGFR signaling and tissue regeneration were partially inhibited by the tyrosine kinase inhibitor AG1478, but absent in the AGR2-/- null mouse. AG1478-treated and AGR2-/- null mice with pancreatitis died whereas all wild-type controls recovered. YAP1 activation was also dependent on pancreatitis-induced AGR2 expression. AGR2-induced EGFR signaling was essential for tissue regeneration and recovery from pancreatitis. The results establish tissue regeneration as a major function of AGR2-induced EGFR signaling in adult higher vertebrates. Enhanced AGR2 expression and EGFR signaling are also universally present in human pancreatic cancer, which support a linkage between tissue injury, regeneration, and cancer pathogenesis. PMID:27764193

  17. An Architecture to Promote the Commercialization of Space Mission Command and Control

    NASA Technical Reports Server (NTRS)

    Jones, Michael K.

    1996-01-01

    This paper describes a command and control architecture that encompasses space mission operations centers, ground terminals, and spacecraft. This architecture is intended to promote the growth of a lucrative space mission operations command and control market through a set of open standards used by both gevernment and profit-making space mission operators.

  18. Promoting Early Intervention Referral through a Randomized Controlled Home-Visiting Program

    ERIC Educational Resources Information Center

    Schwarz, Donald F.; O'Sullivan, Ann L.; Guinn, Judith; Mautone, Jennifer A.; Carlson, Elyse C.; Zhao, Huaqing; Zhang, Xuemei; Esposito, Tara L.; Askew, Megan; Radcliffe, Jerilynn

    2012-01-01

    The MOM Program is a randomized, controlled trial of an intervention to promote mothers' care for the health and development of their children, including accessing early intervention (EI) services. Study aims were to determine whether, relative to controls, this intervention increased receipt of and referral to EI services. Mothers (N = 302)…

  19. Pancreatic Exocrine Insufficiency in Pancreatic Cancer

    PubMed Central

    Vujasinovic, Miroslav; Valente, Roberto; Del Chiaro, Marco; Permert, Johan; Löhr, J.-Matthias

    2017-01-01

    Abstract: Cancer patients experience weight loss for a variety of reasons, commencing with the tumor’s metabolism (Warburg effect) and proceeding via cachexia to loss of appetite. In pancreatic cancer, several other factors are involved, including a loss of appetite with a particular aversion to meat and the incapacity of the pancreatic gland to function normally when a tumor is present in the pancreatic head. Pancreatic exocrine insufficiency is characterized by a deficiency of the enzymes secreted from the pancreas due to the obstructive tumor, resulting in maldigestion. This, in turn, contributes to malnutrition, specifically a lack of fat-soluble vitamins, antioxidants, and other micronutrients. Patients with pancreatic cancer and pancreatic exocrine insufficiency have, overall, an extremely poor prognosis with regard to surgical outcome and overall survival. Therefore, it is crucial to be aware of the mechanisms involved in the disease, to be able to diagnose pancreatic exocrine insufficiency early on, and to treat malnutrition appropriately, for example, with pancreatic enzymes. PMID:28241470

  20. Management of Locally Advanced Pancreatic Cancer.

    PubMed

    Martin, Robert C G

    2016-12-01

    The diagnosis for locally advanced pancreatic cancer is based on high-quality cross-sectional imaging, which shows tumor invasion into the celiac/superior mesenteric arteries and/or superior mesenteric/portal venous system that is not reconstructable. The optimal management of these patients is evolving quickly with the advent of newer chemotherapeutics, radiation, and nonthermal ablation modalities. This article presents the current status of initial chemotherapy, surgical therapy, ablative therapy, and radiation therapy for patients with nonmetastatic locally advanced unresectable pancreatic cancer. Surgical resection offers the best chance of long-term disease control and the only chance for cure for patients with nonmetastatic exocrine pancreatic cancer.

  1. Environmental risk factors for pancreatic cancer: an update.

    PubMed

    Barone, Elisa; Corrado, Alda; Gemignani, Federica; Landi, Stefano

    2016-11-01

    Pancreatic cancer (PC) is one of the most aggressive diseases. Only 10 % of all PC cases are thought to be due to genetic factors. Here, we analyzed the most recently published case-control association studies, meta-analyses, and cohort studies with the aim to summarize the main environmental factors that could have a role in PC. Among the most dangerous agents involved in the initiation phase, there are the inhalation of cigarette smoke, and the exposure to mutagenic nitrosamines, organ-chlorinated compounds, heavy metals, and ionizing radiations. Moreover, pancreatitis, high doses of alcohol drinking, the body microbial infections, obesity, diabetes, gallstones and/or cholecystectomy, and the accumulation of asbestos fibers seem to play a crucial role in the progression of the disease. However, some of these agents act both as initiators and promoters in pancreatic acinar cells. Protective agents include dietary flavonoids, marine omega-3, vitamin D, fruit, vegetables, and the habit of regular physical activity. The identification of the factors involved in PC initiation and progression could be of help in establishing novel therapeutic approaches by targeting the molecular signaling pathways responsive to these stimuli. Moreover, the identification of these factors could facilitate the development of strategies for an early diagnosis or measures of risk reduction for high-risk people.

  2. Aberrant Overexpression of the Rgl2 Ral Small GTPase-specific Guanine Nucleotide Exchange Factor Promotes Pancreatic Cancer Growth through Ral-dependent and Ral-independent Mechanisms*

    PubMed Central

    Vigil, Dominico; Martin, Timothy D.; Williams, Falina; Yeh, Jen Jen; Campbell, Sharon L.; Der, Channing J.

    2010-01-01

    Our recent studies established essential and distinct roles for RalA and RalB small GTPase activation in K-Ras mutant pancreatic ductal adenocarcinoma (PDAC) cell line tumorigencity, invasion, and metastasis. However, the mechanism of Ral GTPase activation in PDAC has not been determined. There are four highly related mammalian RalGEFs (RalGDS, Rgl1, Rgl2, and Rgl3) that can serve as Ras effectors. Whether or not they share distinct or overlapping functions in K-Ras-mediated growth transformation has not been explored. We found that plasma membrane targeting to mimic persistent Ras activation enhanced the growth-transforming activities of RalGEFs. Unexpectedly, transforming activity did not correlate directly with total cell steady-state levels of Ral activation. Next, we observed elevated Rgl2 expression in PDAC tumor tissue and cell lines. Expression of dominant negative Ral, which blocks RalGEF function, as well as interfering RNA suppression of Rgl2, reduced PDAC cell line steady-state Ral activity, growth in soft agar, and Matrigel invasion. Surprisingly, the effect of Rgl2 on anchorage-independent growth could not be rescued by constitutively activated RalA, suggesting a novel Ral-independent function for Rgl2 in transformation. Finally, we determined that Rgl2 and RalB both localized to the leading edge, and this localization of RalB was dependent on endogenous Rgl2 expression. In summary, our observations support nonredundant roles for RalGEFs in Ras-mediated oncogenesis and a key role for Rgl2 in Ral activation and Ral-independent PDAC growth. PMID:20801877

  3. The supercoiling sensitivity of a bacterial tRNA promoter parallels its responsiveness to stringent control.

    PubMed Central

    Figueroa-Bossi, N; Guérin, M; Rahmouni, R; Leng, M; Bossi, L

    1998-01-01

    In Salmonella typhimurium, expression of the hisR locus, a tRNA operon, decreases upon inhibiting DNA gyrase. Here, the hisR promoter dependence on negative DNA supercoiling was examined in vivo and in vitro. Mutant analysis showed the sequence determinants of this dependence to lie in the region between the -10 box and the transcription start site. As with most promoters subject to stringent control, this portion of the hisR promoter is C-G-rich. Replacing a C/G bp with T/A at position -7 partially relieves the supercoiling response while changing the sequence between -5 and + 1 (-CCCCCG-) for -GTTAA- abolishes the response in vitro and in vivo. The relief of the supercoiling dependence closely correlates with increased promoter susceptibility to melting in vivo and a lesser requirement for initiating nucleotides in the formation of stable initiation complexes in vitro. Studies in isoleucine-starved cells showed that such sequence changes mitigate and abolish the hisR promoter response to stringent control, respectively. The data presented suggest that the hisR promoter's sensitivity to stringent regulation arises from the same physical property that confers supercoiling sensitivity, i.e. resistance to melting. We propose that the stringent control mechanism acts by hampering the ability of RNA polymerase to melt the DNA helix. PMID:9550733

  4. Pancreatic Cancer Genetics

    PubMed Central

    Amundadottir, Laufey T.

    2016-01-01

    Although relatively rare, pancreatic tumors are highly lethal [1]. In the United States, an estimated 48,960 individuals will be diagnosed with pancreatic cancer and 40,560 will die from this disease in 2015 [1]. Globally, 337,872 new pancreatic cancer cases and 330,391 deaths were estimated in 2012 [2]. In contrast to most other cancers, mortality rates for pancreatic cancer are not improving; in the US, it is predicted to become the second leading cause of cancer related deaths by 2030 [3, 4]. The vast majority of tumors arise in the exocrine pancreas, with pancreatic ductal adenocarcinoma (PDAC) accounting for approximately 95% of tumors. Tumors arising in the endocrine pancreas (pancreatic neuroendocrine tumors) represent less than 5% of all pancreatic tumors [5]. Smoking, type 2 diabetes mellitus (T2D), obesity and pancreatitis are the most consistent epidemiological risk factors for pancreatic cancer [5]. Family history is also a risk factor for developing pancreatic cancer with odds ratios (OR) ranging from 1.7-2.3 for first-degree relatives in most studies, indicating that shared genetic factors may play a role in the etiology of this disease [6-9]. This review summarizes the current knowledge of germline pancreatic cancer risk variants with a special emphasis on common susceptibility alleles identified through Genome Wide Association Studies (GWAS). PMID:26929738

  5. Inherited pancreatic cancer syndromes.

    PubMed

    Solomon, Sheila; Das, Siddhartha; Brand, Randall; Whitcomb, David C

    2012-01-01

    Pancreatic cancer remains one of the most challenging of all cancers. Genetic risk factors are believed to play a major role, but other than genes coding for blood group, genetic risks for sporadic cases remain elusive. However, several germline mutations have been identified that lead to hereditary pancreatic cancer, familial pancreatic cancer, and increased risk for pancreatic cancer as part of a familial cancer syndrome. The most important genes with variants increasing risk for pancreatic cancer include BRCA1, BRCA2, PALB2, ATM, CDKN2A, APC, MLH1, MSH2, MSH6, PMS2, PRSS1, and STK11. Recognition of members of high-risk families is important for understanding pancreatic cancer biology, for recommending risk reduction strategies and, in some cases, initiating cancer surveillance programs. Because the best methods for surveillance have not been established, the recommendation to refer at-risk patients to centers with ongoing research programs in pancreatic cancer surveillance is supported.

  6. Pancreatic Cancer Chemoprevention Translational Workshop: Meeting Report.

    PubMed

    Miller, Mark Steven; Allen, Peter; Brentnall, Teresa A; Goggins, Michael; Hruban, Ralph H; Petersen, Gloria M; Rao, Chinthalapally V; Whitcomb, David C; Brand, Randall E; Chari, Suresh T; Klein, Alison P; Lubman, David M; Rhim, Andrew D; Simeone, Diane M; Wolpin, Brian M; Umar, Asad; Srivastava, Sudhir; Steele, Vernon E; Rinaudo, Jo Ann S

    2016-09-01

    Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States with a 5-year survival rate of less than 10%. The Division of Cancer Prevention of the National Cancer Institute sponsored the Pancreatic Cancer Chemoprevention Translational Workshop on September 10 to 11, 2015. The goal of the workshop was to obtain information regarding the current state of the science and future scientific areas that should be prioritized for pancreatic cancer prevention research, including early detection and intervention for high-risk precancerous lesions. The workshop addressed the molecular/genetic landscape of pancreatic cancer and precursor lesions, high-risk populations and criteria to identify a high-risk population for potential chemoprevention trials, identification of chemopreventative/immunopreventative agents, and use of potential biomarkers and imaging for assessing short-term efficacy of a preventative agent. The field of chemoprevention for pancreatic cancer is emerging, and this workshop was organized to begin to address these important issues and promote multi-institutional efforts in this area. The meeting participants recommended the development of an National Cancer Institute working group to coordinate efforts, provide a framework, and identify opportunities for chemoprevention of pancreatic cancer.

  7. Vascularized tissue-engineered chambers promote survival and function of transplanted islets and improve glycemic control.

    PubMed

    Knight, K R; Uda, Y; Findlay, M W; Brown, D L; Cronin, K J; Jamieson, E; Tai, T; Keramidaris, E; Penington, A J; Rophael, J; Harrison, L C; Morrison, W A

    2006-03-01

    We have developed a chamber model of islet engraftment that optimizes islet survival by rapidly restoring islet-extracellular matrix relationships and vascularization. Our aim was to assess the ability of syngeneic adult islets seeded into blood vessel-containing chambers to correct streptozotocin-induced diabetes in mice. Approximately 350 syngeneic islets suspended in Matrigel extracellular matrix were inserted into chambers based on either the splenic or groin (epigastric) vascular beds, or, in the standard approach, injected under the renal capsule. Blood glucose was monitored weekly for 7 weeks, and an intraperitoneal glucose tolerance test performed at 6 weeks in the presence of the islet grafts. Relative to untreated diabetic animals, glycemic control significantly improved in all islet transplant groups, strongly correlating with islet counts in the graft (P<0.01), and with best results in the splenic chamber group. Glycemic control deteriorated after chambers were surgically removed at week 8. Immunohistochemistry revealed islets with abundant insulin content in grafts from all groups, but with significantly more islets in splenic chamber grafts than the other treatment groups (P<0.05). It is concluded that hyperglycemia in experimental type 1 diabetes can be effectively treated by islets seeded into a vascularized chamber functioning as a "pancreatic organoid."

  8. Pancreatic carcinoma: results with fast neutron therapy

    SciTech Connect

    Kaul, R.; Cohen, L.; Hendrickson, F.; Awschalom, M.; Hrejsa, A.F.; Rosenberg, I.

    1981-02-01

    Results of therapy in 31 of 50 patients who were treated for advanced pancreatic carcinoma at Fermi National Accelerator Laboratory are presented here. To date, six patients are alive and four are free of disease. Since the main reason for failure was lack of control of primary tumor, the tumor dose has been increased by 15%. Based on our results, a nationwide study has been launched to assess the effectiveness of neutrons vs photons in the treatment of locally advanced pancreatic carcinoma.

  9. Immunotherapy of pancreatic carcinoma.

    PubMed

    Märten, Angela

    2008-05-01

    Patients with carcinoma of the exocrine pancreas have especially poor prognosis with a five-year survival rate of <1% and a median survival of 4-6 months. Pancreatic carcinoma is a systemic disease, insensitive to radiotherapy and mostly to chemotherapy. Accordingly, new treatment modalities are worth being investigated. One of the promising approaches is immunotherapy. Several phase I/II trials that have been published show interesting results, whereupon antibody-based strategies seem to fail and unspecific stimulation or vaccination with peptides look encouraging. Furthermore, phase II trials dealing with combination therapies are highly promising. One of them, a combination of chemoradiotherapy plus interferon-alpha is currently tested in a randomized phase III trial. As most of the trials had enrolled only limited numbers of patients and most of the trials were not conducted and/or reported according to the new standards it is difficult to draw final conclusions from the discussed trials. Immuno-monitoring was performed only in 40% of the discussed publications. In all cases immune responses were observed and correlation with the clinical outcome is discussed. Immunotherapy of pancreatic adenocarcinoma and especially combination therapies including immunotherapy is an up-and-coming approach and needs to be investigated in well conducted phase III randomized controlled trials accompanied by appropriate immuno-monitoring.

  10. A role for community health promoters in tuberculosis control in the state of Chiapas, Mexico.

    PubMed

    Herce, Michael E; Chapman, Jacob A; Castro, Arachu; García-Salyano, Gabriel; Khoshnood, Kaveh

    2010-04-01

    We conducted a qualitative study employing structured interviews with 38 community health workers, known as health promoters, from twelve rural municipalities of Chiapas, Mexico in order to characterize their work and identify aspects of their services that would be applicable to community-based tuberculosis (TB) control programs. Health promoters self-identify as being of Mayan Indian ethnicity. Most are bilingual, speaking Spanish and one of four indigenous Mayan languages native to Chiapas. They volunteer 11 h each week to conduct clinical and public health work in their communities. Over half (53%) work with a botiquín, a medicine cabinet stocked with essential medicines. Fifty-three percent identify TB as a major problem affecting the health of their communities, with one-fifth (21%) of promoters reporting experience caring for patients with known or suspected TB and 29% having attended to patients with hemoptysis. One-third of health promoters have access to antibiotics (32%) and one-half have experience with their administration; 55% complement their biomedical treatments with traditional Mayan medicinal plant therapies in caring for their patients. We describe how health promoters employ both traditional and allopathic medicine to treat the symptoms and diseases they encounter most frequently which include fever, diarrhea, and parasitic infections. We contend that given the complex sociopolitical climate in Chiapas and the state's unwavering TB epidemic and paucity of health care infrastructure in rural areas, efforts to implement comprehensive, community-based TB control would benefit from employing the services of health promoters.

  11. Complex role for the immune system in initiation and progression of pancreatic cancer.

    PubMed

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-08-28

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.

  12. Complex role for the immune system in initiation and progression of pancreatic cancer

    PubMed Central

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-01-01

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed. PMID:25170202

  13. The Proximal J Kappa Germline-Transcript Promoter Facilitates Receptor Editing through Control of Ordered Recombination

    PubMed Central

    Vettermann, Christian; Timblin, Greg A.; Lim, Vivian; Lai, Ernest C.; Schlissel, Mark S.

    2015-01-01

    V(D)J recombination creates antibody light chain diversity by joining a Vκ gene segment with one of four Jκ segments. Two Jκ germline-transcript (GT) promoters control Vκ-Jκ joining, but the mechanisms that govern Jκ choice are unclear. Here, we show in gene-targeted mice that the proximal GT promoter helps targeting rearrangements to Jκ1 by preventing premature DNA breaks at Jκ2. Consequently, cells lacking the proximal GT promoter show a biased utilization of downstream Jκ segments, resulting in a diminished potential for receptor editing. Surprisingly, the proximal—in contrast to the distal—GT promoter is transcriptionally inactive prior to Igκ recombination, indicating that its role in Jκ choice is independent of classical promoter function. Removal of the proximal GT promoter increases H3K4me3 levels at Jκ segments, suggesting that this promoter could act as a suppressor of recombination by limiting chromatin accessibility to RAG. Our findings identify the first cis-element critical for Jκ choice and demonstrate that ordered Igκ recombination facilitates receptor editing. PMID:25559567

  14. A Sox9/Fgf feed-forward loop maintains pancreatic organ identity

    PubMed Central

    Seymour, Philip A.; Shih, Hung Ping; Patel, Nisha A.; Freude, Kristine K.; Xie, Ruiyu; Lim, Christopher J.; Sander, Maike

    2012-01-01

    All mature pancreatic cell types arise from organ-specific multipotent progenitor cells. Although previous studies have identified cell-intrinsic and -extrinsic cues for progenitor cell expansion, it is unclear how these cues are integrated within the niche of the developing organ. Here, we present genetic evidence in mice that the transcription factor Sox9 forms the centerpiece of a gene regulatory network that is crucial for proper organ growth and maintenance of organ identity. We show that pancreatic progenitor-specific ablation of Sox9 during early pancreas development causes pancreas-to-liver cell fate conversion. Sox9 deficiency results in cell-autonomous loss of the fibroblast growth factor receptor (Fgfr) 2b, which is required for transducing mesenchymal Fgf10 signals. Likewise, Fgf10 is required to maintain expression of Sox9 and Fgfr2 in epithelial progenitors, showing that Sox9, Fgfr2 and Fgf10 form a feed-forward expression loop in the early pancreatic organ niche. Mirroring Sox9 deficiency, perturbation of Fgfr signaling in pancreatic explants or genetic inactivation of Fgf10 also result in hepatic cell fate conversion. Combined with previous findings that Fgfr2b or Fgf10 are necessary for pancreatic progenitor cell proliferation, our results demonstrate that organ fate commitment and progenitor cell expansion are coordinately controlled by the activity of a Sox9/Fgf10/Fgfr2b feed-forward loop in the pancreatic niche. This self-promoting Sox9/Fgf10/Fgfr2b loop may regulate cell identity and organ size in a broad spectrum of developmental and regenerative contexts. PMID:22874919

  15. [Autophagy contributes to the initiation of pancreatic cancer].

    PubMed

    Iovanna, Juan L

    2017-03-01

    The pancreatic adenocarcinoma initiation results from the interaction of genetic events combined with multiple other factors. Among the genetic alterations that contribute to the pathogenesis of this disease, the mutation of the KRAS oncogene is required but not sufficient to trigger this cancer. Pancreatitis, an inflammatory disease, facilitates and accelerates the transformation of pancreatic cells when the KRAS oncogene is mutated. Of note, the repertoire of molecular mediators of pancreatitis which are responsible of the promotion of KRAS-mediated transformation is not completely defined. Importantly, autophagy has been proposed as one of the cellular mechanisms contributing to pancreatic carcinogenesis, especially in the initial phases, in which the oncogene KRAS appears to play its leading role. In addition, autophagy is strongly induced during pancreatitis. Although some aspects of autophagy in pancreatic cancer development are not completely established, we can affirm that overexpression of VMP1, an inducer of autophagy which is specifically activated in pancreas during pancreatitis, improves the development of pancreatic precancerous lesions PanINs when the oncogene KRAS is mutated. In addition, inhibition of the autophagic flux with chloroquine inhibits the KRAS pro-tumor effect in the pancreas. In conclusion, activation of expression of VMP1 improves the pro-tumor role of KRAS in pancreas.

  16. [Pancreatic secretion in domestic sprue].

    PubMed

    Otte, M; Thurmayr, G R; Dageförde, J; Thurmayr, R; Forell, M M

    1985-02-15

    Pancreatic function was determined (using the secretin-pancreozymin test) before the use of gluten-free diet in 22 patients with endemic (celiac) sprue. Water and bicarbonate secretion were within normal limits, if anything there was a trend to high-normal values. Remarkable and apparently characteristic for celiac sprue was the only slight contraction of the gallbladder after intravenous injection of submaximal doses of cholecystokinin-pancreozymin (CCK). Secretion of the 3 enzymes amylase, lipase and trypsin was decreased in about one third of cases, the difference relating both to the concentrations and the amount secreted, compared with normal control values was significant (P greater than 0.01). But in no case was the reduced enzyme secretion so marked that one would expect maldigestion. Multivariate non-linear discriminance analysis demonstrated that pancreatic secretion in sprue is quite distinct from that in healthy subjects and those with chronic pancreatitis. It is assumed that there is a pattern of exocrine pancreatic secretion typical for sprue.

  17. Pancreatic function in Crohn's disease.

    PubMed Central

    Hegnhøj, J; Hansen, C P; Rannem, T; Søbirk, H; Andersen, L B; Andersen, J R

    1990-01-01

    We investigated exocrine pancreatic function in a population of patients with Crohn's disease in order to correlate the pancreatic function with clinical and laboratory variables. A total of 143 patients affected by Crohn's disease and 115 control subjects were studied. All had a Lundh meal test. As a group patients with Crohn's disease had significantly decreased activity of both amylase (p less than 0.02) and lipase (p less than 0.001) in duodenal aspirates. In patients with Crohn's disease enzyme activities were not correlated to duration of disease or to extent or localisation of previous bowel resection. The lowest enzyme values were found in patients with the most extensive bowel involvement, and they were significantly lower (p less than 0.05) than in patients with disease confined to the terminal ileum. The differences between enzyme values in other subgroups of patients were not significant. For the patient group as a whole no correlation was found between disease activity and enzyme values, but for the most uniform group of patients, those with terminal ileitis, pancreatic function was significantly lower (p less than 0.05) in patients with moderate and severe disease compared with patients with mild disease. Thus at least two factors seem to be responsible for impaired pancreatic function in Crohn's disease: firstly disease activity and secondly localisation or extent of disease. PMID:1698692

  18. Protein Kinase D Regulates Cell Death Pathways in Experimental Pancreatitis

    PubMed Central

    Yuan, Jingzhen; Liu, Yannan; Tan, Tanya; Guha, Sushovan; Gukovsky, Ilya; Gukovskaya, Anna; Pandol, Stephen J.

    2012-01-01

    Inflammation and acinar cell necrosis are two major pathological responses of acute pancreatitis, a serious disorder with no current therapies directed to its molecular pathogenesis. Serine/threonine protein kinase D family, which includes PKD/PKD1, PKD2, and PKD3, has been increasingly implicated in the regulation of multiple physiological and pathophysiological effects. We recently reported that PKD/PKD1, the predominant PKD isoform expressed in rat pancreatic acinar cells, mediates early events of pancreatitis including NF-κB activation and inappropriate intracellular digestive enzyme activation. In current studies, we investigated the role and mechanisms of PKD/PKD1 in the regulation of necrosis in pancreatic acinar cells by using two novel small molecule PKD inhibitors CID755673 and CRT0066101 and molecular approaches in in vitro and in vivo experimental models of acute pancreatitis. Our results demonstrated that both CID755673 and CRT0066101 are PKD-specific inhibitors and that PKD/PKD1 inhibition by either the chemical inhibitors or specific PKD/PKD1 siRNAs attenuated necrosis while promoting apoptosis induced by pathological doses of cholecystokinin-octapeptide (CCK) in pancreatic acinar cells. Conversely, up-regulation of PKD expression in pancreatic acinar cells increased necrosis and decreased apoptosis. We further showed that PKD/PKD1 regulated several key cell death signals including inhibitors of apoptotic proteins, caspases, receptor-interacting protein kinase 1 to promote necrosis. PKD/PKD1 inhibition by CID755673 significantly ameliorated necrosis and severity of pancreatitis in an in vivo experimental model of acute pancreatitis. Thus, our studies indicate that PKD/PKD1 is a key mediator of necrosis in acute pancreatitis and that PKD/PKD1 may represent a potential therapeutic target in acute pancreatitis. PMID:22470346

  19. Berberine inhibits mouse insulin gene promoter through activation of AMP activated protein kinase and may exert beneficial effect on pancreatic β-cell.

    PubMed

    Shen, Ning; Huan, Yi; Shen, Zhu-fang

    2012-11-05

    Berberine is one of the main alkaloids of Rhizoma coptidis, proven to have anti-diabetic potentials through activation of AMP activated protein kinase (AMPK) in liver and muscle. However, the role of berberine on the insulin gene is unknown. Therefore, the effect of berberine on insulin gene transcription was investigated in the present study. Reporter gene assays were used in the mouse β-cell line NIT-1 to test the effect of berberine on the promoter of mouse insulin gene Ins2. The mRNA and protein levels of insulin were also detected. Diet induced glucose intolerant mice were used to explore the effect of berberine on blood glucose homeostasis and insulin resistance in vivo. The insulin content in islet was semi-quantified by an image analysis software in the immunohistochemistry sections. The results revealed that berberine caused a reversible concentration-dependent inhibition of insulin gene transcription in NIT-1 cells which showed a significant difference from the long term used AMPK activator metformin. Such inhibition on insulin promoter resulted in the reduction of mRNA and protein of insulin. Furthermore, the inhibition of insulin promoter was totally abolished by AMPK inhibitor Compound C. Berberine significantly improved insulin resistance and glucose intolerance of mice. Likewise, insulin content in islets of berberine treated mice was also decreased. Thus, the insulin gene represents a novel target of AMPK that may contribute to the action of berberine in type 2 diabetes mellitus.

  20. Preoperative computed tomography measurements of pancreatic steatosis and visceral fat: prognostic markers for dissemination and lethality of pancreatic adenocarcinoma

    PubMed Central

    Mathur, Abhishek; Hernandez, Jonathan; Shaheen, Fawad; Shroff, Miloni; Dahal, Sujat; Morton, Connor; Farrior, Thomas; Kedar, Raj; Rosemurgy, Alexander

    2011-01-01

    Background Increased visceral fat and pancreatic steatosis promote lymphatic metastases and decreased survival in patients with pancreatic adenocarcinoma after pancreatoduodenectomy (PD). Objectives We aim to determine the utility of preoperative computed tomography (CT) measurements of pancreatic steatosis and visceral fat as prognostic indicators in patients with pancreatic adenocarcinoma. Methods High-resolution CT scans of 42 patients undergoing PD for pancreatic adenocarcinoma were reviewed. Attenuation in CT of the pancreas, liver and spleen were measured in Hounsfield units and scored by two blinded investigators. Perirenal adipose tissue was measured in mm. Results Lymphatic metastases were present in 57% of patients. Age, gender, tumour size and margin status were similar in patients with and without nodal metastases. Node-positive patients had increased visceral but not subcutaneous fat pads compared with node-negative patients and decreased CT attenuation of the pancreatic body and tail and liver. Node-positive patients stratified by visceral adiposity (≥10 mm vs. <10 mm) demonstrated poorer survival (7 ± 1 months vs. 16 ± 2 months; P < 0.01). Conclusions In resected pancreatic adenocarcinoma, increased pancreatic steatosis and increased visceral fat stores are associated with lymphatic metastases. Furthermore, increased visceral fat is associated with abbreviated survival in patients with lymphatic metastases. Hence, increased visceral fat may be a causative factor of abbreviated survival and serves a prognostic role in patients with pancreatic malignancies. PMID:21609373

  1. Pancreatic Cancer Stage 2A

    MedlinePlus

    ... 2A Description: Stage IIA pancreatic cancer; drawing shows cancer in the pancreas and duodenum. The bile duct and pancreatic duct are also shown. Stage IIA pancreatic cancer. Cancer has spread to nearby tissue and organs ...

  2. Pancreatic Cancer Stage 2B

    MedlinePlus

    ... 2B Description: Stage IIB pancreatic cancer; drawing shows cancer in the pancreas and in nearby lymph nodes. Also shown are the bile duct, pancreatic duct, and duodenum. Stage IIB pancreatic cancer. Cancer has spread to nearby lymph nodes and ...

  3. The role of γδ T Cells in pancreatic cancer: what could this mean for the clinic?

    PubMed

    Daley, Donnele; Miller, George

    2017-03-26

    Pancreatic cancer is a devastating disease where the 5-year survival is less that 10%. Recent studies have shown that ?? T cells are a dominant lymphocyte subset in pancreatic cancer and they promote the progression of the disease. With the emerging use of T cell- based therapy for cancer, ?? T cells are an attractive target for novel immunotherapy in pancreatic cancer.

  4. Tetracycline-inducible protein expression in pancreatic cancer cells: Effects of CapG overexpression

    PubMed Central

    Tonack, Sarah; Patel, Sabina; Jalali, Mehdi; Nedjadi, Taoufik; Jenkins, Rosalind E; Goldring, Christopher; Neoptolemos, John; Costello, Eithne

    2011-01-01

    AIM: To establish stable tetracycline-inducible pancreatic cancer cell lines. METHODS: Suit-2, MiaPaca-2, and Panc-1 cells were transfected with a second generation reverse tetracycline-controlled transactivator protein (rtTA2S-M2), under the control of either a cytomegalovirus (CMV) or a chicken β-actin promoter, and the resulting clones were characterised. RESULTS: Use of the chicken (β-actin) promoter proved superior for both the production and maintenance of doxycycline-inducible cell lines. The system proved versatile, enabling transient inducible expression of a variety of genes, including GST-P, CYP2E1, S100A6, and the actin capping protein, CapG. To determine the physiological utility of this system in pancreatic cancer cells, stable inducible CapG expressors were established. Overexpressed CapG was localised to the cytoplasm and the nuclear membrane, but was not observed in the nucleus. High CapG levels were associated with enhanced motility, but not with changes to the cell cycle, or cellular proliferation. In CapG-overexpressing cells, the levels and phosphorylation status of other actin-moduating proteins (Cofilin and Ezrin/Radixin) were not altered. However, preliminary analyses suggest that the levels of other cellular proteins, such as ornithine aminotransferase and enolase, are altered upon CapG induction. CONCLUSION: We have generated pancreatic-cancer derived cell lines in which gene expression is fully controllable. PMID:21528072

  5. 17 CFR 229.404 - (Item 404) Transactions with related persons, promoters and certain control persons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... presented in a registration statement filed pursuant to the Securities Act or the Exchange Act, information... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false (Item 404) Transactions with related persons, promoters and certain control persons. 229.404 Section 229.404 Commodity and...

  6. Effectiveness of Acupressure in Promoting Sleep Quality: A Systematic Review of Randomized Controlled Trials.

    PubMed

    Hmwe, Nant Thin Thin; Subramaniam, Pathmawathi; Tan, Li Ping

    2016-01-01

    This review aimed to evaluate the effectiveness of acupressure in promoting sleep quality among adults. Study findings included in the review showed that acupressure significantly improved sleep quality compared with the control group, but no superior effect of acupressure was found compared with sham acupressure.

  7. Parents' Promotion of Psychological Autonomy, Psychological Control, and Mexican-American Adolescents' Adjustment

    ERIC Educational Resources Information Center

    Sher-Censor, Efrat; Parke, Ross D.; Coltrane, Scott

    2011-01-01

    Mexican-American adolescents are at an elevated risk for adjustment difficulties. In an effort to identify parenting practices that can affect the adjustment of Mexican-American youth, the current study examined parents' promotion of psychological autonomy and parents' psychological control as perceived by Mexican-American early adolescents, and…

  8. Transluminal endoscopic step-up approach versus minimally invasive surgical step-up approach in patients with infected necrotising pancreatitis (TENSION trial): design and rationale of a randomised controlled multicenter trial [ISRCTN09186711

    PubMed Central

    2013-01-01

    Background Infected necrotising pancreatitis is a potentially lethal disease that nearly always requires intervention. Traditionally, primary open necrosectomy has been the treatment of choice. In recent years, the surgical step-up approach, consisting of percutaneous catheter drainage followed, if necessary, by (minimally invasive) surgical necrosectomy has become the standard of care. A promising minimally invasive alternative is the endoscopic transluminal step-up approach. This approach consists of endoscopic transluminal drainage followed, if necessary, by endoscopic transluminal necrosectomy. We hypothesise that the less invasive endoscopic step-up approach is superior to the surgical step-up approach in terms of clinical and economic outcomes. Methods/Design The TENSION trial is a randomised controlled, parallel-group superiority multicenter trial. Patients with (suspected) infected necrotising pancreatitis with an indication for intervention and in whom both treatment modalities are deemed possible, will be randomised to either an endoscopic transluminal or a surgical step-up approach. During a 4 year study period, 98 patients will be enrolled from 24 hospitals of the Dutch Pancreatitis Study Group. The primary endpoint is a composite of death and major complications within 6 months following randomisation. Secondary endpoints include complications such as pancreaticocutaneous fistula, exocrine or endocrine pancreatic insufficiency, need for additional radiological, endoscopic or surgical intervention, the need for necrosectomy after drainage, the number of (re-)interventions, quality of life, and total direct and indirect costs. Discussion The TENSION trial will answer the question whether an endoscopic step-up approach reduces the combined primary endpoint of death and major complications, as well as hospital stay and related costs compared with a surgical step-up approach in patients with infected necrotising pancreatitis. PMID:24274589

  9. Cruciform-extruding regulatory element controls cell-specific activity of the tyrosine hydroxylase gene promoter.

    PubMed Central

    Kim, E L; Peng, H; Esparza, F M; Maltchenko, S Z; Stachowiak, M K

    1998-01-01

    Tyrosine hydroxylase (TH) is expressed specifically in catecholaminergic cells. We have identified a novel regulatory sequence in the upstream region of the bovine TH gene promoter formed by a dyad symmetry element (DSE1;-352/-307 bp). DSE1 supports TH promoter activity in TH-expressing bovine adrenal medulla chromaffin (BAMC) cells and inhibits promoter activity in non-expressing TE671 cells. DNase I footprinting of relaxed TH promoter DNA showed weak binding of nuclear BAMC cell proteins to a short sequence in the right DSE1 arm. In BAMC cells, deletion of the right arm markedly reduced the expression of luciferase from the TH promoter. However, deletion of the left DSE1 arm or its reversed orientation (RevL) also inactivated the TH promoter. In supercoiled TH promoter, DSE1 assumes a cruciform-like conformation i.e., it binds cruciform-specific 2D3 antibody, and S1 nuclease-cleavage and OsO4-modification assays have identified an imperfect cruciform extruded by the DSE1. DNase I footprinting of supercoiled plasmid showed that cruciformed DSE1 is targeted by nuclear proteins more efficiently than the linear duplex isomer and that the protected site encompasses the left arm and center of DSE1. Our results suggest that the disruption of intrastrand base-pairing preventing cruciform formation and protein binding to DSE1 is responsible for its inactivation in DSE1 mutants. DSE1 cruciform may act as a target site for activator (BAMC cells) and repressor (TE671) proteins. Its extrusion emerges as a novel mechanism that controls cell-specific promoter activity. PMID:9512554

  10. Hypermutation In Pancreatic Cancer.

    PubMed

    Humphris, Jeremy L; Patch, Ann-Marie; Nones, Katia; Bailey, Peter J; Johns, Amber L; McKay, Skye; Chang, David K; Miller, David K; Pajic, Marina; Kassahn, Karin S; Quinn, Michael C J; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Stone, Andrew; Wilson, Peter J; Anderson, Matthew; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Mead, Ronald S; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Nagrial, Adnan M; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Chou, Angela; Scarlett, Christopher J; Pinho, Andreia V; Rooman, Ilse; Giry-Laterriere, Marc; Samra, Jaswinder S; Kench, James G; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B; McKay, Colin J; Carter, C Ross; Dickson, Euan J; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Morton, Jennifer P; Sansom, Owen J; Grützmann, Robert; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Rusev, Borislav; Corbo, Vincenzo; Salvia, Roberto; Cataldo, Ivana; Tortora, Giampaolo; Tempero, Margaret A; Hofmann, Oliver; Eshleman, James R; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A; Gill, Anthony J; Pearson, John V; Grimmond, Sean M; Waddell, Nicola; Biankin, Andrew V

    2017-01-01

    Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer.

  11. Pancreatoduodenectomy for groove pancreatitis Report of two cases.

    PubMed

    Fregoli, Lorenzo; Palmeri, Matteo; De Napoli, Luigi; De Marco, Salvatore; Pelosini, Marco; Bertolucci, Andrea; Galatioto, Christian; Cengeli, Ismail; Chiarugi, Massimo

    2016-01-01

    Groove pancreatitis is a rare condition with patients having clinical characteristics similar to those of chronic pancreatitis. Differentiating on clinical and radiological basis between groove pancreatitis and paraduodenal head cancer can be extremely challenging. Due to diagnostic uncertainty and to poor response to medical treatment surgery may offer these patients the best chance of cure. As the main localization of the inflammatory process is at the groove between the duodenum and the head of the pancreas, pancreato-duodenectomy is proposed as the most reliable surgical procedure. We report about two patients presenting with clinical and radiological features suggesting a groove pancreatitis in which control of symptoms was achieved by pancreatoduodenectomy.

  12. Use of exotic plants to control Spartina alterniflora invasion and promote mangrove restoration

    PubMed Central

    Zhou, Ting; Liu, Shuchao; Feng, Zhili; Liu, Gang; Gan, Qian; Peng, Shaolin

    2015-01-01

    In coastal China, the exotic invasive Spartina alterniflora is preventing the establishment of native mangroves. The use of exotic species, control of exotic plant invasion, and restoration of native plant communities are timely research issues. We used exotic Sonneratia apetala Buch.-Ham and S. caseolaris (L.) Engl. to control invasive Spartina alterniflora Loisel through replacement control for five years, which concurrently promoted the restoration of native mangroves. This process includes three stages. I: In a mangrove area invaded by S. alterniflora, exotic S. apetala and S. caseolaris grew rapidly due to their relatively fast-growing character and an allelopathic effect. II: Fast-growing S. apetala and S. caseolaris eradicate S. alterniflora through shading and allelopathy. III: The growth of native mangrove was promoted because exotic plant seedlings cannot regenerate in the understory shade, whereas native mesophytic mangrove plants seedlings can grow; when the area experiences extreme low temperatures in winter or at other times, S. apetala dies, and native mangrove species grow to restore the communities. This model has important implications for addressing the worldwide problems of “how to implement the ecological control of invasion using exotic species” and “how to concurrently promote native community restoration during the control of exotic invasion”. PMID:26291074

  13. Self-Control of Task Difficulty During Early Practice Promotes Motor Skill Learning.

    PubMed

    Andrieux, Mathieu; Boutin, Arnaud; Thon, Bernard

    2016-01-01

    This study was designed to determine whether the effect of self-control of task difficulty on motor learning is a function of the period of self-control administration. In a complex anticipation-coincidence task that required participants to intercept 3 targets with a virtual racquet, the task difficulty was either self-controlled or imposed to the participants in the two phases of the acquisition session. First, the results confirmed the beneficial effects of self-control over fully prescribed conditions. Second, the authors also demonstrated that a partial self-control of task difficulty better promotes learning than does a complete self-controlled procedure. Overall, the results revealed that these benefits are increased when this choice is allowed during early practice. The findings are discussed in terms of theoretical and applied perspectives.

  14. A steroid-inducible promoter for the controlled overexpression of cloned genes in eukaryotic cells.

    PubMed Central

    Mader, S; White, J H

    1993-01-01

    Previous studies have shown that members of the steroid receptor family of transcriptional regulators can function synergistically when bound to multiple arrays of specific DNA binding sites known as hormone response elements, usually located upstream of target genes. We have constructed a mammalian expression vector containing a synthetic promoter composed of five high-affinity glucocorticoid response elements (termed GRE5) placed upstream of the adenovirus 2 major late promoter "TATA" region. In transiently transfected HeLa cells in the presence of dexamethasone, the GRE5 promoter was at least 50-fold more efficient than the mouse mammary tumor virus long terminal repeat in expressing bacterial chloramphenicol acetyltransferase activity. When the GRE5 vector was introduced stably into the HeLa cell genome, chloramphenicol acetyltransferase activity was induced from 10- to >50-fold by dexamethasone in six of eight responsive clones. The levels of both basal and induced expression varied from one clone to the next, probably due to an effect of chromosomal location on promoter activity. When propagated stably in HeLa cells in an Epstein-Barr virus episomal vector, the GRE5 promoter was > 50-fold inducible and its activity was strictly dependent on the presence of dexamethasone. We also show that the GRE5 promoter stably propagated in HeLa cells is inducible by progesterone in the presence of a transiently transfected progesterone receptor expression vector. The GRE5 promoter should be widely applicable for the strictly controlled high-level expression of target genes in eukaryotic cells that contain either the glucocorticoid or progesterone receptors. Images Fig. 1 Fig. 2 Fig. 3 PMID:8390672

  15. Determination of VEGFR-2 (KDR) 604A>G Polymorphism in Pancreatic Disorders

    PubMed Central

    Pădureanu, Vlad; Boldeanu, Mihail Virgil; Streaţă, Ioana; Cucu, Mihai Gabriel; Siloşi, Isabela; Boldeanu, Lidia; Bogdan, Maria; Enescu, Anca Ştefania; Forţofoiu, Maria; Enescu, Aurelia; Dumitrescu, Elena Mădălina; Alexandru, Dragoş; Şurlin, Valeriu Marian; Forţofoiu, Mircea Cătălin; Petrescu, Ileana Octavia; Petrescu, Florin; Ioana, Mihai; Ciurea, Marius Eugen; Săftoiu, Adrian

    2017-01-01

    Pancreatic disorders have a high prevalence worldwide. Despite the fact that screening methods became more effective and the knowledge we have nowadays about pancreatic diseases has enhanced, their incidence remains high. Our purpose was to determine whether single nucleotide polymorphism (SNP) of VEGFR-2/KDR (vascular endothelial growth factor receptor 2/kinase insert domain receptor) influences susceptibility to develop pancreatic pathology. Genomic DNA was extracted from blood samples collected from patients diagnosed with acute pancreatitis (n = 110), chronic pancreatitis (n = 25), pancreatic cancer (n = 82) and healthy controls (n = 232). VEGFR-2 (KDR) 604A>G (rs2071559) polymorphism frequency was determined with TaqMan allelic discrimination assays. Statistical assessment was performed by associating genetic polymorphism with clinical and pathological data. In both pancreatic disorders and healthy control groups the polymorphism we studied was in Hardy-Weinberg equilibrium. Association between increased risk for pancreatic disorders and studied polymorphism was statistically significant. KDR 604AG and AG + GG genotypes were more prevalent in acute pancreatitis and pancreatic cancer patients than in controls. These genotypes influence disease development in a low rate. No association was found between chronic pancreatitis and KDR 604AG and AG + GG genotypes. In Romanian cohort, we found an association between the KDR 604A→G polymorphism and acute pancreatitis and pancreatic cancer. Carriers of the -604G variant allele were more frequent among acute pancreatitis and pancreatic cancer than among controls, suggesting that KDR 604G allele may confer an increased risk for these diseases. In the future, more extensive studies on larger groups are necessary, in order to clarify the role of VEGFR2 polymorphisms in pancreatic pathology. PMID:28218664

  16. Pancreatic Diseases

    MedlinePlus

    The pancreas is a gland behind your stomach and in front of your spine. It produces juices that help ... help control blood sugar levels. Problems with the pancreas can lead to many health problems. These include ...

  17. Hereditary Pancreatitis

    MedlinePlus

    ... SMOKING!). Dietary recommendations to help control pain with digestion include the consumption of small meals throughout the ... Pancrease, and Violiase are helpful in providing improved digestion and a reduction in diarrhea and pain for ...

  18. The wheat HMW-glutenin 1Dy10 gene promoter controls endosperm expression in Brachypodium distachyon.

    PubMed

    Thilmony, Roger; Guttman, Mara E; Lin, Jeanie W; Blechl, Ann E

    2014-01-01

    The grass species Brachypodium distachyon has emerged as a model system for the study of gene structure and function in temperate cereals. As a first demonstration of the utility of Brachypodium to study wheat gene promoter function, we transformed it with a T-DNA that included the uidA reporter gene under control of a wheat High-Molecular-Weight Glutenin Subunit (HMW-GS) gene promoter and transcription terminator. For comparison, the same expression cassette was introduced into wheat by biolistics. Histochemical staining for β-glucuronidase (GUS) activity showed that the wheat promoter was highly expressed in the endosperms of all the seeds of Brachypodium and wheat homozygous plants. It was not active in any other tissue of transgenic wheat, but showed variable and sporadic activity in a minority of styles of the pistils of four homozygous transgenic Brachypodium lines. The ease of obtaining transgenic Brachypodium plants and the overall faithfulness of expression of the wheat HMW-GS promoter in those plants make it likely that this model system can be used for studies of other promoters from cereal crop species that are difficult to transform.

  19. Lymphoplasmacytic sclerosing pancreatitis (autoimmune pancreatitis): evaluation with multidetector CT.

    PubMed

    Kawamoto, Satomi; Siegelman, Stanley S; Hruban, Ralph H; Fishman, Elliot K

    2008-01-01

    Lymphoplasmacytic sclerosing pancreatitis is a form of chronic pancreatitis characterized by a mixed inflammatory infiltrate that centers on the pancreatic ducts. It is a cause of benign pancreatic disease that can clinically mimic pancreatic cancer. Preoperative detection of lymphoplasmacytic sclerosing pancreatitis is important because patients usually respond to steroid therapy. Patients with lymphoplasmacytic sclerosing pancreatitis are often referred for computed tomography (CT) when they are suspected of having a pancreatic or biliary neoplasm; therefore, it is important to search for potential findings suggestive of lymphoplasmacytic sclerosing pancreatitis when typical findings of a pancreatic or biliary neoplasm are not found. Typical CT findings include diffuse or focal enlargement of the pancreas without dilatation of the main pancreatic duct. Focal enlargement is most commonly seen in the head of the pancreas, and the involved pancreas on contrast material-enhanced CT images may be iso-attenuating relative to the rest of the pancreas, or hypo-attenuating, especially during the early postcontrast phase. Thickening and contrast enhancement of the wall of the common bile duct and gallbladder may reflect inflammatory infiltrate and fibrosis associated with lymphoplasmacytic sclerosing pancreatitis. There are several features seen at CT that may help to differentiate lymphoplasmacytic sclerosing pancreatitis from pancreatic cancer, such as diffuse enlargement of the pancreas with minimal peripancreatic stranding in patients with obstructive jaundice, an absence of significant pancreatic atrophy, and an absence of significant main pancreatic duct dilatation. When these findings are encountered, clinical, other imaging, and serologic data should be evaluated.

  20. Loss of Ifnar1 in Pancreatic Acinar Cells Ameliorates the Disease Course of Acute Pancreatitis

    PubMed Central

    Miller, Katharina J.; Raulefs, Susanne; Kong, Bo; Steiger, Katja; Regel, Ivonne; Gewies, Andreas; Kleeff, Jörg; Michalski, Christoph W.

    2015-01-01

    Type I interferon constitutes an essential component of the combinational therapy against viral disease. Acute pancreatitis is one side effect of type I interferon-based therapy, implying that activation of type I interferon signaling affects the homeostasis and integrity of pancreatic acinar cells. Here, we investigated the role of type I interferon signaling in pancreatic acinar cells using a caerulein-induced murine model of acute pancreatitis. Pancreas-specific ablation of interferon (alpha and beta) receptor 1 (Ifnar1) partially protected animals from caerulein-induced pancreatitis, as demonstrated by reduced tissue damage. Profiling of infiltrating immune cells revealed that this dampened tissue damage response correlated with the number of macrophages in the pancreas. Pharmacologic depletion of macrophages reversed the protective effect of Ifnar1 deficiency. Furthermore, expression of chemokine (C-C motif) ligand 2 (Ccl2), a potent factor for macrophage recruitment, was significantly increased in the Ifnar1-deficient pancreas. Thus, type I interferon signaling in pancreatic acinar cells controls pancreatic homeostasis by affecting the macrophage-mediated inflammatory response in the pancreas. PMID:26618925

  1. Analysis of the pancreatic low molecular weight proteome in an animal model of acute pancreatitis.

    PubMed

    Lassout, Olivier; Pastor, Catherine M; Fétaud-Lapierre, Vanessa; Hochstrasser, Denis F; Frossard, Jean-Louis; Lescuyer, Pierre

    2010-09-03

    We used a peptidomic approach for the analysis of the low molecular weight proteome in rat pancreatic tissue extracts. The goal was to develop a method that allows identifying endogenous peptides produced in the pancreas in the course of acute pancreatitis. The workflow combines peptides enrichment by centrifugal ultrafiltration, fractionation by isoelectric focusing, and LC-MS/MS analysis without prior enzymatic digestion. The method was assessed on pancreatic extracts from 3 rats with caerulein-induced pancreatitis and 3 healthy controls. A qualitative analysis of the peptide patterns obtained from the different samples was performed to determine the main biological processes associated to the identified peptides. Comparison of peptidomic and immunoblot data for alpha-tubulin, beta-tubulin and coatomer gamma showed that the correlation between the number of identified peptides and the protein abundance was variable. Nevertheless, peptidomic analysis highlighted inflammatory and stress proteins, which peptide pattern was related to acute pancreatitis pathobiology. For these proteins, the higher number of peptides in pancreatitis samples reflected an increase in protein abundance. Moreover, for murinoglobulin-1 or carboxypeptidase B, peptide pattern could be related to protein function. These data suggest that peptidomic analysis is a complementary approach to proteomics for investigating pathobiological processes involved in acute pancreatitis.

  2. A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer

    PubMed Central

    Deplanque, G.; Demarchi, M.; Hebbar, M.; Flynn, P.; Melichar, B.; Atkins, J.; Nowara, E.; Moyé, L.; Piquemal, D.; Ritter, D.; Dubreuil, P.; Mansfield, C. D.; Acin, Y.; Moussy, A.; Hermine, O.; Hammel, P.

    2015-01-01

    Background Masitinib is a selective oral tyrosine–kinase inhibitor. The efficacy and safety of masitinib combined with gemcitabine was compared against single-agent gemcitabine in patients with advanced pancreatic ductal adenocarcinoma (PDAC). Patients and methods Patients with inoperable, chemotherapy-naïve, PDAC were randomized (1 : 1) to receive gemcitabine (1000 mg/m2) in combination with either masitinib (9 mg/kg/day) or a placebo. The primary endpoint was overall survival (OS) in the modified intent-to-treat population. Secondary OS analyses aimed to characterize subgroups with poor survival while receiving single-agent gemcitabine with subsequent evaluation of masitinib therapeutic benefit. These prospectively declared subgroups were based on pharmacogenomic data or a baseline characteristic. Results Three hundred and fifty-three patients were randomly assigned to receive either masitinib plus gemcitabine (N = 175) or placebo plus gemcitabine (N = 178). Median OS was similar between treatment-arms for the overall population, at respectively, 7.7 and 7.1 months, with a hazard ratio (HR) of 0.89 (95% CI [0.70; 1.13]. Secondary analyses identified two subgroups having a significantly poor survival rate when receiving single-agent gemcitabine; one defined by an overexpression of acyl–CoA oxidase-1 (ACOX1) in blood, and another via a baseline pain intensity threshold (VAS > 20 mm). These subgroups represent a critical unmet medical need as evidenced from median OS of 5.5 months in patients receiving single-agent gemcitabine, and comprise an estimated 63% of patients. A significant treatment effect was observed in these subgroups for masitinib with median OS of 11.7 months in the ‘ACOX1’ subgroup [HR = 0.23 (0.10; 0.51), P = 0.001], and 8.0 months in the ‘pain’ subgroup [HR = 0.62 (0.43; 0.89), P = 0.012]. Despite an increased toxicity of the combination as compared with single-agent gemcitabine, side-effects remained manageable. Conclusions The

  3. Control of the human osteopontin promoter by ERRα in colorectal cancer.

    PubMed

    Boudjadi, Salah; Bernatchez, Gérald; Beaulieu, Jean-François; Carrier, Julie C

    2013-07-01

    Colorectal cancer is the second leading cause of death from cancer. Osteopontin (OPN) is a component of tumor extracellular matrix identified as a key marker of cancer progression. The estrogen-related receptor α (ERRα) has been implicated in endocrine-related cancer development and progression, possibly through modulation of cellular energy metabolism. Previous reports that ERRα regulates OPN expression in bone prompted us to investigate whether ERRα controls OPN expression in human colorectal cancer. Using a tissue microarray containing 83 tumor-normal tissue pairs of colorectal cancer samples, we found that tumor epithelial cells displayed higher staining for ERRα than normal mucosa, in correlation with elevated OPN expression. In addition, knocking down endogenous ERRα led to reduced OPN expression in HT29 colon cancer cells. Promoter analysis, inhibition of ERRα activity, and expression and mutation of potential ERRα response elements in the proximal promoter of human OPN showed that ERRα and its obligate co-activator, peroxisome proliferator-activated receptor γ co-activator-1 α, positively control human OPN promoter activity. Furthermore, chromatin immunoprecipitation experiments confirmed in vivo occupancy of the OPN promoter by ERRα in HT29 cells, suggesting that OPN is a direct target of ERRα in colorectal cancer. These findings suggest an additional mechanism by which ERRα participates in the development and progression of colorectal cancer, further supporting the relevance of targeting ERRα with antagonists as anticancer agents.

  4. Emerging roles for β-arrestin-1 in the control of the pancreatic β-cell function and mass: new therapeutic strategies and consequences for drug screening.

    PubMed

    Dalle, Stéphane; Ravier, Magalie A; Bertrand, Gyslaine

    2011-03-01

    Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase in β-cell mass, decreased β-cell survival and impaired glucose-dependent insulin release. Pancreatic β-cell proliferation, survival and secretion are thought to be regulated by signalling pathways linked to G-protein coupled receptors (GPCRs), such as the glucagon-like peptide-1 (GLP-1) and the pituitary adenylate cyclase-activating polypeptide (PACAP) receptors. β-arrestin-1 serves as a multifunctional adaptor protein that mediates receptor desensitization, receptor internalization, and links GPCRs to downstream pathways such as tyrosine kinase Src, ERK1/2 or Akt/PKB. Importantly, recent studies found that β-arrestin-1 mediates GLP-1 signalling to insulin secretion, GLP-1 antiapoptotic effect by phosphorylating the proapoptotic protein Bad through ERK1/2 activation, and PACAP potentiation of glucose-induced long-lasting ERK1/2 activation controlling IRS-2 expression. Together, these novel findings reveal an important functional role for β-arrestin-1 in the regulation of insulin secretion and β-cell survival by GPCRs.

  5. Impact of Sox9 Dosage and Hes1-mediated Notch Signaling in Controlling the Plasticity of Adult Pancreatic Duct Cells in Mice

    PubMed Central

    Hosokawa, Shinichi; Furuyama, Kenichiro; Horiguchi, Masashi; Aoyama, Yoshiki; Tsuboi, Kunihiko; Sakikubo, Morito; Goto, Toshihiko; Hirata, Koji; Tanabe, Wataru; Nakano, Yasuhiro; Akiyama, Haruhiko; Kageyama, Ryoichiro; Uemoto, Shinji; Kawaguchi, Yoshiya

    2015-01-01

    In the adult pancreas, there has been a long-standing dispute as to whether stem/precursor populations that retain plasticity to differentiate into endocrine or acinar cell types exist in ducts. We previously reported that adult Sox9-expressing duct cells are sufficiently plastic to supply new acinar cells in Sox9-IRES-CreERT2 knock-in mice. In the present study, using Sox9-IRES-CreERT2 knock-in mice as a model, we aimed to analyze how plasticity is controlled in adult ducts. Adult duct cells in these mice express less Sox9 than do wild-type mice but Hes1 equally. Acinar cell differentiation was accelerated by Hes1 inactivation, but suppressed by NICD induction in adult Sox9-expressing cells. Quantitative analyses showed that Sox9 expression increased with the induction of NICD but did not change with Hes1 inactivation, suggesting that Notch regulates Hes1 and Sox9 in parallel. Taken together, these findings suggest that Hes1-mediated Notch activity determines the plasticity of adult pancreatic duct cells and that there may exist a dosage requirement of Sox9 for keeping the duct cell identity in the adult pancreas. In contrast to the extended capability of acinar cell differentiation by Hes1 inactivation, we obtained no evidence of islet neogenesis from Hes1-depleted duct cells in physiological or PDL-induced injured conditions. PMID:25687338

  6. An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes.

    PubMed

    Kandel, Shyam L; Firrincieli, Andrea; Joubert, Pierre M; Okubara, Patricia A; Leston, Natalie D; McGeorge, Kendra M; Mugnozza, Giuseppe S; Harfouche, Antoine; Kim, Soo-Hyung; Doty, Sharon L

    2017-01-01

    Microbial communities in the endosphere of Salicaceae plants, poplar (Populus trichocarpa) and willow (Salix sitchensis), have been demonstrated to be important for plant growth promotion, protection from biotic and abiotic stresses, and degradation of toxic compounds. Our study aimed to investigate bio-control activities of Salicaceae endophytes against various soil borne plant pathogens including Rhizoctonia solani AG-8, Fusarium culmorum, Gaeumannomyces graminis var. tritici, and Pythium ultimum. Additionally, different plant growth promoting traits such as biological nitrogen fixation (BNF), indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, and siderophore production were assessed in all bio-control positive strains. Burkholderia, Rahnella, Pseudomonas, and Curtobacterium were major endophyte genera that showed bio-control activities in the in-vitro assays. The bio-control activities of Burkholderia strains were stronger across all tested plant pathogens as compared to other stains. Genomes of sequenced Burkholderia strains WP40 and WP42 were surveyed to identify the putative genes involved in the bio-control activities. The ocf and hcnABC gene clusters responsible for biosynthesis of the anti-fungal metabolites, occidiofungin and hydrogen cyanide, are present in the genomes of WP40 and WP42. Nearly all endophyte strains showing the bio-control activities produced IAA, solubilized tricalcium phosphate, and synthesized siderophores in the culture medium. Moreover, some strains reduced acetylene into ethylene in the acetylene reduction assay, a common assay used for BNF. Salicaceae endophytes could be useful for bio-control of various plant pathogens, and plant growth promotion possibly through the mechanisms of BNF, IAA production, and nutrient acquisition.

  7. An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes

    PubMed Central

    Kandel, Shyam L.; Firrincieli, Andrea; Joubert, Pierre M.; Okubara, Patricia A.; Leston, Natalie D.; McGeorge, Kendra M.; Mugnozza, Giuseppe S.; Harfouche, Antoine; Kim, Soo-Hyung; Doty, Sharon L.

    2017-01-01

    Microbial communities in the endosphere of Salicaceae plants, poplar (Populus trichocarpa) and willow (Salix sitchensis), have been demonstrated to be important for plant growth promotion, protection from biotic and abiotic stresses, and degradation of toxic compounds. Our study aimed to investigate bio-control activities of Salicaceae endophytes against various soil borne plant pathogens including Rhizoctonia solani AG-8, Fusarium culmorum, Gaeumannomyces graminis var. tritici, and Pythium ultimum. Additionally, different plant growth promoting traits such as biological nitrogen fixation (BNF), indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, and siderophore production were assessed in all bio-control positive strains. Burkholderia, Rahnella, Pseudomonas, and Curtobacterium were major endophyte genera that showed bio-control activities in the in-vitro assays. The bio-control activities of Burkholderia strains were stronger across all tested plant pathogens as compared to other stains. Genomes of sequenced Burkholderia strains WP40 and WP42 were surveyed to identify the putative genes involved in the bio-control activities. The ocf and hcnABC gene clusters responsible for biosynthesis of the anti-fungal metabolites, occidiofungin and hydrogen cyanide, are present in the genomes of WP40 and WP42. Nearly all endophyte strains showing the bio-control activities produced IAA, solubilized tricalcium phosphate, and synthesized siderophores in the culture medium. Moreover, some strains reduced acetylene into ethylene in the acetylene reduction assay, a common assay used for BNF. Salicaceae endophytes could be useful for bio-control of various plant pathogens, and plant growth promotion possibly through the mechanisms of BNF, IAA production, and nutrient acquisition. PMID:28348550

  8. Lymphoplasmacytic sclerosing pancreatitis.

    PubMed

    Plaza, Jose Antonio; Colonna, Jorge; Vitellas, Kenneth M; Frankel, Wendy L

    2005-10-01

    Lymphoplasmacytic sclerosing pancreatitis is a rare entity that has been described under many different names and constitutes a diagnostic challenge as it may simulate a neoplastic process. Herein, we report a case of a 61-year-old woman who presented to our institution complaining of left flank pain and was found to have normal levels of amylase and lipase. An abdominal magnetic resonance image showed thickening of the pancreatic tail and compression of the pancreatic duct. The radiographic differential included both chronic pancreatitis and a neoplastic process. She underwent an exploratory laparotomy, during which a pancreatectomy and splenectomy were performed. Grossly, the pancreas contained a yellowish white, firm homogeneous mass measuring 6.5 x 3.3 x 2.9 cm involving the entire pancreatic tail and hilum of the spleen. Histologically, pancreatic sections showed extensive fibrosis admixed with an inflammatory infiltrate. This infiltrate was composed mainly of lymphocytes with multiple germinal centers, as well as plasma cells and eosinophils that surrounded pancreatic ducts and extended into the peripancreatic adipose tissue. No malignancy was identified, and the process was diagnosed as lymphoplasmacytic sclerosing pancreatitis.

  9. Epidermal growth factor receptor signaling promotes pancreatic β-cell proliferation in response to nutrient excess in rats through mTOR and FOXM1.

    PubMed

    Zarrouki, Bader; Benterki, Isma; Fontés, Ghislaine; Peyot, Marie-Line; Seda, Ondrej; Prentki, Marc; Poitout, Vincent

    2014-03-01

    The cellular and molecular mechanisms underpinning the compensatory increase in β-cell mass in response to insulin resistance are essentially unknown. We previously reported that a 72-h coinfusion of glucose and Intralipid (GLU+IL) induces insulin resistance and a marked increase in β-cell proliferation in 6-month-old, but not in 2-month-old, Wistar rats. The aim of the current study was to identify the mechanisms underlying nutrient-induced β-cell proliferation in this model. A transcriptomic analysis identified a central role for the forkhead transcription factor FOXM1 and its targets, and for heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), a ligand of the EGF receptor (EGFR), in nutrient-induced β-cell proliferation. Phosphorylation of ribosomal S6 kinase, a mammalian target of rapamycin (mTOR) target, was increased in islets from GLU+IL-infused 6-month-old rats. HB-EGF induced proliferation of insulin-secreting MIN6 cells and isolated rat islets, and this effect was blocked in MIN6 cells by the EGFR inhibitor AG1478 or the mTOR inhibitor rapamycin. Coinfusion of either AG1478 or rapamycin blocked the increase in FOXM1 signaling, β-cell proliferation, and β-cell mass and size in response to GLU+IL infusion in 6-month-old rats. We conclude that chronic nutrient excess promotes β-cell mass expansion via a pathway that involves EGFR signaling, mTOR activation, and FOXM1-mediated cell proliferation.

  10. Web-based technical assistance and training to promote community tobacco control policy change.

    PubMed

    Young, Walter F; Montgomery, Debbie; Nycum, Colleen; Burns-Martin, Lavon; Buller, David B

    2006-01-01

    In 1998 the tobacco industry was released of claims that provided monetary relief for states. A significant expansion of tobacco control activity in many states created a need to develop local capacity. Technical assistance and training for new and experienced staff became a significant challenge for tobacco control leadership. In Colorado, this challenge was addressed in part through the development of a technical assistance and training Web site designed for local tobacco control staff and coalition members. Researchers, technical Web site development specialists, state health agency, and state tobacco control coalition staff collaborated to develop, promote, and test the efficacy of this Web site. The work group embodied a range of skills including tobacco control, Web site technical development, marketing, training, and project management. Persistent marketing, updating of Web site content, and institutionalizing it as a principal source of information and training were key to use by community coalition members.

  11. Diabetes mellitus and pancreatitis--cause or effect?

    PubMed

    Davison, L J

    2015-01-01

    Diabetes mellitus and pancreatitis are two distinct diseases encountered commonly in small animal practice. Whilst the clinical signs of diabetes mellitus are usually unmistakeable, a firm diagnosis of pancreatitis can prove more elusive, as clinical signs are often variable. Over the past 10 to 15 years, despite the fact that the clinical signs of diabetes mellitus are remarkably consistent, it has become more apparent that the underlying pathology of diabetes mellitus in dogs and cats is heterogeneous, with exocrine pancreatic inflammation accompanying diabetes mellitus in a number of cases. However, the question remains as to whether the diabetes mellitus causes the pancreatitis or whether, conversely, the pancreatitis leads to diabetes mellitus--as there is evidence to support both scenarios. The concurrence of diabetes mellitus and pancreatitis has clinical implications for case management as such cases may follow a more difficult clinical course, with their glycaemic control being "brittle" as a result of variation in the degree of pancreatic inflammation. Problems may also arise if abdominal pain or vomiting lead to anorexia. In addition, diabetic cases with pancreatitis are at risk of developing exocrine pancreatic insufficiency in the following months to years, which can complicate their management further.

  12. 25 CFR 543.12 - What are the minimum internal control standards for gaming promotions and player tracking systems?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... gaming promotions and player tracking systems? 543.12 Section 543.12 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING § 543.12 What are the minimum internal control standards for gaming promotions and player...

  13. 25 CFR 543.12 - What are the minimum internal control standards for gaming promotions and player tracking systems?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... gaming promotions and player tracking systems? 543.12 Section 543.12 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING § 543.12 What are the minimum internal control standards for gaming promotions and player...

  14. Review of idiopathic pancreatitis

    PubMed Central

    Lee, Jason Kihyuk; Enns, Robert

    2007-01-01

    Recent advances in understanding of pancreatitis and advances in technology have uncovered the veils of idiopathic pancreatitis to a point where a thorough history and judicious use of diagnostic techniques elucidate the cause in over 80% of cases. This review examines the multitude of etiologies of what were once labeled idiopathic pancreatitis and provides the current evidence on each. This review begins with a background review of the current epidemiology of idiopathic pancreatitis prior to discussion of various etiologies. Etiologies of medications, infections, toxins, autoimmune disorders, vascular causes, and anatomic and functional causes are explored in detail. We conclude with management of true idiopathic pancreatitis and a summary of the various etiologic agents. Throughout this review, areas of controversies are highlighted. PMID:18081217

  15. [Pancreatic cancer stem cell].

    PubMed

    Hamada, Shin; Masamune, Atsushi; Shimosegawa, Tooru

    2015-05-01

    Prognosis of pancreatic cancer remains dismal due to the resistance against conventional therapies. Metastasis and massive invasion toward surrounding organs hamper radical resection. Small part of entire cancer cells reveal resistance against chemotherapy or radiotherapy, increased tumorigenicity and migratory phenotype. These cells are called as cancer stem cells, as a counter part of normal stem cells. In pancreatic cancer, several cancer stem cell markers have been identified, which enabled detailed characterization of pancreatic cancer stem cells. Recent researches clarified that conventional chemotherapy itself could increase cancer cells with stem cell-phenotype, suggesting the necessity of cancer stem cell-targeting therapy. Based on these observations, pancreatic cancer stem cell-targeting therapies have been tested, which effectively eliminated cancer stem cell fraction and attenuated cancer progression in experimental models. Clinical efficacy of these therapies need to be evaluated, and cancer stem cell-targeting therapy will contribute to improve the prognosis of pancreatic cancer.

  16. [Role of nutrition in development of chronic alcoholic pancreatitis].

    PubMed

    Ciok, J; Dzieniszewski, J; Gabryelewicz, A; Długosz, J; Charzewska, J; Chwojnowska, Z

    1993-08-01

    The diet of 45 men with alcoholic chronic pancreatitis in the period before the onset of the symptoms of the disease was studied. The dietary history was used as a tool in research of the dietary data. The diet of studied group was compared with the diet of 23 alcoholics without the symptoms of pancreatic injury and with the diet of 30 healthy men with similar age and social status. The energy intake and main nutrients content (especially protein and fats) was statistically higher in the studied group. High protein and fats consumption with high ethanol intake may promote the development of chronic pancreatitis.

  17. Involvement of endogenous cholecystokinin in pancreatic regeneration after cerulein-induced acute pancreatitis.

    PubMed

    Jurkowska, G; Grondin, G; Morisset, J

    1992-01-01

    This study was undertaken to determine the involvement of endogenous cholecystokinin (CCK) in the regeneration of pancreatic tissue after cerulein-induced acute pancreatitis treated by the CCK receptor antagonist L364,718. Acute pancreatitis was induced in rats by s.c. injections of cerulein in gelatin (12 micrograms/kg) three times a day for 2 days with controls receiving saline in gelatin. Rats were then divided into four treatment groups: saline-dimethyl sulfoxide (DMSO) (SD), saline-L364,718 (SA), cerulein-pancreatitis-DMSO (CD), and cerulein-pancreatitis-L364,718 (CA). In the first experiment, rats were treated for 3 or 10 days with DMSO or L364,718 (0.1 mg/kg, twice a day). In the second experiment, rats were treated for 13 days with DMSO or L364,718 (1.0 mg/kg, twice a day). After the rats were killed, pancreata were weighed and evaluated for their total protein, amylase, chymotrypsin, RNA, and DNA. We found that destruction of the pancreatic tissue occurred after cerulein-induced pancreatitis and that regeneration of the tissue was in progress but incomplete after 10 days; the low dose of L364,718 did not prevent regeneration. After 13 days, regeneration was still incomplete but the 1-mg dose of L364,718 strongly inhibited spontaneous regeneration. These data suggest that endogenous CCK is an important and potent trophic factor in the regeneration process of pancreatic tissue following an episode of acute pancreatitis.

  18. Pancreatic Transduction by Helper-Dependent Adenoviral Vectors via Intraductal Delivery

    PubMed Central

    Morró, Meritxell; Teichenne, Joan; Jimenez, Veronica; Kratzer, Ramona; Marletta, Serena; Maggioni, Luca; Mallol, Cristina; Ruberte, Jesus; Kochanek, Stefan; Bosch, Fatima

    2014-01-01

    Abstract Pancreatic gene transfer could be useful to treat several diseases, such as diabetes mellitus, cystic fibrosis, chronic pancreatitis, or pancreatic cancer. Helper-dependent adenoviral vectors (HDAds) are promising tools for gene therapy because of their large cloning capacity, high levels of transgene expression, and long-term persistence in immunocompetent animals. Nevertheless, the ability of HDAds to transduce the pancreas in vivo has not been investigated yet. Here, we have generated HDAds carrying pancreas-specific expression cassettes, that is, driven either by the elastase or insulin promoter, using a novel and convenient plasmid family and homologous recombination in bacteria. These HDAds were delivered to the pancreas of immunocompetent mice via intrapancreatic duct injection. HDAds, encoding a CMV-GFP reporter cassette, were able to transduce acinar and islet cells, but transgene expression was lost 15 days postinjection in correlation with severe lymphocytic infiltration. When HDAds encoding GFP under the control of the specific elastase promoter were used, expression was detected in acinar cells, but similarly, the expression almost disappeared 30 days postinjection and lymphocytic infiltration was also observed. In contrast, long-term transgene expression (>8 months) was achieved with HDAds carrying the insulin promoter and the secretable alkaline phosphatase as the reporter gene. Notably, transduction of the liver, the preferred target for adenovirus, was minimal by this route of delivery. These data indicate that HDAds could be used for pancreatic gene therapy but that selection of the expression cassette is of critical importance to achieve long-term expression of the transgene in this tissue. PMID:25046147

  19. UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis.

    PubMed

    Abu-Alainin, Wafa; Gana, Thompson; Liloglou, Triantafillos; Olayanju, Adedamola; Barrera, Lawrence N; Ferguson, Robert; Campbell, Fiona; Andrews, Timothy; Goldring, Christopher; Kitteringham, Neil; Park, Brian K; Nedjadi, Taoufik; Schmid, Michael C; Slupsky, Joseph R; Greenhalf, William; Neoptolemos, John P; Costello, Eithne

    2016-02-01

    The cellular defence protein Nrf2 is a mediator of oncogenesis in pancreatic ductal adenocarcinoma (PDAC) and other cancers. However, the control of Nrf2 expression and activity in cancer is not fully understood. We previously reported the absence of Keap1, a pivotal regulator of Nrf2, in ∼70% of PDAC cases. Here we describe a novel mechanism whereby the epigenetic regulator UHRF1 suppresses Keap1 protein levels. UHRF1 expression was observed in 20% (5 of 25) of benign pancreatic ducts compared to 86% (114 of 132) of pancreatic tumours, and an inverse relationship between UHRF1 and Keap1 levels in PDAC tumours (n = 124) was apparent (p = 0.002). We also provide evidence that UHRF1-mediated regulation of the Nrf2 pathway contributes to the aggressive behaviour of PDAC. Depletion of UHRF1 from PDAC cells decreased growth and enhanced apoptosis and cell cycle arrest. UHRF1 depletion also led to reduced levels of Nrf2-regulated downstream proteins and was accompanied by heightened oxidative stress, in the form of lower glutathione levels and increased reactive oxygen species. Concomitant depletion of Keap1 and UHRF1 restored Nrf2 levels and reversed cell cycle arrest and the increase in reactive oxygen species. Mechanistically, depletion of UHRF1 reduced global and tumour suppressor promoter methylation in pancreatic cancer cell lines, and KEAP1 gene promoter methylation was reduced in one of three cell lines examined. Thus, methylation of the KEAP1 gene promoter may contribute to the suppression of Keap1 protein levels by UHRF1, although our data suggest that additional mechanisms need to be explored. Finally, we demonstrate that K-Ras drives UHRF1 expression, establishing a novel link between this oncogene and Nrf2-mediated cellular protection. Since UHRF1 over-expression occurs in other cancers, its ability to regulate the Keap1-Nrf2 pathway may be critically important to the malignant behaviour of these cancers.

  20. Randomized Clinical Trial of Portion-Controlled Prepackaged Foods to Promote Weight Loss

    PubMed Central

    Rock, Cheryl L.; Flatt, Shirley W.; Pakiz, Bilgé; Barkai, Hava-Shoshana; Heath, Dennis D.; Krumhar, Kim C.

    2017-01-01

    Objective Providing portion-controlled prepackaged foods in a behavioral counseling intervention may promote more weight and fat loss than a standard self-selected diet. Methods: The primary aim was to test whether providing portion-controlled prepackaged lunch and dinner entrées within a behavioral weight loss intervention promotes greater weight loss at 12 weeks in overweight/obese adults compared to self-selected foods. Other aims were to examine effects on biological factors, fitness, and meal satisfaction. One-half of those assigned to prepackaged entrées were provided items with a higher protein level (>25% energy) as an exploratory aim. Results Participants (N=183) had a baseline weight of 95.9 (15.6) kg (mean [SD]) and BMI of 33.2 (3.5) kg/m2. Weight data at 12 weeks were available for 180 subjects. Weight loss for regular entrée, higher protein entrée and control groups was 8.6 (3.9), 7.8 (5.1), and 6.0 (4.4)%, respectively (P<0.05, intervention vs. control). Intervention participants lost more body fat than controls (5.7 [3.4] vs. 4.4 [3.3] kg, P<0.05). Conclusions A meal plan incorporating portion-controlled prepackaged entrées promotes greater weight and fat loss than a standard self-selected diet, with comparable meal satisfaction. Initial weight loss predicts long-term weight loss so these results are relevant to likelihood of longer term success. PMID:27225596

  1. Faculty Development in Tobacco Cessation: Training Health Professionals and Promoting Tobacco Control in Developing Countries

    PubMed Central

    Muramoto, Myra L.; Lando, Harry

    2014-01-01

    Issues Cessation programs are essential components of comprehensive tobacco control. Health care providers, especially physicians, have major responsibility for role modeling and promoting cessation. For successful, sustainable cessation training programs, countries need health care professionals with knowledge and skills to deliver and teach tobacco cessation. Approach Review literature relevant to faculty development in tobacco cessation and discuss its strategic potential in tobacco control. Key findings Faculty development is essential for sustainable tobacco cessation training programs, and a potentially powerful strategy to shift professional and societal norms toward cessation and support of comprehensive tobacco control in countries with normative tobacco use and underdeveloped tobacco control programs. Implications Medical faculty are in a key position to influence tobacco cessation and control programs because of their roles as educators and researchers, receptivity to innovation and, influence on competencies and standards for medical education and practice. Faculty development programs must consider the number and type of faculty, and tobacco cessation curricula needed. Faculty development fosters the ability to institutionalize cessation education for students and community practitioners. Academic faculty are often leaders in their professional disciplines, influential in establishing clinical practice standards, and technical experts for government and other key health organizations. Conclusion Training health care professional faculty to become knowledgeable and committed to tobacco cessation opens opportunities to promote cessation and shift professional and societal norms away from tobacco use. PMID:19737208

  2. Quality of life in patients with hand eczema as health promotion: a case control study.

    PubMed

    Ghaderi, Reza; Saadatjoo, Alireza

    2014-01-01

    Health promotion has been defined by the World Health Organization's (WHO) 2005 Bangkok Charter for Health Promotion as "the process of enabling people to increase control over their health and its determinants, and thereby improve their health". One of the most important determinants of health is quality of life. Hand eczema is a common skin disease that can adversely affect the quality of life of patients. The aim of this study was to determine the quality of life in patients with hand eczema. This case-control study was performed on 70 patients with hand eczema and 70 healthy controls. All the patients filled out two questionnaires: Short Form 36 (SF-36) and Dermatology Life Quality index (DLQI). The data were analyzed using the statistical software package for social sciences (SPSS). The mean score score of quality of life in dimensions of physical functioning, vitality, and general health in the SF-36 was lower compared to the control group. The mean score in DLQI in patients with hand eczema was 8.68. There was a significant negative correlation between the scores of different dimensions of QOL obtained in the two questionnaires (SF36 and DLQI). The study demonstrated that the quality of life in patients with hand eczema was lower than that of controls. It seems advisable that psychiatric consultations or psychotherapy be included in the treatment of chronic hand eczema.

  3. Let's get technical! Gaming and technology for weight control and health promotion in children.

    PubMed

    Baranowski, Tom; Frankel, Leslie

    2012-02-01

    Most children, including lower socioeconomic status and ethnic minority children, play video games, use computers, and have cell phones, and growing numbers have smart phones and electronic tablets. They are comfortable with, even prefer, electronic media. Many expect to be entertained and have a low tolerance for didactic methods. Thus, health promotion with children needs to incorporate more interactive media. Interactive media for weight control and health promotion among children can be broadly classified into web-based educational/therapeutic programs, tailored motivational messaging systems, data monitoring and feedback systems, active video games, and diverse forms of interactive multimedia experiences involving games. This article describes the primary characteristics of these different technological methods; presents the strengths and weaknesses of each in meeting the needs of children of different ages; emphasizes that we are in the earliest stages of knowing how best to design these systems, including selecting the optimal requisite behavioral change theories; and identifies high-priority research issues. Gaming and technology offer many exciting, innovative opportunities for engaging children and promoting diet and physical activity changes that can contribute to obesity prevention and weight loss maintenance. Research needs to clarify optimal procedures for effectively promoting change with each change procedure.

  4. National Cancer Institute's leadership role in promoting State and Community Tobacco Control research

    PubMed Central

    Ginexi, Elizabeth M; Vollinger, Robert E

    2016-01-01

    The National Cancer Institute (NCI) has been at the vanguard of funding tobacco control research for decades with major efforts such as the Community Intervention Trial for Smoking Cessation (COMMIT) in 1988 and the American Stop Smoking Intervention Study (ASSIST) in 1991, followed by the Tobacco Research Initiative for State and Community Interventions in 1999. Most recently, in 2011, the NCI launched the State and Community Tobacco Control (SCTC) Research Initiative to address gaps in secondhand smoke policies, tax and pricing policies, mass media countermeasures, community and social norms and tobacco marketing. The initiative supported large scale research projects and time-sensitive ancillary pilot studies in response to expressed needs of state and community partners. This special issue of Tobacco Control showcases exciting findings from the SCTC. In this introductory article, we provide a brief account of NCI's historical commitment to promoting research to inform tobacco control policy. PMID:27697941

  5. Administration of Anti-Reg I and Anti-PAPII Antibodies Worsens Pancreatitis

    PubMed Central

    Viterbo, Domenico; Callender, Gordon E; DiMaio, Theresa; Mueller, Cathy M; Smith-Norowitz, Tamar; Zenilman, Michael E; Bluth, Martin H

    2009-01-01

    Context The regeneration protein family (Reg), which includes Reg I and PAPII, is expressed in pancreas acinar cells, and increases in acute pancreatitis. We have demonstrated that Reg gene knockdown worsens severity of acute pancreatitis in the rat and hypothesize that the proteins offer a protective effect in this disease. Objective We investigated the ability of anti-Reg and anti-PAP antibody to neutralize pancreatic Reg protein and affect pancreatitis severity. Intervention Pancreatitis was induced in rats by retrograde ductal injection of 4% sodium taurocholate. Animals Eighty-four rats: 48 with induced pancreatitis, 30 sham operated, and 6 normal animals. Setting Intraductal anti-Reg I and/or anti-PAPII antibody was administered at induced pancreatitis and sham operated subgroups of 6 rats each. Main outcome measure Serum and pancreata were harvested 24 and/or 48 hours later and assessed for pancreatitis severity by pancreatic wet weight, serum C-reactive protein (CRP), amylase, PAPII levels, and histopathology. Results Animals induced with pancreatitis with administration of anti-Reg/PAP antibodies had significantly higher wet weights compared with taurocholate and histopathological analysis revealed that anti-Reg/PAP treated animals had worse tissue inflammation and necrosis compared with controls. Serum CRP, amylase, and Reg levels did not significantly differ between experimental and sham control groups. Conclusions Administration of anti-Reg/PAP antibody worsened taurocholate-induced organ specific pancreatitis. These data suggest that the Reg family of proteins is protective in acute pancreatitis. PMID:19129610

  6. Control of proliferative enteropathy in growing/fattening pigs using growth promoters.

    PubMed

    Tsinas, A C; Kyriakis, S C; Lekkas, S; Sarris, K; Bourtzi-Hatzopoulou, E; Saoulidis, K

    1998-03-01

    The aim of this study was to evaluate the effect of different antibiotics used as growth promoters on the control of porcine intestinal adenomatosis when administered in weaning, growing and fattening pig diets, according to Annex I of the European Union directive (70/524/EEC and its subsequent amendments to date) for the use of feed additives. On a farm with a previous history of proliferative enteropathy outbreaks, 648 weaned piglets (23 days old) were divided into nine experimental groups according to bodyweight and sex ratio, each group comprising four pens with 18 pigs in each pen. One group served the trial as a negative (unmedicated) control: another (the positive control) received monensin via feed at 100 p.p.m. up to the end of the growing phase (107 days old) and 50 p.p.m. up to slaughter age (156 days old). The remaining seven groups were offered feed with the addition of the following antibiotics: virginia-mycin (50-20 p.p.m.), avilamycin (40-20 p.p.m.), spiramycin (50-20 p.p.m.), zinc bacitracin (50-10 p.p.m.), avoparcin (40-20 p.p.m.), tylosin (40-20 p.p.m.) and salinomycin (60-30 p.p.m.), respectively. The performance of the pigs in the positive control group was very satisfying and among the highest in the trial, verifying earlier field studies. As a general conclusion it seems that all tested growth promoters had a beneficial effect compared with the untreated control, indicated by the decrease of mortality rate, the elimination of diarrhoeal incidence and the enhancement of growth performance, although the proliferative enteropathy control achieved by each substance was not always satisfactory. More specifically, the antibiotic growth promoters tested can be scaled according to their total efficacy as follows: 1. Salinomycin, tylosin, spiramycin; 2. Virginiamycin, zinc bacitracin, avilamycin; and 3. Avoparcin. Finally, it is considered that part of the growth promotion efficacy of the tested substances is due to their potential capacity to control

  7. Technical advance: stringent control of transgene expression in Arabidopsis thaliana using the Top10 promoter system

    NASA Technical Reports Server (NTRS)

    Love, J.; Scott, A. C.; Thompson, W. F.; Brown, C. S. (Principal Investigator)

    2000-01-01

    We show that the tightly regulated tetracycline-sensitive Top10 promoter system (Weinmann et al. Plant J. 1994, 5, 559-569) is functional in Arabidopsis thaliana. A pure breeding A. thaliana line (JL-tTA/8) was generated which expressed a chimeric fusion of the tetracycline repressor and the activation domain of Herpes simplex virus (tTA), from a single transgenic locus. Plants from this line were crossed with transgenics carrying the ER-targeted green fluorescent protein coding sequence (mGFP5) under control of the Top10 promoter sequence. Progeny from this cross displayed ER-targeted GFP fluorescence throughout the plant, indicating that the tTA-Top10 promoter interaction was functional in A. thaliana. GFP expression was repressed by 100 ng ml-1 tetracycline, an order of magnitude lower than the concentration used previously to repress expression in Nicotiana tabacum. Moreover, the level of GFP expression was controlled by varying the concentration of tetracycline in the medium, allowing a titred regulation of transgenic activity that was previously unavailable in A. thaliana. The kinetics of GFP activity were determined following de-repression of the Top10:mGFP5 transgene, with a visible ER-targeted GFP signal appearing from 24 to 48 h after de-repression.

  8. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions.

    PubMed

    Hahm, Mi-Seon; Sumayo, Marilyn; Hwang, Ye-Ji; Jeon, Seon-Ae; Park, Sung-Jin; Lee, Jai Youl; Ahn, Joon-Hyung; Kim, Byung-Soo; Ryu, Choong-Min; Ghim, Sa-Youl

    2012-06-01

    Plant growth promoting rhizobacteria Ochrobactrum lupini KUDC1013 and Novosphingobium pentaromativorans KUDC1065 isolated from Dokdo Island, S. Korea are capable of eliciting induced systemic resistance (ISR) in pepper against bacterial spot disease. The present study aimed to determine whether plant growth-promoting rhizobacteria (PGPR) strains including strain KUDC1013, strain KUDC1065, and Paenibacillus polymyxa E681 either singly or in combinations were evaluated to have the capacity for potential biological control and plant growth promotion effect in the field trials. Under greenhouse conditions, the induced systemic resistance (ISR) effect of treatment with strains KUDC1013 and KUDC1065 differed according to pepper growth stages. Drenching of 3-week-old pepper seedlings with the KUDC-1013 strain significantly reduced the disease symptoms. In contrast, treatment with the KUDC1065 strain significantly protected 5-week-old pepper seedlings. Under field conditions, peppers treated with PGPR mixtures containing E681 and KUDC1013, either in a two-way combination, were showed greater effect on plant growth than those treated with an individual treatment. Collectively, the application of mixtures of PGPR strains on pepper might be considered as a potential biological control under greenhouse and field conditions.

  9. Epidemiology of pancreatic cancer

    PubMed Central

    Ilic, Milena; Ilic, Irena

    2016-01-01

    Cancer of the pancreas remains one of the deadliest cancer types. Based on the GLOBOCAN 2012 estimates, pancreatic cancer causes more than 331000 deaths per year, ranking as the seventh leading cause of cancer death in both sexes together. Globally, about 338000 people had pancreatic cancer in 2012, making it the 11th most common cancer. The highest incidence and mortality rates of pancreatic cancer are found in developed countries. Trends for pancreatic cancer incidence and mortality varied considerably in the world. A known cause of pancreatic cancer is tobacco smoking. This risk factor is likely to explain some of the international variations and gender differences. The overall five-year survival rate is about 6% (ranges from 2% to 9%), but this vary very small between developed and developing countries. To date, the causes of pancreatic cancer are still insufficiently known, although certain risk factors have been identified, such as smoking, obesity, genetics, diabetes, diet, inactivity. There are no current screening recommendations for pancreatic cancer, so primary prevention is of utmost importance. A better understanding of the etiology and identifying the risk factors is essential for the primary prevention of this disease. PMID:27956793

  10. Pancreatic groove cancer

    PubMed Central

    Ku, Yuan-Hao; Chen, Shih-Chin; Shyr, Bor-Uei; Lee, Rheun-Chuan; Shyr, Yi-Ming; Wang, Shin-E.

    2017-01-01

    Abstract Pancreatic groove cancer is very rare and can be indistinguishable from groove pancreatitis. This study is to clarify the characteristics, clinical features, managements, and survival outcomes of this rare tumor. Brief descriptions were made for each case of pancreatic groove cancer encountered at our institute. Individualized data of pancreatic groove cancer cases described in the literature were extracted and added to our database to expand the study sample size for a more complete analysis. A total of 33 patients with pancreatic groove cancer were included for analysis, including 4 cases from our institute. The median tumor size was 2.7 cm. The most common symptom was nausea or vomiting (89%), followed by jaundice (67%). Duodenal stenosis was noted by endoscopy in 96% of patients. The histopathological examination revealed well differentiated tumor in 43%. Perineural invasion was noted in 90%, and lymphovascular invasion and lymph node involvement in 83%. Overall 1-year survival rate was 93.3%, and 3- or 5-year survival rate was 62.2%, with a median survival of 11.0 months. Survival outcome for the well-differentiated tumors was better than those of the moderate/poorly differentiated ones. Early involvement of duodenum causing vomiting is often the initial presentation, but obstructive jaundice does not always happen until the disease progresses. Tumor differentiation is a prognostic factor for survival outcome. The possibility of pancreatic groove cancer should be carefully excluded before making the diagnosis of groove pancreatitis for any questionable case. PMID:28079795

  11. Pathophysiology of acute pancreatitis.

    PubMed

    Bhatia, Madhav; Wong, Fei Ling; Cao, Yang; Lau, Hon Yen; Huang, Jiali; Puneet, Padmam; Chevali, Lakshmi

    2005-01-01

    Acute pancreatitis is a common clinical condition. It is a disease of variable severity in which some patients experience mild, self-limited attacks while others manifest a severe, highly morbid, and frequently lethal attack. The exact mechanisms by which diverse etiological factors induce an attack are still unclear. It is generally believed that the earliest events in acute pancreatitis occur within acinar cells. Acinar cell injury early in acute pancreatitis leads to a local inflammatory reaction. If this inflammatory reaction is marked, it leads to a systemic inflammatory response syndrome (SIRS). An excessive SIRS leads to distant organ damage and multiple organ dysfunction syndrome (MODS). MODS associated with acute pancreatitis is the primary cause of morbidity and mortality in this condition. Recent studies have established the role played by inflammatory mediators in the pathogenesis of acute pancreatitis and the resultant MODS. At the same time, recent research has demonstrated the importance of acinar cell death in the form of apoptosis and necrosis as a determinant of pancreatitis severity. In this review, we will discuss about our current understanding of the pathophysiology of acute pancreatitis.

  12. Pancreatitis following liver transplantation.

    PubMed

    Alexander, J A; Demetrius, A J; Gavaler, J S; Makowka, L; Starzl, T E; Van Thiel, D H

    1988-06-01

    Since 1981, when the liver transplantation program was initiated at the University of Pittsburgh, we have been impressed with the prevalence of pancreatitis occurring following liver transplantation in patients transplanted for hepatitis B-related liver disease. To either confirm this clinical impression or refute it, the records of the 27 HbsAg+ patients and those of an additional 24 HbsAg- but HbcAb and/or HbsAb+ patients who underwent orthotopic liver transplantation were reviewed to determine the prevalence of clinical pancreatitis and hyperamylasemia (biochemical pancreatitis) following liver transplantation (OLTx). Post-OLTx hyperamylasemia occurred significantly more frequently in HbsAg+ patients (6/27) than it did in the HbsAg- patients (0/24) (P less than 0.05). More importantly, clinical pancreatitis occurred in 14% (4/27) of the HbsAg+ patients and 0% (0/24) of the HbsAg- patients. Interestingly, in each case, the pancreatitis was associated with the occurrence of acute hepatitis B infection of the allograft. Based upon these data, we conclude that pancreatitis occurring after liver transplantation is more common in patients transplanted for active viral liver disease caused by hepatitis B than in those with inactive viral liver disease. These observations suggest that pancreatitis occurring in, at least some cases following liver transplantation for viral liver disease, may result from hepatitis B virus infection of the pancreas.

  13. Diagnosis of autoimmune pancreatitis.

    PubMed

    Matsubayashi, Hiroyuki; Kakushima, Naomi; Takizawa, Kohei; Tanaka, Masaki; Imai, Kenichiro; Hotta, Kinichi; Ono, Hiroyuki

    2014-11-28

    Autoimmune pancreatitis (AIP) is a distinct form of chronic pancreatitis that is increasingly being reported. The presentation and clinical image findings of AIP sometimes resemble those of several pancreatic malignancies, but the therapeutic strategy differs appreciably. Therefore, accurate diagnosis is necessary for cases of AIP. To date, AIP is classified into two distinct subtypes from the viewpoints of etiology, serum markers, histology, other organ involvements, and frequency of relapse: type 1 is related to IgG4 (lymphoplasmacytic sclerosing pancreatitis) and type 2 is related to a granulocytic epithelial lesion (idiopathic duct-centric chronic pancreatitis). Both types of AIP are characterized by focal or diffuse pancreatic enlargement accompanied with a narrowing of the main pancreatic duct, and both show dramatic responses to corticosteroid. Unlike type 2, type 1 is characteristically associated with increasing levels of serum IgG4 and positive serum autoantibodies, abundant infiltration of IgG4-positive plasmacytes, frequent extrapancreatic lesions, and relapse. These findings have led several countries to propose diagnostic criteria for AIP, which consist of essentially similar diagnostic items; however, several differences exist for each country, mainly due to differences in the definition of AIP and the modalities used to diagnose this disease. An attempt to unite the diagnostic criteria worldwide was made with the publication in 2011 of the international consensus diagnostic criteria for AIP, established at the 2010 Congress of the International Association of Pancreatology (IAP).

  14. Pleuropulmonary complications of pancreatitis

    PubMed Central

    Kaye, Michael D.

    1968-01-01

    Pancreatitis, in common with many other upper abdominal diseases, often leads to pleuropulmonary complications. Radiological evidence of pleuropulmonary abnormality was found in 55% of 58 cases examined retrospectively. The majority of such abnormalities are not specific for pancreatitis; but a particular category of pleural effusions, rich in pancreatic enzymes, is a notable exception. A patient with this type of effusion, complicated by a spontaneous bronchopleural fistula and then by an empyema, is reported. The literature relating to pancreatic enzyme-rich pleural effusions (pathognomonic of pancreatitis) is reviewed. Of several possible mechanisms involved in pathogenesis, transdiaphragmatic lymphatic transfer of pancreatic enzymes, intrapleural rupture of mediastinal extensions of pseudocysts, and diaphragmatic perforation are the most important. The measurement of pleural fluid amylase, at present little employed in this country, has considerable diagnostic value. Enzyme-rich effusions are more commonly left-sided, are often blood-stained, are frequently associated with pancreatic pseudocysts, and—if long standing—may be complicated by a bronchopleural fistula. Images PMID:4872925

  15. Impact of Global Fxr Deficiency on Experimental Acute Pancreatitis and Genetic Variation in the FXR Locus in Human Acute Pancreatitis

    PubMed Central

    Nijmeijer, Rian M.; Schaap, Frank G.; Smits, Alexander J. J.; Kremer, Andreas E.; Akkermans, Louis M. A.; Kroese, Alfons B. A.; Rijkers, Ger. T.; Schipper, Marguerite E. I.; Verheem, André; Wijmenga, Cisca; Gooszen, Hein G.; van Erpecum, Karel J.

    2014-01-01

    Background Infectious complications often occur in acute pancreatitis, related to impaired intestinal barrier function, with prolonged disease course and even mortality as a result. The bile salt nuclear receptor farnesoid X receptor (FXR), which is expressed in the ileum, liver and other organs including the pancreas, exhibits anti-inflammatory effects by inhibiting NF-κB activation and is implicated in maintaining intestinal barrier integrity and preventing bacterial overgrowth and translocation. Here we explore, with the aid of complementary animal and human experiments, the potential role of FXR in acute pancreatitis. Methods Experimental acute pancreatitis was induced using the CCK-analogue cerulein in wild-type and Fxr-/- mice. Severity of acute pancreatitis was assessed using histology and a semi-quantitative scoring system. Ileal permeability was analyzed in vitro by Ussing chambers and an in vivo permeability assay. Gene expression of Fxr and Fxr target genes was studied by quantitative RT-PCR. Serum FGF19 levels were determined by ELISA in acute pancreatitis patients and healthy volunteers. A genetic association study in 387 acute pancreatitis patients and 853 controls was performed using 9 tagging single nucleotide polymorphisms (SNPs) covering the complete FXR gene and two additional functional SNPs. Results In wild-type mice with acute pancreatitis, ileal transepithelial resistance was reduced and ileal mRNA expression of Fxr target genes Fgf15, SHP, and IBABP was decreased. Nevertheless, Fxr-/- mice did not exhibit a more severe acute pancreatitis than wild-type mice. In patients with acute pancreatitis, FGF19 levels were lower than in controls. However, there were no associations of FXR SNPs or haplotypes with susceptibility to acute pancreatitis, or its course, outcome or etiology. Conclusion We found no evidence for a major role of FXR in acute human or murine pancreatitis. The observed altered Fxr activity during the course of disease may be a

  16. Sleep Promotion Program for Improving Sleep Behaviors in Adolescents: A Randomized Controlled Pilot Study

    PubMed Central

    John, Bindu; Bellipady, Sumanth Shetty; Bhat, Shrinivasa Undaru

    2016-01-01

    Aims. The purpose of this pilot trial was to determine the efficacy of sleep promotion program to adapt it for the use of adolescents studying in various schools of Mangalore, India, and evaluate the feasibility issues before conducting a randomized controlled trial in a larger sample of adolescents. Methods. A randomized controlled trial design with stratified random sampling method was used. Fifty-eight adolescents were selected (mean age: 14.02 ± 2.15 years; intervention group, n = 34; control group, n = 24). Self-report questionnaires, including sociodemographic questionnaire with some additional questions on sleep and activities, Sleep Hygiene Index, Pittsburgh Sleep Quality Index, The Cleveland Adolescent Sleepiness Questionnaire, and PedsQL™ Present Functioning Visual Analogue Scale, were used. Results. Insufficient weekday-weekend sleep duration with increasing age of adolescents was observed. The program revealed a significant effect in the experimental group over the control group in overall sleep quality, sleep onset latency, sleep duration, daytime sleepiness, and emotional and overall distress. No significant effect was observed in sleep hygiene and other sleep parameters. All target variables showed significant correlations with each other. Conclusion. The intervention holds a promise for improving the sleep behaviors in healthy adolescents. However, the effect of the sleep promotion program treatment has yet to be proven through a future research. This trial is registered with ISRCTN13083118. PMID:27088040

  17. PKD signaling and pancreatitis

    PubMed Central

    Yuan, Jingzhen; Pandol, Stephen J.

    2016-01-01

    Background Acute pancreatitis is a serious medical disorder with no current therapies directed to the molecular pathogenesis of the disorder. Inflammation, inappropriate intracellular activation of digestive enzymes, and parenchymal acinar cell death by necrosis are the critical pathophysiologic processes of acute pancreatitis. Thus, it is necessary to elucidate the key molecular signals that mediate these pathobiologic processes and develop new therapeutic strategies to attenuate the appropriate signaling pathways in order to improve outcomes for this disease. A novel serine/threonine protein kinase D (PKD) family has emerged as key participants in signal transduction, and this family is increasingly being implicated in the regulation of multiple cellular functions and diseases. Methods This review summarizes recent findings of our group and others regarding the signaling pathway and the biological roles of the PKD family in pancreatic acinar cells. In particular, we highlight our studies of the functions of PKD in several key pathobiologic processes associated with acute pancreatitis in experimental models. Results Our findings reveal that PKD signaling is required for NF-κB activation/inflammation, intracellular zymogen activation, and acinar cell necrosis in rodent experimental pancreatitis. Novel small-molecule PKD inhibitors attenuate the severity of pancreatitis in both in vitro and in vivo experimental models. Further, this review emphasizes our latest advances in the therapeutic application of PKD inhibitors to experimental pancreatitis after the initiation of pancreatitis. Conclusions These novel findings suggest that PKD signaling is a necessary modulator in key initiating pathobiologic processes of pancreatitis, and that it constitutes a novel therapeutic target for treatments of this disorder. PMID:26879861

  18. Randomised controlled trials of physical activity promotion in free living populations: a review.

    PubMed Central

    Hillsdon, M; Thorogood, M; Anstiss, T; Morris, J

    1995-01-01

    OBJECTIVES--To review evidence on the effectiveness of trials of physical activity promotion in healthy, free living adults. To identify the more effective intervention programmes. METHODS--Computerised databases and references were searched. Experts were contacted and asked for information about existing work. INCLUSION CRITERIA--Randomised controlled trials of healthy, free living adult subjects, where exercise behaviour was the dependent variable were included. CONCLUSIONS--Ten trials were identified. The small number of trials limits the strength of any conclusions and highlights the need for more research. No UK based studies were found. Previously sedentary adults can increase activity levels and sustain them. Promotion of these changes requires personal instruction, continued support, and exercise of moderate intensity which does not depend on attendance at a facility. The exercise should be easily included into an existing lifestyle and should be enjoyable. Walking is the exercise most likely to fulfil these criteria. PMID:7499985

  19. Generation of stable Xenopus laevis transgenic lines expressing a transgene controlled by weak promoters.

    PubMed

    L'hostis-Guidet, Anne; Recher, Gaëlle; Guillet, Brigitte; Al-Mohammad, Abdulrahim; Coumailleau, Pascal; Tiaho, François; Boujard, Daniel; Madigou, Thierry

    2009-10-01

    Combining two existing protocols of trangenesis, namely the REMI and the I-SceI meganuclease methods, we generated Xenopus leavis expressing a transgene under the control of a promoter that presented a restricted pattern of activity and a low level of expression. This was realized by co-incubating sperm nuclei, the I-SceI enzyme and the transgene prior to transplantation into unfertilized eggs. The addition of the woodchuck hepatitis virus posttranscriptional regulatory element in our constructs further enhanced the expression of the transgene without affecting the tissue-specificity of the promoter activity. Using this combination of methods we produced high rates of fully transgenic animals that stably transmitted the transgene to the next generations with a transmission rate of 50% indicating a single integration event.

  20. Systematic review of randomised controlled trials of strategies to promote adherence to tuberculosis treatment.

    PubMed

    Volmink, J; Garner, P

    1997-11-29

    A literature review was conducted to assess the effectiveness of strategies promoting adherence to treatment for tuberculosis (TB). Five studies met the inclusion criteria of being randomized or pseudorandomized controlled trials of interventions to promote adherence with curative or preventive treatment for TB, with at least one measure of adherence. The relative risk for tested reminder cards sent to patients who defaulted upon treatment was 1.2, 1.4 for help given to patients by lay health workers, 1.6 for monetary incentives offered to patients, 1.2 for health education, 2.4 or 1.1 for a combination of a patient incentive and health education, and 1.2 for intensive supervision of staff to TB clinics. No completed trial of directly observed treatment was included in the review. All of the interventions tested improved adherence, but it remains unclear whether health education alone leads to better adherence to treatment.

  1. Can Pancreatic Cancer Be Found Early?

    MedlinePlus

    ... Team About Pancreatic Cancer? Pancreatic Cancer Early Detection, Diagnosis, and Staging Can Pancreatic Cancer Be Found Early? Pancreatic cancer is hard to find early. The pancreas is deep inside the body, so early tumors ...

  2. Recurrent acute pancreatitis.

    PubMed

    Khurana, Vishal; Ganguly, Ishita

    2014-09-28

    Recurrent acute pancreatitis (RAP) is commonly encountered, but less commonly understood clinical entity, especially idiopathic RAP, with propensity to lead to repeated attacks and may be chronic pancreatitis if attacks continue to recur. A great number of studies have been published on acute pancreatitis, but few have focused on RAP. Analysing the results of clinical studies focusing specifically on RAP is problematic in view due to lack of standard definitions, randomised clinical trials, standard evaluation protocol used and less post intervention follow-up duration. With the availability of newer investigation modalities less number of etiologies will remains undiagnosed. This review particularly is focused on the present knowledge in understanding of RAP.

  3. [Primary pancreatic plasmacytoma].

    PubMed

    Sánchez Acevedo, Z; Pomares Rey, B; Alpera Tenza, M R; Andrada Becerra, E

    2014-01-01

    Extramedullary plasmacytomas are uncommon malignant plasma cell tumors that present outside the bone marrow; 80% of extramedullary plasmacytomas are located in the upper respiratory tract, and gastrointestinal plasmacytomas are rare. We present the case of an asymptomatic 65-year-old man in whom a pancreatic mass was found incidentally. The lesion was determined to be a pancreatic plasmacytoma after fine-needle aspiration cytology and surgical resection. No clinical, laboratory, or imaging findings indicative of multiple myeloma or association with other plasmacytomas were found, so the tumor was considered to be a primary pancreatic plasmacytoma.

  4. The role of evidence-based media advocacy in the promotion of tobacco control policies.

    PubMed

    Lane, Ch'uyasonqo H; Carter, Marina I

    2012-06-01

    This article discusses the role of evidence-based media advocacy in the promotion of tobacco control policies. Evidence is a driving force for campaigns seeking to implement a tobacco control policy. An effective campaign is based in evidence that demonstrates why a policy should be implemented, and what the potential benefits are. Media advocacy is the process of disseminating information through the communications media where the aim is to effect action, such as a change of policy, or to alter the public's view of an issue. Discussion focuses on: 1) the importance of, and methods for, collecting and communicating evidence and information to make it clear and usable for legislators, the media, and the public; and 2) the role of earned and paid media in advancing tobacco control issues. The discussion is made within the context of a specific advocacy example; in this case the 2010 campaign to increase the tobacco tax in Mexico.

  5. Pancreatic Differentiation from Murine Embryonic Stem Cells.

    PubMed

    Sakano, Daisuke; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Pluripotent stem cells are considered as a cell source for replacement therapies for pancreatic beta cells and other organs.We identified tetrabenazine (TBZ), vesicular monoamine transporter 2 (VMAT2) inhibitor as a promoter of late-stage differentiation of Pdx1-positive pancreatic progenitor cells into Ngn3-positive endocrine progenitor cells. A cell-permeable cAMP analog, dBu-cAMP promotes beta cell maturation in late stage of differentiation. The induced beta cells can secrete insulin in a glucose-dependent manner.Our protocol consists of a three -step differentiation process. ES cell recapitulate embryonic developmental processes in vitro. Therefore, the ES cell differentiation system is a useful model for the understanding of molecular mechanism of beta-cell differentiation and are useful for application for future regenerative medicine.

  6. [Experimental models of acute pancreatitis].

    PubMed

    Ceranowicz, Piotr; Cieszkowski, Jakub; Warzecha, Zygmunt; Dembiński, Artur

    2015-02-21

    Acute pancreatitis is a severe disease with high mortality. Clinical studies can bring some data about etiology, pathogenesis and the course of acute pancreatitis. However, studies concerning early events of this disease and the new concepts of treatment cannot be performed on humans, due to ethical reasons. Animal models of acute pancreatitis have been developed to solve this problem. This review presents currently used experimental models of acute pancreatitis, their properties and clinical relevance. Experimental models of acute pancreatitis can be divided into in vivo (non-invasive and invasive) and ex vivo models. The onset, development, severity and extent of acute pancreatitis, as well as the mortality, vary considerably between these different models. Animal models reproducibly produce mild, moderate or severe acute pancreatitis. One of the most commonly used models of acute pancreatitis is created by administration of supramaximal doses of cerulein, an analog of cholecystokinin. This model produces acute mild edematous pancreatitis in rats, whereas administration of cerulein in mice leads to the development of acute necrotizing pancreatitis. Acute pancreatitis evoked by retrograde administration of sodium taurocholate into the pancreatic duct is the most often used model of acute severe necrotizing pancreatitis in rats. Ex vivo models allow to eliminate the influence of hormonal and nervous factors on the development of acute pancreatitis.

  7. [Latest advances in chronic pancreatitis].

    PubMed

    Domínguez Muñoz, J Enrique

    2015-09-01

    This article summarizes some of the recent and clinically relevant advances in chronic pancreatitis. These advances mainly concern the early diagnosis of the disease, the treatment of symptoms and complications, mainly pain and pancreatic exocrine insufficiency, and the diagnosis and therapy of autoimmune pancreatitis. The multimodal dynamic endoscopic ultrasound-guided secretin-stimulated evaluation of the pancreas provides relevant morphological and functional information for the diagnosis of chronic pancreatitis at early stages. Extracorporeal shock wave lithotripsy in patients with calcifying pancreatitis and endoscopic pancreatic stent placement are effective alternatives for pain therapy in patients with chronic pancreatitis. Presence of pancreatic exocrine insufficiency in patients with chronic pancreatitis is associated with a significantly increase of mortality rate. Despite that, pancreatic enzyme replacement therapy is not prescribed in the majority of patients with pancreatic exocrine insufficiency, or it is prescribed at a low dose. The newly developed and commercialized needles for endoscopic ultrasound-guided pancreatic biopsy are effective in retrieving appropriate tissue samples for the histological diagnosis of autoimmune pancreatitis. Maintenance therapy with azathioprine is effective and safe to prevent relapses in patients with autoimmune pancreatitis.

  8. Effects of Montelukast in an Experimental Model of Acute Pancreatitis

    PubMed Central

    Angı, Serkan; Eken, Hüseyin; Kılıç, Erol; Karaköse, Oktay; Balci, Gürhan; Somuncu, Erkan

    2016-01-01

    Background We evaluated the hematological, biochemical, and histopathological effects of Montelukast on pancreatic damage in an experimental acute pancreatitis model created by cerulein in rats before and after the induction of pancreatitis. Materials/Methods Forty rats were divided into 4 groups with 10 rats each. The study groups were: the Cerulein (C) group, the Cerulein + early Montelukast (CMe) group, the Cerulein + late Montelukast (CMl) group, and the Control group. The pH, pO2, pCO2, HCO3, leukocyte, hematocrit, pancreatic amylase, and lipase values were measured in the arterial blood samples taken immediately before rats were killed. Results There were statistically significant differences between the C group and the Control group in the values of pancreatic amylase, lipase, blood leukocyte, hematocrit, pH, pO2, pCO2, HCO3, and pancreatic water content, and also in each of the values of edema, inflammation, vacuolization, necrosis, and total histopathological score (P<0.05). When the CMl group and C group were compared, no statistically significant differences were found in any parameter analyzed. When the CMe group was compared with the C group, pancreatic amylase, lipase, pH, PO2, pCO2, HCO3, pancreatic water content, histopathological edema, inflammation, and total histopathological score values were significantly different between the groups (P<0.05). Finally, when the CMe group and the Control group were compared, significant differences were found in all except 2 (leukocyte and pO2) parameters (P<0.05). Conclusions Leukotriene receptor antagonists used in the late phases of pancreatitis might not result in any benefit; however, when they are given in the early phases or prophylactically, they may decrease pancreatic damage. PMID:27479458

  9. Effect of a physical conditioning versus health promotion intervention in dancers: a randomized controlled trial.

    PubMed

    Roussel, Nathalie A; Vissers, Dirk; Kuppens, Kevin; Fransen, Erik; Truijen, Steven; Nijs, Jo; De Backer, Wilfried

    2014-12-01

    Although dancing requires extensive physical exertion, dancers do not often train their physical fitness outside dance classes. Reduced aerobic capacity, lower muscle strength and altered motor control have been suggested as contributing factors for musculoskeletal injuries in dancers. This randomized controlled trial examined whether an intervention program improves aerobic capacity and explosive strength and reduces musculoskeletal injuries in dancers. Forty-four dancers were randomly allocated to a 4-month conditioning (i.e. endurance, strength and motor control training) or health promotion program (educational sessions). Outcome assessment was conducted by blinded assessors. When accounting for differences at baseline, no significant differences were observed between the groups following the intervention, except for the subscale "Pain" of the Short Form 36 Questionnaire (p = 0.03). Injury incidence rate and the proportion of injured dancers were identical in both groups, but dancers following the conditioning program had significant less low back injuries (p = 0.02). Supplementing regular dance training with a 4-month conditioning program does not lead to a significant increase in aerobic capacity or explosive strength in pre-professional dancers compared to a health promotion program without conditioning training, but leads to less reported pain. Further research should explore how additional training may be organized, taking into account the demanding dance schedule of pre-professional dancers. The trial is registered at ClinicalTrials.gov, number NCT01440153.

  10. Pancreatic Islet Transplantation

    MedlinePlus

    ... allo-transplantation?" For each pancreatic islet allo-transplant infusion, researchers use specialized enzymes to remove islets from ... in a lab. Transplant patients typically receive two infusions with an average of 400,000 to 500, ...

  11. Surgery for Pancreatic Cancer

    MedlinePlus

    ... the abdomen. The surgeon can look at the pancreas and other organs for tumors and take biopsy ... pancreatic cancers appear to be confined to the pancreas at the time they are found. Even then, ...

  12. Chronic Pancreatitis in Children

    MedlinePlus

    ... years to appear, but this, too, is highly variable; some patients with chronic pancreatitis will develop diabetes ... of modifying factors include other genes or environmental variables, which is a term that scientists use to ...

  13. Pancreatic exocrine function testing

    SciTech Connect

    Goff, J.S.

    1981-11-01

    It is important to understand which pancreatic function tests are available and how to interpret them when evaluating patients with malabsorption. Available direct tests are the secretin stimulation test, the Lundh test meal, and measurement of serum or fecal enzymes. Indirect tests assess pancreatic exocrine function by measuring the effect of pancreatic secretion on various nutrients. These include triglycerides labeled with carbon 14, cobalamin labeled with cobalt 57 and cobalt 58, and para-aminobenzoic acid bound to a dipeptide. Of all these tests the secretin stimulation test is the most accurate and reliable if done by experienced personnel. However, the indirect tests are simpler to do and appear to be comparable to the secretin test at detecting pancreatic exocrine insufficiency. These indirect tests are becoming clinically available and clinicians should familiarize themselves with the strengths and weaknesses of each.

  14. Pancreatic Cancer Risk Factors

    MedlinePlus

    ... age at the time of diagnosis is 71. Gender Men are slightly more likely to develop pancreatic ... would like to unsubscribe/opt out from our communications, please follow this link: http://www.cancer.org/ ...

  15. Deciphering the role of hedgehog signaling in pancreatic cancer.

    PubMed

    Gu, Dongsheng; Schlotman, Kelly E; Xie, Jingwu

    2016-09-01

    Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is a leading cause of cancer-related death in the US, with a dismal median survival of 6 months. Thus, there is an urgent unmet need to identify ways to diagnose and to treat this deadly cancer. Although a number of genetic changes have been identified in pancreatic cancer, their mechanisms of action in tumor development, progression and metastasis are not completely understood. Hedgehog signaling, which plays a major role in embryonic development and stem cell regulation, is known to be activated in pancreatic cancer; however, specific inhibitors targeting the smoothened molecule failed to improve the condition of pancreatic cancer patients in clinical trials. Furthermore, results regarding the role of Hh signaling in pancreatic cancer are controversial with some reporting tumor promoting activities whereas others tumor suppressive actions. In this review, we will summarize what we know about hedgehog signaling in pancreatic cancer, and try to explain the contradicting roles of hedgehog signaling as well as the reason(s) behind the failed clinical trials. In addition to the canonical hedgehog signaling, we will also discuss several non-canonical hedgehog signaling mechanisms.

  16. Epidermal growth factor and its receptors in human pancreatic carcinoma

    SciTech Connect

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N. )

    1990-05-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells.

  17. Sonic hedgehog expression in a rat model of chronic pancreatitis

    PubMed Central

    Wang, Luo-Wei; Lin, Han; Lu, Yi; Xia, Wei; Gao, Jun; Li, Zhao-Shen

    2014-01-01

    AIM: To analyze the activation of sonic hedgehog (SHh) signaling pathways in a rat model of chronic pancreatitis. METHODS: Forty Wistar rats were randomly divided into 2 groups: experimental group and control group (20 rats in each group). Dibutyltin dichloride was infused into the tail vein of the rats to induce chronic pancreatitis in the experimental group. The same volume of ethanol and glycerol mixture was infused in the control group. The expression of Ptch, Smo and Gli were analyzed using immunohistochemistry, and real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS: Compared with the control group, significant histological changes in terms of the areas of abnormal architecture, glandular atrophy, fibrosis, pseudo tubular complexes, and edema were observed at week 4 in the experimental group. The expression of Ptch1, Smo and Gli1 in the pancreatic tissue increased significantly in the experimental group. Using RT-PCR, mRNA levels of Ptch, Smo and Gli in the experimental group increased significantly compared with the control group. CONCLUSION: The SHh signaling pathway is aberrantly activated in rats with chronic pancreatitis. The SHh signaling pathway plays an important role in the development of chronic pancreatitis. These results may be helpful in studies focusing on the relationship between chronic pancreatitis and pancreatic cancer. PMID:24782623

  18. Reduced Pancreatic Exocrine Function and Organellar Disarray in a Canine Model of Acute Pancreatitis

    PubMed Central

    Li, Qiang; Bhugul, Pravin Avinash; Huang, Xince; Liu, Lewei; Pan, Liangliang; Ni, Haizhen; Chen, Bicheng; Sun, Hongwei; Zhang, Qiyu; Hehir, Michael; Zhou, Mengtao

    2016-01-01

    The aim of the present study was to investigate the pancreatic exocrine function in a canine model and to analyze the changes in organelles of pancreatic acinar cells during the early stage of acute pancreatitis (AP). AP was induced by retrograde injection of 5% sodium taurocholate (0.5 ml/kg) into the main pancreatic duct of dogs. The induction of AP resulted in serum hyperamylasemia and a marked reduction of amylase activity in the pancreatic fluid (PF). The pancreatic exocrine function was markedly decreased in subjects with AP compared with the control group. After the induction of AP, histological examination showed acinar cell edema, cytoplasmic vacuolization, fibroblasts infiltration, and inflammatory cell infiltration in the interstitium. Electron micrographs after the induction of AP revealed that most of the rough endoplasmic reticulum (RER) were dilated and that some of the ribosomes were no longer located on the RER. The mitochondria were swollen, with shortened and broken cristae. The present study demonstrated, in a canine model, a reduced volume of PF secretion with decreased enzyme secretion during the early stage of AP. Injury of mitochondria and dilatation and degranulation of RER may be responsible for the reduced exocrine function in AP. Furthermore, the present model and results may be useful for researching novel therapeutic measures in AP. PMID:26895040

  19. A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters

    PubMed Central

    Javaid, Shaista; Amin, Imran; Jander, Georg; Mukhtar, Zahid; Saeed, Nasir A.; Mansoor, Shahid

    2016-01-01

    The first generation transgenic crops used strong constitutive promoters for transgene expression. However, tissue-specific expression is desirable for more precise targeting of transgenes. Moreover, piercing/sucking insects, which are generally resistant to insecticidal Bacillus thuringiensis (Bt) proteins, have emerged as a major pests since the introduction of transgenic crops expressing these toxins. Phloem-specific promoters isolated from Banana bunchy top virus (BBTV) were used for the expression of two insecticidal proteins, Hadronyche versuta (Blue Mountains funnel-web spider) neurotoxin (Hvt) and onion leaf lectin, in tobacco (Nicotiana tabacum). Here we demonstrate that transgenic plants expressing Hvt alone or in combination with onion leaf lectin are resistant to Phenacoccus solenopsis (cotton mealybug), Myzus persicae (green peach aphids) and Bemisia tabaci (silver leaf whitefly). The expression of both proteins under different phloem-specific promoters resulted in close to 100% mortality and provided more rapid protection than Hvt alone. Our results suggest the employment of the Hvt and onion leaf lectin transgenic constructs at the commercial level will reduce the use of chemical pesticides for control of hemipteran insect pests. PMID:27708374

  20. Optimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness.

    PubMed

    Jones, Wilm; Su, Ren; Wells, Peter P; Shen, Yanbin; Dimitratos, Nikolaos; Bowker, Michael; Morgan, David; Iversen, Bo B; Chutia, Arunabhiram; Besenbacher, Flemming; Hutchings, Graham

    2014-12-28

    The development of efficient photocatalytic routines for producing hydrogen is of great importance as society moves away from energy sources derived from fossil fuels. Recent studies have identified that the addition of metal nanoparticles to TiO2 greatly enhances the photocatalytic performance of these materials towards the reforming of alcohols for hydrogen production. The core-shell structured Au-Pd bimetallic nanoparticle supported on TiO2 has being of interest as it exhibited extremely high quantum efficiencies for hydrogen production. However, the effect of shell composition and thickness on photocatalytic performance remains unclear. Here we report the synthesis of core-shell structured AuPd NPs with the controlled deposition of one and two monolayers (ML) equivalent of Pd onto Au NPs by colloidal and photodeposition methods. We have determined the shell composition and thickness of the nanoparticles by a combination of X-ray absorption fine structure and X-ray photoelectron spectroscopy. Photocatalytic ethanol reforming showed that the core-shell structured Au-Pd promoters supported on TiO2 exhibit enhanced activity compared to that of monometallic Au and Pd as promoters, whilst the core-shell Au-Pd promoters containing one ML equivalent Pd provide the optimum reactivity.

  1. Brief intervention to promote smoking cessation and improve glycemic control in smokers with type 2 diabetes: a randomized controlled trial

    PubMed Central

    Li, William H. C.; Wang, M. P.; LAM, T. H.; Cheung, Yannes T. Y.; Cheung, Derek Y. T.; Suen, Y. N.; Ho, K. Y.; Tan, Kathryn C. B.; CHAN, Sophia S. C.

    2017-01-01

    The aim of the study was to examine the effects of a brief stage-matched smoking cessation intervention group compared with a control group (with usual care) in type 2 diabetes mellitus patients who smoked by randomized controlled trial. There were 557 patients, randomized either into the intervention group (n = 283) who received brief (20- minute) individualized face-to-face counseling by trained nurses and a diabetes mellitus-specific leaflet, or a control group (n = 274) who received standard care. Patient follow-ups were at 1 week, 1 month, 3 months, 6 months, and 12 months via telephone, and assessment of smoking status from 2012 to 2014. Patients smoked an average of 14 cigarettes per day for more than 37 years, and more than 70% were in the precontemplation stage of quitting. The primary outcome showed that both the intervention and control groups had similar 7-day point-prevalence smoking abstinence (9.2% vs. 13.9%; p = 0.08). The secondary outcome showed that HbA1c levels with 7.95% [63 mmol/mol] vs. 8.05% [64 mmol/mol], p = 0.49 at 12 months, respectively. There was no evidence for effectiveness in promoting the brief stage-matched smoking cessation or improving glycemic control in smokers with type 2 diabetes mellitus, particularly those in the pre-contemplation stage. PMID:28378764

  2. [Management of postoperative pancreatic fistula].

    PubMed

    Hackert, T; Büchler, M W

    2015-06-01

    The occurrence of a postoperative pancreatic fistula is one of the most important complications following pancreatic resections. The frequency of this complication varies between 3 % after pancreatic head resection and up to 35 % following distal pancreatectomy. In 2005, the international definition of postoperative pancreatic fistula was standardized according to the approach of the International Study Group of Pancreatic Surgery (ISGPS) including an A-C grading system of the severity. Consequently, results from different studies have become comparable and the historically reported fistula rates can be evaluated more critically. The present review summarises the currently available data on incidence, risk factors, fistula-associated complications and management of postoperative pancreatic fistula.

  3. Arsenic-Induced Pancreatitis

    PubMed Central

    Connelly, Sean; Zancosky, Krysia; Farah, Katie

    2011-01-01

    The introduction of all-trans retinoic acid (ATRA) and arsenic trioxide has brought about tremendous advancement in the treatment of acute promyelocytic myelogenous leukemia (APML). In most instances, the benefits of these treatments outweigh the risks associated with their respective safety profiles. Although acute pancreatitis is not commonly associated with arsenic toxicity, it should be considered as a possible side effect. We report a case of arsenic-induced pancreatitis in a patient with APML. PMID:22606427

  4. Positive and negative control sequences within the distal domain of the adenovirus IVa2 promoter overlap with the major late promoter.

    PubMed Central

    Natarajan, V; Madden, M J; Salzman, N P

    1985-01-01

    The RNA initiation sites of the adenovirus IVa2 and major late promoters (MLP) are separated by 210 base pairs and transcribed from opposite DNA strands. We had previously shown that they contained overlapping promoter sequences (V. Natarajan, M. J. Madden, and N. P. Salzman, Proc. Natl. Acad. Sci. U.S.A. 81:6290-6294, 1984). The transcription efficiencies of these two promoters were studied in vitro with templates of covalently closed circular DNAs that contained various deletion and point mutants. The distal control region of the IVa2 promoter that is located at nucleotide position (np) -152 to -242 from the RNA initiation site consists of at least two domains. The first distal domain, present between np -152 and -179, is necessary for efficient transcription of the IVa2 promoter, and it overlaps with sequences that have been shown to be necessary for efficient transcription of MLP. This region may serve as the entry site for the transcription machinery. The second distal domain consists of sequences present between np -211 and -242. These sequences are contained at the 5' end in the MLP transcript, and they inhibit transcription from the IVa2 promoter. However, these sequences are not necessary for transcription of the MLP with a covalently closed template but are needed for transcription with a linear template. The TATA box that is located at np -180 to -186 between these two domains has a critical role for efficient transcription of the MLP. A point mutation that reduces transcription from MLP by more than 80% stimulates transcription from IVa2 promoter by 10-fold. This finding is consistent with the proposal that MLP and IVa2 promoters share an entry site for transcription machinery and compete for its use. Images PMID:4009788

  5. Hypermethylation of MST1 in IgG4-related autoimmune pancreatitis and rheumatoid arthritis

    SciTech Connect

    Fukuhara, Takataro; Tomiyama, Takashi; Yasuda, Kaneki; Ueda, Yoshihiro; Ozaki, Yoshio; Son, Yonsu; Nomura, Shosaku; Uchida, Kazushige; Okazaki, Kazuichi; Kinashi, Tatsuo

    2015-08-07

    The serine/threonine kinase Mst1 plays important roles in the control of immune cell trafficking, proliferation, and differentiation. Previously, we reported that Mst1 was required for thymocyte selection and regulatory T-cell functions, thereby the prevention of autoimmunity in mice. In humans, MST1 null mutations cause T-cell immunodeficiency and hypergammaglobulinemia with autoantibody production. RASSF5C(RAPL) is an activator of MST1 and it is frequently methylated in some tumors. Herein, we investigated methylation of the promoter regions of MST1 and RASSF5C(RAPL) in leukocytes from patients with IgG4-related autoimmune pancreatitis (AIP) and rheumatoid arthritis (RA). Increased number of CpG methylation in the 5′ region of MST1 was detected in AIP patients with extrapancreatic lesions, whereas AIP patients without extrapancreatic lesions were similar to controls. In RA patients, we detected a slight increased CpG methylation in MST1, although the overall number of methylation sites was lower than that of AIP patients with extrapancreatic lesions. There were no significant changes of the methylation levels of the CpG islands in the 5′ region of RASSF5C(RAPL) in leukocytes from AIP and RA patients. Consistently, we found a significantly down-regulated expression of MST1 in regulatory T cells of AIP patients. Our results suggest that the decreased expression of MST1 in regulatory T cells due to hypermethylation of the promoter contributes to the pathogenesis of IgG4-related AIP. - Highlights: • Mst1 controls immune cells trafficking, cell proliferation and differentiation. • Autoimmune pancreatitis (AIP) is an idiopathic pancreatitis affecting multiple organs. • Decreased MST1 expression and increased CpG methylation of promoter of MST1 in AIP. • Slight increased CpG methylation of MST1 in rheumatoid arthritis patients. • MST1 contributes pathogenesis of IgG4-related AIP.

  6. From acute to chronic pancreatitis: the role of mutations in the pancreatic secretory trypsin inhibitor gene.

    PubMed

    Hirota, Masahiko; Kuwata, Kinuko; Ohmuraya, Masaki; Ogawa, Michio

    2003-03-01

    Pancreatic secretory trypsin inhibitor (PSTI) is a potent natural inhibitor of trypsin. We proposed the hypothesis that, if the function of the PSTI is impaired by its genetic mutation, trypsin may easily promote autodigestion causing pancreatitis and we performed a mutational analysis of the PSTI gene in patients with pancreatitis. Two exonic mutations (N34S and R67C) were thought to be associated with a predisposition to pancreatitis. The N34S mutation was co-segregated with two intronic mutations, IVS1-37T>C and IVS3-69insTTTT. Although we analyzed the function of the recombinant N34S protein, we could not demonstrate the loss of function of this protein. Intronic mutations, rather than N34S itself (IVS1-37T>C + N34S + IVS3-69insTTTT complex), may be associated with the decreased function of the PSTI. Alternatively, increased digestion of N34S in vivo may be applicable. As for R67C, the conformational alteration of the protein by forming intra-molecular or inter-molecular disulfide bonds with 67Cys was strongly suggested. These results, along with the brand-new findings in PSTI knockout mice, suggest that the genetic mutation of the PSTI is one of the important mechanisms for predisposition to pancreatitis by lowering the trypsin inhibitory function.

  7. Signaling via MYD88 in the pancreatic tumor microenvironment: A double-edged sword.

    PubMed

    Zambirinis, Constantinos P; Miller, George

    2013-01-01

    We have recently shown that Toll-like receptor (TLR) signaling exacerbates pancreatic fibro-inflammation and promotes carcinogenesis in mice. Paradoxically, inhibition of the TLR-MYD88 signaling pathway is pro-tumorigenic owing to the dendritic cell-mediated TH2-polarization of CD4(+) T cells. TLR signaling appears to be central in pancreatic cancer-associated inflammation.

  8. Hereditary pancreatitis: current perspectives.

    PubMed

    Raphael, Kara L; Willingham, Field F

    2016-01-01

    Hereditary pancreatitis (HP) is a rare cause of acute, recurrent acute, and chronic pancreatitis. It may present similarly to other causes of acute and chronic pancreatitis, and often there has been a protracted evaluation prior to the diagnosis of HP. Since it was first described in 1952, multiple genetic defects that affect the action of digestive enzymes in the pancreas have been implicated. The most common mutations involve the PRSS1, CFTR, SPINK1, and CTRC genes. New mutations in these genes and previously unrecognized mutations in other genes are being discovered due to the increasing use of next-generation genomic sequencing. While the inheritance pathways of these genetic mutations may be variable and complex, sometimes involving coinheritance of other mutations, the clinical presentation of patients tends to be similar. Interactions with environmental triggers often play a role. Patients tend to present at an early age (prior to the second decade of life) and have a significantly increased risk for the development of pancreatic adenocarcinoma. Patients with HP may develop sequelae of chronic pancreatitis such as strictures and fluid collections as well as exocrine and endocrine insufficiency. Management of patients with HP involves avoidance of environmental triggers, surveillance for pancreatic adenocarcinoma, medical therapy for endocrine and exocrine insufficiency, pain management, and endoscopic or surgical treatment for complications. Care for affected patients should be individualized, with an emphasis on early diagnosis and multidisciplinary involvement to develop a comprehensive treatment strategy.

  9. Glycogen synthase kinase-3 inhibitor AR-A014418 suppresses pancreatic cancer cell growth via inhibition of GSK-3-mediated Notch1 expression

    PubMed Central

    Kunnimalaiyaan, Selvi; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy

    2015-01-01

    Background Glycogen synthase kinase-3 (GSK-3) can act as either a tumour promoter or suppressor by its inactivation depending on the cell type. There are conflicting reports on the roles of GSK-3 isoforms and their interaction with Notch1 in pancreatic cancer. It was hypothesized that GSK-3α stabilized Notch1 in pancreatic cancer cells thereby promoting cellular proliferation. Methods The pancreatic cancer cell lines MiaPaCa2, PANC-1 and BxPC-3, were treated with 0–20 μM of AR-A014418 (AR), a known GSK-3 inhibitor. Cell viability was determined by the MTT assay and Live-Cell Imaging. The levels of Notch pathway members (Notch1, HES-1, survivin and cyclinD1), phosphorylated GSK-3 isoforms, and apoptotic markers were determined by Western blot. Immunoprecipitation was performed to identify the binding of GSK-3 specific isoform to Notch1. Results AR-A014418 treatment had a significant dose-dependent growth reduction (P < 0.001) in pancreatic cancer cells compared with the control and the cytotoxic effect is as a result of apoptosis. Importantly, a reduction in GSK-3 phosphorylation lead to a reduction in Notch pathway members. Overexpression of active Notch1 in AR-A014418-treated cells resulted in the negation of growth suppression. Immunoprecipitation analysis revealed that GSK-3α binds to Notch1. Conclusions This study demonstrates for the first time that the growth suppressive effect of AR-A014418 on pancreatic cancer cells is mainly mediated by a reduction in phosphorylation of GSK-3α with concomitant Notch1 reduction. GSK-3α appears to stabilize Notch1 by binding and may represent a target for therapeutic development. Furthermore, downregulation of GSK-3 and Notch1 may be a viable strategy for possible chemosensitization of pancreatic cancer cells to standard therapeutics. PMID:26147011

  10. Molecular Biomarkers of Pancreatic Intraepithelial Neoplasia and Their Implications in Early Diagnosis and Therapeutic Intervention of Pancreatic Cancer

    PubMed Central

    Guo, Junli; Xie, Keping; Zheng, Shaojiang

    2016-01-01

    Lack of early detection and effective interventions is a major reason for the poor prognosis and dismal survival rates for pancreatic cancer. Pancreatic intraepithelial neoplasia (PanIN) is the most common precursor of invasive pancreatic ductal adenocarcinoma (PDAC). Each stage in the progression from PanIN to PDAC is well characterized by multiple significant genetic alterations affecting signaling pathways. Understanding the biological behavior and molecular alterations in the progression from PanIN to PDAC is crucial to the identification of noninvasive biomarkers for early detection and diagnosis and the development of preventive and therapeutic strategies for control of pancreatic cancer progression. This review focuses on molecular biomarkers of PanIN and their important roles in early detection and treatment of pancreatic cancer. PMID:26929736

  11. Protective effects of rhubarb on experimental severe acute pancreatitis

    PubMed Central

    Zhao, Yu-Qing; Liu, Xiao-Hong; Ito, Tetsuhide; Qian, Jia-Ming

    2004-01-01

    AIM: To investigate the effects of rhubarb on severe acute pancreatitis (SAP) in rats. METHODS: Severe acute pancreatitis was induced by two intraperitoneal injections of cerulein (40 μg/kg body weight) plus 5-h restraint water-immersion stress. Rhubarb (75-150 mg/kg) was orally fed before the first cerulein injection. The degree of pancreatic edema, serum amylase level, local pancreatic blood flow (PBF), and histological alterations were investigated. The effects of rhubarb on pancreatic exocrine secretion in this model were evaluated by comparing with those of somatostatin. RESULTS: In the Cerulein + Stress group, severe edema and diffuse hemorrhage in the pancreas were observed, the pancreatic wet weight (11.60 ± 0.61 g/Kg) and serum amylase (458 490 ± 43 100 U/L) were markedly increased (P < 0.01 vs control). In the rhubarb (150 mg/kg) treated rats, necrosis and polymorphonuclear neutrophil (PMN) inf