Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate.
Shibata, Tomonori; Fujita, Yoshihiko; Ohno, Hirohisa; Suzuki, Yuki; Hayashi, Karin; Komatsu, Kaoru R; Kawasaki, Shunsuke; Hidaka, Kumi; Yonehara, Shin; Sugiyama, Hiroshi; Endo, Masayuki; Saito, Hirohide
2017-09-14
Nucleic acid nanotechnology has great potential for future therapeutic applications. However, the construction of nanostructured devices that control cell fate by detecting and amplifying protein signals has remained a challenge. Here we design and build protein-driven RNA-nanostructured devices that actuate in vitro by RNA-binding-protein-inducible conformational change and regulate mammalian cell fate by RNA-protein interaction-mediated protein assembly. The conformation and function of the RNA nanostructures are dynamically controlled by RNA-binding protein signals. The protein-responsive RNA nanodevices are constructed inside cells using RNA-only delivery, which may provide a safe tool for building functional RNA-protein nanostructures. Moreover, the designed RNA scaffolds that control the assembly and oligomerization of apoptosis-regulatory proteins on a nanometre scale selectively kill target cells via specific RNA-protein interactions. These findings suggest that synthetic RNA nanodevices could function as molecular robots that detect signals and localize target proteins, induce RNA conformational changes, and programme mammalian cellular behaviour.Nucleic acid nanotechnology has great potential for future therapeutic applications. Here the authors build protein-driven RNA nanostructures that can function within mammalian cells and regulate the cell fate.
Investigating neuronal function with optically controllable proteins
Zhou, Xin X.; Pan, Michael; Lin, Michael Z.
2015-01-01
In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain. PMID:26257603
Small-molecule control of protein function through Staudinger reduction
NASA Astrophysics Data System (ADS)
Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander
2016-11-01
Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).
Kim, Young Eun; Kim, Yu-na; Kim, Jung A.; Kim, Ho Min; Jung, Yongwon
2015-01-01
Supramolecular protein assemblies offer novel nanoscale architectures with molecular precision and unparalleled functional diversity. A key challenge, however, is to create precise nano-assemblies of functional proteins with both defined structures and a controlled number of protein-building blocks. Here we report a series of supramolecular green fluorescent protein oligomers that are assembled in precise polygonal geometries and prepared in a monodisperse population. Green fluorescent protein is engineered to be self-assembled in cells into oligomeric assemblies that are natively separated in a single-protein resolution by surface charge manipulation, affording monodisperse protein (nano)polygons from dimer to decamer. Several functional proteins are multivalently displayed on the oligomers with controlled orientations. Spatial arrangements of protein oligomers and displayed functional proteins are directly visualized by a transmission electron microscope. By employing our functional protein assemblies, we provide experimental insight into multivalent protein–protein interactions and tools to manipulate receptor clustering on live cell surfaces. PMID:25972078
Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.
Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F
2017-01-01
We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.
Scavuzzo-Duggan, Tess R.; Chaves, Arielle M.; Roberts, Alison W.
2015-07-14
Here, a method for rapid in vivo functional analysis of engineered proteins was developed using Physcomitrella patens. A complementation assay was designed for testing structure/function relationships in cellulose synthase (CESA) proteins. The components of the assay include (1) construction of test vectors that drive expression of epitope-tagged PpCESA5 carrying engineered mutations, (2) transformation of a ppcesa5 knockout line that fails to produce gametophores with test and control vectors, (3) scoring the stable transformants for gametophore production, (4) statistical analysis comparing complementation rates for test vectors to positive and negative control vectors, and (5) analysis of transgenic protein expression by Westernmore » blotting. The assay distinguished mutations that generate fully functional, nonfunctional, and partially functional proteins. In conclusion, compared with existing methods for in vivo testing of protein function, this complementation assay provides a rapid method for investigating protein structure/function relationships in plants.« less
Protein-protein recognition control by modulating electrostatic interactions.
Han, Song; Yin, Shijin; Yi, Hong; Mouhat, Stéphanie; Qiu, Su; Cao, Zhijian; Sabatier, Jean-Marc; Wu, Yingliang; Li, Wenxin
2010-06-04
Protein-protein control recognition remains a huge challenge, and its development depends on understanding the chemical and biological mechanisms by which these interactions occur. Here we describe a protein-protein control recognition technique based on the dominant electrostatic interactions occurring between the proteins. We designed a potassium channel inhibitor, BmP05-T, that was 90.32% identical to wild-type BmP05. Negatively charged residues were translocated from the nonbinding interface to the binding interface of BmP05 inhibitor, such that BmP05-T now used BmP05 nonbinding interface as the binding interface. This switch demonstrated that nonbinding interfaces were able to control the orientation of protein binding interfaces in the process of protein-protein recognition. The novel function findings of BmP05-T peptide suggested that the control recognition technique described here had the potential for use in designing and utilizing functional proteins in many biological scenarios.
Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum
Shahheydari, Hamideh; Ragagnin, Audrey; Walker, Adam K.; Toth, Reka P.; Vidal, Marta; Jagaraj, Cyril J.; Perri, Emma R.; Konopka, Anna; Sultana, Jessica M.; Atkin, Julie D.
2017-01-01
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials. PMID:28539871
Design of Light-Controlled Protein Conformations and Functions.
Ritterson, Ryan S; Hoersch, Daniel; Barlow, Kyle A; Kortemme, Tanja
2016-01-01
In recent years, interest in controlling protein function with light has increased. Light offers a number of unique advantages over other methods, including spatial and temporal control and high selectivity. Here, we describe a general protocol for engineering a protein to be controllable with light via reaction with an exogenously introduced photoisomerizable small molecule and illustrate our protocol with two examples from the literature: the engineering of the calcium affinity of the cell-cell adhesion protein cadherin, which is an example of a protein that switches from a native to a disrupted state (Ritterson et al. J Am Chem Soc (2013) 135:12516-12519), and the engineering of the opening and closing of the chaperonin Mm-cpn, an example of a switch between two functional states (Hoersch et al.: Nat Nanotechn (2013) 8:928-932). This protocol guides the user from considering which proteins may be most amenable to this type of engineering, to considerations of how and where to make the desired changes, to the assays required to test for functionality.
Bacterial Ice Crystal Controlling Proteins
Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.
2014-01-01
Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057
Bacterial ice crystal controlling proteins.
Lorv, Janet S H; Rose, David R; Glick, Bernard R
2014-01-01
Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.
Porter Starr, Kathryn N; Pieper, Carl F; Orenduff, Melissa C; McDonald, Shelley R; McClure, Luisa B; Zhou, Run; Payne, Martha E; Bales, Connie W
2016-10-01
Obesity is a significant cause of functional limitations in older adults; yet, concerns that weight reduction could diminish muscle along with fat mass have impeded progress toward an intervention. Meal-based enhancement of protein intake could protect function and/or lean mass but has not been studied during geriatric obesity reduction. In this 6-month randomized controlled trial, 67 obese (body mass index ≥30kg/m(2)) older (≥60 years) adults with a Short Physical Performance Battery score of 4-10 were randomly assigned to a traditional (Control) weight loss regimen or one with higher protein intake (>30g) at each meal (Protein). All participants were prescribed a hypo-caloric diet, and weighed and provided dietary guidance weekly. Physical function (Short Physical Performance Battery) and lean mass (BOD POD), along with secondary measures, were assessed at 0, 3, and 6 months. At the 6-month endpoint, there was significant (p < .001) weight loss in both the Control (-7.5±6.2kg) and Protein (-8.7±7.4kg) groups. Both groups also improved function but the increase in the Protein (+2.4±1.7 units; p < .001) was greater than in the Control (+0.9±1.7 units; p < .01) group (p = .02). Obese, functionally limited older adults undergoing a 6-month weight loss intervention with a meal-based enhancement of protein quantity and quality lost similar amounts of weight but had greater functional improvements relative to the Control group. If confirmed, this dietary approach could have important implications for improving the functional status of this vulnerable population (ClinicalTrials.gov identifier: NCT01715753). © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America.
Pieper, Carl F.; Orenduff, Melissa C.; McDonald, Shelley R.; McClure, Luisa B.; Zhou, Run; Payne, Martha E.; Bales, Connie W.
2016-01-01
Abstract Background: Obesity is a significant cause of functional limitations in older adults; yet, concerns that weight reduction could diminish muscle along with fat mass have impeded progress toward an intervention. Meal-based enhancement of protein intake could protect function and/or lean mass but has not been studied during geriatric obesity reduction. Methods: In this 6-month randomized controlled trial, 67 obese (body mass index ≥30kg/m2) older (≥60 years) adults with a Short Physical Performance Battery score of 4–10 were randomly assigned to a traditional (Control) weight loss regimen or one with higher protein intake (>30g) at each meal (Protein). All participants were prescribed a hypo-caloric diet, and weighed and provided dietary guidance weekly. Physical function (Short Physical Performance Battery) and lean mass (BOD POD), along with secondary measures, were assessed at 0, 3, and 6 months. Results: At the 6-month endpoint, there was significant (p < .001) weight loss in both the Control (−7.5±6.2kg) and Protein (−8.7±7.4kg) groups. Both groups also improved function but the increase in the Protein (+2.4±1.7 units; p < .001) was greater than in the Control (+0.9±1.7 units; p < .01) group (p = .02). Conclusion: Obese, functionally limited older adults undergoing a 6-month weight loss intervention with a meal-based enhancement of protein quantity and quality lost similar amounts of weight but had greater functional improvements relative to the Control group. If confirmed, this dietary approach could have important implications for improving the functional status of this vulnerable population (ClinicalTrials.gov identifier: NCT01715753). PMID:26786203
Battig, Mark R; Soontornworajit, Boonchoy; Wang, Yong
2012-08-01
Polymeric delivery systems have been extensively studied to achieve localized and controlled release of protein drugs. However, it is still challenging to control the release of multiple protein drugs in distinct stages according to the progress of disease or treatment. This study successfully demonstrates that multiple protein drugs can be released from aptamer-functionalized hydrogels with adjustable release rates at predetermined time points using complementary sequences (CSs) as biomolecular triggers. Because both aptamer-protein interactions and aptamer-CS hybridization are sequence-specific, aptamer-functionalized hydrogels constitute a promising polymeric delivery system for the programmable release of multiple protein drugs to treat complex human diseases.
Modular protein domains: an engineering approach toward functional biomaterials.
Lin, Charng-Yu; Liu, Julie C
2016-08-01
Protein domains and peptide sequences are a powerful tool for conferring specific functions to engineered biomaterials. Protein sequences with a wide variety of functionalities, including structure, bioactivity, protein-protein interactions, and stimuli responsiveness, have been identified, and advances in molecular biology continue to pinpoint new sequences. Protein domains can be combined to make recombinant proteins with multiple functionalities. The high fidelity of the protein translation machinery results in exquisite control over the sequence of recombinant proteins and the resulting properties of protein-based materials. In this review, we discuss protein domains and peptide sequences in the context of functional protein-based materials, composite materials, and their biological applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms.
Makeyev, Aleksandr V; Liebhaber, Stephen A
2002-01-01
The poly(C) binding proteins (PCBPs) are encoded at five dispersed loci in the mouse and human genomes. These proteins, which can be divided into two groups, hnRNPs K/J and the alphaCPs (alphaCP1-4), are linked by a common evolutionary history, a shared triple KH domain configuration, and by their poly(C) binding specificity. Given these conserved characteristics it is remarkable to find a substantial diversity in PCBP functions. The roles of these proteins in mRNA stabilization, translational activation, and translational silencing suggest a complex and diverse set of post-transcriptional control pathways. Their additional putative functions in transcriptional control and as structural components of important DNA-protein complexes further support their remarkable structural and functional versatility. Clearly the identification of additional binding targets and delineation of corresponding control mechanisms and effector pathways will establish highly informative models for further exploration. PMID:12003487
The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms.
Makeyev, Aleksandr V; Liebhaber, Stephen A
2002-03-01
The poly(C) binding proteins (PCBPs) are encoded at five dispersed loci in the mouse and human genomes. These proteins, which can be divided into two groups, hnRNPs K/J and the alphaCPs (alphaCP1-4), are linked by a common evolutionary history, a shared triple KH domain configuration, and by their poly(C) binding specificity. Given these conserved characteristics it is remarkable to find a substantial diversity in PCBP functions. The roles of these proteins in mRNA stabilization, translational activation, and translational silencing suggest a complex and diverse set of post-transcriptional control pathways. Their additional putative functions in transcriptional control and as structural components of important DNA-protein complexes further support their remarkable structural and functional versatility. Clearly the identification of additional binding targets and delineation of corresponding control mechanisms and effector pathways will establish highly informative models for further exploration.
Zhou, Xin X; Zou, Xinzhi; Chung, Hokyung K; Gao, Yuchen; Liu, Yanxia; Qi, Lei S; Lin, Michael Z
2018-02-16
Optical control of CRISPR-Cas9-derived proteins would be useful for restricting gene editing or transcriptional regulation to desired times and places. Optical control of Cas9 functions has been achieved with photouncageable unnatural amino acids or by using light-induced protein interactions to reconstitute Cas9-mediated functions from two polypeptides. However, these methods have only been applied to one Cas9 species and have not been used for optical control of different perturbations at two genes. Here, we use photodissociable dimeric fluorescent protein domains to engineer single-chain photoswitchable Cas9 (ps-Cas9) proteins in which the DNA-binding cleft is occluded at baseline and opened upon illumination. This design successfully controlled different species and functional variants of Cas9, mediated transcriptional activation more robustly than previous optogenetic methods, and enabled light-induced transcription of one gene and editing of another in the same cells. Thus, a single-chain photoswitchable architecture provides a general method to control a variety of Cas9-mediated functions.
Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.
Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero
2015-01-01
Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.
Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma
Ambrosio, Maria R.; Rocca, Bruno J.; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T.; Tripodi, Sergio A.; Tosi, Piero
2015-01-01
Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis. PMID:26425551
Yu, Geng; Rosenberg, Julian N; Betenbaugh, Michael J; Oyler, George A
2015-12-01
Protein degradation in normal living cells is precisely regulated to match the cells' physiological requirements. The selectivity of protein degradation is determined by an elaborate degron-tagging system. Degron refers to an amino acid sequence that encodes a protein degradation signal, which is oftentimes a poly-ubiquitin chain that can be transferred to other proteins. Current understanding of ubiquitination dependent and independent protein degradation processes has expanded the application of degrons for targeted protein degradation and novel cell engineering strategies. Recent findings suggest that small molecules inducing protein association can be exploited to create degrons that target proteins for degradation. Here, recent applications of degron-based targeted protein degradation in eukaryotic organisms are reviewed. The degron mediated protein degradation represents a rapidly tunable methodology to control protein abundance, which has broad application in therapeutics and cellular function control and monitoring. Copyright © 2015. Published by Elsevier Ltd.
The control of translational accuracy is a determinant of healthy ageing in yeast
Leadsham, Jane E.; Sauvadet, Aimie; Tarrant, Daniel; Adam, Ilectra S.; Saromi, Kofo; Laun, Peter; Rinnerthaler, Mark; Breitenbach-Koller, Hannelore; Breitenbach, Michael; Tuite, Mick F.; Gourlay, Campbell W.
2017-01-01
Life requires the maintenance of molecular function in the face of stochastic processes that tend to adversely affect macromolecular integrity. This is particularly relevant during ageing, as many cellular functions decline with age, including growth, mitochondrial function and energy metabolism. Protein synthesis must deliver functional proteins at all times, implying that the effects of protein synthesis errors like amino acid misincorporation and stop-codon read-through must be minimized during ageing. Here we show that loss of translational accuracy accelerates the loss of viability in stationary phase yeast. Since reduced translational accuracy also reduces the folding competence of at least some proteins, we hypothesize that negative interactions between translational errors and age-related protein damage together overwhelm the cellular chaperone network. We further show that multiple cellular signalling networks control basal error rates in yeast cells, including a ROS signal controlled by mitochondrial activity, and the Ras pathway. Together, our findings indicate that signalling pathways regulating growth, protein homeostasis and energy metabolism may jointly safeguard accurate protein synthesis during healthy ageing. PMID:28100667
The control of translational accuracy is a determinant of healthy ageing in yeast.
von der Haar, Tobias; Leadsham, Jane E; Sauvadet, Aimie; Tarrant, Daniel; Adam, Ilectra S; Saromi, Kofo; Laun, Peter; Rinnerthaler, Mark; Breitenbach-Koller, Hannelore; Breitenbach, Michael; Tuite, Mick F; Gourlay, Campbell W
2017-01-01
Life requires the maintenance of molecular function in the face of stochastic processes that tend to adversely affect macromolecular integrity. This is particularly relevant during ageing, as many cellular functions decline with age, including growth, mitochondrial function and energy metabolism. Protein synthesis must deliver functional proteins at all times, implying that the effects of protein synthesis errors like amino acid misincorporation and stop-codon read-through must be minimized during ageing. Here we show that loss of translational accuracy accelerates the loss of viability in stationary phase yeast. Since reduced translational accuracy also reduces the folding competence of at least some proteins, we hypothesize that negative interactions between translational errors and age-related protein damage together overwhelm the cellular chaperone network. We further show that multiple cellular signalling networks control basal error rates in yeast cells, including a ROS signal controlled by mitochondrial activity, and the Ras pathway. Together, our findings indicate that signalling pathways regulating growth, protein homeostasis and energy metabolism may jointly safeguard accurate protein synthesis during healthy ageing. © 2017 The Authors.
Dynamics of endoglucanase catalytic domains: implications towards thermostability
USDA-ARS?s Scientific Manuscript database
The function of proteins is controlled by their dynamics inherently determined by their structure. Exploring the protein structure-dynamics relationship is important to develop an understanding of protein function that allows tapping the potential of economically important proteins, such as endogluc...
Functionalizing Microporous Membranes for Protein Purification and Protein Digestion
NASA Astrophysics Data System (ADS)
Dong, Jinlan; Bruening, Merlin L.
2015-07-01
This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.
Functionalizing Microporous Membranes for Protein Purification and Protein Digestion.
Dong, Jinlan; Bruening, Merlin L
2015-01-01
This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.
Surface Sites for Engineering Allosteric Control in Proteins
Lee, Jeeyeon; Natarajan, Madhusudan; Nashine, Vishal C.; Socolich, Michael; Vo, Tina; Russ, William P.; Benkovic, Stephen J.; Ranganathan, Rama
2010-01-01
Statistical analyses of protein families reveal networks of coevolving amino acids that functionally link distantly positioned functional surfaces. Such linkages suggest a concept for engineering allosteric control into proteins: The intramolecular networks of two proteins could be joined across their surface sites such that the activity of one protein might control the activity of the other. We tested this idea by creating PAS-DHFR, a designed chimeric protein that connects a light-sensing signaling domain from a plant member of the Per/Arnt/Sim (PAS) family of proteins with Escherichia coli dihydrofolate reductase (DHFR). With no optimization, PAS-DHFR exhibited light-dependent catalytic activity that depended on the site of connection and on known signaling mechanisms in both proteins. PAS-DHFR serves as a proof of concept for engineering regulatory activities into proteins through interface design at conserved allosteric sites. PMID:18927392
Joshi, Vibhuti; Amanullah, Ayeman; Upadhyay, Arun; Mishra, Ribhav; Kumar, Amit; Mishra, Amit
2016-01-01
Cells regularly synthesize new proteins to replace old and abnormal proteins for normal cellular functions. Two significant protein quality control pathways inside the cellular milieu are ubiquitin proteasome system (UPS) and autophagy. Autophagy is known for bulk clearance of cytoplasmic aggregated proteins, whereas the specificity of protein degradation by UPS comes from E3 ubiquitin ligases. Few E3 ubiquitin ligases, like C-terminus of Hsc70-interacting protein (CHIP) not only take part in protein quality control pathways, but also plays a key regulatory role in other cellular processes like signaling, development, DNA damage repair, immunity and aging. CHIP targets misfolded proteins for their degradation through proteasome, as well as autophagy; simultaneously, with the help of chaperones, it also regulates folding attempts for misfolded proteins. The broad range of CHIP substrates and their associations with multiple pathologies make it a key molecule to work upon and focus for future therapeutic interventions. E3 ubiquitin ligase CHIP interacts and degrades many protein inclusions formed in neurodegenerative diseases. The presence of CHIP at various nodes of cellular protein-protein interaction network presents this molecule as a potential candidate for further research. In this review, we have explored a wide range of functionality of CHIP inside cells by a detailed presentation of its co-chaperone, E3 and E4 enzyme like functions, with central focus on its protein quality control roles in neurodegenerative diseases. We have also raised many unexplored but expected fundamental questions regarding CHIP functions, which generate hopes for its future applications in research, as well as drug discovery. PMID:27757073
McDonald, Shelley R; Porter Starr, Kathryn N; Mauceri, Luisa; Orenduff, Melissa; Granville, Esther; Ocampo, Christine; Payne, Martha E; Pieper, Carl F; Bales, Connie W
2015-01-01
Obese older adults with even modest functional limitations are at a disadvantage for maintaining their independence into late life. However, there is no established intervention for obesity in older individuals. The Measuring Eating, Activity, and Strength: Understanding the Response - Using Protein (MEASUR-UP) trial is a randomized controlled pilot study of obese women and men aged ≥60 years with mild to moderate functional impairments. Changes in body composition (lean and fat mass) and function (Short Physical Performance Battery) in an enhanced protein weight reduction (Protein) arm will be compared to those in a traditional weight loss (Control) arm. The Protein intervention is based on evidence that older adults achieve optimal rates of muscle protein synthesis when consuming about 25-30 g of high quality protein per meal; these participants will consume ~30 g of animal protein at each meal via a combination of provided protein (beef) servings and diet counseling. This trial will provide information on the feasibility and efficacy of enhancing protein quantity and quality in the context of a weight reduction regimen and determine the impact of this intervention on body weight, functional status, and lean muscle mass. We hypothesize that the enhancement of protein quantity and quality in the Protein arm will result in better outcomes for function and/or lean muscle mass than in the Control arm. Ultimately, we hope our findings will help identify a safe weight loss approach that can delay or prevent late life disability by changing the trajectory of age-associated functional impairment associated with obesity. Copyright © 2014 Elsevier Inc. All rights reserved.
Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis
Elsholz, Alexander K. W.; Birk, Marlene S.; Charpentier, Emmanuelle; Turgay, Kürşad
2017-01-01
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics. PMID:28748186
Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis.
Elsholz, Alexander K W; Birk, Marlene S; Charpentier, Emmanuelle; Turgay, Kürşad
2017-01-01
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis . We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.
Remote Control of Gene Function by Local Translation
Jung, Hosung; Gkogkas, Christos G.; Sonenberg, Nahum; Holt, Christine E.
2014-01-01
The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function. PMID:24679524
Triage of oxidation-prone proteins by Sqstm1/p62 within the mitochondria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Minjung; Shin, Jaekyoon, E-mail: jkshin@med.skku.ac.kr
2011-09-16
Highlights: {yields} The mitochondrion contains its own protein quality control system. {yields} p62 localizes within the mitochondria and forms mega-dalton sized complexes. {yields} p62 interacts with oxidation-prone proteins and the proteins of quality control. {yields} In vitro delivery of p62 improves mitochondrial functions. {yields} p62 is implicated as a participant in mitochondrial protein quality control. -- Abstract: As the mitochondrion is vulnerable to oxidative stress, cells have evolved several strategies to maintain mitochondrial integrity, including mitochondrial protein quality control mechanisms and autophagic removal of damaged mitochondria. Involvement of an autophagy adaptor, Sqstm1/p62, in the latter process has been recently described.more » In the present study, we provide evidence that a portion of p62 directly localizes within the mitochondria and supports stable electron transport by forming heterogeneous protein complexes. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of mitochondrial proteins co-purified with p62 revealed that p62 interacts with several oxidation-prone proteins, including a few components of the electron transport chain complexes, as well as multiple chaperone molecules and redox regulatory enzymes. Accordingly, p62-deficient mitochondria exhibited compromised electron transport, and the compromised function was partially restored by in vitro delivery of p62. These results suggest that p62 plays an additional role in maintaining mitochondrial integrity at the vicinity of target machineries through its function in relation to protein quality control.« less
The role of the postsynaptic density in the pathology of the fragile X syndrome.
Kindler, Stefan; Kreienkamp, Hans-Jürgen
2012-01-01
The protein repertoire of excitatory synapses controls dendritic spine morphology, synaptic plasticity and higher brain functions. In brain neurons, the RNA-associated fragile X mental retardation protein (FMRP) binds in vivo to various transcripts encoding key postsynaptic components and may thereby substantially regulate the molecular composition of dendritic spines. In agreement with this notion functional loss of FMRP in patients affected by the fragile X syndrome (FXS) causes cognitive impairment. Here we address our current understanding of the functional role of individual postsynaptic proteins. We discuss how FMRP controls the abundance of select proteins at postsynaptic sites, which signaling pathways regulate the local activity of FMRP at synapses, and how altered levels of postsynaptic proteins may contribute to FXS pathology.
Richter, Chesney K; Skulas-Ray, Ann C; Fleming, Jennifer A; Link, Christina J; Mukherjea, Ratna; Krul, Elaine S; Kris-Etherton, Penny M
2017-05-01
Emerging CVD risk factors (e.g. HDL function and central haemodynamics) may account for residual CVD risk experienced by individuals who meet LDL-cholesterol and blood pressure (BP) targets. Recent evidence suggests that these emerging risk factors can be modified by polyphenol-rich interventions such as soya, but additional research is needed. This study was designed to investigate the effects of an isoflavone-containing soya protein isolate (delivering 25 and 50 g/d soya protein) on HDL function (i.e. ex vivo cholesterol efflux), macrovascular function and blood markers of CVD risk. Middle-aged adults (n 20; mean age=51·6 (sem 6·6) years) with moderately elevated brachial BP (mean systolic BP=129 (sem 9) mmHg; mean diastolic BP=82·5 (sem 8·4) mmHg) consumed 0 (control), 25 and 50 g/d soya protein in a randomised cross-over design. Soya and control powders were consumed for 6 weeks each with a 2-week compliance break between treatment periods. Blood samples and vascular function measures were obtained at baseline and following each supplementation period. Supplementation with 50 g/d soya protein significantly reduced brachial diastolic BP (-2·3 mmHg) compared with 25 g/d soya protein (Tukey-adjusted P=0·03) but not the control. Soya supplementation did not improve ex vivo cholesterol efflux, macrovascular function or other blood markers of CVD risk compared with the carbohydrate-matched control. Additional research is needed to clarify whether effects on these CVD risk factors depend on the relative health of participants and/or equol producing capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu
2005-06-17
Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1more » proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.« less
Li, Yang; Wang, Saiying; Ran, Ke; Hu, Zhonghua; Liu, Zhaoqian; Duan, Kaiming
2015-08-01
The aim of the present study was to investigate the differences in the expression of hippocampal proteins between normal control aged rats and aged rats with postoperative cognitive dysfunction (POCD). A total of 24 aged rats were randomly divided into a surgery group (n=12) and a control group (n=12). The rats in the surgery group were treated with 2 h isoflurane anesthesia and splenectomy, while the rats in the control group received 40% oxygen for 2 h without surgery. The cognitive functions of the two groups were examined using a Y-maze test. The protein expression profiles of the hippocampus of six aged rats (three rats with POCD and three from the normal control group) were assessed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. A total of three differential proteins were further confirmed between the POCD rats and normal rats using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The expression levels of 21 proteins in the rats with POCD were significantly different compared with the normal control rats. These proteins were functionally clustered to synaptic plasticity (three proteins), oxidative stress (four proteins), energy production (six proteins), neuroinflammation (three proteins) and glutamate metabolism (two proteins). In addition, three proteins (fatty acid binding protein 7, brain, glutamate dehydrogenase 1 and glutamine synthetase), associated with astrocytic function, were significantly different in the rats with POCD compared with those in the normal control (P<0.05). Similar changes in the mRNA expression levels of the three proteins in the hippocampi of POCD rats were also detected using RT-qPCR. Neuroinflammation, glutamate toxicity and oxidative stress were possibly involved in the pathological mechanism underlying POCD in aged rats. In addition, astrocytes may also be important in POCD in aged rats.
Cellular Strategies for Regulating Functional and Nonfunctional Protein Aggregation
Gsponer, Jörg; Babu, M. Madan
2012-01-01
Summary Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier’s principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control. PMID:23168257
Qian, Guoliang; Zhou, Yijing; Zhao, Yancun; Song, Zhiwei; Wang, Suyan; Fan, Jiaqin; Hu, Baishi; Venturi, Vittorio; Liu, Fengquan
2013-07-05
Quorum sensing (QS) in Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is mediated by the diffusible signal factor (DSF). DSF-mediating QS has been shown to control virulence and a set of virulence-related functions; however, the expression profiles and functions of extracellular proteins controlled by DSF signal remain largely unclear. In the present study, 33 DSF-regulated extracellular proteins, whose functions include small-protein mediating QS, oxidative adaptation, macromolecule metabolism, cell structure, biosynthesis of small molecules, intermediary metabolism, cellular process, protein catabolism, and hypothetical function, were identified by proteomics in Xoc. Of these, 15 protein encoding genes were in-frame deleted, and 4 of them, including three genes encoding type II secretion system (T2SS)-dependent proteins and one gene encoding an Ax21 (activator of XA21-mediated immunity)-like protein (a novel small-protein type QS signal) were determined to be required for full virulence in Xoc. The contributions of these four genes to important virulence-associated functions, including bacterial colonization, extracellular polysaccharide, cell motility, biofilm formation, and antioxidative ability, are presented. To our knowledge, our analysis is the first complete list of DSF-regulated extracellular proteins and functions in a Xanthomonas species. Our results show that DSF-type QS played critical roles in regulation of T2SS and Ax21-mediating QS, which sheds light on the role of DSF signaling in Xanthomonas.
The Not4 E3 Ligase and CCR4 Deadenylase Play Distinct Roles in Protein Quality Control
Halter, David; Collart, Martine A.; Panasenko, Olesya O.
2014-01-01
Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome. PMID:24465968
Artificially Engineered Protein Polymers.
Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D
2017-06-07
Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.
USDA-ARS?s Scientific Manuscript database
The ubiquitin–proteasome pathway (UPP) plays important roles in many cellular functions, such as protein quality control, cell cycle control, and signal transduction. The selective degradation of aberrant proteins by the UPP is essential for the timely removal of potential cytotoxic damaged or other...
Shaviklo, Gholam Reza; Thorkelsson, Gudjon; Arason, Sigurjon; Kristinsson, Hordur G; Sveinsdottir, Kolbrun
2010-09-01
Fish protein powder (FPP) is used in the food industry for developing formulated food products. This study investigates the feasibility of increasing the value of saithe (Pollachius virens) by producing a functional FPP. Quality attributes of spray and freeze-dried saithe surimi containing lyoprotectants were studied. A freeze-dried saithe surimi without lyoprotectants was also prepared as a control sample. The amount of protein, moisture, fat and carbohydrate in the FPPs were 745-928, 39-58, 21-32 and 10-151 g kg(-1). Quality attributes of FPPs were influenced by the two drying methods and lyoprotectants. The highest level of lipid oxidation was found in the control and the second highest in the spray-dried FPP. The spray-dried fish protein had the lowest viscosity among all FPPs. Gel-forming ability of samples with lyoprotectants was higher than that of the control. Water-binding capacity, emulsion properties and solubility of the freeze-dried fish protein containing lyoprotectants were significantly higher than spray-dried and control samples. However, functional properties of spray-dried FPP were higher than the control sample. It is feasible to develop value-added FPP from saithe surimi using spray- and freeze-drying processes, but freeze-dried FPP containing lyoprotectant had superior functional properties and stability compared with spray-dried sample. Both products might be used as functional protein ingredients in various food systems. Copyright 2010 Society of Chemical Industry.
Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization
Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj
2016-01-01
We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. one chimera consists of a FK506-binding protein (FKBp12) fused to a cellular ‘address’ (nuclear localization signal or nuclear export sequence). the second chimera consists of a target protein fused to a fluorescent protein and the FKBp12-rapamycin-binding (FrB) domain from FKBp-12-rapamycin associated protein 1 (Frap1, also known as mtor). rapamycin induces dimerization of the FKBp12- and FrB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment. PMID:21030958
Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization.
Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj
2010-11-01
We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. One chimera consists of a FK506-binding protein (FKBP12) fused to a cellular 'address' (nuclear localization signal or nuclear export sequence). The second chimera consists of a target protein fused to a fluorescent protein and the FKBP12-rapamycin-binding (FRB) domain from FKBP-12-rapamycin associated protein 1 (FRAP1, also known as mTor). Rapamycin induces dimerization of the FKBP12- and FRB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment.
Environmental proteomics reveals taxonomic and functional changes in an enriched aquatic ecosystem.
Northrop, Amanda C; Brooks, Rachel; Ellison, Aaron M; Gotelli, Nicholas J; Ballif, Bryan A
2017-10-01
Aquatic ecosystem enrichment can lead to distinct and irreversible changes to undesirable states. Understanding changes in active microbial community function and composition following organic-matter loading in enriched ecosystems can help identify biomarkers of such state changes. In a field experiment, we enriched replicate aquatic ecosystems in the pitchers of the northern pitcher plant, Sarracenia purpurea . Shotgun metaproteomics using a custom metagenomic database identified proteins, molecular pathways, and contributing microbial taxa that differentiated control ecosystems from those that were enriched. The number of microbial taxa contributing to protein expression was comparable between treatments; however, taxonomic evenness was higher in controls. Functionally active bacterial composition differed significantly among treatments and was more divergent in control pitchers than enriched pitchers. Aerobic and facultative anaerobic bacteria contributed most to identified proteins in control and enriched ecosystems, respectively. The molecular pathways and contributing taxa in enriched pitcher ecosystems were similar to those found in larger enriched aquatic ecosystems and are consistent with microbial processes occurring at the base of detrital food webs. Detectable differences between protein profiles of enriched and control ecosystems suggest that a time series of environmental proteomics data may identify protein biomarkers of impending state changes to enriched states.
Meena, Ganga Sahay; Singh, Ashish Kumar; Gupta, Vijay Kumar; Borad, Sanket; Arora, Sumit; Tomar, Sudhir Kumar
2018-04-01
Poor solubility is the major limiting factor in commercial applications of milk protein concentrates (MPC) powders. Retentate treatments such as pH adjustment using disodium phosphate (Na 2 HPO 4 ), also responsible for calcium chelation with homogenization and; its diafiltration with 150 mM NaCl solution were hypothesized to improve the functional properties of treated MPC70 powders. These treatments significantly improved the solubility, heat stability, water binding, dispersibility, bulk density, flowability, buffer index, foaming and emulsifying capacity of treated powders over control. Rheological behaviour of reconstituted MPC solutions was best explained by Herschel Bulkley model. Compared to rough, large globular structures with dents in control; majorly intact, separate, smaller particles of smooth surface, without any aggregation were observed in SEM micrograph of treated powders. Applied treatments are easy, cost-effective and capable to improve functional properties of treated powders that could replace control MPC70 powder in various food applications where protein functionality is of prime importance.
Roche, John P.; Alsharif, Peter; Graf, Ethan R.
2015-01-01
At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function. PMID:26317909
Protein Bricks: 2D and 3D Bio-Nanostructures with Shape and Function on Demand.
Jiang, Jianjuan; Zhang, Shaoqing; Qian, Zhigang; Qin, Nan; Song, Wenwen; Sun, Long; Zhou, Zhitao; Shi, Zhifeng; Chen, Liang; Li, Xinxin; Mao, Ying; Kaplan, David L; Gilbert Corder, Stephanie N; Chen, Xinzhong; Liu, Mengkun; Omenetto, Fiorenzo G; Xia, Xiaoxia; Tao, Tiger H
2018-05-01
Precise patterning of polymer-based biomaterials for functional bio-nanostructures has extensive applications including biosensing, tissue engineering, and regenerative medicine. Remarkable progress is made in both top-down (based on lithographic methods) and bottom-up (via self-assembly) approaches with natural and synthetic biopolymers. However, most methods only yield 2D and pseudo-3D structures with restricted geometries and functionalities. Here, it is reported that precise nanostructuring on genetically engineered spider silk by accurately directing ion and electron beam interactions with the protein's matrix at the nanoscale to create well-defined 2D bionanopatterns and further assemble 3D bionanoarchitectures with shape and function on demand, termed "Protein Bricks." The added control over protein sequence and molecular weight of recombinant spider silk via genetic engineering provides unprecedented lithographic resolution (approaching the molecular limit), sharpness, and biological functions compared to natural proteins. This approach provides a facile method for patterning and immobilizing functional molecules within nanoscopic, hierarchical protein structures, which sheds light on a wide range of biomedical applications such as structure-enhanced fluorescence and biomimetic microenvironments for controlling cell fate. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of functional redundancies within the Arabidopsis TCP transcription factor family.
Danisman, Selahattin; van Dijk, Aalt D J; Bimbo, Andrea; van der Wal, Froukje; Hennig, Lars; de Folter, Stefan; Angenent, Gerco C; Immink, Richard G H
2013-12-01
Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by genetic analysis. In the TCP family, however, identification is impeded by relatively low overall sequence similarity. In a search for functionally redundant TCP pairs that control Arabidopsis leaf development, this work performed an integrative bioinformatics analysis, combining protein sequence similarities, gene expression data, and results of pair-wise protein-protein interaction studies for the 24 members of the Arabidopsis TCP transcription factor family. For this, the work completed any lacking gene expression and protein-protein interaction data experimentally and then performed a comprehensive prediction of potential functional redundant TCP pairs. Subsequently, redundant functions could be confirmed for selected predicted TCP pairs by genetic and molecular analyses. It is demonstrated that the previously uncharacterized class I TCP19 gene plays a role in the control of leaf senescence in a redundant fashion with TCP20. Altogether, this work shows the power of combining classical genetic and molecular approaches with bioinformatics predictions to unravel functional redundancies in the TCP transcription factor family.
Membrane curvature and its generation by BAR proteins
Mim, Carsten; Unger, Vinzenz M
2012-01-01
Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the bin/amphiphysin/rvs domain (BAR) proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR-domain proteins sense, stabilize and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent. PMID:23058040
Ihara, Shinji; Nakayama, Sohei; Murakami, Yoshiko; Suzuki, Emiko; Asakawa, Masayo; Kinoshita, Taroh; Sawa, Hitoshi
2017-02-01
Quality control of proteins in the endoplasmic reticulum (ER) is essential for ensuring the integrity of secretory proteins before their release into the extracellular space. Secretory proteins that fail to pass quality control form aggregates. Here we show the PIGN-1/PIGN is required for quality control in Caenorhabditis elegans and in mammalian cells. In C. elegans pign-1 mutants, several proteins fail to be secreted and instead form abnormal aggregation. PIGN-knockout HEK293 cells also showed similar protein aggregation. Although PIGN-1/PIGN is responsible for glycosylphosphatidylinositol (GPI)-anchor biosynthesis in the ER, certain mutations in C. elegans pign-1 caused protein aggregation in the ER without affecting GPI-anchor biosynthesis. These results show that PIGN-1/PIGN has a conserved and non-canonical function to prevent deleterious protein aggregation in the ER independently of the GPI-anchor biosynthesis. PIGN is a causative gene for some human diseases including multiple congenital seizure-related syndrome (MCAHS1). Two pign-1 mutations created by CRISPR/Cas9 that correspond to MCAHS1 also cause protein aggregation in the ER, implying that the dysfunction of the PIGN non-canonical function might affect symptoms of MCAHS1 and potentially those of other diseases. © 2017. Published by The Company of Biologists Ltd.
Asterless is required for centriole length control and sperm development
Galletta, Brian J.; Jacobs, Katherine C.; Fagerstrom, Carey J.
2016-01-01
Centrioles are the foundation of two organelles, centrosomes and cilia. Centriole numbers and functions are tightly controlled, and mutations in centriole proteins are linked to a variety of diseases, including microcephaly. Loss of the centriole protein Asterless (Asl), the Drosophila melanogaster orthologue of Cep152, prevents centriole duplication, which has limited the study of its nonduplication functions. Here, we identify populations of cells with Asl-free centrioles in developing Drosophila tissues, allowing us to assess its duplication-independent function. We show a role for Asl in controlling centriole length in germline and somatic tissue, functioning via the centriole protein Cep97. We also find that Asl is not essential for pericentriolar material recruitment or centrosome function in organizing mitotic spindles. Lastly, we show that Asl is required for proper basal body function and spermatid axoneme formation. Insights into the role of Asl/Cep152 beyond centriole duplication could help shed light on how Cep152 mutations lead to the development of microcephaly. PMID:27185836
Allostery in the ferredoxin protein motif does not involve a conformational switch.
Nechushtai, Rachel; Lammert, Heiko; Michaeli, Dorit; Eisenberg-Domovich, Yael; Zuris, John A; Luca, Maria A; Capraro, Dominique T; Fish, Alex; Shimshon, Odelia; Roy, Melinda; Schug, Alexander; Whitford, Paul C; Livnah, Oded; Onuchic, José N; Jennings, Patricia A
2011-02-08
Regulation of protein function via cracking, or local unfolding and refolding of substructures, is becoming a widely recognized mechanism of functional control. Oftentimes, cracking events are localized to secondary and tertiary structure interactions between domains that control the optimal position for catalysis and/or the formation of protein complexes. Small changes in free energy associated with ligand binding, phosphorylation, etc., can tip the balance and provide a regulatory functional switch. However, understanding the factors controlling function in single-domain proteins is still a significant challenge to structural biologists. We investigated the functional landscape of a single-domain plant-type ferredoxin protein and the effect of a distal loop on the electron-transfer center. We find the global stability and structure are minimally perturbed with mutation, whereas the functional properties are altered. Specifically, truncating the L1,2 loop does not lead to large-scale changes in the structure, determined via X-ray crystallography. Further, the overall thermal stability of the protein is only marginally perturbed by the mutation. However, even though the mutation is distal to the iron-sulfur cluster (∼20 Å), it leads to a significant change in the redox potential of the iron-sulfur cluster (57 mV). Structure-based all-atom simulations indicate correlated dynamical changes between the surface-exposed loop and the iron-sulfur cluster-binding region. Our results suggest intrinsic communication channels within the ferredoxin fold, composed of many short-range interactions, lead to the propagation of long-range signals. Accordingly, protein interface interactions that involve L1,2 could potentially signal functional changes in distal regions, similar to what is observed in other allosteric systems.
Insights into Hox protein function from a large scale combinatorial analysis of protein domains.
Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine
2011-10-01
Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.
Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains
Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K.; Perrin, Laurent; Pradel, Jacques; Graba, Yacine
2011-01-01
Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences. PMID:22046139
Yeast prions are useful for studying protein chaperones and protein quality control.
Masison, Daniel C; Reidy, Michael
2015-01-01
Protein chaperones help proteins adopt and maintain native conformations and play vital roles in cellular processes where proteins are partially folded. They comprise a major part of the cellular protein quality control system that protects the integrity of the proteome. Many disorders are caused when proteins misfold despite this protection. Yeast prions are fibrous amyloid aggregates of misfolded proteins. The normal action of chaperones on yeast prions breaks the fibers into pieces, which results in prion replication. Because this process is necessary for propagation of yeast prions, even small differences in activity of many chaperones noticeably affect prion phenotypes. Several other factors involved in protein processing also influence formation, propagation or elimination of prions in yeast. Thus, in much the same way that the dependency of viruses on cellular functions has allowed us to learn much about cell biology, the dependency of yeast prions on chaperones presents a unique and sensitive way to monitor the functions and interactions of many components of the cell's protein quality control system. Our recent work illustrates the utility of this system for identifying and defining chaperone machinery interactions.
Reversible Immobilization of Proteins in Sensors and Solid-State Nanopores.
Ananth, Adithya; Genua, María; Aissaoui, Nesrine; Díaz, Leire; Eisele, Nico B; Frey, Steffen; Dekker, Cees; Richter, Ralf P; Görlich, Dirk
2018-05-01
The controlled functionalization of surfaces with proteins is crucial for many analytical methods in life science research and biomedical applications. Here, a coating for silica-based surfaces is established which enables stable and selective immobilization of proteins with controlled orientation and tunable surface density. The coating is reusable, retains functionality upon long-term storage in air, and is applicable to surfaces of complex geometry. The protein anchoring method is validated on planar surfaces, and then a method is developed to measure the anchoring process in real time using silicon nitride solid-state nanopores. For surface attachment, polyhistidine tags that are site specifically introduced into recombinant proteins are exploited, and the yeast nucleoporin Nsp1 is used as model protein. Contrary to the commonly used covalent thiol chemistry, the anchoring of proteins via polyhistidine tag is reversible, permitting to take proteins off and replace them by other ones. Such switching in real time in experiments on individual nanopores is monitored using ion conductivity. Finally, it is demonstrated that silica and gold surfaces can be orthogonally functionalized to accommodate polyhistidine-tagged proteins on silica but prevent protein binding to gold, which extends the applicability of this surface functionalization method to even more complex sensor devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single proteins that serve linked functions in intracellular and extracellular microenvironments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radisky, Derek C.; Stallings-Mann, Melody; Hirai, Yohei
2009-06-03
Maintenance of organ homeostasis and control of appropriate response to environmental alterations requires intimate coordination of cellular function and tissue organization. An important component of this coordination may be provided by proteins that can serve distinct, but linked, functions on both sides of the plasma membrane. Here we present a novel hypothesis in which non-classical secretion can provide a mechanism through which single proteins can integrate complex tissue functions. Single genes can exert a complex, dynamic influence through a number of different processes that act to multiply the function of the gene product(s). Alternative splicing can create many different transcriptsmore » that encode proteins of diverse, even antagonistic, function from a single gene. Posttranslational modifications can alter the stability, activity, localization, and even basic function of proteins. A protein can exist in different subcellular localizations. More recently, it has become clear that single proteins can function both inside and outside the cell. These proteins often lack defined secretory signal sequences, and transit the plasma membrane by mechanisms separate from the classical ER/Golgi secretory process. When examples of such proteins are examined individually, the multifunctionality and lack of a signal sequence are puzzling - why should a protein with a well known function in one context function in such a distinct fashion in another? We propose that one reason for a single protein to perform intracellular and extracellular roles is to coordinate organization and maintenance of a global tissue function. Here, we describe in detail three specific examples of proteins that act in this fashion, outlining their specific functions in the extracellular space and in the intracellular space, and we discuss how these functions may be linked. We present epimorphin/syntaxin-2, which may coordinate morphogenesis of secretory organs (as epimorphin) with control of protein secretion (as syntaxin-2), amphoterin/high mobility group box-1 (HMGB1), which may link inflammation (as amphoterin) with regulation of gene expression (as HMGB1), and tissue transglutaminase, which affects delivery of and response to apoptotic signals by serving a related function on both sides of the plasma membrane. As it is notable that all three of these proteins have been reported to transit the plasma membrane through non-classical secretory mechanisms, we will also discuss why coordinated inside/outside functions may be found in some examples of proteins which transit the plasma membrane through non-classical mechanisms and how this relationship can be used to identify additional proteins that share these characteristics.« less
Wicky, Sidonie; Tjandra, Hendri; Schieltz, David; Yates, John; Kellogg, Douglas R.
2011-01-01
The Wee1 kinase restrains entry into mitosis by phosphorylating and inhibiting cyclin-dependent kinase 1 (Cdk1). The Cdc25 phosphatase promotes entry into mitosis by removing Cdk1 inhibitory phosphorylation. Experiments in diverse systems have established that Wee1 and Cdc25 are regulated by protein phosphatase 2A (PP2A), but a full understanding of the function and regulation of PP2A in entry into mitosis has remained elusive. In budding yeast, entry into mitosis is controlled by a specific form of PP2A that is associated with the Cdc55 regulatory subunit (PP2ACdc55). We show here that related proteins called Zds1 and Zds2 form a tight stoichiometric complex with PP2ACdc55 and target its activity to Cdc25 but not to Wee1. Conditional inactivation of the Zds proteins revealed that their function is required primarily at entry into mitosis. In addition, Zds1 undergoes cell cycle–dependent changes in phosphorylation. Together, these observations define a role for the Zds proteins in controlling specific functions of PP2ACdc55 and suggest that upstream signals that regulate PP2ACdc55 may play an important role in controlling entry into mitosis. PMID:21119008
Wicky, Sidonie; Tjandra, Hendri; Schieltz, David; Yates, John; Kellogg, Douglas R
2011-01-01
The Wee1 kinase restrains entry into mitosis by phosphorylating and inhibiting cyclin-dependent kinase 1 (Cdk1). The Cdc25 phosphatase promotes entry into mitosis by removing Cdk1 inhibitory phosphorylation. Experiments in diverse systems have established that Wee1 and Cdc25 are regulated by protein phosphatase 2A (PP2A), but a full understanding of the function and regulation of PP2A in entry into mitosis has remained elusive. In budding yeast, entry into mitosis is controlled by a specific form of PP2A that is associated with the Cdc55 regulatory subunit (PP2A(Cdc55)). We show here that related proteins called Zds1 and Zds2 form a tight stoichiometric complex with PP2A(Cdc55) and target its activity to Cdc25 but not to Wee1. Conditional inactivation of the Zds proteins revealed that their function is required primarily at entry into mitosis. In addition, Zds1 undergoes cell cycle-dependent changes in phosphorylation. Together, these observations define a role for the Zds proteins in controlling specific functions of PP2A(Cdc55) and suggest that upstream signals that regulate PP2A(Cdc55) may play an important role in controlling entry into mitosis.
Engineered control of enzyme structural dynamics and function.
Boehr, David D; D'Amico, Rebecca N; O'Rourke, Kathleen F
2018-04-01
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine. © 2018 The Protein Society.
Co-transcriptional nuclear actin dynamics
Percipalle, Piergiorgio
2013-01-01
Actin is a key player for nuclear structure and function regulating both chromosome organization and gene activity. In the cell nucleus actin interacts with many different proteins. Among these proteins several studies have identified classical nuclear factors involved in chromatin structure and function, transcription and RNA processing as well as proteins that are normally involved in controlling the actin cytoskeleton. These discoveries have raised the possibility that nuclear actin performs its multi task activities through tight interactions with different sets of proteins. This high degree of promiscuity in the spectrum of protein-to-protein interactions correlates well with the conformational plasticity of actin and the ability to undergo regulated changes in its polymerization states. Several of the factors involved in controlling head-to-tail actin polymerization have been shown to be in the nucleus where they seem to regulate gene activity. By focusing on the multiple tasks performed by actin and actin-binding proteins, possible models of how actin dynamics controls the different phases of the RNA polymerase II transcription cycle are being identified. PMID:23138849
Controlling allosteric networks in proteins
NASA Astrophysics Data System (ADS)
Dokholyan, Nikolay
2013-03-01
We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.
Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Yeongseon; Choi, Won Tae; Heller, William T.
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less
Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins
Jang, Yeongseon; Choi, Won Tae; Heller, William T.; ...
2017-07-27
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less
Adsorption and conformations of lysozyme and α-lactalbumin at a water-octane interface
NASA Astrophysics Data System (ADS)
Cheung, David L.
2017-11-01
As proteins contain both hydrophobic and hydrophilic amino acids, they will readily adsorb onto interfaces between water and hydrophobic fluids such as oil. This adsorption normally causes changes in the protein structure, which can result in loss of protein function and irreversible adsorption, leading to the formation of protein interfacial films. While this can be advantageous in some applications (e.g., food technology), in most cases it limits our ability to exploit protein functionality at interfaces. To understand and control protein interfacial adsorption and function, it is necessary to understand the microscopic conformation of proteins at liquid interfaces. In this paper, molecular dynamics simulations are used to investigate the adsorption and conformation of two similar proteins, lysozyme and α-lactalbumin, at a water-octane interface. While they both adsorb onto the interface, α-lactalbumin does so in a specific orientation, mediated by two amphipathic helices, while lysozyme adsorbs in a non-specific manner. Using replica exchange simulations, both proteins are found to possess a number of distinct interfacial conformations, with compact states similar to the solution conformation being most common for both proteins. Decomposing the different contributions to the protein energy at oil-water interfaces suggests that conformational change for α-lactalbumin, unlike lysozyme, is driven by favourable protein-oil interactions. Revealing these differences between the factors that govern the conformational change at interfaces in otherwise similar proteins can give insight into the control of protein interfacial adsorption, aggregation, and function.
Control of DNA replication: a new facet of Hox proteins?
Miotto, Benoit; Graba, Yacine
2010-09-01
Hox proteins are well-known as developmental transcription factors controlling cell and tissue identity, but recent findings suggest that they are also part of the cell replication machinery. Hox-mediated control of transcription and replication may ensure coordinated control of cell growth and differentiation, two processes that need to be tightly and precisely coordinated to allow proper organ formation and patterning. In this review we summarize the available data linking Hox proteins to the replication machinery and discuss the developmental and pathological implications of this new facet of Hox protein function.
The Physiology of Protein S-acylation
Chamberlain, Luke H.; Shipston, Michael J.
2015-01-01
Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field. PMID:25834228
Tai, Hulin; Mikami, Shin-ichi; Irie, Kiyofumi; Watanabe, Naoki; Shinohara, Naoya; Yamamoto, Yasuhiko
2010-01-12
In Hydrogenobacter thermophilus cytochrome c(552), an electrostatic interaction between Lys8 and Glu68 in the N- and C-terminal helices, respectively, stabilizes its protein structure [Travaglini-Allocatelli, C., Gianni, S., Dubey, V. K., Borgia, A., Di Matteo, A., Bonivento, D., Cutruzzola, F., Bren, K. L., and Brunori, M. (2005) J. Biol. Chem. 280, 25729-25734], this electrostatic interaction being a highly conserved structural feature of the cytochrome c family. In the present study, the functional consequences of removal of the interaction through replacement of Lys8 by Ala have been investigated in order to elucidate the molecular mechanisms responsible for functional control of the protein. The mutation resulted in a decrease in protein stability, as reflected in lowering of the denaturation temperature by approximately 2-9 degrees C, and a negative shift by approximately 8 mV of the redox potential (E(m)) of the protein. The decrease in the protein stability was attributed to the enthalpic loss due to the removal of the intramolecular interaction. The negative shift of the E(m) value was shown to be due to the effect of the mutation on the entropic contribution to the E(m) value. The small, but subtle, effects of removal of the conserved electrostatic interaction, occurring at approximately 1.4 nm away from heme iron, on the thermodynamic properties of the protein demonstrated not only that the interaction is important for maintaining the functional properties of the protein but also that amino acid residues relatively remote from the heme active site play sizable roles in functional control of the protein.
Random heteropolymers preserve protein function in foreign environments
NASA Astrophysics Data System (ADS)
Panganiban, Brian; Qiao, Baofu; Jiang, Tao; DelRe, Christopher; Obadia, Mona M.; Nguyen, Trung Dac; Smith, Anton A. A.; Hall, Aaron; Sit, Izaac; Crosby, Marquise G.; Dennis, Patrick B.; Drockenmuller, Eric; Olvera de la Cruz, Monica; Xu, Ting
2018-03-01
The successful incorporation of active proteins into synthetic polymers could lead to a new class of materials with functions found only in living systems. However, proteins rarely function under the conditions suitable for polymer processing. On the basis of an analysis of trends in protein sequences and characteristic chemical patterns on protein surfaces, we designed four-monomer random heteropolymers to mimic intrinsically disordered proteins for protein solubilization and stabilization in non-native environments. The heteropolymers, with optimized composition and statistical monomer distribution, enable cell-free synthesis of membrane proteins with proper protein folding for transport and enzyme-containing plastics for toxin bioremediation. Controlling the statistical monomer distribution in a heteropolymer, rather than the specific monomer sequence, affords a new strategy to interface with biological systems for protein-based biomaterials.
Structural Elements Regulating AAA+ Protein Quality Control Machines.
Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F
2017-01-01
Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.
Agarwal, Pratul K.
2015-11-24
A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.
Agarwal, Pratul K.
2013-04-09
A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.
Sequential Release of Proteins from Structured Multishell Microcapsules.
Shimanovich, Ulyana; Michaels, Thomas C T; De Genst, Erwin; Matak-Vinkovic, Dijana; Dobson, Christopher M; Knowles, Tuomas P J
2017-10-09
In nature, a wide range of functional materials is based on proteins. Increasing attention is also turning to the use of proteins as artificial biomaterials in the form of films, gels, particles, and fibrils that offer great potential for applications in areas ranging from molecular medicine to materials science. To date, however, most such applications have been limited to single component materials despite the fact that their natural analogues are composed of multiple types of proteins with a variety of functionalities that are coassembled in a highly organized manner on the micrometer scale, a process that is currently challenging to achieve in the laboratory. Here, we demonstrate the fabrication of multicomponent protein microcapsules where the different components are positioned in a controlled manner. We use molecular self-assembly to generate multicomponent structures on the nanometer scale and droplet microfluidics to bring together the different components on the micrometer scale. Using this approach, we synthesize a wide range of multiprotein microcapsules containing three well-characterized proteins: glucagon, insulin, and lysozyme. The localization of each protein component in multishell microcapsules has been detected by labeling protein molecules with different fluorophores, and the final three-dimensional microcapsule structure has been resolved by using confocal microscopy together with image analysis techniques. In addition, we show that these structures can be used to tailor the release of such functional proteins in a sequential manner. Moreover, our observations demonstrate that the protein release mechanism from multishell capsules is driven by the kinetic control of mass transport of the cargo and by the dissolution of the shells. The ability to generate artificial materials that incorporate a variety of different proteins with distinct functionalities increases the breadth of the potential applications of artificial protein-based materials and provides opportunities to design more refined functional protein delivery systems.
Protein quality control in organelles - AAA/FtsH story.
Janska, Hanna; Kwasniak, Malgorzata; Szczepanowska, Joanna
2013-02-01
This review focuses on organellar AAA/FtsH proteases, whose proteolytic and chaperone-like activity is a crucial component of the protein quality control systems of mitochondrial and chloroplast membranes. We compare the AAA/FtsH proteases from yeast, mammals and plants. The nature of the complexes formed by AAA/FtsH proteases and the current view on their involvement in degradation of non-native organellar proteins or assembly of membrane complexes are discussed. Additional functions of AAA proteases not directly connected with protein quality control found in yeast and mammals but not yet in plants are also described shortly. Following an overview of the molecular functions of the AAA/FtsH proteases we discuss physiological consequences of their inactivation in yeast, mammals and plants. The molecular basis of phenotypes associated with inactivation of the AAA/FtsH proteases is not fully understood yet, with the notable exception of those observed in m-AAA protease-deficient yeast cells, which are caused by impaired maturation of mitochondrial ribosomal protein. Finally, examples of cytosolic events affecting protein quality control in mitochondria and chloroplasts are given. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.
Moon, Clara; Stupp, Gregory S; Su, Andrew I; Wolan, Dennis W
2018-02-01
Metaproteomics can greatly assist established high-throughput sequencing methodologies to provide systems biological insights into the alterations of microbial protein functionalities correlated with disease-associated dysbiosis of the intestinal microbiota. Here, the authors utilize the well-characterized murine T cell transfer model of colitis to find specific changes within the intestinal luminal proteome associated with inflammation. MS proteomic analysis of colonic samples permitted the identification of ≈10 000-12 000 unique peptides that corresponded to 5610 protein clusters identified across three groups, including the colitic Rag1 -/- T cell recipients, isogenic Rag1 -/- controls, and wild-type mice. The authors demonstrate that the colitic mice exhibited a significant increase in Proteobacteria and Verrucomicrobia and show that such alterations in the microbial communities contributed to the enrichment of specific proteins with transcription and translation gene ontology terms. In combination with 16S sequencing, the authors' metaproteomics-based microbiome studies provide a foundation for assessing alterations in intestinal luminal protein functionalities in a robust and well-characterized mouse model of colitis, and set the stage for future studies to further explore the functional mechanisms of altered protein functionalities associated with dysbiosis and inflammation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The flavivirus capsid protein: Structure, function and perspectives towards drug design.
Oliveira, Edson R A; Mohana-Borges, Ronaldo; de Alencastro, Ricardo B; Horta, Bruno A C
2017-01-02
Flaviviruses, such as dengue and zika viruses, are etiologic agents transmitted to humans mainly by arthropods and are of great epidemiological interest. The flavivirus capsid protein is a structural element required for the viral nucleocapsid assembly that presents the classical function of sheltering the viral genome. After decades of research, many reports have shown its different functionalities and influence over cell normal functioning. The subcellular distribution of this protein, which involves accumulation around lipid droplets and nuclear localization, also corroborates with its multi-functional characteristic. As flavivirus diseases are still in need of global control and in view of the possible key functionalities that the capsid protein promotes over flavivirus biology, novel considerations arise towards anti-flavivirus drug research. This review covers the main aspects concerning structural and functional features of the flavivirus C protein, ultimately, highlighting prospects in drug discovery based on this viral target. Copyright © 2016 Elsevier B.V. All rights reserved.
Controlled release and intracellular protein delivery from mesoporous silica nanoparticles.
Deodhar, Gauri V; Adams, Marisa L; Trewyn, Brian G
2017-01-01
Protein therapeutics are promising candidates for disease treatment due to their high specificity and minimal adverse side effects; however, targeted protein delivery to specific sites has proven challenging. Mesoporous silica nanoparticles (MSN) have demonstrated to be ideal candidates for this application, given their high loading capacity, biocompatibility, and ability to protect host molecules from degradation. These materials exhibit tunable pore sizes, shapes and volumes, and surfaces which can be easily functionalized. This serves to control the movement of molecules in and out of the pores, thus entrapping guest molecules until a specific stimulus triggers release. In this review, we will cover the benefits of using MSN as protein therapeutic carriers, demonstrating that there is great diversity in the ways MSN can be used to service proteins. Methods for controlling the physical dimensions of pores via synthetic conditions, applications of therapeutic protein loaded MSN materials in cancer therapies, delivering protein loaded MSN materials to plant cells using biolistic methods, and common stimuli-responsive functionalities will be discussed. New and exciting strategies for controlled release and manipulation of proteins are also covered in this review. While research in this area has advanced substantially, we conclude this review with future challenges to be tackled by the scientific community. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conditional fast expression and function of multimeric TRPV5 channels using Shield-1.
Schoeber, Joost P H; van de Graaf, Stan F J; Lee, Kyu Pil; Wittgen, Hanneke G M; Hoenderop, Joost G J; Bindels, René J M
2009-01-01
A recently described novel controllable method to regulate protein expression is based on a mutated FK506-binding protein-12 (mtFKBP) that is unstable and rapidly degraded in mammalian cells. This instability can be conferred to other proteins directly fused to mtFKBP. Binding of a synthetic cell-permeant ligand (Shield-1) to mtFKBP reverses the instability, allowing conditional expression of mtFKBP-fused proteins. We adapted this strategy to study multimeric plasma membrane proteins using the ion channel TRPV5 as model protein. mtFKBP-TRPV5 forms functional ion channels and its expression can be controlled in a time- and dose-dependent fashion using Shield-1. Moreover, in the presence of Shield-1, mtFKBP-TRPV5 formed heteromultimeric channels with untagged TRPV5, which were codegraded upon washout of Shield-1, providing a strategy to study multimeric plasma membrane protein complexes without the need to destabilize all individual subunits.
Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan
2017-06-07
Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.
A decade and a half of protein intrinsic disorder: Biology still waits for physics
Uversky, Vladimir N
2013-01-01
The abundant existence of proteins and regions that possess specific functions without being uniquely folded into unique 3D structures has become accepted by a significant number of protein scientists. Sequences of these intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are characterized by a number of specific features, such as low overall hydrophobicity and high net charge which makes these proteins predictable. IDPs/IDPRs possess large hydrodynamic volumes, low contents of ordered secondary structure, and are characterized by high structural heterogeneity. They are very flexible, but some may undergo disorder to order transitions in the presence of natural ligands. The degree of these structural rearrangements varies over a very wide range. IDPs/IDPRs are tightly controlled under the normal conditions and have numerous specific functions that complement functions of ordered proteins and domains. When lacking proper control, they have multiple roles in pathogenesis of various human diseases. Gaining structural and functional information about these proteins is a challenge, since they do not typically “freeze” while their “pictures are taken.” However, despite or perhaps because of the experimental challenges, these fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting targets for modern protein research. This review briefly summarizes some of the recent advances in this exciting field and considers some of the basic lessons learned from the analysis of physics, chemistry, and biology of IDPs. PMID:23553817
Sphingomyelin metabolism controls the shape and function of the Golgi cisternae
Campelo, Felix; van Galen, Josse; Turacchio, Gabriele; Parashuraman, Seetharaman; Kozlov, Michael M; García-Parajo, María F; Malhotra, Vivek
2017-01-01
The flat Golgi cisterna is a highly conserved feature of eukaryotic cells, but how is this morphology achieved and is it related to its function in cargo sorting and export? A physical model of cisterna morphology led us to propose that sphingomyelin (SM) metabolism at the trans-Golgi membranes in mammalian cells essentially controls the structural features of a Golgi cisterna by regulating its association to curvature-generating proteins. An experimental test of this hypothesis revealed that affecting SM homeostasis converted flat cisternae into highly curled membranes with a concomitant dissociation of membrane curvature-generating proteins. These data lend support to our hypothesis that SM metabolism controls the structural organization of a Golgi cisterna. Together with our previously presented role of SM in controlling the location of proteins involved in glycosylation and vesicle formation, our data reveal the significance of SM metabolism in the structural organization and function of Golgi cisternae. DOI: http://dx.doi.org/10.7554/eLife.24603.001 PMID:28500756
Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.
An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao
2017-07-25
Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.
Expression of LRRC8/VRAC Currents in Xenopus Oocytes: Advantages and Caveats.
Gaitán-Peñas, Héctor; Pusch, Michael; Estévez, Raúl
2018-03-02
Volume-regulated anion channels (VRACs) play a role in controlling cell volume by opening upon cell swelling. Apart from controlling cell volume, their function is important in many other physiological processes, such as transport of metabolites or drugs, and extracellular signal transduction. VRACs are formed by heteromers of the pannexin homologous protein LRRC8A (also named Swell1) with other LRRC8 members (B, C, D, and E). LRRC8 proteins are difficult to study, since they are expressed in all cells of our body, and the channel stoichiometry can be changed by overexpression, resulting in non-functional heteromers. Two different strategies have been developed to overcome this issue: complementation by transient transfection of LRRC8 genome-edited cell lines, and reconstitution in lipid bilayers. Alternatively, we have used Xenopus oocytes as a simple system to study LRRC8 proteins. Here, we have reviewed all previous experiments that have been performed with VRAC and LRRC8 proteins in Xenopus oocytes. We also discuss future strategies that may be used to perform structure-function analysis of the VRAC in oocytes and other systems, in order to understand its role in controlling multiple physiological functions.
Expression of regulatory proteins in choroid plexus changes in early stages of Alzheimer disease.
Krzyzanowska, Agnieszka; García-Consuegra, Inés; Pascual, Consuelo; Antequera, Desiree; Ferrer, Isidro; Carro, Eva
2015-04-01
Recent studies indicate that the choroid plexus has important physiologic and pathologic roles in Alzheimer disease (AD). To obtain additional insight on choroid plexus function, we performed a proteomic analysis of choroid plexus samples from patients with AD stages I to II (n = 16), III to IV (n = 16), and V to VI (n = 11) and 7 age-matched control subjects. We used 2-dimensional differential gel electrophoresis coupled with mass spectrometry to generate a complete picture of changes in choroid plexus protein expression occurring in AD patients. We identified 6 proteins: 14-3-3 β/α, 14-3-3 ε, moesin, proteasome activator complex subunit 1, annexin V, and aldehyde dehydrogenase, which were significantly regulated in AD patient samples (p < 0.05, >1.5-fold variation in expression vs control samples). These proteins are implicated in major physiologic functions including mitochondrial dysfunction and apoptosis regulation. These findings contribute additional significance to the emerging importance of molecular and functional changes of choroid plexus function in the pathophysiology of AD.
Drosophila COP9 signalosome subunit 7 interacts with multiple genomic loci to regulate development
Singer, Ruth; Atar, Shimshi; Atias, Osnat; Oron, Efrat; Segal, Daniel; Hirsch, Joel A.; Tuller, Tamir; Orian, Amir; Chamovitz, Daniel A.
2014-01-01
The COP9 signalosome protein complex has a central role in the regulation of development of multicellular organisms. While the function of this complex in ubiquitin-mediated protein degradation is well established, results over the past few years have hinted that the COP9 signalosome may function more broadly in the regulation of gene expression. Here, using DamID technology, we show that COP9 signalosome subunit 7 functionally associates with a large number of genomic loci in the Drosophila genome, and show that the expression of many genes within these loci is COP9 signalosome-dependent. This association is likely direct as we show CSN7 binds DNA in vitro. The genes targeted by CSN7 are preferentially enriched for transcriptionally active regions of the genome, and are involved in the regulation of distinct gene ontology groupings including imaginal disc development and cell-cycle control. In accord, loss of CSN7 function leads to cell-cycle delay and altered wing development. These results indicate that CSN7, and by extension the entire COP9 signalosome, functions directly in transcriptional control. While the COP9 signalosome protein complex has long been known to regulate protein degradation, here we expand the role of this complex by showing that subunit 7 binds DNA in vitro and functions directly in vivo in transcriptional control of developmentally important pathways that are relevant for human health. PMID:25106867
Rojas-Rivera, D; Armisén, R; Colombo, A; Martínez, G; Eguiguren, A L; Díaz, A; Kiviluoto, S; Rodríguez, D; Patron, M; Rizzuto, R; Bultynck, G; Concha, M L; Sierralta, J; Stutzin, A; Hetz, C
2012-01-01
Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane. PMID:22240901
Rojas-Rivera, D; Armisén, R; Colombo, A; Martínez, G; Eguiguren, A L; Díaz, A; Kiviluoto, S; Rodríguez, D; Patron, M; Rizzuto, R; Bultynck, G; Concha, M L; Sierralta, J; Stutzin, A; Hetz, C
2012-06-01
Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane.
Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control
Strobbe, Daniela; Robinson, Alexis A.; Harvey, Kirsten; Rossi, Lara; Ferraina, Caterina; de Biase, Valerio; Rodolfo, Carlo; Harvey, Robert J.; Campanella, Michelangelo
2018-01-01
The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson’s disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein–protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6). Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis. PMID:29599708
Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates.
Hall, Felicia G; Jones, Owen G; O'Haire, Marguerite E; Liceaga, Andrea M
2017-06-01
Recently, the benefits of entomophagy have been widely discussed. Due to western cultures' reluctance, entomophagy practices are leaning more towards incorporating insects into food products. In this study, whole crickets (Gryllodes sigillatus) were hydrolyzed with alcalase at 0.5, 1.5, and 3.0% (w/w) for 30, 60, and 90min. Degree of hydrolysis (DH), amino acid composition, solubility, emulsion and foaming properties were evaluated. Hydrolysis produced peptides with 26-52% DH compared to the control containing no enzyme (5% DH). Protein solubility of hydrolysates improved (p<0.05) over a range of pH's, exhibiting >30% soluble protein at pH 3 and 7 and 50-90% at alkaline pH, compared with the control. Emulsion activity index ranged from 7 to 32m 2 /g, while foamability ranged from 100 to 155% for all hydrolysates. These improved functional properties demonstrate the potential to develop cricket protein hydrolysates as a source of functional alternative protein in food ingredient formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ukleja, Marta; Valpuesta, José María; Dziembowski, Andrzej; Cuellar, Jorge
2016-10-01
Large protein assemblies are usually the effectors of major cellular processes. The intricate cell homeostasis network is divided into numerous interconnected pathways, each controlled by a set of protein machines. One of these master regulators is the CCR4-NOT complex, which ultimately controls protein expression levels. This multisubunit complex assembles around a scaffold platform, which enables a wide variety of well-studied functions from mRNA synthesis to transcript decay, as well as other tasks still being identified. Solving the structure of the entire CCR4-NOT complex will help to define the distribution of its functions. The recently published three-dimensional reconstruction of the complex, in combination with the known crystal structures of some of the components, has begun to address this. Methodological improvements in structural biology, especially in cryoelectron microscopy, encourage further structural and protein-protein interaction studies, which will advance our comprehension of the gene expression machinery. © 2016 WILEY Periodicals, Inc.
Osteoinductive recombinant silk fusion proteins for bone regeneration.
Dinjaski, Nina; Plowright, Robyn; Zhou, Shun; Belton, David J; Perry, Carole C; Kaplan, David L
2017-02-01
Protein polymers provide a unique opportunity for tunable designs of material systems due to the genetic basis of sequence control. To address the challenge of biomineralization interfaces with protein based materials, we genetically engineered spider silks to design organic-inorganic hybrid systems. The spider silk inspired domain (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT) 15 served as an organic scaffold to control material stability and to allow multiple modes of processing, whereas the hydroxyapatite binding domain VTKHLNQISQSY (VTK), provided control over osteogenesis. The VTK domain was fused either to the N-, C- or both terminals of the spider silk domain to understand the effect of position on material properties and mineralization. The addition of the VTK domain to silk did not affect the physical properties of the silk recombinant constructs, but it had a critical role in the induction of biomineralization. When the VTK domain was placed on both the C- and N-termini the formation of crystalline hydroxyapatite was significantly increased. In addition, all of the recombinant proteins in film format supported the growth and proliferation of human mesenchymal stem cells (hMSCs). Importantly, the presence of the VTK domain enhanced osteoinductive properties up to 3-fold compared to the control (silk alone without VTK). Therefore, silk-VTK fusion proteins have been shown suitable for mineralization and functionalization for specific biomedical applications. Organic-inorganic interfaces are integral to biomaterial functions in many areas of repair and regeneration. Several protein polymers have been investigated for this purpose. Despite their success the limited options to fine-tune their material properties, degradation patterns and functionalize them for each specific biomedical application limits their application. Various studies have shown that the biological performance of such proteins can be improved by genetic engineering. The present study provides data relating protein design parameters and functional outcome quantified by biomineralization and human mesenchymal stem cell differentiation. As such, it helps the design of osteoinductive recombinant biomaterials for bone regeneration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Fungal proteomics: from identification to function.
Doyle, Sean
2011-08-01
Some fungi cause disease in humans and plants, while others have demonstrable potential for the control of insect pests. In addition, fungi are also a rich reservoir of therapeutic metabolites and industrially useful enzymes. Detailed analysis of fungal biochemistry is now enabled by multiple technologies including protein mass spectrometry, genome and transcriptome sequencing and advances in bioinformatics. Yet, the assignment of function to fungal proteins, encoded either by in silico annotated, or unannotated genes, remains problematic. The purpose of this review is to describe the strategies used by many researchers to reveal protein function in fungi, and more importantly, to consolidate the nomenclature of 'unknown function protein' as opposed to 'hypothetical protein' - once any protein has been identified by protein mass spectrometry. A combination of approaches including comparative proteomics, pathogen-induced protein expression and immunoproteomics are outlined, which, when used in combination with a variety of other techniques (e.g. functional genomics, microarray analysis, immunochemical and infection model systems), appear to yield comprehensive and definitive information on protein function in fungi. The relative advantages of proteomic, as opposed to transcriptomic-only, analyses are also described. In the future, combined high-throughput, quantitative proteomics, allied to transcriptomic sequencing, are set to reveal much about protein function in fungi. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Self-Assembled Materials Made from Functional Recombinant Proteins.
Jang, Yeongseon; Champion, Julie A
2016-10-18
Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on the surface and can also carry protein, small-molecule, or nanoparticle cargo in the vesicle lumen. To create a material with a more complex hierarchical structure, we combined calcium phosphate with zipper fusion proteins containing random coil polypeptides to produce hybrid protein-inorganic supraparticles with high surface area and porous structure. The use of a functional enzyme created supraparticles with the ability to degrade inflammatory cytokines. Our characterization of these protein materials revealed that the molecular interactions are complex because of the large size of the protein building blocks, their folded structures, and the number of potential interactions including hydrophobic interactions, electrostatic interactions, van der Waals forces, and specific affinity-based interactions. It is difficult or even impossible to predict the structures a priori. However, once the basic assembly principles are understood, there is opportunity to tune the material properties, such as size, through control of the self-assembly conditions. Our future efforts on the fundamental side will focus on identifying the phase space of self-assembly of these fusion proteins and additional experimental levers with which to control and tune the resulting materials. On the application side, we are investigating an array of different functional proteins to expand the use of these structures in both therapeutic protein delivery and biocatalysis.
Possenti, Andrea; Vendruscolo, Michele; Camilloni, Carlo; Tiana, Guido
2018-05-23
Proteins employ the information stored in the genetic code and translated into their sequences to carry out well-defined functions in the cellular environment. The possibility to encode for such functions is controlled by the balance between the amount of information supplied by the sequence and that left after that the protein has folded into its structure. We study the amount of information necessary to specify the protein structure, providing an estimate that keeps into account the thermodynamic properties of protein folding. We thus show that the information remaining in the protein sequence after encoding for its structure (the 'information gap') is very close to what needed to encode for its function and interactions. Then, by predicting the information gap directly from the protein sequence, we show that it may be possible to use these insights from information theory to discriminate between ordered and disordered proteins, to identify unknown functions, and to optimize artificially-designed protein sequences. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Molecular chaperones and photoreceptor function
Kosmaoglou, Maria; Schwarz, Nele; Bett, John S.; Cheetham, Michael E.
2008-01-01
Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones. PMID:18490186
DNA-mediated engineering of multicomponent enzyme crystals
Brodin, Jeffrey D.; Auyeung, Evelyn; Mirkin, Chad A.
2015-01-01
The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. Herein, we explore the concept of trading protein–protein interactions for DNA–DNA interactions to direct the assembly of two nucleic-acid–functionalized proteins with distinct surface chemistries into six unique lattices composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA–DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. This study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials. PMID:25831510
DNA-mediated engineering of multicomponent enzyme crystals
Brodin, Jeffrey D.; Auyeung, Evelyn; Mirkin, Chad A.
2015-03-23
The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. In this paper, we explore the concept of trading protein–protein interactions for DNA–DNA interactions to direct the assembly of two nucleic-acid–functionalized proteins with distinct surface chemistries into six unique latticesmore » composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA–DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. Finally, this study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials.« less
Bumrungpert, Akkarach; Pavadhgul, Patcharanee; Nunthanawanich, Pornpimon; Sirikanchanarod, Anchalee; Adulbhan, Araya
2018-06-01
Clinical side effects from medical therapy play an important role in causing malnutrition among cancer patients. Whey protein isolates (WPIs) have the potential to improve the nutritional status of cancer patients. The present study determined the effects of whey protein supplementation on nutritional status, glutathione (GSH) levels, immunity, and inflammatory markers in cancer patients in Thailand. A total of 42 cancer patients (41-63 years old) who received intravenous chemotherapy were randomized in a double-blind controlled trial at the National Cancer Institute in Thailand. Patients received 40 g of WPI plus zinc and selenium (intervention group, n = 23) or a maltodextrin oral snack (control group, n = 19) every day during the daytime for 12 weeks. Nutritional status, GSH levels, immunity, and inflammatory markers were assessed at baseline, 6, and 12 weeks. Whey protein supplementation significantly increased albumin (2.9%) and immunoglobulin G (4.8%) levels compared to the control group at week 12. Controls showed a significantly lower percent change in GSH levels (6.0%), whereas there was a significant time-dependent increase in the intervention group (11.7%). Whey protein supplementation improved nutrition status scores in the intervention group compared to the control. These data indicate that whey protein supplementation can increase GSH levels and improve nutritional status and immunity in cancer patients undergoing chemotherapy. These results will facilitate implementation of malnutrition risk prevention strategies and improve protein status, including immune function, during chemotherapy.
Periplasmic quality control in biogenesis of outer membrane proteins.
Lyu, Zhi Xin; Zhao, Xin Sheng
2015-04-01
The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.
Omichi, Masaaki; Asano, Atsushi; Tsukuda, Satoshi; Takano, Katsuyoshi; Sugimoto, Masaki; Saeki, Akinori; Sakamaki, Daisuke; Onoda, Akira; Hayashi, Takashi; Seki, Shu
2014-01-01
Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules, giving size-controlled protein nanowires with an ultra-high aspect ratio of over 1,000. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin–avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength in phosphate-buffered saline. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin–biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area. PMID:24770668
Uversky, Vladimir N.
2014-01-01
Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases. PMID:25988147
Controllable molecular motors engineered from myosin and RNA
NASA Astrophysics Data System (ADS)
Omabegho, Tosan; Gurel, Pinar S.; Cheng, Clarence Y.; Kim, Laura Y.; Ruijgrok, Paul V.; Das, Rhiju; Alushin, Gregory M.; Bryant, Zev
2018-01-01
Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems1 or in living cells2. Previously, synthetic nucleic acid motors3-5 and modified natural protein motors6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors11-15. Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure7,9. We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing16. Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.
EHD proteins: Key conductors of endocytic transport
Naslavsky, Naava; Caplan, Steve
2010-01-01
Regulation of endocytic transport is controlled by an elaborate network of proteins. Rab GTP-binding proteins and their effectors have well-defined roles in mediating specific endocytic transport steps, but until recently, less was known about the four mammalian dynamin-like C-terminal Eps15 Homology Domain (EHD) proteins that also regulate endocytic events. In recent years, however, great strides have been made in understanding the structure and function of these unique proteins. Indeed, a growing body of literature addresses EHD protein structure, interactions with binding partners, functions in mammalian cells, and the generation of various new model systems. Accordingly, this is now an opportune time to pause and review the function and mechanisms of action of EHD proteins, and to highlight some of the challenges and future directions for the field. PMID:21067929
Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review.
de Oliveira, Fabíola Cristina; Coimbra, Jane Sélia Dos Reis; de Oliveira, Eduardo Basílio; Zuñiga, Abraham Damian Giraldo; Rojas, Edwin E Garcia
2016-05-18
The products formed by glycosylation of food proteins with carbohydrates via the Maillard reaction, also known as conjugates, are agents capable of changing and improving techno-functional characteristics of proteins. The Maillard reaction uses the covalent bond between a group of a reducing carbohydrates and an amino group of a protein. This reaction does not require additional chemicals as it occurs naturally under controlled conditions of temperature, time, pH, and moisture. Moreover, there is growing interest in modifying proteins for industrial food applications. This review analyses the current state of art of the Maillard reaction on food protein functionalities. It also discusses the influence of the Maillard reaction on the conditions and formulation of reagents that improve desirable techno-functional characteristics of food protein.
Endosomal protein traffic meets nuclear signal transduction head on.
Horazdovsky, Bruce
2004-02-01
Rab5 plays a key role in controlling protein traffic through the early stages of the endocytic pathway. Previous studies on the modulators and effectors of Rab5 protein function have tied the regulation of several signal transduction pathways to the movement of protein through endocytic compartments. In the February 6, 2004, issue of Cell, Miaczynska et al. describe a surprising new link between Rab5 function and the nucleus by uncovering two new Rab5 effectors as potential regulators of the nucleosome remodeling and histone deacetylase protein complex NuRD/MeCP1.
The Ubiquitin–Proteasome System of Saccharomyces cerevisiae
Finley, Daniel; Ulrich, Helle D.; Sommer, Thomas; Kaiser, Peter
2012-01-01
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell. PMID:23028185
Bioengineering approaches to controlled protein delivery.
Kobsa, Serge; Saltzman, W Mark
2008-05-01
Proteins are of crucial importance in all biologic organisms, in terms of both structure and function. Their deficits play central roles in many pathologic states, and their potential as powerful therapeutic agents has been widely recognized. Many issues, however, exist in delivery of biologically active proteins to target tissues and organs. Recent advances in biomedical engineering have lead to development of advanced techniques for controlled delivery of peptides and proteins, paving the way for their efficient use in treating human injury and disease. With a particular emphasis on most recent advances, this review discusses currently available techniques for controlled delivery of proteins and considers future research directions.
Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T
2017-04-15
RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.
Protein-Based Drug-Delivery Materials.
Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao
2017-05-09
There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function-including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments-are summarized at the end of this review.
Prediction and redesign of protein–protein interactions
Lua, Rhonald C.; Marciano, David C.; Katsonis, Panagiotis; Adikesavan, Anbu K.; Wilkins, Angela D.; Lichtarge, Olivier
2014-01-01
Understanding the molecular basis of protein function remains a central goal of biology, with the hope to elucidate the role of human genes in health and in disease, and to rationally design therapies through targeted molecular perturbations. We review here some of the computational techniques and resources available for characterizing a critical aspect of protein function – those mediated by protein–protein interactions (PPI). We describe several applications and recent successes of the Evolutionary Trace (ET) in identifying molecular events and shapes that underlie protein function and specificity in both eukaryotes and prokaryotes. ET is a part of analytical approaches based on the successes and failures of evolution that enable the rational control of PPI. PMID:24878423
Controlling nuclear RNA levels.
Schmid, Manfred; Jensen, Torben Heick
2018-05-10
RNA turnover is an integral part of cellular RNA homeostasis and gene expression regulation. Whereas the cytoplasmic control of protein-coding mRNA is often the focus of study, we discuss here the less appreciated role of nuclear RNA decay systems in controlling RNA polymerase II (RNAPII)-derived transcripts. Historically, nuclear RNA degradation was found to be essential for the functionalization of transcripts through their proper maturation. Later, it was discovered to also be an important caretaker of nuclear hygiene by removing aberrant and unwanted transcripts. Recent years have now seen a set of new protein complexes handling a variety of new substrates, revealing functions beyond RNA processing and the decay of non-functional transcripts. This includes an active contribution of nuclear RNA metabolism to the overall cellular control of RNA levels, with mechanistic implications during cellular transitions.
Functional inclusion bodies produced in the yeast Pichia pastoris.
Rueda, Fabián; Gasser, Brigitte; Sánchez-Chardi, Alejandro; Roldán, Mònica; Villegas, Sandra; Puxbaum, Verena; Ferrer-Miralles, Neus; Unzueta, Ugutz; Vázquez, Esther; Garcia-Fruitós, Elena; Mattanovich, Diethard; Villaverde, Antonio
2016-10-01
Bacterial inclusion bodies (IBs) are non-toxic protein aggregates commonly produced in recombinant bacteria. They are formed by a mixture of highly stable amyloid-like fibrils and releasable protein species with a significant extent of secondary structure, and are often functional. As nano structured materials, they are gaining biomedical interest because of the combination of submicron size, mechanical stability and biological activity, together with their ability to interact with mammalian cell membranes for subsequent cell penetration in absence of toxicity. Since essentially any protein species can be obtained as IBs, these entities, as well as related protein clusters (e.g., aggresomes), are being explored in biocatalysis and in biomedicine as mechanically stable sources of functional protein. One of the major bottlenecks for uses of IBs in biological interfaces is their potential contamination with endotoxins from producing bacteria. To overcome this hurdle, we have explored here the controlled production of functional IBs in the yeast Pichia pastoris (Komagataella spp.), an endotoxin-free host system for recombinant protein production, and determined the main physicochemical and biological traits of these materials. Quantitative and qualitative approaches clearly indicate the formation of IBs inside yeast, similar in morphology, size and biological activity to those produced in E. coli, that once purified, interact with mammalian cell membranes and penetrate cultured mammalian cells in absence of toxicity. Structurally and functionally similar from those produced in E. coli, the controlled production of IBs in P. pastoris demonstrates that yeasts can be used as convenient platforms for the biological fabrication of self-organizing protein materials in absence of potential endotoxin contamination and with additional advantages regarding, among others, post-translational modifications often required for protein functionality.
Ataxin-2: A versatile posttranscriptional regulator and its implication in neural function.
Lee, Jongbo; Kim, Minjong; Itoh, Taichi Q; Lim, Chunghun
2018-06-05
Ataxin-2 (ATXN2) is a eukaryotic RNA-binding protein that is conserved from yeast to human. Genetic expansion of a poly-glutamine tract in human ATXN2 has been implicated in several neurodegenerative diseases, likely acting through gain-of-function effects. Emerging evidence, however, suggests that ATXN2 plays more direct roles in neural function via specific molecular and cellular pathways. ATXN2 and its associated protein complex control distinct steps in posttranscriptional gene expression, including poly-A tailing, RNA stabilization, microRNA-dependent gene silencing, and translational activation. Specific RNA substrates have been identified for the functions of ATXN2 in aspects of neural physiology, such as circadian rhythms and olfactory habituation. Genetic models of ATXN2 loss-of-function have further revealed its significance in stress-induced cytoplasmic granules, mechanistic target of rapamycin signaling, and cellular metabolism, all of which are crucial for neural homeostasis. Accordingly, we propose that molecular evolution has been selecting the ATXN2 protein complex as an important trans-acting module for the posttranscriptional control of diverse neural functions. This explains how ATXN2 intimately interacts with various neurodegenerative disease genes, and suggests that loss-of-function effects of ATXN2 could be therapeutic targets for ATXN2-related neurological disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications. © 2018 Wiley Periodicals, Inc.
DNA mimic proteins: functions, structures, and bioinformatic analysis.
Wang, Hao-Ching; Ho, Chun-Han; Hsu, Kai-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J
2014-05-13
DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.
Oláh, J; Tőkési, N; Lehotzky, A; Orosz, F; Ovádi, J
2013-11-01
The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeletal network. Cytoskeleton comprises fibrous protein networks of microtubules, actin, and intermediate filaments. These filamentous polymer structures are highly dynamic and undergo constant and rapid reorganization during cellular processes. The microtubular system plays a crucial role in the brain, as it is involved in an enormous number of cellular events including cell differentiation and pathological inclusion formation. These multifarious functions of microtubules can be achieved by their decoration with proteins/enzymes that exert specific effects on the dynamics and organization of the cytoskeleton and mediate distinct functions due to their moonlighting features. This mini-review focuses on two aspects of the microtubule cytoskeleton. On the one hand, we describe the heteroassociation of tubulin/microtubules with metabolic enzymes, which in addition to their catalytic activities stabilize microtubule structures via their cross-linking functions. On the other hand, we focus on the recently identified moonlighting tubulin polymerization promoting protein, TPPP/p25. TPPP/p25 is a microtubule-associated protein and it displays distinct physiological or pathological (aberrant) functions; thus it is a prototype of Neomorphic Moonlighting Proteins. The expression of TPPP/p25 is finely controlled in the human brain; this protein is indispensable for the development of projections of oligodendrocytes that are responsible for the ensheathment of axons. The nonphysiological, higher or lower TPPP/p25 level leads to distinct CNS diseases. Mechanisms contributing to the control of microtubule stability and dynamics by metabolic enzymes and TPPP/p25 will be discussed. Copyright © 2013 Wiley Periodicals, Inc.
Bressan, Gustavo Costa; Kobarg, Jörg
2010-01-01
The mapping of protein-protein interactions of a determined organism is considered fundamental to assign protein function in the post-genomic era. As part of this effort, screenings for pairwise interactions by yeast two-hybrid system have been used popularly to reveal protein interaction networks in different biological systems. Through the identification of protein interaction partners we have successfully obtained interesting functional clues for Ki-1/57, a human protein with no previous functional annotation, in the context of RNA metabolism. We briefly discuss the way we approached protein-protein interaction data to conduct and interpret further molecular biological and cellular studies as well as structural analyses on this protein. Our data suggest that Ki-1/57 belongs to the family of intrinsically unstructured proteins and that the structural flexibility may be crucial for its capacity to interact with many different proteins. A large fraction of these proteins are involved in pre-mRNA splicing control. Finally, Ki-1/57 is localized to several subnuclear domains, all of which have been described to splicing and other RNA processing events.
RACK1 and the microRNA pathway: is it déjà-vu all over again?
Speth, Corinna; Laubinger, Sascha
2014-01-01
MicroRNAs (miRNAs) control many aspects of development and adaption in plants and in animals by post-transcriptional control of mRNA stability and translatability. Over the last years numerous proteins have been identified in the miRNA pathway. The versatile scaffold protein RACK1 has been associated with efficient miRNA production and function in plants and metazoans. Here, we briefly summarize the differences of RACK1 function in the plant and animal miRNA pathways and discuss putative mechanisms and functional roles of RACK1 in miRNA biogenesis and action.
Genetic Dissection of DivIVA Functions in Listeria monocytogenes.
Kaval, Karan Gautam; Hauf, Samuel; Rismondo, Jeanine; Hahn, Birgitt; Halbedel, Sven
2017-12-15
DivIVA is a membrane binding protein that clusters at curved membrane regions, such as the cell poles and the membrane invaginations occurring during cell division. DivIVA proteins recruit many other proteins to these subcellular sites through direct protein-protein interactions. DivIVA-dependent functions are typically associated with cell growth and division, even though species-specific differences in the spectrum of DivIVA functions and their causative interaction partners exist. DivIVA from the Gram-positive human pathogen Listeria monocytogenes has at least three different functions. In this bacterium, DivIVA is required for precise positioning of the septum at midcell, it contributes to the secretion of autolysins required for the breakdown of peptidoglycan at the septum after the completion of cell division, and it is essential for flagellar motility. While the DivIVA interaction partners for control of division site selection are well established, the proteins connecting DivIVA with autolysin secretion or swarming motility are completely unknown. We set out to identify divIVA alleles in which these three DivIVA functions could be separated, since the question of the degree to which the three functions of L. monocytogenes DivIVA are interlinked could not be answered before. Here, we identify such alleles, and our results show that division site selection, autolysin secretion, and swarming represent three discrete pathways that are independently influenced by DivIVA. These findings provide the required basis for the identification of DivIVA interaction partners controlling autolysin secretion and swarming in the future. IMPORTANCE DivIVA of the pathogenic bacterium Listeria monocytogenes is a central scaffold protein that influences at least three different cellular processes, namely, cell division, protein secretion, and bacterial motility. How DivIVA coordinates these rather unrelated processes is not known. We here identify variants of L. monocytogenes DivIVA, in which these functions are separated from each other. These results have important implications for the models explaining how DivIVA interacts with other proteins. Copyright © 2017 American Society for Microbiology.
Wu, Chia-Chou; Lin, Che
2015-01-01
The induction of stem cells toward a desired differentiation direction is required for the advancement of stem cell-based therapies. Despite successful demonstrations of the control of differentiation direction, the effective use of stem cell-based therapies suffers from a lack of systematic knowledge regarding the mechanisms underlying directed differentiation. Using dynamic modeling and the temporal microarray data of three differentiation stages, three dynamic protein-protein interaction networks were constructed. The interaction difference networks derived from the constructed networks systematically delineated the evolution of interaction variations and the underlying mechanisms. A proposed relevance score identified the essential components in the directed differentiation. Inspection of well-known proteins and functional modules in the directed differentiation showed the plausibility of the proposed relevance score, with the higher scores of several proteins and function modules indicating their essential roles in the directed differentiation. During the differentiation process, the proteins and functional modules with higher relevance scores also became more specific to the neuronal identity. Ultimately, the essential components revealed by the relevance scores may play a role in controlling the direction of differentiation. In addition, these components may serve as a starting point for understanding the systematic mechanisms of directed differentiation and for increasing the efficiency of stem cell-based therapies. PMID:25977693
Shi, Xiao-Wen; Qiu, Ling; Nie, Zhen; Xiao, Ling; Payne, Gregory F; Du, Yumin
2013-12-01
Many applications in proteomics and lab-on-chip analysis require methods that guide proteins to assemble at surfaces with high spatial and temporal control. Electrical inputs are particularly convenient to control, and there has been considerable effort to discover simple and generic mechanisms that allow electrical inputs to trigger protein assembly on-demand. Here, we report the electroaddressing of a protein to a patterned surface by coupling two generic electroaddressing mechanisms. First, we electrodeposit the stimuli-responsive film-forming aminopolysaccharide chitosan to form a hydrogel matrix at the electrode surface. After deposition, the matrix is chemically functionalized with alkyne groups. Second, we ''electro-click' an azide-tagged protein to the functionalized matrix using electrical signals to trigger conjugation by Huisgen 1,3-dipolar cycloadditions. Specifically, a cathodic potential is applied to the matrix-coated electrode to reduce Cu(II) to Cu(I) which is required for the click reaction. Using fluorescently-labeled bovine serum albumin as our model, we demonstrate that protein conjugation can be controlled spatially and temporally. We anticipate that the coupling of polysaccharide electrodeposition and electro-click chemistry will provide a simple and generic approach to electroaddress proteins within compatible hydrogel matrices.
Current opinion in Microbiology Roles of adaptor proteins in regulation of bacterial proteolysis
Battesti, Aurelia; Gottesman, Susan
2013-01-01
Elimination of non-functional or unwanted proteins is critical for cell growth and regulation. In bacteria, ATP-dependent proteases target cytoplasmic proteins for degradation, contributing to both protein quality control and regulation of specific proteins, thus playing roles parallel to that of the proteasome in eukaryotic cells. Adaptor proteins provide a way to modulate the substrate specificity of the proteases and allow regulated proteolysis. Advances over the past few years have provided new insight into how adaptor proteins interact with both substrates and proteases and how adaptor functions are regulated. An important advance has come with the recognition of the critical roles of anti-adaptor proteins in regulating adaptor availability. PMID:23375660
Rodrigues, Bruno; Jorge, Luciana; Mostarda, Cristiano T; Rosa, Kaleizu T; Medeiros, Alessandra; Malfitano, Christiane; de Souza, Alcione L; Viegas, Katia Aparecida da Silva; Lacchini, Silvia; Curi, Rui; Brum, Patricia C; De Angelis, Kátia; Irigoyen, Maria Cláudia
2012-09-01
Exercise training (ET) has been used as a nonpharmacological strategy for treatment of diabetes and myocardial infarction (MI) separately. We evaluated the effects ET on functional and molecular left ventricular (LV) parameters as well as on autonomic function and mortality in diabetics after MI. Male Wistar rats were divided into control (C), sedentary-diabetic infarcted (SDI), and trained-diabetic infarcted (TDI) groups. MI was induced after 15 days of streptozotocin-diabetes induction. Seven days after MI, the trained group underwent ET protocol (90 days, 50-70% maximal oxygen consumption-VO(2)max). LV function was evaluated noninvasively and invasively; baroreflex sensitivity, pulse interval variability, cardiac output, tissue blood flows, VEGF mRNA and protein, HIF1-α mRNA, and Ca(2+) handling proteins were measured. MI area was reduced in TDI (21 ± 4%) compared with SDI (38 ± 4%). ET induced improvement in cardiac function, hemodynamics, and tissue blood flows. These changes were probable consequences of a better expression of Ca(2+) handling proteins, increased VEGF mRNA and protein expression as well as improvement in autonomic function, that resulted in reduction of mortality in TDI (33%) compared with SDI (68%) animals. ET reduced cardiac and peripheral dysfunction and preserved autonomic control in diabetic infarcted rats. Consequently, these changes resulted in improved VO(2)max and survival after MI. Copyright © 2012 Elsevier Inc. All rights reserved.
Ko, Hyeok-Jin; Park, Eunhye; Song, Joseph; Yang, Taek Ho; Lee, Hee Jong; Kim, Kyoung Heon
2012-01-01
Autotransporters have been employed as the anchoring scaffold for cell surface display by replacing their passenger domains with heterologous proteins to be displayed. We adopted an autotransporter (YfaL) of Escherichia coli for the cell surface display system. The critical regions in YfaL for surface display were identified for the construction of a ligation-independent cloning (LIC)-based display system. The designed system showed no detrimental effect on either the growth of the host cell or overexpressing heterologous proteins on the cell surface. We functionally displayed monomeric red fluorescent protein (mRFP1) as a reporter protein and diverse agarolytic enzymes from Saccharophagus degradans 2-40, including Aga86C and Aga86E, which previously had failed to be functional expressed. The system could display different sizes of proteins ranging from 25.3 to 143 kDa. We also attempted controlled release of the displayed proteins by incorporating a tobacco etch virus protease cleavage site into the C termini of the displayed proteins. The maximum level of the displayed protein was 6.1 × 104 molecules per a single cell, which corresponds to 5.6% of the entire cell surface of actively growing E. coli. PMID:22344647
Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings
Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah
2012-01-01
Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds. PMID:23015764
Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.
Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah
2012-10-07
Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.
The Popeye Domain Containing Genes and Their Function in Striated Muscle
Schindler, Roland F. R.; Scotton, Chiara; French, Vanessa; Ferlini, Alessandra; Brand, Thomas
2016-01-01
The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle. PMID:27347491
A review on protein functionalized carbon nanotubes.
Nagaraju, Kathyayini; Reddy, Roopa; Reddy, Narendra
2015-12-18
Carbon nanotubes (CNTs) have been widely recognized and used for controlled drug delivery and in various other fields due to their unique properties and distinct advantages. Both single-walled carbon nanotubes (SWCNTs) and multiwalled (MWCNTs) carbon nanotubes are used and/or studied for potential applications in medical, energy, textile, composite, and other areas. Since CNTs are chemically inert and are insoluble in water or other organic solvents, they are functionalized or modified to carry payloads or interact with biological molecules. CNTs have been preferably functionalized with proteins because CNTs are predominantly used for medical applications such as delivery of drugs, DNA and genes, and also for biosensing. Extensive studies have been conducted to understand the interactions, cytotoxicity, and potential applications of protein functionalized CNTs but contradicting results have been published on the cytotoxicity of the functionalized CNTs. This paper provides a brief review of CNTs functionalized with proteins, methods used to functionalize the CNTs, and their potential applications.
Drosophila COP9 signalosome subunit 7 interacts with multiple genomic loci to regulate development.
Singer, Ruth; Atar, Shimshi; Atias, Osnat; Oron, Efrat; Segal, Daniel; Hirsch, Joel A; Tuller, Tamir; Orian, Amir; Chamovitz, Daniel A
2014-09-01
The COP9 signalosome protein complex has a central role in the regulation of development of multicellular organisms. While the function of this complex in ubiquitin-mediated protein degradation is well established, results over the past few years have hinted that the COP9 signalosome may function more broadly in the regulation of gene expression. Here, using DamID technology, we show that COP9 signalosome subunit 7 functionally associates with a large number of genomic loci in the Drosophila genome, and show that the expression of many genes within these loci is COP9 signalosome-dependent. This association is likely direct as we show CSN7 binds DNA in vitro. The genes targeted by CSN7 are preferentially enriched for transcriptionally active regions of the genome, and are involved in the regulation of distinct gene ontology groupings including imaginal disc development and cell-cycle control. In accord, loss of CSN7 function leads to cell-cycle delay and altered wing development. These results indicate that CSN7, and by extension the entire COP9 signalosome, functions directly in transcriptional control. While the COP9 signalosome protein complex has long been known to regulate protein degradation, here we expand the role of this complex by showing that subunit 7 binds DNA in vitro and functions directly in vivo in transcriptional control of developmentally important pathways that are relevant for human health. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Różycka, Mirosława; Wojtas, Magdalena; Jakób, Michał; Stigloher, Christian; Grzeszkowiak, Mikołaj; Mazur, Maciej; Ożyhar, Andrzej
2014-01-01
Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed.
Różycka, Mirosława; Wojtas, Magdalena; Jakób, Michał; Stigloher, Christian; Grzeszkowiak, Mikołaj; Mazur, Maciej; Ożyhar, Andrzej
2014-01-01
Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed. PMID:25490041
Biochemical and Functional Analysis of Drosophila-Sciara Chimeric Sex-Lethal Proteins
Ruiz, María Fernanda; Sarno, Francesca; Zorrilla, Silvia; Rivas, Germán; Sánchez, Lucas
2013-01-01
Background The Drosophila SXL protein controls sex determination and dosage compensation. It is a sex-specific factor controlling splicing of its own Sxl pre-mRNA (auto-regulation), tra pre-mRNA (sex determination) and msl-2 pre-mRNA plus translation of msl-2 mRNA (dosage compensation). Outside the drosophilids, the same SXL protein has been found in both sexes so that, in the non-drosophilids, SXL does not appear to play the key discriminating role in sex determination and dosage compensation that it plays in Drosophila. Comparison of SXL proteins revealed that its spatial organisation is conserved, with the RNA-binding domains being highly conserved, whereas the N- and C-terminal domains showing significant variation. This manuscript focuses on the evolution of the SXL protein itself and not on regulation of its expression. Methodology Drosophila-Sciara chimeric SXL proteins were produced. Sciara SXL represents the non-sex-specific function of ancient SXL in the non-drosophilids from which presumably Drosophila SXL evolved. Two questions were addressed. Did the Drosophila SXL protein have affected their functions when their N- and C-terminal domains were replaced by the corresponding ones of Sciara? Did the Sciara SXL protein acquire Drosophila sex-specific functions when the Drosophila N- and C-terminal domains replaced those of Sciara? The chimeric SXL proteins were analysed in vitro to study their binding affinity and cooperative properties, and in vivo to analyse their effect on sex determination and dosage compensation by producing Drosophila flies that were transgenic for the chimeric SXL proteins. Conclusions The sex-specific properties of extant Drosophila SXL protein depend on its global structure rather than on a specific domain. This implies that the modifications, mainly in the N- and C-terminal domains, that occurred in the SXL protein during its evolution within the drosophilid lineage represent co-evolutionary changes that determine the appropriate folding of SXL to carry out its sex-specific functions. PMID:23762307
Taymans, Jean-Marc; Nkiliza, Aurore; Chartier-Harlin, Marie-Christine
2015-08-01
Protein translation is one of the most fundamental and exquisitely controlled processes in biology, and is energetically demanding. The deregulation of this process is deleterious to cells, as demonstrated by several diseases caused by mutations in protein translation machinery. Emerging evidence now points to a role for protein translation in the pathogenesis of Parkinson's disease (PD); a debilitating neurodegenerative movement disorder. In this paper, we propose a hypothesis that protein translation machinery, PD-associated proteins and PD pathology are connected in a functional network linking cell survival to protein translation control. This hypothesis is a potential game changer in the field of the molecular pathogenesis of PD, with implications for the development of PD diagnostics and disease-modifying therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Functional dissection of the Hox protein Abdominal-B in Drosophila cell culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Zongzhao; CellNetworks - Cluster of Excellence, Centre for Organismal Studies; Graduate School of Chinese Academy of Sciences, Beijing 100039
2011-11-04
Highlights: Black-Right-Pointing-Pointer ct340 CRM was identified to be the posterior spiracle enhancer of gene cut. Black-Right-Pointing-Pointer ct340 is under the direct transcriptional control of Hox protein Abd-B. Black-Right-Pointing-Pointer An efficient cloning system was developed to assay protein-DNA interaction. Black-Right-Pointing-Pointer New features of Abd-B dependent target gene regulation were detected. -- Abstract: Hox transcription factors regulate the morphogenesis along the anterior-posterior (A/P) body axis through the interaction with small cis-regulatory modules (CRMs) of their target gene, however so far very few Hox CRMs are known and have been analyzed in detail. In this study we have identified a new Hox CRM,more » ct340, which guides the expression of the cell type specification gene cut (ct) in the posterior spiracle under the direct control of the Hox protein Abdominal-B (Abd-B). Using the ct340 enhancer activity as readout, an efficient cloning system to generate VP16 activation domain fusion protein was developed to unambiguously test protein-DNA interaction in Drosophila cell culture. By functionally dissecting the Abd-B protein, new features of Abd-B dependent target gene regulation were detected. Due to its easy adaptability, this system can be generally used to map functional domains within sequence-specific transcriptional factors in Drosophila cell culture, and thus provide preliminary knowledge of the protein functional domain structure for further in vivo analysis.« less
Chhangani, Deepak; Mishra, Amit
2013-08-01
A common feature in most neurodegenerative diseases and aging is the progressive accumulation of damaged proteins. Proteins are essential for all crucial biological functions. Under some notorious conditions, proteins loss their three dimensional native conformations and are converted into disordered aggregated structures. Such changes rise into pathological conditions and eventually cause serious protein conformation disorders. Protein aggregation and inclusion bodies formation mediated multifactorial proteotoxic stress has been reported in the progression of Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Prion disease. Ongoing studies have been remarkably informative in providing a systematic outlook for better understanding the concept and fundamentals of protein misfolding and aggregations. However, the precise role of protein quality control system and precursors of this mechanism remains elusive. In this review, we highlight recent insights and discuss emerging cytoprotective strategies of cellular protein quality control system implicated in protein deposition diseases. Our current review provides a clear, understandable framework of protein quality control system that may offer the more suitable therapeutic strategies for protein-associated diseases.
Acetyllysine-binding and function of bromodomain-containing proteins in chromatin.
Dyson, M H; Rose, S; Mahadevan, L C
2001-08-01
Acetylated histones are generally associated with active chromatin. The bromodomain has recently been identified as a protein module capable of binding to acetylated lysine residues, and hence is able to mediate the recruitment of factors to acetylated chromatin. Functional studies of bromodomain-containing proteins indicate how this domain contributes to the activity of a number of nuclear factors including histone acetyltransferases and chromatin remodelling complexes. Here, we review the characteristics of acetyllysine-binding by bromodomains, discuss associated domains found in these proteins, and address the function of the bromodomain in the context of chromatin. Finally, the modulation of bromodomain binding by neighbouring post-translational modifications within histone tails might provide a mechanism through which combinations of covalent marks could exert control on chromatin function.
Role of AAA(+)-proteins in peroxisome biogenesis and function.
Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang
2016-05-01
Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.
The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins.
Taillebourg, Emmanuel; Gregoire, Isabel; Viargues, Perrine; Jacomin, Anne-Claire; Thevenon, Dominique; Faure, Mathias; Fauvarque, Marie-Odile
2012-05-01
Initially described as a nonspecific degradation process induced upon starvation, autophagy is now known also to be involved in the degradation of specific ubiquitinated substrates such as mitochondria, bacteria and aggregated proteins, ensuring crucial functions in cell physiology and immunity. We report here that the deubiquitinating enzyme USP36 controls selective autophagy activation in Drosophila and in human cells. We show that dUsp36 loss of function autonomously inhibits cell growth while activating autophagy. Despite the phenotypic similarity, dUSP36 is not part of the TOR signaling pathway. Autophagy induced by dUsp36 loss of function depends on p62/SQSTM1, an adaptor for delivering cargo marked by polyubiquitin to autophagosomes. Consistent with p62 requirement, dUsp36 mutant cells display nuclear aggregates of ubiquitinated proteins, including Histone H2B, and cytoplasmic ubiquitinated proteins; the latter are eliminated by autophagy. Importantly, USP36 function in p62-dependent selective autophagy is conserved in human cells. Our work identifies a novel, crucial role for a deubiquitinating enzyme in selective autophagy.
NASA Astrophysics Data System (ADS)
Tunuguntla, Ramya
Biological systems use different energy sources to interact with their environments by creating ion gradients, membrane electric potentials, or a proton motive force to accomplish strikingly complex tasks on the nanometer length scale, such as energy harvesting, and whole organism replication. Most of this activity involves a vast arsenal of active and passive ion channels, membrane receptors and ion pumps that mediate complex and precise transport across biological membranes. Despite the remarkable rate of progress exhibited by modern microelectronic devices, they still cannot compete with the efficiency and precision of biological systems on the component level. At the same time, the sophistication of these molecular machines provides an excellent opportunity to use them in hybrid bioelectronic devices where such a combination could deliver enhanced electronic functionality and enable seamless bi-directional interfaces between man-made and biological assemblies. Artificial membrane systems allow researchers to study the structure and function of membrane proteins in a matrix that approximates their natural environment and to integrate these proteins in ex-vivo devices such as electronic biosensors, thin-film protein arrays, or bio-fuel cells. Since most membrane proteins have vectorial functions, both functional studies and applications require effective control over protein orientation within a lipid bilayer. In our work, we have explored the role of the bilayer surface charge in determining transmembrane protein orientation and functionality during formation of proteoliposomes. We reconstituted a model vectorial ion pump, proteorhodopsin, in liposomes of opposite charges and varying charge densities and determined the resultant protein orientation. Antibody-binding assay and proteolysis of proteoliposomes showed physical evidence of preferential orientation, and functional assays verified vectorial nature of ion transport in this system. Our results indicate that the manipulation of lipid composition can indeed control orientation of an asymmetrically charged membrane protein, proteorhodopsin, in liposomes. One-dimensional inorganic nanostructures, which have critical dimensions comparable to the sizes of biological molecules, form an excellent materials platform for building such integrated structures. Researchers already use silicon nanowire-based field effect transistors functionalized with molecular recognition sites in a diverse array of biosensors. In our group, we have been developing a platform for integration of membrane protein functionality and electronic devices using a 1-D phospholipid bilayer device architecture. In these devices, the membrane proteins reside within the lipid bilayer that covers a nanowire channel of a field-effect transistor. This lipid bilayer performs several functions: it shields the nanowire from the solution species; it serves as a native-like environment for membrane proteins and preserves their functionality, integrity, and even vectorality. In this work, we show that a 1-D bilayer device incorporating a rhodopsin proton pump allows us to couple light-driven proton transport to a bioelectronic circuit. We also report that we were able to adapt another distinctive feature of biological signal processing---their widespread use of modifiers, co-factors, and mediator molecules---to regulate and fine-tune the operational characteristics of the bioelectronic device. In our example, we use co-assembly of protein channels and ionophores in the 1-D bilayer to modify the device output levels and response time.
Changes in cardiac energy metabolic pathways in overweighed rats fed a high-fat diet.
Modrego, Javier; de las Heras, Natalia; Zamorano-León, Jose J; Mateos-Cáceres, Petra J; Martín-Fernández, Beatriz; Valero-Muñoz, Maria; Lahera, Vicente; López-Farré, Antonio J
2013-03-01
Heart produces ATP through long-chain fatty acids beta oxidation. To analyze whether in ventricular myocardium, high-fat diet may modify the expression of proteins associated with energy metabolism before myocardial function was affected. Wistar Kyoto rats were divided into two groups: (a) rats fed standard diet (control; n = 6) and (b) rats fed high-fat diet (HFD; n = 6). Proteins from left ventricles were analyzed by two-dimensional electrophoresis, mass spectrometry and Western blotting. Rats fed with HFD showed higher body weight, insulin, glucose, leptin and total cholesterol plasma levels as compared with those fed with standard diet. However, myocardial functional parameters were not different between them. The protein expression of 3-ketoacyl-CoA thiolase, acyl-CoA hydrolase mitochondrial precursor and enoyl-CoA hydratase, three long-chain fatty acid β-oxidation-related enzymes, and carnitine-O-palmitoyltransferase I was significantly higher in left ventricles from HFD rats. Protein expression of triosephosphate isomerase was higher in left ventricles from HFD rats than in those from control. Two α/β-enolase isotypes and glyceraldehyde-3-phosphate isomerase were significantly increased in HFD rats as compared with control. Pyruvate and lactate contents were similar in HFD and control groups. Expression of proteins associated with Krebs cycle and mitochondrial oxidative phosphorylation was higher in HFD rats. Expression of proteins involved in left ventricle metabolic energy was enhanced before myocardial functionality was affected in rats fed with HFD. These findings may probably indicate higher cardiac energy requirement due to weight increase by HFD.
Functional Proteomic Analysis of Human NucleolusD⃞
Scherl, Alexander; Couté, Yohann; Déon, Catherine; Callé, Aleth; Kindbeiter, Karine; Sanchez, Jean-Charles; Greco, Anna; Hochstrasser, Denis; Diaz, Jean-Jacques
2002-01-01
The notion of a “plurifunctional” nucleolus is now well established. However, molecular mechanisms underlying the biological processes occurring within this nuclear domain remain only partially understood. As a first step in elucidating these mechanisms we have carried out a proteomic analysis to draw up a list of proteins present within nucleoli of HeLa cells. This analysis allowed the identification of 213 different nucleolar proteins. This catalog complements that of the 271 proteins obtained recently by others, giving a total of ∼350 different nucleolar proteins. Functional classification of these proteins allowed outlining several biological processes taking place within nucleoli. Bioinformatic analyses permitted the assignment of hypothetical functions for 43 proteins for which no functional information is available. Notably, a role in ribosome biogenesis was proposed for 31 proteins. More generally, this functional classification reinforces the plurifunctional nature of nucleoli and provides convincing evidence that nucleoli may play a central role in the control of gene expression. Finally, this analysis supports the recent demonstration of a coupling of transcription and translation in higher eukaryotes. PMID:12429849
Cukras, Anthony R; Southworth, Daniel R; Brunelle, Julie L; Culver, Gloria M; Green, Rachel
2003-08-01
Translocation of the mRNA:tRNA complex through the ribosome is promoted by elongation factor G (EF-G) during the translation cycle. Previous studies established that modification of ribosomal proteins with thiol-specific reagents promotes this event in the absence of EF-G. Here we identify two small subunit interface proteins S12 and S13 that are essential for maintenance of a pretranslocation state. Omission of these proteins using in vitro reconstitution procedures yields ribosomal particles that translate in the absence of enzymatic factors. Conversely, replacement of cysteine residues in these two proteins yields ribosomal particles that are refractive to stimulation with thiol-modifying reagents. These data support a model where S12 and S13 function as control elements for the more ancient rRNA- and tRNA-driven movements of translocation.
Induced Fit in Protein Multimerization: The HFBI Case
Riccardi, Laura
2016-01-01
Hydrophobins, produced by filamentous fungi, are small amphipathic proteins whose biological functions rely on their unique surface-activity properties. Understanding the mechanistic details of the multimerization process is of primary importance to clarify the interfacial activity of hydrophobins. We used free energy calculations to study the role of a flexible β-hairpin in the multimerization process in hydrophobin II from Trichoderma reesei (HFBI). We characterized how the displacement of this β-hairpin controls the stability of the monomers/dimers/tetramers in solution. The regulation of the oligomerization equilibrium of HFBI will necessarily affect its interfacial properties, fundamental for its biological function and for technological applications. Moreover, we propose possible routes for the multimerization process of HFBI in solution. This is the first case where a mechanism by which a flexible loop flanking a rigid patch controls the protein-protein binding equilibrium, already known for proteins with charged binding hot-spots, is described within a hydrophobic patch. PMID:27832079
Milk protein for improved metabolic health: a review of the evidence
2013-01-01
Epidemiological evidence shows that consumption of dairy products is associated with decreased prevalence of metabolic related disorders, whilst evidence from experimental studies points towards dairy protein as a dietary component which may aid prevention of type 2 diabetes (T2DM). Poor metabolic health is a common characteristic of overweight, obesity and aging, and is the forerunner of T2DM and cardiovascular disease (CVD), and an ever increasing global health issue. Progressive loss of metabolic control is evident from a blunting of carbohydrate, fat and protein metabolism, which is commonly manifested through decreased insulin sensitivity, inadequate glucose and lipid control, accompanied by a pro-inflammatory environment and hypertension. Adverse physiological changes such as excess visceral adipose tissue deposition and expansion, lipid overspill and infiltration into liver, muscle and other organs, and sarcopaenia or degenerative loss of skeletal muscle mass and function all underpin this adverse profile. ‘Sarcobesity’ and sarcopaenic diabetes are rapidly growing health issues. As well as through direct mechanisms, dairy protein may indirectly improve metabolic health by aiding loss of body weight and fat mass through enhanced satiety, whilst promoting skeletal muscle growth and function through anabolic effects of dairy protein-derived branch chain amino acids (BCAAs). BCAAs enhance muscle protein synthesis, lean body mass and skeletal muscle metabolic function. The composition and processing of dairy protein has an impact on digestion, absorption, BCAA kinetics and function, hence the optimisation of dairy protein composition through selection and combination of specific protein components in milk may provide a way to maximize benefits for metabolic health. PMID:23822206
Recouvreux, Pierre; Sokolowski, Thomas R; Grammoustianou, Aristea; ten Wolde, Pieter Rein; Dogterom, Marileen
2016-02-16
Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns.
Turoverov, Konstantin K.; Kuznetsova, Irina M.; Uversky, Vladimir N.
2010-01-01
The native state of a protein is usually associated with a compact globular conformation possessing a rigid and highly ordered structure. At the turn of the last century certain studies arose which concluded that many proteins cannot, in principle, form a rigid globular structure in an aqueous environment, but they are still able to fulfill their specific functions — i.e., they are native. The existence of the disordered regions allows these proteins to interact with their numerous binding partners. Such interactions are often accompanied by the formation of complexes that possess a more ordered structure than the original components. The functional diversity of these proteins, combined with the variability of signals related to the various intra-and intercellular processes handled by these proteins and their capability to produce multi-variant and multi-directional responses allow them to form a unique regulatory net in a cell. The abundance of disordered proteins inside the cell is precisely controlled at the synthesis and clearance levels as well as via interaction with specific binding partners and posttranslational modifications. Another recently recognized biologically active state of proteins is the functional amyloid. The formation of such functional amyloids is tightly controlled and therefore differs from the uncontrolled formation of pathogenic amyloids which are associated with the pathogenesis of several conformational diseases, the development of which is likely to be determined by the failures of the cellular regulatory systems rather than by the formation of the proteinaceous deposits and/or by the protofibril toxicity. PMID:20097220
Function of YY1 in Long-Distance DNA Interactions
Atchison, Michael L.
2014-01-01
During B cell development, long-distance DNA interactions are needed for V(D)J somatic rearrangement of the immunoglobulin (Ig) loci to produce functional Ig genes, and for class switch recombination (CSR) needed for antibody maturation. The tissue-specificity and developmental timing of these mechanisms is a subject of active investigation. A small number of factors are implicated in controlling Ig locus long-distance interactions including Pax5, Yin Yang 1 (YY1), EZH2, IKAROS, CTCF, cohesin, and condensin proteins. Here we will focus on the role of YY1 in controlling these mechanisms. YY1 is a multifunctional transcription factor involved in transcriptional activation and repression, X chromosome inactivation, Polycomb Group (PcG) protein DNA recruitment, and recruitment of proteins required for epigenetic modifications (acetylation, deacetylation, methylation, ubiquitination, sumoylation, etc.). YY1 conditional knock-out indicated that YY1 is required for B cell development, at least in part, by controlling long-distance DNA interactions at the immunoglobulin heavy chain and Igκ loci. Our recent data show that YY1 is also required for CSR. The mechanisms implicated in YY1 control of long-distance DNA interactions include controlling non-coding antisense RNA transcripts, recruitment of PcG proteins to DNA, and interaction with complexes involved in long-distance DNA interactions including the cohesin and condensin complexes. Though common rearrangement mechanisms operate at all Ig loci, their distinct temporal activation along with the ubiquitous nature of YY1 poses challenges for determining the specific mechanisms of YY1 function in these processes, and their regulation at the tissue-specific and B cell stage-specific level. The large numbers of post-translational modifications that control YY1 functions are possible candidates for regulation. PMID:24575094
Structure and function of homodomain-leucine zipper (HD-Zip) proteins.
Elhiti, Mohamed; Stasolla, Claudio
2009-02-01
Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors unique to plants and are encoded by more than 25 genes in Arabidopsis thaliana. Based on sequence analyses these proteins have been classified into four distinct groups: HD-Zip I-IV. HD-Zip proteins are characterized by the presence of two functional domains; a homeodomain (HD) responsible for DNA binding and a leucine zipper domain (Zip) located immediately C-terminal to the homeodomain and involved in protein-protein interaction. Despite sequence similarities HD-ZIP proteins participate in a variety of processes during plant growth and development. HD-Zip I proteins are generally involved in responses related to abiotic stress, abscisic acid (ABA), blue light, de-etiolation and embryogenesis. HD-Zip II proteins participate in light response, shade avoidance and auxin signalling. Members of the third group (HD-Zip III) control embryogenesis, leaf polarity, lateral organ initiation and meristem function. HD-Zip IV proteins play significant roles during anthocyanin accumulation, differentiation of epidermal cells, trichome formation and root development.
Chang, Chia-Hao; Tang, Cheng-Hao; Kang, Chao-Kai; Lo, Wan-Yu; Lee, Tsung-Han
Milkfish is an important aquaculture species in Taiwan, and its high mortality during cold snaps in winter usually causes huge economic losses. To understand the effect of hypothermal stress and the corresponding compensatory stress response in milkfish, this study aimed to compare liver and gill protein levels between milkfish exposed to nonlethal (18°C), lethal (16°C), and control (28°C) temperatures. Using a proteomics approach based on two-dimensional electrophoresis and nano-LC-MS/MS analysis, this study identified thirty unique protein spots from milkfish livers and gills for which protein abundance was significantly different between nonlethal, lethal, and control temperature groups. Proteins identified in the liver were classified into three different categories according to their cellular function: (1) anti-oxidative stress, (2) apoptotic pathway, and (3) cytoskeleton. Similarly, proteins identified in the gill were sorted in five different functional categories: (1) cytoskeleton, (2) immune response, (3) protein quality control, (4) energy production, and (5) intracellular homeostasis. Based on functional information derived from the identified proteins, we assumed that different levels of hypothermal stress had a different effect and induced a different cellular response. Upon nonlethal hypothermal stress, the identified proteins were involved in anti-oxidative stress and anti-inflammation pathways, suggesting that milkfish had high levels of oxidative stress in the liver and exhibited inflammation response in the gill. Upon lethal hypothermal stress, however, identified proteins were associated with apoptosis in the liver and regulation of intracellular homeostasis in the gill. The present study provided evidence to illustrate different multi-physiological responses to nonlethal and lethal hypothermal stress in milkfish livers and gills.
Chang, Chia-Hao; Tang, Cheng-Hao; Kang, Chao-Kai; Lo, Wan-Yu; Lee, Tsung-Han
2016-01-01
Milkfish is an important aquaculture species in Taiwan, and its high mortality during cold snaps in winter usually causes huge economic losses. To understand the effect of hypothermal stress and the corresponding compensatory stress response in milkfish, this study aimed to compare liver and gill protein levels between milkfish exposed to nonlethal (18°C), lethal (16°C), and control (28°C) temperatures. Using a proteomics approach based on two-dimensional electrophoresis and nano-LC-MS/MS analysis, this study identified thirty unique protein spots from milkfish livers and gills for which protein abundance was significantly different between nonlethal, lethal, and control temperature groups. Proteins identified in the liver were classified into three different categories according to their cellular function: (1) anti-oxidative stress, (2) apoptotic pathway, and (3) cytoskeleton. Similarly, proteins identified in the gill were sorted in five different functional categories: (1) cytoskeleton, (2) immune response, (3) protein quality control, (4) energy production, and (5) intracellular homeostasis. Based on functional information derived from the identified proteins, we assumed that different levels of hypothermal stress had a different effect and induced a different cellular response. Upon nonlethal hypothermal stress, the identified proteins were involved in anti-oxidative stress and anti-inflammation pathways, suggesting that milkfish had high levels of oxidative stress in the liver and exhibited inflammation response in the gill. Upon lethal hypothermal stress, however, identified proteins were associated with apoptosis in the liver and regulation of intracellular homeostasis in the gill. The present study provided evidence to illustrate different multi-physiological responses to nonlethal and lethal hypothermal stress in milkfish livers and gills. PMID:27657931
Lee, Du-Hwa; Park, Seung Jun; Ahn, Chang Sook
2017-01-01
Dynamic control of protein translation in response to the environment is essential for the survival of plant cells. Target of rapamycin (TOR) coordinates protein synthesis with cellular energy/nutrient availability through transcriptional modulation and phosphorylation of the translation machinery. However, mechanisms of TOR-mediated translation control are poorly understood in plants. Here, we report that Arabidopsis thaliana MRF (MA3 DOMAIN-CONTAINING TRANSLATION REGULATORY FACTOR) family genes encode translation regulatory factors under TOR control, and their functions are particularly important in energy-deficient conditions. Four MRF family genes (MRF1-MRF4) are transcriptionally induced by dark and starvation (DS). Silencing of multiple MRFs increases susceptibility to DS and treatment with a TOR inhibitor, while MRF1 overexpression decreases susceptibility. MRF proteins interact with eIF4A and cofractionate with ribosomes. MRF silencing decreases translation activity, while MRF1 overexpression increases it, accompanied by altered ribosome patterns, particularly in DS. Furthermore, MRF deficiency in DS causes altered distribution of mRNAs in sucrose gradient fractions and accelerates rRNA degradation. MRF1 is phosphorylated in vivo and phosphorylated by S6 kinases in vitro. MRF expression and MRF1 ribosome association and phosphorylation are modulated by cellular energy status and TOR activity. We discuss possible mechanisms of the function of MRF family proteins under normal and energy-deficient conditions and their functional link with the TOR pathway. PMID:29084871
Reprogramming cellular functions with engineered membrane proteins.
Arber, Caroline; Young, Melvin; Barth, Patrick
2017-10-01
Taking inspiration from Nature, synthetic biology utilizes and modifies biological components to expand the range of biological functions for engineering new practical devices and therapeutics. While early breakthroughs mainly concerned the design of gene circuits, recent efforts have focused on engineering signaling pathways to reprogram cellular functions. Since signal transduction across cell membranes initiates and controls intracellular signaling, membrane receptors have been targeted by diverse protein engineering approaches despite limited mechanistic understanding of their function. The modular architecture of several receptor families has enabled the empirical construction of chimeric receptors combining domains from distinct native receptors which have found successful immunotherapeutic applications. Meanwhile, progress in membrane protein structure determination, computational modeling and rational design promise to foster the engineering of a broader range of membrane receptor functions. Marrying empirical and rational membrane protein engineering approaches should enable the reprogramming of cells with widely diverse fine-tuned functions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Viral Mimicry to Usurp Ubiquitin and SUMO Host Pathways
Wimmer, Peter; Schreiner, Sabrina
2015-01-01
Posttranslational modifications (PTMs) of proteins include enzymatic changes by covalent addition of cellular regulatory determinants such as ubiquitin (Ub) and small ubiquitin-like modifier (SUMO) moieties. These modifications are widely used by eukaryotic cells to control the functional repertoire of proteins. Over the last decade, it became apparent that the repertoire of ubiquitiylation and SUMOylation regulating various biological functions is not restricted to eukaryotic cells, but is also a feature of human virus families, used to extensively exploit complex host-cell networks and homeostasis. Intriguingly, besides binding to host SUMO/Ub control proteins and interfering with the respective enzymatic cascade, many viral proteins mimic key regulatory factors to usurp this host machinery and promote efficient viral outcomes. Advanced detection methods and functional studies of ubiquitiylation and SUMOylation during virus-host interplay have revealed that human viruses have evolved a large arsenal of strategies to exploit these specific PTM processes. In this review, we highlight the known viral analogs orchestrating ubiquitin and SUMO conjugation events to subvert and utilize basic enzymatic pathways. PMID:26343706
Cytoplasmic ASPP1 inhibits apoptosis through the control of YAP
Vigneron, Arnaud M.; Ludwig, Robert L.; Vousden, Karen H.
2010-01-01
The ASPP (apoptosis-stimulating protein of p53) family of proteins can function in the nucleus to modulate the transcriptional activity of p53, with ASPP1 and ASPP2 contributing to the expression of apoptotic target genes. In this study, we describe a new function for cytoplasmic ASPP1 in controlling YAP (Yes-associated protein)/TAZ. ASPP1 can inhibit the interaction of YAP with LATS1 (large tumor suppressor 1), a kinase that phosphorylates YAP/TAZ and promotes cytoplasmic sequestration and protein degradation. This function of ASPP1 therefore enhances nuclear accumulation of YAP/TAZ and YAP/TAZ-dependent transcriptional regulation. The consequence of YAP/TAZ activation by ASPP1 is to inhibit apoptosis, in part through the down-regulation of Bim expression, leading to resistance to anoikis and enhanced cell migration. These results reveal a potential oncogenic role for cytoplasmic ASPP1, in contrast to the tumor-suppressive activity described previously for nuclear ASPP1. PMID:21041411
Multifunctional Mitochondrial AAA Proteases
Glynn, Steven E.
2017-01-01
Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle. PMID:28589125
Multifunctional Mitochondrial AAA Proteases.
Glynn, Steven E
2017-01-01
Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.
Analysis of functional redundancies within the Arabidopsis TCP transcription factor family
Danisman, Selahattin; de Folter, Stefan; Immink, Richard G. H.
2013-01-01
Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by genetic analysis. In the TCP family, however, identification is impeded by relatively low overall sequence similarity. In a search for functionally redundant TCP pairs that control Arabidopsis leaf development, this work performed an integrative bioinformatics analysis, combining protein sequence similarities, gene expression data, and results of pair-wise protein–protein interaction studies for the 24 members of the Arabidopsis TCP transcription factor family. For this, the work completed any lacking gene expression and protein–protein interaction data experimentally and then performed a comprehensive prediction of potential functional redundant TCP pairs. Subsequently, redundant functions could be confirmed for selected predicted TCP pairs by genetic and molecular analyses. It is demonstrated that the previously uncharacterized class I TCP19 gene plays a role in the control of leaf senescence in a redundant fashion with TCP20. Altogether, this work shows the power of combining classical genetic and molecular approaches with bioinformatics predictions to unravel functional redundancies in the TCP transcription factor family. PMID:24129704
Proteomic analysis of protein phosphatase Z1 from Candida albicans
Pfliegler, Walter P.; Petrényi, Katalin; Boros, Enikő; Pócsi, István; Tőzsér, József; Dombrádi, Viktor
2017-01-01
Protein phosphatase Z is a “novel type” fungus specific serine/threonine protein phosphatase. Previously our research group identified the CaPPZ1 gene in the opportunistic pathogen Candida albicans and reported that the gene deletion had several important physiological consequences. In order to reveal the protein targets and the associated mechanisms behind the functions of the phosphatase a proteomic method was adopted for the comparison of the cappz1 deletion mutant and the genetically matching QMY23 control strain. Proteins extracted from the control and deletion mutant strains were separated by two-dimensional gel electrophoresis and the protein spots were stained with RuBPS and Pro-Q Diamond in order to visualize the total proteome and the phosphoproteome, respectively. The alterations in spot intensities were determined by densitometry and were analysed with the Delta2D (Decodon) software. Spots showing significantly different intensities between the mutant and control strains were excised from the gels and were digested with trypsin. The resulting peptides were identified by LC-MS/MS mass spectrometry. As many as 15 protein spots were found that exhibited significant changes in their intensity upon the deletion of the phosphatase and 20 phosphoproteins were identified in which the level of phosphorylation was modified significantly in the mutant. In agreement with previous findings we found that the affected proteins function in protein synthesis, oxidative stress response, regulation of morphology and metabolism. Among these proteins we identified two potential CaPpz1 substrates (Eft2 and Rpp0) that may regulate the elongation step of translation. RT-qPCR experiments revealed that the expression of the genes coding for the affected proteins was not altered significantly. Thus, the absence of CaPpz1 exerted its effects via protein synthesis/degradation and phosphorylation/dephosphorylation. In addition, our proteomics data strongly suggested a role for CaPpz1 in biofilm formation, was confirmed experimentally. Thus our unbiased proteomic approach lead to the discovery of a novel function for this phosphatase in C. albicans. PMID:28837603
Nucleation and growth control in protein crystallization
NASA Technical Reports Server (NTRS)
Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.
1990-01-01
The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.
Smith, Tucker J; Foegeding, E Allen; Drake, MaryAnne
2015-10-01
Whey protein is a highly functional food ingredient used in a wide variety of applications. A large portion of fluid whey produced in the United States is derived from Cheddar cheese manufacture and contains annatto (norbixin), and therefore must be bleached. The objective of this study was to compare sensory and functionality differences between whey protein isolate (WPI) bleached by benzoyl peroxide (BP) or hydrogen peroxide (HP). HP and BP bleached WPI and unbleached controls were manufactured in triplicate. Descriptive sensory analysis and gas chromatography-mass spectrometry were conducted to determine flavor differences between treatments. Functionality differences were evaluated by measurement of foam stability, protein solubility, SDS-PAGE, and effect of NaCl concentration on gelation relative to an unbleached control. HP bleached WPI had higher concentrations of lipid oxidation and sulfur containing volatile compounds than both BP and unbleached WPI (P < 0.05). HP bleached WPI was characterized by high aroma intensity, cardboard, cabbage, and fatty flavors, while BP bleached WPI was differentiated by low bitter taste. Overrun and yield stress were not different among WPI (P < 0.05). Soluble protein loss at pH 4.6 of WPI decreased by bleaching with either hydrogen peroxide or benzoyl peroxide (P < 0.05), and the heat stability of WPI was also distinct among WPI (P < 0.05). SDS PAGE results suggested that bleaching of whey with either BP or HP resulted in protein degradation, which likely contributed to functionality differences. These results demonstrate that bleaching has flavor effects as well as effects on many of the functionality characteristics of whey proteins. Whey protein isolate (WPI) is often used for its functional properties, but the effect of oxidative bleaching chemicals on the functional properties of WPI is not known. This study identifies the effects of hydrogen peroxide and benzoyl peroxide on functional and flavor characteristics of WPI bleached by hydrogen and benzoyl peroxide and provides insights for the product applications which may benefit from bleaching. © 2015 Institute of Food Technologists®
Automated quantitative assessment of proteins' biological function in protein knowledge bases.
Mayr, Gabriele; Lepperdinger, Günter; Lackner, Peter
2008-01-01
Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.
Liprin-α3 controls vesicle docking and exocytosis at the active zone of hippocampal synapses.
Wong, Man Yan; Liu, Changliang; Wang, Shan Shan H; Roquas, Aram C F; Fowler, Stephen C; Kaeser, Pascal S
2018-02-27
The presynaptic active zone provides sites for vesicle docking and release at central nervous synapses and is essential for speed and accuracy of synaptic transmission. Liprin-α binds to several active zone proteins, and loss-of-function studies in invertebrates established important roles for Liprin-α in neurodevelopment and active zone assembly. However, Liprin-α localization and functions in vertebrates have remained unclear. We used stimulated emission depletion superresolution microscopy to systematically determine the localization of Liprin-α2 and Liprin-α3, the two predominant Liprin-α proteins in the vertebrate brain, relative to other active-zone proteins. Both proteins were widely distributed in hippocampal nerve terminals, and Liprin-α3, but not Liprin-α2, had a prominent component that colocalized with the active-zone proteins Bassoon, RIM, Munc13, RIM-BP, and ELKS. To assess Liprin-α3 functions, we generated Liprin-α3-KO mice by using CRISPR/Cas9 gene editing. We found reduced synaptic vesicle tethering and docking in hippocampal neurons of Liprin-α3-KO mice, and synaptic vesicle exocytosis was impaired. Liprin-α3 KO also led to mild alterations in active zone structure, accompanied by translocation of Liprin-α2 to active zones. These findings establish important roles for Liprin-α3 in active-zone assembly and function, and suggest that interplay between various Liprin-α proteins controls their active-zone localization.
USDA-ARS?s Scientific Manuscript database
A Maillard type reaction in the dry state was utilized to create conjugates between whey protein isolate (WPI) and sugar beet pectin (SBP) to achieve improved functional properties including solubility, colloidal stability and oil-in-water emulsion stability. To optimize the reaction conditions, mi...
The Fragile X Mental Retardation Protein, FMRP, Recognizes G-Quartets
ERIC Educational Resources Information Center
Darnell, Jennifer C.; Warren, Stephen T.; Darnell, Robert B.
2004-01-01
Fragile X mental retardation is a disease caused by the loss of function of a single RNA-binding protein, FMRP. Identifying the RNA targets recognized by FMRP is likely to reveal much about its functions in controlling some aspects of memory and behavior. Recent evidence suggests that one of the predominant RNA motifs recognized by the FMRP…
Simulation-Based Validation of the p53 Transcriptional Activity with Hybrid Functional Petri Net.
Doi, Atsushi; Nagasaki, Masao; Matsuno, Hiroshi; Miyano, Satoru
2011-01-01
MDM2 and p19ARF are essential proteins in cancer pathways forming a complex with protein p53 to control the transcriptional activity of protein p53. It is confirmed that protein p53 loses its transcriptional activity by forming the functional dimer with protein MDM2. However, it is still unclear that protein p53 keeps its transcriptional activity when it forms the trimer with proteins MDM2 and p19ARF. We have observed mutual behaviors among genes p53, MDM2, p19ARF and their products on a computational model with hybrid functional Petri net (HFPN) which is constructed based on information described in the literature. The simulation results suggested that protein p53 should have the transcriptional activity in the forms of the trimer of proteins p53, MDM2, and p19ARF. This paper also discusses the advantages of HFPN based modeling method in terms of pathway description for simulations.
Biomimetic devices functionalized by membrane channel proteins
NASA Astrophysics Data System (ADS)
Schmidt, Jacob
2004-03-01
We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.
Vitriol, Eric A; Uetrecht, Andrea C; Shen, Feimo; Jacobson, Ken; Bear, James E
2007-04-17
Chromophore-assisted laser inactivation (CALI) is a light-mediated technique that offers precise spatiotemporal control of protein inactivation, enabling better understanding of the protein's role in cell function. EGFP has been used effectively as a CALI chromophore, and its cotranslational attachment to the target protein avoids having to use exogenously added labeling reagents. A potential drawback to EGFP-CALI is that the CALI phenotype can be obscured by the endogenous, unlabeled protein that is not susceptible to light inactivation. Performing EGFP-CALI experiments in deficient cells rescued with functional EGFP-fusion proteins permits more complete loss of function to be achieved. Here, we present a modified lentiviral system for rapid and efficient generation of knockdown cell lines complemented with physiological levels of EGFP-fusion proteins. We demonstrate that CALI of EGFP-CapZbeta increases uncapped actin filaments, resulting in enhanced filament growth and the formation of numerous protrusive structures. We show that these effects are completely dependent upon knocking down the endogenous protein. We also demonstrate that CALI of EGFP-Mena in Mena/VASP-deficient cells stabilizes lamellipodial protrusions.
Rodríguez-Capote, Karina; Manzanares, Dahis; Haines, Thomas; Possmayer, Fred
2006-01-01
Exposing bovine lipid extract surfactant (BLES), a clinical surfactant, to reactive oxygen species arising from hypochlorous acid or the Fenton reaction resulted in an increase in lipid (conjugated dienes, lipid aldehydes) and protein (carbonyls) oxidation products and a reduction in surface activity. Experiments where oxidized phospholipids (PL) were mixed with BLES demonstrated that this addition hampered BLES biophysical activity. However the effects were only moderately greater than with control PL. These results imply a critical role for protein oxidation. BLES oxidation by either method resulted in alterations in surfactant proteins SP-B and SP-C, as evidenced by altered Coomassie blue and silver staining. Western blot analyses showed depressed reactivity with specific antibodies. Oxidized SP-C showed decreased palmitoylation. Reconstitution experiments employing PL, SP-B, and SP-C isolated from control or oxidized BLES demonstrated that protein oxidation was more deleterious than lipid oxidation. Furthermore, addition of control SP-B can improve samples containing oxidized SP-C, but not vice versa. We conclude that surfactant oxidation arising from reactive oxygen species generated by air pollution or leukocytes interferes with surfactant function through oxidation of surfactant PL and proteins, but that protein oxidation, in particular SP-B modification, produces the major deleterious effects. PMID:16443649
Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.
2013-01-01
The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138
Zhuang, Fengfeng; Nguyen, Manuel P; Shuler, Charles; Liu, Yi-Hsin
2009-04-03
Previous studies have shown that Msx proteins control gene transcription predominantly through repression mechanisms. However, gene expression studies using either the gain-of-function or the loss-of-function mutants revealed many gene targets whose expression require functional Msx proteins. To date, investigations into the mechanisms of Msx-dependent transactivation have been hindered by the lack of a responsive promoter. Here, we demonstrated the usefulness of the mouse Hspa1b promoter in probing Msx-dependent mechanisms of gene activation. We showed that Msx protein activates Hspa1b promoter via its C-terminal domain. The activation absolutely depends on the HSEs and physical interactions between Msx proteins and heat shock factors may play a contributing role.
Zhuang, Fengfeng; Nguyen, Manuel P.; Shuler, Charles; Liu, Yi-Hsin
2009-01-01
Previous studies have shown that Msx proteins control gene transcription predominantly through repression mechanisms. However, gene expression studies using either the gain-of-function or the loss-of-function mutants revealed many gene targets whose expression require functional Msx proteins. To date, investigations into the mechanisms of Msx-dependent trans-activation have been hindered by the lack of a responsive promoter. Here, we demonstrated the usefulness of the mouse Hspa1b promoter in probing Msx-dependent mechanisms of gene activation. We showed that Msx protein activates Hspa1b promoter via its C-terminal domain. The activation absolutely depends on the HSEs and physical interactions between Msx proteins and Heat shock factors may play a contributing role. PMID:19338779
Defining the human deubiquitinating enzyme interaction landscape.
Sowa, Mathew E; Bennett, Eric J; Gygi, Steven P; Harper, J Wade
2009-07-23
Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.
Defining the Human Deubiquitinating Enzyme Interaction Landscape
Sowa, Mathew E.; Bennett, Eric J.; Gygi, Steven P.; Harper, J. Wade
2009-01-01
Summary Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform, called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel non-reciprocal proteomic datasets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, sub-cellular localization and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway. PMID:19615732
Uhart, Marina; Flores, Gabriel; Bustos, Diego M.
2016-01-01
Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976
Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures.
Koussa, Mounir A; Sotomayor, Marcos; Wong, Wesley P
2014-05-15
Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. Copyright © 2014. Published by Elsevier Inc.
Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures
Koussa, Mounir A.; Sotomayor, Marcos; Wong, Wesley P.
2014-01-01
Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. PMID:24568941
Function of translationally controlled tumor protein (TCTP) in Eudrilus eugeniae regeneration
Subramanian, Elaiya Raja; Gopi Daisy, Nino; Sudalaimani, Dinesh Kumar; Ramamoorthy, Kalidas; Balakrishnan, Subburathinam; Selvan Christyraj, Jackson Durairaj; Arumugaswami, Vaithilingaraja
2017-01-01
TCTP (Translationally Controlled Tumour Protein) is a multifunctional protein that plays a role in the development, immune system, tumour reversion, and maintenance of stem cells. The mRNA of the Tpt1 gene is over-expressed during liver regeneration. But, the function of the protein in regeneration is not known. To study the role of the protein in regeneration, the earthworm Eudrilus eugeniae was chosen. First, the full length cDNA of the Tpt1 gene was sequenced. The size of the cDNA is 504 bp and the protein has 167 amino acids. The highest level of TCTP expression was documented in the worm after three days of regeneration. The protein was found to be expressed specifically in the epithelial layer of the skin. During regeneration, the protein expression was found to be the highest at the tip of blastema. The pharmacological suppression of TCTP using nutlin-3 and TCTP RNAi experiments resulted in the failure of the regeneration process. The suppression of TCTP caused the arrest of proliferation in posterior amputated worms. The severe cell death was documented in the amputated region of nutlin-3 injected worm. The silencing of TCTP has blocked the modification of clitellar segments. The experiments confirm that TCTP has major functions in the upstream signalling of cell proliferation in the early regeneration process in E. eugeniae. PMID:28403226
Function of translationally controlled tumor protein (TCTP) in Eudrilus eugeniae regeneration.
Subramanian, Elaiya Raja; Gopi Daisy, Nino; Sudalaimani, Dinesh Kumar; Ramamoorthy, Kalidas; Balakrishnan, Subburathinam; Selvan Christyraj, Jackson Durairaj; Arumugaswami, Vaithilingaraja; Sivasubramaniam, Sudhakar
2017-01-01
TCTP (Translationally Controlled Tumour Protein) is a multifunctional protein that plays a role in the development, immune system, tumour reversion, and maintenance of stem cells. The mRNA of the Tpt1 gene is over-expressed during liver regeneration. But, the function of the protein in regeneration is not known. To study the role of the protein in regeneration, the earthworm Eudrilus eugeniae was chosen. First, the full length cDNA of the Tpt1 gene was sequenced. The size of the cDNA is 504 bp and the protein has 167 amino acids. The highest level of TCTP expression was documented in the worm after three days of regeneration. The protein was found to be expressed specifically in the epithelial layer of the skin. During regeneration, the protein expression was found to be the highest at the tip of blastema. The pharmacological suppression of TCTP using nutlin-3 and TCTP RNAi experiments resulted in the failure of the regeneration process. The suppression of TCTP caused the arrest of proliferation in posterior amputated worms. The severe cell death was documented in the amputated region of nutlin-3 injected worm. The silencing of TCTP has blocked the modification of clitellar segments. The experiments confirm that TCTP has major functions in the upstream signalling of cell proliferation in the early regeneration process in E. eugeniae.
Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration.
Cui, Suxia; Hu, Jia; Guo, Shilei; Wang, Jie; Cheng, Yali; Dang, Xinxing; Wu, Lili; He, Yikun
2012-01-01
Physcomitrella patens is an extremely dehydration-tolerant moss. However, the molecular basis of its responses to loss of cellular water remains unclear. A comprehensive proteomic analysis of dehydration- and rehydration-responsive proteins has been conducted using quantitative two-dimensional difference in-gel electrophoresis (2D-DIGE), and traditional 2-D gel electrophoresis (2-DE) combined with MALDI TOF/TOF MS. Of the 216 differentially-expressed protein spots, 112 and 104 were dehydration- and rehydration-responsive proteins, respectively. The functional categories of the most differentially-expressed proteins were seed maturation, defence, protein synthesis and quality control, and energy production. Strikingly, most of the late embryogenesis abundant (LEA) proteins were expressed at a basal level under control conditions and their synthesis was strongly enhanced by dehydration, a pattern that was confirmed by RT-PCR. Actinoporins, phosphatidylethanolamine-binding protein, arabinogalactan protein, and phospholipase are the likely dominant players in the defence system. In addition, 24 proteins of unknown function were identified as novel dehydration- or rehydration-responsive proteins. Our data indicate that Physcomitrella adopts a rapid protein response mechanism to cope with dehydration in its leafy-shoot and basal expression levels of desiccation-tolerant proteins are rapidly upgraded at high levels under stress. This mechanism appears similar to that seen in angiosperm seeds.
Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration
Cui, Suxia; Hu, Jia; Guo, Shilei; Wang, Jie; Cheng, Yali; Dang, Xinxing; Wu, Lili; He, Yikun
2012-01-01
Physcomitrella patens is an extremely dehydration-tolerant moss. However, the molecular basis of its responses to loss of cellular water remains unclear. A comprehensive proteomic analysis of dehydration- and rehydration-responsive proteins has been conducted using quantitative two-dimensional difference in-gel electrophoresis (2D-DIGE), and traditional 2-D gel electrophoresis (2-DE) combined with MALDI TOF/TOF MS. Of the 216 differentially-expressed protein spots, 112 and 104 were dehydration- and rehydration-responsive proteins, respectively. The functional categories of the most differentially-expressed proteins were seed maturation, defence, protein synthesis and quality control, and energy production. Strikingly, most of the late embryogenesis abundant (LEA) proteins were expressed at a basal level under control conditions and their synthesis was strongly enhanced by dehydration, a pattern that was confirmed by RT-PCR. Actinoporins, phosphatidylethanolamine-binding protein, arabinogalactan protein, and phospholipase are the likely dominant players in the defence system. In addition, 24 proteins of unknown function were identified as novel dehydration- or rehydration-responsive proteins. Our data indicate that Physcomitrella adopts a rapid protein response mechanism to cope with dehydration in its leafy-shoot and basal expression levels of desiccation-tolerant proteins are rapidly upgraded at high levels under stress. This mechanism appears similar to that seen in angiosperm seeds. PMID:21994173
López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio
2010-07-01
During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source-independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the DeltameaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., and D of this chapter, and to perform functions required by cooperative State-Federal disease control... protein and phenylalanine at residue 117, which is the N-terminus of the F1 protein. The term “multiple...
Lee, Kyung-Yil
2017-06-01
Every cell of an organism is separated and protected by a cell membrane. It is proposed that harmony between intercellular communication and the health of an organism is controlled by a system, designated the protein-homeostasis-system (PHS). Kidneys consist of a variety of types of renal cells, each with its own characteristic cell-receptor interactions and producing characteristic proteins. A functional union of these renal cells can be determined by various renal function tests, and harmonious intercellular communication is essential for the healthy state of the host. Injury to a kind of renal cells can impair renal function and induce an imbalance in total body health. Every acute or chronic renal disease has unknown etiologic substances that are responsible for renal cell injury at the molecular level. The immune/repair system of the host should control the etiologic substances acting against renal cells; if this system fails, the disease progresses to end stage renal disease. Each renal disease has its characteristic pathologic lesions where immune cells and immune proteins, such as immunoglobulins and complements, are infiltrated. These immune cells and immune proteins may control the etiologic substances involved in renal pathologic lesions. Also, genetic renal diseases and cancers may originate from a protein deficiency or malfunctioning protein under the PHS. A unified pathogenesis for renal diseases, including acute glomerulonephritis, idiopathic nephrotic syndrome, immunoglobulin A nephropathy, genetic renal diseases such as Alport syndrome, and malignancies such as Wilms tumor and renal cell carcinoma, is proposed using the PHS hypothesis.
SUMO and Nucleocytoplasmic Transport.
Ptak, Christopher; Wozniak, Richard W
2017-01-01
The transport of proteins between the nucleus and cytoplasm occurs through nuclear pore complexes and is facilitated by numerous transport factors. These transport processes are often regulated by post-translational modification or, reciprocally, transport can function to control post-translational modifications through regulated transport of key modifying enzymes. This interplay extends to relationships between nucleocytoplasmic transport and SUMO-dependent pathways. Examples of protein sumoylation inhibiting or stimulating nucleocytoplasmic transport have been documented, both through its effects on the physical properties of cargo molecules and by directly regulating the functions of components of the nuclear transport machinery. Conversely, the nuclear transport machinery regulates the localization of target proteins and enzymes controlling dynamics of sumoylation and desumoylation thereby affecting the sumoylation state of target proteins. These inter-relationships between SUMO and the nucleocytoplasmic transport machinery, and the varied ways in which they occur, are discussed.
Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; Yonamine, Caio Yogi; Salgueiro, Rafael Barrera; Nunes, Maria Tereza
2018-03-01
Beta-hydroxy-beta-methylbutyrate (HMB), a leucine metabolite, enhances the gain of skeletal muscle mass by increasing protein synthesis or attenuating protein degradation or both. The aims of this study were to investigate the effect of HMB on molecular factors controlling skeletal muscle protein synthesis and degradation, as well as muscle contractile function, in fed and fasted conditions. Wistar rats were supplied daily with HMB (320 mg/kg body weight diluted in NaCl-0.9%) or vehicle only (control) by gavage for 28 days. After this period, some of the animals were subjected to a 24-h fasting, while others remained in the fed condition. The EDL muscle was then removed, weighed and used to evaluate the genes and proteins involved in protein synthesis (AKT/4E-BP1/S6) and degradation (Fbxo32 and Trim63). A sub-set of rats were used to measure in vivo muscle contractile function. HMB supplementation increased AKT phosphorylation during fasting (three-fold). In the fed condition, no differences were detected in atrogenes expression between control and HMB supplemented group; however, HMB supplementation did attenuate the fasting-induced increase in their expression levels. Fasting animals receiving HMB showed improved sustained tetanic contraction times (one-fold) and an increased muscle to tibia length ratio (1.3-fold), without any cross-sectional area changes. These results suggest that HMB supplementation under fasting conditions increases AKT phosphorylation and attenuates the increased of atrogenes expression, followed by a functional improvement and gain of skeletal muscle weight, suggesting that HMB protects skeletal muscle against the deleterious effects of fasting.
NASA Astrophysics Data System (ADS)
Kamel, Nancy N.; Ahmed, Ayman M. H.; Mehaisen, Gamal M. K.; Mashaly, Magdi M.; Abass, Ahmed O.
2017-09-01
In tropical and semitropical regions, raising broiler chickens out of their thermal comfort zone can cause an added economic loss in the poultry industry. The cause for the deleterious effects on immunity and growth performance of broilers under high environmental temperatures is still poorly understood. Therefore, the aim of the current investigation was to evaluate the effect of heat stress on leukocytes protein synthesis and immune function as a possible direct cause of low performance in broiler chickens under such condition. In this study, 300 one-day-old male broiler chicks (Cobb500™) were randomly assigned into 2 groups with 5 replicates of 30 chicks each. From 21 to 42 days of age, one group was exposed to non-stressed condition at 24 °C and 50% relative humidity (control group), while the other group was exposed to heat stress at 35 °C and 50% relative humidity (HS group). At 42 days of age, blood samples were collected from each group to evaluate stress indicators, immune function, and leukocytes protein synthesis. Production performance was also recorded. Noteworthy, protein synthesis in leukocytes was significantly ( P < 0.05) inhibited in HS group by 38% compared to control group. In contrast, the phosphorylation level on threonine 56 site (Thr56) of eukaryotic elongation factor (eEF2), which indicates the suppression of protein translation process through altering the protein elongation phase, was significantly threefold higher in HS group than in control ( P < 0.05). In addition, an increase in stress indicators was markedly ( P < 0.05) presented in the HS birds by twofold increase in heterophil/lymphocyte (H/L) ratio and threefold increase in plasma corticosterone level compared to control. Furthermore, the immune function was significantly ( P < 0.05) suppressed in HS birds than control (0.99 vs. 1.88 mg/mL plasma IgG, 89.2 vs. 148.0 μg/mL plasma IgM, 4.80 vs. 7.20 antibody titer against SRBC, and 1.38 vs. 3.39 stimulation index of lymphocyte proliferation in HS vs. control group, respectively). Moreover, results on the broiler performance indicate that HS birds had a significant ( P < 0.05) lower body weight gain by 58%, lower feed consumption by 39%, higher conversion ratio by 27%, and higher mortality by more than three times, compared to control birds. In conclusion, our results demonstrate that the inhibition of leukocyte protein synthesis through increasing the level of eEF2 Thr56 phosphorylation may play a key role in the observed decrease in immune function and growth performance with the high mortality rate encountered in broiler chickens under heat stress environment.
Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H
2014-06-21
Biosensor chips for immune-based assay systems have been investigated for their application in early diagnostics. The development of such systems strongly depends on the effective protein immobilization on polymer substrates. In order to achieve this complex heterogeneous interaction the polymer surface must be functionalized with chemical groups that are reactive towards proteins in a way that surface functional groups (such as carboxyl, -COOH; amine, -NH2; and hydroxyl, -OH) chemically or physically anchor the proteins to the polymer platform. Since the proteins are very sensitive towards their environment and can easily lose their activity when brought in close proximity to the solid surface, effective surface functionalization and high level of control over surface chemistry present the most important steps in the fabrication of biosensors. This paper reviews recent developments in surface functionalization and preparation of polymethacrylates for protein immobilization. Due to their versatility and cost effectiveness, this particular group of plastic polymers is widely used both in research and in industry.
Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azoitei, Mihai L.; Correia, Bruno E.; Ban, Yih-En Andrew
2012-02-07
The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.
Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes
NASA Technical Reports Server (NTRS)
Braam, J.; Sistrunk, M. L.; Polisensky, D. H.; Xu, W.; Purugganan, M. M.; Antosiewicz, D. M.; Campbell, P.; Johnson, K. A.; McIntire, L. V. (Principal Investigator)
1997-01-01
Expression of the Arabidopsis TCH genes is markedly upregulated in response to a variety of environmental stimuli including the seemingly innocuous stimulus of touch. Understanding the mechanism(s) and factors that control TCH gene regulation will shed light on the signaling pathways that enable plants to respond to environmental conditions. The TCH proteins include calmodulin, calmodulin-related proteins and a xyloglucan endotransglycosylase. Expression analyses and localization of protein accumulation indicates that the potential sites of TCH protein function include expanding cells and tissues under mechanical strain. We hypothesize that at least a subset of the TCH proteins may collaborate in cell wall biogenesis.
Saha, Krishnendu; Rahimi, Mehran; Yazdani, Mahdieh; Kim, Sung Tae; Moyano, Daniel F; Hou, Singyuk; Das, Ridhha; Mout, Rubul; Rezaee, Farhad; Mahmoudi, Morteza; Rotello, Vincent M
2016-04-26
Using a family of cationic gold nanoparticles (NPs) with similar size and charge, we demonstrate that proper surface engineering can control the nature and identity of protein corona in physiological serum conditions. The protein coronas were highly dependent on the hydrophobicity and arrangement of chemical motifs on NP surface. The NPs were uptaken in macrophages in a corona-dependent manner, predominantly through recognition of specific complement proteins in the NP corona. Taken together, this study shows that surface functionality can be used to tune the protein corona formed on NP surface, dictating the interaction of NPs with macrophages.
Text Mining Improves Prediction of Protein Functional Sites
Cohn, Judith D.; Ravikumar, Komandur E.
2012-01-01
We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388
Padmanabhan, Prasad Kottayil; Zghidi-Abouzid, Ouafa; Samant, Mukesh; Dumas, Carole; Aguiar, Bruno Guedes; Estaquier, Jerome; Papadopoulou, Barbara
2016-01-01
DDX3 is a highly conserved member of ATP-dependent DEAD-box RNA helicases with multiple functions in RNA metabolism and cellular signaling. Here, we describe a novel function for DDX3 in regulating the mitochondrial stress response in the parasitic protozoan Leishmania. We show that genetic inactivation of DDX3 leads to the accumulation of mitochondrial reactive oxygen species (ROS) associated with a defect in hydrogen peroxide detoxification. Upon stress, ROS production is greatly enhanced, causing mitochondrial membrane potential loss, mitochondrial fragmentation, and cell death. Importantly, this phenotype is exacerbated upon oxidative stress in parasites forced to use the mitochondrial oxidative respiratory machinery. Furthermore, we show that in the absence of DDX3, levels of major components of the unfolded protein response as well as of polyubiquitinated proteins increase in the parasite, particularly in the mitochondrion, as an indicator of mitochondrial protein damage. Consistent with these findings, immunoprecipitation and mass-spectrometry studies revealed potential interactions of DDX3 with key components of the cellular stress response, particularly the antioxidant response, the unfolded protein response, and the AAA-ATPase p97/VCP/Cdc48, which is essential in mitochondrial protein quality control by driving proteosomal degradation of polyubiquitinated proteins. Complementation studies using DDX3 deletion mutants lacking conserved motifs within the helicase core support that binding of DDX3 to ATP is essential for DDX3's function in mitochondrial proteostasis. As a result of the inability of DDX3-depleted Leishmania to recover from ROS damage and to survive various stresses in the host macrophage, parasite intracellular development was impaired. Collectively, these observations support a central role for the Leishmania DDX3 homolog in preventing ROS-mediated damage and in maintaining mitochondrial protein quality control. PMID:27735940
O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice.
Makino, Ayako; Dai, Anzhi; Han, Ying; Youssef, Katia D; Wang, Weihua; Donthamsetty, Reshma; Scott, Brian T; Wang, Hong; Dillmann, Wolfgang H
2015-11-01
Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes. Copyright © 2015 the American Physiological Society.
Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
Inobe, Tomonao; Nukina, Nobuyuki
2016-07-01
Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Mechanism-based Proteomic Screening Identifies Targets of Thioredoxin-like Proteins*
Nakao, Lia S.; Everley, Robert A.; Marino, Stefano M.; Lo, Sze M.; de Souza, Luiz E.; Gygi, Steven P.; Gladyshev, Vadim N.
2015-01-01
Thioredoxin (Trx)-fold proteins are protagonists of numerous cellular pathways that are subject to thiol-based redox control. The best characterized regulator of thiols in proteins is Trx1 itself, which together with thioredoxin reductase 1 (TR1) and peroxiredoxins (Prxs) comprises a key redox regulatory system in mammalian cells. However, there are numerous other Trx-like proteins, whose functions and redox interactors are unknown. It is also unclear if the principles of Trx1-based redox control apply to these proteins. Here, we employed a proteomic strategy to four Trx-like proteins containing CXXC motifs, namely Trx1, Rdx12, Trx-like protein 1 (Txnl1) and nucleoredoxin 1 (Nrx1), whose cellular targets were trapped in vivo using mutant Trx-like proteins, under conditions of low endogenous expression of these proteins. Prxs were detected as key redox targets of Trx1, but this approach also supported the detection of TR1, which is the Trx1 reductant, as well as mitochondrial intermembrane proteins AIF and Mia40. In addition, glutathione peroxidase 4 was found to be a Rdx12 redox target. In contrast, no redox targets of Txnl1 and Nrx1 could be detected, suggesting that their CXXC motifs do not engage in mixed disulfides with cellular proteins. For some Trx-like proteins, the method allowed distinguishing redox and non-redox interactions. Parallel, comparative analyses of multiple thiol oxidoreductases revealed differences in the functions of their CXXC motifs, providing important insights into thiol-based redox control of cellular processes. PMID:25561728
2007-05-01
Signaling Pathway 5b. GRANT NUMBER W81XWH-05-1-0245 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Yi Yan 5e. TASK NUMBER...negative control to identify proteins non-specifically precipitated. Tandem mass spectrometric analysis of immunoprecipitated samples identified a...immunoprecipitated sample and negative control. It is important to note that, SRAP was present among the remaining specifically precipitated 87 proteins. Using the
Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes.
Jobert, Laure; Nilsen, Hilde
2014-07-01
The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.
Nucleolar Trafficking of Nucleostemin Family Proteins: Common versus Protein-Specific Mechanisms▿ §
Meng, Lingjun; Zhu, Qubo; Tsai, Robert Y. L.
2007-01-01
The nucleolus has begun to emerge as a subnuclear organelle capable of modulating the activities of nuclear proteins in a dynamic and cell type-dependent manner. It remains unclear whether one can extrapolate a rule that predicts the nucleolar localization of multiple proteins based on protein sequence. Here, we address this issue by determining the shared and unique mechanisms that regulate the static and dynamic distributions of a family of nucleolar GTP-binding proteins, consisting of nucleostemin (NS), guanine nucleotide binding protein-like 3 (GNL3L), and Ngp1. The nucleolar residence of GNL3L is short and primarily controlled by its basic-coiled-coil domain, whereas the nucleolar residence of NS and Ngp1 is long and requires the basic and the GTP-binding domains, the latter of which functions as a retention signal. All three proteins contain a nucleoplasmic localization signal (NpLS) that prevents their nucleolar accumulation. Unlike that of the basic domain, the activity of NpLS is dynamically controlled by the GTP-binding domain. The nucleolar retention and the NpLS-regulating functions of the G domain involve specific residues that cannot be predicted by overall protein homology. This work reveals common and protein-specific mechanisms underlying the nucleolar movement of NS family proteins. PMID:17923687
The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression
Balda, Maria S.; Matter, Karl
2000-01-01
Epithelial tight junctions regulate paracellular diffusion and restrict the intermixing of apical and basolateral plasma membrane components. We now identify a Y-box transcription factor, ZONAB (ZO-1-associated nucleic acid-binding protein), that binds to the SH3 domain of ZO-1, a submembrane protein of tight junctions. ZONAB localizes to the nucleus and at tight junctions, and binds to sequences of specific promoters containing an inverted CCAAT box. In reporter assays, ZONAB and ZO-1 functionally interact in the regulation of the ErbB-2 promoter in a cell density-dependent manner. In stably transfected overexpressing cells, ZO-1 and ZONAB control expression of endogenous ErbB-2 and function in the regulation of paracellular permeability. These data indicate that tight junctions directly participate in the control of gene expression and suggest that they function in the regulation of epithelial cell differentiation. PMID:10790369
Repurposing a bacterial quality control mechanism to enhance enzyme production in living cells
USDA-ARS?s Scientific Manuscript database
Heterologous expression of many proteins in bacteria, yeasts, and plants is often limited by low titers of functional protein. To address this problem, we have created a two-tiered directed evolution strategy in Escherichia coli that enables optimization of protein production while maintaining high ...
Structural and evolutionary analysis of Leishmania Alba proteins.
da Costa, Kauê Santana; Galúcio, João Marcos Pereira; Leonardo, Elvis Santos; Cardoso, Guelber; Leal, Élcio; Conde, Guilherme; Lameira, Jerônimo
2017-10-01
The Alba superfamily proteins share a common RNA-binding domain. These proteins participate in a variety of regulatory pathways by controlling developmental gene expression. They also interact with ribosomal subunits, translation factors, and other RNA-binding proteins. The Leishmania infantum genome encodes two Alba-domain proteins, LiAlba1 and LiAlba3. In this work, we used homology modeling, protein-protein docking, and molecular dynamics (MD) simulations to explore the details of the Alba1-Alba3-RNA complex from Leishmania infantum at the molecular level. In addition, we compared the structure of LiAlba3 with the human ribonuclease P component, Rpp20. We also mapped the ligand-binding residues on the Alba3 surface to analyze its druggability and performed mutational analyses in Alba3 using alanine scanning to identify residues involved in its function and structural stability. These results suggest that the RGG-box motif of LiAlba1 is important for protein function and stability. Finally, we discuss the function of Alba proteins in the context of pathogen adaptation to host cells. The data provided herein will facilitate further translational research regarding Alba structure and function. Copyright © 2017 Elsevier B.V. All rights reserved.
Propranolol and Oxandrolone Therapy Accelerated Muscle Recovery in Burned Children.
Chao, Tony; Porter, Craig; Herndon, David N; Siopi, Aikaterina; Ideker, Henry; Mlcak, Ronald P; Sidossis, Labros S; Suman, Oscar E
2018-03-01
Severe burns result in prolonged hypermetabolism and skeletal muscle catabolism. Rehabilitative exercise training (RET) programs improved muscle mass and strength in severely burned children. The combination of RET with β-blockade or testosterone analogs showed improved exercise-induced benefits on body composition and muscle function. However, the effect of RET combined with multiple drug therapy on muscle mass, strength, cardiorespiratory fitness, and protein turnover are unknown. In this placebo-controlled randomized trial, we hypothesize that RET combined with oxandrolone and propranolol (Oxprop) will improve muscle mass and function and protein turnover in severely burned children compared with burned children undergoing the same RET with a placebo. We studied 42 severely burned children (7-17 yr) with severe burns over 30% of the total body surface area. Patients were randomized to placebo (22 control) or to Oxprop (20) and began drug administration within 96 h of admission. All patients began RET at hospital discharge as part of their standardized care. Muscle strength (N·m), power (W), V˙O2peak, body composition, and protein fractional synthetic rate and fractional breakdown rate were measured pre-RET (PRE) and post-RET (POST). Muscle strength and power, lean body mass, and V˙O2peak increased with RET in both groups (P < 0.01). The increase in strength and power was significantly greater in Oxprop versus control (P < 0.01), and strength and power was greater in Oxprop over control POST (P < 0.05). Fractional synthetic rate was significantly higher in Oxprop than control POST (P < 0.01), resulting in improved protein net balance POST (P < 0.05). Rehabilitative exercise training improves body composition, muscle function, and cardiorespiratory fitness in children recovering from severe burns. Oxprop therapy augments RET-mediated improvements in muscle strength, power, and protein turnover.
The Protein Interactome of Mycobacteriophage Giles Predicts Functions for Unknown Proteins.
Mehla, Jitender; Dedrick, Rebekah M; Caufield, J Harry; Siefring, Rachel; Mair, Megan; Johnson, Allison; Hatfull, Graham F; Uetz, Peter
2015-08-01
Mycobacteriophages are viruses that infect mycobacterial hosts and are prevalent in the environment. Nearly 700 mycobacteriophage genomes have been completely sequenced, revealing considerable diversity and genetic novelty. Here, we have determined the protein complement of mycobacteriophage Giles by mass spectrometry and mapped its genome-wide protein interactome to help elucidate the roles of its 77 predicted proteins, 50% of which have no known function. About 22,000 individual yeast two-hybrid (Y2H) tests with four different Y2H vectors, followed by filtering and retest screens, resulted in 324 reproducible protein-protein interactions, including 171 (136 nonredundant) high-confidence interactions. The complete set of high-confidence interactions among Giles proteins reveals new mechanistic details and predicts functions for unknown proteins. The Giles interactome is the first for any mycobacteriophage and one of just five known phage interactomes so far. Our results will help in understanding mycobacteriophage biology and aid in development of new genetic and therapeutic tools to understand Mycobacterium tuberculosis. Mycobacterium tuberculosis causes over 9 million new cases of tuberculosis each year. Mycobacteriophages, viruses of mycobacterial hosts, hold considerable potential to understand phage diversity, evolution, and mycobacterial biology, aiding in the development of therapeutic tools to control mycobacterial infections. The mycobacteriophage Giles protein-protein interaction network allows us to predict functions for unknown proteins and shed light on major biological processes in phage biology. For example, Giles gp76, a protein of unknown function, is found to associate with phage packaging and maturation. The functions of mycobacteriophage-derived proteins may suggest novel therapeutic approaches for tuberculosis. Our ORFeome clone set of Giles proteins and the interactome data will be useful resources for phage interactomics. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A PI4P-driven electrostatic field controls cell membrane identity and signaling in plants
Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon
2016-01-01
Many signaling proteins permanently or transiently localize to specific organelles for function. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PI4P). Our results further reveal that, contrarily to other eukaryotes, PI4P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID, as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATORs (MAKRs) family, which are involved in brassinosteroid and receptor-like kinase signaling. We anticipate that this PI4P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition. PMID:27322096
Stomberski, Colin T; Hess, Douglas T; Stamler, Jonathan S
2018-01-10
Protein S-nitrosylation, the oxidative modification of cysteine by nitric oxide (NO) to form protein S-nitrosothiols (SNOs), mediates redox-based signaling that conveys, in large part, the ubiquitous influence of NO on cellular function. S-nitrosylation regulates protein activity, stability, localization, and protein-protein interactions across myriad physiological processes, and aberrant S-nitrosylation is associated with diverse pathophysiologies. Recent Advances: It is recently recognized that S-nitrosylation endows S-nitroso-protein (SNO-proteins) with S-nitrosylase activity, that is, the potential to trans-S-nitrosylate additional proteins, thereby propagating SNO-based signals, analogous to kinase-mediated signaling cascades. In addition, it is increasingly appreciated that cellular S-nitrosylation is governed by dynamically coupled equilibria between SNO-proteins and low-molecular-weight SNOs, which are controlled by a growing set of enzymatic denitrosylases comprising two main classes (high and low molecular weight). S-nitrosylases and denitrosylases, which together control steady-state SNO levels, may be identified with distinct physiology and pathophysiology ranging from cardiovascular and respiratory disorders to neurodegeneration and cancer. The target specificity of protein S-nitrosylation and the stability and reactivity of protein SNOs are determined substantially by enzymatic machinery comprising highly conserved transnitrosylases and denitrosylases. Understanding the differential functionality of SNO-regulatory enzymes is essential, and is amenable to genetic and pharmacological analyses, read out as perturbation of specific equilibria within the SNO circuitry. The emerging picture of NO biology entails equilibria among potentially thousands of different SNOs, governed by denitrosylases and nitrosylases. Thus, to elucidate the operation and consequences of S-nitrosylation in cellular contexts, studies should consider the roles of SNO-proteins as both targets and transducers of S-nitrosylation, functioning according to enzymatically governed equilibria. Antioxid. Redox Signal. 00, 000-000.
Pelassa, Ilaria; Fiumara, Ferdinando
2015-01-01
Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as “junk” sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping the interaction networks of the human proteome, and define proteome-wide knowledge that may guide the informed biological exploration of the role of AARs in protein interactions. PMID:26734058
Evolution of an ancient protein function involved in organized multicellularity in animals.
Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E
2016-01-07
To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals.
Structural symmetry and protein function.
Goodsell, D S; Olson, A J
2000-01-01
The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of any symmetry.
Novel Basic Protein, PfN23, Functions as Key Macromolecule during Nacre Formation*
Fang, Dong; Pan, Cong; Lin, Huijuan; Lin, Ya; Zhang, Guiyou; Wang, Hongzhong; He, Maoxian; Xie, Liping; Zhang, Rongqing
2012-01-01
The fine microstructure of nacre (mother of pearl) illustrates the beauty of nature. Proteins found in nacre were believed to be “natural hands” that control nacre formation. In the classical view of nacre formation, nucleation of the main minerals, calcium carbonate, is induced on and by the acidic proteins in nacre. However, the basic proteins were not expected to be components of nacre. Here, we reported that a novel basic protein, PfN23, was a key accelerator in the control over crystal growth in nacre. The expression profile, in situ immunostaining, and in vitro immunodetection assays showed that PfN23 was localized within calcium carbonate crystals in the nacre. Knocking down the expression of PfN23 in adults via double-stranded RNA injection led to a disordered nacre surface in adults. Blocking the translation of PfN23 in embryos using morpholino oligomers led to the arrest of larval development. The in vitro crystallization assay showed that PfN23 increases the rate of calcium carbonate deposition and induced the formation of aragonite crystals with characteristics close to nacre. In addition, we constructed the peptides and truncations of different regions of this protein and found that the positively charged C-terminal region was a key region for the function of PfN23 Taken together, the basic protein PfN23 may be a key accelerator in the control of crystal growth in nacre. This provides a valuable balance to the classic view that acidic proteins control calcium carbonate deposition in nacre. PMID:22416139
Conformational Transitions in Molecular Systems
NASA Astrophysics Data System (ADS)
Bachmann, M.; Janke, W.
2008-11-01
Proteins are the "work horses" in biological systems. In almost all functions specific proteins are involved. They control molecular transport processes, stabilize the cell structure, enzymatically catalyze chemical reactions; others act as molecular motors in the complex machinery of molecular synthetization processes. Due to their significance, misfolds and malfunctions of proteins typically entail disastrous diseases, such as Alzheimer's disease and bovine spongiform encephalopathy (BSE). Therefore, the understanding of the trinity of amino acid composition, geometric structure, and biological function is one of the most essential challenges for the natural sciences. Here, we glance at conformational transitions accompanying the structure formation in protein folding processes.
Controllable assembly and disassembly of nanoparticle systems via protein and DNA agents
Lee, Soo-Kwan; Gang, Oleg; van der Lelie, Daniel
2014-05-20
The invention relates to the use of peptides, proteins, and other oligomers to provide a means by which normally quenched nanoparticle fluorescence may be recovered upon detection of a target molecule. Further, the inventive technology provides a structure and method to carry out detection of target molecules without the need to label the target molecules before detection. In another aspect, a method for forming arbitrarily shaped two- and three-dimensional protein-mediated nanoparticle structures and the resulting structures are described. Proteins mediating structure formation may themselves be functionalized with a variety of useful moieties, including catalytic functional groups.
Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto; Pazos, Florencio
2013-01-01
Intrinsically disordered proteins/regions (IDPs/IDRs) are currently recognized as a widespread phenomenon having key cellular functions. Still, many aspects of the function of these proteins need to be unveiled. IDPs conformational flexibility allows them to recognize and interact with multiple partners, and confers them larger interaction surfaces that may increase interaction speed. For this reason, molecular interactions mediated by IDPs/IDRs are particularly abundant in certain types of protein interactions, such as those of signaling and cell cycle control. We present the first large-scale study of IDPs in Arabidopsis thaliana, the most widely used model organism in plant biology, in order to get insight into the biological roles of these proteins in plants. The work includes a comparative analysis with the human proteome to highlight the differential use of disorder in both species. Results show that while human proteins are in general more disordered, certain functional classes, mainly related to environmental response, are significantly more enriched in disorder in Arabidopsis. We propose that because plants cannot escape from environmental conditions as animals do, they use disorder as a simple and fast mechanism, independent of transcriptional control, for introducing versatility in the interaction networks underlying these biological processes so that they can quickly adapt and respond to challenging environmental conditions.
Findeisen, Felix; Campiglio, Marta; Jo, Hyunil; Abderemane-Ali, Fayal; Rumpf, Christine H; Pope, Lianne; Rossen, Nathan D; Flucher, Bernhard E; DeGrado, William F; Minor, Daniel L
2017-06-21
For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (Ca V ) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (Ca V β). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:Ca V β interactions and reduce the entropic penalty associated with AID binding to Ca V β. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the Ca V α 1 :Ca V β interaction that modulate Ca V function in an Ca V β isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based Ca V modulator design.
Crystallization of bi-functional ligand protein complexes.
Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano
2013-06-01
Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.
Koutsopoulos, Sotirios; Unsworth, Larry D.; Nagai, Yusuke; Zhang, Shuguang
2009-01-01
The release kinetics for a variety of proteins of a wide range of molecular mass, hydrodynamic radii, and isoelectric points through a nanofiber hydrogel scaffold consisting of designer self-assembling peptides were studied by using single-molecule fluorescence correlation spectroscopy (FCS). In contrast to classical diffusion experiments, the single-molecule approach allowed for the direct determination of diffusion coefficients for lysozyme, trypsin inhibitor, BSA, and IgG both inside the hydrogel and after being released into the solution. The results of the FCS analyses and the calculated pristine in-gel diffusion coefficients were compared with the values obtained from the Stokes–Einstein equation, Fickian diffusion models, and the literature. The release kinetics suggested that protein diffusion through nanofiber hydrogels depended primarily on the size of the protein. Protein diffusivities decreased, with increasing hydrogel nanofiber density providing a means of controlling the release kinetics. Secondary and tertiary structure analyses and biological assays of the released proteins showed that encapsulation and release did not affect the protein conformation and functionality. Our results show that this biocompatible and injectable designer self-assembling peptide hydrogel system may be useful as a carrier for therapeutic proteins for sustained release applications. PMID:19273853
Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry
Engen, John R.; Wales, Thomas E.; Chen, Shugui; Marzluff, Elaine M.; Hassell, Kerry M.; Weis, David D.; Smithgall, Thomas E.
2013-01-01
Many proteins do not exist in a single rigid conformation. Protein motions, or dynamics, exist and in many cases are important for protein function. The analysis of protein dynamics relies on biophysical techniques that can distinguish simultaneously existing populations of molecules and their rates of interconversion. Hydrogen exchange (HX) detected by mass spectrometry (MS) is contributing to our understanding of protein motions by revealing unfolding and dynamics on a wide timescale, ranging from seconds to hours to days. In this review we discuss HX MS-based analyses of protein dynamics, using our studies of multi-domain kinases as examples. Using HX MS, we have successfully probed protein dynamics and unfolding in the isolated SH3, SH2 and kinase domains of the c-Src and Abl kinase families, as well as the role of inter- and intra-molecular interactions in the global control of kinase function. Coupled with high-resolution structural information, HX MS has proved to be a powerful and versatile tool for the analysis of the conformational dynamics in these kinase systems, and has provided fresh insight regarding the regulatory control of these important signaling proteins. HX MS studies of dynamics are applicable not only to the proteins we illustrate here, but to a very wide range of proteins and protein systems, and should play a role in both classification of and greater understanding of the prevalence of protein motion. PMID:23682200
Kim, Il-Young; Schutzler, Scott; Schrader, Amy M; Spencer, Horace J; Azhar, Gohar; Wolfe, Robert R; Ferrando, Arny A
2018-04-01
In our recent acute metabolic study, we found no differences in the anabolic response to differing patterns of dietary protein intake. To confirm this in a chronic study, we investigated the effects of protein distribution pattern on functional outcomes and protein kinetics in older adults over 8 weeks. To determine chronic effects of protein intake pattern at 1.1 g protein/kg/day in mixed meals on lean body mass (LBM), functional outcomes, whole body protein kinetics and muscle protein fractional synthesis rate (MPS) over 8-week respective dietary intervention, fourteen older subjects were randomly divided into either EVEN or UNVEN group. The UNEVEN group (n = 7) consumed the majority of dietary protein with dinner (UNEVEN, 15/20/65%; breakfast, lunch, dinner), while the EVEN group (n = 7) consumed dietary protein evenly throughout the day (EVEN: 33/33/33%). We found no significant differences in LBM, muscle strength, and other functional outcomes between EVEN and UNEVEN before and after 8-week intervention. Consistent with these functional outcomes, we did not find significant differences in the 20-h integrated whole body protein kinetics [net protein balance (NB), protein synthesis (PS), and breakdown (PB)] above basal states and MPS between EVEN and UNEVEN intake patterns. We conclude that over an 8-week intervention period, the protein intake distribution pattern in mixed meals does not play an important role in determining anabolic response, muscle strength, or functional outcomes. This trial is registered at https://ClinicalTrials.gov as NCT02787889. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling
Parker, Lewan; Shaw, Christopher S.; Stepto, Nigel K.; Levinger, Itamar
2017-01-01
Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis. PMID:28529499
Dezi, Manuela; Di Cicco, Aurelie; Bassereau, Patricia; Lévy, Daniel
2013-01-01
Giant unilamellar vesicles (GUVs) are convenient biomimetic systems of the same size as cells that are increasingly used to quantitatively address biophysical and biochemical processes related to cell functions. However, current approaches to incorporate transmembrane proteins in the membrane of GUVs are limited by the amphiphilic nature or proteins. Here, we report a method to incorporate transmembrane proteins in GUVs, based on concepts developed for detergent-mediated reconstitution in large unilamellar vesicles. Reconstitution is performed either by direct incorporation from proteins purified in detergent micelles or by fusion of purified native vesicles or proteoliposomes in preformed GUVs. Lipid compositions of the membrane and the ionic, protein, or DNA compositions in the internal and external volumes of GUVs can be controlled. Using confocal microscopy and functional assays, we show that proteins are unidirectionally incorporated in the GUVs and keep their functionality. We have successfully tested our method with three types of transmembrane proteins. GUVs containing bacteriorhodopsin, a photoactivable proton pump, can generate large transmembrane pH and potential gradients that are light-switchable and stable for hours. GUVs with FhuA, a bacterial porin, were used to follow the DNA injection by T5 phage upon binding to its transmembrane receptor. GUVs incorporating BmrC/BmrD, a bacterial heterodimeric ATP-binding cassette efflux transporter, were used to demonstrate the protein-dependent translocation of drugs and their interactions with encapsulated DNA. Our method should thus apply to a wide variety of membrane or peripheral proteins for producing more complex biomimetic GUVs. PMID:23589883
Meeting Report: Structural Determination of Environmentally Responsive Proteins
Reinlib, Leslie
2005-01-01
The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521
NASA Astrophysics Data System (ADS)
Shah, Dhiral Ashwin
Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that functional proteins can be delivered intracellularly in vitro using nanoparticles and used to target key signaling proteins and regulate cell signaling pathways. The same concept of naturally occurring protein-protein interactions can also be implemented to selectively bring intracellular protein targets in close proximity to proteasomal degradation machinery in cells and effect their depletion from the cellular compartments. This approach will be able to not only target entire pool of proteins to ubiquitination-mediated degradation, but also to specific sub-pools of posttranslationally modified proteins in the cell, provided peptides having distinct binding affinities are identified for posttranslational modifications. This system can then be tested for intracellular protein delivery using nanoparticle carriers to identify roles of different posttranslational modifications on the protein's activity. In future work, we propose to develop a cellular detection system, based on GFP complementation, which can be used to evaluate the efficiency of different protein delivery carriers to internalize proteins into the cell cytosol. We envision the application of nanoscale materials as intracellular protein delivery vehicles to target diverse cell signaling pathways at the posttranslational level, and subsequent metabolic manipulation, which may have interesting therapeutic properties and can potentially target stem cell fate.
Regulatory crosstalk by protein kinases on CFTR trafficking and activity
NASA Astrophysics Data System (ADS)
Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter
2016-01-01
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.
Joshua, Ifeoluwapo Matthew; Höfken, Thomas
2017-04-05
Zinc cluster proteins are a large family of transcriptional regulators with a wide range of biological functions. The zinc cluster proteins Ecm22, Upc2, Sut1 and Sut2 have initially been identified as regulators of sterol import in the budding yeast Saccharomyces cerevisiae . These proteins also control adaptations to anaerobic growth, sterol biosynthesis as well as filamentation and mating. Orthologs of these zinc cluster proteins have been identified in several species of Candida . Upc2 plays a critical role in antifungal resistance in these important human fungal pathogens. Upc2 is therefore an interesting potential target for novel antifungals. In this review we discuss the functions, mode of actions and regulation of Ecm22, Upc2, Sut1 and Sut2 in budding yeast and Candida .
The pilus usher controls protein interactions via domain masking and is functional as an oligomer.
Werneburg, Glenn T; Henderson, Nadine S; Portnoy, Erica B; Sarowar, Samema; Hultgren, Scott J; Li, Huilin; Thanassi, David G
2015-07-01
The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer-membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate-binding site but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.
The Pilus Usher Controls Protein Interactions via Domain Masking and is Functional as an Oligomer
Werneburg, Glenn T.; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Li, Huilin; Thanassi, David G.
2015-01-01
The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria. PMID:26052892
Vizoso-Vázquez, A; Barreiro-Alonso, A; González-Siso, M I; Rodríguez-Belmonte, E; Lamas-Maceiras, M; Cerdán, M E
2018-04-30
The number of ribosomes and their activity need to be highly regulated because their function is crucial for the cell. Ribosome biogenesis is necessary for cell growth and proliferation in accordance with nutrient availability and other external and intracellular signals. High-mobility group B (HMGB) proteins are conserved from yeasts to human and are decisive in cellular fate. These proteins play critical functions, from the maintenance of chromatin structure, DNA repair, or transcriptional regulation, to facilitation of ribosome biogenesis. They are also involved in cancer and other pathologies. In this review, we summarize evidence of how HMGB proteins contribute to ribosome-biogenesis control, with special emphasis on a common nexus to the target of rapamycin (TOR) pathway, a signaling cascade essential for cell growth and proliferation from yeast to human. Perspectives in this field are also discussed.
Genetic incorporation of Nε-acetyllysine reveals a novel acetylation-sumoylation switch in yeast.
Kim, Sang-Woo; Lee, Kyung Jin; Kim, Sinil; Kim, Jihyo; Cho, Kyukwang; Ro, Hyeon-Su; Park, Hee-Sung
2017-11-01
The lysine acetylation of proteins plays a key role in regulating protein functions, thereby controlling a wide range of cellular processes. Despite the prevalence and significance of lysine acetylation in eukaryotes, however, its systematic study has been challenged by the technical limitations of conventional approaches for selective lysine acetylation in vivo. Here, we report the in vivo study of lysine acetylation via the genetic incorporation of N ε -acetyllysine in yeast. We demonstrate that a newly discovered acetylation-sumoylation switch precisely controls the localization and cellular function of the yeast septin protein, Cdc11, during the cell cycle. This approach should facilitate the comprehensive in vivo study of lysine acetylation across a wide range of proteins in eukaryotic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
Early alterations in soleus GLUT-4, glucose transport, and glycogen in voluntary running rats
NASA Technical Reports Server (NTRS)
Henriksen, Erik J.; Halseth, Amy E.
1994-01-01
Voluntary wheel running (WR) by juvenile female rats was used as a noninterventional model of soleus muscle functional overload to study the regulation of insulin-stimulated glucose transport activity by the glucose transporter (GLUT-4 isoform) protein level and glycogen concentration. Soleus total protein content was significantly greater (+18%;P greater than 0.05) than in age-matched controls after 1 wk of WR, and this hypertrophic response continued in weeks 2-4 (+24-32%). GLUT-4 protein was 39% greater than in controls in 1-wk WR soleus, and this adaptation was accompanied by a similar increase in in vitro insulin-stimulated glucose transport activity(+29%). After 2 and 4 wk of WR, however, insulin-stimulated glucose transport activity had returned to control levels, despite a continued elevation (+25-28%) of GLUT-4 protein. At these two time points, glycogen concentration was significantly enhanced in WR soleus (+21-42%), which coincided with significant reductions in glycogen synthase activity ratios (-23 to-41%). These results indicate that, in this model of soleus muscle functional overload, the GLUT-4 protein level may initially regulate insulin-stimulated glucose transport activity in the absence of changes in other modifying factors. However,this regulation of glucose transport activity by GLUT-4 protein may be subsequently overridden by elevated glycogen concentration.
Regulation of protein activity with small-molecule-controlled inteins
Skretas, Georgios; Wood, David W.
2005-01-01
Inteins are the protein analogs of self-splicing RNA introns, as they post-translationally excise themselves from a variety of protein hosts. Intein insertion abolishes, in general, the activity of its host protein, which is subsequently restored upon intein excision. These protein elements therefore have the potential to be used as general molecular “switches” for the control of arbitrary target proteins. Based on rational design, an intein-based protein switch has been constructed whose splicing activity is conditionally triggered in vivo by the presence of thyroid hormone or synthetic analogs. This modified intein was used in Escherichia coli to demonstrate that a number of different proteins can be inactivated by intein insertion and then reactivated by the addition of thyroid hormone via ligand-induced splicing. This conditional activation was also found to occur in a dose-dependent manner. Rational protein engineering was then combined with genetic selection to evolve an additional intein whose activity is controlled by the presence of synthetic estrogen ligands. The ability to regulate protein function post-translationally through the use of ligand-controlled intein splicing will most likely find applications in metabolic engineering, drug discovery and delivery, biosensing, molecular computation, as well as many additional areas of biotechnology. PMID:15632292
Zhou, Li; Morel, Mathieu; Rudiuk, Sergii; Baigl, Damien
2017-07-01
DNA micro- and nanogels-small-sized hydrogels made of a crosslinked DNA backbone-constitute new promising materials, but their functions have mainly been limited to those brought by DNA. Here a new way is described to prepare sub-micrometer-sized DNA gels of controllable crosslinking density that are able to embed novel functions, such as an enzymatic activity. It consists of using proteins, instead of traditional base-pairing assembly or covalent approaches, to form crosslinks inside individual DNA molecules, resulting in structures referred to as intramolecularly protein-crosslinked DNA gels (IPDGs). It is first shown that the addition of streptavidin to biotinylated T4DNA results in the successful formation of thermally stable IPDGs with a controllable crosslinking density, forming structures ranging from elongated to raspberry-shaped and pearl-necklace-like morphologies. Using reversible DNA condensation strategies, this paper shows that the gels can be reversibly actuated at a low crosslinking density, or further stabilized when they are highly crosslinked. Finally, by using streptavidin-protein conjugates, IPDGs with various enzymes are successfully functionalized. It is demonstrated that the enzymes keep their catalytic activity upon their incorporation into the gels, opening perspectives ranging from biotechnologies (e.g., enzyme manipulation) to nanomedicine (e.g., vectorization). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP.
Shi, Chang-He; Schisler, Jonathan C; Rubel, Carrie E; Tan, Song; Song, Bo; McDonough, Holly; Xu, Lei; Portbury, Andrea L; Mao, Cheng-Yuan; True, Cadence; Wang, Rui-Hao; Wang, Qing-Zhi; Sun, Shi-Lei; Seminara, Stephanie B; Patterson, Cam; Xu, Yu-Ming
2014-02-15
Gordon Holmes syndrome (GHS) is a rare Mendelian neurodegenerative disorder characterized by ataxia and hypogonadism. Recently, it was suggested that disordered ubiquitination underlies GHS though the discovery of exome mutations in the E3 ligase RNF216 and deubiquitinase OTUD4. We performed exome sequencing in a family with two of three siblings afflicted with ataxia and hypogonadism and identified a homozygous mutation in STUB1 (NM_005861) c.737C→T, p.Thr246Met, a gene that encodes the protein CHIP (C-terminus of HSC70-interacting protein). CHIP plays a central role in regulating protein quality control, in part through its ability to function as an E3 ligase. Loss of CHIP function has long been associated with protein misfolding and aggregation in several genetic mouse models of neurodegenerative disorders; however, a role for CHIP in human neurological disease has yet to be identified. Introduction of the Thr246Met mutation into CHIP results in a loss of ubiquitin ligase activity measured directly using recombinant proteins as well as in cell culture models. Loss of CHIP function in mice resulted in behavioral and reproductive impairments that mimic human ataxia and hypogonadism. We conclude that GHS can be caused by a loss-of-function mutation in CHIP. Our findings further highlight the role of disordered ubiquitination and protein quality control in the pathogenesis of neurodegenerative disease and demonstrate the utility of combining whole-exome sequencing with molecular analyses and animal models to define causal disease polymorphisms.
Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP
Shi, Chang-He; Schisler, Jonathan C.; Rubel, Carrie E.; Tan, Song; Song, Bo; McDonough, Holly; Xu, Lei; Portbury, Andrea L.; Mao, Cheng-Yuan; True, Cadence; Wang, Rui-Hao; Wang, Qing-Zhi; Sun, Shi-Lei; Seminara, Stephanie B.; Patterson, Cam; Xu, Yu-Ming
2014-01-01
Gordon Holmes syndrome (GHS) is a rare Mendelian neurodegenerative disorder characterized by ataxia and hypogonadism. Recently, it was suggested that disordered ubiquitination underlies GHS though the discovery of exome mutations in the E3 ligase RNF216 and deubiquitinase OTUD4. We performed exome sequencing in a family with two of three siblings afflicted with ataxia and hypogonadism and identified a homozygous mutation in STUB1 (NM_005861) c.737C→T, p.Thr246Met, a gene that encodes the protein CHIP (C-terminus of HSC70-interacting protein). CHIP plays a central role in regulating protein quality control, in part through its ability to function as an E3 ligase. Loss of CHIP function has long been associated with protein misfolding and aggregation in several genetic mouse models of neurodegenerative disorders; however, a role for CHIP in human neurological disease has yet to be identified. Introduction of the Thr246Met mutation into CHIP results in a loss of ubiquitin ligase activity measured directly using recombinant proteins as well as in cell culture models. Loss of CHIP function in mice resulted in behavioral and reproductive impairments that mimic human ataxia and hypogonadism. We conclude that GHS can be caused by a loss-of-function mutation in CHIP. Our findings further highlight the role of disordered ubiquitination and protein quality control in the pathogenesis of neurodegenerative disease and demonstrate the utility of combining whole-exome sequencing with molecular analyses and animal models to define causal disease polymorphisms. PMID:24113144
Peroxisome biogenesis, protein targeting mechanisms and PEX gene functions in plants.
Cross, Laura L; Ebeed, Heba Talat; Baker, Alison
2016-05-01
Peroxisomes play diverse and important roles in plants. The functions of peroxisomes are dependent upon their steady state protein composition which in turn reflects the balance of formation and turnover of the organelle. Protein import and turnover of constituent peroxisomal proteins are controlled by the state of cell growth and environment. The evolutionary origin of the peroxisome and the role of the endoplasmic reticulum in peroxisome biogenesis are discussed, as informed by studies of the trafficking of peroxisome membrane proteins. The process of matrix protein import in plants and its similarities and differences with peroxisomes in other organisms is presented and discussed in the context of peroxin distribution across the green plants. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Yanli; Shen, Gui; Gong, Jinjun; Shen, Danyu; Whittington, Amy; Qing, Jiang; Treloar, Joshua; Boisvert, Scott; Zhang, Zhengguang; Yang, Cai; Wang, Ping
2014-05-02
Gβ-like/RACK1 functions as a key mediator of various pathways and contributes to numerous cellular functions in eukaryotic organisms. In the pathogenic fungus Cryptococcus neoformans, noncanonical Gβ Gib2 promotes cAMP signaling in cells lacking normal Gpa1 function while displaying versatility in interactions with Gα Gpa1, protein kinase Pkc1, and endocytic intersectin Cin1. To elucidate the Gib2 functional mechanism(s), we demonstrate that Gib2 is required for normal growth and virulence. We show that Gib2 directly binds to Gpa1 and Gγ Gpg1/Gpg2 and that it interacts with phosphodiesterase Pde2 and monomeric GTPase Ras1. Pde2 remains functionally dispensable, but Ras1 is found to associate with adenylyl cyclase Cac1 through the conserved Ras association domain. In addition, the ras1 mutant exhibits normal capsule formation, whereas the ras1 gpa1 mutant displays enhanced capsule formation, and the ras1 gpa1 cac1 mutant is acapsular. Collectively, these findings suggest that Gib2 promotes cAMP levels by relieving an inhibitory function of Ras1 on Cac1 in the absence of Gpa1. In addition, using GST affinity purification combined with mass spectrometry, we identified 47 additional proteins that interact with Gib2. These proteins have putative functions ranging from signal transduction, energy generation, metabolism, and stress response to ribosomal function. After establishing and validating a protein-protein interactive network, we believe Gib2 to be a key adaptor/scaffolding protein that drives the formation of various protein complexes required for growth and virulence. Our study reveals Gib2 as an essential component in deciphering the complexity of regulatory networks that control growth and virulence in C. neoformans.
Gold nanoparticles on titanium and interaction with prototype protein.
Padmos, J Daniel; Duchesne, Paul; Dunbar, Michael; Zhang, Peng
2010-10-01
Modifying titanium (Ti) implant surfaces with functional proteins can strengthen the interface between prosthesis and bone. A prototype system was developed using gold nanoparticles (AuNPs) to immobilize proteins onto Ti. An electroless (galvanic displacement) deposition method was first used to form AuNPs of controlled size and coverage on commercial Ti foil (giving Ti-AuNPs). Parameters were then modified to create two groups of discs (n = 26) with different average AuNP diameters. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the morphology and surface structure of Ti-AuNPs. To study the interaction of Ti-AuNPs with proteins, Ti discs (n = 8) modified with plain AuNPs and discs (n = 8) modified with thiol (HS--R--COOH)-functionalized AuNPs were treated with lysozyme solution. The amount and activity of the lysozyme on the discs were examined with Micro-BCA and enzymatic assays. Lysozyme was immobilized onto the discs, and the assays showed that the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls had average lysozyme adsorptions of 23 x 10(4), 2.3 x 10(4), and 5.7 x 10(4) microg/m2, respectively. The activity assays showed that 21.5, 18.4, and 12.5% of the adsorbed lysozyme was active on the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls, respectively. This technique holds promise for binding functional biomolecules to surgical implants, hence possibly creating implant surfaces that react to their local environment. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.
Meimaridou, Eirini; Gooljar, Sakina B; Chapple, J Paul
2009-01-01
Molecular chaperones are best recognized for their roles in de novo protein folding and the cellular response to stress. However, many molecular chaperones, and in particular the Hsp70 chaperone machinery, have multiple diverse cellular functions. At the molecular level, chaperones are mediators of protein conformational change. To facilitate conformational change of client/substrate proteins, in manifold contexts, chaperone power must be closely regulated and harnessed to specific cellular locales--this is controlled by cochaperones. This review considers specialized functions of the Hsp70 chaperone machinery mediated by its cochaperones. We focus on vesicular trafficking, protein degradation and a potential role in G protein-coupled receptor processing.
NASA Astrophysics Data System (ADS)
Huber, Matthias C.; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R.; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M.
2015-01-01
Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally ‘program’ the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.
Keszthelyi, S; Pál-Fám, F; Kerepesi, I
2011-03-01
The cotton bollworm (Helicoverpa armigera Hübner), which migrated in the Carpathian-basin from Mediterraneum in the last decades, is becoming an increasingly serious problem for maize producers in Hungary. In several regions the damage it causes has reached the threshold of economic loss, especially in the case of the sweet maize cultivation. The aim of the research was to determine the changing of ears weights and in-kernel accumulation and alteration in grain as a function of cotton bollworm mastication.Our investigation confirmed that there is an in-kernel and protein pattern change of maize grain by cotton bollworm. Our results proved the significant damaging of each part of ears by cotton bollworm masticating (the average weight loss of ears: 13.99%; the average weight loss of grains: 14.03%; the average weight loss of cobs: 13.74%), with the exception of the increasing of the grain-cob ratio. Our examinations did not prove the water loss - that is the "forced maturing" - caused by the damage. Decreasing of raw fat (control: 2.8%; part-damaged: 2.6%; damaged: 2.4%) and starch content (control: 53.1%; part-damaged: 46.6%; damaged: 44.7%) were registered as a function of injury. In contrast, the raw protein content was increased (control: 4.7%; part-damaged: 5.3%; damaged: 7.4%) by maize ear masticating. The most conspicuous effect on protein composition changing was proved by comparison of damaged grain samples by SDS PAGE. Increased amounts of 114, 50, 46 and 35 kDa molecular mass proteins were detected which explained the more than 50% elevation of raw protein content. The statistical analysis of molecular weights proved the protein realignment as a function of the pest injuries, too.
Nesteruk, Monika; Hennig, Ewa E; Mikula, Michal; Karczmarski, Jakub; Dzwonek, Artur; Goryca, Krzysztof; Rubel, Tymon; Paziewska, Agnieszka; Woszczynski, Marek; Ledwon, Joanna; Dabrowska, Michalina; Dadlez, Michal; Ostrowski, Jerzy
2014-03-01
Although mitochondrial dysfunction is implicated in the pathogenesis of obesity, the molecular mechanisms underlying obesity-related metabolic abnormalities are not well established. We performed mitochondrial quantitative proteomic and whole transcriptome analysis followed by functional annotations within liver and skeletal muscles, using fasted and non-fasted 16- and 48-week-old high-fat diet (HFD)-fed and normal diet-fed (control group) wild-type C56BL/6J mice, and hyperphagic ob/ob and db/db obese mice. Our study identified 1,675 and 704 mitochondria-associated proteins with at least two peptides in liver and muscle, respectively. Of these, 221 liver and 44 muscle proteins were differentially expressed (adjusted p values ≤ 0.05) between control and all obese mice, while overnight fasting altered expression of 107 liver and 35 muscle proteins. In the liver, we distinguished a network of 27 proteins exhibiting opposite direction of expression changes in HFD-fed and hyperphagic mice when compared to control. The network centered on cytochromes P450 3a11 (Cyp3a11) and 4a14 (Cyp4a14), and fructose-bisphosphate aldolase B (Aldob) proteins which bridged proteins cluster involved in Metabolism of xenobiotics with proteins engaged in Fatty acid metabolism and PPAR signaling pathways. Functional annotations revealed that most of the hepatic molecular alterations, which characterized both obesity and fasting, related to different aspects of energy metabolism (such as Fatty acid metabolism, Peroxisome, and PPAR signaling); however, only a limited number of functional annotations could be selected from skeletal muscle data sets. Thus, our comprehensive molecular overview revealed that both obesity and fasting states induce more pronounced mitochondrial proteome changes in the liver than in the muscles.
Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J.; Shi, Yang; Harper, J. Wade
2014-01-01
Modular Cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of Parallel Adaptor Capture (PAC) proteomics, and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCFFBXL17 in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. PMID:24035498
Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J; Shi, Yang; Harper, J Wade
2013-10-10
Modular cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of parallel adaptor capture (PAC) proteomics and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCF(FBXL17) in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. Copyright © 2013 Elsevier Inc. All rights reserved.
Awada, Hassan K.; Hwang, Mintai P.; Wang, Yadong
2016-01-01
Ischemic heart disease is a leading cause of death worldwide. After the onset of myocardial infarction, many pathological changes take place and progress the disease towards heart failure. Pathologies such as ischemia, inflammation, cardiomyocyte death, ventricular remodeling and dilation, and interstitial fibrosis, develop and involve the signaling of many proteins. Proteins can play important roles in limiting or countering pathological changes after infarction. However, they typically have short half-lives in vivo in their free form and can benefit from the advantages offered by controlled release systems to overcome their challenges. The controlled delivery of an optimal combination of proteins per their physiologic spatiotemporal cues to the infarcted myocardium holds great potential to repair and regenerate the heart. The effectiveness of therapeutic interventions depends on the elucidation of the molecular mechanisms of the cargo proteins and the spatiotemporal control of their release. It is likely that multiple proteins will provide a more comprehensive and functional recovery of the heart in a controlled release strategy. PMID:26757257
Belacortu, Yaiza; Weiss, Ron; Kadener, Sebastian; Paricio, Nuria
2012-01-01
Background Cabut (Cbt) is a C2H2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs), which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein. Methodology/Principal Findings To determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS) previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2. Conclusions/Significance Our results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the existence of similarities and differences in both aspects of Cbt function between the insect and the vertebrate TIEG proteins. PMID:22359651
Implications of Mycobacterium Major Facilitator Superfamily for Novel Measures against Tuberculosis.
Wang, Rui; Zhang, Zhen; Xie, Longxiang; Xie, Jianping
2015-01-01
Major facilitator superfamily (MFS) is an important secondary membrane transport protein superfamily conserved from prokaryotes to eukaryotes. The MFS proteins are widespread among bacteria and are responsible for the transfer of substrates. Pathogenic Mycobacterium MFS transporters, their distribution, function, phylogeny, and predicted crystal structures were studied to better understand the function of MFS and to discover specific inhibitors of MFS for better tuberculosis control.
López-Berges, Manuel S.; Rispail, Nicolas; Prados-Rosales, Rafael C.; Di Pietro, Antonio
2010-01-01
During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source–independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the ΔmeaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi. PMID:20639450
Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms.
Lund, Marianne N; Ray, Colin A
2017-06-14
Maillard reactions lead to changes in food color, organoleptic properties, protein functionality, and protein digestibility. Numerous different strategies for controlling Maillard reactions in foods have been attempted during the past decades. In this paper, recent advances in strategies for controlling the Maillard reaction and subsequent downstream reaction products in food systems are critically reviewed. The underlying mechanisms at play are presented, strengths and weaknesses of each strategy are discussed, and reasonable reaction mechanisms are proposed to reinforce the evaluations. The review includes strategies involving addition of functional ingredients, such as plant polyphenols and vitamins, as well as enzymes. The resulting trapping or modification of Maillard targets, reactive intermediates, and advanced glycation endproducts (AGEs) are presented with their potential unwanted side effects. Finally, recent advances in processing for control of Maillard reactions are discussed.
Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms
Adams, Nancy E.; Maurelli, Anthony T.
2015-01-01
Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB–RB transitions. PMID:25998263
Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms.
Fisher, Derek J; Adams, Nancy E; Maurelli, Anthony T
2015-08-01
Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB-RB transitions.
NASA Astrophysics Data System (ADS)
Mata, Alvaro
2018-05-01
Proteins are attractive material building blocks, yet their intrinsic functionality has remained largely untapped. Now, a protein-based material that exhibits controllable self-assembling behaviour has been prepared in a one-pot synthesis by simultaneous use of recombinant expression and post-translational modification.
Ran1 functions to control the Cdc10/Sct1 complex through Puc1.
Caligiuri, M; Connolly, T; Beach, D
1997-01-01
We have undertaken a biochemical analysis of the regulation of the G1/S-phase transition and commitment to the cell cycle in the fission yeast Schizosaccharomyces pombe. The execution of Start requires the activity of the Cdc2 protein kinase and the Sct1/Cdc10 transcription complex. Progression through G1 also requires the Ran1 protein kinase whose inactivation leads to activation of the meiotic pathway under conditions normally inhibitory to this process. We have found that in addition to Cdc2, Sct1/Cdc10 complex formation requires Ran1. We demonstrate that the Puc1 cyclin associates with Ran1 and Cdc10 in vivo and that the Ran1 protein kinase functions to control the association between Puc1 and Cdc10. In addition, we present evidence that the phosphorylation state of Cdc10 is altered upon inactivation of Ran1. These results provide biochemical evidence that demonstrate one mechanism by which the Ran1 protein kinase serves to control cell fate through Cdc10 and Puc1. Images PMID:9201720
Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation
Wei, Xiaofan; Wang, Xiang; Zhan, Jun; Chen, Yuhan; Fang, Weigang; Zhang, Lingqiang
2017-01-01
Integrin activation is an indispensable step for various integrin-mediated biological functions. Kindlin-2 is known to coactivate integrins with Talin; however, molecules that restrict integrin activation are elusive. Here, we demonstrate that the E3 ubiquitin ligase Smurf1 controls the amount of Kindlin-2 protein in cells and hinders integrin activation. Smurf1 interacts with and promotes Kindlin-2 ubiquitination and degradation. Smurf1 selectively mediates degradation of Kindlin-2 but not Talin, leading to inhibition of αIIbβ3 integrin activation in Chinese hamster ovary cells and β1 integrin activation in fibroblasts. Enhanced activation of β1 integrin was found in Smurf1-knockout mouse embryonic fibroblasts, which correlates with an increase in Kindlin-2 protein levels. Similarly, a reciprocal relationship between Smurf1 and Kindlin-2 protein levels is found in tissues from colon cancer patients, suggesting that Smurf1 mediates Kindlin-2 degradation in vivo. Collectively, we demonstrate that Smurf1 acts as a brake for integrin activation by controlling Kindlin-2 protein levels, a new mechanism that permits precise modulation of integrin-mediated cellular functions. PMID:28408404
Coupled Protein Diffusion and Folding in the Cell
Guo, Minghao; Gelman, Hannah; Gruebele, Martin
2014-01-01
When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling ‘sticking’ of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates. PMID:25436502
Coupled protein diffusion and folding in the cell.
Guo, Minghao; Gelman, Hannah; Gruebele, Martin
2014-01-01
When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling 'sticking' of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates.
Guillemin, Yannis; Lopez, Jonathan; Gimenez, Diana; Fuertes, Gustavo; Valero, Juan Garcia; Blum, Loïc; Gonzalo, Philippe; Salgado, Jesùs; Girard-Egrot, Agnès; Aouacheria, Abdel
2010-01-01
Background The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction. Methodology/Principal Findings Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the membrane activity and membrane-peptide interactions of fragments derived from the central helical hairpin of BAX, BCL-xL and BID. The results show a connection between the differing abilities of the assayed peptide fragments to contact, insert, destabilize and porate membranes and the activity of their cognate proteins in programmed cell death. Conclusion/Significance BCL-2 family-derived pore-forming helices thus represent structurally analogous, but functionally dissimilar membrane domains. PMID:20140092
Plasma proteomic analysis reveals altered protein abundances in cardiovascular disease.
Lygirou, Vasiliki; Latosinska, Agnieszka; Makridakis, Manousos; Mullen, William; Delles, Christian; Schanstra, Joost P; Zoidakis, Jerome; Pieske, Burkert; Mischak, Harald; Vlahou, Antonia
2018-04-17
Cardiovascular disease (CVD) describes the pathological conditions of the heart and blood vessels. Despite the large number of studies on CVD and its etiology, its key modulators remain largely unknown. To this end, we performed a comprehensive proteomic analysis of blood plasma, with the scope to identify disease-associated changes after placing them in the context of existing knowledge, and generate a well characterized dataset for further use in CVD multi-omics integrative analysis. LC-MS/MS was employed to analyze plasma from 32 subjects (19 cases of various CVD phenotypes and 13 controls) in two steps: discovery (13 cases and 8 controls) and test (6 cases and 5 controls) set analysis. Following label-free quantification, the detected proteins were correlated to existing plasma proteomics datasets (plasma proteome database; PPD) and functionally annotated (Cytoscape, Ingenuity Pathway Analysis). Differential expression was defined based on identification confidence (≥ 2 peptides per protein), statistical significance (Mann-Whitney p value ≤ 0.05) and a minimum of twofold change. Peptides detected in at least 50% of samples per group were considered, resulting in a total of 3796 identified proteins (838 proteins based on ≥ 2 peptides). Pathway annotation confirmed the functional relevance of the findings (representation of complement cascade, fibrin clot formation, platelet degranulation, etc.). Correlation of the relative abundance of the proteins identified in the discovery set with their reported concentrations in the PPD was significant, confirming the validity of the quantification method. The discovery set analysis revealed 100 differentially expressed proteins between cases and controls, 39 of which were verified (≥ twofold change) in the test set. These included proteins already studied in the context of CVD (such as apolipoprotein B, alpha-2-macroglobulin), as well as novel findings (such as low density lipoprotein receptor related protein 2 [LRP2], protein SZT2) for which a mechanism of action is suggested. This proteomic study provides a comprehensive dataset to be used for integrative and functional studies in the field. The observed protein changes reflect known CVD-related processes (e.g. lipid uptake, inflammation) but also novel hypotheses for further investigation including a potential pleiotropic role of LPR2 but also links of SZT2 to CVD.
Greifenhagen, Uta; Frolov, Andrej; Blüher, Matthias; Hoffmann, Ralf
2016-04-29
Protein glycation refers to the reversible reaction between aldoses (or ketoses) and amino groups yielding relatively stable Amadori (or Heyns) products. Consecutive oxidative cleavage reactions of these products or the reaction of amino groups with other reactive substances (e.g. α-dicarbonyls) yield advanced glycation end products (AGEs) that can alter the structures and functions of proteins. AGEs have been identified in all organisms, and their contents appear to rise with some diseases, such as diabetes and obesity. Here, we report a pilot study using highly sensitive and specific proteomics approach to identify and quantify AGE modification sites in plasma proteins by reversed phase HPLC mass spectrometry in tryptic plasma digests. In total, 19 AGE modification sites corresponding to 11 proteins were identified in patients with type 2 diabetes mellitus under poor glycemic control. The modification degrees of 15 modification sites did not differ among cohorts of normoglycemic lean or obese and type 2 diabetes mellitus patients under good and poor glycemic control. The contents of two amide-AGEs in human serum albumin and apolipoprotein A-II were significantly higher in patients with poor glycemic control, although the plasma levels of both proteins were similar among all plasma samples. These two modification sites might be useful to predict long term, AGE-related complications in diabetic patients, such as impaired vision, increased arterial stiffness, or decreased kidney function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Changes in pre- and post-donation platelet function in plateletpheresis donors.
Zhou, Q; Yu, X; Cai, Y; Liu, L
2017-11-01
This study aimed to investigate the changes of platelet (PLT) function and coagulation time before and after plateletpheresis donation. The healthy donors were divided into four groups according to the annual number of plateletpheresis donation: 20 times group, 15 times group, 10 times group and 5 times group. The healthy non-blood donors were selected as controls. The donation interval was 14 days. The blood samples were collected before plateletpheresis donation and after 30min, 7 d, and 14 d of donation for determination of coagulation time, PLT function, plasma protein, serum iron and blood routine change. After 30min of plateletpheresis donation, the PLT function decreased and the coagulation time was prolonged. However, PLT function recovered to the pre-collection after 7 d of plateletpheresis donation and coagulation time recovered to the pre-collection after 14 d of plateletpheresis donation. Additionally, there was no difference regarding blood coagulation time and PLT function among blood donors and controls. The plasma protein and serum iron levels in 20 times and 15 times groups were within the normal reference range. The frequency of plateletpheresis donation will not affect PLT function, coagulation time, plasma protein and serum iron in donors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Controllable g5p-Protein-Directed Aggregation of ssDNA-Gold Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Maye, M; Zhang, Y
We assembled single-stranded DNA (ssDNA) conjugated nanoparticles using the phage M13 gene 5 protein (g5p) as the molecular glue to bind two antiparallel noncomplementary ssDNA strands. The entire process was controlled tightly by the concentration of the g5p protein and the presence of double-stranded DNA. The g5p-ssDNA aggregate was disintegrated by hybridization with complementary ssDNA (C-ssDNA) that triggers the dissociation of the complex. Polyhistidine-tagged g5p was bound to nickel nitrilotriacetic acid (Ni2+-NTA) conjugated nanoparticles and subsequently used to coassemble the ssDNA-conjugated nanoparticles into multiparticle-type aggregates. Our approach offers great promise for designing biologically functional, controllable protein/nanoparticle composites.
Landy, Jonathan; Ronde, Emma; English, Nick; Clark, Sue K; Hart, Ailsa L; Knight, Stella C; Ciclitira, Paul J; Al-Hassi, Hafid Omar
2016-01-01
Inflammatory bowel diseases are characterised by inflammation that compromises the integrity of the epithelial barrier. The intestinal epithelium is not only a static barrier but has evolved complex mechanisms to control and regulate bacterial interactions with the mucosal surface. Apical tight junction proteins are critical in the maintenance of epithelial barrier function and control of paracellular permeability. The characterisation of alterations in tight junction proteins as key players in epithelial barrier function in inflammatory bowel diseases is rapidly enhancing our understanding of critical mechanisms in disease pathogenesis as well as novel therapeutic opportunities. Here we give an overview of recent literature focusing on the role of tight junction proteins, in particular claudins, in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. PMID:27003989
Li, Yang; Yang, Jianyi
2017-04-24
The prediction of protein-ligand binding affinity has recently been improved remarkably by machine-learning-based scoring functions. For example, using a set of simple descriptors representing the atomic distance counts, the RF-Score improves the Pearson correlation coefficient to about 0.8 on the core set of the PDBbind 2007 database, which is significantly higher than the performance of any conventional scoring function on the same benchmark. A few studies have been made to discuss the performance of machine-learning-based methods, but the reason for this improvement remains unclear. In this study, by systemically controlling the structural and sequence similarity between the training and test proteins of the PDBbind benchmark, we demonstrate that protein structural and sequence similarity makes a significant impact on machine-learning-based methods. After removal of training proteins that are highly similar to the test proteins identified by structure alignment and sequence alignment, machine-learning-based methods trained on the new training sets do not outperform the conventional scoring functions any more. On the contrary, the performance of conventional functions like X-Score is relatively stable no matter what training data are used to fit the weights of its energy terms.
Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12
Maret, Wolfgang
2013-01-01
The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127
Klotho protein lowered in senile patients with brady sinus arrhythmia.
Wang, Ying; Yang, Wei; Zheng, Ernv; Zhang, Wei; Su, Xianming
2015-01-01
To explore the correlationship between brady sinus arrhythmia and the levels of serum klotho protein in aged. 104 patients over 75 years old with brady sinus arrhythmia (experiment group) were enrolled, including 34 cases of sinus arrest, 43 cases of sinus bradycardia and 25 cases of atrioventricular block. 109 patients over 75 years old without brady sinus arrhymia were chosen as control group. All subjects were monitored by Holter. The levels of serum klotho protein were detected and compared among three groups. The correlation between the frequency of sinus arrest and the levels of serum klotho protein was analyzed simultaneously. The levels of serum klotho protein in experiment group were lower than that in control group (P<0.01); the sinus arrest frequency was negatively correlated with the levels of serum klotho protien. The levels of serum klotho protein in patients with sinus arrest were lower than that with sinus bradycardia and atrioventricularblock (P<0.05). But there was no significant difference between sinus bradycardia group and atrioventricular block group. The levels of serum klotho protein may reflect the function of sinoatrial node and could be used as an index to estimate the function of sinoatrial node.
Klotho protein lowered in senile patients with brady sinus arrhythmia
Wang, Ying; Yang, Wei; Zheng, Ernv; Zhang, Wei; Su, Xianming
2015-01-01
Objective: To explore the correlationship between brady sinus arrhythmia and the levels of serum klotho protein in aged. Methods: 104 patients over 75 years old with brady sinus arrhythmia (experiment group) were enrolled, including 34 cases of sinus arrest, 43 cases of sinus bradycardia and 25 cases of atrioventricular block. 109 patients over 75 years old without brady sinus arrhymia were chosen as control group. All subjects were monitored by Holter. The levels of serum klotho protein were detected and compared among three groups. The correlation between the frequency of sinus arrest and the levels of serum klotho protein was analyzed simultaneously. Results: The levels of serum klotho protein in experiment group were lower than that in control group (P<0.01); the sinus arrest frequency was negatively correlated with the levels of serum klotho protien. The levels of serum klotho protein in patients with sinus arrest were lower than that with sinus bradycardia and atrioventricularblock (P<0.05). But there was no significant difference between sinus bradycardia group and atrioventricular block group. Conclusion: The levels of serum klotho protein may reflect the function of sinoatrial node and could be used as an index to estimate the function of sinoatrial node. PMID:26550342
Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix
2014-01-07
Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.
Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix
2014-01-01
Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light–dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors. PMID:24344304
Rapid and Tunable Control of Protein Stability in Caenorhabditis elegans Using a Small Molecule
Cho, Ukrae; Zimmerman, Stephanie M.; Chen, Ling-chun; Owen, Elliot; Kim, Jesse V.; Kim, Stuart K.; Wandless, Thomas J.
2013-01-01
Destabilizing domains are conditionally unstable protein domains that can be fused to a protein of interest resulting in degradation of the fusion protein in the absence of stabilizing ligand. These engineered protein domains enable rapid, reversible and dose-dependent control of protein expression levels in cultured cells and in vivo. To broaden the scope of this technology, we have engineered new destabilizing domains that perform well at temperatures of 20–25°C. This raises the possibility that our technology could be adapted for use at any temperature. We further show that these new destabilizing domains can be used to regulate protein concentrations in C. elegans. These data reinforce that DD can function in virtually any organism and temperature. PMID:23991108
GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells.
Yamaoka, Mami; Ishizaki, Toshimasa; Kimura, Toshihide
2015-01-01
Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.
A method for detergent-free isolation of membrane proteins in their local lipid environment.
Lee, Sarah C; Knowles, Tim J; Postis, Vincent L G; Jamshad, Mohammed; Parslow, Rosemary A; Lin, Yu-Pin; Goldman, Adrian; Sridhar, Pooja; Overduin, Michael; Muench, Stephen P; Dafforn, Timothy R
2016-07-01
Despite the great importance of membrane proteins, structural and functional studies of these proteins present major challenges. A significant hurdle is the extraction of the functional protein from its natural lipid membrane. Traditionally achieved with detergents, purification procedures can be costly and time consuming. A critical flaw with detergent approaches is the removal of the protein from the native lipid environment required to maintain functionally stable protein. This protocol describes the preparation of styrene maleic acid (SMA) co-polymer to extract membrane proteins from prokaryotic and eukaryotic expression systems. Successful isolation of membrane proteins into SMA lipid particles (SMALPs) allows the proteins to remain with native lipid, surrounded by SMA. We detail procedures for obtaining 25 g of SMA (4 d); explain the preparation of protein-containing SMALPs using membranes isolated from Escherichia coli (2 d) and control protein-free SMALPS using E. coli polar lipid extract (1-2 h); investigate SMALP protein purity by SDS-PAGE analysis and estimate protein concentration (4 h); and detail biophysical methods such as circular dichroism (CD) spectroscopy and sedimentation velocity analytical ultracentrifugation (svAUC) to undertake initial structural studies to characterize SMALPs (∼2 d). Together, these methods provide a practical tool kit for those wanting to use SMALPs to study membrane proteins.
Automatic annotation of protein motif function with Gene Ontology terms.
Lu, Xinghua; Zhai, Chengxiang; Gopalakrishnan, Vanathi; Buchanan, Bruce G
2004-09-02
Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, a much needed and important task is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO) project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. This paper presents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifs is viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association is found to be a very useful feature. We take advantage of the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correct association. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about the functions of newly discovered candidate protein motifs.
Watson, Nerylee Ann; Dyer, Kathryn Ann; Buckley, Jonathan David; Brinkworth, Grant David; Coates, Alison Mary; Parfitt, Gaynor; Howe, Peter Ranald Charles; Noakes, Manny; Dye, Louise; Chadwick, Helen; Murphy, Karen Joy
2015-11-01
Hypocaloric low-fat diets, high in protein with moderate carbohydrate (HP) can enhance weight loss, improve glycaemic control and improve cardiometabolic health risk factors in type 2 diabetes mellitus (T2DM). However, it is unclear whether the metabolic benefits observed during weight loss are sustained during energy-balance and weight maintenance. Furthermore, there is a lack of evidence regarding the effect of HP diets on food cravings, cognitive function and psychological wellbeing in T2DM, despite carbohydrate food cravings, cognitive impairment and depression being associated with hyperglycaemia. Overweight/obese adults with T2DM were randomised to consume either a HP diet (n=32, ~32% protein, 33% carbohydrate, 30% fat) or a higher-carbohydrate diet (HC, n=29, ~22% protein, 51% carbohydrate, 22% fat) for 24 weeks with 30 min of moderate intensity exercise five days/week for the study duration. There were 2 phases: a 12 week weight loss phase followed by a 12 week weight maintenance phase. Primary outcome was glycaemic control (glycosylated haemoglobin; HbA1c). Secondary outcomes were cardiometabolic risk factors (body composition, fasting blood pressure, blood lipids, glucose, insulin and C-reactive protein), food cravings, cognitive function (memory; psychomotor and executive function and psychological well-being. Outcomes were measured at baseline and the end of each 12-week intervention phase. Data will be analysed as intention-to-treat using linear mixed effects models. This study will examine the effects of two dietary interventions on health outcomes in T2DM during weight loss and notably following weight maintenance where there is a paucity of evidence. Copyright © 2015. Published by Elsevier Inc.
Cabrera-Pastor, Andrea; Llansola, Marta; Felipo, Vicente
2016-12-21
Extracellular protein kinases, including cAMP-dependent protein kinase (PKA), modulate neuronal functions including N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation. NMDA receptor activation increases calcium, which binds to calmodulin and activates nitric oxide synthase (NOS), increasing nitric oxide (NO), which activates guanylate cyclase, increasing cGMP, which is released to the extracellular fluid, allowing analysis of this glutamate-NO-cGMP pathway in vivo by microdialysis. The function of this pathway is impaired in hyperammonemic rats. The aims of this work were to assess (1) whether the glutamate-NO-cGMP pathway is modulated in cerebellum in vivo by an extracellular PKA, (2) the role of phosphorylation and activity of calcium/calmodulin-dependent protein kinase II (CaMKII) and NOS in the pathway modulation by extracellular PKA, and (3) whether the effects are different in hyperammonemic and control rats. The pathway was analyzed by in vivo microdialysis. The role of extracellular PKA was analyzed by inhibiting it with a membrane-impermeable inhibitor. The mechanisms involved were analyzed in freshly isolated cerebellar slices from control and hyperammonemic rats. In control rats, inhibiting extracellular PKA reduces the glutamate-NO-cGMP pathway function in vivo. This is due to reduction of CaMKII phosphorylation and activity, which reduces NOS phosphorylation at Ser1417 and NOS activity, resulting in reduced guanylate cyclase activation and cGMP formation. In hyperammonemic rats, under basal conditions, CaMKII phosphorylation and activity are increased, increasing NOS phosphorylation at Ser847, which reduces NOS activity, guanylate cyclase activation, and cGMP. Inhibiting extracellular PKA in hyperammonemic rats normalizes CaMKII phosphorylation and activity, NOS phosphorylation, NOS activity, and cGMP, restoring normal function of the pathway.
R4 RGS Proteins: Regulation of G Protein Signaling and Beyond
Bansal, Geetanjali; Druey, Kirk M.; Xie, Zhihui
2007-01-01
The Regulators of G protein Signaling (RGS) proteins were initially characterized as inhibitors of signal transduction cascades initiated by G-protein-coupled receptors (GPCRs) because of their ability to increase the intrinsic GTPase activity of heterotrimeric G proteins. This GTPase accelerating (GAP) activity enhances G protein deactivation and promotes desensitization. However, in addition to this signature trait, emerging data have revealed an expanding network of proteins, lipids, and ions that interact with RGS proteins and confer additional regulatory functions. This review highlights recent advances in our understanding of the physiological functions of one subfamily of RGS proteins with a high degree of homology (B/R4) gleaned from recent studies of knockout mice or cells with reduced RGS expression. We also discuss some of the newly-appreciated interactions of RGS proteins with cellular factors that suggest RGS control of several components of G-protein-mediated pathways as well as a diverse array of non-GPCR-mediated biological responses. PMID:18006065
Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell.
Shalev, Anath
2014-08-01
Pancreatic β-cells are responsible for insulin production, and loss of functional β-cell mass is now recognized as a critical step in the pathogenesis of both type 1 and type 2 diabetes. However, the factors controlling the life and death of the pancreatic β-cell have only started to be elucidated. Discovered as the top glucose-induced gene in a human islet microarray study 12 years ago, thioredoxin-interacting protein (TXNIP) has now emerged as such a key player in pancreatic β-cell biology. Since then, β-cell expression of TXNIP has been found to be tightly regulated by multiple factors and to be dramatically increased in diabetic islets. Elevated TXNIP levels induce β-cell apoptosis, whereas TXNIP deficiency protects against type 1 and type 2 diabetes by promoting β-cell survival. TXNIP interacts with and inhibits thioredoxin and thereby controls the cellular redox state, but it also belongs to the α-arrestin family of proteins and regulates a variety of metabolic processes. Most recently, TXNIP has been discovered to control β-cell microRNA expression, β-cell function, and insulin production. In this review, the current state of knowledge regarding regulation and function of TXNIP in the pancreatic β-cell and the implications for drug development are discussed.
Xin, Hongqi; Katakowski, Mark; Wang, Fengjie; Qian, Jian-Yong; Liu, Xian Shuang; Ali, Meser M; Buller, Benjamin; Zhang, Zheng Gang; Chopp, Michael
2017-03-01
Multipotent mesenchymal stromal cell (MSC) harvested exosomes are hypothesized as the major paracrine effectors of MSCs. In vitro, the miR-17-92 cluster promotes oligodendrogenesis, neurogenesis, and axonal outgrowth. We, therefore, investigated whether the miR-17-92 cluster-enriched exosomes harvested from MSCs transfected with an miR-17-92 cluster plasmid enhance neurological recovery compared with control MSC-derived exosomes. Rats subjected to 2 hours of transient middle cerebral artery occlusion were intravenously administered miR-17-92 cluster-enriched exosomes, control MSC exosomes, or liposomes and were euthanized 28 days post-middle cerebral artery occlusion. Histochemistry, immunohistochemistry, and Golgi-Cox staining were used to assess dendritic, axonal, synaptic, and myelin remodeling. Expression of phosphatase and tensin homolog and activation of its downstream proteins, protein kinase B, mechanistic target of rapamycin, and glycogen synthase kinase 3β in the peri-infarct region were measured by means of Western blots. Compared with the liposome treatment, both exosome treatment groups exhibited significant improvement of functional recovery, but miR-17-92 cluster-enriched exosome treatment had significantly more robust effects on improvement of neurological function and enhancements of oligodendrogenesis, neurogenesis, and neurite remodeling/neuronal dendrite plasticity in the ischemic boundary zone (IBZ) than the control MSC exosome treatment. Moreover, miR-17-92 cluster-enriched exosome treatment substantially inhibited phosphatase and tensin homolog, a validated miR-17-92 cluster target gene, and subsequently increased the phosphorylation of phosphatase and tensin homolog downstream proteins, protein kinase B, mechanistic target of rapamycin, and glycogen synthase kinase 3β compared with control MSC exosome treatment. Our data suggest that treatment of stroke with tailored exosomes enriched with the miR-17-92 cluster increases neural plasticity and functional recovery after stroke, possibly via targeting phosphatase and tensin homolog to activate the PI3K/protein kinase B/mechanistic target of rapamycin/glycogen synthase kinase 3β signaling pathway. © 2017 American Heart Association, Inc.
Arends, Jan; Griego, Marcena; Thomanek, Nikolas; Lindemann, Claudia; Kutscher, Blanka; Meyer, Helmut E; Narberhaus, Franz
2018-04-30
Controlling the cellular abundance and proper function of proteins by proteolysis is a universal process in all living organisms. In Escherichia coli, the ATP-dependent Lon protease is crucial for protein quality control and regulatory processes. To understand how diverse substrates are selected and degraded, unbiased global approaches are needed. We employed a quantitative Super-SILAC mass spectrometry approach and compared the proteomes of a lon mutant and a strain producing the protease to discover Lon-dependent physiological functions. To identify Lon substrates, we took advantage of a Lon trapping variant, which is able to translocate substrates but unable to degrade them. Lon-associated proteins were identified by label-free LC-MS/MS. The combination of both approaches revealed a total of 14 novel Lon substrates. Besides the identification of known pathways affected by Lon, for example the superoxide-stress response, our cumulative data suggests previously unrecognized fundamental functions of Lon in sulfur assimilation, nucleotide biosynthesis, amino acid and central energy metabolism. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity.
Park, Chang-Jin; Seo, Young-Su
2015-12-01
As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.
Muscle atrophy in cachexia: can dietary protein tip the balance?
Op den Kamp, Céline M; Langen, Ramon C; Haegens, Astrid; Schols, Annemie M
2009-11-01
To review the efficacy of dietary protein supplementation in attenuating muscle atrophy in cachexia. Only very few recent randomized controlled trials have studied the effects of protein supplementation in clinical cachexia. It appears that supplementation of dietary protein (>1.5 g/kg per day) alone or in combination with other anabolic stimuli such as exercise training maintains or even improves muscle mass, but results on muscle function are controversial and no clinical studies have yet directly linked alterations in cellular signaling or metabolic signatures of protein intake-induced muscle anabolism to muscle weight gain. To elucidate the role of dietary protein supplementation in attenuating muscle atrophy in cachectic patients, randomized clinical trials are needed in adequately phenotyped patients using sensitive measures of muscle mass and function.
Sapountzi, Vasileia; Logan, Ian R; Nelson, Glyn; Cook, Susan; Robson, Craig N
2008-01-01
Tat-interactive protein 60 kDa is a nuclear acetyltransferase that both coactivates and corepresses transcription factors and has a definitive function in the DNA damage response. Here, we provide evidence that Tat-interactive protein 60 kDa is phosphorylated by protein kinase C epsilon. In vitro, protein kinase C epsilon phosphorylates Tat-interactive protein 60 kDa on at least two sites within the acetyltransferase domain. In whole cells, activation of protein kinase C increases the levels of phosphorylated Tat-interactive protein 60 kDa and the interaction of Tat-interactive protein 60 kDa with protein kinase C epsilon. A phosphomimetic mutant Tat-interactive protein 60 kDa has distinct subcellular localisation compared to the wild-type protein in whole cells. Taken together, these findings suggest that the protein kinase C epsilon phosphorylation sites on Tat-interactive protein 60 kDa are important for its subcellular localisation. Regulation of the subcellular localisation of Tat-interactive protein 60 kDa via phosphorylation provides a novel means of controlling Tat-interactive protein 60 kDa function.
Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation.
Lipton, Stuart A; Choi, Yun-Beom; Takahashi, Hiroto; Zhang, Dongxian; Li, Weizhong; Godzik, Adam; Bankston, Laurie A
2002-09-01
Until recently cysteine residues, especially those located extracellularly, were thought to be important for metal coordination, catalysis and protein structure by forming disulfide bonds - but they were not thought to regulate protein function. However, this is not the case. Crucial cysteine residues can be involved in modulation of protein activity and signaling events via other reactions of their thiol (sulfhydryl; -SH) groups. These reactions can take several forms, such as redox events (chemical reduction or oxidation), chelation of transition metals (chiefly Zn(2+), Mn(2+) and Cu(2+)) or S-nitrosylation [the catalyzed transfer of a nitric oxide (NO) group to a thiol group]. In several cases, these disparate reactions can compete with one another for the same thiol group on a single cysteine residue, forming a molecular switch composed of a latticework of possible redox, NO or Zn(2+) modifications to control protein function. Thiol-mediated regulation of protein function can also involve reactions of cysteine residues that affect ligand binding allosterically. This article reviews the basis for these molecular cysteine switches, drawing on the NMDA receptor as an exemplary protein, and proposes a molecular model for the action of S-nitrosylation based on recently derived crystal structures.
Differential Editosome Protein Function between Life Cycle Stages of Trypanosoma brucei *
McDermott, Suzanne M.; Guo, Xuemin; Carnes, Jason; Stuart, Kenneth
2015-01-01
Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei. The mRNAs are differentially edited in bloodstream form (BF) and procyclic form (PF) life cycle stages, and this correlates with the differential utilization of glycolysis and oxidative phosphorylation between the stages. The mechanism that controls this differential editing is unknown. Editing is catalyzed by multiprotein ∼20S editosomes that contain endonuclease, 3′-terminal uridylyltransferase, exonuclease, and ligase activities. These editosomes also contain KREPB5 and KREPA3 proteins, which have no functional catalytic motifs, but they are essential for parasite viability, editing, and editosome integrity in BF cells. We show here that repression of KREPB5 or KREPA3 is also lethal in PF, but the effects on editosome structure differ from those in BF. In addition, we found that point mutations in KREPB5 or KREPA3 differentially affect cell growth, editosome integrity, and RNA editing between BF and PF stages. These results indicate that the functions of KREPB5 and KREPA3 editosome proteins are adjusted between the life cycle stages. This implies that these proteins are involved in the processes that control differential editing and that the 20S editosomes differ between the life cycle stages. PMID:26304125
A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress
Judge, Luke M.; Perez-Bermejo, Juan A.; Truong, Annie; Ribeiro, Alexandre J.S.; Yoo, Jennie C.; Jensen, Christina L.; Mandegar, Mohammad A.; Huebsch, Nathaniel; Kaake, Robyn M.; So, Po-Lin; Srivastava, Deepak; Krogan, Nevan J.
2017-01-01
Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity. PMID:28724793
A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress.
Judge, Luke M; Perez-Bermejo, Juan A; Truong, Annie; Ribeiro, Alexandre Js; Yoo, Jennie C; Jensen, Christina L; Mandegar, Mohammad A; Huebsch, Nathaniel; Kaake, Robyn M; So, Po-Lin; Srivastava, Deepak; Pruitt, Beth L; Krogan, Nevan J; Conklin, Bruce R
2017-07-20
Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.
Structure and functions of the chaperone-like p97/CDC48 in plants.
Bègue, Hervé; Jeandroz, Sylvain; Blanchard, Cécile; Wendehenne, David; Rosnoblet, Claire
2017-01-01
The chaperone-like p97 is a member of the AAA+ ATPase enzyme family that contributes to numerous cellular activities. P97 has been broadly studied in mammals (VCP/p97) and yeasts (CDC48: Cell Division Cycle 48/p97) and numerous investigations highlighted that this protein is post-translationally regulated, is structured in homohexamer and interacts with partners and cofactors that direct it to distinct cellular signalization pathway including protein quality control and degradation, cell cycle regulation, genome stability, vesicular trafficking, autophagy and immunity. p97 is also conserved in plants (CDC48) but its functions are less understood. In the present review we intended to present the state of the art of the structure, regulation and functions of CDC48 in plants. Evidence accumulated underline that CDC48 plays a crucial role in development, cell cycle regulation and protein turnover in plants. Furthermore, its involvement in plant immunity has recently emerged and first interacting partners have been identified, shedding light on its putative cellular activities. Identification of emerging functions of CDC48 in plants opens new roads of research in immunity and provides new insights into the mechanisms of protein quality control. Copyright © 2016 Elsevier B.V. All rights reserved.
Bondzio, Angelika; Pieper, Robert; Gabler, Christoph; Weise, Christoph; Schulze, Petra; Zentek, Juergen; Einspanier, Ralf
2013-01-01
Pharmacological levels of zinc oxide can promote growth and health of weaning piglets, but the underlying molecular mechanisms are yet not fully understood. The aim of this study was to determine changes in the global hepatic protein expression in response to dietary zinc oxide in weaned piglets. Nine half-sib piglets were allocated to three dietary zinc treatment groups (50, 150, 2500 mg/kg dry matter). After 14 d, pigs were euthanized and liver samples taken. The increase in hepatic zinc concentration following dietary supplementation of zinc was accompanied by up-regulation of metallothionein mRNA and protein expression. Global hepatic protein profiles were obtained by two-dimensional difference gel electrophoresis following matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. A total of 15 proteins were differentially (P<0.05) expressed between groups receiving control (150 mg/kg) or pharmacological levels of zinc (2500 mg/kg) with 7 down- (e.g. arginase1, thiosulfate sulfurtransferase, HSP70) and 8 up-regulated (e.g. apolipoprotein AI, transferrin, C1-tetrahydrofolate synthase) proteins. Additionally, three proteins were differentially expressed with low zinc supply (50 mg/kg Zn) in comparison to the control diet. The identified proteins were mainly associated with functions related to cellular stress, transport, metabolism, and signal transduction. The differential regulation was evaluated at the mRNA level and a subset of three proteins of different functional groups was selected for confirmation by western blotting. The results of this proteomic study suggest that zinc affects important liver functions such as blood protein secretion, protein metabolism, detoxification and redox homeostasis, thus supporting the hypothesis of intermediary effects of pharmacological levels of zinc oxide fed to pigs. PMID:24282572
Yallowitz, Alisha R.; Gong, Ke-Qin; Swinehart, Ilea T.; Nelson, Lisa T.; Wellik, Deneen M.
2009-01-01
Summary Hox genes control many developmental events along the AP axis, but few target genes have been identified. Whether target genes are activated or repressed, what enhancer elements are required for regulation, and how different domains of the Hox proteins contribute to regulatory specificity is poorly understood. Six2 is genetically downstream of both the Hox11 paralogous genes in the developing mammalian kidney and Hoxa2 in branchial arch and facial mesenchyme. Loss-of-function of Hox11 leads to loss of Six2 expression and loss-of-function of Hoxa2 leads to expanded Six2 expression. Herein we demonstrate that a single enhancer site upstream of the Six2 coding sequence is responsible for both activation by Hox11 proteins in the kidney and repression by Hoxa2 in the branchial arch and facial mesenchyme in vivo. DNA binding activity is required for both activation and repression, but differential activity is not controlled by differences in the homeodomains. Rather, protein domains N- and C-terminal to the homeodomain confer activation versus repression activity. These data support a model in which the DNA binding specificity of Hox proteins in vivo may be similar, consistent with accumulated in vitro data, and that unique functions result mainly from differential interactions mediated by non-homeodomain regions of Hox proteins. PMID:19716816
McDonald, Christopher; Jovanovic, Goran; Ces, Oscar
2015-01-01
ABSTRACT Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled, in vitro methodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins’ differing roles in vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. This in vitro recapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mounted in vivo when a cell’s inner membrane experiences increased SCE stress. PMID:26330516
GP96 is a GARP chaperone and controls regulatory T cell functions.
Zhang, Yongliang; Wu, Bill X; Metelli, Alessandra; Thaxton, Jessica E; Hong, Feng; Rachidi, Saleh; Ansa-Addo, Ephraim; Sun, Shaoli; Vasu, Chenthamarakshan; Yang, Yi; Liu, Bei; Li, Zihai
2015-02-01
Molecular chaperones control a multitude of cellular functions via folding chaperone-specific client proteins. CD4+FOXP3+ Tregs play key roles in maintaining peripheral tolerance, which is subject to regulation by multiple molecular switches, including mTOR and hypoxia-inducible factor. It is not clear whether GP96 (also known as GRP94), which is a master TLR and integrin chaperone, controls Treg function. Using murine genetic models, we demonstrated that GP96 is required for Treg maintenance and function, as loss of GP96 resulted in instability of the Treg lineage and impairment of suppressive functions in vivo. In the absence of GP96, Tregs were unable to maintain FOXP3 expression levels, resulting in systemic accumulation of pathogenic IFN-γ-producing and IL-17-producing T cells. We determined that GP96 serves as an essential chaperone for the cell-surface protein glycoprotein A repetitions predominant (GARP), which is a docking receptor for latent membrane-associated TGF-β (mLTGF-β). The loss of both GARP and integrins on GP96-deficient Tregs prevented expression of mLTGF-β and resulted in inefficient production of active TGF-β. Our work demonstrates that GP96 regulates multiple facets of Treg biology, thereby placing Treg stability and immunosuppressive functions strategically under the control of a major stress chaperone.
Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.
Huang, Wenwen; Rollett, Alexandra; Kaplan, David L
2015-05-01
Genetically engineered biomaterials are useful for controlled delivery owing to their rational design, tunable structure-function, biocompatibility, degradability and target specificity. Silk-elastin-like proteins (SELPs), a family of genetically engineered recombinant protein polymers, possess these properties. Additionally, given the benefits of combining semi-crystalline silk-blocks and elastomeric elastin-blocks, SELPs possess multi-stimuli-responsive properties and tunability, thereby becoming promising candidates for targeted cancer therapeutics delivery and controlled gene release. An overview of SELP biomaterials for drug delivery and gene release is provided. Biosynthetic strategies used for SELP production, fundamental physicochemical properties and self-assembly mechanisms are discussed. The review focuses on sequence-structure-function relationships, stimuli-responsive features and current and potential drug delivery applications. The tunable material properties allow SELPs to be pursued as promising biomaterials for nanocarriers and injectable drug release systems. Current applications of SELPs have focused on thermally-triggered biomaterial formats for the delivery of therapeutics, based on local hyperthermia in tumors or infections. Other prominent controlled release applications of SELPs as injectable hydrogels for gene release have also been pursued. Further biomedical applications that utilize other stimuli to trigger the reversible material responses of SELPs for targeted delivery, including pH, ionic strength, redox, enzymatic stimuli and electric field, are in progress. Exploiting these additional stimuli-responsive features will provide a broader range of functional biomaterials for controlled therapeutics release and tissue regeneration.
SCF(KMD) controls cytokinin signaling by regulating the degradation of type-B response regulators.
Kim, Hyo Jung; Chiang, Yi-Hsuan; Kieber, Joseph J; Schaller, G Eric
2013-06-11
Cytokinins are plant hormones that play critical roles in growth and development. In Arabidopsis, the transcriptional response to cytokinin is regulated by action of type-B Arabidopsis response regulators (ARRs). Although central elements in the cytokinin signal transduction pathway have been identified, mechanisms controlling output remain to be elucidated. Here we demonstrate that a family of F-box proteins, called the kiss me deadly (KMD) family, targets type-B ARR proteins for degradation. KMD proteins form an S-phase kinase-associated PROTEIN1 (SKP1)/Cullin/F-box protein (SCF) E3 ubiquitin ligase complex and directly interact with type-B ARR proteins. Loss-of-function KMD mutants stabilize type-B ARRs and exhibit an enhanced cytokinin response. In contrast, plants with elevated KMD expression destabilize type-B ARR proteins leading to cytokinin insensitivity. Our results support a model in which an SCF(KMD) complex negatively regulates cytokinin responses by controlling levels of a key family of transcription factors.
Biasiotto, Roberta; Akusjärvi, Göran
2015-01-28
Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced viral mRNAs. Studies aimed at characterizing the interactions between the virus and the host cell RNA splicing machinery have identified three viral proteins of special significance for the control of late viral gene expression: L4-33K, L4-22K, and E4-ORF4. L4-33K is a viral alternative RNA splicing factor that controls L1 alternative splicing via an interaction with the cellular protein kinases Protein Kinase A (PKA) and DNA-dependent protein kinase (DNA-PK). L4-22K is a viral transcription factor that also has been implicated in the splicing of a subset of late viral mRNAs. E4-ORF4 is a viral protein that binds the cellular protein phosphatase IIA (PP2A) and controls Serine/Arginine (SR)-rich protein activity by inducing SR protein dephosphorylation. The L4-33K, and most likely also the L4-22K protein, are highly phosphorylated in vivo. Here we will review the function of these viral proteins in the post-transcriptional control of adenoviral gene expression and further discuss the significance of potential protein kinases phosphorylating the L4-33K and/or L4-22K proteins.
del Sol, Antonio; Araúzo-Bravo, Marcos J; Amoros, Dolors; Nussinov, Ruth
2007-01-01
Background Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. Results We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Gαs subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. Conclusion Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages. PMID:17531094
Dong, Chun-Hai; Xia, Gui-Xian; Hong, Yan; Ramachandran, Srinivasan; Kost, Benedikt; Chua, Nam-Hai
2001-01-01
Based mostly on the results of in vitro experiments, ADF (actin-depolymerizing factor) proteins are thought to be key modulators of the dynamic organization of the actin cytoskeleton. The few studies concerned with the in vivo function of ADF proteins that have been reported to date were performed almost exclusively using single-cell systems and have failed to produce consistent results. To investigate ADF functions in vivo and during the development of multicellular organs, we generated transgenic Arabidopsis plants that express a cDNA encoding an ADF protein (AtADF1) in the sense or the antisense orientation under the control of a strong constitutively active promoter. Selected lines with significantly altered levels of AtADF protein expression were characterized phenotypically. Overexpression of AtADF1 resulted in the disappearance of thick actin cables in different cell types, caused irregular cellular and tissue morphogenesis, and reduced the growth of cells and organs. In contrast, reduced AtADF expression promoted the formation of actin cables, resulted in a delay in flowering, and stimulated cell expansion as well as organ growth. These results are consistent with the molecular functions of ADF as predicted by in vitro studies, support the global roles of ADF proteins during the development of a multicellular organism, and demonstrate that these proteins are key regulators of F-actin organization, flowering, and cell and organ expansion in Arabidopsis. PMID:11402164
Naboulsi, Wael; Bracht, Thilo; Megger, Dominik A; Reis, Henning; Ahrens, Maike; Turewicz, Michael; Eisenacher, Martin; Tautges, Stephanie; Canbay, Ali E; Meyer, Helmut E; Weber, Frank; Baba, Hideo A; Sitek, Barbara
2016-11-01
The majority of poorly differentiated hepatocellular carcinomas (HCCs) develop from well-differentiated tumors. Endocytosis is a cellular function which is likely to take part in this development due to its important role in regulating the abundances of vital signaling receptors. Here, we aimed to investigate the abundance of endocytosis-associated proteins in HCCs with various differentiation grades. Therefore, we analyzed 36 tissue specimens from HCC patients via LC-MS/MS-based label-free quantitative proteomics including 19 HCC tissue samples with different degrees of histological grades and corresponding non-tumorous tissue controls. As a result, 277 proteins were differentially regulated between well-differentiated tumors and controls. In moderately and poorly differentiated tumors, 278 and 1181 proteins, respectively, were significantly differentially regulated compared to non-tumorous tissue. We explored the regulated proteins based on their functions and identified thirty endocytosis-associated proteins, mostly overexpressed in poorly differentiated tumors. These included proteins that have been shown to be up-regulated in HCC like clathrin heavy chain-1 (CLTC) as well as unknown proteins, such as secretory carrier-associated membrane protein 3 (SCAMP3). The abundances of SCAMP3 and CLTC were immunohistochemically examined in tissue sections of 84 HCC patients. We demonstrate the novel association of several endocytosis-associated proteins, in particular, SCAMP3 with HCC progression. Copyright © 2016 Elsevier B.V. All rights reserved.
Linster, Eric; Wirtz, Markus
2018-06-26
N-terminal acetylation (NTA) is a prevalent protein modification in eukaryotes. The majority of proteins is acetylated at their N-terminus in a co-translational manner by ribosome-associated N-terminal acetyltransferases (NAT). However, the recent discovery of Golgi-membrane localized NATs in metazoan, and plastid-localized NATs in plants challenged the dogma of static, co-translational imprinting of the proteome by NTA. Indeed, NTA by the cytosolic NatA is highly dynamic and under hormonal control in plants. Such active control has not been evidenced yet in other eukaryotes and might be an adaptation to the sessile lifestyle of plants forcing them to cope with diverse environmental challenges. The function of NTA for individual proteins is distinct and yet unpredictable. In yeast and humans, NTA has been shown to affect protein-protein interactions, subcellular localization, folding, aggregation, or degradation of a handful of proteins. In particular, the impact of NTA on the protein-turnover is documented by diverse examples in yeast. Consequently, NTA has recently dicovered to be a degradation signal in a distinct branch of the N-end rule pathway ubiquitin-mediated proteolysis. In this review, we summarize the current knowledge on the NAT machinery in higher plants and discuss the potential function of NTA during biotic and abiotic stresses.
Integrin-like proteins are localized to plasma membrane fractions, not plastids, in Arabidopsis
NASA Technical Reports Server (NTRS)
Swatzell, L. J.; Edelmann, R. E.; Makaroff, C. A.; Kiss, J. Z.
1999-01-01
Integrins are a large family of integral membrane proteins that function in signal transduction in animal systems. These proteins are conserved in vertebrates, invertebrates, and fungi. Evidence from previous research suggests that integrin-like proteins may be present in plants as well, and that these proteins may function in signal transduction during gravitropism. In past studies, researchers have used monoclonal and polyclonal antibodies to localize beta 1 integrin-like proteins in plants. However, there is a disparity between data collected from these studies, especially since molecular weights obtained from these investigations range from 55-120 kDa for integrin-like proteins. To date, a complete investigation which employs all three basic immunolabeling procedures, immunoblotting, immunofluorescence microscopy, and immunogold labeling, in addition to extensive fractionation and exhaustive controls, has been lacking. In this paper, we demonstrate that use of a polyclonal antibody against the cytoplasmic domain of avian beta 1-integrin can produce potential artifacts in immunolocalization studies. However, these problems can be eliminated through use of starchless mutants or proper specimen preparation prior to electrophoresis. We also show that this antibody, when applied within the described parameters and with careful controls, identifies a large (100 kDa) integrin-like protein that is localized to plasma membrane fractions in Arabidopsis.
Andersen, Tonni Grube; Nintemann, Sebastian J.; Marek, Magdalena; Halkier, Barbara A.; Schulz, Alexander; Burow, Meike
2016-01-01
When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true- from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased sensitivity and renders analysis of weak or transient interactions difficult to perform. In this work, we describe the development of reporters that can be chemically induced to dimerize independently of the investigated interactions and thus alleviate these issues. We incorporated our reporters into the widely used split ubiquitin-, bimolecular fluorescence complementation (BiFC)- and Förster resonance energy transfer (FRET)- based methods and investigated different protein-protein interactions in yeast and plants. We demonstrate the functionality of this concept by the analysis of weakly interacting proteins from specialized metabolism in the model plant Arabidopsis thaliana. Our results illustrate that chemically induced dimerization can function as a built-in control for split-based systems that is easily implemented and allows for direct evaluation of functionality. PMID:27282591
Evolution of an ancient protein function involved in organized multicellularity in animals
Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E
2016-01-01
To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which – the evolution of GKPID’s capacity to bind the cortical marker protein – can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals. DOI: http://dx.doi.org/10.7554/eLife.10147.001 PMID:26740169
Optimization of functionalization conditions for protein analysis by AFM
NASA Astrophysics Data System (ADS)
Arroyo-Hernández, María; Daza, Rafael; Pérez-Rigueiro, Jose; Elices, Manuel; Nieto-Márquez, Jorge; Guinea, Gustavo V.
2014-10-01
Activated vapor silanization (AVS) is used to functionalize silicon surfaces through deposition of amine-containing thin films. AVS combines vapor silanization and chemical vapor deposition techniques and allows the properties of the functionalized layers (thickness, amine concentration and topography) to be controlled by tuning the deposition conditions. An accurate characterization is performed to correlate the deposition conditions and functional-film properties. In particular, it is shown that smooth surfaces with a sufficient surface density of amine groups may be obtained with this technique. These surfaces are suitable for the study of proteins with atomic force microscopy.
Alvarez-Buylla, Elena R; García-Ponce, Berenice; Garay-Arroyo, Adriana
2006-01-01
APETALA1 (AP1) and CAULIFLOWER (CAL) are closely related MADS box genes that are partially redundant during Arabidopsis thaliana floral meristem determination. AP1 is able to fully substitute for CAL functions, but not vice versa, and AP1 has unique sepal and petal identity specification functions. In this study, the unique and redundant functions of these two genes has been mapped to the four protein domains that characterize type-II MADS-domain proteins by expressing all 15 chimeric combinations of AP1 and CAL cDNA regions under control of the AP1 promoter in ap1-1 loss-of-function plants. The "in vivo" function of these chimeric genes was analysed in Arabidopsis plants by expressing the chimeras. Rescue of flower meristem and sepal/petal identities was scored in single and multiple insert homozygous transgenic lines. Using these chimeric lines, it was found that distinct residues of the AP1 K domain not shared by the same CAL domain are necessary and sufficient for complete recovery of floral meristem identity, in the context of the CAL protein sequence, while both AP1 COOH and K domains are indispensable for complete rescue of sepal identity. By contrast, either one of these two AP1 domains is necessary and sufficient for complete petal identity recovery. It was also found that there were positive and negative synergies among protein domains and their combinations, and that multiple-insert lines showed relatively better rescue than equivalent single-insert lines. Finally, several lines had flowers with extra sepals and petals suggesting that chimeric proteins yield abnormal transcriptional complexes that may alter the expression or regulation of genes that control floral organ number under normal conditions.
Role of ER Export Signals in Controlling Surface Potassium Channel Numbers
NASA Astrophysics Data System (ADS)
Ma, Dzwokai; Zerangue, Noa; Lin, Yu-Fung; Collins, Anthony; Yu, Mei; Jan, Yuh Nung; Yeh Jan, Lily
2001-01-01
Little is known about the identity of endoplasmic reticulum (ER) export signals and how they are used to regulate the number of proteins on the cell surface. Here, we describe two ER export signals that profoundly altered the steady-state distribution of potassium channels and were required for channel localization to the plasma membrane. When transferred to other potassium channels or a G protein-coupled receptor, these ER export signals increased the number of functional proteins on the cell surface. Thus, ER export of membrane proteins is not necessarily limited by folding or assembly, but may be under the control of specific export signals.
Givens, D Ian
2016-01-01
Background: Cardiovascular diseases (CVDs) are the greatest cause of death globally, and their reduction is a key public-health target. High blood pressure (BP) affects 1 in 3 people in the United Kingdom, and previous studies have shown that milk consumption is associated with lower BP. Objective: We investigated whether intact milk proteins lower 24-h ambulatory blood pressure (AMBP) and other risk markers of CVD. Design: The trial was a double-blinded, randomized, 3-way–crossover, controlled intervention study. Forty-two participants were randomly assigned to consume 2 × 28 g whey protein/d, 2 × 28 g Ca caseinate/d, or 2 × 27 g maltodextrin (control)/d for 8 wk separated by a 4-wk washout. The effects of these interventions were examined with the use of a linear mixed-model ANOVA. Results: Thirty-eight participants completed the study. Significant reductions in 24-h BP [for systolic blood pressure (SBP): −3.9 mm Hg; for diastolic blood pressure (DBP): −2.5 mm Hg; P = 0.050 for both)] were observed after whey-protein consumption compared with control intake. After whey-protein supplementation compared with control intake, peripheral and central systolic pressures [−5.7 mm Hg (P = 0.007) and −5.4 mm Hg (P = 0.012), respectively] and mean pressures [−3.7 mm Hg (P = 0.025) and −4.0 mm Hg (P = 0.019), respectively] were also lowered. Flow-mediated dilation (FMD) increased significantly after both whey-protein and calcium-caseinate intakes compared with control intake [1.31% (P < 0.001) and 0.83% (P = 0.003), respectively]. Although both whey protein and calcium caseinate significantly lowered total cholesterol [−0.26 mmol/L (P = 0.013) and −0.20 mmol/L (P = 0.042), respectively], only whey protein decreased triacylglycerol (−0.23 mmol/L; P = 0.025) compared with the effect of the control. Soluble intercellular adhesion molecule 1 and soluble vascular cell adhesion molecule 1 were reduced after whey protein consumption (P = 0.011) and after calcium-caseinate consumption (P = 0.039), respectively, compared with after control intake. Conclusions: The consumption of unhydrolyzed milk proteins (56 g/d) for 8 wk improved vascular reactivity, biomarkers of endothelial function, and lipid risk factors. Whey-protein supplementation also lowered 24-h ambulatory SBP and DBP. These results may have important implications for public health. This trial was registered at clinicaltrials.gov as NCT02090842. PMID:27797709
Gomes, Rodrigo Mello; Miranda, Rosiane Aparecida; Barella, Luiz Felipe; Malta, Ananda; Martins, Isabela Peixoto; Franco, Claudinéia Conationi da Silva; Pavanello, Audrei; Torrezan, Rosana; Natali, Maria Raquel Marçal; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar
2016-01-01
Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P < .001). Adult IUPR rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P < .05) with higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol, adiponectin, ACTH, and insulin sensitivity index levels (P < .01). The insulinotropic action of glucose and acetylcholine as well as muscarinic and adrenergic receptor function were impaired in the IUPR rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol. PMID:27007071
Brooks, Simon P; Coccia, Margherita; Tang, Hao R; Kanuga, Naheed; Machesky, Laura M; Bailly, Maryse; Cheetham, Michael E; Hardcastle, Alison J
2010-06-15
Nance-Horan syndrome (NHS) is an X-linked developmental disorder, characterized by bilateral congenital cataracts, dental anomalies, facial dysmorphism and mental retardation. Null mutations in a novel gene, NHS, cause the syndrome. The NHS gene appears to have multiple isoforms as a result of alternative transcription, but a cellular function for the NHS protein has yet to be defined. We describe NHS as a founder member of a new protein family (NHS, NHSL1 and NHSL2). Here, we demonstrate that NHS is a novel regulator of actin remodelling and cell morphology. NHS localizes to sites of cell-cell contact, the leading edge of lamellipodia and focal adhesions. The N-terminus of isoforms NHS-A and NHS-1A, implicated in the pathogenesis of NHS, have a functional WAVE homology domain that interacts with the Abi protein family, haematopoietic stem/progenitor cell protein 300 (HSPC300), Nap1 and Sra1. NHS knockdown resulted in the disruption of the actin cytoskeleton. We show that NHS controls cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. NHS knockdown led to a striking increase in cell spreading. Conversely, ectopic overexpression of NHS inhibited lamellipod formation. Remodelling of the actin cytoskeleton and localized actin polymerization into branched actin filaments at the plasma membrane are essential for mediating changes in cell shape, migration and cell contact. Our data identify NHS as a new regulator of actin remodelling. We suggest that NHS orchestrates actin regulatory protein function in response to signalling events during development.
van de Rest, Ondine; van der Zwaluw, Nikita L; Tieland, Michael; Adam, Jos J; Hiddink, Gert Jan; van Loon, Luc J C; de Groot, Lisette C P G M
2014-01-01
Physical activity has been proposed as one of the most effective strategies to prevent cognitive decline. Protein supplementation may exert an additive effect. The effect of resistance-type exercise training with or without protein supplementation on cognitive functioning in frail and pre-frail elderly people was assessed in a secondary analysis. Two 24-week, double-blind, randomized, placebo-controlled intervention studies were carried out in parallel. Subjects performed a resistance-type exercise program of two sessions per week (n=62) or no exercise program (n=65). In both studies, subjects were randomly allocated to either a protein (2×15 g daily) or a placebo drink. Cognitive functioning was assessed with a neuropsychological test battery focusing on the cognitive domains episodic memory, attention and working memory, information processing speed, and executive functioning. In frail and pre-frail elderly, resistance-type exercise training in combination with protein supplementation improved information processing speed (changes in domain score 0.08±0.51 versus -0.23±0.19 in the non-exercise group, p=0.04). Exercise training without protein supplementation was beneficial for attention and working memory (changes in domain scores 0.35±0.70 versus -0.12±0.69 in the non-exercise group, p=0.02). There were no significant differences among the intervention groups on the other cognitive tests or domain scores. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Oxidative stress and protein aggregation during biological aging.
Squier, T C
2001-09-01
Biological aging is a fundamental process that represents the major risk factor with respect to the development of cancer, neurodegenerative, and cardiovascular diseases in vertebrates. It is, therefore, evident that the molecular mechanisms of aging are fundamental to understand many disease processes. In this regard, the oxidation and nitration of intracellular proteins and the formation of protein aggregates have been suggested to underlie the loss of cellular function and the reduced ability of senescent animals to withstand physiological stresses. Since oxidatively modified proteins are thermodynamically unstable and assume partially unfolded tertiary structures that readily form aggregates, it is likely that oxidized proteins are intermediates in the formation of amyloid fibrils. It is, therefore, of interest to identify oxidatively sensitive protein targets that may play a protective role through their ability to down-regulate energy metabolism and the consequent generation of reactive oxygen species (ROS). In this respect, the maintenance of cellular calcium gradients represents a major energetic expense, which links alterations in intracellular calcium levels to ATP utilization and the associated generation of ROS through respiratory control mechanisms. The selective oxidation or nitration of the calcium regulatory proteins calmodulin and Ca-ATPase that occurs in vivo during aging and under conditions of oxidative stress may represent an adaptive response to oxidative stress that functions to down-regulate energy metabolism and the associated generation of ROS. Since these calcium regulatory proteins are also preferentially oxidized or nitrated under in vitro conditions, these results suggest an enhanced sensitivity of these critical calcium regulatory proteins, which modulate signal transduction processes and intracellular energy metabolism, to conditions of oxidative stress. Thus, the selective oxidation of critical signal transduction proteins probably represents a regulatory mechanism that functions to minimize the generation of ROS through respiratory control mechanisms. The reduction of the rate of ROS generation, in turn, will promote cellular survival under conditions of oxidative stress, when reactive oxygen and nitrogen species overwhelm cellular antioxidant defense systems, by minimizing the non-selective oxidation of a range of biomolecules. Since protein aggregation occurs if protein repair and degradative systems are unable to act upon oxidized proteins and restore cellular function, the reduction of the oxidative load on the cell by the down-regulation of the electron transport chain functions to minimize protein aggregation. Thus, ROS function as signaling molecules that fine-tune cellular metabolism through the selective oxidation or nitration of calcium regulatory proteins in order to minimize wide-spread oxidative damage and protein aggregation. Oxidative damage to cellular proteins, the loss of calcium homeostasis and protein aggregation contribute to the formation of amyloid deposits that accumulate during biological aging. Critical to understand the relationship between these processes and biological aging is the identification of oxidatively sensitive proteins that modulate energy utilization and the associated generation of ROS. In this latter respect, oxidative modifications to the calcium regulatory proteins calmodulin (CaM) and the sarco/endoplasmic reticulum Ca-ATPase (SERCA) function to down-regulate ATP utilization and the associated generation of ROS associated with replenishing intracellular ATP through oxidative phosphorylation. Reductions in the rate of ROS generation, in turn, will minimize protein oxidation and facilitate intracellular repair and degradative systems that function to eliminate damaged and partially unfolded proteins. Since the rates of protein repair or degradation compete with the rate of protein aggregation, the modulation of intracellular calcium concentrations and energy metabolism through the selective oxidation or nitration of critical signal transduction proteins (i.e. CaM or SERCA) is thought to maintain cellular function by minimizing protein aggregation and amyloid formation. Age-dependent increases in the rate of ROS generation or declines in cellular repair or degradation mechanisms will increase the oxidative load on the cell, resulting in corresponding increases in the concentrations of oxidized proteins and the associated formation of amyloid.
Cushnie, Emily K; Khan, Yusuf M; Laurencin, Cato T
2010-08-01
A tissue-engineered bone graft should imitate the ideal autograft in both form and function. However, biomaterials that have appropriate chemical and mechanical properties for grafting applications often lack biological components that may enhance regeneration. The concept of adding proteins such as growth factors to scaffolds has therefore emerged as a possible solution to improve overall graft design. In this study, we investigated this concept by loading porous hydroxyapatite-poly(lactide-co-glycolide) (HA-PLAGA) scaffolds with a model protein, cytochrome c, and then studying its release in a phosphate-buffered saline solution. The HA-PLAGA scaffold has previously been shown to be bioactive, osteoconductive, and to have appropriate physical properties for tissue engineering applications. The loading experiments demonstrated that the HA-PLAGA scaffold could also function effectively as a substrate for protein adsorption and release. Scaffold protein adsorptive loading (as opposed to physical entrapment within the matrix) was directly related to levels of scaffold HA-content. The HA phase of the scaffold facilitated protein retention in the matrix following incubation in aqueous buffer for periods up to 8 weeks. Greater levels of protein retention time may improve the protein's effective activity by increasing the probability for protein-cell interactions. The ability to control protein loading and delivery simply via composition of the HA-PLAGA scaffold offers the potential of forming robust functionalized bone grafts. (c) 2010 Wiley Periodicals, Inc.
Disorder-function relationships for the cell cycle regulatory proteins p21 and p27.
Mitrea, Diana M; Yoon, Mi-Kyung; Ou, Li; Kriwacki, Richard W
2012-04-01
The classic structure-function paradigm has been challenged by a recently identified class of proteins: intrinsically disordered proteins (IDPs). Despite their lack of stable secondary or tertiary structure, IDPs are prevalent in all forms of life and perform myriad cellular functions, including signaling and regulation. Importantly, disruption of IDP homeostasis is associated with numerous human diseases, including cancer and neurodegeneration. Despite wide recognition of IDPs, the molecular mechanisms underlying their functions are not fully understood. Here we review the structural features and disorder-function relationships for p21 and p27, two cyclin-dependent kinase (Cdk) regulators involved in controlling cell division and fate. Studies of p21 bound to Cdk2/cyclin A revealed that a helix stretching mechanism mediates binding promiscuity. Further, investigations of Tyr88-phosphorylated p27 identified a signaling conduit that controls cell division and is disrupted in certain cancers. These mechanisms rely upon a balance between nascent structure in the free state, induced folding upon binding, and persistent flexibility within functional complexes. Although these disorder-function relationships are likely to be recapitulated in other IDPs, it is also likely that the vocabulary of their mechanisms is much more extensive than is currently understood. Further study of the physical properties of IDPs and elucidation of their links with function are needed to fully understand the mechanistic language of IDPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mewalal, Ritesh; Mizrachi, Eshchar; Coetzee, Berdine
DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 ( MWL-2), the most closely related gene to MWL-1 in themore » protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/ mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/ mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Lastly, our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.« less
Mewalal, Ritesh; Mizrachi, Eshchar; Coetzee, Berdine; ...
2016-03-01
DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 ( MWL-2), the most closely related gene to MWL-1 in themore » protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/ mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/ mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Lastly, our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.« less
Coagulation parameters and platelet function analysis in patients with acromegaly.
Colak, A; Yılmaz, H; Temel, Y; Demirpence, M; Simsek, N; Karademirci, İ; Bozkurt, U; Yasar, E
2016-01-01
Acromegaly is associated with increased cardiovascular morbidity and mortality. The data about the evaluation of coagulation and fibrinolysis in acromegalic patients are very limited and to our knowledge, platelet function analysis has never been investigated. So, we aimed to investigate the levels of protein C, protein S, fibrinogen, antithrombin 3 and platelet function analysis in patients with acromegaly. Thirty-nine patients with active acromegaly and 35 healthy subjects were included in the study. Plasma glucose and lipid profile, fibrinogen levels, GH and IGF-1 levels and protein C, protein S and antithrombin III activities were measured in all study subjects. Also, platelet function analysis was evaluated with collagen/ADP and collagen-epinephrine-closure times. Demographic characteristics of the patient and the control were similar. As expected, fasting blood glucose levels and serum GH and IGF-1 levels were significantly higher in the patient group compared with the control group (pglc: 0.002, pGH: 0.006, pIGF-1: 0.001, respectively). But lipid parameters were similar between the two groups. While serum fibrinogen and antithrombin III levels were found to be significantly higher in acromegaly group (p fibrinogen: 0.005 and pantithrombin III: 0.001), protein S and protein C activity values were significantly lower in the patient group (p protein S: 0.001, p protein C: 0.001). Also significantly enhanced platelet function (measured by collagen/ADP- and collagen/epinephrine-closure times) was demonstrated in acromegaly (p col-ADP: 0.002, p col-epinephrine: 0.002). The results did not change, when we excluded six patients with type 2 diabetes in the acromegaly group. There was a negative correlation between serum GH levels and protein S (r: -0.25, p: 0.04)) and protein C (r: -0.26, p: 0.04) values. Likewise, there was a negative correlation between IGF-1 levels and protein C values (r: -0.39, p: 0.002), protein S values (r: -0.39, p: 0.001), collagen/ADP-closure times (r: -0.28, p: 0.02) and collagen/epinephrine-closure times (r:-0.26, p: 0.04). Also, we observed a positive correlation between IGF-1 levels and fibrinogen levels (r: 0.31, p: 0.01). Acromegaly was found to be associated with increased tendency to coagulation and enhanced platelet activity. This hypercoagulable state might increase the risk for cardiovascular and cerebrovascular events in acromegaly.
Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3.
Mailloux, Ryan J; Seifert, Erin L; Bouillaud, Frédéric; Aguer, Céline; Collins, Sheila; Harper, Mary-Ellen
2011-06-17
The mitochondrial uncoupling proteins 2 and 3 (UCP2 and -3) are known to curtail oxidative stress and participate in a wide array of cellular functions, including insulin secretion and the regulation of satiety. However, the molecular control mechanism(s) governing these proteins remains elusive. Here we reveal that UCP2 and UCP3 contain reactive cysteine residues that can be conjugated to glutathione. We further demonstrate that this modification controls UCP2 and UCP3 function. Both reactive oxygen species and glutathionylation were found to activate and deactivate UCP3-dependent increases in non-phosphorylating respiration. We identified both Cys(25) and Cys(259) as the major glutathionylation sites on UCP3. Additional experiments in thymocytes from wild-type and UCP2 null mice demonstrated that glutathionylation similarly diminishes non-phosphorylating respiration. Our results illustrate that UCP2- and UCP3-mediated state 4 respiration is controlled by reversible glutathionylation. Altogether, these findings advance our understanding of the roles UCP2 and UCP3 play in modulating metabolic efficiency, cell signaling, and oxidative stress processes.
An extensive program of periodic alternative splicing linked to cell cycle progression
Dominguez, Daniel; Tsai, Yi-Hsuan; Weatheritt, Robert; Wang, Yang; Blencowe, Benjamin J; Wang, Zefeng
2016-01-01
Progression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~1300 genes with cell cycle-dependent AS changes. These genes are significantly enriched in functions linked to cell cycle control, yet they do not significantly overlap genes subject to periodic changes in steady-state transcript levels. Many of the periodically spliced genes are controlled by the SR protein kinase CLK1, whose level undergoes cell cycle-dependent fluctuations via an auto-inhibitory circuit. Disruption of CLK1 causes pleiotropic cell cycle defects and loss of proliferation, whereas CLK1 over-expression is associated with various cancers. These results thus reveal a large program of CLK1-regulated periodic AS intimately associated with cell cycle control. DOI: http://dx.doi.org/10.7554/eLife.10288.001 PMID:27015110
Ravagnani, Adriana; Finan, Christopher L; Young, Michael
2005-03-17
In Micrococcus luteus growth and resuscitation from starvation-induced dormancy is controlled by the production of a secreted growth factor. This autocrine resuscitation-promoting factor (Rpf) is the founder member of a family of proteins found throughout and confined to the actinobacteria (high G + C Gram-positive bacteria). The aim of this work was to search for and characterise a cognate gene family in the firmicutes (low G + C Gram-positive bacteria) and obtain information about how they may control bacterial growth and resuscitation. In silico analysis of the accessory domains of the Rpf proteins permitted their classification into several subfamilies. The RpfB subfamily is related to a group of firmicute proteins of unknown function, represented by YabE of Bacillus subtilis. The actinobacterial RpfB and firmicute YabE proteins have very similar domain structures and genomic contexts, except that in YabE, the actinobacterial Rpf domain is replaced by another domain, which we have called Sps. Although totally unrelated in both sequence and secondary structure, the Rpf and Sps domains fulfil the same function. We propose that these proteins have undergone "non-orthologous domain displacement", a phenomenon akin to "non-orthologous gene displacement" that has been described previously. Proteins containing the Sps domain are widely distributed throughout the firmicutes and they too fall into a number of distinct subfamilies. Comparative analysis of the accessory domains in the Rpf and Sps proteins, together with their weak similarity to lytic transglycosylases, provide clear evidence that they are muralytic enzymes. The results indicate that the firmicute Sps proteins and the actinobacterial Rpf proteins are cognate and that they control bacterial culturability via enzymatic modification of the bacterial cell envelope.
2013-01-01
Background Many genetic diseases are due to defects in protein trafficking where the mutant protein is recognized by the quality control systems, retained in the endoplasmic reticulum (ER), and degraded by the proteasome. In many cases, the mutant protein retains function if it can be trafficked to its proper cellular location. We have identified structurally diverse correctors that restore the trafficking and function of the most common mutation causing cystic fibrosis, F508del-CFTR. Most of these correctors do not act directly as ligands of CFTR, but indirectly on other pathways to promote folding and correction. We hypothesize that these proteostasis regulators may also correct other protein trafficking diseases. Methods To test our hypothesis, we used stable cell lines or transient transfection to express 2 well-studied trafficking disease mutations in each of 3 different proteins: the arginine-vasopressin receptor 2 (AVPR2, also known as V2R), the human ether-a-go-go-related gene (KCNH2, also known as hERG), and finally the sulfonylurea receptor 1 (ABCC8, also known as SUR1). We treated cells expressing these mutant proteins with 9 structurally diverse F508del-CFTR correctors that function through different cellular mechanisms and assessed whether correction occurred via immunoblotting and functional assays. Results were deemed significantly different from controls by a one-way ANOVA (p < 0.05). Results Here we show that F508del-CFTR correctors RDR1, KM60 and KM57 also correct some mutant alleles of other protein trafficking diseases. We also show that one corrector, the cardiac glycoside ouabain, was found to alter the glycosylation of all mutant alleles tested. Conclusions Correctors of F508del-CFTR trafficking might have broader applications to other protein trafficking diseases. PMID:23316740
Interconnected network motifs control podocyte morphology and kidney function.
Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y; Fang, Wei; Xiong, Huabao; Neves, Susana R; Jain, Mohit R; Li, Hong; Ma'ayan, Avi; Gordon, Ronald E; He, John Cijiang; Iyengar, Ravi
2014-02-04
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.
Interconnected Network Motifs Control Podocyte Morphology and Kidney Function
Azeloglu, Evren U.; Hardy, Simon V.; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y.; Fang, Wei; Xiong, Huabao; Neves, Susana R.; Jain, Mohit R.; Li, Hong; Ma’ayan, Avi; Gordon, Ronald E.; He, John Cijiang; Iyengar, Ravi
2014-01-01
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3′,5′-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element–binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor–driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609
Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins
Arvola, René M.
2017-01-01
ABSTRACT Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes. Here we synthesize 30 y of research with new insights into their molecular functions and mechanisms of action. First, we provide an overview of the key properties of each RBP. Next, we present a detailed analysis of their collaborative regulatory mechanism using a classic example of the developmental morphogen, hunchback, which is spatially and temporally regulated by the trio during embryogenesis. New biochemical, structural and functional analyses provide insights into RNA recognition, cooperativity, and regulatory mechanisms. We integrate these data into a model of combinatorial RNA binding and regulation of translation and mRNA decay. We then use this information, transcriptome wide analyses and bioinformatics predictions to assess the global impact of Pumilio, Nanos and Brain Tumor on gene regulation. Together, the results support pervasive, dynamic post-transcriptional control. PMID:28318367
Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins.
Arvola, René M; Weidmann, Chase A; Tanaka Hall, Traci M; Goldstrohm, Aaron C
2017-11-02
Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes. Here we synthesize 30 y of research with new insights into their molecular functions and mechanisms of action. First, we provide an overview of the key properties of each RBP. Next, we present a detailed analysis of their collaborative regulatory mechanism using a classic example of the developmental morphogen, hunchback, which is spatially and temporally regulated by the trio during embryogenesis. New biochemical, structural and functional analyses provide insights into RNA recognition, cooperativity, and regulatory mechanisms. We integrate these data into a model of combinatorial RNA binding and regulation of translation and mRNA decay. We then use this information, transcriptome wide analyses and bioinformatics predictions to assess the global impact of Pumilio, Nanos and Brain Tumor on gene regulation. Together, the results support pervasive, dynamic post-transcriptional control.
On-Demand Targeting: Investigating Biology with Proximity-Directed Chemistry.
Long, Marcus J C; Poganik, Jesse R; Aye, Yimon
2016-03-23
Proximity enhancement is a central chemical tenet underpinning an exciting suite of small-molecule toolsets that have allowed us to unravel many biological complexities. The leitmotif of this opus is "tethering"-a strategy in which a multifunctional small molecule serves as a template to bring proteins/biomolecules together. Scaffolding approaches have been powerfully applied to control diverse biological outcomes such as protein-protein association, protein stability, activity, and improve imaging capabilities. A new twist on this strategy has recently appeared, in which the small-molecule probe is engineered to unleash controlled amounts of reactive chemical signals within the microenvironment of a target protein. Modification of a specific target elicits a precisely timed and spatially controlled gain-of-function (or dominant loss-of-function) signaling response. Presented herein is a unique personal outlook conceptualizing the powerful proximity-enhanced chemical biology toolsets into two paradigms: "multifunctional scaffolding" versus "on-demand targeting". By addressing the latest advances and challenges in the established yet constantly evolving multifunctional scaffolding strategies as well as in the emerging on-demand precision targeting (and related) systems, this Perspective is aimed at choosing when it is best to employ each of the two strategies, with an emphasis toward further promoting novel applications and discoveries stemming from these innovative chemical biology platforms.
Feng, Bo-Wen; Fu, Si-Mao; Zhang, Quan-Shan; Long, Xiao-Ling; Xie, Xiao-Ling; Ren, Wei; Liang, Zhan-Tu; Yang, Zhu-Ling; Chen, Ang
2018-01-01
To study the influence of cow's milk protein allergy (CMPA) on the diagnosis of functional gastrointestinal diseases (FGID) based on the Rome IV standard in infants and young children. A total of 84 children aged 1 month to 3 years who were diagnosed with CMPA were enrolled as the case group, and 84 infants and young children who underwent physical examination and had no CMPA were enrolled as the control group. The pediatricians specializing in gastroenterology asked parents using a questionnaire for the diagnosis of FGID based on the Rome IV standard to assess clinical symptoms and to diagnose FGID. The case group had a significantly higher incidence rate of a family history of allergies than the control group (P<0.05). In the case group, 38 (45%) met the Rome IV standard for the diagnosis of FGID, while in the control group, 13 (15%) met this standard (P<0.05). According to the Rome IV standard for FGID, the case group had significantly higher diagnostic rates of reflex, functional diarrhea, difficult defecation, and functional constipation than the control group (P<0.05). The children who were diagnosed with FIGD in the control group were given conventional treatment, and those in the case group were asked to avoid the intake of cow's milk protein in addition to the conventional treatment. After 3 months of treatment, the case group had a significantly higher response rate to the treatment than the control group (P<0.05). In infants and young children, CMPA has great influence on the diagnosis of FGID based on the Rome IV standard. The possibility of CMPA should be considered during the diagnosis of FGID.
Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok.
D'Orsi, Beatrice; Mateyka, Julia; Prehn, Jochen H M
2017-10-01
Neuronal cell death is often triggered by events that involve intracellular increases in Ca 2+ . Under resting conditions, the intracellular Ca 2+ concentration is tightly controlled by a number of extrusion and sequestering mechanisms involving the plasma membrane, mitochondria, and ER. These mechanisms act to prevent a disruption of neuronal ion homeostasis. As these processes require ATP, excessive Ca 2+ overloading may cause energy depletion, mitochondrial dysfunction, and may eventually lead to Ca 2+ -dependent cell death. Excessive Ca 2+ entry though glutamate receptors (excitotoxicity) has been implicated in several neurologic and chronic neurodegenerative diseases, including ischemic stroke, epilepsy, and Alzheimer's disease. Recent evidence has revealed that excitotoxic cell death is regulated by the B-cell lymphoma-2 (Bcl-2) family of proteins. Bcl-2 proteins, comprising of both pro-apoptotic and anti-apoptotic members, have been shown to not only mediate the intrinsic apoptosis pathway by controlling mitochondrial outer membrane (MOM) integrity, but to also control neuronal Ca 2+ homeostasis and energetics. In this review, the role of Bcl-2 family proteins in the regulation of apoptosis, their expression in the central nervous system and how they control Ca 2+ -dependent neuronal injury are summarized. We review the current knowledge on Bcl-2 family proteins in the regulation of mitochondrial function and bioenergetics, including the fusion and fission machinery, and their role in Ca 2+ homeostasis regulation at the mitochondria and ER. Specifically, we discuss how the 'pro-apoptotic' Bcl-2 family proteins, Bax and Bok, physiologically expressed in the nervous system, regulate such 'non-apoptotic/daytime' functions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Doubková, Martina; Karpíšek, Michal; Mazoch, Jiri; Skřičková, Jana; Doubek, Michael
2016-10-07
Identification of serum and bronchoalveolar lavage fluid (BALF) biomarkers may facilitate diagnosis and prognostication in various lung disorders. Serum and BALF levels of surfactant protein A (SP-A), surfactant protein D (SP-D), Clara cell protein 16 (CC16), S100 protein, trefoil factor 3 (TFF3), and prostatic secretory protein 94 (PSP94) were evaluated in 94 consecutive patients (idiopathic pulmonary fibrosis (IPF; n=18), sarcoidosis (n=25), chronic obstructive pulmonary disease (COPD; n=51)), and in 155 healthy controls. Biomarkers were measured at diagnosis and compared with disease characteristics. Both uniparametric and multiparametric analyses were used. Seven significant correlations were found: 1) BALF PSP94 level correlated with prognosis of sarcoidosis (P=0.035); 2) BALF SP-D level with pulmonary functions in IPF (P=0.032); 3) BALF SP-D and TFF3 with IPF mortality (P=0.049 and 0.017, respectively); 4) serum TFF3 level with COPD mortality (P=0.006,); 5) serum SP-A with pulmonary functions impairment in IPF (P=0.011); 6) serum SP-D level was associated with HRCT interstitial score in IPF (P=0.0346); and 7) serum SP-A was associated with staging of COPD according to spirometry (P<0.001). Moreover, our analysis showed that some biomarker levels differed significantly among the diseases: 1) BALF SP-D level differed between sarcoidosis and IPF; 2) serum SP-A level differed among IPF, sarcoidosis, COPD and was also different from healthy controls; 3) serum S100A6, S100A11 levels differed among IPF, sarcoidosis, COPD from healthy controls 4) serum SP-D, CC16, TFF-3 levels distinguished IPF patients from healthy controls; and 5) serum CC16, TFF3, PSP94 distinguished COPD patients from healthy controls. Our study shows that some of selected biomarkers should have prognostic value in the analysed lung disorders. On the other hand, these biomarkers do not appear to be unequivocally suitable for differential diagnosis of these disorders.
Rizza, Salvatore; Cardaci, Simone; Montagna, Costanza; Di Giacomo, Giuseppina; De Zio, Daniela; Bordi, Matteo; Maiani, Emiliano; Campello, Silvia; Borreca, Antonella; Puca, Annibale A; Stamler, Jonathan S; Cecconi, Francesco; Filomeni, Giuseppe
2018-04-10
S -nitrosylation, a prototypic redox-based posttranslational modification, is frequently dysregulated in disease. S -nitrosoglutathione reductase (GSNOR) regulates protein S -nitrosylation by functioning as a protein denitrosylase. Deficiency of GSNOR results in tumorigenesis and disrupts cellular homeostasis broadly, including metabolic, cardiovascular, and immune function. Here, we demonstrate that GSNOR expression decreases in primary cells undergoing senescence, as well as in mice and humans during their life span. In stark contrast, exceptionally long-lived individuals maintain GSNOR levels. We also show that GSNOR deficiency promotes mitochondrial nitrosative stress, including excessive S -nitrosylation of Drp1 and Parkin, thereby impairing mitochondrial dynamics and mitophagy. Our findings implicate GSNOR in mammalian longevity, suggest a molecular link between protein S -nitrosylation and mitochondria quality control in aging, and provide a redox-based perspective on aging with direct therapeutic implications.
Hotspots for allosteric regulation on protein surfaces
Reynolds, Kimberly A.; McLaughlin, Richard N.; Ranganathan, Rama
2012-01-01
Recent work indicates a general architecture for proteins in which sparse networks of physically contiguous and co-evolving amino acids underlie basic aspects of structure and function. These networks, termed sectors, are spatially organized such that active sites are linked to many surface sites distributed throughout the structure. Using the metabolic enzyme dihydrofolate reductase as a model system, we show that (1) the sector is strongly correlated to a network of residues undergoing millisecond conformational fluctuations associated with enzyme catalysis and (2) sector-connected surface sites are statistically preferred locations for the emergence of allosteric control in vivo. Thus, sectors represent an evolutionarily conserved “wiring” mechanism that can enable perturbations at specific surface positions to rapidly initiate conformational control over protein function. These findings suggest that sectors enable the evolution of intermolecular communication and regulation. PMID:22196731
NASA Technical Reports Server (NTRS)
Gang, D. R.; Costa, M. A.; Fujita, M.; Dinkova-Kostova, A. T.; Wang, H. B.; Burlat, V.; Martin, W.; Sarkanen, S.; Davin, L. B.; Lewis, N. G.
1999-01-01
BACKGROUND: Although the lignins and lignans, both monolignol-derived coupling products, account for nearly 30% of the organic carbon circulating in the biosphere, the biosynthetic mechanism of their formation has been poorly understood. The prevailing view has been that lignins and lignans are produced by random free-radical polymerization and coupling, respectively. This view is challenged, mechanistically, by the recent discovery of dirigent proteins that precisely determine both the regiochemical and stereoselective outcome of monolignol radical coupling. RESULTS: To understand further the regulation and control of monolignol coupling, leading to both lignan and lignin formation, we sought to clone the first genes encoding dirigent proteins from several species. The encoding genes, described here, have no sequence homology with any other protein of known function. When expressed in a heterologous system, the recombinant protein was able to confer strict regiochemical and stereochemical control on monolignol free-radical coupling. The expression in plants of dirigent proteins and proposed dirigent protein arrays in developing xylem and in other lignified tissues indicates roles for these proteins in both lignan formation and lignification. CONCLUSIONS: The first understanding of regiochemical and stereochemical control of monolignol coupling in lignan biosynthesis has been established via the participation of a new class of dirigent proteins. Immunological studies have also implicated the involvement of potential corresponding arrays of dirigent protein sites in controlling lignin biopolymer assembly.
The nucleolus and herpesviral usurpation.
Ni, Liwen; Wang, Shuai; Zheng, Chunfu
2012-12-01
The nucleolus is a distinct subnuclear compartment known as the site for ribosome biogenesis in eukaryotes. Consequently, the nucleolus is also proposed to function in cell-cycle control, stress sensing and senescence, as well as in viral infection. An increasing number of viral proteins have been found to localize to the nucleolus. In this article, we review the current understanding of the functions of the nucleolus, the molecular mechanism of cellular and viral protein targeting to the nucleolus and the functional roles of the nucleolus during viral infection with a specific focus on the herpesvirus family.
Compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity
Weisberg, Sarah J.; Lyakhovetsky, Roman; Werdiger, Ayelet-chen; Gitler, Aaron D.; Soen, Yoav; Kaganovich, Daniel
2012-01-01
Neurodegenerative diseases constitute a class of illnesses marked by pathological protein aggregation in the brains of affected individuals. Although these disorders are invariably characterized by the degeneration of highly specific subpopulations of neurons, protein aggregation occurs in all cells, which indicates that toxicity arises only in particular cell biological contexts. Aggregation-associated disorders are unified by a common cell biological feature: the deposition of the culprit proteins in inclusion bodies. The precise function of these inclusions remains unclear. The starting point for uncovering the origins of disease pathology must therefore be a thorough understanding of the general cell biological function of inclusions and their potential role in modulating the consequences of aggregation. Here, we show that in human cells certain aggregate inclusions are active compartments. We find that toxic aggregates localize to one of these compartments, the juxtanuclear quality control compartment (JUNQ), and interfere with its quality control function. The accumulation of SOD1G93A aggregates sequesters Hsp70, preventing the delivery of misfolded proteins to the proteasome. Preventing the accumulation of SOD1G93A in the JUNQ by enhancing its sequestration in an insoluble inclusion reduces the harmful effects of aggregation on cell viability. PMID:22967507
Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae.
Hill, Sandra Malmgren; Hao, Xinxin; Liu, Beidong; Nyström, Thomas
2014-06-20
Single-cell species harbor ancestral structural homologs of caspase proteases, although the evolutionary benefit of such apoptosis-related proteins in unicellular organisms is unclear. Here, we found that the yeast metacaspase Mca1 is recruited to the insoluble protein deposit (IPOD) and juxtanuclear quality-control compartment (JUNQ) during aging and proteostatic stress. Elevating MCA1 expression counteracted accumulation of unfolded proteins and aggregates and extended life span in a heat shock protein Hsp104 disaggregase- and proteasome-dependent manner. Consistent with a role in protein quality control, genetic interaction analysis revealed that MCA1 buffers against deficiencies in the Hsp40 chaperone YDJ1 in a caspase cysteine-dependent manner. Life-span extension and aggregate management by Mca1 was only partly dependent on its conserved catalytic cysteine, which suggests that Mca1 harbors both caspase-dependent and independent functions related to life-span control. Copyright © 2014, American Association for the Advancement of Science.
Differential release and deposition of S100A8/A9 proteins in inflamed upper airway tissue.
Van Crombruggen, Koen; Vogl, Thomas; Pérez-Novo, Claudina; Holtappels, Gabriele; Bachert, Claus
2016-01-01
Intracellular Ca(2+)-binding S100A8/A9 proteins gain novel functions when released during inflammation. The exact outcome of their extracellular function depends on the local tissue environment in which they are released; both anti-inflammatory and pro-inflammatory responses are described, modulating the immune system by binding Toll-like receptor (TLR)-4 or the receptor for advanced glycation end-products (RAGE). However, the contribution of the proteins in the pathophysiology of chronic rhinosinusitis (CRS) remains unclear.Homomeric S100A8 and S100A9, and heteromeric S100A8/A9 proteins were evaluated in CRS with/without nasal polyps (CRSw/sNP) and controls. Functional responses were assessed in polyp tissue stimulated with S100 proteins in the presence of TLR-4 and RAGE blocking antibodies.S100A8, S100A9 and S100A8/A9 protein levels were significantly higher in CRSwNP patients, showing increased deposition on extracellular matrix (ECM) structures of CRSwNP tissue in contrast to CRSsNP and controls. In the presence of Staphylococcus aureus, S100A8/A9 is released from neutrophils and from the ECM. Extracellular S100A8 and S100A9 proteins induced increased levels of diverse inflammatory mediators via TLR-4 engagement.The inflammatory/remodelling characteristics of CRSwNP specifically allow increased retention of S100A8, S100A9 and S100A8/A9 proteins in the ECM of CRSwNP tissue. Upon release, homodimeric proteins act as a local danger signal inducing inflammatory mediators, predominantly via TLR-4 activation. Copyright ©ERS 2016.
Shape-specific nanostructured protein mimics from de novo designed chimeric peptides.
Jiang, Linhai; Yang, Su; Lund, Reidar; Dong, He
2018-01-30
Natural proteins self-assemble into highly-ordered nanoscaled architectures to perform specific functions. The intricate functions of proteins have provided great impetus for researchers to develop strategies for designing and engineering synthetic nanostructures as protein mimics. Compared to the success in engineering fibrous protein mimetics, the design of discrete globular protein-like nanostructures has been challenging mainly due to the lack of precise control over geometric packing and intermolecular interactions among synthetic building blocks. In this contribution, we report an effective strategy to construct shape-specific nanostructures based on the self-assembly of chimeric peptides consisting of a coiled coil dimer and a collagen triple helix folding motif. Under salt-free conditions, we showed spontaneous self-assembly of the chimeric peptides into monodisperse, trigonal bipyramidal-like nanoparticles with precise control over the stoichiometry of two folding motifs and the geometrical arrangements relative to one another. Three coiled coil dimers are interdigitated on the equatorial plane while the two collagen triple helices are located in the axial position, perpendicular to the coiled coil plane. A detailed molecular model was proposed and further validated by small angle X-ray scattering experiments and molecular dynamics (MD) simulation. The results from this study indicated that the molecular folding of each motif within the chimeric peptides and their geometric packing played important roles in the formation of discrete protein-like nanoparticles. The peptide design and self-assembly mechanism may open up new routes for the construction of highly organized, discrete self-assembling protein-like nanostructures with greater levels of control over assembly accuracy.
NASA Astrophysics Data System (ADS)
Franklin-Ford, Travelle
Hydroxyapatite interfaces have demonstrated strong protein binding and protein selection from a passing solution and can serve as a biocompatible carrier for controlled protein delivery. Hydroxyapatite is a major component of long bones and tooth enamel and is the most stable of all calcium phosphate isoforms in aqueous solutions at physiologic pH, providing a sensitive chromatographic mechanism for separating proteins. Here we describe an approach to create a synthetic hydroxyapatite coating through a biomimetic, heterogeneous nucleation from a modified simulated body fluid--supersaturated with calcium and phosphate ions on the surface of injectable polymer microspheres. We are able to bind and release bioactive growth factors into a variety of in vitro and in vivo conditions, demonstrating the functionality and advantage of the biomaterial. Creating a hydroxyapatite layer on the Poly(D,L-lactide-co-glycolide) (PLG) microsphere surface, avails the microsphere interior for another application that will not compete with protein binding and release. Encapsulating an imaging agent within the aqueous phase of the emulsion provides a visual reference for the injectable therapy upon microsphere fabrication. Another advantage of this system is that the mineral coating and subsequent protein binding is not compromised by the encapsulated imaging agent. This dual function delivery vehicle is not only advantageous for spatial tracking therapeutic applications, but also determining the longevity of the delivery vehicle once injected. In the broader sense, providing a mechanism to image and track our temporally controlled, sustained delivery system gives more evidence to support the effects of released protein on in vivo responses (bioactivity) and locate microspheres within different biological systems.
Cell biology of spinocerebellar ataxia.
Orr, Harry T
2012-04-16
Ataxia is a neurological disorder characterized by loss of control of body movements. Spinocerebellar ataxia (SCA), previously known as autosomal dominant cerebellar ataxia, is a biologically robust group of close to 30 progressive neurodegenerative diseases. Six SCAs, including the more prevalent SCA1, SCA2, SCA3, and SCA6 along with SCA7 and SCA17 are caused by expansion of a CAG repeat that encodes a polyglutamine tract in the affected protein. How the mutated proteins in these polyglutamine SCAs cause disease is highly debated. Recent work suggests that the mutated protein contributes to pathogenesis within the context of its "normal" cellular function. Thus, understanding the cellular function of these proteins could aid in the development of therapeutics.
Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2
Izumi, Natsuko; Yamashita, Akio; Ohno, Shigeo
2012-01-01
Proteins of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family are activated by various cellular stresses, including DNA damage, premature termination codon and nutritional status, and induce appropriate cellular responses. The importance of PIKK functions in the maintenance of genome integrity, accurate gene expression and the proper control of cell growth/proliferation is established. Recently, ATPase associated diverse cellular activities (AAA+) proteins RUVBL1 and RUVBL2 (RUVBL1/2) have been shown to be common regulators of PIKKs. The RUVBL1/2 complex regulates PIKK-mediated stress responses through physical interactions with PIKKs and by controlling PIKK mRNA levels. In this review, the functions of PIKKs in stress responses are outlined and the physiological significance of the integrated regulation of PIKKs by the RUVBL1/2 complex is presented. We also discuss a putative “PIKK regulatory chaperone complex” including other PIKK regulators, Hsp90 and the Tel2 complex. PMID:22540023
The pilus usher controls protein interactions via domain masking and is functional as an oligomer
Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; ...
2015-06-08
The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstratemore » that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.« less
Mapping the nuclear localization signal in the matrix protein of potato yellow dwarf virus.
Anderson, Gavin; Jang, Chanyong; Wang, Renyuan; Goodin, Michael
2018-05-01
The ability of the matrix (M) protein of potato yellow dwarf virus (PYDV) to remodel nuclear membranes is controlled by a di-leucine motif located at residues 223 and 224 of its primary structure. This function can be uncoupled from that of its nuclear localization signal (NLS), which is controlled primarily by lysine and arginine residues immediately downstream of the LL motif. In planta localization of green fluorescent protein fusions, bimolecular fluorescence complementation assays with nuclear import receptor importin-α1 and yeast-based nuclear import assays provided three independent experimental approaches to validate the authenticity of the M-NLS. The carboxy terminus of M is predicted to contain a nuclear export signal, which is belived to be functional, given the ability of M to bind the Arabidopsis nuclear export receptor 1 (XPO1). The nuclear shuttle activity of M has implications for the cell-to-cell movement of PYDV nucleocapsids, based upon its interaction with the N and Y proteins.
Chemical Synthesis of Proteins
Nilsson, Bradley L.; Soellner, Matthew B.; Raines, Ronald T.
2010-01-01
Proteins have become accessible targets for chemical synthesis. The basic strategy is to use native chemical ligation, Staudinger ligation, or other orthogonal chemical reactions to couple synthetic peptides. The ligation reactions are compatible with a variety of solvents and proceed in solution or on a solid support. Chemical synthesis enables a level of control on protein composition that greatly exceeds that attainable with ribosome-mediated biosynthesis. Accordingly, the chemical synthesis of proteins is providing previously unattainable insight into the structure and function of proteins. PMID:15869385
Gao, Xiang; Wu, Jianxiang; Dong, Zheyi; Hua, Can; Hu, Huimin; Mei, Changlin
2010-02-01
Dietary protein restriction is one major therapy in chronic kidney disease (CKD), and ketoacids have been evaluated in CKD patients during restricted-protein diets. The objective of the present study was to compare the efficacy of a low-protein diet supplemented with ketoacids (LPD+KA) and a low-protein diet alone (LPD) in halting the development of renal lesions in CKD. 5/6 Nephrectomy Sprague-Dawley rats were randomly divided into three groups, and fed with either 22 % protein (normal-protein diet; NPD), 6 % protein (LPD) or 5 % protein plus 1 % ketoacids (LPD+KA) for 24 weeks. Sham-operated rats were used as controls. Each 5/6 nephrectomy group included fifteen rats and the control group included twelve rats. Proteinuria, decreased renal function, glomerular sclerosis and tubulointerstitial fibrosis were found in the remnant kidneys of the NPD group. Protein restriction ameliorated these changes, and the effect was more obvious in the LPD+KA group after 5/6 nephrectomy. Lower body weight and serum albumin levels were found in the LPD group, indicating protein malnutrition. Lipid and protein oxidative products were significantly increased in the LPD group compared with the LPD+KA group. These findings indicate that a LPD supplemented with ketoacids is more effective than a LPD alone in protecting the function of remnant kidneys from progressive injury, which may be mediated by ketoacids ameliorating protein malnutrition and oxidative stress injury in remnant kidney tissue.
Lin, Junyan; Guo, Jiangbo; Finer, John; Dorrance, Anne E.; Redinbaugh, Margaret G.
2014-01-01
ABSTRACT Bean pod mottle virus (BPMV) is a bipartite, positive-sense (+) RNA plant virus in the Secoviridae family. Its RNA1 encodes proteins required for genome replication, whereas RNA2 primarily encodes proteins needed for virion assembly and cell-to-cell movement. However, the function of a 58-kDa protein (P58) encoded by RNA2 has not been resolved. P58 and the movement protein (MP) of BPMV are two largely identical proteins differing only at their N termini, with P58 extending MP upstream by 102 amino acid residues. In this report, we unveil a unique role for P58. We show that BPMV RNA2 accumulation in infected cells was abolished when the start codon of P58 was eliminated. The role of P58 does not require the region shared by MP, as RNA2 accumulation in individual cells remained robust even when most of the MP coding sequence was removed. Importantly, the function of P58 required the P58 protein, rather than its coding RNA, as compensatory mutants could be isolated that restored RNA2 accumulation by acquiring new start codons upstream of the original one. Most strikingly, loss of P58 function could not be complemented by P58 provided in trans, suggesting that P58 functions in cis to selectively promote the accumulation of RNA2 copies that encode a functional P58 protein. Finally, we found that all RNA1-encoded proteins are cis-acting relative to RNA1. Together, our results suggest that P58 probably functions by recruiting the RNA1-encoded polyprotein to RNA2 to enable RNA2 reproduction. IMPORTANCE Bean pod mottle virus (BPMV) is one of the most important pathogens of the crop plant soybean, yet its replication mechanism is not well understood, hindering the development of knowledge-based control measures. The current study examined the replication strategy of BPMV RNA2, one of the two genomic RNA segments of this virus, and established an essential role for P58, one of the RNA2-encoded proteins, in the process of RNA2 replication. Our study demonstrates for the first time that P58 functions preferentially with the very RNA from which it is translated, thus greatly advancing our understanding of the replication mechanisms of this and related viruses. Furthermore, this study is important because it provides a potential target for BPMV-specific control, and hence could help to mitigate soybean production losses caused by this virus. PMID:24390330
Untangling the Web: The Diverse Functions of the PIWI/piRNA Pathway
Mani, Sneha Ramesh; Juliano, Celina E.
2014-01-01
SUMMARY Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function. PMID:23712694
Protein Requirements and Recommendations for Older People: A Review.
Nowson, Caryl; O'Connell, Stella
2015-08-14
Declines in skeletal muscle mass and strength are major contributors to increased mortality, morbidity and reduced quality of life in older people. Recommended Dietary Allowances/Intakes have failed to adequately consider the protein requirements of the elderly with respect to function. The aim of this paper was to review definitions of optimal protein status and the evidence base for optimal dietary protein. Current recommended protein intakes for older people do not account for the compensatory loss of muscle mass that occurs on lower protein intakes. Older people have lower rates of protein synthesis and whole-body proteolysis in response to an anabolic stimulus (food or resistance exercise). Recommendations for the level of adequate dietary intake of protein for older people should be informed by evidence derived from functional outcomes. Randomized controlled trials report a clear benefit of increased dietary protein on lean mass gain and leg strength, particularly when combined with resistance exercise. There is good consistent evidence (level III-2 to IV) that consumption of 1.0 to 1.3 g/kg/day dietary protein combined with twice-weekly progressive resistance exercise reduces age-related muscle mass loss. Older people appear to require 1.0 to 1.3 g/kg/day dietary protein to optimize physical function, particularly whilst undertaking resistance exercise recommendations.
Protein Requirements and Recommendations for Older People: A Review
Nowson, Caryl; O’Connell, Stella
2015-01-01
Declines in skeletal muscle mass and strength are major contributors to increased mortality, morbidity and reduced quality of life in older people. Recommended Dietary Allowances/Intakes have failed to adequately consider the protein requirements of the elderly with respect to function. The aim of this paper was to review definitions of optimal protein status and the evidence base for optimal dietary protein. Current recommended protein intakes for older people do not account for the compensatory loss of muscle mass that occurs on lower protein intakes. Older people have lower rates of protein synthesis and whole-body proteolysis in response to an anabolic stimulus (food or resistance exercise). Recommendations for the level of adequate dietary intake of protein for older people should be informed by evidence derived from functional outcomes. Randomized controlled trials report a clear benefit of increased dietary protein on lean mass gain and leg strength, particularly when combined with resistance exercise. There is good consistent evidence (level III-2 to IV) that consumption of 1.0 to 1.3 g/kg/day dietary protein combined with twice-weekly progressive resistance exercise reduces age-related muscle mass loss. Older people appear to require 1.0 to 1.3 g/kg/day dietary protein to optimize physical function, particularly whilst undertaking resistance exercise recommendations. PMID:26287239
Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution
Mannakee, Brian K.; Gutenkunst, Ryan N.
2016-01-01
The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein’s rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces. PMID:27380265
In Vitro Reconstitution of Functional Type III Protein Export and Insights into Flagellar Assembly.
Terashima, Hiroyuki; Kawamoto, Akihiro; Tatsumi, Chinatsu; Namba, Keiichi; Minamino, Tohru; Imada, Katsumi
2018-06-26
The type III secretion system (T3SS) forms the functional core of injectisomes, protein transporters that allow bacteria to deliver virulence factors into their hosts for infection, and flagella, which are critical for many pathogens to reach the site of infection. In spite of intensive genetic and biochemical studies, the T3SS protein export mechanism remains unclear due to the difficulty of accurate measurement of protein export in vivo Here, we developed an in vitro flagellar T3S protein transport assay system using an inverted cytoplasmic membrane vesicle (IMV) for accurate and controlled measurements of flagellar protein export. We show that the flagellar T3SS in the IMV fully retains export activity. The flagellar hook was constructed inside the lumen of the IMV by adding purified component proteins externally to the IMV solution. We reproduced the hook length control and export specificity switch in the IMV consistent with that seen in the native cell. Previous in vivo analyses showed that flagellar protein export is driven by proton motive force (PMF) and facilitated by ATP hydrolysis by FliI, a T3SS-specific ATPase. Our in vitro assay recapitulated these previous in vivo observations but furthermore clearly demonstrated that even ATP hydrolysis by FliI alone can drive flagellar protein export. Moreover, this assay showed that addition of the FliH 2 /FliI complex to the assay solution at a concentration similar to that in the cell dramatically enhanced protein export, confirming that the FliH 2 /FliI complex in the cytoplasm is important for effective protein transport. IMPORTANCE The type III secretion system (T3SS) is the functional core of the injectisome, a bacterial protein transporter used to deliver virulence proteins into host cells, and bacterial flagella, critical for many pathogens. The molecular mechanism of protein transport is still unclear due to difficulties in accurate measurements of protein transport under well-controlled conditions in vivo We succeeded in developing an in vitro transport assay system of the flagellar T3SS using inverted membrane vesicles (IMVs). Flagellar hook formation was reproduced in the IMV, suggesting that the export apparatus in the IMV retains a protein transport activity similar to that in the cell. Using this system, we revealed that ATP hydrolysis by the T3SS ATPase can drive protein export without PMF. Copyright © 2018 Terashima et al.
Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins.
Aouacheria, Abdel; Baghdiguian, Stephen; Lamb, Heather M; Huska, Jason D; Pineda, Fernando J; Hardwick, J Marie
2017-10-01
The morphology of a population of mitochondria is the result of several interacting dynamical phenomena, including fission, fusion, movement, elimination and biogenesis. Each of these phenomena is controlled by underlying molecular machinery, and when defective can cause disease. New understanding of the relationships between form and function of mitochondria in health and disease is beginning to be unraveled on several fronts. Studies in mammals and model organisms have revealed that mitochondrial morphology, dynamics and function appear to be subject to regulation by the same proteins that regulate apoptotic cell death. One protein family that influences mitochondrial dynamics in both healthy and dying cells is the Bcl-2 protein family. Connecting mitochondrial dynamics with life-death pathway forks may arise from the intersection of Bcl-2 family proteins with the proteins and lipids that determine mitochondrial shape and function. Bcl-2 family proteins also have multifaceted influences on cells and mitochondria, including calcium handling, autophagy and energetics, as well as the subcellular localization of mitochondrial organelles to neuronal synapses. The remarkable range of physical or functional interactions by Bcl-2 family proteins is challenging to assimilate into a cohesive understanding. Most of their effects may be distinct from their direct roles in apoptotic cell death and are particularly apparent in the nervous system. Dual roles in mitochondrial dynamics and cell death extend beyond BCL-2 family proteins. In this review, we discuss many processes that govern mitochondrial structure and function in health and disease, and how Bcl-2 family proteins integrate into some of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kieliszek, Marek; Błażejak, Stanisław; Bzducha-Wróbel, Anna
2015-01-01
Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g) were found in yeast cells after 24-hour culture conducted in control (YPD) medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours) the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium) of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa. PMID:26185592
Designing ECM-mimetic Materials Using Protein Engineering
Cai, Lei; Heilshorn, Sarah C.
2014-01-01
The natural extracellular matrix (ECM), with its multitude of evolved cell-instructive and cell-responsive properties, provides inspiration and guidelines for the design of engineered biomaterials. One strategy to create ECM-mimetic materials is the modular design of protein-based engineered ECM (eECM) scaffolds. This modular design strategy involves combining multiple protein domains with different functionalities into a single, modular polymer sequence, resulting in a multifunctional matrix with independent tunability of the individual domain functions. These eECMs often enable decoupled control over multiple material properties for fundamental studies of cell-matrix interactions. In addition, since the eECMs are frequently composed entirely of bioresorbable amino acids, these matrices have immense clinical potential for a variety of regenerative medicine applications. This brief review demonstrates how fundamental knowledge gained from structure-function studies of native proteins can be exploited in the design of novel protein-engineered biomaterials. While the field of protein-engineered biomaterials has existed for over 20 years, the community is only now beginning to fully explore the diversity of functional peptide modules that can be incorporated into these materials. We have chosen to highlight recent examples that either (1) demonstrate exemplary use as matrices with cell-instructive and cell-responsive properties or (2) demonstrate outstanding creativity in terms of novel molecular-level design and macro-level functionality. PMID:24365704
Young, Barry P.; Loewen, Christopher J.; Mayor, Thibault
2016-01-01
Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations. PMID:27448207
Pelegri-O'Day, Emma M; Maynard, Heather D
2016-09-20
Protein-polymer conjugates are unique constructs that combine the chemical properties of a synthetic polymer chain with the biological properties of a biomacromolecule. This often leads to improved stabilities, solubilities, and in vivo half-lives of the resulting conjugates, and expands the range of applications for the proteins. However, early chemical methods for protein-polymer conjugation often required multiple polymer modifications, which were tedious and low yielding. To solve these issues, work in our laboratory has focused on the development of controlled radical polymerization (CRP) techniques to improve synthesis of protein-polymer conjugates. Initial efforts focused on the one-step syntheses of protein-reactive polymers through the use of functionalized initiators and chain transfer agents. A variety of functional groups such as maleimide and pyridyl disulfide could be installed with high end-group retention, which could then react with protein functional groups through mild and biocompatible chemistries. While this grafting to method represented a significant advance in conjugation technique, purification and steric hindrance between large biomacromolecules and polymer chains often led to low conjugation yields. Therefore, a grafting from approach was developed, wherein a polymer chain is grown from an initiating site on a functionalized protein. These conjugates have demonstrated improved homogeneity, characterization, and easier purification, while maintaining protein activity. Much of this early work utilizing CRP techniques focused on polymers made up of biocompatible but nonfunctional monomer units, often containing oligoethylene glycol meth(acrylate) or N-isopropylacrylamide. These branched polymers have significant advantages compared to the historically used linear poly(ethylene glycols) including decreased viscosities and thermally responsive behavior, respectively. Recently, we were motivated to use CRP techniques to develop polymers with rationally designed and functional biological properties for conjugate preparation. Specifically, two families of saccharide-inspired polymers were developed for stabilization and activation of therapeutic biomolecules. A series of polymers with trehalose side-chains and vinyl backbones were prepared and used to stabilize proteins against heat and lyophilization stress as both conjugates and additives. These materials, which combine properties of osmolytes with nonionic surfactants, have significant potential for in vivo therapeutic use. Additionally, polymers that mimic the structure of the naturally occurring polysaccharide heparin were prepared. These polymers contained negatively charged sulfonate groups and imparted stabilization to a heparin-binding growth factor after conjugation. A screen of other sulfonated polymers led to the development of a polymer with improved heparin mimesis, enhancing both stability and activity of the protein to which it was attached. Chemical improvements over the past decade have enabled the preparation of a diverse set of protein-polymer conjugates by controlled polymerization techniques. Now, the field should thoroughly explore and expand both the range of polymer structures and also the applications available to protein-polymer conjugates. As we move beyond medicine toward broader applications, increased collaboration and interdisciplinary work will result in the further development of this exciting field.
Wu, Renhong; Citovsky, Vitaly
2017-07-01
Plants use specialized root outgrowths, termed root hairs, to enhance acquisition of nutrients and water, help secure anchorage, and facilitate interactions with soil microbiome. One of the major regulators of this process is GLABRA2 (GL2), a transcriptional repressor of root hair differentiation. However, regulation of the GL2-function is relatively well characterized, it remains completely unknown whether GL2 itself functions in complex with other transcriptional regulators. We identified GIR1 and GIR2, a plant-specific two-member family of closely related proteins that interact with GL2. Loss-of-function mutants of GIR1 and GIR2 enhanced development of root hair whereas gain-of-function mutants repressed it. Thus, GIR1 and GIR2 might function as adaptor proteins that associate with GL2 and participate in control of root hair formation. Copyright © 2017 Elsevier Inc. All rights reserved.
Rose, Annkatrin; Schraegle, Shannon J; Stahlberg, Eric A; Meier, Iris
2005-11-16
Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids) to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell.
Rose, Annkatrin; Schraegle, Shannon J; Stahlberg, Eric A; Meier, Iris
2005-01-01
Background Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. Results Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. Conclusion MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids) to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell. PMID:16288662
Jian, Liguo; Fa, Xian'en; Zhou, Zheng; Liu, Shichao
2015-01-01
The study aimed to investigate the function of uromodulin (UMOD) gene and its effect on inflammatory cytokines in serum of essential hypertension patients. The online database and software of computer were used for bioinformatics analysis on UMOD gene as well as the structure and function of its encoding proteins. Moreover, radioimmunoassay and enzyme linked immunosorbent assay was adopted to validate the content of urine UMOD protein of essential hypertension patients and their serum inflammatory cytokines. As an alkaline and hydrophilic protein, UMOD has no transmembrane region, but it does have a signal peptide sequence. It is mainly located extracellularly, belonging to a secreted protein, whose secondary structure was based mainly on Random coil which account for 58.44%. According to function prediction, it is found that the UMOD protein has stress response which may be participate in the inflammatory reaction. It has been observed from the experiment which was designed on the basis of the correlation between inflammation reaction and essential hypertension that the content of urine UMOD protein of essential hypertension patients who is in stage I was (28.71 ± 10.53) mg/24 h and when compared with the control group's content (30.15 ± 14.10 mg/24 h), the difference was not obviously; The content of urine UMOD protein of essential hypertension patients who's in stage II and III was (18.24 ± 6.12) mg/24 h and (9.43 ± 3.16) mg/24 h, respectively, which were obviously lower than that of the control group (P<0.01). Additionally, the serum inflammatory cytokines, such as TNF-α, IL-6 and IL1-α content of essential hypertension patients were all markedly higher than that of control group (P<0.05). For essential hypertension patients, there's a close relationship between the expression level of UMOD gene and inflammatory cytokines, which were manifested as the negative correlation between the level of the gene's expression and inflammatory cytokines. That has certain reference value to realize the targeted treatment for essential hypertension through regulated blood pressure conversely in the view of expression level of inflammatory cytokines.
Marti, Andrea R; Patil, Sudarshan; Mrdalj, Jelena; Meerlo, Peter; Skrede, Silje; Pallesen, Ståle; Pedersen, Torhild T; Bramham, Clive R; Grønli, Janne
2017-01-01
Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1) has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA "cap". In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats ( n = 40) were exposed to forced activity, either in their rest phase (simulated night shift work) or in their active phase (simulated day shift work) for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0). Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus) implicated in cognition and sleep loss, were analyzed with m 7 GTP (cap) pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1) was significantly reduced in the PFC, together with significant reduction in the synaptic plasticity associated protein activity-regulatedcytoskeleton-associated protein (Arc). Our results indicate considerable time-of-day and brain-region specific variation in cap-dependent translation initiation. We concludethat simulated night shift work in rats disrupts the pathways regulating the circadian component of the translation of mRNA in the PFC, and that this may partly explain impaired waking function during night shift work.
Constructing and decoding unconventional ubiquitin chains.
Behrends, Christian; Harper, J Wade
2011-05-01
One of the most notable discoveries in the ubiquitin system during the past decade is the extensive use of diverse chain linkages to control signaling networks. Although the utility of Lys48- and Lys63-linked chains in protein turnover and molecular assembly, respectively, are well known, we are only beginning to understand how unconventional chain linkages are formed on target proteins and how such linkages are decoded by specific binding proteins. In this review, we summarize recent efforts to elucidate the machinery and mechanisms controlling assembly of Lys11-linked and linear (or Met1-linked) ubiquitin chains, and describe current models for how these chain types function in immune signaling and cell-cycle control.
Activation of different split functionalities upon re-association of RNA-DNA hybrids
Afonin, Kirill A.; Viard, Mathias; Martins, Angelica N.; Lockett, Stephen J.; Maciag, Anna E.; Freed, Eric O.; Heldman, Eliahu; Jaeger, Luc; Blumenthal, Robert; Shapiro, Bruce A.
2013-01-01
Split-protein systems, an approach that relies on fragmentation of proteins with their further conditional re-association to form functional complexes, are increasingly used for various biomedical applications. This approach offers tight control of the protein functions and improved detection sensitivity. Here we show a similar technique based on a pair of RNA-DNA hybrids that can be generally used for triggering different split functionalities. Individually, each hybrid is inactive but when two cognate hybrids re-associate, different functionalities are triggered inside mammalian cells. As a proof of concept this work is mainly focused on activation of RNA interference; however the release of other functionalities (resonance energy transfer and RNA aptamer) is also shown. Furthermore, in vivo studies demonstrate a significant uptake of the hybrids by tumors together with specific gene silencing. This split-functionality approach presents a new route in the development of “smart” nucleic acids based nanoparticles and switches for various biomedical applications. PMID:23542902
A novel cell model to study the function of the adrenoleukodystrophy-related protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gueugnon, Fabien; Volodina, Natalia; Taouil, Jaoued Et
2006-03-03
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder due to mutations in the ABCD1 (ALD) gene. ALDRP, the closest homolog of ALDP, has been shown to have partial functional redundancy with ALDP and, when overexpressed, can compensate for the loss-of-function of ALDP. In order to characterize the function of ALDRP and to understand the phenomenon of gene redundancy, we have developed a novel system that allows the controlled expression of the ALDRP-EGFP fusion protein (normal or non-functional mutated ALDRP) using the Tet-On system in H4IIEC3 rat hepatoma cells. The generated stable cell lines express negligible levels of endogenous ALDRP and doxycyclinemore » dosage-dependent levels of normal or mutated ALDRP. Importantly, the ALDRP-EGFP protein is targeted correctly to peroxisome and is functional. The obtained cell lines will be an indispensable tool in our further studies aimed at the resolution of the function of ALDRP to characterize its potential substrates in a natural context.« less
Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry.
Zhou, Xiao-Ming; Shimanovich, Ulyana; Herling, Therese W; Wu, Si; Dobson, Christopher M; Knowles, Tuomas P J; Perrett, Sarah
2015-06-23
Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions.
Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery.
Seras-Franzoso, Joaquin; Steurer, Christoph; Roldán, Mònica; Vendrell, Meritxell; Vidaurre-Agut, Carla; Tarruella, Anna; Saldaña, Laura; Vilaboa, Nuria; Parera, Marc; Elizondo, Elisa; Ratera, Imma; Ventosa, Nora; Veciana, Jaume; Campillo-Fernández, Alberto J; García-Fruitós, Elena; Vázquez, Esther; Villaverde, Antonio
2013-10-10
Appropriate combinations of mechanical and biological stimuli are required to promote proper colonization of substrate materials in regenerative medicine. In this context, 3D scaffolds formed by compatible and biodegradable materials are under continuous development in an attempt to mimic the extracellular environment of mammalian cells. We have here explored how novel 3D porous scaffolds constructed by polylactic acid, polycaprolactone or chitosan can be decorated with bacterial inclusion bodies, submicron protein particles formed by releasable functional proteins. A simple dipping-based decoration method tested here specifically favors the penetration of the functional particles deeper than 300μm from the materials' surface. The functionalized surfaces support the intracellular delivery of biologically active proteins to up to more than 80% of the colonizing cells, a process that is slightly influenced by the chemical nature of the scaffold. The combination of 3D soft scaffolds and protein-based sustained release systems (Bioscaffolds) offers promise in the fabrication of bio-inspired hybrid matrices for multifactorial control of cell proliferation in tissue engineering under complex architectonic setting-ups. © 2013.
Dixit, Anshuman; Verkhivker, Gennady M.
2012-01-01
Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based “conformational selection” of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters may be a rather general functional requirement encoded across molecular chaperones. The obtained insights may be useful in guiding discovery of allosteric Hsp90 inhibitors targeting protein interfaces with co-chaperones and protein binding clients. PMID:22624053
Biopores/membrane proteins in synthetic polymer membranes.
Garni, Martina; Thamboo, Sagana; Schoenenberger, Cora-Ann; Palivan, Cornelia G
2017-04-01
Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016. Published by Elsevier B.V.
Bozi, Luiz H M; Jannig, Paulo R; Rolim, Natale; Voltarelli, Vanessa A; Dourado, Paulo M M; Wisløff, Ulrik; Brum, Patricia C
2016-11-01
Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
The Arabidopsis KIN17 and its homolog KLP mediate different aspects of plant growth and development.
Garcia-Molina, Antoni; Xing, Shuping; Huijser, Peter
2014-01-01
Proteins harboring the kin17 domain (KIN17) constitute a family of well-conserved eukaryotic nuclear proteins involved in nucleic acid metabolism. In mammals, KIN17 orthologs contribute to DNA replication, RNA splicing, and DNA integrity maintenance. Recently, we reported a functional characterization of an Arabidopsis thaliana KIN17 homolog (AtKIN17) that uncovered a role for this protein in tuning physiological responses during copper (Cu) deficiency and oxidative stress. However, functions similar to those described in mammals may also be expected in plants given the conservation of functional domains in KIN17 orthologs. Here, we provide additional data consistent with the participation of AtKIN17 in controlling general plant growth and development, as well as in response to UV radiation. Furthermore, the Arabidopsis genome codes for a second homolog to KIN17, we referred to as KIN17-like-protein (KLP). KLP loss-of-function lines exhibited a reduced inhibition of root growth in response to copper excess and relatively elongated hypocotyls in etiolated seedlings. Altogether, our experimental data point to a general function of the kin17 domain proteins in plant growth and development.
The Arabidopsis KIN17 and its homolog KLP mediate different aspects of plant growth and development
Garcia-Molina, Antoni; Xing, Shuping; Huijser, Peter
2014-01-01
Proteins harboring the kin17 domain (KIN17) constitute a family of well-conserved eukaryotic nuclear proteins involved in nucleic acid metabolism. In mammals, KIN17 orthologs contribute to DNA replication, RNA splicing, and DNA integrity maintenance. Recently, we reported a functional characterization of an Arabidopsis thaliana KIN17 homolog (AtKIN17) that uncovered a role for this protein in tuning physiological responses during copper (Cu) deficiency and oxidative stress. However, functions similar to those described in mammals may also be expected in plants given the conservation of functional domains in KIN17 orthologs. Here, we provide additional data consistent with the participation of AtKIN17 in controlling general plant growth and development, as well as in response to UV radiation. Furthermore, the Arabidopsis genome codes for a second homolog to KIN17, we referred to as KIN17-LIKE-PROTEIN (KLP). KLP loss-of-function lines exhibited a reduced inhibition of root growth in response to copper excess and relatively elongated hypocotyls in etiolated seedlings. Altogether, our experimental data point to a general function of the kin17 domain proteins in plant growth and development. PMID:24713636
Protein-Based Drug-Delivery Materials
Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao
2017-01-01
There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review. PMID:28772877
Casañal, Ana; Zander, Ulrich; Muñoz, Cristina; Dupeux, Florine; Luque, Irene; Botella, Miguel Angel; Schwab, Wilfried; Valpuesta, Victoriano; Marquez, José A.
2013-01-01
Pathogenesis-related 10 (PR-10) proteins are involved in many aspects of plant biology but their molecular function is still unclear. They are related by sequence and structural homology to mammalian lipid transport and plant abscisic acid receptor proteins and are predicted to have cavities for ligand binding. Recently, three new members of the PR-10 family, the Fra a proteins, have been identified in strawberry, where they are required for the activity of the flavonoid biosynthesis pathway, which is essential for the development of color and flavor in fruits. Here, we show that Fra a proteins bind natural flavonoids with different selectivity and affinities in the low μm range. The structural analysis of Fra a 1 E and a Fra a 3-catechin complex indicates that loops L3, L5, and L7 surrounding the ligand-binding cavity show significant flexibility in the apo forms but close over the ligand in the Fra a 3-catechin complex. Our findings provide mechanistic insight on the function of Fra a proteins and suggest that PR-10 proteins, which are widespread in plants, may play a role in the control of secondary metabolic pathways by binding to metabolic intermediates. PMID:24133217
Poly(ADP-Ribose) Polymerase 1 (PARP-1) Regulates Ribosomal Biogenesis in Drosophila Nucleoli
Boamah, Ernest K.; Kotova, Elena; Garabedian, Mikael; Jarnik, Michael; Tulin, Alexei V.
2012-01-01
Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis. PMID:22242017
Gao, Jie; Lan, Ting
2016-01-19
Late embryogenesis abundant (LEA) proteins are a large and highly diverse gene family present in a wide range of plant species. LEAs are proposed to play a role in various stress tolerance responses. Our study represents the first-ever survey of LEA proteins and their encoding genes in a widely distributed pine (Pinus tabuliformis) in China. Twenty-three LEA genes were identified from the P. tabuliformis belonging to seven groups. Proteins with repeated motifs are an important feature specific to LEA groups. Ten of 23 pine LEA genes were selectively expressed in specific tissues, and showed expression divergence within each group. In addition, we selected 13 genes representing each group and introduced theses genes into Escherichia coli to assess the protective function of PtaLEA under heat and salt stresses. Compared with control cells, the E. coli cells expressing PtaLEA fusion protein exhibited enhanced salt and heat resistance and viability, indicating the protein may play a protective role in cells under stress conditions. Furthermore, among these enhanced tolerance genes, a certain extent of function divergence appeared within a gene group as well as between gene groups, suggesting potential functional diversity of this gene family in conifers.
Coating nanoparticles with tunable surfactants facilitates control over the protein corona.
Müller, J; Bauer, K N; Prozeller, D; Simon, J; Mailänder, V; Wurm, F R; Winzen, S; Landfester, K
2017-01-01
Nanoparticles with long blood circulation time are a prerequisite for targeted drug delivery. To make the nanoparticles invisible for phagocytizing cells, functional moieties on the particle surface are believed to be necessary to attract specific so-called 'stealth' proteins forming a protein 'corona'. Currently, covalent attachment of those moieties represents the only way to achieve that attraction. However, that approach requires a high synthetic effort and is difficult to control. Therefore, we present the coating of model nanoparticles with biodegradable polymeric surfactants as an alternative method. The thermodynamic parameters of the coating process can be tuned by adjusting the surfactants' block lengths and hydrophilicity. Consequently, the unspecific protein adsorption and aggregation tendency of the particles can be controlled, and stealth proteins inhibiting cell uptake are enriched on their surface. This non-covalent approach could be applied to any particle type and thus facilitates tuning the protein corona and its biological impact. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shlomai, Joseph
2010-11-01
Protein-DNA interactions play a key role in the regulation of major cellular metabolic pathways, including gene expression, genome replication, and genomic stability. They are mediated through the interactions of regulatory proteins with their specific DNA-binding sites at promoters, enhancers, and replication origins in the genome. Redox signaling regulates these protein-DNA interactions using reactive oxygen species and reactive nitrogen species that interact with cysteine residues at target proteins and their regulators. This review describes the redox-mediated regulation of several master regulators of gene expression that control the induction and suppression of hundreds of genes in the genome, regulating multiple metabolic pathways, which are involved in cell growth, development, differentiation, and survival, as well as in the function of the immune system and cellular response to intracellular and extracellular stimuli. It also discusses the role of redox signaling in protein-DNA interactions that regulate DNA replication. Specificity of redox regulation is discussed, as well as the mechanisms providing several levels of redox-mediated regulation, from direct control of DNA-binding domains through the indirect control, mediated by release of negative regulators, regulation of redox-sensitive protein kinases, intracellular trafficking, and chromatin remodeling.
Large scale crystallization of protein pharmaceuticals in microgravity via temperature change
NASA Technical Reports Server (NTRS)
Long, Marianna M.
1992-01-01
The major objective of this research effort is the temperature driven growth of protein crystals in large batches in the microgravity environment of space. Pharmaceutical houses are developing protein products for patient care, for example, human insulin, human growth hormone, interferons, and tissue plasminogen activator or TPA, the clot buster for heart attack victims. Except for insulin, these are very high value products; they are extremely potent in small quantities and have a great value per gram of material. It is feasible that microgravity crystallization can be a cost recoverable, economically sound final processing step in their manufacture. Large scale protein crystal growth in microgravity has significant advantages from the basic science and the applied science standpoints. Crystal growth can proceed unhindered due to lack of surface effects. Dynamic control is possible and relatively easy. The method has the potential to yield large quantities of pure crystalline product. Crystallization is a time honored procedure for purifying organic materials and microgravity crystallization could be the final step to remove trace impurities from high value protein pharmaceuticals. In addition, microgravity grown crystals could be the final formulation for those medicines that need to be administered in a timed release fashion. Long lasting insulin, insulin lente, is such a product. Also crystalline protein pharmaceuticals are more stable for long-term storage. Temperature, as the initiation step, has certain advantages. Again, dynamic control of the crystallization process is possible and easy. A temperature step is non-invasive and is the most subtle way to control protein solubility and therefore crystallization. Seeding is not necessary. Changes in protein and precipitant concentrations and pH are not necessary. Finally, this method represents a new way to crystallize proteins in space that takes advantage of the unique microgravity environment. The results from two flights showed that the hardware performed perfectly, many crystals were produced, and they were much larger than their ground grown controls. Morphometric analysis was done on over 4,000 crystals to establish crystal size, size distribution, and relative size. Space grown crystals were remarkably larger than their earth grown counterparts and crystal size was a function of PCF volume. That size distribution for the space grown crystals was a function of PCF volume may indicate that ultimate size was a function of temperature gradient. Since the insulin protein concentration was very low, 0.4 mg/ml, the size distribution could also be following the total amount of protein in each of the PCF's. X-ray analysis showed that the bigger space grown insulin crystals diffracted to higher resolution than their ground grown controls. When the data were normalized for size, they still indicated that the space crystals were better than the ground crystals.
A Positive Control for Detection of Functional CD4 T Cells in PBMC: The CPI Pool.
Schiller, Annemarie; Zhang, Ting; Li, Ruliang; Duechting, Andrea; Sundararaman, Srividya; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V
2017-12-07
Testing of peripheral blood mononuclear cells (PBMC) for immune monitoring purposes requires verification of their functionality. This is of particular concern when the PBMC have been shipped or stored for prolonged periods of time. While the CEF (Cytomegalo-, Epstein-Barr and Flu-virus) peptide pool has become the gold standard for testing CD8 cell functionality, a positive control for CD4 cells is so far lacking. The latter ideally consists of proteins so as to control for the functionality of the antigen processing and presentation compartments, as well. Aiming to generate a positive control for CD4 cells, we first selected 12 protein antigens from infectious/environmental organisms that are ubiquitous: Varicella, Influenza, Parainfluenza, Mumps, Cytomegalovirus, Streptococcus , Mycoplasma , Lactobacillus , Neisseria , Candida , Rubella, and Measles. Of these antigens, three were found to elicited interferon (IFN)-γ-producing CD4 cells in the majority of human test subjects: inactivated cytomegalo-, parainfluenza-, and influenza virions (CPI). While individually none of these three antigens triggered a recall response in all donors, the pool of the three (the 'CPI pool'), did. One hundred percent of 245 human donors tested were found to be CPI positive, including Caucasians, Asians, and African-Americans. Therefore, the CPI pool appears to be suitable to serve as universal positive control for verifying the functionality of CD4 and of antigen presenting cells.
Preparation and Characterization of Biofunctionalized Inorganic Substrates.
Dugger, Jason W; Webb, Lauren J
2015-09-29
Integrating the function of biological molecules into traditional inorganic materials and substrates couples biologically relevant function to synthetic devices and generates new materials and capabilities by combining biological and inorganic functions. At this so-called "bio/abio interface," basic biological functions such as ligand binding and catalysis can be co-opted to detect analytes with exceptional sensitivity or to generate useful molecules with chiral specificity under entirely benign reaction conditions. Proteins function in dynamic, complex, and crowded environments (the living cell) and are therefore appropriate for integrating into multistep, multiscale, multimaterial devices such as integrated circuits and heterogeneous catalysts. However, the goal of reproducing the highly specific activities of biomolecules in the perturbed chemical and electrostatic environment at an inorganic interface while maintaining their native conformations is challenging to achieve. Moreover, characterizing protein structure and function at a surface is often difficult, particularly if one wishes to compare the activity of the protein to that of the dilute, aqueous solution phase. Our laboratory has developed a general strategy to address this challenge by taking advantage of the structural and chemical properties of alkanethiol self-assembled monolayers (SAMs) on gold surfaces that are functionalized with covalently tethered peptides. These surface-bound peptides then act as the chemical recognition element for a target protein, generating a biomimetic surface in which protein orientation, structure, density, and function are controlled and variable. Herein we discuss current research and future directions related to generating a chemically tunable biofunctionalization strategy that has potential to successfully incorporate the highly specialized functions of proteins onto inorganic substrates.
Yang, Jun; Zhao, Yingxin; Kalita, Mridul; Li, Xueling; Jamaluddin, Mohammad; Tian, Bing; Edeh, Chukwudi B; Wiktorowicz, John E; Kudlicki, Andrzej; Brasier, Allan R
2015-10-01
Inducible transcriptional elongation is a rapid, stereotypic mechanism for activating immediate early immune defense genes by the epithelium in response to viral pathogens. Here, the recruitment of a multifunctional complex containing the cyclin dependent kinase 9 (CDK9) triggers the process of transcriptional elongation activating resting RNA polymerase engaged with innate immune response (IIR) genes. To identify additional functional activity of the CDK9 complex, we conducted immunoprecipitation (IP) enrichment-stable isotope labeling LC-MS/MS of the CDK9 complex in unstimulated cells and from cells activated by a synthetic dsRNA, polyinosinic/polycytidylic acid [poly (I:C)]. 245 CDK9 interacting proteins were identified with high confidence in the basal state and 20 proteins in four functional classes were validated by IP-SRM-MS. These data identified that CDK9 interacts with DDX 5/17, a family of ATP-dependent RNA helicases, important in alternative RNA splicing of NFAT5, and mH2A1 mRNA two proteins controlling redox signaling. A direct comparison of the basal versus activated state was performed using stable isotope labeling and validated by IP-SRM-MS. Recruited into the CDK9 interactome in response to poly(I:C) stimulation are HSPB1, DNA dependent kinases, and cytoskeletal myosin proteins that exchange with 60S ribosomal structural proteins. An integrated human CDK9 interactome map was developed containing all known human CDK9- interacting proteins. These data were used to develop a probabilistic global map of CDK9-dependent target genes that predicted two functional states controlling distinct cellular functions, one important in immune and stress responses. The CDK9-DDX5/17 complex was shown to be functionally important by shRNA-mediated knockdown, where differential accumulation of alternatively spliced NFAT5 and mH2A1 transcripts and alterations in downstream redox signaling were seen. The requirement of CDK9 for DDX5 recruitment to NFAT5 and mH2A1 chromatin target was further demonstrated using chromatin immunoprecipitation (ChIP). These data indicate that CDK9 is a dynamic multifunctional enzyme complex mediating not only transcriptional elongation, but also alternative RNA splicing and potentially translational control. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Peterson, Abbey; Erickson, Cuixia Shi; Nelson, Mark T.; Vizzard, Margaret A.
2014-01-01
Social stress may play a role in urinary bladder dysfunction in humans, but the underlying mechanisms are unknown. In the present study, we explored changes in bladder function caused by social stress using mouse models of stress and increasing stress. In the stress paradigm, individual submissive FVB mice were exposed to C57BL/6 aggressor mice directly/indirectly for 1 h/day for 2 or 4 wk. Increased stress was induced by continuous, direct/indirect exposure of FVB mice to aggressor mice for 2 wk. Stressed FVB mice exhibited nonvoiding bladder contractions and a decrease in both micturition interval (increased voiding frequency) and bladder capacity compared with control animals. ELISAs demonstrated a significant increase in histamine protein expression with no change in nerve growth factor protein expression in the urinary bladder compared with controls. Unlike stressed mice, mice exposed to an increased stress paradigm exhibited increased bladder capacities and intermicturition intervals (decreased voiding frequency). Both histamine and nerve growth factor protein expression were significantly increased with increased stress compared with control bladders. The change in bladder function from increased voiding frequency to decreased voiding frequency with increased stress intensity suggests that changes in social stress-induced urinary bladder dysfunction are context and duration dependent. In addition, changes in the bladder inflammatory milieu with social stress may be important contributors to changes in urinary bladder function. PMID:25100077
Growth control of the eukaryote cell: a systems biology study in yeast.
Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David Cj; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom Pj; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G
2007-01-01
Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.
Growth control of the eukaryote cell: a systems biology study in yeast
Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David CJ; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom PJ; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G
2007-01-01
Background Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Results Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. Conclusion This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell. PMID:17439666
Song, Mi-Ryoung; Sun, Yunfu; Bryson, Ami; Gill, Gordon N.; Evans, Sylvia M.; Pfaff, Samuel L.
2009-01-01
Summary LIM transcription factors bind to nuclear LIM interactor (Ldb/NLI/Clim) in specific ratios to form higher-order complexes that regulate gene expression. Here we examined how the dosage of LIM homeodomain proteins Isl1 and Isl2 and LIM-only protein Lmo4 influences the assembly and function of complexes involved in the generation of spinal motor neurons (MNs) and V2a interneurons (INs). Reducing the levels of Islet proteins using a graded series of mutations favored V2a IN differentiation at the expense of MN formation. Although LIM-only proteins (LMOs) are predicted to antagonize the function of Islet proteins, we found that the presence or absence of Lmo4 had little influence on MN or V2a IN specification. We did find, however, that the loss of MNs resulting from reduced Islet levels was rescued by eliminating Lmo4, unmasking a functional interaction between these proteins. Our findings demonstrate that MN and V2a IN fates are specified by distinct complexes that are sensitive to the relative stoichiometries of the constituent factors and we present a model to explain how LIM domain proteins modulate these complexes and, thereby, this binary-cell-fate decision. PMID:19666821
Ma, Junfeng; Liu, Ting; Wei, An-Chi; Banerjee, Partha; O'Rourke, Brian; Hart, Gerald W.
2015-01-01
Dynamic cycling of O-linked β-N-acetylglucosamine (O-GlcNAc) on nucleocytoplasmic proteins serves as a nutrient sensor to regulate numerous biological processes. However, mitochondrial protein O-GlcNAcylation and its effects on function are largely unexplored. In this study, we performed a comparative analysis of the proteome and O-GlcNAcome of cardiac mitochondria from rats acutely (12 h) treated without or with thiamet-G (TMG), a potent and specific inhibitor of O-GlcNAcase. We then determined the functional consequences in mitochondria isolated from the two groups. O-GlcNAcomic profiling finds that over 88 mitochondrial proteins are O-GlcNAcylated, with the oxidative phosphorylation system as a major target. Moreover, in comparison with controls, cardiac mitochondria from TMG-treated rats did not exhibit altered protein abundance but showed overall elevated O-GlcNAcylation of many proteins. However, O-GlcNAc was unexpectedly down-regulated at certain sites of specific proteins. Concomitantly, TMG treatment resulted in significantly increased mitochondrial oxygen consumption rates, ATP production rates, and enhanced threshold for permeability transition pore opening by Ca2+. Our data reveal widespread and dynamic mitochondrial protein O-GlcNAcylation, serving as a regulator to their function. PMID:26446791
The RtcB RNA ligase is an essential component of the metazoan unfolded protein response
Kosmaczewski, Sara Guckian; Edwards, Tyson James; Han, Sung Min; Eckwahl, Matthew J; Meyer, Benjamin Isaiah; Peach, Sally; Hesselberth, Jay R; Wolin, Sandra L; Hammarlund, Marc
2014-01-01
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp-1 mRNA during the IRE-1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp-1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre-tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre-spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp-1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo. Subject Categories Protein Biosynthesis & Quality Control; RNA Biology PMID:25366321
Wolfe, Andrew; Divall, Sara; Wu, Sheng
2014-01-01
The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. PMID:24929098
Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction
Goldfless, Stephen J.; Wagner, Jeffrey C.; Niles, Jacquin C.
2014-01-01
The available tools for conditional gene expression in Plasmodium falciparum are limited. Here, to enable reliable control of target gene expression, we build a system to efficiently modulate translation. We overcame several problems associated with other approaches for regulating gene expression in P. falciparum. Specifically, our system functions predictably across several native and engineered promoter contexts, and affords control over reporter and native parasite proteins irrespective of their subcellular compartmentalization. Induction and repression of gene expression are rapid, homogeneous, and stable over prolonged periods. To demonstrate practical application of our system, we used it to reveal direct links between antimalarial drugs and their native parasite molecular target. This is an important out come given the rapid spread of resistance, and intensified efforts to efficiently discover and optimize new antimalarial drugs. Overall, the studies presented highlight the utility of our system for broadly controlling gene expression and performing functional genetics in P. falciparum. PMID:25370483
Tetramer formation of tumor suppressor protein p53: Structure, function, and applications.
Kamada, Rui; Toguchi, Yu; Nomura, Takao; Imagawa, Toshiaki; Sakaguchi, Kazuyasu
2016-11-04
Tetramer formation of p53 is essential for its tumor suppressor function. p53 not only acts as a tumor suppressor protein by inducing cell cycle arrest and apoptosis in response to genotoxic stress, but it also regulates other cellular processes, including autophagy, stem cell self-renewal, and reprogramming of differentiated cells into stem cells, immune system, and metastasis. More than 50% of human tumors have TP53 gene mutations, and most of them are missense mutations that presumably reduce tumor suppressor activity of p53. This review focuses on the role of the tetramerization (oligomerization), which is modulated by the protein concentration of p53, posttranslational modifications, and/or interactions with its binding proteins, in regulating the tumor suppressor function of p53. Functional control of p53 by stabilizing or inhibiting oligomer formation and its bio-applications are also discussed. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 598-612, 2016. © 2015 Wiley Periodicals, Inc.
Wang, Weiye; Xu, Suowen; Yin, Meimei; Jin, Zheng Gen
2015-02-15
Growth factors and their downstream receptor tyrosine kinases (RTKs) mediate a number of biological processes controlling cell function. Adaptor (docking) proteins, which consist exclusively of domains and motifs that mediate molecular interactions, link receptor activation to downstream effectors. Recent studies have revealed that Grb2-associated-binders (Gab) family members (including Gab1, Gab2, and Gab3), when phosphorylated on tyrosine residues, provide binding sites for multiple effector proteins, such as Src homology-2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) and phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, thereby playing important roles in transducing RTKs-mediated signals into pathways with diversified biological functions. Here, we provide an up-to-date overview on the domain structure and biological functions of Gab1, the most intensively studied Gab family protein, in growth factor signaling and biological functions, with a special focus on angiogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Regulation of T-cell receptor signalling by membrane microdomains
Razzaq, Tahir M; Ozegbe, Patricia; Jury, Elizabeth C; Sembi, Phupinder; Blackwell, Nathan M; Kabouridis, Panagiotis S
2004-01-01
There is now considerable evidence suggesting that the plasma membrane of mammalian cells is compartmentalized by functional lipid raft microdomains. These structures are assemblies of specialized lipids and proteins and have been implicated in diverse biological functions. Analysis of their protein content using proteomics and other methods revealed enrichment of signalling proteins, suggesting a role for these domains in intracellular signalling. In T lymphocytes, structure/function experiments and complementary pharmacological studies have shown that raft microdomains control the localization and function of proteins which are components of signalling pathways regulated by the T-cell antigen receptor (TCR). Based on these studies, a model for TCR phosphorylation in lipid rafts is presented. However, despite substantial progress in the field, critical questions remain. For example, it is unclear if membrane rafts represent a homogeneous population and if their structure is modified upon TCR stimulation. In the future, proteomics and the parallel development of complementary analytical methods will undoubtedly contribute in further delineating the role of lipid rafts in signal transduction mechanisms. PMID:15554919
Posttranslational modification of autophagy-related proteins in macroautophagy
Xie, Yangchun; Kang, Rui; Sun, Xiaofang; Zhong, Meizuo; Huang, Jin; Klionsky, Daniel J.; Tang, Daolin
2014-01-01
Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases. PMID:25484070
Ribosomal protein RPS-14 modulates let-7 microRNA function in Caenorhabditis elegans
Chan, Shih-Peng; Slack, Frank J.
2009-01-01
The let-7 microRNA (miRNA) regulates developmental timing at the larval-to-adult transition in Caenorhabditis elegans. Dysregulation of let-7 results in irregular hypodermal and vulval development. Disrupted let-7 function is also a feature of human lung cancer. However, little is known about the mechanism and co-factors of let-7. Here we demonstrate that ribosomal protein RPS-14 is able to modulate let-7 function in C. elegans. The RPS-14 protein co-immunoprecipitated with the nematode Argonaute homolog, ALG-1. Reduction of rps-14 gene expression by RNAi suppressed the aberrant vulva and hypodermis development phenotypes of let-7(n2853) mutant animals and the mis-regulation of a reporter bearing the lin-41 3′UTR, a well established let-7 target. Our results indicate an interactive relationship between let-7 miRNA function and ribosomal protein RPS-14 in regulation of terminal differentiation that may help in understanding the mechanism of translational control by miRNAs. PMID:19627982
Malhotra, Sony; Sowdhamini, Ramanathan
2013-08-01
The interaction of proteins with their respective DNA targets is known to control many high-fidelity cellular processes. Performing a comprehensive survey of the sequenced genomes for DNA-binding proteins (DBPs) will help in understanding their distribution and the associated functions in a particular genome. Availability of fully sequenced genome of Arabidopsis thaliana enables the review of distribution of DBPs in this model plant genome. We used profiles of both structure and sequence-based DNA-binding families, derived from PDB and PFam databases, to perform the survey. This resulted in 4471 proteins, identified as DNA-binding in Arabidopsis genome, which are distributed across 300 different PFam families. Apart from several plant-specific DNA-binding families, certain RING fingers and leucine zippers also had high representation. Our search protocol helped to assign DNA-binding property to several proteins that were previously marked as unknown, putative or hypothetical in function. The distribution of Arabidopsis genes having a role in plant DNA repair were particularly studied and noted for their functional mapping. The functions observed to be overrepresented in the plant genome harbour DNA-3-methyladenine glycosylase activity, alkylbase DNA N-glycosylase activity and DNA-(apurinic or apyrimidinic site) lyase activity, suggesting their role in specialized functions such as gene regulation and DNA repair.
Assessment of the Requirements for Magnesium Transporters in Bacillus subtilis
Wakeman, Catherine A.; Goodson, Jonathan R.; Zacharia, Vineetha M.
2014-01-01
Magnesium is the most abundant divalent metal in cells and is required for many structural and enzymatic functions. For bacteria, at least three families of proteins function as magnesium transporters. In recent years, it has been shown that a subset of these transport proteins is regulated by magnesium-responsive genetic control elements. In this study, we investigated the cellular requirements for magnesium homeostasis in the model microorganism Bacillus subtilis. Putative magnesium transporter genes were mutationally disrupted, singly and in combination, in order to assess their general importance. Mutation of only one of these genes resulted in strong dependency on supplemental extracellular magnesium. Notably, this transporter gene, mgtE, is known to be under magnesium-responsive genetic regulatory control. This suggests that the identification of magnesium-responsive genetic mechanisms may generally denote primary transport proteins for bacteria. To investigate whether B. subtilis encodes yet additional classes of transport mechanisms, suppressor strains that permitted the growth of a transporter-defective mutant were identified. Several of these strains were sequenced to determine the genetic basis of the suppressor phenotypes. None of these mutations occurred in transport protein homologues; instead, they affected housekeeping functions, such as signal recognition particle components and ATP synthase machinery. From these aggregate data, we speculate that the mgtE protein provides the primary route of magnesium import in B. subtilis and that the other putative transport proteins are likely to be utilized for more-specialized growth conditions. PMID:24415722
Zhang, Yan; Yokoyama, Shigetoshi; Herriges, John C; Zhang, Zhen; Young, Randee E; Verheyden, Jamie M; Sun, Xin
2016-07-05
The mammalian lung is an elaborate branching organ, and it forms following a highly stereotypical morphogenesis program. It is well established that precise control at the transcript level is a key genetic underpinning of lung branching. In comparison, little is known about how regulation at the protein level may play a role. Ring finger and WD domain 2 (RFWD2, also termed COP1) is an E3 ubiquitin ligase that modifies specific target proteins, priming their degradation via the ubiquitin proteasome system. RFWD2 is known to function in the adult in pathogenic processes such as tumorigenesis. Here, we show that prenatal inactivation of Rfwd2 gene in the lung epithelium led to a striking halt in branching morphogenesis shortly after secondary branch formation. This defect is accompanied by distalization of the lung epithelium while growth and cellular differentiation still occurred. In the mutant lung, two E26 transformation-specific (ETS) transcription factors essential for normal lung branching, ETS translocation variant 4 (ETV4) and ETV5, were up-regulated at the protein level, but not at the transcript level. Introduction of Etv loss-of-function alleles into the Rfwd2 mutant background attenuated the branching phenotype, suggesting that RFWD2 functions, at least in part, through degrading ETV proteins. Because a number of E3 ligases are known to target factors important for lung development, our findings provide a preview of protein-level regulatory network essential for lung branching morphogenesis.
EOL-1, the Homolog of the Mammalian Dom3Z, Regulates Olfactory Learning in C. elegans
Shen, Yu; Zhang, Jiangwen; Calarco, John A.
2014-01-01
Learning is an essential function of the nervous system. However, our understanding of molecular underpinnings of learning remains incomplete. Here, we characterize a conserved protein EOL-1 that regulates olfactory learning in Caenorhabditis elegans. A recessive allele of eol-1 (enhanced olfactory learning) learns better to adjust its olfactory preference for bacteria foods and eol-1 acts in the URX sensory neurons to regulate learning. The mammalian homolog of EOL-1, Dom3Z, which regulates quality control of pre-mRNAs, can substitute the function of EOL-1 in learning regulation, demonstrating functional conservation between these homologs. Mutating the residues of Dom3Z that are critical for its enzymatic activity, and the equivalent residues in EOL-1, abolishes the function of these proteins in learning. Together, our results provide insights into the function of EOL-1/Dom3Z and suggest that its activity in pre-mRNA quality control is involved in neural plasticity. PMID:25274815
Wang, Qi; Rosa, Bruce A.; Jasmer, Douglas P.; Mitreva, Makedonka
2015-01-01
The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes. PMID:26501106
Theil, Elizabeth C; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina
2014-06-01
Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3·H2O minerals from Fe(2+) for metabolic iron concentrates and oxidant protection; biomineral order differs in different ferritin proteins. The conserved 432 geometric symmetry of ferritin protein cages parallels the subunit dimer, trimer, and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self-assembling ferritin nanocages have functional relationships to cage symmetry such as Fe(2+) transport though ion channels (threefold symmetry), biomineral nucleation/order (fourfold symmetry), and mineral dissolution (threefold symmetry) studied in ferritin variants. On the basis of the effects of natural or synthetic subunit dimer cross-links, cage subunit dimers (twofold symmetry) influence iron oxidation and mineral dissolution. 2Fe(2+)/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n = 3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of three subunits. Here, we study 2Fe(2+) + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3·H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein twofold and threefold cage axes to show function at ferritin fourfold cage axes. Here, conserved amino acids facilitate dissolution of ferritin-protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage fourfold symmetry and solid-state mineral properties remain largely unexplored.
Theil, Elizabeth C.; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina
2014-01-01
Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3•H2O minerals from Fe2+, for metabolic iron concentrates and oxidant protection; biomineral order varies in different ferritin proteins. The conserved 4, 3, 2 geometric symmetry of ferritin protein cages, parallels subunit dimer, trimer and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self- assembling ferritin nanocages have functional relationships to cage symmetry such as Fe2+ transport though ion channels (3-fold symmetry), biomineral nucleation/order (4-fold symmetry) and mineral dissolution (3-fold symmetry) studied in ferritin variants. Cage subunit dimers (2-fold symmetry) influence iron oxidation and mineral dissolution, based on effects of natural or synthetic subunit dimer crosslinks. 2Fe2+/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n=3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of 3 subunits. Here, we study 2Fe2+ + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3•H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein 2-fold and 3-fold cage axes to show function at ferritin 4-fold cage axes. Here, conserved amino acids facilitate dissolution of ferritin protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage 4-fold symmetry and solid state mineral properties remain largely unexplored. PMID:24504941
Protein quality control at the inner nuclear membrane
Khmelinskii, Anton; Blaszczak, Ewa; Pantazopoulou, Marina; Fischer, Bernd; Omnus, Deike J.; Le Dez, Gaëlle; Brossard, Audrey; Gunnarsson, Alexander; Barry, Joseph D.; Meurer, Matthias; Kirrmaier, Daniel; Boone, Charles; Huber, Wolfgang; Rabut, Gwenaël; Ljungdahl, Per O.; Knop, Michael
2015-01-01
The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression1. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER) and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by ER-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc72,3. However, little is known regarding protein quality control at the INM. Here we describe a protein degradation pathway at the INM mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi34. We report that the As complex functions together with the ubiquitin conjugating enzymes Ubc6andUbc7to degrade soluble and integral membrane proteins. Genetic evidence suggest that the Asi ubiquitin ligase defines a pathway distinct from but complementary to ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer (tFT)5, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquity ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalised integral membrane proteins, thus acting to maintain and safeguard the identity of the INM. PMID:25519137
Proteomic analysis of differentially expressed proteins in kidneys of brain dead rabbits.
Li, Ling; Li, Ning; He, Chongxiang; Huang, Wei; Fan, Xiaoli; Zhong, Zibiao; Wang, Yanfeng; Ye, Qifa
2017-07-01
A large number of previous clinical studies have reported a delayed graft function for brain dead donors, when compared with living relatives or cadaveric organ transplantations. However, there is no accurate method for the quality evaluation of kidneys from brain‑dead donors. In the present study, two‑dimensional gel electrophoresis and MALDI‑TOF MS‑based comparative proteomic analysis were conducted to profile the differentially‑expressed proteins between brain death and the control group renal tissues. A total of 40 age‑ and sex‑matched rabbits were randomly divided into donation following brain death (DBD) and control groups. Following the induction of brain death via intracranial progressive pressure, the renal function and the morphological alterations were measured 2, 6 and 8 h afterwards. The differentially expressed proteins were detected from renal histological evidence at 6 h following brain death. Although 904±19 protein spots in control groups and 916±25 in DBD groups were identified in the two‑dimensional gel electrophoresis, >2‑fold alterations were identified by MALDI‑TOF MS and searched by NCBI database. The authors successfully acquired five downregulated proteins, these were: Prohibitin (isoform CRA_b), beta-1,3‑N-acetylgalactosaminyltransferase 1, Annexin A5, superoxide dismutase (mitochondrial) and cytochrome b‑c1 complex subunit 1 (mitochondrial precursor). Conversely, the other five upregulated proteins were: PRP38 pre‑mRNA processing factor 38 (yeast) domain containing A, calcineurin subunit B type 1, V‑type proton ATPase subunit G 1, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and peroxiredoxin‑3 (mitochondrial). Immunohistochemical results revealed that the expressions of prohibitin (PHB) were gradually increased in a time‑dependent manner. The results indicated that there were alterations in levels of several proteins in the kidneys of those with brain death, even if the primary function and the morphological changes were not obvious. PHB may therefore be a novel biomarker for primary quality evaluation of kidneys from brain‑dead donors.
Proteomic analysis of differentially expressed proteins in kidneys of brain dead rabbits
Li, Ling; Li, Ning; He, Chongxiang; Huang, Wei; Fan, Xiaoli; Zhong, Zibiao; Wang, Yanfeng; Ye, Qifa
2017-01-01
A large number of previous clinical studies have reported a delayed graft function for brain dead donors, when compared with living relatives or cadaveric organ transplantations. However, there is no accurate method for the quality evaluation of kidneys from brain-dead donors. In the present study, two-dimensional gel electrophoresis and MALDI-TOF MS-based comparative proteomic analysis were conducted to profile the differentially-expressed proteins between brain death and the control group renal tissues. A total of 40 age- and sex-matched rabbits were randomly divided into donation following brain death (DBD) and control groups. Following the induction of brain death via intracranial progressive pressure, the renal function and the morphological alterations were measured 2, 6 and 8 h afterwards. The differentially expressed proteins were detected from renal histological evidence at 6 h following brain death. Although 904±19 protein spots in control groups and 916±25 in DBD groups were identified in the two-dimensional gel electrophoresis, >2-fold alterations were identified by MALDI-TOF MS and searched by NCBI database. The authors successfully acquired five downregulated proteins, these were: Prohibitin (isoform CRA_b), beta-1,3-N-acetylgalactosaminyltransferase 1, Annexin A5, superoxide dismutase (mitochondrial) and cytochrome b-c1 complex subunit 1 (mitochondrial precursor). Conversely, the other five upregulated proteins were: PRP38 pre-mRNA processing factor 38 (yeast) domain containing A, calcineurin subunit B type 1, V-type proton ATPase subunit G 1, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and peroxiredoxin-3 (mitochondrial). Immunohistochemical results revealed that the expressions of prohibitin (PHB) were gradually increased in a time-dependent manner. The results indicated that there were alterations in levels of several proteins in the kidneys of those with brain death, even if the primary function and the morphological changes were not obvious. PHB may therefore be a novel biomarker for primary quality evaluation of kidneys from brain-dead donors. PMID:28534953
NM23 proteins: innocent bystanders or local energy boosters for CFTR?
Muimo, Richmond; Alothaid, Hani Mm; Mehta, Anil
2018-03-01
NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies.
Dental Enamel: Genes Define Biomechanics
Rauth, Rick J.; Potter, Karen S.; Ngan, Amanda Y.-W.; Saad, Deema M.; Mehr, Rana; Luong, Vivian Q.; Schuetter, Verna L.; Miklus, Vetea G.; Chang, PeiPei; Paine, Michael L.; Lacruz, Rodrigo S.; Snead, Malcolm L.; White, Shane N.
2010-01-01
Regulated gene expression assembles an extracellular proteinaceous matrix to control biomineralization and the resultant biomechanical function of tooth enamel. The importance of the dominant enamel matrix protein, amelogenin (Amel); a minor transiently expressed protein, dentin sialoprotein (Dsp); an electrogenic sodium bicarbonate cotransporter (NBCe1); the timely removal of the proteinaceous matrix by a serine protease, Kallikrein-4 (Klk4); and the late-stage expression of Amelotin (Amtn) on enamel biomechanical function were demonstrated and measured using mouse models. PMID:20066874
Murine colon proteome and characterization of the protein pathways
2012-01-01
Background Most of the current proteomic researches focus on proteome alteration due to pathological disorders (i.e.: colorectal cancer) rather than normal healthy state when mentioning colon. As a result, there are lacks of information regarding normal whole tissue- colon proteome. Results We report here a detailed murine (mouse) whole tissue- colon protein reference dataset composed of 1237 confident protein (FDR < 2) with comprehensive insight on its peptide properties, cellular and subcellular localization, functional network GO annotation analysis, and its relative abundances. The presented dataset includes wide spectra of pI and Mw ranged from 3–12 and 4–600 KDa, respectively. Gravy index scoring predicted 19.5% membranous and 80.5% globularly located proteins. GO hierarchies and functional network analysis illustrated proteins function together with their relevance and implication of several candidates in malignancy such as Mitogen- activated protein kinase (Mapk8, 9) in colorectal cancer, Fibroblast growth factor receptor (Fgfr 2), Glutathione S-transferase (Gstp1) in prostate cancer, and Cell division control protein (Cdc42), Ras-related protein (Rac1,2) in pancreatic cancer. Protein abundances calculated with 3 different algorithms (NSAF, PAF and emPAI) provide a relative quantification under normal condition as guidance. Conclusions This highly confidence colon proteome catalogue will not only serve as a useful reference for further experiments characterizing differentially expressed proteins induced from diseased conditions, but also will aid in better understanding the ontology and functional absorptive mechanism of the colon as well. PMID:22929016
Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support
Di Bartolo, Natalie; Compton, Emma L. R.; Warne, Tony; Edwards, Patricia C.; Tate, Christopher G.; Schertler, Gebhard F. X.; Booth, Paula J.
2016-01-01
The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40–70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes. PMID:26982879
Brooks, Simon P.; Coccia, Margherita; Tang, Hao R.; Kanuga, Naheed; Machesky, Laura M.; Bailly, Maryse; Cheetham, Michael E.; Hardcastle, Alison J.
2010-01-01
Nance–Horan syndrome (NHS) is an X-linked developmental disorder, characterized by bilateral congenital cataracts, dental anomalies, facial dysmorphism and mental retardation. Null mutations in a novel gene, NHS, cause the syndrome. The NHS gene appears to have multiple isoforms as a result of alternative transcription, but a cellular function for the NHS protein has yet to be defined. We describe NHS as a founder member of a new protein family (NHS, NHSL1 and NHSL2). Here, we demonstrate that NHS is a novel regulator of actin remodelling and cell morphology. NHS localizes to sites of cell–cell contact, the leading edge of lamellipodia and focal adhesions. The N-terminus of isoforms NHS-A and NHS-1A, implicated in the pathogenesis of NHS, have a functional WAVE homology domain that interacts with the Abi protein family, haematopoietic stem/progenitor cell protein 300 (HSPC300), Nap1 and Sra1. NHS knockdown resulted in the disruption of the actin cytoskeleton. We show that NHS controls cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. NHS knockdown led to a striking increase in cell spreading. Conversely, ectopic overexpression of NHS inhibited lamellipod formation. Remodelling of the actin cytoskeleton and localized actin polymerization into branched actin filaments at the plasma membrane are essential for mediating changes in cell shape, migration and cell contact. Our data identify NHS as a new regulator of actin remodelling. We suggest that NHS orchestrates actin regulatory protein function in response to signalling events during development. PMID:20332100
Regulation of Cell Diameter, For3p Localization, and Cell Symmetry by Fission Yeast Rho-GAP Rga4p
Das, Maitreyi; Wiley, David J.; Medina, Saskia; Vincent, Helen A.; Larrea, Michelle; Oriolo, Andrea
2007-01-01
Control of cellular dimensions and cell symmetry are critical for development and differentiation. Here we provide evidence that the putative Rho-GAP Rga4p of Schizosaccharomyces pombe controls cellular dimensions. rga4Δ cells are wider in diameter and shorter in length, whereas Rga4p overexpression leads to reduced diameter of the growing cell tip. Consistent with a negative role in cell growth control, Rga4p protein localizes to the cell sides in a “corset” pattern, and to the nongrowing cell tips. Additionally, rga4Δ cells show an altered growth pattern similar to that observed in mutants of the formin homology protein For3p. Consistent with these observations, Rga4p is required for normal localization of For3p and for normal distribution of the actin cytoskeleton. We show that different domains of the Rga4p protein mediate diverse morphological functions. The C-terminal GAP domain mediates For3p localization to the cell tips and maintains cell diameter. Conversely, overexpression of the N-terminal LIM homology domain of Rga4p promotes actin cable formation in a For3p-dependent manner. Our studies indicate that Rga4p functionally interacts with For3p and has a novel function in the control of cell diameter and cell growth. PMID:17377067
Pini, Jonathan; Giuliano, Serena; Matonti, Julia; Simkin, Dina; Rouleau, Matthieu; Bendahhou, Saïd
2018-05-29
Andersen's syndrome is a rare disorder affecting muscle, heart, and bone, that is associated with mutations leading to a loss of function of the inwardly rectifying K + channel Kir2.1. While the Kir2.1 function can be anticipated in excitable cells by controlling the electrical activity, its role in non-excitable cells remains to be investigated. Using Andersen's syndrome induced Pluripotent Stem cells, we investigated the cellular and molecular events during the osteoblastic and chondrogenic differentiation that are affected by the loss of the Ik1 current. We show that loss of Kir2.1 channel function impairs both osteoblastic and chondrogenic processes through the down regulation master gene expression. This down regulation is due to an impairment of the bone morphogenetic proteins signaling pathway through de-phosphorylation of the Smad proteins. Restoring Kir2.1 channel function in Andersen's syndrome cells rescued master genes expression, and restored normal osteoblasts and chondrocytes behavior. Our results show that Kir2.1-mediated activity controls endochondral and intramembranous ossification signaling pathways. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Perez-Castineira, Jose R; Lopez-Marques, Rosa L; Villalba, Jose M; Losada, Manuel; Serrano, Aurelio
2002-12-10
Two types of proteins that hydrolyze inorganic pyrophosphate (PPi), very different in both amino acid sequence and structure, have been characterized to date: soluble and membrane-bound proton-pumping pyrophosphatases (sPPases and H(+)-PPases, respectively). sPPases are ubiquitous proteins that hydrolyze PPi releasing heat, whereas H+-PPases, so far unidentified in animal and fungal cells, couple the energy of PPi hydrolysis to proton movement across biological membranes. The budding yeast Saccharomyces cerevisiae has two sPPases that are located in the cytosol and in the mitochondria. Previous attempts to knock out the gene coding for a cytosolic sPPase (IPP1) have been unsuccessful, thus suggesting that this protein is essential for growth. Here, we describe the generation of a conditional S. cerevisiae mutant (named YPC-1) whose functional IPP1 gene is under the control of a galactose-dependent promoter. Thus, YPC-1 cells become growth arrested in glucose but they regain the ability to grow on this carbon source when transformed with autonomous plasmids bearing diverse foreign H+-PPase genes under the control of a yeast constitutive promoter. The heterologously expressed H+-PPases are distributed among different yeast membranes, including the plasma membrane, functional complementation by these integral membrane proteins being consistently sensitive to external pH. These results demonstrate that hydrolysis of cytosolic PPi is essential for yeast growth and that this function is not substantially affected by the intrinsic characteristics of the PPase protein that accomplishes it. Moreover, this is, to our knowledge, the first direct evidence that H+-PPases can mediate net hydrolysis of PPi in vivo. YPC-1 mutant strain constitutes a convenient expression system to perform studies aimed at the elucidation of the structure-function relationships of this type of proton pumps.
Zapata-Martín Del Campo, Carlos Manuel; Martínez-Rosas, Martín; Guarner-Lans, Verónica
2018-05-14
Mechanisms controlling mitochondrial function, protein folding in the endoplasmic reticulum (ER) and nuclear processes such as telomere length and DNA repair may be subject to epigenetic cues that relate the genomic expression and environmental exposures in early stages of life. They may also be involved in the comorbid appearance of cardiometabolic (CMD) and neuropsychiatric disorders (NPD) during adulthood. Mitochondrial function and protein folding in the endoplasmic reticulum are associated with oxidative stress and elevated intracellular calcium levels and may also underlie the vulnerability for comorbid CMD and NPD. Mitochondria provide key metabolites such as nicotinamide adenine dinucleotide (NAD+), ATP, α-ketoglutarate and acetyl coenzyme A that are required for many transcriptional and epigenetic processes. They are also a source of free radicals. On the other hand, epigenetic markers in nuclear DNA determine mitochondrial biogenesis. The ER is the subcellular organelle in which secretory proteins are folded. Many environmental factors stop the ability of cells to properly fold proteins and modify post-translationally secretory and transmembrane proteins leading to endoplasmic reticulum stress and oxidative stress. ER functioning may be epigenetically determined. Chronic ER stress is emerging as a key contributor to a growing list of human diseases, including CMD and NPD. Telomere loss causes chromosomal fusion, activation of the control of DNA damage-responses, unstable genome and altered stem cell function, which may underlie the comorbidity of CMD and NPD. The length of telomeres is related to oxidative stress and may be epigenetically programmed. Pathways involved in DNA repair may be epigenetically programmed and may contribute to diseases. In this paper, we describe subcellular mechanisms that are determined by epigenetic markers and their possible relation to the development of increased susceptibility to develop CMD and NPD.
Zhu, Kun; Kerr, Deborah A; Meng, Xingqiong; Devine, Amanda; Solah, Vicky; Binns, Colin W; Prince, Richard L
2015-11-01
Protein may play a role in preventing muscle loss with aging. To our knowledge, there have been no long-term randomized controlled trials to examine the effects of increased dietary protein intake on muscle health in community-dwelling older women. In this study, we evaluated the effects of whey protein supplementation on muscle mass and physical function in community-dwelling older Australian women. In this 2 y randomized, double-blind, placebo-controlled trial, women aged 70-80 y (mean 74.3 ± 2.7 y) were randomly assigned to either a high protein drink containing 30 g of whey protein (n = 109) or a placebo drink containing 2.1 g protein (n = 110) daily. Dual-energy X-ray absorptiometry appendicular skeletal muscle mass, upper arm and calf (38% tibia) muscle cross-sectional area, physical function including hand grip strength, lower limb muscle strength and Timed Up and Go test, and 24 h urinary nitrogen were measured at baseline, 1 y, and 2 y. A total of 196 women with at least one follow-up measurement were included in this analysis. Baseline mean BMI was 26.7 ± 3.9 kg/m(2) and protein intake was 76 ± 17 g/d (1.1 ± 0.3 g · kg body weight(-1) · d(-1)). A mean increase in protein intake of ∼ 20 g/d in the protein group was confirmed by the estimates from 24 h urinary nitrogen. Over the 2 y in both groups there was a significant decrease in the upper arm (mean ± SE: -5.59 ± 0.75 cm(2)) and calf (-0.77 ± 0.11 cm(2)) muscle area, as well as hand grip strength (-1.30 ± 0.3 kg) (all P < 0.05), but appendicular skeletal muscle mass did not change significantly. There were no significant effects of the protein intervention on any of the muscle mass or physical function measures (all P > 0.05) at 1 and 2 y. This study showed that in protein-replete, healthy, ambulant, postmenopausal older women, 30 g/d of extra protein did not improve the maintenance of muscle mass or physical function despite evidence of deterioration in muscle measurements in the upper limb. This trial was registered at the Australian New Zealand Clinical Trials Registry as ACTRN012607000163404. © 2015 American Society for Nutrition.
Green, Maurice; Thorburn, Andrew; Kern, Robert; Loewenstein, Paul M
2007-01-01
Microinjection of mammalian cells provides a powerful method for analyzing in vivo functions of viral genes and viral gene products. By microinjection, a controlled amount (ranging from several to many thousands of copies) of a viral or cellular gene, a protein product of a gene, a polypeptide fragment encoding a specific protein domain, or an RNA molecule can be delivered into a target cell and the functional consequences analyzed. Microinjection can be used to deliver antibody targeted to a specific protein domain in order to analyze the requirement of the protein for specific cell functions such as cell cycle progression, transcription of specific genes, or intracellular transport. This chapter describes examples of the successful use of microinjection to probe adenovirus E1A regulatory mechanisms. Detailed methods are provided for manual and semiautomatic microinjection of mammalian cells as well as bioassay protocols for microinjected cells including immunofluorescence, colorimetic, in situ hybridization, and autoradiography.
Rap G protein signal in normal and disordered lymphohematopoiesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minato, Nagahiro, E-mail: minato@imm.med.kyoto-u.ac.jp
2013-09-10
Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the developmentmore » and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy.« less
Choy, Meng S; Li, Yang; Machado, Luciana E S F; Kunze, Micha B A; Connors, Christopher R; Wei, Xingyu; Lindorff-Larsen, Kresten; Page, Rebecca; Peti, Wolfgang
2017-02-16
Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function. Copyright © 2017 Elsevier Inc. All rights reserved.
High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Chang, Jeong Ho; Kang, Ki Ho; Choi, Jinsub; Jeong, Young Keun
2008-10-01
This work describes the development of high efficiency protein separation with functionalized organosilanes on the surface of silica coated magnetic nanoparticles. The magnetic nanoparticles were synthesized with average particle size of 9 nm and silica coated magnetic nanoparticles were obtained by controlling the coating thicknesses on magnetic nanoparticles. The silica coating thickness could be uniformly sized with a diameter of 10-40 nm by a sol-gel approach. The surface modification was performed with four kinds of functionalized organosilanes such as carboxyl, aldehyde, amine, and thiol groups. The protein separation work with organosilane assembled silica coated magnetic nanoparticles was achieved for model proteins such as bovine serum albumin (BSA) and lysozyme (LSZ) at different pH conditions. Among the various functionalities, the thiol group showed good separation efficiency due to the change of electrostatic interactions and protein conformational structure. The adsorption efficiency of BSA and LSZ was up to 74% and 90% corresponding pH 4.65 and pH 11.
Interaction between mating-type proteins from the homothallic fungus Sordaria macrospora.
Jacobsen, Sabine; Wittig, Michael; Pöggeler, Stefanie
2002-06-01
Mating-type genes control sexual development in ascomycetes. Little is known about their function in homothallic species, which are self-fertile and do not require a mating partner for sexual reproduction. The function of mating-type genes in the homothallic fungus Sordaria macrospora was assayed using a yeast system in order to find properties typical of eukaryotic transcription factors. We were able to demonstrate that the mating-type proteins SMTA-1 and SMTa-1 have domains capable of activating transcription of yeast reporter genes. Two-hybrid analysis for heterodimerization and homodimerization revealed the ability of SMTA-1 to interact with SMTa-1 and vice versa. These two proteins are encoded by different mating types in the related heterothallic species Neurospora crassa. The interaction between SMTA-1 and SMTa-1 was defined by experiments with truncated versions of SMTA-1 and in vitro by means of protein cross-linking. Moreover, we gained evidence for homodimerization of SMTA-1. Possible functions of mating-type proteins in the homothallic ascomycete S. macrospora are discussed.
Molecular structures guide the engineering of chromatin
Tekel, Stefan J.
2017-01-01
Abstract Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics. PMID:28609787
Quality control methodology for high-throughput protein-protein interaction screening.
Vazquez, Alexei; Rual, Jean-François; Venkatesan, Kavitha
2011-01-01
Protein-protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., "one gene at a time" experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein-protein interactions screens.
Natural and Genetically Engineered Proteins for Tissue Engineering
Gomes, Sílvia; Leonor, Isabel B.; Mano, João F.; Reis, Rui L.
2011-01-01
To overcome the limitations of traditionally used autografts, allografts and, to a lesser extent, synthetic materials, there is the need to develop a new generation of scaffolds with adequate mechanical and structural support, control of cell attachment, migration, proliferation and differentiation and with bio-resorbable features. This suite of properties would allow the body to heal itself at the same rate as implant degradation. Genetic engineering offers a route to this level of control of biomaterial systems. The possibility of expressing biological components in nature and to modify or bioengineer them further, offers a path towards multifunctional biomaterial systems. This includes opportunities to generate new protein sequences, new self-assembling peptides or fusions of different bioactive domains or protein motifs. New protein sequences with tunable properties can be generated that can be used as new biomaterials. In this review we address some of the most frequently used proteins for tissue engineering and biomedical applications and describe the techniques most commonly used to functionalize protein-based biomaterials by combining them with bioactive molecules to enhance biological performance. We also highlight the use of genetic engineering, for protein heterologous expression and the synthesis of new protein-based biopolymers, focusing the advantages of these functionalized biopolymers when compared with their counterparts extracted directly from nature and modified by techniques such as physical adsorption or chemical modification. PMID:22058578
Optochemical Control of Protein Localization and Activity within Cell-like Compartments.
Caldwell, Reese M; Bermudez, Jessica G; Thai, David; Aonbangkhen, Chanat; Schuster, Benjamin S; Courtney, Taylor; Deiters, Alexander; Hammer, Daniel A; Chenoweth, David M; Good, Matthew C
2018-05-08
We report inducible dimerization strategies for controlling protein positioning, enzymatic activity, and organelle assembly inside synthetic cell-like compartments upon photostimulation. Using a photocaged TMP-Haloligand compound, we demonstrate small molecule and light-induced dimerization of DHFR and Haloenzyme to localize proteins to a compartment boundary and reconstitute tripartite sfGFP assembly. Using photocaged rapamycin and fragments of split TEV protease fused to FRB and FKBP, we establish optical triggering of protease activity inside cell-size compartments. We apply light-inducible protease activation to initiate assembly of membraneless organelles, demonstrating the applicability of these tools for characterizing cell biological processes in vitro. This modular toolkit, which affords spatial and temporal control of protein function in a minimal cell-like system, represents a critical step toward the reconstitution of a tunable synthetic cell, built from the bottom up.
Structural analysis of the Quaking homodimerization interface
Beuck, Christine; Qu, Song; Fagg, W. Samuel; Ares, Manuel; Williamson, James R.
2012-01-01
Quaking is a prototypical member of the STAR protein family, which plays key roles in posttranscriptional gene regulation by controlling mRNA translation, stability and splicing. QkI-5 has been shown to regulate mRNA expression in the central nervous system, but little is known about its roles in other tissues. STAR proteins function as dimers and bind to bipartite RNA sequences, however, the structural and functional roles of homo- and hetero-dimerization are still unclear. Here, we present the crystal structure of the QkI dimerization domain, which adopts a similar stacked helix-turn-helix arrangement as its homologs GLD-1 and Sam68, but differs by an additional helix inserted in the dimer interface. Variability of the dimer interface residues likely ensures selective homodimerization by preventing association with non-cognate STAR family proteins in the cell. Mutations that inhibit dimerization also significantly impair RNA binding in vitro, alter QkI-5 protein levels, and impair QkI function in a splicing assay in vivo. Together our results indicate that a functional Qua1 homodimerization domain is required for QkI-5 function in mammalian cells. PMID:22982292
Zheng, Yong-Sheng; Lu, Yu-Qing; Meng, Ying-Ying; Zhang, Rong-Zhi; Zhang, Han; Sun, Jia-Mei; Wang, Mu-Mu; Li, Li-Hui; Li, Ru-Yu
2017-05-01
WD-40 repeat-containing protein MSI4 (FVE)/MSI4 plays important roles in determining flowering time in Arabidopsis. However, its function is unexplored in wheat. In the present study, coimmunoprecipitation and nanoscale liquid chromatography coupled to MS/MS were used to identify FVE in wheat (TaFVE)-interacting or associated proteins. Altogether 89 differentially expressed proteins showed the same downregulated expression trends as TaFVE in wheat line 5660M. Among them, 62 proteins were further predicted to be involved in the interaction network of TaFVE and 11 proteins have been shown to be potential TaFVE interactors based on curated databases and experimentally determined in other species by the STRING. Both yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that histone deacetylase 6 and histone deacetylase 15 directly interacted with TaFVE. Multiple chromatin-remodelling proteins and polycomb group proteins were also identified and predicted to interact with TaFVE. These results showed that TaFVE directly interacted with multiple proteins to form multiple complexes to regulate spike developmental process, e.g. histone deacetylate, chromatin-remodelling and polycomb repressive complex 2 complexes. In addition, multiple flower development regulation factors (e.g. flowering locus K homology domain, flowering time control protein FPA, FY, flowering time control protein FCA, APETALA 1) involved in floral transition were also identified in the present study. Taken together, these results further elucidate the regulatory functions of TaFVE and help reveal the genetic mechanisms underlying wheat spike differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bacterial Iron–Sulfur Regulatory Proteins As Biological Sensor-Switches
Crack, Jason C.; Green, Jeffrey; Hutchings, Matthew I.; Thomson, Andrew J.
2012-01-01
Abstract Significance: In recent years, bacterial iron–sulfur cluster proteins that function as regulators of gene transcription have emerged as a major new group. In all cases, the cluster acts as a sensor of the environment and enables the organism to adapt to the prevailing conditions. This can range from mounting a response to oxidative or nitrosative stress to switching between anaerobic and aerobic respiratory pathways. The sensitivity of these ancient cofactors to small molecule reactive oxygen and nitrogen species, in particular, makes them ideally suited to function as sensors. Recent Advances: An important challenge is to obtain mechanistic and structural information about how these regulators function and, in particular, how the chemistry occurring at the cluster drives the subsequent regulatory response. For several regulators, including FNR, SoxR, NsrR, IscR, and Wbl proteins, major advances in understanding have been gained recently and these are reviewed here. Critical Issues: A common theme emerging from these studies is that the sensitivity and specificity of the cluster of each regulatory protein must be exquisitely controlled by the protein environment of the cluster. Future Directions: A major future challenge is to determine, for a range of regulators, the key factors for achieving control of sensitivity/specificity. Such information will lead, eventually, to a system understanding of stress response, which often involves more than one regulator. Antioxid. Redox Signal. 17, 1215–1231. PMID:22239203
Aniline-induced nitrosative stress in rat spleen: Proteomic identification of nitrated proteins
Fan, Xiuzhen; Wang, Jianling; Soman, Kizhake V.; Ansari, G. A. S.; Khan, M. Firoze
2011-01-01
Aniline exposure is associated with toxicity to the spleen which is characterized by splenomegaly, hyperplasia, fibrosis, and a variety of sarcomas on chronic exposure in rats. However, mechanisms by which aniline elicits splenotoxic responses are not well understood. Earlier we have shown that aniline exposure leads to increased nitration of proteins in the spleen. However, nitrated proteins remain to be characterized. Therefore, in the current study using proteomic approaches, we focused on characterizing the nitrated proteins in the spleen of aniline-exposed rats. Aniline exposure led to increased tyrosine nitration of proteins, as determined by 2D Western blotting with anti-3-nitrotyrosine specific antibody, compared to the controls. The analyzed nitrated proteins were found in the molecular weight range of 27.7 to 123.6 kDa. A total of 37 nitrated proteins were identified in aniline-treated and control spleens. Among them, 25 were found only in aniline-treated rats, 11 were present in both aniline-treated and control rats, while one was found in controls only. The nitrated proteins identified mainly represent skeletal proteins, chaperones, ferric iron transporter, enzymes, nucleic acids binding protein, and signaling and protein synthesis pathways. Furthermore, aniline exposure led to significantly increased iNOS mRNA and protein expression in the spleen, suggesting its role in increased reactive nitrogen species formation and contribution to increased nitrated proteins. The identified nitrated proteins provide a global map to further investigate alterations in their structural and functional properties, which will lead to a better understanding of the role of protein nitration in aniline-mediated splenic toxicity. PMID:21708182
HnRNP-like proteins as post-transcriptional regulators.
Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling
2014-10-01
Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Functional Classification of Immune Regulatory Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinstein, Rotem; Ramagopal, Udupi A.; Nathenson, Stanley G.
2013-05-01
Members of the immunoglobulin superfamily (IgSF) control innate and adaptive immunity and are prime targets for the treatment of autoimmune diseases, infectious diseases, and malignancies. We describe a computational method, termed the Brotherhood algorithm, which utilizes intermediate sequence information to classify proteins into functionally related families. This approach identifies functional relationships within the IgSF and predicts additional receptor-ligand interactions. As a specific example, we examine the nectin/nectin-like family of cell adhesion and signaling proteins and propose receptor-ligand interactions within this family. We were guided by the Brotherhood approach and present the high-resolution structural characterization of a homophilic interaction involving themore » class-I MHC-restricted T-cell-associated molecule, which we now classify as a nectin-like family member. The Brotherhood algorithm is likely to have a significant impact on structural immunology by identifying those proteins and complexes for which structural characterization will be particularly informative.« less
Silk micrococoons for protein stabilisation and molecular encapsulation
NASA Astrophysics Data System (ADS)
Shimanovich, Ulyana; Ruggeri, Francesco S.; de Genst, Erwin; Adamcik, Jozef; Barros, Teresa P.; Porter, David; Müller, Thomas; Mezzenga, Raffaele; Dobson, Christopher M.; Vollrath, Fritz; Holland, Chris; Knowles, Tuomas P. J.
2017-07-01
Naturally spun silks generate fibres with unique properties, including strength, elasticity and biocompatibility. Here we describe a microfluidics-based strategy to spin liquid native silk, obtained directly from the silk gland of Bombyx mori silkworms, into micron-scale capsules with controllable geometry and variable levels of intermolecular β-sheet content in their protein shells. We demonstrate that such micrococoons can store internally the otherwise highly unstable liquid native silk for several months and without apparent effect on its functionality. We further demonstrate that these native silk micrococoons enable the effective encapsulation, storage and release of other aggregation-prone proteins, such as functional antibodies. These results show that native silk micrococoons are capable of preserving the full activity of sensitive cargo proteins that can aggregate and lose function under conditions of bulk storage, and thus represent an attractive class of materials for the storage and release of active biomolecules.
RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response.
Lee, Yuan-Cho; Zhou, Qing; Chen, Junjie; Yuan, Jingsong
2016-12-19
ETAA1 (Ewing tumor-associated antigen 1), also known as ETAA16, was identified as a tumor-specific antigen in the Ewing family of tumors. However, the biological function of this protein remains unknown. Here, we report the identification of ETAA1 as a DNA replication stress response protein. ETAA1 specifically interacts with RPA (Replication protein A) via two conserved RPA-binding domains and is therefore recruited to stalled replication forks. Interestingly, further analysis of ETAA1 function revealed that ETAA1 participates in the activation of ATR signaling pathway via a conserved ATR-activating domain (AAD) located near its N terminus. Importantly, we demonstrate that both RPA binding and ATR activation are required for ETAA1 function at stalled replication forks to maintain genome stability. Therefore, our data suggest that ETAA1 is a new ATR activator involved in replication checkpoint control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Allosteric mechanism of water channel gating by Ca2+–calmodulin
Reichow, Steve L.; Clemens, Daniel M.; Freites, J. Alfredo; Németh-Cahalan, Karin L.; Heyden, Matthias; Tobias, Douglas J.; Hall, James E.; Gonen, Tamir
2013-01-01
Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, our understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudo-atomic structure of full-length mammalian aquaporin-0 (AQP0, Bos Taurus) in complex with CaM using electron microscopy to understand how this signaling protein modulates water channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits. PMID:23893133
The ATM protein kinase and cellular redox signaling: beyond the DNA damage response
Ditch, Scott; Paull, Tanya T.
2011-01-01
The ataxia-telangiectasia mutated (ATM) protein kinase is best known for its role in the DNA damage response, but recent findings suggest that it also functions as a redox sensor that controls the levels of reactive oxygen species in human cells. Here, we review the evidence supporting the conclusion that ATM can be directly activated by oxidation, as well as various observations from ATM-deficient patients and mouse models that point toward the importance of ATM in oxidative stress responses. We also discuss the roles of this kinase in regulating mitochondrial function and metabolic control through its action on tumor suppressor p53, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1 (HIF-1), and how the regulation of these enzymes may be affected in ATM-deficient patients and in cancer cells. PMID:22079189
The ATM protein kinase and cellular redox signaling: beyond the DNA damage response.
Ditch, Scott; Paull, Tanya T
2012-01-01
The ataxia-telangiectasia mutated (ATM) protein kinase is best known for its role in the DNA damage response, but recent findings suggest that it also functions as a redox sensor that controls the levels of reactive oxygen species in human cells. Here, we review evidence supporting the conclusion that ATM can be directly activated by oxidation, as well as various observations from ATM-deficient patients and mouse models that point to the importance of ATM in oxidative stress responses. We also discuss the roles of this kinase in regulating mitochondrial function and metabolic control through its action on tumor suppressor p53, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor 1 (HIF1), and how the regulation of these enzymes may be affected in ATM-deficient patients and in cancer cells. Copyright © 2011 Elsevier Ltd. All rights reserved.
Coherent control of an opsin in living brain tissue
NASA Astrophysics Data System (ADS)
Paul, Kush; Sengupta, Parijat; Ark, Eugene D.; Tu, Haohua; Zhao, Youbo; Boppart, Stephen A.
2017-11-01
Retinal-based opsins are light-sensitive proteins. The photoisomerization reaction of these proteins has been studied outside cellular environments using ultrashort tailored light pulses. However, how living cell functions can be modulated via opsins by modifying fundamental nonlinear optical properties of light interacting with the retinal chromophore has remained largely unexplored. We report the use of chirped ultrashort near-infrared pulses to modulate light-evoked ionic current from Channelrhodopsin-2 (ChR2) in brain tissue, and consequently the firing pattern of neurons, by manipulating the phase of the spectral components of the light. These results confirm that quantum coherence of the retinal-based protein system, even in a living neuron, can influence its current output, and open up the possibilities of using designer-tailored pulses for controlling molecular dynamics of opsins in living tissue to selectively enhance or suppress neuronal function for adaptive feedback-loop applications in the future.
Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate.
Matsuzawa, Atsushi
2017-03-01
Reactive oxygen species (ROS) are not only cytotoxic products from external and internal environment, but also important mediators of redox signaling. Therefore, thioredoxin (Trx) as an antioxidant maintains the balance of the thiol-related redox status, and also plays pivotal roles in the regulation of redox signaling. Trx senses and responds to environmental oxidative stress and ROS generated by cellular respiration, metabolism, and immune response, and then modulates the redox status, function, and activity of its target signaling proteins. Dysregulation of such the Trx system affects various cellular functions and cell fate such as survival and cell death, leading to human diseases including cancer and inflammation. This review focuses on Trx and its target proteins involved in redox signaling, which are critical for the control of cell fate such as cell survival and apoptosis, and addresses how Trx regulates those effector proteins and redox signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Extracellular Matrix and Redox Signaling in Cellular Responses to Stress.
Roberts, David D
2017-10-20
Cells in multicellular organisms communicate extensively with neighboring cells and distant organs using a variety of secreted proteins and small molecules. Cells also reside in a structural extracellular matrix (ECM), and changes in its composition, mechanical properties, and post-translational modifications provide additional layers of communication. This Forum addresses emerging mechanisms by which redox signaling controls and is controlled by changes in the ECM, focusing on the roles of matricellular proteins. These proteins engage specific cell surface signaling receptors, integrins, and proteoglycans to regulate the biosynthesis and catabolism of redox signaling molecules and the activation of their signal transducers. These signaling pathways, in turn, regulate the composition of ECM and its function. Covalent post-translational modifications of ECM by redox molecules further regulate its structure and function. Recent studies of acute injuries and chronic disease have identified important pathophysiological roles for this cross-talk and new therapeutic opportunities. Antioxid. Redox Signal. 27, 771-773.
Teng, Zi-Wen; Xiong, Shi-Jiao; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Stanley, David; Yan, Zhi-Chao; Ye, Gong-Yin; Fang, Qi
2017-01-01
Many species of endoparasitoid wasps provide biological control services in agroecosystems. Although there is a great deal of information on the ecology and physiology of host/parasitoid interactions, relatively little is known about the protein composition of venom and how specific venom proteins influence physiological systems within host insects. This is a crucial gap in our knowledge because venom proteins act in modulating host physiology in ways that favor parasitoid development. Here, we identified 37 possible venom proteins from the polydnavirus-carrying endoparasitoid Cotesia chilonis by combining transcriptomic and proteomic analyses. The most abundant proteins were hydrolases, such as proteases, peptidases, esterases, glycosyl hydrolase, and endonucleases. Some components are classical parasitoid venom proteins with known functions, including extracellular superoxide dismutase 3, serine protease inhibitor and calreticulin. The venom contains novel proteins, not recorded from any other parasitoid species, including tolloid-like proteins, chitooligosaccharidolytic β-N-acetylglucosaminidase, FK506-binding protein 14, corticotropin-releasing factor-binding protein and vascular endothelial growth factor receptor 2. These new data generate hypotheses and provide a platform for functional analysis of venom components. PMID:28417942
Nakata, Katsunori; Saitoh, Ryoichi; Ishigai, Masaki; Imai, Kazuhiro
2018-02-01
Biological functions in organisms are usually controlled by a set of interacting proteins, and identifying the proteins that interact is useful for understanding the mechanism of the functions. Immunoprecipitation is a method that utilizes the affinity of an antibody to isolate and identify the proteins that have interacted in a biological sample. In this study, the FD-LC-MS/MS method, which involves fluorogenic derivatization followed by separation and quantification by HPLC and finally identification of proteins by HPLC-tandem mass spectrometry, was used to identify proteins in immunoprecipitated samples, using heat shock protein 90 (HSP90) as a model of an interacting protein in HepaRG cells. As a result, HSC70 protein, which was known to form a complex with HSP90, was isolated, together with three different types of HSP90-beta. The results demonstrated that the proposed immunoaffinity-FD-LC-MS/MS method could be useful for simultaneously detecting and identifying the proteins that interact with a certain protein. Copyright © 2017 John Wiley & Sons, Ltd.
Viral Organization of Human Proteins
Wuchty, Stefan; Siwo, Geoffrey; Ferdig, Michael T.
2010-01-01
Although maps of intracellular interactions are increasingly well characterized, little is known about large-scale maps of host-pathogen protein interactions. The investigation of host-pathogen interactions can reveal features of pathogenesis and provide a foundation for the development of drugs and disease prevention strategies. A compilation of experimentally verified interactions between HIV-1 and human proteins and a set of HIV-dependency factors (HDF) allowed insights into the topology and intricate interplay between viral and host proteins on a large scale. We found that targeted and HDF proteins appear predominantly in rich-clubs, groups of human proteins that are strongly intertwined among each other. These assemblies of proteins may serve as an infection gateway, allowing the virus to take control of the human host by reaching protein pathways and diversified cellular functions in a pronounced and focused way. Particular transcription factors and protein kinases facilitate indirect interactions between HDFs and viral proteins. Discerning the entanglement of directly targeted and indirectly interacting proteins may uncover molecular and functional sites that can provide novel perspectives on the progression of HIV infection and highlight new avenues to fight this virus. PMID:20827298
Kawakami, Toshifumi; Urakami, Shinji; Hirata, Hiroshi; Tanaka, Yuichiro; Nakajima, Koichi; Enokida, Hideki; Shiina, Hiroaki; Ogishima, Tatsuya; Tokizane, Takashi; Kawamoto, Ken; Miura, Kazukiyo; Ishii, Nobuhisa; Dahiya, Rajvir
2014-01-01
We hypothesized that administration of the superoxide dismutase (SOD) mimetic Tempol (4-hydroxy-2, 2, 6, 6-tetramethylpiperidine 1-oxyl) may reverse diabetes induced ED(erectile dysfunction). To test this hypothesis, ROS related genes (SOD1, SOD2, GPx1, CAT, NOS2, NOS3), erectile functional studies, and immunohistochemical analysis were performed in diabetic rats treated with or without Tempol. Thirty Sprague-Dawley (3–4 months old) rats were divided into 3 groups (n=10 each), 20 with diabetes (diabetic control and Tempol treatment) and 10 healthy controls. Twelve weeks after induction of diabetes by streptozotocin and Tempol treatment, all groups underwent in vivo cavernous nerve stimulation. Rat crura were harvested and expression of antioxidative defense enzymes examined by semi-quantitative RT-PCR. To confirm the RT-PCR results, we performed immunohistochemistry (IHC) for catalase (CAT) and iNOS (NOS2). Nitration of tyrosine groups in proteins was also examined by IHC. Mean intracavernous pressure in the diabetic group was significantly lower than in healthy controls (p<0.001) and was reversed by Tempol treatment (p<0.0108). NOS2 protein expression was significantly increased in diabetic animals compared to healthy controls and Tempol restored NOS2 protein level. Nitrotyrosine was also higher in diabetic animals and though Tempol treatment decreased its formation, it remained higher than that found in healthy controls. This study suggests that Tempol treatment increased erectile function through modulating oxidative stress related genes in diabetic rats. This is the first report about the relationship between diabetes induced erectile dysfunction and oxidative stress, and anti-oxidative therapy using the superoxide dismutase mimetic, Tempol to restore erectile function. PMID:19554009
McDonald, Christopher; Jovanovic, Goran; Ces, Oscar; Buck, Martin
2015-09-01
Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled, in vitro methodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins' differing roles in vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. This in vitro recapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mounted in vivo when a cell's inner membrane experiences increased SCE stress. All cell types maintain the integrity of their membrane systems. One widely distributed membrane stress response system in bacteria is the phage shock protein (Psp) system. The central component, peripheral membrane protein PspA, which mitigates inner membrane stress in bacteria, has a counterpart, Vipp1, which functions for membrane maintenance and thylakoid biogenesis in plants and photosynthetic bacteria. Membrane association of both these proteins is accepted as playing a pivotal role in their functions. Here we show that direct membrane binding by PspA and Vipp1 is driven by two physio-chemical signals, one of which is membrane stress specific. Our work points to alleviation of membrane stored curvature elastic stress by amphipathic helix insertions as an attractive mechanism for membrane maintenance by PspA and Vipp1. Furthermore, the identification of a physical, stress-related membrane signal suggests a unilateral mechanism that promotes both binding of PspA and induction of the Psp response. Copyright © 2015 McDonald et al.
Kotiadis, Vassilios N.; Duchen, Michael R.; Osellame, Laura D.
2014-01-01
Background The maintenance of cell metabolism and homeostasis is a fundamental characteristic of living organisms. In eukaryotes, mitochondria are the cornerstone of these life supporting processes, playing leading roles in a host of core cellular functions, including energy transduction, metabolic and calcium signalling, and supporting roles in a number of biosynthetic pathways. The possession of a discrete mitochondrial genome dictates that the maintenance of mitochondrial ‘fitness’ requires quality control mechanisms which involve close communication with the nucleus. Scope of review This review explores the synergistic mechanisms that control mitochondrial quality and function and ensure cellular bioenergetic homeostasis. These include antioxidant defence mechanisms that protect against oxidative damage caused by reactive oxygen species, while regulating signals transduced through such free radicals. Protein homeostasis controls import, folding, and degradation of proteins underpinned by mechanisms that regulate bioenergetic capacity through the mitochondrial unfolded protein response. Autophagic machinery is recruited for mitochondrial turnover through the process of mitophagy. Mitochondria also communicate with the nucleus to exact specific transcriptional responses through retrograde signalling pathways. Major conclusions The outcome of mitochondrial quality control is not only reliant on the efficient operation of the core homeostatic mechanisms but also in the effective interaction of mitochondria with other cellular components, namely the nucleus. General significance Understanding mitochondrial quality control and the interactions between the organelle and the nucleus will be crucial in developing therapies for the plethora of diseases in which the pathophysiology is determined by mitochondrial dysfunction. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. PMID:24211250
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaponov, Yu.A.; Igarashi, N.; Hiraki, M.
2004-05-12
An integrated controlling system and a unified database for high throughput protein crystallography experiments have been developed. Main features of protein crystallography experiments (purification, crystallization, crystal harvesting, data collection, data processing) were integrated into the software under development. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data that are stored in a central data server) in a MySQL relational database. The database contains four mutually linked hierarchical trees describing protein crystals, data collection of protein crystal and experimental data processing. A database editor was designed and developed. The editor supports basic database functions to view,more » create, modify and delete user records in the database. Two search engines were realized: direct search of necessary information in the database and object oriented search. The system is based on TCP/IP secure UNIX sockets with four predefined sending and receiving behaviors, which support communications between all connected servers and clients with remote control functions (creating and modifying data for experimental conditions, data acquisition, viewing experimental data, and performing data processing). Two secure login schemes were designed and developed: a direct method (using the developed Linux clients with secure connection) and an indirect method (using the secure SSL connection using secure X11 support from any operating system with X-terminal and SSH support). A part of the system has been implemented on a new MAD beam line, NW12, at the Photon Factory Advanced Ring for general user experiments.« less
RNA regulatory networks diversified through curvature of the PUF protein scaffold
Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; ...
2015-09-14
Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less
RNA regulatory networks diversified through curvature of the PUF protein scaffold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.
Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less
Proteomic changes in rice leaves grown under open field high temperature stress conditions.
Das, Smruti; Krishnan, P; Mishra, Vagish; Kumar, Ritesh; Ramakrishnan, B; Singh, N K
2015-11-01
The interactive effect of temperature with other climatic and soil factors has profound influences on the growth and development of rice. The responses of rice to high temperatures under field conditions are more important than those under the controlled conditions. To understand the genes associated with high temperature stress response in general and tolerance in particular, the expression of all those genes associated with adaptation and tolerance in rice requires proteomic analysis. High temperature stress-tolerant cv. N22 was subjected to 28/18 °C (control) and 42/32 °C (high temperature stress) at flowering stage. The plants were grown in the field under the free air temperature increment condition. The proteomic changes in rice leaves due to high temperature stress were discussed. The proteomes of leaves had about 3000 protein spots, reproducibly detected on 2-dimensional electrophoretic gels with 573 proteins differentially expressed between the control and the high temperature treatments. Putative physiological functions suggested five categories such as growth (15.4%), heat shock proteins (7.7%), regulatory proteins (26.9%), redox homeostasis proteins (11.5%) and energy and metabolism (38.5%) related proteins. The results of the present study suggest that cv. N22, an agronomically recognized temperature tolerant rice cultivar copes with high temperature stress in a complex manner. Several functional proteins play important roles in its responses. The predicted climate change events necessitate more studies using this cultivar under different simulated ecological conditions to identify proteomic changes and the associated genes to be used as biomarkers and to gain a better understanding on the biochemical pathways involved in tolerance.
DNA-Templated Introduction of an Aldehyde Handle in Proteins.
Kodal, Anne Louise B; Rosen, Christian B; Mortensen, Michael R; Tørring, Thomas; Gothelf, Kurt V
2016-07-15
Many medical and biotechnological applications rely on protein labeling, but a key challenge is the production of homogeneous and site-specific conjugates. This can rarely be achieved by simple residue-specific random labeling, but generally requires genetic engineering. Using site-selective DNA-templated reductive amination, we created DNA-protein conjugates with control over labeling stoichiometry and without genetic engineering. A guiding DNA strand with a metal-binding functionality facilitates site-selectivity by directing the coupling of a second reactive DNA strand in the vicinity of a protein metal-binding site. We demonstrate DNA-templated reductive amination for His6 -tagged proteins and metal-binding proteins, including IgG1 antibodies. We also used a cleavable linker between the DNA and the protein to remove the DNA and introduce a single aldehyde on the protein. This functions as a handle for further modifications with desired labels. In addition to directing the aldehyde positioning, the DNA provides a straightforward route for purification between reaction steps. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hayashi, Shimpei; Wakasa, Yuhya; Takaiwa, Fumio
2013-01-01
The membrane transport system is built on the proper functioning of the endoplasmic reticulum (ER). The accumulation of unfolded proteins in the ER lumen (ER stress) disrupts ER homeostasis and disturbs the transport system. In response to ER stress, eukaryotic cells activate intracellular signaling (named the unfolded protein response, UPR), which contributes to the quality control of secretory proteins. On the other hand, the deleterious effects of UPR on plant health and growth characteristics have frequently been overlooked, due to limited information on this mechanism. However, recent studies have shed light on the molecular mechanism of plant UPR, and a number of its unique characteristics have been elucidated. This study briefly reviews the progress of understanding what is happening in plants under ER stress conditions. PMID:23629671
The binary protein-protein interaction landscape of Escherichia coli
Rajagopala, Seesandra V.; Vlasblom, James; Arnold, Roland; Franca-Koh, Jonathan; Pakala, Suman B.; Phanse, Sadhna; Ceol, Arnaud; Häuser, Roman; Siszler, Gabriella; Wuchty, Stefan; Emili, Andrew; Babu, Mohan; Aloy, Patrick; Pieper, Rembert; Uetz, Peter
2014-01-01
Efforts to map the Escherichia coli interactome have identified several hundred macromolecular complexes, but direct binary protein-protein interactions (PPIs) have not been surveyed on a large scale. Here we performed yeast two-hybrid screens of 3,305 baits against 3,606 preys (~70% of the E. coli proteome) in duplicate to generate a map of 2,234 interactions, approximately doubling the number of known binary PPIs in E. coli. Integration of binary PPIs and genetic interactions revealed functional dependencies among components involved in cellular processes, including envelope integrity, flagellum assembly and protein quality control. Many of the binary interactions that could be mapped within multi-protein complexes were informative regarding internal topology and indicated that interactions within complexes are significantly more conserved than those interactions connecting different complexes. This resource will be useful for inferring bacterial gene function and provides a draft reference of the basic physical wiring network of this evolutionarily significant model microbe. PMID:24561554
Chemoproteomic profiling and discovery of protein electrophiles in human cells
NASA Astrophysics Data System (ADS)
Matthews, Megan L.; He, Lin; Horning, Benjamin D.; Olson, Erika J.; Correia, Bruno E.; Yates, John R.; Dawson, Philip E.; Cravatt, Benjamin F.
2017-03-01
Activity-based protein profiling (ABPP) serves as a chemical proteomic platform to discover and characterize functional amino acids in proteins on the basis of their enhanced reactivity towards small-molecule probes. This approach, to date, has mainly targeted nucleophilic functional groups, such as the side chains of serine and cysteine, using electrophilic probes. Here we show that 'reverse-polarity' (RP)-ABPP using clickable, nucleophilic hydrazine probes can capture and identify protein-bound electrophiles in cells. Using this approach, we demonstrate that the pyruvoyl cofactor of S-adenosyl-L-methionine decarboxylase (AMD1) is dynamically controlled by intracellular methionine concentrations. We also identify a heretofore unknown modification—an N-terminally bound glyoxylyl group—in the poorly characterized protein secernin-3. RP-ABPP thus provides a versatile method to monitor the metabolic regulation of electrophilic cofactors and discover novel types of electrophilic modifications on proteins in human cells.
Kikuchi, Motoshi; Yatabe, Megumi; Tando, Yukiko; Yashiro, Takashi
2011-09-01
In the anterior and intermediate lobes of the rat pituitary gland, non-hormone-producing cells that express S-100 protein coexist with various types of hormone-producing cells and are believed to function as phagocytes, supporting and paracrine-controlling cells of hormone-producing cells and stem cells, among other functions; however, their cytological characteristics are not yet fully understood. Using a transgenic rat that expresses green fluorescent protein under the promoter of the S100β protein gene, we immunohistochemically detected expression of the luteinizing hormone, thyroid-stimulating hormone, prolactin, growth hormone and proopiomelanocortin by S-100 protein-positive cells located between clusters of hormone-producing cells in the intermediate lobe. These findings lend support to the hypothesis that S-100 protein-positive cells are capable of differentiating into hormone-producing cells in the adult rat pituitary gland.
NASA Astrophysics Data System (ADS)
Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael
2014-06-01
Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.
Protein Sectors: Statistical Coupling Analysis versus Conservation
Teşileanu, Tiberiu; Colwell, Lucy J.; Leibler, Stanislas
2015-01-01
Statistical coupling analysis (SCA) is a method for analyzing multiple sequence alignments that was used to identify groups of coevolving residues termed “sectors”. The method applies spectral analysis to a matrix obtained by combining correlation information with sequence conservation. It has been asserted that the protein sectors identified by SCA are functionally significant, with different sectors controlling different biochemical properties of the protein. Here we reconsider the available experimental data and note that it involves almost exclusively proteins with a single sector. We show that in this case sequence conservation is the dominating factor in SCA, and can alone be used to make statistically equivalent functional predictions. Therefore, we suggest shifting the experimental focus to proteins for which SCA identifies several sectors. Correlations in protein alignments, which have been shown to be informative in a number of independent studies, would then be less dominated by sequence conservation. PMID:25723535
Hormone signaling through protein destruction: a lesson from plants.
Tan, Xu; Zheng, Ning
2009-02-01
Ubiquitin-dependent protein degradation has emerged as a major pathway regulating eukaryotic biology. By employing a variety of ubiquitin ligases to target specific cellular proteins, the ubiquitin-proteasome system controls physiological processes in a highly regulated fashion. Recent studies on a plant hormone auxin have unveiled a novel paradigm of signal transduction in which ubiquitin ligases function as hormone receptors. Perceived by the F-box protein subunit of the SCF(TIR1) ubiquitin ligase, auxin directly promotes the recruitment of a family of transcriptional repressors for ubiquitination, thereby activating extensive transcriptional programs. Structural studies have revealed that auxin functions through a "molecular glue" mechanism to enhance protein-protein interactions with the assistance of another small molecule cofactor, inositol hexakisphosphate. Given the extensive repertoire of similar ubiquitin ligases in eukaryotic cells, this novel and widely adopted hormone-signaling mechanism in plants may also exist in other organisms.
Sheng, J G; Boop, F A; Mrak, R E; Griffin, W S
1994-11-01
Levels of immunoreactive beta-amyloid precursor protein and interleukin-1 alpha were found to be elevated in surgically resected human temporal lobe tissue from patients with intractable epilepsy compared with postmortem tissue from neurologically unaffected patients (controls). In tissue from epileptics, the levels of the 135-kDa beta-amyloid precursor protein isoform were elevated to fourfold (p < 0.05) those of controls and those of the 130-kDa isoform to threefold (p < 0.05), whereas those of the 120-kDa isoform (p > 0.05) were not different from control values. beta-Amyloid precursor protein-immunoreactive neurons were 16 times more numerous, and their cytoplasm and proximal processes were more intensely immunoreactive in tissue sections from epileptics than controls (133 +/- 12 vs. 8 +/- 3/mm2; p < 0.001). However, neither beta-amyloid precursor protein-immunoreactive dystrophic neurites nor beta-amyloid deposits were found in this tissue. Interleukin-1 alpha-immunoreactive cells (microglia) were three times more numerous in epileptics than in controls (80 +/- 8 vs. 25 +/- 5/mm2; p < 0.001), and these cells were often found adjacent to beta-amyloid precursor protein-immunoreactive neuronal cell bodies. Our findings, together with functions established in vitro for interleukin-1, suggest that increased expression of this protein contributes to the increased levels of beta-amyloid precursor protein in epileptics, thus indicating a potential role for both of these proteins in the neuronal dysfunctions, e.g., hyperexcitability, characteristic of epilepsy.
Cell biology of spinocerebellar ataxia
2012-01-01
Ataxia is a neurological disorder characterized by loss of control of body movements. Spinocerebellar ataxia (SCA), previously known as autosomal dominant cerebellar ataxia, is a biologically robust group of close to 30 progressive neurodegenerative diseases. Six SCAs, including the more prevalent SCA1, SCA2, SCA3, and SCA6 along with SCA7 and SCA17 are caused by expansion of a CAG repeat that encodes a polyglutamine tract in the affected protein. How the mutated proteins in these polyglutamine SCAs cause disease is highly debated. Recent work suggests that the mutated protein contributes to pathogenesis within the context of its “normal” cellular function. Thus, understanding the cellular function of these proteins could aid in the development of therapeutics. PMID:22508507
NASA Astrophysics Data System (ADS)
He, Shuai; Kah, James C. Y.
2017-04-01
Protein phosphorylation controls fundamental biological processes. Dysregulation of protein kinase is associated with a series of human diseases including cancer. Protein kinase A (PKA) activity has been reported to serve as a potential prognostic marker for cancer. To this end, we developed a non-radioactive, rapid, cheap and robust scheme based on surface-enhanced Raman spectroscopy (SERS) for label-free detection of PKA phosphorylation using gold nanostars (AuNS) functionalized with BSA-kemptide. While bovine serum albumin (BSA) proteins stabilized the AuNS, kemptide, which is a high affinity substrate peptide specific for PKA, were phosphorylated in vitro to generate Raman signals that were identified by performing principal component analysis (PCA) on the acquired SERS spectra.
ERIC Educational Resources Information Center
Harris, Michelle A.; Peck, Ronald F.; Colton, Shannon; Morris, Jennifer; Neto, Elias Chaibub; Kallio, Julie
2009-01-01
We conducted a controlled investigation to examine whether a combination of computer imagery and tactile tools helps introductory cell biology laboratory undergraduate students better learn about protein structure/function relationships as compared with computer imagery alone. In all five laboratory sections, students used the molecular imaging…
Nishina, Hidenori; Green, Lucy R; McGarrigle, Hugh H G; Noakes, David E; Poston, Lucilla; Hanson, Mark A
2003-01-01
Unbalanced maternal nutrition affects fetal endocrine and cardiovascular systems, sometimes accompanied by changes in growth, although this is usually in late gestation. We determined the effect of moderate restriction for the first half of gestation of maternal dietary protein, or of total calorific intake on isolated resistance artery function of mid-gestation fetal sheep. Welsh Mountain ewes were nutritionally restricted by 30 % of the recommended nutrient intake (globally restricted) or 30 % of the recommended protein intake (protein-restricted), compared to control ewes fed 100 % of recommended nutrient intake, for ~12 days prior to conception and for the subsequent 70 days of gestation. At mid-gestation, fetal and placental weights were similar in all dietary groups. In isolated femoral arteries, the response curve to noradrenaline was reduced in protein-restricted group fetuses (P < 0.05). Maximal relaxation (P < 0.01) and sensitivity (P < 0.05) to acetylcholine were markedly reduced in protein-restricted group fetuses, and to a smaller extent in globally restricted group fetuses (response curve, P < 0.05). The dilator response (P < 0.05) and sensitivity (P < 0.05) to the α2 agonist UK14304 was lower in protein-, but not in globally restricted group fetuses. The response (P < 0.05) and sensitivity (P < 0.05) to the nitric oxide donor sodium nitroprusside were reduced in protein-restricted group fetuses compared to controls. Our data show that dietary imbalance, in particular restricted protein, of the ewe can produce blunting of endothelial-dependent and -independent relaxation in systemic arteries from the mid-gestation fetus. These changes may precede perturbed late-gestation fetal and postnatal cardiovascular control. PMID:12949230
Catts, Vibeke Sørensen; Derminio, Dominique Suzanne; Hahn, Chang-Gyu; Weickert, Cynthia Shannon
2015-01-01
Background: There is converging evidence of involvement of N-methyl-d-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Our group recently identified a decrease in total NR1 mRNA and protein expression in the dorsolateral prefrontal cortex in a case-control study of individuals with schizophrenia (n=37/group). The NR1 subunit is critical to NMDA receptor function at the postsynaptic density, a cellular structure rich in the scaffolding protein, PSD-95. The extent to which the NMDA receptor NR1 subunit is altered at the site of action, in the postsynaptic density, is not clear. Aims: To extend our previous results by measuring levels of NR1 and PSD-95 protein in postsynaptic density-enriched fractions of prefrontal cortex from the same individuals in the case-control study noted above. Methods: Postsynaptic density-enriched fractions were isolated from fresh-frozen prefrontal cortex (BA10) and subjected to western blot analysis for NR1 and PSD-95. Results: We found a 20% decrease in NR1 protein (t(66)=−2.874, P=0.006) and a 30% decrease in PSD-95 protein (t(63)=−2.668, P=0.010) in postsynaptic density-enriched fractions from individuals with schizophrenia relative to unaffected controls. Conclusions: Individuals with schizophrenia have less NR1 protein, and therefore potentially fewer functional NMDA receptors, at the postsynaptic density. The associated decrease in PSD-95 protein at the postsynaptic density suggests that not only are glutamate receptors compromised in individuals with schizophrenia, but the overall spine architecture and downstream signaling supported by PSD-95 may also be deficient. PMID:27336043
Catts, Vibeke Sørensen; Derminio, Dominique Suzanne; Hahn, Chang-Gyu; Weickert, Cynthia Shannon
2015-01-01
There is converging evidence of involvement of N-methyl-d-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Our group recently identified a decrease in total NR1 mRNA and protein expression in the dorsolateral prefrontal cortex in a case-control study of individuals with schizophrenia (n=37/group). The NR1 subunit is critical to NMDA receptor function at the postsynaptic density, a cellular structure rich in the scaffolding protein, PSD-95. The extent to which the NMDA receptor NR1 subunit is altered at the site of action, in the postsynaptic density, is not clear. To extend our previous results by measuring levels of NR1 and PSD-95 protein in postsynaptic density-enriched fractions of prefrontal cortex from the same individuals in the case-control study noted above. Postsynaptic density-enriched fractions were isolated from fresh-frozen prefrontal cortex (BA10) and subjected to western blot analysis for NR1 and PSD-95. We found a 20% decrease in NR1 protein (t(66)=-2.874, P=0.006) and a 30% decrease in PSD-95 protein (t(63)=-2.668, P=0.010) in postsynaptic density-enriched fractions from individuals with schizophrenia relative to unaffected controls. Individuals with schizophrenia have less NR1 protein, and therefore potentially fewer functional NMDA receptors, at the postsynaptic density. The associated decrease in PSD-95 protein at the postsynaptic density suggests that not only are glutamate receptors compromised in individuals with schizophrenia, but the overall spine architecture and downstream signaling supported by PSD-95 may also be deficient.
Identification of key residues for protein conformational transition using elastic network model.
Su, Ji Guo; Xu, Xian Jin; Li, Chun Hua; Chen, Wei Zu; Wang, Cun Xin
2011-11-07
Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.
Shipston, Michael J.
2014-01-01
Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease. PMID:25140154
Feeding, evaluating, and controlling rumen function.
Lean, Ian J; Golder, Helen M; Hall, Mary Beth
2014-11-01
Achieving optimal rumen function requires an understanding of feeds and systems of nutritional evaluation. Key influences on optimal function include achieving good dry matter intake. The function of feeds in the rumen depends on other factors including chemical composition, rate of passage, degradation rate of the feed, availability of other substrates and cofactors, and individual animal variation. This article discusses carbohydrate, protein, and fat metabolism in the rumen, and provides practical means of evaluation of rations in the field. Conditions under which rumen function is suboptimal (ie, acidosis and bloat) are discussed, and methods for control examined. Copyright © 2014 Elsevier Inc. All rights reserved.
SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease
Li, Darrick K.; Tisdale, Sarah; Lotti, Francesco; Pellizzoni, Livio
2014-01-01
At the post-transcriptional level, expression of protein-coding genes is controlled by a series of RNA regulatory events including nuclear processing of primary transcripts, transport of mature mRNAs to specific cellular compartments, translation and ultimately, turnover. These processes are orchestrated through the dynamic association of mRNAs with RNA binding proteins and ribonucleoprotein (RNP) complexes. Accurate formation of RNPs in vivo is fundamentally important to cellular development and function, and its impairment often leads to human disease. The survival motor neuron (SMN) protein is key to this biological paradigm: SMN is essential for the biogenesis of various RNPs that function in mRNA processing, and genetic mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP assembly. We discuss advances in our understanding of SMN activity as a chaperone of RNPs and how disruption of SMN-dependent RNA pathways can cause motor neuron disease. PMID:24769255
Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder.
Lipstein, Noa; Verhoeven-Duif, Nanda M; Michelassi, Francesco E; Calloway, Nathaniel; van Hasselt, Peter M; Pienkowska, Katarzyna; van Haaften, Gijs; van Haelst, Mieke M; van Empelen, Ron; Cuppen, Inge; van Teeseling, Heleen C; Evelein, Annemieke M V; Vorstman, Jacob A; Thoms, Sven; Jahn, Olaf; Duran, Karen J; Monroe, Glen R; Ryan, Timothy A; Taschenberger, Holger; Dittman, Jeremy S; Rhee, Jeong-Seop; Visser, Gepke; Jans, Judith J; Brose, Nils
2017-03-01
Munc13 proteins are essential regulators of neurotransmitter release at nerve cell synapses. They mediate the priming step that renders synaptic vesicles fusion-competent, and their genetic elimination causes a complete block of synaptic transmission. Here we have described a patient displaying a disorder characterized by a dyskinetic movement disorder, developmental delay, and autism. Using whole-exome sequencing, we have shown that this condition is associated with a rare, de novo Pro814Leu variant in the major human Munc13 paralog UNC13A (also known as Munc13-1). Electrophysiological studies in murine neuronal cultures and functional analyses in Caenorhabditis elegans revealed that the UNC13A variant causes a distinct dominant gain of function that is characterized by increased fusion propensity of synaptic vesicles, which leads to increased initial synaptic vesicle release probability and abnormal short-term synaptic plasticity. Our study underscores the critical importance of fine-tuned presynaptic control in normal brain function. Further, it adds the neuronal Munc13 proteins and the synaptic vesicle priming process that they control to the known etiological mechanisms of psychiatric and neurological synaptopathies.
Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder
Lipstein, Noa; Verhoeven-Duif, Nanda M.; Calloway, Nathaniel; van Hasselt, Peter M.; Pienkowska, Katarzyna; van Haelst, Mieke M.; van Empelen, Ron; Cuppen, Inge; van Teeseling, Heleen C.; Evelein, Annemieke M.V.; Vorstman, Jacob A.; Jahn, Olaf; Duran, Karen J.; Monroe, Glen R.; Ryan, Timothy A.; Taschenberger, Holger; Rhee, Jeong-Seop; Visser, Gepke; Jans, Judith J.
2017-01-01
Munc13 proteins are essential regulators of neurotransmitter release at nerve cell synapses. They mediate the priming step that renders synaptic vesicles fusion-competent, and their genetic elimination causes a complete block of synaptic transmission. Here we have described a patient displaying a disorder characterized by a dyskinetic movement disorder, developmental delay, and autism. Using whole-exome sequencing, we have shown that this condition is associated with a rare, de novo Pro814Leu variant in the major human Munc13 paralog UNC13A (also known as Munc13-1). Electrophysiological studies in murine neuronal cultures and functional analyses in Caenorhabditis elegans revealed that the UNC13A variant causes a distinct dominant gain of function that is characterized by increased fusion propensity of synaptic vesicles, which leads to increased initial synaptic vesicle release probability and abnormal short-term synaptic plasticity. Our study underscores the critical importance of fine-tuned presynaptic control in normal brain function. Further, it adds the neuronal Munc13 proteins and the synaptic vesicle priming process that they control to the known etiological mechanisms of psychiatric and neurological synaptopathies. PMID:28192369
Cell cycle regulation in Schizosaccharomyces pombe.
Moser, B A; Russell, P
2000-12-01
Cdc2, a cyclin-dependent kinase, controls cell cycle progression in fission yeast. New details of Cdc2 regulation and function have been uncovered in recent studies. These studies involve cyclins that associate with Cdc2 in G1-phase and the proteins that regulate inhibitory phosphorylation of Cdc2 during S-phase and G2-phase. Recent investigations have also provided a better understanding of proteins that regulate DNA replication and that are directly or indirectly controlled by Cdc2.
Nassan, Malik; Jia, Yun-Fang; Jenkins, Greg; Colby, Colin; Feeder, Scott; Choi, Doo-Sup; Veldic, Marin; McElroy, Susan L; Bond, David J; Weinshilboum, Richard; Biernacka, Joanna M; Frye, Mark A
2017-12-01
In a prior discovery study, increased levels of serum Growth Differentiation Factor 15 (GDF15), Hepsin (HPN), and Matrix Metalloproteinase-7 (MMP7) were observed in bipolar depressed patients vs controls. This exploratory post-hoc analysis applied a proteomic-informed genomic research strategy to study the potential functional role of these proteins in bipolar disorder (BP). Utilizing the Genotype-Tissue Expression (GTEx) database to identify cis-acting blood expression quantitative trait loci (cis-eQTLs), five eQTL variants from the HPN gene were analyzed for association with BP cases using genotype data of cases from the discovery study (n = 58) versus healthy controls (n = 777). After adjusting for relevant covariates, we analyzed the relationship between these 5 cis-eQTLs and HPN serum level in the BP cases. All 5 cis-eQTL minor alleles were significantly more frequent in BP cases vs controls [(rs62122114, OR = 1.6, p = 0.02), (rs67003112, OR = 1.6, p = 0.02), (rs4997929, OR = 1.7, p = 0.01), (rs12610663, OR = 1.7, p = 0.01), (rs62122148, OR = 1.7, P = 0.01)]. The minor allele (A) in rs62122114 was significantly associated with increased serum HPN level in BP cases (Beta = 0.12, P = 0.049). However, this same minor allele was associated with reduced gene expression in GTEx controls. These exploratory analyses suggest that genetic variation in/near the gene encoding for hepsin protein may influence risk of bipolar disorder. This genetic variation, at least for the rs62122114-A allele, may have functional impact (i.e. differential expression) as evidenced by serum HPN protein expression. Although limited by small sample size, this study highlights the merits of proteomic informed functional genomic studies as a tool to investigate with greater precision the genetic risk of bipolar disorder and secondary relationships to protein expression recognizing, and encouraging in subsequent studies, high likelihood of epigenetic modification of genetic disease risk. Copyright © 2017. Published by Elsevier Ltd.
2018-01-01
Chloroplast translation is essential for cellular viability and plant development. Its positioning at the intersection of organellar RNA and protein metabolism makes it a unique point for the regulation of gene expression in response to internal and external cues. Recently obtained high-resolution structures of plastid ribosomes, the development of approaches allowing genome-wide analyses of chloroplast translation (i.e., ribosome profiling), and the discovery of RNA binding proteins involved in the control of translational activity have greatly increased our understanding of the chloroplast translation process and its regulation. In this review, we provide an overview of the current knowledge of the chloroplast translation machinery, its structure, organization, and function. In addition, we summarize the techniques that are currently available to study chloroplast translation and describe how translational activity is controlled and which cis-elements and trans-factors are involved. Finally, we discuss how translational control contributes to the regulation of chloroplast gene expression in response to developmental, environmental, and physiological cues. We also illustrate the commonalities and the differences between the chloroplast and bacterial translation machineries and the mechanisms of protein biosynthesis in these two prokaryotic systems. PMID:29610211
A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants.
Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon
2016-06-20
Many signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PtdIns(4)P). Our results further reveal that, contrarily to other eukaryotes, PtdIns(4)P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATOR (MAKR) family, which are involved in brassinosteroid and receptor-like kinase signalling. We anticipate that this PtdIns(4)P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition.
Jaendling, Alessa; Ramayah, Soshila; Pryce, David W; McFarlane, Ramsay J
2008-02-01
Translin is a conserved protein which associates with the breakpoint junctions of chromosomal translocations linked with the development of some human cancers. It binds to both DNA and RNA and has been implicated in mRNA metabolism and regulation of genome stability. It has a binding partner, translin-associated protein X (TRAX), levels of which are regulated by the translin protein in higher eukaryotes. In this study we find that this regulatory function is conserved in the lower eukaryotes, suggesting that translin and TRAX have important functions which provide a selective advantage to both unicellular and multi-cellular eukaryotes, indicating that this function may not be tissue-specific in nature. However, to date, the biological importance of translin and TRAX remains unclear. Here we systematically investigate proposals that suggest translin and TRAX play roles in controlling mitotic cell proliferation, DNA damage responses, genome stability, meiotic/mitotic recombination and stability of GT-rich repeat sequences. We find no evidence for translin and/or TRAX primary function in these pathways, indicating that the conserved biochemical function of translin is not implicated in primary pathways for regulating genome stability and/or segregation.
Li, Lei; Nelson, Clark J.; Solheim, Cory; Whelan, James; Millar, A. Harvey
2012-01-01
The growth and development of plant tissues is associated with an ordered succession of cellular processes that are reflected in the appearance and disappearance of proteins. The control of the kinetics of protein turnover is central to how plants can rapidly and specifically alter protein abundance and thus molecular function in response to environmental or developmental cues. However, the processes of turnover are largely hidden during periods of apparent steady-state protein abundance, and even when proteins accumulate it is unclear whether enhanced synthesis or decreased degradation is responsible. We have used a 15N labeling strategy with inorganic nitrogen sources coupled to a two-dimensional fluorescence difference gel electrophoresis and mass spectrometry analysis of two-dimensional IEF/SDS-PAGE gel spots to define the rate of protein synthesis (KS) and degradation (KD) of Arabidopsis cell culture proteins. Through analysis of MALDI-TOF/TOF mass spectra from 120 protein spots, we were able to quantify KS and KD for 84 proteins across six functional groups and observe over 65-fold variation in protein degradation rates. KS and KD correlate with functional roles of the proteins in the cell and the time in the cell culture cycle. This approach is based on progressive 15N labeling that is innocuous for the plant cells and, because it can be used to target analysis of proteins through the use of specific gel spots, it has broad applicability. PMID:22215636
Muccioli, Giulio G.; Sia, Angela; Muchowski, Paul J.; Stella, Nephi
2009-01-01
Background Lipids can act as signaling molecules, activating intracellular and membrane-associated receptors to regulate physiological functions. To understand how a newly discovered signaling lipid functions, it is necessary to identify and characterize the enzymes involved in their production and inactivation. The signaling lipid N-palmitoylethanolamine (PEA) is known to activate intracellular and membrane-associated receptors and regulate physiological functions, but little is known about the enzymes involved in its production and inactivation. Principal Findings Here we show that Saccharomyces cerevisiae produce and inactivate PEA, suggesting that genetic manipulations of this lower eukaryote may be used to identify the enzymes involved in PEA metabolism. Accordingly, using single gene deletion mutants, we identified yeast genes that control PEA metabolism, including SPO14 (a yeast homologue of the mammalian phospholipase D) that controls PEA production and YJU3 (a yeast homologue of the mammalian monoacylglycerol lipase) that controls PEA inactivation. We also found that PEA metabolism is affected by heterologous expression of two mammalian proteins involved in neurodegenerative diseases, namely huntingtin and α-synuclein. Significance Together these findings show that forward and reverse genetics in S. cerevisiae can be used to identify proteins involved in PEA production and inactivation, and suggest that mutated proteins causing neurodegenerative diseases might affect the metabolism of this important signaling lipid. PMID:19529773
Safina, Alfiya; Garcia, Henry; Commane, Mairead; Guryanova, Olga; Degan, Seamus; Kolesnikova, Kateryna; Gurova, Katerina V
2013-08-01
Facilitates chromatin transcription (FACT) is a chromatin remodeling complex with two subunits: SSRP1 and SPT16. Mechanisms controlling FACT levels are of interest, since the complex is not expressed in most differentiated cells, but is frequently upregulated in cancer, particularly in poorly differentiated, aggressive tumors. Moreover, inhibition of FACT expression or function in tumor cells interferes with their survival. Here we demonstrate that SSRP1 and SPT16 protein levels decline upon induction of cellular differentiation or senescence in vitro and that similar declines in protein levels for both SSRP1 and SPT16 occur upon RNAi-mediated knockdown of either SSRP1 or SPT16. The interdependence of SSRP1 and SPT16 protein levels was found to be due to their association with SSRP1 and SPT16 mRNAs, which stabilizes the proteins. In particular, presence of SSRP1 mRNA is critical for SPT16 protein stability. In addition, binding of SSRP1 and SPT16 mRNAs to the FACT complex increases the stability and efficiency of translation of the mRNAs. These data support a model in which the FACT complex is stable when SSRP1 mRNA is present, but quickly degrades when SSRP1 mRNA levels drop. In the absence of FACT complex, SSRP1 and SPT16 mRNAs are unstable and inefficiently translated, making reactivation of FACT function unlikely in normal cells. Thus, we have described a complex and unusual mode of regulation controlling cellular FACT levels that results in amplified and stringent control of FACT activity. The FACT dependence of tumor cells suggests that mechanisms controlling FACT levels could be targeted for anticancer therapy.
Protein Delivery into Plant Cells: Toward In vivo Structural Biology
Cedeño, Cesyen; Pauwels, Kris; Tompa, Peter
2017-01-01
Understanding the biologically relevant structural and functional behavior of proteins inside living plant cells is only possible through the combination of structural biology and cell biology. The state-of-the-art structural biology techniques are typically applied to molecules that are isolated from their native context. Although most experimental conditions can be easily controlled while dealing with an isolated, purified protein, a serious shortcoming of such in vitro work is that we cannot mimic the extremely complex intracellular environment in which the protein exists and functions. Therefore, it is highly desirable to investigate proteins in their natural habitat, i.e., within live cells. This is the major ambition of in-cell NMR, which aims to approach structure-function relationship under true in vivo conditions following delivery of labeled proteins into cells under physiological conditions. With a multidisciplinary approach that includes recombinant protein production, confocal fluorescence microscopy, nuclear magnetic resonance (NMR) spectroscopy and different intracellular protein delivery strategies, we explore the possibility to develop in-cell NMR studies in living plant cells. While we provide a comprehensive framework to set-up in-cell NMR, we identified the efficient intracellular introduction of isotope-labeled proteins as the major bottleneck. Based on experiments with the paradigmatic intrinsically disordered proteins (IDPs) Early Response to Dehydration protein 10 and 14, we also established the subcellular localization of ERD14 under abiotic stress. PMID:28469623
[Fanconi anemia: cellular and molecular features].
Macé, G; Briot, D; Guervilly, J-H; Rosselli, F
2007-02-01
Fanconi anemia (FA) is a recessive human cancer prone syndrome featuring bone marrow failure, developmental abnormalities and hypersensitivity to DNA crosslinking agents exposure. 11 among 12 FA gene have been isolated. The biochemical functions of the FANC proteins remain poorly understood. Anyhow, to cope with DNA crosslinks a cell needs a functional FANC pathway. Moreover, the FANC proteins appear to be involved in cell protection against oxidative damage and in the control of TNF-alpha activity. In this review, we describe the current understanding of the FANC pathway and we present how it may be integrated in the complex networks of proteins involved in maintaining the cellular homeostasis.
Chowdhury, Subir Roy; Djordjevic, Jelena; Thomson, Ella; Smith, Darrell R; Albensi, Benedict C; Fernyhough, Paul
2018-05-23
Abnormalities in mitochondrial function under diabetic conditions can lead to deficits in function of cortical neurons and their support cells exhibiting a pivotal role in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. We aimed to assess simultaneously mitochondrial respiration rates and membrane potential or H 2 O 2 generation and proteins involved in mitochondrial dynamics, antioxidants and AMPK/SIRT/PGC-1α pathway activity in cortex under diabetic conditions. Cortical mitochondria from streptozotocin (STZ)-induced type 1 diabetic rats or mice, and aged-match controls were used for simultaneous measurements of mitochondrial respiration rates and mitochondrial membrane potential (mtMP) or H 2 O 2 using OROBOROS oxygraph and measurements of enzymatic activities by a spectrophotometer. Protein levels in cortical mitochondria and homogenates were determined by Western blotting. Mitochondrial coupled respiration rates and FCCP-induced uncoupled respiration rates were significantly decreased in mitochondria of STZ-diabetic cortical rats compared to controls. The mtMP in the presence of ADP was significantly depolarized and succinate-dependent respiration rates and H 2 O 2 were significantly diminished in mitochondria of diabetic animals compared to controls, accompanied with reduced expression of CuZn- and Mn-superoxide dismutase. The enzymatic activities of Complex I, II, and IV and protein levels of certain components of Complex I and II, mitofusin 2 (Mfn2), dynamin-related protein 1 (DRP1), P-AMPK, SIRT2 and PGC-1α were significantly diminished in diabetic cortex. Deficits in mitochondrial function, dynamics, and antioxidant capabilities putatively mediated through sub-optimal AMPK/SIRT/PGC-1α signaling, are involved in the development of early sub-clinical neurodegeneration in the cortex under diabetic conditions. Copyright © 2017. Published by Elsevier Inc.
[Biological evaluation of a protein mixture intended for enteral nutrition].
Meneses, J Olza; Foulquie, J Porres; Valero, G Urbano; de Victoria, E Martínez; Hernández, A Gil
2008-01-01
Enteral nutrition is the best way to feed or supplement the diet when gastrointestinal tract functions of patients are partially or totally preserved. Whenever total enteral nutrition is needed, it represents the only source of nutrients for patients. Thus, it is mandatory to ensure that high biological value proteins are included in enteral formulae. To assess the biological quality of a protein blend constituted by 50% potassium caseinate, 25% whey protein and 25% pea protein intended to be used in enteral nutrition products. Forty Wistar rats (20 male and 20 female), with initial body weight of 51 g, where divided into four groups and feed for 10 days with: casein (Control), experimental protein blend (Experimental), liophylized normo- and hyperproteic enteral nutrition formulae adapted to the animal nutritional requirements (Normoproteic and Hyperproteic). Protein efficiency ratio (PER), apparent digestibility coefficient (ADC), relationship between retained and absorbed nitrogen (R/A) and relationship between retained and consumed nitrogen (R/I) where calculated. Experimental and control groups had similar values for all analysed indices (PER, ADC, R/A and R/I). These indices where also similar between normo and hyperproteic groups, but lower than experimental and control groups, except in PER, where normoproteic group was either similar to control and hiperproteic group. The quality of the protein blend used in this study is high. It is a good protein source to be used in the development of new enteral nutritional products.
In Planta mutagenesis determines the functional regions of puroindoline proteins.
USDA-ARS?s Scientific Manuscript database
PINA and PINB functionally comprise the wheat (Triticum aestivum L.) Ha locus which controls grain texture and many wheat end-use properties. PINs in their functional forms impart soft texture and a mutation in either PIN is found in all hard wheats. Studies of the PINs mode of action is limited ...
A bacterial type III secretion-based protein delivery tool for broad applications in cell biology.
Ittig, Simon J; Schmutz, Christoph; Kasper, Christoph A; Amstutz, Marlise; Schmidt, Alexander; Sauteur, Loïc; Vigano, M Alessandra; Low, Shyan Huey; Affolter, Markus; Cornelis, Guy R; Nigg, Erich A; Arrieumerlou, Cécile
2015-11-23
Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network. © 2015 Ittig et al.
Albin, Stephanie D; Davis, Graeme W
2004-08-04
Here, we show that postsynaptic p21-activated kinase (Pak) signaling diverges into two genetically separable pathways at the Drosophila neuromuscular junction. One pathway controls glutamate receptor abundance. Pak signaling within this pathway is specified by a required interaction with the adaptor protein Dreadlocks (Dock). We demonstrate that Dock is localized to the synapse via an Src homology 2-mediated protein interaction. Dock is not necessary for Pak localization but is necessary to restrict Pak signaling to control glutamate receptor abundance. A second genetically separable function of Pak kinase signaling controls muscle membrane specialization through the regulation of synaptic Discs-large. In this pathway, Dock is dispensable. We present a model in which divergent Pak signaling is able to coordinate two different features of postsynaptic maturation, receptor abundance, and muscle membrane specialization.
Nadkarni, Girish N.; Rao, Veena; Ismail-Beigi, Faramarz; Fonseca, Vivian A.; Shah, Sudhir V.; Simonson, Michael S.; Cantley, Lloyd; Devarajan, Prasad; Parikh, Chirag R.
2016-01-01
Background and objectives Current measures for predicting renal functional decline in patients with type 2 diabetes with preserved renal function are unsatisfactory, and multiple markers assessing various biologic axes may improve prediction. We examined the association of four biomarker-to-creatinine ratio levels (monocyte chemotactic protein-1, IL-18, kidney injury molecule-1, and YKL-40) with renal outcome. Design, setting, participants, & measurements We used a nested case-control design in the Action to Control Cardiovascular Disease Trial by matching 190 participants with ≥40% sustained eGFR decline over the 5-year follow-up period to 190 participants with ≤10% eGFR decline in a 1:1 fashion on key characteristics (age within 5 years, sex, race, baseline albumin-to-creatinine ratio within 20 μg/mg, and baseline eGFR within 10 ml/min per 1.73 m2), with ≤10% decline. We used a Mesoscale Multiplex Platform and measured biomarkers in baseline and 24-month specimens, and we examined biomarker associations with outcome using conditional logistic regression. Results Baseline and 24-month levels of monocyte chemotactic protein-1-to-creatinine ratio levels were higher for cases versus controls. The highest quartile of baseline monocyte chemotactic protein-1-to-creatinine ratio had fivefold greater odds, and each log increment had 2.27-fold higher odds for outcome (odds ratio, 5.27; 95% confidence interval, 2.19 to 12.71 and odds ratio, 2.27; 95% confidence interval, 1.44 to 3.58, respectively). IL-18-to-creatinine ratio, kidney injury molecule-1-to-creatinine ratio, and YKL-40-to-creatinine ratio were not consistently associated with outcome. C statistic for traditional predictors of eGFR decline was 0.70, which improved significantly to 0.74 with monocyte chemotactic protein-1-to-creatinine ratio. Conclusions Urinary monocyte chemotactic protein-1-to-creatinine ratio concentrations were strongly associated with sustained renal decline in patients with type 2 diabetes with preserved renal function. PMID:27189318
Nadkarni, Girish N; Rao, Veena; Ismail-Beigi, Faramarz; Fonseca, Vivian A; Shah, Sudhir V; Simonson, Michael S; Cantley, Lloyd; Devarajan, Prasad; Parikh, Chirag R; Coca, Steven G
2016-08-08
Current measures for predicting renal functional decline in patients with type 2 diabetes with preserved renal function are unsatisfactory, and multiple markers assessing various biologic axes may improve prediction. We examined the association of four biomarker-to-creatinine ratio levels (monocyte chemotactic protein-1, IL-18, kidney injury molecule-1, and YKL-40) with renal outcome. We used a nested case-control design in the Action to Control Cardiovascular Disease Trial by matching 190 participants with ≥40% sustained eGFR decline over the 5-year follow-up period to 190 participants with ≤10% eGFR decline in a 1:1 fashion on key characteristics (age within 5 years, sex, race, baseline albumin-to-creatinine ratio within 20 μg/mg, and baseline eGFR within 10 ml/min per 1.73 m(2)), with ≤10% decline. We used a Mesoscale Multiplex Platform and measured biomarkers in baseline and 24-month specimens, and we examined biomarker associations with outcome using conditional logistic regression. Baseline and 24-month levels of monocyte chemotactic protein-1-to-creatinine ratio levels were higher for cases versus controls. The highest quartile of baseline monocyte chemotactic protein-1-to-creatinine ratio had fivefold greater odds, and each log increment had 2.27-fold higher odds for outcome (odds ratio, 5.27; 95% confidence interval, 2.19 to 12.71 and odds ratio, 2.27; 95% confidence interval, 1.44 to 3.58, respectively). IL-18-to-creatinine ratio, kidney injury molecule-1-to-creatinine ratio, and YKL-40-to-creatinine ratio were not consistently associated with outcome. C statistic for traditional predictors of eGFR decline was 0.70, which improved significantly to 0.74 with monocyte chemotactic protein-1-to-creatinine ratio. Urinary monocyte chemotactic protein-1-to-creatinine ratio concentrations were strongly associated with sustained renal decline in patients with type 2 diabetes with preserved renal function. Copyright © 2016 by the American Society of Nephrology.
Biosynthesis and secretion of functional protein S by a human megakaryoblastic cell line (MEG-01)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogura, M.; Tanabe, N.; Nishioka, J.
A human megakaryoblastic cell line (MEG-01) was investigated for the presence of protein S in culture medium and cell lysates using a specific enzyme-linked immunoassay (ELISA) and a functional assay. When 5 X 10(5) MEG-01 cells/mL was subcultured in RPMI 1640 medium with 10% fetal calf serum (FCS), the concentration of protein S antigen in the culture medium increased progressively with time from less than 8 ng/mL on day 0 to 105.6 +/- 6.0 ng/mL on day 13. Vitamin K2(1 microgram/mL) increased the production of functional protein S, whereas warfarin (1 microgram/mL) profoundly decreased the quantity and the specific activitymore » of secreted protein S. By an indirect immunofluorescent technique, protein S antigen was detected in both MEG-01 cells and human bone marrow megakaryocytes. Immunoblot analysis of culture medium revealed two distinct bands (mol wt 84,000 and 78,000) that are identical to the doublets of purified plasma protein S. De novo synthesis of protein S was demonstrated by the presence of specific immunoprecipitable radioactivity in the medium after 5 hours of labeling of the cells with (/sup 35/S)-methionine as a 84,000 mol wt protein. Plasma protein S levels of nine patients with severe aplastic anemia were not significantly different from those of normal controls. These results suggest that megakaryocytes produce functional protein S and contain the enzymes required for the carboxylation of selected glutamic acid residues, and that protein S synthesized by megakaryocytes does not represent a main source of plasma protein S.« less
Zhao, Xue; Bai, Yun; Xing, Tong; Xu, Xing-Lian; Zhou, Guanghong
2018-05-15
The functionality of pale, soft, exudative (PSE)-like chicken protein was improved by isoelectric solubilization/precipitation (ISP) treatment. PSE-like chicken proteins were solubilized at an acidic pH 3.5 or an alkaline pH 11.0, followed by precipitating at pH 5.5 and 6.2. PSE-like meat paste was treated as control (CON). Precipitated at pH 6.2 led to a more elastic gel than at pH 5.5. Water distribution of ISP-isolated protein was affected by precipitation pH. More tryptophan residues exposed and -SH was partially oxidized to disulfide bond after ISP treatment, which led to large aggregates formation and higher viscosity of ISP isolated proteins than of CON. Absolute zeta potential of alkali-treated protein was higher than other counterparts, indicating stronger electric repulsion. ISP treatments could convert α-helix structure to relatively irregular structures. Overall, solubilizing at pH 11.0, combined with a precipitation pH 6.2 ISP treatment offers a potential for enhanced functionality of PSE-like chicken protein. Copyright © 2017 Elsevier Ltd. All rights reserved.
Disorder in milk proteins: caseins, intrinsically disordered colloids.
Redwan, Elrashdy M; Xue, Bin; Almehdar, Hussein A; Uversky, Vladimir N
2015-01-01
This article opens a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. The focus of this introductory article on caseins is symbolic, since caseins were among the first recognized functional unfolded proteins and since they are definitely the most disordered, the most abundant, and the most studied of all milk proteins. In eutherian milks, the casein family includes at least three and usually four major members (αs1-, αs2-, β-, and κ-caseins) that are unrelated in sequence. However, in some species, two different αS2-casein genes are active, and therefore the total number of caseins can be as high as five. These proteins have found a number of uses in food industry. The functional repertoire of caseins ranges from nutritional function to involvement in the improving and/or maintaining cardiovascular health, to crucial contribution to the milk capacity to transport calcium phosphate, to serve as molecular chaperones, and to protect the mother's mammary gland against amyloidoses and ectopic calcification. An intricate feature of caseins is their ability to assemble to colloidal protein particles, casein micelles, serving to sequester and transport amorphous calcium phosphate. These and many other functions of caseins are obviously dependent on their intrinsically disordered nature and are controlled by various posttranslational modifications. Since various aspects of casein structure and function are rather well studied and since several recent reviews emphasized the functional roles of caseins' intrinsic disorder, the major goal of this article is to show how intrinsic disorder is encoded in the amino acid sequences of these proteins.
GRBase, a new gene regulation data base available by anonymous ftp.
Collier, B; Danielsen, M
1994-01-01
The Gene Regulation Database (GRBase) is a compendium of information on the structure and function of proteins involved in the control of gene expression in eukaryotes. These proteins include transcription factors, proteins involved in signal transduction, and receptors. The database can be obtained by FTP in Filemaker Pro, text, and postscript formats. The database will be expanded in the coming year to include reviews on families of proteins involved in gene regulation and to allow online searching. PMID:7937071
Sundararajan, Lakshmi; Lundquist, Erik A
2012-12-01
Migration of neurons and neural crest cells is of central importance to the development of nervous systems. In Caenorhabditis elegans, the QL neuroblast on the left migrates posteriorly, and QR on the right migrates anteriorly, despite similar lineages and birth positions with regard to the left-right axis. Initial migration is independent of a Wnt signal that controls later anterior-posterior Q descendant migration. Previous studies showed that the transmembrane proteins UNC-40/DCC and MIG-21, a novel thrombospondin type I repeat containing protein, act redundantly in left-side QL posterior migration. Here we show that the LAR receptor protein tyrosine phosphatase PTP-3 acts with MIG-21 in parallel to UNC-40 in QL posterior migration. We also show that in right-side QR, the UNC-40 and PTP-3/MIG-21 pathways mutually inhibit each other's role in posterior migration, allowing anterior QR migration. Finally, we present evidence that these proteins act autonomously in the Q neuroblasts. These studies indicate an inherent left-right asymmetry in the Q neuroblasts with regard to UNC-40, PTP-3, and MIG-21 function that results in posterior vs. anterior migration.
Cherkouk, Charaf; Rebohle, Lars; Lenk, Jens; Keller, Adrian; Ou, Xin; Laube, Markus; Neuber, Christin; Haase-Kohn, Cathleen; Skorupa, Wolfgang; Pietzsch, Jens
2015-01-01
Gold surfaces functionalized with nickel-nitrilotriacetic acid (Ni²⁺-NTA) as self-assembled monolayers (SAM) to immobilize histidine (His)-tagged biomolecules are broadly reported in the literature. However, the increasing demand of using microfluidic systems and biosensors takes more and more advantage on silicon technology which provides dedicated glass surfaces and substantially allows cost and resource savings. Here we present a novel method for the controlled oriented immobilization of His-tagged proteins on glass surfaces functionalized with a Ni²⁺-NTA layer. Exemplarily, the protein pattern morphology after immobilization on the Ni²⁺-NTA layer of His6-tagged soluble receptor for advanced glycation endproducts (sRAGE) was investigated and compared to non-oriented immobilization of sRAGE on amino SAM by using scanning electron microscopy (SEM). Moreover, we demonstrated interaction of immobilized sRAGE with three structurally different ligands, S100A12, S100A4, and glycated low density lipoproteins (glycLDL), by means of peak-force tapping atomic force microscopy (PF-AFM). We showed a clear discrimination of different protein-ligand orientations by differential height measurements.
Biophysics of protein-DNA interactions and chromosome organization
Marko, John F.
2014-01-01
The function of DNA in cells depends on its interactions with protein molecules, which recognize and act on base sequence patterns along the double helix. These notes aim to introduce basic polymer physics of DNA molecules, biophysics of protein-DNA interactions and their study in single-DNA experiments, and some aspects of large-scale chromosome structure. Mechanisms for control of chromosome topology will also be discussed. PMID:25419039
Carlsson, M; Littbrand, H; Gustafson, Y; Lundin-Olsson, L; Lindelöf, N; Rosendahl, E; Håglin, L
2011-08-01
Loss of muscle mass is common among old people living in institutions but trials that evaluate interventions aimed at increasing the muscle mass are lacking. Objective, participants and intervention: This randomized controlled trial was performed to evaluate the effect of a high-intensity functional exercise program and a timed protein-enriched drink on muscle mass in 177 people aged 65 to 99 with severe physical or cognitive impairments, and living in residential care facilities. Three-month high-intensity exercise was compared with a control activity and a protein-enriched drink was compared with a placebo drink. A bioelectrical impedance spectrometer (BIS) was used in the evaluation. The amount of muscle mass and body weight (BW) were followed-up at three and six months and analyzed in a 2 x 2 factorial ANCOVA, using the intention to treat principle, and controlling for baseline values. At 3-month follow-up there were no differences in muscle mass and BW between the exercise and the control group or between the protein and the placebo group. No interaction effects were seen between the exercise and nutritional intervention. Long-term negative effects on muscle mass and BW was seen in the exercise group at the 6-month follow-up. A three month high-intensity functional exercise program did not increase the amount of muscle mass and an intake of a protein-enriched drink immediately after the exercise did not induce any additional effect on muscle mass. There were negative long-term effects on muscle mass and BW, indicating that it is probably necessary to compensate for an increased energy demand when offering a high-intensity exercise program.
Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry
2015-01-01
Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions. PMID:26030507
Brain Responses to High-Protein Diets12
Journel, Marion; Chaumontet, Catherine; Darcel, Nicolas; Fromentin, Gilles; Tomé, Daniel
2012-01-01
Proteins are suspected to have a greater satiating effect than the other 2 macronutrients. After protein consumption, peptide hormones released from the gastrointestinal tract (mainly anorexigenic gut peptides such as cholecystokinin, glucagon peptide 1, and peptide YY) communicate information about the energy status to the brain. These hormones and vagal afferents control food intake by acting on brain regions involved in energy homeostasis such as the brainstem and the hypothalamus. In fact, a high-protein diet leads to greater activation than a normal-protein diet in the nucleus tractus solitarius and in the arcuate nucleus. More specifically, neural mechanisms triggered particularly by leucine consumption involve 2 cellular energy sensors: the mammalian target of rapamycin and AMP-activated protein kinase. In addition, reward and motivation aspects of eating behavior, controlled mainly by neurons present in limbic regions, play an important role in the reduced hedonic response of a high-protein diet. This review examines how metabolic signals emanating from the gastrointestinal tract after protein ingestion target the brain to control feeding, energy expenditure, and hormones. Understanding the functional roles of brain areas involved in the satiating effect of proteins and their interactions will demonstrate how homeostasis and reward are integrated with the signals from peripheral organs after protein consumption. PMID:22585905
Zhang, Zheng; Chen, Shengfu; Jiang, Shaoyi
2006-12-01
We introduce a dual-functional biocompatible material based on zwitterionic poly(carboxybetaine methacrylate) (polyCBMA), which not only highly resists protein adsorption/cell adhesion, but also has abundant functional groups convenient for the immobilization of biological ligands, such as proteins. The dual-functional properties are unique to carboxybetaine moieties and are not found in other nonfouling moieties such as ethylene glycol, phosphobetaine, and sulfobetaine. The unique properties are demonstrated in this work by grafting a polyCBMA polymer onto a surface or by preparing a polyCBMA-based hydrogel. PolyCBMA brushes with a thickness of 10-15 nm were grafted on a gold surface using the surface-initiated atom transfer radical polymerization method. Protein adsorption was analyzed using a surface plasmon resonance sensor. The surface grafted with polyCBMA very largely prevented the nonspecific adsorption of three test proteins, that is, fibrinogen, lysozyme, and human chorionic gonadotropin (hCG). The immobilization of anti-hCG on the surface resulted in the specific binding of hCG while maintaining a high resistance to nonspecific protein adsorption. Transparent polyCBMA-based hydrogel disks were decorated with immobilized fibronectin. Aortic endothelial cells did not bind to the polyCBMA controls, but appeared to adhere well and spread on the fibronectin-modified surface. With their dual functionality and biomimetic nature, polyCBMA-based materials are very promising for their applications in medical diagnostics, biomaterials/tissue engineering, and drug delivery.
High protein weight loss diets in obese subjects with type 2 diabetes mellitus.
Pedersen, E; Jesudason, D R; Clifton, P M
2014-05-01
Diets where carbohydrate has been partially exchanged for protein have shown beneficial changes in persons with type 2 diabetes but no studies have enrolled people with albuminuria. We aim to determine if a high protein to carbohydrate ratio (HPD) in an energy reduced diet has a beneficial effect on metabolic control and cardiovascular risk factors without negatively affecting renal function. Adult, overweight participants with type 2 diabetes, with albuminuria (30-600 mg/24 h or an albumin-to-creatinine ratio of 3.0-60 mg/mmol), and estimated GFR of >40 ml/min/1.73 m(2) were enrolled. Participants were randomized to an HPD or an SPD. Protein:fat:carbohydrate ratio was 30:30:40% of energy for the HPD and 20:30:50% for the SPD. Main outcomes were renal function, weight loss, blood pressure, serum lipids and glycaemic control. We recruited 76 volunteers and 45 (35 men and 10 women) finished. There were no overall changes in renal function at 12 months and no significant differences in weight loss between groups (9.7 ± 2.9 kg and 6.6 ± 1.4 kg HPD and SPD group respectively; p = 0.32). Fasting blood glucose decreased significantly with no treatment effect. The decrease in HbA1c differed between treatments at 6 months (HPD -0.9 vs. SPD -0.3%; p = 0.039) but not at 12 months. HDL increased significantly with no treatment effects. There were no changes in LDL or blood pressure overall but DBP was lower in the HPD group (p = 0.024) at 12 months. Weight loss improved overall metabolic control in this group of well controlled participants with type 2 diabetes regardless of diet composition. Copyright © 2013 Elsevier B.V. All rights reserved.
Allsopp, Philip; Crowe, William; Bahar, Bojlul; Harnedy, Pádraigín A; Brown, Emma S; Taylor, Sonja S; Smyth, Thomas J; Soler-Vila, Anna; Magee, Pamela J; Gill, Chris I R; Strain, Conall R; Hegan, Vicky; Devaney, Martin; Wallace, Julie M W; Cherry, Paul; FitzGerald, Richard J; Strain, J J; O'Doherty, John V; McSorley, Emeir M
2016-08-01
Palmaria palmata (P. Palmata) is reported to contain anti-inflammatory and antioxidant compounds albeit no study has investigated these effects in humans. A randomised parallel placebo-controlled human intervention study was carried out to investigate the effect of consuming P. Palmata (5 g/day) incorporated into a bread on serum markers of inflammation [C-reactive protein (CRP); cytokine analysis] with secondary analysis investigating changes in lipids (cholesterol, triglycerides), thyroid function [thyroid-stimulating hormone (TSH)] and antioxidant status ferric reducing antioxidant power. ANCOVA with baseline values as covariates, controlling for age, BMI, sex and smoking status, was used to compare differences between treatment groups over time . In vitro studies investigated the inflammatory activity of P. Palmata extracts (hot water, cold water and ethanol extract), protein extracts and associated protein hydrolysates using a Caco-2 inflammation cell model. Consumption of P. Palmata-enriched bread significantly increased serum CRP (+16.1 %, P = 0.011), triglycerides (+31.9 %, P = 0.001) and TSH (+17.2 %, P = 0.017) when compared to the control group. In vitro evaluation of P. palmata extracts and protein hydrolysates identified a significant induction of IL-8 secretion by Caco-2 cells, and the hot water P. palmata extract was shown to increase adipocyte glycerol release (P < 0.05). Evidence from this human study suggests that P. palmata stimulates inflammation, increases serum triglycerides and alters thyroid function; however, these changes are not likely to impact health as changes remained within the normal clinical range. The data from the in vitro study provided indications that IL-8 may contribute to the apparent immunostimulation noted in the human study.
Palmitoylation as a Functional Regulator of Neurotransmitter Receptors
Naumenko, Vladimir S.
2018-01-01
The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior. PMID:29849559
Stein, G S; van Wijnen, A J; Stein, J L; Lian, J B; Montecino, M; Zaidi, K; Javed, A
2000-01-01
The regulated and regulatory components that interrelate nuclear structure and function must be experimentally established. A formidable challenge is to define further the control of transcription factor targeting to acceptor sites associated with the nuclear matrix. It will be important to determine whether acceptor proteins are associated with a pre-existing core-filament structural lattice or whether a compositely organized scaffold of regulatory factors is dynamically assembled. An inclusive model for all steps in the targeting of proteins to subnuclear sites cannot yet be proposed. However, this model must account for the apparent diversity of intranuclear targeting signals. It is also important to assess the extent to which regulatory discrimination is mediated by subnuclear domain-specific trafficking signals. Furthermore, the checkpoints that monitor subnuclear distribution of regulatory factors and the sorting steps that ensure both structural and functional fidelity of nuclear domains in which replication and expression of genes occur must be biochemically and mechanistically defined. There is emerging recognition that placement of regulatory components of gene expression must be temporally and spatially coordinated to facilitate biological control. The consequences of breaches in nuclear structure-function relationships are observed in an expanding series of diseases that include cancer [Weis et al., 1994; Rogaia et al., 1997; Yano et al., 1997; Rowley, 1998; Zeng et al., 1998; McNeil et al., 1999; Tao and Levine, 1999a] and neurological disorders [Skinner et al., 1997]. As the repertoire of architecture-associated regulatory factors and cofactors expands, workers in the field are becoming increasingly confident that nuclear organization contributes significantly to control of transcription. To gain increased appreciation for the complexities of subnuclear organization and gene regulation, we must continue to characterize mechanisms that direct regulatory proteins to specific transcription sites within the nucleus so that these proteins are in the right place at the right time. J. Cell. Biochem. Suppl. 35:84-92, 2000. Copyright 2001 Wiley-Liss, Inc.
Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio
2018-02-01
Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.
A stochastic reaction-diffusion model for protein aggregation on DNA
NASA Astrophysics Data System (ADS)
Voulgarakis, Nikolaos K.
Vital functions of DNA, such as transcription and packaging, depend on the proper clustering of proteins on the double strand. The present study investigates how the interplay between DNA allostery and electrostatic interactions affects protein clustering. The statistical analysis of a simple but transparent computational model reveals two major consequences of this interplay. First, depending on the protein and salt concentration, protein filaments exhibit a bimodal DNA stiffening and softening behavior. Second, within a certain domain of the control parameters, electrostatic interactions can cause energetic frustration that forces proteins to assemble in rigid spiral configurations. Such spiral filaments might trigger both positive and negative supercoiling, which can ultimately promote gene compaction and regulate the promoter. It has been experimentally shown that bacterial histone-like proteins assemble in similar spiral patterns and/or exhibit the same bimodal behavior. The proposed model can, thus, provide computational insights into the physical mechanisms used by proteins to control the mechanical properties of the DNA.
Huang, Wenwen; Ebrahimi, Davoud; Dinjaski, Nina; Tarakanova, Anna; Buehler, Markus J; Wong, Joyce Y; Kaplan, David L
2017-04-18
Tailored biomaterials with tunable functional properties are crucial for a variety of task-specific applications ranging from healthcare to sustainable, novel bio-nanodevices. To generate polymeric materials with predictive functional outcomes, exploiting designs from nature while morphing them toward non-natural systems offers an important strategy. Silks are Nature's building blocks and are produced by arthropods for a variety of uses that are essential for their survival. Due to the genetic control of encoded protein sequence, mechanical properties, biocompatibility, and biodegradability, silk proteins have been selected as prototype models to emulate for the tunable designs of biomaterial systems. The bottom up strategy of material design opens important opportunities to create predictive functional outcomes, following the exquisite polymeric templates inspired by silks. Recombinant DNA technology provides a systematic approach to recapitulate, vary, and evaluate the core structure peptide motifs in silks and then biosynthesize silk-based polymers by design. Post-biosynthesis processing allows for another dimension of material design by controlled or assisted assembly. Multiscale modeling, from the theoretical prospective, provides strategies to explore interactions at different length scales, leading to selective material properties. Synergy among experimental and modeling approaches can provide new and more rapid insights into the most appropriate structure-function relationships to pursue while also furthering our understanding in terms of the range of silk-based systems that can be generated. This approach utilizes nature as a blueprint for initial polymer designs with useful functions (e.g., silk fibers) but also employs modeling-guided experiments to expand the initial polymer designs into new domains of functional materials that do not exist in nature. The overall path to these new functional outcomes is greatly accelerated via the integration of modeling with experiment. In this Account, we summarize recent advances in understanding and functionalization of silk-based protein systems, with a focus on the integration of simulation and experiment for biopolymer design. Spider silk was selected as an exemplary protein to address the fundamental challenges in polymer designs, including specific insights into the role of molecular weight, hydrophobic/hydrophilic partitioning, and shear stress for silk fiber formation. To expand current silk designs toward biointerfaces and stimuli responsive materials, peptide modules from other natural proteins were added to silk designs to introduce new functions, exploiting the modular nature of silk proteins and fibrous proteins in general. The integrated approaches explored suggest that protein folding, silk volume fraction, and protein amino acid sequence changes (e.g., mutations) are critical factors for functional biomaterial designs. In summary, the integrated modeling-experimental approach described in this Account suggests a more rationally directed and more rapid method for the design of polymeric materials. It is expected that this combined use of experimental and computational approaches has a broad applicability not only for silk-based systems, but also for other polymer and composite materials.
microRNAs affect BCL-2 family proteins in the setting of cerebral ischemia
Ouyang, Yi-Bing; Giffard, Rona G.
2014-01-01
The BCL-2 family is centrally involved in the mechanism of cell death after cerebral ischemia. It is well known that the proteins of the BCL-2 family are key regulators of apoptosis through controlling mitochondrial outer membrane permeabilization. Recent findings suggest that many BCL-2 family members are also directly involved in controlling transmission of Ca2+ from the endoplasmic reticulum (ER) to mitochondria through a specialization called the mitochondria-associated ER membrane (MAM). Increasing evidence supports the involvement of microRNAs (miRNA), some of them targeting BCL-2 family proteins, in the regulation of cerebral ischemia. In this mini-review, after highlighting current knowledge about the multiple functions of BCL-2 family proteins and summarizing their relationship to outcome from cerebral ischemia, we focus on the regulation of BCL-2 family proteins by miRNAs, especially miR-29 which targets multiple BCL-2 family proteins. PMID:24373752
Elango, Nithya; Kasi, Vallikkannu; Vembhu, Bhuvaneswari; Poornima, Jeyanthi Govindasamy
2013-09-11
We assessed indoor air quality in photocopier centers and investigated whether occupational exposure to emissions from photocopiers is associated with decline in lung function or changes in haematological parameters, oxidative stress and inflammatory status. Indoor air quality was monitored in five photocopier centers. Pulmonary function was assessed by spirometry in 81 photocopier operators (64 male and 17 female) and 43 healthy control (31 male and 12 female) subjects. Hematological status, serum thio-barbituric acid reactive substances (TBARS), total ferric reducing antioxidant capacity (FRAC), leukotriene B4 (LTB4), 8-isoprostane, C reactive protein (CRP), interleukin 8 (IL-8), clara cell protein (CC-16), intercellular adhesion molecule 1 (ICAM-1) and eosinophilic cationic protein (ECP) were analyzed. Relationships between cumulative exposure, lung function and inflammatory markers were assessed. PM10 and PM2.5 were above the permissible levels in all the photocopier centers, whereas the levels of carbon monoxide, nitrogen oxides, ozone, sulphur dioxide, lead, arsenic, nickel, ammonia, benzene and benzo(a)pyrene were within Indian ambient air quality standards. Lung function was similar in the photocopier operators and control subjects. Serum TBARS was significantly higher and FRAC was lower among photocopier operators when compared to healthy controls. Plasma IL-8, LTB4, ICAM-1 and ECP were significantly higher in the photocopier exposed group. Photocopiers emit high levels of particulate matter. Long term exposure to emissions from photocopiers was not associated with decreased lung function, but resulted in high oxidative stress and systemic inflammation leading to high risk of cardiovascular diseases.
2013-01-01
Background We assessed indoor air quality in photocopier centers and investigated whether occupational exposure to emissions from photocopiers is associated with decline in lung function or changes in haematological parameters, oxidative stress and inflammatory status. Methods Indoor air quality was monitored in five photocopier centers. Pulmonary function was assessed by spirometry in 81 photocopier operators (64 male and 17 female) and 43 healthy control (31 male and 12 female) subjects. Hematological status, serum thio-barbituric acid reactive substances (TBARS), total ferric reducing antioxidant capacity (FRAC), leukotriene B4 (LTB4), 8-isoprostane, C reactive protein (CRP), interleukin 8 (IL-8), clara cell protein (CC-16), intercellular adhesion molecule 1 (ICAM-1) and eosinophilic cationic protein (ECP) were analyzed. Relationships between cumulative exposure, lung function and inflammatory markers were assessed. Results PM10 and PM2.5 were above the permissible levels in all the photocopier centers, whereas the levels of carbon monoxide, nitrogen oxides, ozone, sulphur dioxide, lead, arsenic, nickel, ammonia, benzene and benzo(a)pyrene were within Indian ambient air quality standards. Lung function was similar in the photocopier operators and control subjects. Serum TBARS was significantly higher and FRAC was lower among photocopier operators when compared to healthy controls. Plasma IL-8, LTB4, ICAM-1 and ECP were significantly higher in the photocopier exposed group. Conclusions Photocopiers emit high levels of particulate matter. Long term exposure to emissions from photocopiers was not associated with decreased lung function, but resulted in high oxidative stress and systemic inflammation leading to high risk of cardiovascular diseases. PMID:24025094
Evolution and function of eukaryotic-like proteins from sponge symbionts.
Reynolds, David; Thomas, Torsten
2016-10-01
Sponges (Porifera) are ancient metazoans that harbour diverse microorganisms, whose symbiotic interactions are essential for the host's health and function. Although symbiosis between bacteria and sponges are ubiquitous, the molecular mechanisms that control these associations are largely unknown. Recent (meta-) genomic analyses discovered an abundance of genes encoding for eukaryotic-like proteins (ELPs) in bacterial symbionts from different sponge species. ELPs belonging to the ankyrin repeat (AR) class from a bacterial symbiont of the sponge Cymbastela concentrica were subsequently found to modulate amoebal phagocytosis. This might be a molecular mechanism, by which symbionts can control their interaction with the sponge. In this study, we investigated the evolution and function of ELPs from other classes and from symbionts found in other sponges to better understand the importance of ELPs for bacteria-eukaryote interactions. Phylogenetic analyses showed that all of the nine ELPs investigated were most closely related to proteins found either in eukaryotes or in bacteria that can live in association with eukaryotes. ELPs were then recombinantly expressed in Escherichia coli and exposed to the amoeba Acanthamoeba castellanii, which is functionally analogous to phagocytic cells in sponges. Phagocytosis assays with E. coli containing three ELP classes (AR, TPR-SEL1 and NHL) showed a significantly higher percentage of amoeba containing bacteria and average number of intracellular bacteria per amoeba when compared to negative controls. The result that various classes of ELPs found in symbionts of different sponges can modulate phagocytosis indicates that they have a broader function in mediating bacteria-sponge interactions. © 2016 John Wiley & Sons Ltd.