Control rod drive for reactor shutdown
McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.
1976-01-20
A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...
Effect of Reactor Design on the Plasma Treatment of NOx
1998-10-01
control parameter is the input energy density. Consequently, different reactor designs should yield basically the same plasma chemistry if the experiments are performed under identical gas composition and temperature conditions.
Nuclear reactor control column
Bachovchin, Dennis M.
1982-01-01
The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.
Liquid phase methanol reactor staging process for the production of methanol
Bonnell, Leo W.; Perka, Alan T.; Roberts, George W.
1988-01-01
The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.
Application of a Self-Actuating Shutdown System (SASS) to a Gas-Cooled Fast Reactor (GCFR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germer, J.H.; Peterson, L.F.; Kluck, A.L.
1980-09-01
The application of a SASS (Self-Actuated Shutdown System) to a GCFR (Gas-Cooled Fast Reactor) is compared with similar systems designed for an LMFBR (Liquid Metal Fast Breeder Reactor). A comparison of three basic SASS concepts is given: hydrostatic holdup, fluidic control, and magnetic holdup.
Equipment for neutron measurements at VR-1 Sparrow training reactor.
Kolros, Antonin; Huml, Ondrej; Kríz, Martin; Kos, Josef
2010-01-01
The VR-1 sparrow reactor is an experimental nuclear facility for training, student education and teaching purposes. The sparrow reactor is an educational platform for the basic experiments at the reactor physic and dosimetry. The aim of this article is to describe the new experimental equipment EMK310 features and possibilities for neutron detection by different gas filled detectors at VR-1 reactor. Among the EMK310 equipment typical attributes belong precise set-up, simple control, resistance to electromagnetic interference, high throughput (counting rate), versatility and remote controllability. The methods for non-linearity correction of pulse neutron detection system and reactimeter application are presented. Copyright 2009. Published by Elsevier Ltd.
Sensitivity Analysis of Algan/GAN High Electron Mobility Transistors to Process Variation
2008-02-01
delivery system gas panel including both hydride and alkyl delivery modules and the vent/valve configurations [14...Reactor Gas Delivery Systems A basic schematic diagram of an MOCVD reactor delivery gas panel is shown in Figure 13. The reactor gas delivery...system, or gas panel , consists of a network of stainless steel tubing, automatic valves and electronic mass flow controllers (MFC). There are separate
An adaptive load-following control system for a space nuclear power system
NASA Astrophysics Data System (ADS)
Metzger, John D.; El-Genk, Mohamed S.
An adaptive load-following control system is proposed for a space nuclear power system. The conceptual design of the SP-100 space nuclear power system proposes operating the nuclear reactor at a base thermal power and accommodating changes in the electrical power demand with a shunt regulator. It is necessary to increase the reactor thermal power if the payload electrical demand exceeds the peak system electrical output for the associated reactor power. When it is necessary to change the nuclear reactor power to meet a change in the power demand, the power ascension or descension must be accomplished in a predetermined manner to avoid thermal stresses in the system and to achieve the desired reactor period. The load-following control system described has the ability to adapt to changes in the system and to changes in the satellite environment. The application is proposed of the model reference adaptive control (MRAC). The adaptive control system has the ability to control the dynamic response of nonlinear systems. Three basic subsets of adaptive control are: (1) gain scheduling, (2) self-tuning regulators, and (3) model reference adaptive control.
Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki; Miura, Ryosuke
2015-09-30
Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design.more » The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.« less
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…
Small low mass advanced PBR's for propulsion
NASA Astrophysics Data System (ADS)
Powell, J. R.; Todosow, M.; Ludewig, H.
1993-10-01
The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.
Preliminary consideration of CFETR ITER-like case diagnostic system.
Li, G S; Yang, Y; Wang, Y M; Ming, T F; Han, X; Liu, S C; Wang, E H; Liu, Y K; Yang, W J; Li, G Q; Hu, Q S; Gao, X
2016-11-01
Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Frederick, Kenneth R.; Scott, Joseph P.; Reinermann, Dana N.
2011-01-01
Photocatalytic oxidation (PCO) is a maturing process technology that shows potential for spacecraft life support system application. Incorporating PCO into a spacecraft cabin atmosphere revitalization system requires an understanding of basic performance, particularly with regard to partial oxidation product production. Four PCO reactor design concepts have been evaluated for their effectiveness for mineralizing key trace volatile organic com-pounds (VOC) typically observed in crewed spacecraft cabin atmospheres. Mineralization efficiency and selectivity for partial oxidation products are compared for the reactor design concepts. The role of PCO in a spacecraft s life support system architecture is discussed.
Autonomous Control of Space Nuclear Reactors
NASA Technical Reports Server (NTRS)
Merk, John
2013-01-01
Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the safety requirements of a nuclear reactor and provides high availability to the host system. The RICS is intended to interface with a host computer (the computer of the spacecraft where the reactor is mounted). The RICS leverages the safety features inherent in Earth-based reactors and also integrates the wide range neutron detector (WRND). A neutron detector provides the input that allows the RICS to do its job. The RICS is based on proven technology currently in use at a nuclear research facility. In its most basic form, the RICS is a ruggedized, compact data-acquisition and control system that could be adapted to support a wide variety of harsh environments. As such, the RICS could be a useful instrument outside the scope of a nuclear reactor, including military applications where failsafe data acquisition and control is required with stringent size, weight, and power constraints.
NASA Astrophysics Data System (ADS)
Stacey, Weston M.
2001-02-01
An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.
A Basic LEGO Reactor Design for the Provision of Lunar Surface Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Darrell Bess
2008-06-01
A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, suchmore » as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.« less
Gomes, Inês B; Meireles, Ana; Gonçalves, Ana L; Goeres, Darla M; Sjollema, Jelmer; Simões, Lúcia C; Simões, Manuel
2018-08-01
Biofilms can cause severe problems to human health due to the high tolerance to antimicrobials; consequently, biofilm science and technology constitutes an important research field. Growing a relevant biofilm in the laboratory provides insights into the basic understanding of the biofilm life cycle including responses to antibiotic therapies. Therefore, the selection of an appropriate biofilm reactor is a critical decision, necessary to obtain reproducible and reliable in vitro results. A reactor should be chosen based upon the study goals and a balance between the pros and cons associated with its use and operational conditions that are as similar as possible to the clinical setting. However, standardization in biofilm studies is rare. This review will focus on the four reactors (Calgary biofilm device, Center for Disease Control biofilm reactor, drip flow biofilm reactor, and rotating disk reactor) approved by a standard setting organization (ASTM International) for biofilm experiments and how researchers have modified these standardized reactors and associated protocols to improve the study and understanding of medical biofilms.
Corrosion and Corrosion Control in Light Water Reactors
NASA Astrophysics Data System (ADS)
Gordon, Barry M.
2013-08-01
Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.
Analysis of JKT01 Neutron Flux Detector Measurements In RSG-GAS Reactor Using LabVIEW
NASA Astrophysics Data System (ADS)
Rokhmadi; Nur Rachman, Agus; Sujarwono; Taryo, Taswanda; Sunaryo, Geni Rina
2018-02-01
The RSG-GAS Reactor, one of the Indonesia research reactors and located in Serpong, is owned by the National Nuclear Energy Agency (BATAN). The RSG-GAS reactor has operated since 1987 and some instrumentation and control systems are considered to be degraded and ageing. It is therefore, necessary to evaluate the safety of all instrumentation and controls and one of the component systems to be evaluated is the performance of JKT01 neutron flux detector. Neutron Flux Detector JKT01 basically detects neutron fluxes in the reactor core and converts it into electrical signals. The electrical signal is then forwarded to the amplifier (Amplifier) to become the input of the reactor protection system. One output of it is transferred to the Main Control Room (RKU) showing on the analog meter as an indicator used by the reactor operator. To simulate all of this matter, a program to simulate the output of the JKT01 Neutron Flux Detector using LabVIEW was developed. The simulated data is estimated using a lot of equations also formulated in LabVIEW. The calculation results are also displayed on the interface using LabVIEW available in the PC. By using this simulation program, it is successful to perform anomaly detection experiments on the JKT01 detector of RSG-GAS Reactor. The simulation results showed that the anomaly JKT01 neutron flux using electrical-current-base are respectively, 1.5×,1.7× and 2.0×.
The basic features of a closed fuel cycle without fast reactors
NASA Astrophysics Data System (ADS)
Bobrov, E. A.; Alekseev, P. N.; Teplov, P. S.
2017-01-01
In this paper the basic features of a closed fuel cycle with thermal reactors are considered. The three variants of multiple Pu and U recycling in VVER reactors was investigated. The comparison of MOX and REMIX fuel approaches for closed fuel cycle with thermal reactors is presented. All variants make possible to recycle several times the total amount of Pu and U obtained from spent fuel. The reported study was funded by RFBR according to the research project № 16-38-00021
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riess, R.
Chosen for this description of the selected Kraftwerk Union (KWU) pressurized water reactor units were Obrigheim (KWO, 345 MW(e)), Stade (KKS, 662 (MW(e)), Borselle (KCB, 477 MW(e)), and Biblis (KWB-A, 1204 MW(e)). The experience at these plants shows that with a special startup procedure and a proper chemical control of the primary heat transport system that influences general corrosion, selective types of corrosion, corrosion product activity transport and resulting contamination, and radiation-induced decomposition, KWU units have no basic problems.
A solid reactor core thermal model for nuclear thermal rockets
NASA Astrophysics Data System (ADS)
Rider, William J.; Cappiello, Michael W.; Liles, Dennis R.
1991-01-01
A Helium/Hydrogen Cooled Reactor Analysis (HERA) computer code has been developed. HERA has the ability to model arbitrary geometries in three dimensions, which allows the user to easily analyze reactor cores constructed of prismatic graphite elements. The code accounts for heat generation in the fuel, control rods, and other structures; conduction and radiation across gaps; convection to the coolant; and a variety of boundary conditions. The numerical solution scheme has been optimized for vector computers, making long transient analyses economical. Time integration is either explicit or implicit, which allows the use of the model to accurately calculate both short- or long-term transients with an efficient use of computer time. Both the basic spatial and temporal integration schemes have been benchmarked against analytical solutions.
Design and testing of the reactor-internal hydraulic control rod drive for the nuclear heating plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batheja, P.; Meier, W.J.; Rau, P.J.
A hydraulically driven control rod is being developed at Kraftwerk Union for integration in the primary system of a small nuclear district heating reactor. An elaborate test program, under way for --3 yr, was initiated with a plexiglass rig to understand the basic principles. A design specification list was prepared, taking reactor boundary conditions and relevant German rules and regulations into account. Subsequently, an atmospheric loop for testing of components at 20 to 90/sup 0/C was erected. The objectives involved optimization of individual components such as a piston/cylinder drive unit, electromagnetic valves, and an ultrasonic position indication system as wellmore » as verification of computer codes. Based on the results obtained, full-scale components were designed and fabricated for a prototype test rig, which is currently in operation. Thus far, all atmospheric tests in this rig have been completed. Investigations under reactor temperature and pressure, followed by endurance tests, are under way. All tests to date have shown a reliable functioning of the hydraulic drive, including a novel ultrasonic position indication system.« less
Five Lectures on Nuclear Reactors Presented at Cal Tech
DOE R&D Accomplishments Database
Weinberg, Alvin M.
1956-02-10
The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)
MHD compressor---expander conversion system integrated with GCR inside a deployable reflector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuninetti, G.; Botta, E.; Criscuolo, C.
1989-04-20
This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statementmore » of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.« less
NASA Technical Reports Server (NTRS)
Yacobucci, H. G.; Waldron, W. D.; Walowit, J. A.
1973-01-01
The design of bearings for the control system of a fast reactor concept is presented. The bearings are required to operate at temperatures up to 2200 F in one of two fluids, lithium or argon. Basic bearing types are the same regardless of the fluid. Crowned cylindrical journals were selected for radially loaded bearings and modified spherical bearings were selected for bearings under combined thrust and radial loads. Graphite and aluminum oxide are the materials selected for the argon atmosphere bearings while cermet compositions (carbides or nitrides bonded with refractory metals) were selected for the lithium lubricated bearings. Mounting of components is by shrink fit or by axial clamping utilizing differential thermal expansion.
Computer model of catalytic combustion/Stirling engine heater head
NASA Technical Reports Server (NTRS)
Chu, E. K.; Chang, R. L.; Tong, H.
1981-01-01
The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.
Neutron fluxes in test reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youinou, Gilles Jean-Michel
Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.
SPERT I DESTRUCTIVE TEST PROGRAM SAFETY ANALYSIS REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spano, A.H.; Miller, R.W.
1962-06-15
The water-moderated core used for destructive experiments is mounted in the Spent I open-type reactor vessel, which has no provision for pressurization or forced coolant flow. The core is an array of highly enriched aluminum clad, plate-type fuel assemblies, using four bladetype, gang-operated control rods. Reactor transients are initiated at ambient temperature by step-insentions of reactivity, using a control rod which can be quickly ejected from the core. Following an initial series of static measurements to determine the basic- reactor properties of the test core, a series of nondestructive, self-limiting power excursion tests was performed, which covered a reactor periodmore » range down to the point where minor fuel plate damage first occurred -approximately for a 10- msec period test. These tests provided power, temperature, and pressure data. Additional kinetic teste in the period region between 10 and 5 msec were completed to explore the region of limited core damage. Fuel plate damage results included plate distortion, cladding cracking, and fuel melting. These exploratory tests were valuable in revealing unexpected changes in the dependence of pressure, temperature, burst energy, and burst shape parameters on reactor period, although the dependence of peak power on reactor period was not significantly changed. An evaluation of hazards involved in conducting the 2- msec test, based on pessimistic assumptions regarding fission product release and weather conditions, indicates that with the procedural controls normally exercised in the conduct of any transient test at Spent and the special controls to be in effect during the destructive test series, no significant hazard to personnel or to the general public will be obtained. All nuclear operation is conducted remotely approximately 1/2 mile from the reactor building. Discussion is also given of the supervision and control of personnel during and after each destructive test, and of the plans for re-entry, cleanup, and restoration of the facility. (auth)« less
Animal Guts as Ideal Reactors: An Open-Ended Project for a Course in Kinetics and Reactor Design.
ERIC Educational Resources Information Center
Carlson, Eric D.; Gast, Alice P.
1998-01-01
Presents an open-ended project tailored for a senior kinetics and reactor design course in which basic reactor design equations are used to model the digestive systems of several animals. Describes the assignment as well as the results. (DDR)
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...
A simulator-based nuclear reactor emergency response training exercise.
Waller, Edward; Bereznai, George; Shaw, John; Chaput, Joseph; Lafortune, Jean-Francois
Training offsite emergency response personnel basic awareness of onsite control room operations during nuclear power plant emergency conditions was the primary objective of a week-long workshop conducted on a CANDU® virtual nuclear reactor simulator available at the University of Ontario Institute of Technology, Oshawa, Canada. The workshop was designed to examine both normal and abnormal reactor operating conditions, and to observe the conditions in the control room that may have impact on the subsequent offsite emergency response. The workshop was attended by participants from a number of countries encompassing diverse job functions related to nuclear emergency response. Objectives of the workshop were to provide opportunities for participants to act in the roles of control room personnel under different reactor operating scenarios, providing a unique experience for participants to interact with the simulator in real-time, and providing increased awareness of control room operations during accident conditions. The ability to "pause" the simulator during exercises allowed the instructors to evaluate and critique the performance of participants, and to provide context with respect to potential offsite emergency actions. Feedback from the participants highlighted (i) advantages of observing and participating "hands-on" with operational exercises, (ii) their general unfamiliarity with control room operational procedures and arrangements prior to the workshop, (iii) awareness of the vast quantity of detailed control room procedures for both normal and transient conditions, and (iv) appreciation of the increased workload for the operators in the control room during a transient from normal operations. Based upon participant feedback, it was determined that the objectives of the training had been met, and that future workshops should be conducted.
GEH-4-42, 47; Hot pressed, I and E cooled fuel element irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neidner, R.
1959-11-02
In our continual effort to improve the present fuel elements which are irradiated in the numerous Hanford reactors, we have made what we believe to be a significant improvement in the hot pressing process for jacketing uranium fuel slugs. We are proposing a large scale evaluation testing program in the Hanford reactors but need the vital and basic information on the operating characteristics of this type slug under known and controlled operating conditions. We, therefore, have prepared two typical fuel slugs and will want them irradiated to about 1000 MWD/T exposure (this will require about four to five total cycles).
Experimental physics characteristics of a heavy-metal-reflected fast-spectrum critical assembly
NASA Technical Reports Server (NTRS)
Heneveld, W. H.; Paschall, R. K.; Springer, T. H.; Swanson, V. A.; Thiele, A. W.; Tuttle, R. J.
1971-01-01
A zero-power critical assembly was designed, constructed, and operated for the purpose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7 cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power electric conversion system. The experimental program consisted basically of measuring the differential neutron spectra and the changes in critical mass that accompanied the stepwise addition of (Li-7)3N, Hf, Ta, and W to a basic core fueled with U metal in a pin-type Ta honeycomb structure. In addition, experimental results were obtained on power distributions, control characteristics, neutron lifetime, and reactivity worths of numerous absorber, structural, and scattering materials.
Washington State water quality temperature standards as related to reactor operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballowe, J.W.
1968-08-14
The purpose of this report is to provide a basic working tool for determining the relationship between the allowable temperature increase within the Columbia River reach at the Hanford Site and the actual temperature increase as associated with various reactor operating modes. This basic tool can be utilized for day-to-day operating purposes or for the achievement of historical information.
Project Luna Succendo: The Lunar Evolutionary Growth-Optimized (LEGO) Reactor
NASA Astrophysics Data System (ADS)
Bess, John Darrell
A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched within lunar shipments from the Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides 5 kWe using a free-piston Stirling space converter. The overall envelope for a single unit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. The subunits can be placed with centerline distances of approximately 0.6 m in a hexagonal-lattice pattern to provide sufficient neutronic coupling while allowing room for heat rejection and interstitial control. A lattice of six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network Future improvements include advances in reactor control methods, fuel form and matrix, determination of shielding requirements, as well as power conversion and heat rejection techniques to generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces such as Mars, other moons, and asteroids.
Fiber-Optical Sensors: Basics and Applications in Multiphase Reactors
Li, Xiangyang; Yang, Chao; Yang, Shifang; Li, Guozheng
2012-01-01
This work presents a brief introduction on the basics of fiber-optical sensors and an overview focused on the applications to measurements in multiphase reactors. The most commonly principle utilized is laser back scattering, which is also the foundation for almost all current probes used in multiphase reactors. The fiber-optical probe techniques in two-phase reactors are more developed than those in three-phase reactors. There are many studies on the measurement of gas holdup using fiber-optical probes in three-phase fluidized beds, but negative interference of particles on probe function was less studied. The interactions between solids and probe tips were less studied because glass beads etc. were always used as the solid phase. The vision probes may be the most promising for simultaneous measurements of gas dispersion and solids suspension in three-phase reactors. Thus, the following techniques of the fiber-optical probes in multiphase reactors should be developed further: (1) online measuring techniques under nearly industrial operating conditions; (2) corresponding signal data processing techniques; (3) joint application with other measuring techniques.
Personal notes [of D.S. Lewis, 7 September 1956 to 31 December 1959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, D.S.
1956-09-07
This report is a copy of the personal log of D.S. Lewis of the Irradiation Processing Dept. of Reactor Operations at Hanford and covers the period from 7 September 1956 through 31 December 1959. Data are presented on the following: (1) basic reactor operating data, including daily operating data, outage resumes, injuries and incidents, charging and tube replacement rates, panellit gage (flowmeter) trip failures, and thermocouple failures, and (2) basic reactor information on the water plant, electrical distribution, VSR`s, HCR`s, Ball 3X, Safety circuits, gas system, effluent system, process tube cross-section, and production scheduling.
Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor
NASA Astrophysics Data System (ADS)
Permana, Sidik
2017-07-01
Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.
First Report on Non-Thermal Plasma Reactor Scaling Criteria and Optimization Models
1998-01-13
decomposition chemistry of nitric oxide and two representative VOCs, trichloroethylene and carbon tetrachloride, and the connection between the basic plasma ... chemistry , the target species properties, and the reactor operating parameters. System architecture, that is how NTP reactors can be combined or ganged to achieve higher capacity, will also be briefly discussed.
Preliminary consideration of CFETR ITER-like case diagnostic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G. S.; Liu, Y. K.; Gao, X.
2016-11-15
Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basicmore » control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.« less
Small Reactor for Deep Space Exploration
none,
2018-06-06
This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.
Fernández, Francisco J; Sánchez-Arias, Virginia; Rodríguez, Lourdes; Villaseñor, José
2010-10-01
Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery-distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain. (c) 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Knerr, R.; Shoop, U.
1993-01-01
RETRAN-03 studies were performed for the boiling water reactor (BWR) turbine trip without bypass (TTWOB) event to investigate how the non-neutron-absorbing material on control rod tips affect scram delay timing and reactivity feedback. Scram delay, Doppler temperature, and moderator void (density) feedback were varied to assess their relative impact on kinetics behavior. Although a generic point-kinetics RETRAN-03 TTWOB model 2 was employed, actual plant information was used to develop the basic and parametric cases.
Thermionic reactor power conditioner design for nuclear electric propulsion.
NASA Technical Reports Server (NTRS)
Jacobsen, A. S.; Tasca, D. M.
1971-01-01
Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.
NASA Technical Reports Server (NTRS)
Weiss, A. H.; Kohler, J. T.; John, T.
1974-01-01
The study of the calcium hydroxide catalyzed condensation of formaldehyde was extended to a batch reactor system. Decreases in pH were observed, often in the acid regime, when using this basic catalyst. This observation was shown to be similar to results obtained by others using less basic catalysts in the batch mode. The relative rates of these reactions are different in a batch reactor than in a continuous stirred tank reactor. This difference in relative rates is due to the fact that at any degree of advancement in the batch system, the products have a history of previous products, pH, and dissolved catalyst. The relative rate differences can be expected to yield a different nature of product sugars for the two types of reactors.
Study of dynamics of glucose-glucose oxidase-ferricyanide reaction
NASA Astrophysics Data System (ADS)
Nováková, A.; Schreiberová, L.; Schreiber, I.
2011-12-01
This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.
Fuel processing for PEM fuel cells: transport and kinetic issues of system design
NASA Astrophysics Data System (ADS)
Zalc, J. M.; Löffler, D. G.
In light of the distribution and storage issues associated with hydrogen, efficient on-board fuel processing will be a significant factor in the implementation of PEM fuel cells for automotive applications. Here, we apply basic chemical engineering principles to gain insight into the factors that limit performance in each component of a fuel processor. A system consisting of a plate reactor steam reformer, water-gas shift unit, and preferential oxidation reactor is used as a case study. It is found that for a steam reformer based on catalyst-coated foils, mass transfer from the bulk gas to the catalyst surface is the limiting process. The water-gas shift reactor is expected to be the largest component of the fuel processor and is limited by intrinsic catalyst activity, while a successful preferential oxidation unit depends on strict temperature control in order to minimize parasitic hydrogen oxidation. This stepwise approach of sequentially eliminating rate-limiting processes can be used to identify possible means of performance enhancement in a broad range of applications.
Discussion-preliminary review of the safety aspects of the crossunder line, Project CG-884. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.S.
1960-12-19
In order to reduce both charge-discharge shutdown time and the number of manhours of radiation exposure, Project CGI-884 is being completed at the B, D, DR, F and R Reactors. This consists essentially of installing a large drain line at the bottom of one rear reactor riser. This drain line passes to a control valve and then to the effluent line beyond the downcomer. This system by-passes the crossover downcomer part of the effluent system and eliminates the need for intermittent rear crossheader valving during reactor charge-discharge procedures. Two aspects of this system have been considered, its basic design requirements,more » and operating restrictions to ensure adequate process tube cooling. Because of the complexity of the reactor flow system approximate solutions were used to compare different methods or degrees of operation and establish limits. Despite these approximations, there was sufficient difference in the case results to justify the specific conclusions presented in this report. This report should serve the dual purpose of providing design requirements for the crossunder and also providing the technical criteria necessary for the operating standards for the use of this new system.« less
COST FUNCTION STUDIES FOR POWER REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heestand, J.; Wos, L.T.
1961-11-01
A function to evaluate the cost of electricity produced by a nuclear power reactor was developed. The basic equation, revenue = capital charges + profit + operating expenses, was expanded in terms of various cost parameters to enable analysis of multiregion nuclear reactors with uranium and/or plutonium for fuel. A corresponding IBM 704 computer program, which will compute either the price of electricity or the value of plutonium, is presented in detail. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Sterbentz, James W.; Snoj, Luka
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
Cavity temperature and flow characteristics in a gas-core test reactor
NASA Technical Reports Server (NTRS)
Putre, H. A.
1973-01-01
A test reactor concept for conducting basic studies on a fissioning uranium plasma and for testing various gas-core reactor concepts is analyzed. The test reactor consists of a conventional fuel-element region surrounding a 61-cm-(2-ft-) diameter cavity region which contains the plasma experiment. The fuel elements provide the neutron flux for the cavity region. The design operating conditions include 60-MW reactor power, 2.7-MW cavity power, 200-atm cavity pressure, and an average uranium plasma temperature of 15,000 K. The analytical results are given for cavity radiant heat transfer, hydrogen transpiration cooling, and uranium wire or powder injection.
EXPERIMENTAL MOLTEN-SALT-FUELED 30-Mw POWER REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, L.G.; Kinyon, B.W.; Lackey, M.E.
1960-03-24
A preliminary design study was made of an experimental molten-salt- fueled power reactor. The reactor considered is a single-region homogeneous burner coupled with a Loeffler steam-generating cycle. Conceptual plant layouts, basic information on the major fuel circuit components, a process flowsheet, and the nuclear characteristics of the core are presented. The design plant electrical output is 10 Mw, and the total construction cost is estimated to be approximately ,000,000. (auth)
Nuclear Power from Fission Reactors. An Introduction.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Technical Information Center.
The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…
Implications of Zircaloy creep and growth to light water reactor performance
NASA Astrophysics Data System (ADS)
Franklin, David G.; Adamson, Ronald B.
1988-10-01
Deformation of zirconium alloy components in nuclear reactors has been a concern since the decision of Admiral Rickover to use them in the US Navy submarine reactors. With the exception of the first few light water reactors (LWRs) most of the core structural materials have been fabricated from either Zircaloy-2 or Zircaloy-4. Performance of these alloys has been extremely good, even though the effects of irradiation on deformation magnitudes and mechanisms were not fully appreciated until extensive service and in-reactor tests were accomplished. Since the reactor components are designed to operate at stress levels well below yield for normal conditions, the only significant deformation is time dependent. Although creep was anticipated, the enhancement by neutron irradiation and the stress-free, nearly constant-volume shape change known as irradiation growth were not known prior to materials testing in reactors under controlled conditions. Both of these phenomena have significant impact on performance and must be accounted for properly in design. Although irradiation creep and growth have resulted in only one significant performance problem (creep collapse of fuel cladding, which has been eliminated), deformation magnitudes and, particularly, differentials in strain magnitudes, are a continuing source of interest. Factors that affect dimensional stability due to both creep and growth include temperature, fluence, residual stress, texture, and microstructure. The first two are reactor variables and the others are related to component fabrication history. This paper includes a review of the applications of Zircaloy creep and growth to LWR fuel designs, a review of the impact of in-reactor creep and growth on fuel rod and fuel assembly performance, and comments on potential improvements. Since the reactor design, fuel design and the core environment in BWRs and PWRs are quite different, appropriate separation of the application of effects are made; of course, the basic phenomena are the same in both systems.
Annual Report to Congress of the Atomic Energy Commission for 1965
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaborg, Glenn T.
1966-01-31
The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8)more » Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.« less
Unit mechanisms of fission gas release: Current understanding and future needs
Tonks, Michael; Andersson, David; Devanathan, Ram; ...
2018-03-01
Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less
Unit mechanisms of fission gas release: Current understanding and future needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, Michael; Andersson, David; Devanathan, Ram
Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less
NASA Technical Reports Server (NTRS)
Frye, Robert
1990-01-01
Research at the Environmental Research Lab in support of Biosphere 2 was both basic and applied in nature. One aspect of the applied research involved the use of biological reactors for the scrubbing of trace atmospheric organic contaminants. The research involved a quantitative study of the efficiency of operation of Soil Bed Reactors (SBR) and the optimal operating conditions for contaminant removal. The basic configuration of a SBR is that air is moved through a living soil that supports a population of plants. Upon exposure to the soil, contaminants are either passively adsorbed onto the surface of soil particles, chemically transformed in the soil to usable compounds that are taken up by the plants or microbes as a metabolic energy source and converted to CO2 and water.
Unit mechanisms of fission gas release: Current understanding and future needs
NASA Astrophysics Data System (ADS)
Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael
2018-06-01
Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.
Technical assumption for Mo-99 production in the MARIA reactor. Feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaroszewicz, J.; Pytel, K.; Dabkowski, L.
2008-07-15
The main objective of U-235 irradiation is to obtain the Tc-99m isotope which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short life time, is a reaction of radioactive decay of Mo-99 into Tc- 99m. One of the possible sources of molybdenum can be achieved in course of the U-235 fission reaction. The paper presents activities and the calculations results obtained upon the feasibility study on irradiation of U-235 targets for production of molybdenum in the MARIA reactor. The activities including technical assumption were focused on performing calculation for modelling ofmore » the target and irradiation device as well as adequate equipment and tools for processing in reactor. It has been assumed that the basic component of fuel charge is an aluminium cladded plate with dimensions of 40x230x1.45 containing 4.7 g U-235. The presumed mode of the heat removal generated in the fuel charge of the reactor primary cooling circuit influences the construction of installation to be used for irradiation and the technological instrumentation. The outer channel construction for irradiation has to be identical as the standard fuel channel construction of the MARIA reactor. It enables to use the existing slab and reactor mounting sockets for the fastening of the molybdenum channel as well as the cooling water delivery system. The measurement of water temperature cooling a fuel charge and control of water flow rate in the channel can also be carried out be means of the standard instrumentation of the reactor. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.
2014-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
Neutron flux and power in RTP core-15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis
PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core withmore » literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.« less
METHOD AND APPARATUS FOR CONTROLLING DIRECT-CYCLE NEUTRONIC REACTORS
Reed, G.A.
1961-01-10
A control arrangement is offered for a boiling-water reactor. Boric acid is maintained in the water in the reactor and the amount in the reactor is controlled by continuously removing a portion of the water from the reactor, concentrating the boric acid by evaporating the water therefrom, returning a controlled amount of the acid to the reactor, and simultaneously controlling the water level by varying the rate of spent steam return to the reactor.
Energy from the Atom. A Basic Teaching Unit on Energy. Revised.
ERIC Educational Resources Information Center
McDermott, Hugh, Ed.; Scharmann, Larry, Ed.
Recommended for grades 9-12 social studies and/or physical science classes, this 4-8 day unit focuses on four topics: (1) the background and history of atomic development; (2) two common types of nuclear reactors (boiling water and pressurized water reactors); (3) disposal of radioactive waste; and (4) the future of nuclear energy. Each topic…
Nuclear fission: the interplay of science and technology.
Stoneham, A M
2010-07-28
When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.
Basic elements of light water reactor fuel rod design. [FUELROD code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisman, J.; Eckart, R.
1981-06-01
Basic design techniques and equations are presented to allow students to understand and perform preliminary fuel design for normal reactor conditions. Each of the important design considerations is presented and discussed in detail. These include the interaction between fuel pellets and cladding and the changes in fuel and cladding that occur during the operating lifetime of the fuel. A simple, student-oriented, fuel rod design computer program, called FUELROD, is described. The FUELROD program models the in-pile pellet cladding interaction and allows a realistic exploration of the effect of various design parameters. By use of FUELROD, the student can gain anmore » appreciation of the fuel rod design process. 34 refs.« less
A summary of sodium-cooled fast reactor development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoto, Kazumi; Dufour, Philippe; Hongyi, Yang
Much of the basic technology for the Sodium-cooled fast Reactor (SFR) has been established through long term development experience with former fast reactor programs, and is being confirmed by the Phénix end-of-life tests in France, the restart of Monju in Japan, the lifetime extension of BN-600 in Russia, and the startup of the China Experimental Fast Reactor in China. Planned startup in 2014 for new SFRs: BN-800 in Russia and PFBR in India, will further enhance the confirmation of the SFR basic technology. Nowadays, the SFR development has advanced to aiming at establishment of the Generation-IV system which is dedicatedmore » to sustainable energy generation and actinide management, and several advanced SFR concepts are under development such as PRISM, JSFR, ASTRID, PGSFR, BN-1200, and CFR-600. Generation-IV International Forum is an international collaboration framework where various R&D activities are progressing on design of system and component, safety and operation, advanced fuel, and actinide cycle for the Generation-IV SFR development, and will play a beneficial role of promoting them thorough providing an opportunity to share the past experience and the latest data of design and R&D among countries developing SFR.« less
Unit mechanisms of fission gas release: Current understanding and future needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, Michael; Andersson, David; Devanathan, Ram
Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel properties and, once the gas is released into the gap between the fuel and cladding, lowering gap thermal conductivity and increasing gap pressure. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are being applied to provide unprecedented understanding of the unit mechanisms that define the fission product behavior. In this article, existing research on the basic mechanisms behind the various stages of fission gas releasemore » during normal reactor operation are summarized and critical areas where experimental and simulation work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior during reactor operation and to design fuels that have improved fission product retention. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less
Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations
Palmiotti, Giuseppe; Salvatores, Massimo
2012-01-01
The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.
Stainless Steel NaK-Cooled Circuit (SNaKC) Fabrication and Assembly
NASA Technical Reports Server (NTRS)
Godfroy, Thomas J.
2007-01-01
An actively pumped Stainless Steel NaK Circuit (SNaKC) has been designed and fabricated by the Early Flight Fission Test Facility (EFF-TF) team at NASA's Marshall Space Flight Center. This circuit uses the eutectic mixture of sodium and potassium (NaK) as the working fluid building upon the experience and accomplishments of the SNAP reactor program from the late 1960's The SNaKC enables valuable experience and liquid metal test capability to be gained toward the goal of designing and building an affordable surface power reactor. The basic circuit components include a simulated reactor core a NaK to gas heat exchanger, an electromagnetic (EM) liquid metal pump, a liquid metal flow meter, an expansion reservoir and a drain/fill reservoir To maintain an oxygen free environment in the presence of NaK, an argon system is utilized. A helium and nitrogen system are utilized for core, pump, and heat exchanger operation. An additional rest section is available to enable special component testing m an elevated temperature actively pumped liquid metal environment. This paper summarizes the physical build of the SNaKC the gas and pressurization systems, vacuum systems, as well as instrumentation and control methods.
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi
2016-05-01
A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.
A simple device using magnetic transportation for droplet-based PCR.
Ohashi, Tetsuo; Kuyama, Hiroki; Hanafusa, Nobuhiro; Togawa, Yoshiyuki
2007-10-01
The Polymerase chain reaction (PCR) was successfully and rapidly performed in a simple reaction device devoid of channels, pumps, valves, or other control elements used in conventional lab-on-a-chip technology. The basic concept of this device is the transportation of aqueous droplets containing hydrophilic magnetic beads in a flat-bottomed, tray-type reactor filled with silicone oil. The whole droplets sink to the bottom of the reactor because their specific gravity is greater than that of the silicone oil used here. The droplets follow the movement of a magnet located underneath the reactor. The notable advantage of the droplet-based PCR is the ability to switch rapidly the proposed reaction temperature by moving the droplets to the required temperature zones in the temperature gradient. The droplet-based reciprocative thermal cycling was performed by moving the droplets composed of PCR reaction mixture to the designated temperature zones on a linear temperature gradient from 50 degrees C to 94 degrees C generated on the flat bottom plate of the tray reactor. Using human-derived DNA containing the mitochondria genes as the amplification targets, the droplet-based PCR with magnetic reciprocative thermal cycling successfully provided the five PCR products ranging from 126 to 1,219 bp in 11 min with 30 cycles. More remarkably, the human genomic gene amplification targeting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was accomplished rapidly in 3.6 min with 40 cycles.
Treshow, M.
1961-09-01
A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleischman, R.M.; Goldsmith, S.; Newman, D.F.
1981-09-01
The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are toomore » costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.« less
NASA Astrophysics Data System (ADS)
Gelles, D. S.
1990-05-01
Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.
Generation III reactors safety requirements and the design solutions
NASA Astrophysics Data System (ADS)
Felten, P.
2009-03-01
Nuclear energy's public acceptance, and hence its development, depends on its safety. As a reactor designer, we will first briefly remind the basic safety principles of nuclear reactors' design. We will then show how the industry, and in particular Areva with its EPR, made design evolution in the wake of the Three Miles Island accident in 1979. In particular, for this new generation of reactors, severe accidents are taken into account beyond the standard design basis accidents. Today, Areva's EPR meets all so-called "generation III" safety requirements and was licensed by several nuclear safety authorities in the world. Many innovative solutions are integrated in the EPR, some of which will be introduced here.
Fast-acting nuclear reactor control device
Kotlyar, Oleg M.; West, Phillip B.
1993-01-01
A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick
2014-01-01
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection,more » to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
Apparatus for controlling molten core debris
Golden, Martin P. [Trafford, PA; Tilbrook, Roger W. [Monroeville, PA; Heylmun, Neal F. [Pittsburgh, PA
1977-07-19
Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.
Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.
Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A
2015-01-01
Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhasish; Barua, Bipul; Listwan, Joseph
In financial year 2017, we are focusing on developing a mechanistic fatigue model of surge line pipes for pressurized water reactors (PWRs). To that end, we plan to perform the following tasks: (1) conduct stress- and strain-controlled fatigue testing of surge-line base metal such as 316 stainless steel (SS) under constant, variable, and random fatigue loading, (2) develop cyclic plasticity material models of 316 SS, (3) develop one-dimensional (1D) analytical or closed-form model to validate the material models and to understand the mechanics associated with 316 SS cyclic hardening and/or softening, (4) develop three-dimensional (3D) finite element (FE) models withmore » implementation of evolutionary cyclic plasticity, and (5) develop computational fluid dynamics (CFD) model for thermal stratification, thermal-mechanical stress, and fatigue of example reactor components, such as a PWR surge line under plant heat-up, cool-down, and normal operation with/without grid-load-following. This semi-annual progress report presents the work completed on the above tasks for a 316 SS laboratory-scale specimen subjected to strain-controlled cyclic loading with constant, variable, and random amplitude. This is the first time that the accurate 3D-FE modeling of the specimen for its entire fatigue life, including the hardening and softening behavior, has been achieved. We anticipate that this work will pave the way for the development of a fully mechanistic-computer model that can be used for fatigue evaluation of safety-critical metallic components, which are traditionally evaluated by heavy reliance on time-consuming and costly test-based approaches. This basic research will not only help the nuclear reactor industry for fatigue evaluation of reactor components in a cost effective and less time-consuming way, but will also help other safety-related industries, such as aerospace, which is heavily dependent on test-based approaches, where a single full-scale fatigue test can cost millions of dollars and require years of effort to conduct. Toward our goal of demonstration of fully mechanistic fatigue evaluation of reactor components, we also started work on developing a component-level computer model of reactor components, such as 316 SS surge line pipe. This requires developing a thermal-mechanical stress analysis model of the reactor surge line, which, in turn, requires time-dependent temperature and stratification information along the boundary of the pipe. Toward that goal, CFD models of surge lines are being developed. In this report, we also present some preliminary results showing the temperature conditions along the surge line wall under reactor heat-up, cool-down, and steady-state power operation.« less
Fissioning uranium plasmas and nuclear-pumped lasers
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Thom, K.
1975-01-01
Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.
NASA Astrophysics Data System (ADS)
Ripani, M.
2015-08-01
The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.
Nuclear engine flow reactivity shim control
Walsh, J.M.
1973-12-11
A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)
López, C; Mielgo, I; Moreira, M T; Feijoo, G; Lema, J M
2002-11-13
Membrane bioreactors are being increasingly used in enzymatic catalysed transformations. However, the application of enzymatic-based treatment systems in the environmental field is rather unusual. The aim of this paper is to overview the application of enzymatic membrane reactors to wastewater treatment, more specifically to dye decolourisation. Firstly, the basic aspects such as different configurations of enzymatic reactors, advantages and disadvantages associated to their utilisation are revised as well as the application of this technology to wastewater treatment. Secondly, dye decolourisation by white-rot fungi and their oxidative enzymes are discussed, presenting an overall view from for in vivo and in vitro systems. Finally, dye decolourisation by manganese peroxidase in an enzymatic membrane reactor in continuous operation is presented.
Overview of Fuel Rod Simulator Usage at ORNL
NASA Astrophysics Data System (ADS)
Ott, Larry J.; McCulloch, Reg
2004-02-01
During the 1970s and early 1980s, the Oak Ridge National Laboratory (ORNL) operated large out-of-reactor experimental facilities to resolve thermal-hydraulic safety issues in nuclear reactors. The fundamental research ranged from material mechanical behavior of fuel cladding during the depressurization phase of a loss-of-coolant accident (LOCA) to basic heat transfer research in gas- or sodium-cooled cores. The largest facility simulated the initial phase (less than 1 min. of transient time) of a LOCA in a commercial pressurized-water reactor. The nonnuclear reactor cores of these facilities were mimicked via advanced, highly instrumented electric fuel rod simulators locally manufactured at ORNL. This paper provides an overview of these experimental facilities with an emphasis on the fuel rod simulators.
JEN-1 Reactor Control System; SISTEMA DE CONTROL DEL REACTOR JEN-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantillo, M.F.; Nuno, C.M.; Andreu, J.L.M.
1963-01-01
ABS>The JEN-1 3Mw power swimming pool reactor electrical control circuits are described. Start-up, power generation in the core, and shutdown are controlled by the reactor control system. This control system guarantees in each moment the safety conditions during reactor operation. Each circuit was represented by a scheme, complemented with a description of its function, components, and operation theory. Components described include: scram circuit; fission counter control circuit; servo control circuit; control circuit of safety sheets; control circuits of primary, secondary, and clean-up pump motors and tower fan motor; primary valve motor circuit; center cubicle alarm circuit; and process alarm circuit.more » (auth)« less
Diagnostics and control for the steady state and pulsed tokamak DEMO
NASA Astrophysics Data System (ADS)
Orsitto, F. P.; Villari, R.; Moro, F.; Todd, T. N.; Lilley, S.; Jenkins, I.; Felton, R.; Biel, W.; Silva, A.; Scholz, M.; Rzadkiewicz, J.; Duran, I.; Tardocchi, M.; Gorini, G.; Morlock, C.; Federici, G.; Litnovsky, A.
2016-02-01
The present paper is devoted to a first assessment of the DEMO diagnostics systems and controls in the context of pulsed and steady state reactor design under study in Europe. In particular, the main arguments treated are: (i) The quantities to be measured in DEMO and the requirements for the measurements; (ii) the present capability of the diagnostic and control technology, determining the most urgent gaps, and (iii) the program and strategy of the research and development (R&D) needed to fill the gaps. Burn control, magnetohydrodynamic stability, and basic machine protection require improvements to the ITER technology, and moderated efforts in R&D can be dedicated to infrared diagnostics (reflectometry, electron cyclotron emission, polarimetry) and neutron diagnostics. Metallic Hall sensors appear to be a promising candidate for magnetic measurements in the high neutron fluence and long/steady state discharges of DEMO.
Anoxic control of odour and corrosion from sewer networks.
Yang, W; Vollertsen, J; Hvitved-Jacobsen, T
2004-01-01
Anoxic processes can effectively control odour and corrosion in sewer networks. However, the absence of fundamental knowledge on the kinetics of anoxic transformation of sewage prevents the engineering applications of anoxic control in sewers. This paper focuss on a basic understanding of the anoxic transformations needed for a conceptual simulation of the water phase processes. Experiments conducted in batch reactors have shown that nitrite builds up in wastewater during denitrification. Part of the nitrate-reducing biomass is capable of utilizing nitrite after nitrate is depleted. Compared with aerobic transformation, anoxic processes have low values of maximum growth rate of the biomass and also a low endogenous respiration rate. Heterotrophic yield determined under anoxic conditions, at level of 0.25 mmol e-eq (mmol e-eq)(-1), accounted for less than 40% of the corresponding aerobic values.
Probabilistic analysis on the failure of reactivity control for the PWR
NASA Astrophysics Data System (ADS)
Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.
2018-02-01
The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.
N Reactor Deactivation Program Plan. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, J.L.
1993-12-01
This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directivemore » to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.« less
Accurate evaluation for the biofilm-activated sludge reactor using graphical techniques
NASA Astrophysics Data System (ADS)
Fouad, Moharram; Bhargava, Renu
2018-05-01
A complete graphical solution is obtained for the completely mixed biofilm-activated sludge reactor (hybrid reactor). The solution consists of a series of curves deduced from the principal equations of the hybrid system after converting them in dimensionless form. The curves estimate the basic parameters of the hybrid system such as suspended biomass concentration, sludge residence time, wasted mass of sludge, and food to biomass ratio. All of these parameters can be expressed as functions of hydraulic retention time, influent substrate concentration, substrate concentration in the bulk, stagnant liquid layer thickness, and the minimum substrate concentration which can maintain the biofilm growth in addition to the basic kinetics of the activated sludge process in which all these variables are expressed in a dimensionless form. Compared to other solutions of such system these curves are simple, easy to use, and provide an accurate tool for analyzing such system based on fundamental principles. Further, these curves may be used as a quick tool to get the effect of variables change on the other parameters and the whole system.
SPRING DRIVEN ACTUATING MECHANISM FOR NUCLEAR REACTOR CONTROL
Bevilacqua, F.; Uecker, D.F.; Groh, E.F.
1962-01-23
l962. rod in a nuclear reactor to shut it down. The control rod or an extension thereof is wound on a drum as it is withdrawn from the reactor. When an emergency occurs requiring the reactor to be shut down, the drum is released so as to be free to rotate, and the tendency of the control rod or its extension coiled on the drum to straighten itself is used for quickly returning the control rod to the reactor. (AEC)
Thermionic switched self-actuating reactor shutdown system
Barrus, Donald M.; Shires, Charles D.; Brummond, William A.
1989-01-01
A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Wayne; Drenski, Michael; Romagnoli, Jose
The project goal was to create an energy saving paradigm shift in how polymers are manufactured in the 21st century. It used Automatic Continuous Online Monitoring of Polymerization reactions (ACOMP) integrated for the first time with automatic active control to create the innovative ‘ACOMP/Control Interface’, or ‘ACOMP/CI’. ACOMP/CI will begin the transformation from old, inefficient processes into highly evolved, energy and resource efficient ones. The ACOMP platform is broadly applicable to many types of reactions and processes throughout the vast polymer industry. The industry provides materials for sectors such as automotive, aerospace, oil recovery, agriculture, paints, resins, adhesives, pharmaceuticals andmore » therapeutic proteins, optics, electronics, lightweight building materials, and many more. The U.S. chemical industry is one of the last major sectors in which the U.S. has top global stature. It consumes 24% of all U.S. manufacturing energy, produces over $800B of product annually, supports 25% of the U.S. GDP and employs over 6 million people. It is also a major source of GHG emissions. Polymers make up approximately 30% of this sector. It is estimated that annually 60 TBtu of energy could be saved and 3 million tons less of GHG emissions produced by optimizing production in the polyolefin manufacturing sector alone. The project scope included first time design and prototyping of an ACOMP/CI, creation of active reaction controllers, and demonstration of control capabilities on ideal, low concentration polymerization reactions. All these elements of the scope were met, including advances and findings not originally anticipated. Extensions to more complex reactions, beyond the reactor capabilities of the current project ACOMP/CI, such as polyolefins and other high pressure/high temperature reactions, are being proposed in Fall 2017 to CESMII, a DoE based NNMI. The initial proposal was for a three year funded project, but this was reduced to a two year project and budget due to funding constraints. Hence, some of the original plans, such as adaptation of the ACOMP/CI to more relevant industrial processes, such as emulsion and dispersion technologies, could not be carried out. A third year of funding was requested at the end of the project, but DoE did not have resources to grant this. The sub-contractor Fluence Analytics (previously Advanced Polymer Monitoring Technologies, Inc) designed, prototyped, and commissioned a working ACOMP/CI by June 2015. The reaction characteristics to be automatically controlled were i) conversion kinetics, ii) molecular weight, iii) copolymer composition, and iv) simultaneous molecular weight and composition. A two pronged control strategy was used. The Tulane/Fluence group took a basic principles approach that did not rely on kinetic models. The LSU group took a more complex, non-linear model-oriented approach involving complete kinetic descriptions of the reaction system Each of these approaches proved successful in their own way. By April 2016 fully automatic control of conversion and weight average molecular weight, Mw, trajectories was achieved using the Tulane/Fluence (TF) basic principles controller. Similar results were obtained by the LSU non-linear model controller by August 2016. The demonstration system was aqueous free radical polymerization of acrylamide, Am. The control variables were temperature and semi-batch feed to the reactor of Am monomer and initiator. A demonstration of active manual conversion control in an industrial process using high solids in inverse emulsion polymerization of Am was achieved. During Summer 2016 the TF controller was used in conjunction with a chain transfer agent, another control variable, to automatically produce multi-modal molecular weight distributions, MWD, in a single reactor. Industrially, multi-modal MWD are produced by mixing products made in separate reactors, requiring significant extra time, energy, and reactor resources. Recognizing the industrial potential a patent on automatic production of multi-modal polymers was filed, and DoE acknowledged. In Fall 2016 the TF team developed a basic principles controller for copolymer composition and demonstrated it on aqueous free radical copolymerization of comonomers Am and styrene sulfonate, SS. TF then fused the Mw and composition controllers to achieve simultaneous control of both Mw and copolymer composition trajectories. Numerous simultaneous trajectories were demonstrated, including a trimodal composition distribution with constant Mw. Meanwhile, the LSU group developed a Kalman filter to improve the results of their automatic Mw and conversion controller and successful tests were made. During the project the TF team developed a means of computing full MWD during polymer synthesis without need for any chromatographic separation, based on model distributions. This means the polymer product is ‘born characterized’ and this can eliminate post-manufacture analytical laboratory quality control. TF filed a joint patent application on this new approach to chromatography-free determination of MWD with acknowledgment to DoE. The Tulane group obtained a 60MHz NMR during the project and recently completed the first work on separating three comonomers, Am, SS, and Na-acrylate, with a first demonstration of terpolymer composition control with the TF basic principles controller. Widespread dissemination of ACOMP/CI in the polymer manufacturing sector will bolster DoE goals of energy efficiency and reduced GHG emissions: The ability to monitor and actively control polymerization reactions will lead to more efficient use of energy and non-renewable resources, plant and labor time, increase the safety of manufacturing personnel, and will enhance product quality and lead to feasibility of manufacturing of polymers currently too complex for industrial scale production, while leading to less GHG emissions per kilo of product, and allowing for increased U.S. competitiveness in this enormous manufacturing sector. When ACOMP/CI is expanded to the polyolefin industry it is estimated that 60 TeraBTU/year of energy can be saved. Much of this saving is anticipated to come from optimized control of grade changeovers in steady state reactors and maintenance of steady states. Conclusions: ACOMP’s ability to provide continuous realtime data streams of measured polymer and reaction characteristics made it possible, for the first time, to directly and automatically control free radical polymerization reactions. An industrial client of Fluence Analytics has requisitioned the first ACOMP/CI which uses the TF basic principles controller. This sets the stage for FA to add control features to the ACOMP systems it has begun to install on the industrial scale beginning in 2014. Recommendations: This successful project was mainly limited to ideal polymerizations not of an industrial sort. The most energy intensive portion of polymer manufacturing is polyolefins. Adoption of ACOMP/CI to this enormous industrial sector faces the enormous challenges of high temperature, high pressure continuous sampling and high temperature sensor operation to obtain the continuous data needed for direct reaction control. The project team has a strategy for achieving this ambitious goal and will present it in Fall 2017 as a proposal to CESMII/DoE. It is recommended that this upcoming proposal be funded in order to make full use of the achievements of this just ended DoE project as the next step towards making polyolefin ACOMP/CI an energy saving reality. It is projected that ACOMP/CI can have its first polyolefin testbed demonstrations within two years of beginning the proposed project.« less
NUCLEAR REACTOR CONTROL SYSTEM
Epler, E.P.; Hanauer, S.H.; Oakes, L.C.
1959-11-01
A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.
NASA Astrophysics Data System (ADS)
Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.
2015-12-01
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.
Carter Revises the Science Budget
ERIC Educational Resources Information Center
Science News, 1977
1977-01-01
Reviews budget changes made by President Carter in the following science areas: basic science research; fusion research and breeder reactor projects; oil and gas recovery; coal conversion techniques; and space exploration. (CS)
The Joint European Torus (JET)
NASA Astrophysics Data System (ADS)
Rebut, Paul-Henri
2017-02-01
This paper addresses the history of JET, the Tokamak that reached the highest performances and the experiment that so far came closest to the eventual goal of a fusion reactor. The reader must be warned, however, that this document is not a comprehensive study of controlled thermonuclear fusion or even of JET. The next step on this road, the ITER project, is an experimental reactor. Actually, several prototypes will be required before a commercial reactor can be built. The fusion history is far from been finalised. JET is still in operation some 32 years after the first plasma and still has to provide answers to many questions before ITER takes the lead on research. Some physical interpretations of the observed phenomena, although coherent, are still under discussion. This paper also recalls some basic physics concepts necessary to the understanding of confinement: a knowledgeable reader can ignore these background sections. This fascinating story, comprising successes and failures, is imbedded in the complexities of twentieth and the early twenty-first centuries at a time when world globalization is evolving and the future seems loaded with questions. The views here expressed on plasma confinement are solely those of the author. This is especially the case for magnetic turbulence, for which other scientists may have different views.
Control of autothermal reforming reactor of diesel fuel
NASA Astrophysics Data System (ADS)
Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Pasel, Joachim; Kolb, Gunther
2016-05-01
In this paper a control system for autothermal reforming reactor for diesel fuel is presented. Autothermal reforming reactors and the pertaining purification reactors are used to convert diesel fuel into hydrogen-rich reformate gas, which is then converted into electricity by the fuel cell. The purpose of the presented control system is to control the hydrogen production rate and the temperature of the autothermal reforming reactor. The system is designed in such a way that the two control loops do not interact, which is required for stable operation of the fuel cell. The presented control system is a part of the complete control system of the diesel fuel cell auxiliary power unit (APU).
Bathe, Stephan; Schwarzenbeck, Norbert; Hausner, Martina
2009-06-01
A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and complete 3CA degradation together with spread of the plasmid within the indigenous biofilm population was achieved. A second set of reactors was then bioaugmented with either a suspension of biofilm cells removed from the carrier material or with biofilm-containing carrier material. 3CA degradation was established rapidly in all bioaugmented reactors, followed by a slow adaptation of the non-bioaugmented control reactors. In response to variations in 3CA concentration, all reactors exhibited temporary performance breakdowns. Whereas duplicates of the control reactors deviated in their behaviour, the bioaugmented reactors appeared more reproducible in their performance and population dynamics. Finally, the carrier-bioaugmented reactors showed an improved performance in the presence of high 3CA influent concentrations over the suspension-bioaugmented reactors. In contrast, degradation in one control reactor failed completely, but was rapidly established in the remaining control reactor.
Pan, Shu-Yuan; Liu, Hsing-Lu; Chang, E-E; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi
2016-07-01
Basic oxygen furnace slag (BOFS) exhibits highly alkaline properties due to its high calcium content, which is beneficial to carbonation reaction. In this study, accelerated carbonation of BOFS was evaluated under different reaction times, temperatures, and liquid-to-solid (L/S) ratios in a slurry reactor. CO2 mass balance within the slurry reactor was carried out to validate the technical feasibility of fixing gaseous CO2 into solid precipitates. After that, a multiple model approach, i.e., theoretical kinetics and empirical surface model, for carbonation reaction was presented to determine the maximal carbonation conversion of BOFS in a slurry reactor. On one hand, the reaction kinetics of BOFS carbonation was evaluated by the shrinking core model (SCM). Calcite (CaCO3) was identified as a reaction product through the scanning electronic microscopy and X-ray diffraction analyses, which provided the rationale of applying the SCM in this study. The rate-limiting step of carbonation was found to be ash-diffusion controlled, and the effective diffusivity for carbonation of BOFS in a slurry reactor were determined accordingly. On the other hand, the carbonation conversion of BOFS was predicted by the response surface methodology (RSM) via a nonlinear mathematical programming. According to the experimental data, the highest carbonation conversion of BOFS achieved was 57% under an L/S ratio of 20 mL g(-1), a CO2 flow rate of 0.1 L min(-1), and a pressure of 101.3 kPa at 50 °C for 120 min. Furthermore, the applications and limitations of SCM and RSM were examined and exemplified by the carbonation of steelmaking slags. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reactivity control assembly for nuclear reactor. [LMFBR
Bollinger, L.R.
1982-03-17
This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neff, Sylvia; Graf, Anja; Petrick, Holger
The compact sodium-cooled nuclear reactor facility Karlsruhe (KNK), a prototype Fast Breeder, is currently in an advanced stage of dismantling. Complete dismantling is based on 10 partial licensing steps. In the frame of the 9. decommissioning permit, which is currently ongoing, the dismantling of the biological shield is foreseen. The biological shield consists of heavy reinforced concrete with built-in steel fitments, such as form-work of the reactor tank, pipe sleeves, ventilation channels, and measuring devices. Due to the activation of the inner part of the biological shield, dismantling has to be done remote-controlled. During a comprehensive basic design phase amore » practical dismantling strategy was developed. Necessary equipment and tools were defined. Preliminary tests revealed that hot wire plasma cutting is the most favorable cutting technology due to the geometrical boundary conditions, the varying distance between cutter and material, and the heavy concrete behind the steel form-work. The cutting devices will be operated remotely via a carrier system with an industrial manipulator. The carrier system has expandable claws to adjust to the varying diameter of the reactor shaft during dismantling progress. For design approval of this prototype development, interaction between manipulator and hot wire plasma cutting was tested in a real configuration. For the demolition of the concrete structure, an excavator with appropriate tools, such as a hydraulic hammer, was selected. Other mechanical cutting devices, such as a grinder or rope saw, were eliminated because of concrete containing steel spheres added to increase the shielding factor of the heavy concrete. Dismantling of the biological shield will be done in a ring-wise manner due to static reasons. During the demolition process, the excavator is positioned on its tripod in three concrete recesses made prior to the dismantling of the separate concrete rings. The excavator and the manipulator carrier system will be operated alternately. Main boundary condition for all the newly designed equipment is the decommissioning housing of limited space within the reactor building containment. To allow for a continuous removal of the concrete rubble, an additional opening on the lowest level of the reactor shaft will be made. All equipment and the interaction of the tools have to be tested before use in the controlled area. Therefore a full-scale model of the biological shield will be provided in a mock-up. The tests will be performed in early 2014. The dismantling of the biological shield is scheduled for 2015. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
BS> The dynamics of a power reactor is treated in some detail. Although the reactor is described by a nonlinear differential equation of the seventh order, a two-group approximstion with prompt neutrons and one averaged group of delayed neutrons may be used. When the reactor is in equilibrium, the reactor equation may be linearized in two ways. The effects of positive and negative coefficients of tins of the reactor are discussed. The nonlinear character of the control rods is trested. (D.L.C.)
Apparatus for controlling molten core debris. [LMFBR
Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.
1977-07-19
Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.
VALVES FOR THE HIGH PRESSURE-HIGH TEMPERATURE (HP-HT) FLUORINATION SYSTEM. (Engineering Materials)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-10-31
This package contains two drawings of valves which eliminate errors in the gravimetric oxide dilution procedure of U/sup 235/ measurement. Isotopic contaminatioNonen in the high pressure fluorination reactor was corrected by changing the manner in which the Cu tubing joins the valve and by modification of the bellows. The compact inlet system was modified to improve the precision of the spectrometer analyses. Changes were raade in the basic leak and the air operator, which is a diaphragm-type valve, so that the setting of the flow level is controlled by the closure spring adjustment screw. This capillary-type leak has increased controlmore » range and sraooth control characteristics. It is simple to construct, is remotely operated and is free from corrosion failure. (F.S.)« less
Technicians Manufacture a Nozzle for the Kiwi B-1-B Engine
1964-05-21
Technicians manufacture a nozzle for the Kiwi B-1-B nuclear rocket engine in the Fabrication Shop’s vacuum oven at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test basic nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The final phase of the program, called Reactor-In-Flight-Test, would be an actual launch test. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The turbopump, which pumped the fuels from the storage tanks to the engine, was the primary tool for restarting the engine. The NERVA had to be able to restart in space on its own using a safe preprogrammed startup system. Lewis researchers endeavored to design and test this system. This non-nuclear Kiwi engine, seen here, was being prepared for tests at Lewis’ High Energy Rocket Engine Research Facility (B-1) located at Plum Brook Station. The tests were designed to start an unfueled Kiwi B-1-B reactor and its Aerojet Mark IX turbopump without any external power.
Manley, J. H.
1961-06-27
An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.
Nuclear Forensics and Radiochemistry: Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.
Pozzolanic filtration/solidification of radionuclides in nuclear reactor cooling water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englehardt, J.D.; Peng, C.
1995-12-31
Laboratory studies to investigate the feasibility of one- and two-step processes for precipitation/coprecipitating radionuclides from nuclear reactor cooling water, filtering with pozzolanic filter aid, and solidifying, are reported in this paper. In the one-step process, ferrocyanide salt and excess lime are added ahead of the filter, and the resulting filter cake solidifies by a pozzolanic reaction. The two-step process involves addition of solidifying agents subsequent to filtration. It was found that high surface area diatomaceous synthetic calcium silicate powders, sold commercially as functional fillers and carriers, adsorb nickel isotopes from solution at neutral and slightly basic pH. Addition of themore » silicates to cooling water allowed removal of the tested metal isotopes (nickel, iron, manganese, cobalt, and cesium) simultaneously at neutral to slightly basic pH. Lime to diatomite ratio was the most influential characteristic of composition on final strength tested, with higher lime ratios giving higher strength. Diatomaceous earth filter aids manufactured without sodium fluxes exhibited higher pozzolanic activity. Pozzolanic filter cake solidified with sodium silicate and a ratio of 0.45 parts lime to 1 part diatomite had compressive strength ranging from 470 to 595 psi at a 90% confidence level. Leachability indices of all tested metals in the solidified waste were acceptable. In light of the typical requirement of removing iron and desirability of control over process pH, a two-step process involving addition of Portland cement to the filter cake may be most generally applicable.« less
Radionuclide Basics: Plutonium
Plutonium (chemical symbol Pu) is a radioactive metal. Plutonium is considered a man-made element. Plutonium-239 is used to make nuclear weapons. Pu-239 and Pu-240 are byproducts of nuclear reactor operations and nuclear bomb explosions.
NASA Technical Reports Server (NTRS)
2001-01-01
Analytical Mechanics Associates, Inc. (AMA), of Hampton, Virginia, created the EZopt software application through Small Business Innovation Research (SBIR) funding from NASA's Langley Research Center. The new software is a user-friendly tool kit that provides quick and logical solutions to complex optimal control problems. In its most basic form, EZopt converts process data into math equations and then proceeds to utilize those equations to solve problems within control systems. EZopt successfully proved its advantage when applied to short-term mission planning and onboard flight computer implementation. The technology has also solved multiple real-life engineering problems faced in numerous commercial operations. For instance, mechanical engineers use EZopt to solve control problems with robots, while chemical plants implement the application to overcome situations with batch reactors and temperature control. In the emerging field of commercial aerospace, EZopt is able to optimize trajectories for launch vehicles and perform potential space station- keeping tasks. Furthermore, the software also helps control electromagnetic devices in the automotive industry.
Reactivity control assembly for nuclear reactor
Bollinger, Lawrence R.
1984-01-01
Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.
Operators in the Plum Brook Reactor Facility Control Room
1970-03-21
Donald Rhodes, left, and Clyde Greer, right, monitor the operation of the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility from the control room. The 60-megawatt test reactor, NASA’s only reactor, was the eighth largest test reactor in the world. The facility was built by the Lewis Research Center in the late 1950s to study the effects of radiation on different materials that could be used to construct nuclear propulsion systems for aircraft or rockets. The reactor went critical for the first time in 1961. For the next two years, two operators were on duty 24 hours per day working on the fission process until the reactor reached its full-power level in 1963. Reactor Operators were responsible for monitoring and controlling the reactor systems. Once the reactor was running under normal operating conditions, the work was relatively uneventful. Normally the reactor was kept at a designated power level within certain limits. Occasionally the operators had to increase the power for a certain test. The shift supervisor and several different people would get together and discuss the change before boosting the power. All operators were required to maintain a Reactor Operator License from the Atomic Energy Commission. The license included six months of training, an eight-hour written exam, a four-hour walkaround, and testing on the reactor controls.
PARTIAL ECONOMIC STUDY OF STEAM COOLED HEAVY WATER MODERATED REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-04-01
Steam-cooled reactors are compared with CAHDU for costs of Calandria tubes, pressure tubes. heavy water moderator, heavy water reflector, fuel supply, heat exchanger, and turbine generator. A direct-cycle lightsteam-cooled heavy- water-moderated pressure-tube reactor formed the basic reactor design for the study. Two methods of steam circulation through the reactor were examined. In both cases the steam was generated outside the reactor and superheated in the reactor core. One method consisted of a series of reactor and steam generator passes. The second method consisted of the Loeffler cycle and its modifications. The fuel was assumed to be natural cylindrical UO/sub 2/more » pellets sheathed in a hypothetical material with the nuclear properties of Zircaloy, but able to function at temperatures to 900 deg F. For the conditions assumed, the longer the rod, the higher the outlet temperature and therefore the higher the efficiency. The turbine cycle efficiency was calculated on the assumption that suitable steam generators are available. As the neutron losses to the pressure tubes were significant, an economic analysis of insulated pressure tubes is included. A description of the physics program for steam-cooled reactors is included. Results indicated that power from the steam-cooled reactor would cost 1.4 mills/ kwh compared with 1.25 mills/kwh for CANDU. (M.C.G.)« less
Hydrodynamic models for slurry bubble column reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gidaspow, D.
1995-12-31
The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore,more » the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.« less
TREAT Reactor Control and Protection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinski, W.C.; Brookshier, W.K.; Burrows, D.R.
1985-01-01
The main control algorithm of the Transient Reactor Test Facility (TREAT) Automatic Reactor Control System (ARCS) resides in Read Only Memory (ROM) and only experiment specific parameters are input via keyboard entry. Prior to executing an experiment, the software and hardware of the control computer is tested by a closed loop real-time simulation. Two computers with parallel processing are used for the reactor simulation and another computer is used for simulation of the control rod system. A monitor computer, used as a redundant diverse reactor protection channel, uses more conservative setpoints and reduces challenges to the Reactor Trip System (RTS).more » The RTS consists of triplicated hardwired channels with one out of three logic. The RTS is automatically tested by a digital Dedicated Microprocessor Tester (DMT) prior to the execution of an experiment. 6 refs., 5 figs., 1 tab.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-12
... Applications for Instrumentation and Control Upgrades for Non-Power Reactors AGENCY: Nuclear Regulatory... (NRC or the Commission) is requesting public comment on Chapter 7, Section 7.3, Reactor Control System...-Power Reactors: Format and Content,'' for instrumentation and control (I&C) upgrades and NUREG-1537...
Calculation of the neutron diffusion equation by using Homotopy Perturbation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koklu, H., E-mail: koklu@gantep.edu.tr; Ozer, O.; Ersoy, A.
The distribution of the neutrons in a nuclear fuel element in the nuclear reactor core can be calculated by the neutron diffusion theory. It is the basic and the simplest approximation for the neutron flux function in the reactor core. In this study, the neutron flux function is obtained by the Homotopy Perturbation Method (HPM) that is a new and convenient method in recent years. One-group time-independent neutron diffusion equation is examined for the most solved geometrical reactor core of spherical, cubic and cylindrical shapes, in the frame of the HPM. It is observed that the HPM produces excellent resultsmore » consistent with the existing literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J.; Börner, K.
2015-12-15
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steelmore » samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klipstein, David H.; Robinson, Sharon
The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierman, S.R.; Graf, W.A.; Kass, M.
1960-07-29
Design panameters are presented for phases of the facility to reprocess low-enrichment fuels from nonproduction reactors. Included are plant flowsheets and equipment layouts for fuel element dissolution, centrifugation, solution adjustment, and waste handling. Also included are the basic design criteria for the supporting facilities which service these phases and all other facilites located in the vicinity of the selected building (Bldg. 221-U). (J.R.D.)
System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion
NASA Technical Reports Server (NTRS)
Estabrook, W. C.; Phillips, W. M.; Hsieh, T.
1976-01-01
Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.
FUEL ELEMENT FOR A NUCLEAR REACTOR
Davidson, J.K.
1963-11-19
A fuel element structure particularly useful in high temperature nuclear reactors is presented. Basically, the structure comprises two coaxial graphite sleeves integrally joined together by radial fins. Due to the high structural strength of graphite at high temperatures and the rigidity of this structure, nuclear fuel encased within the inner sleeve in contiguous relation therewith is supported and prevented from expanding radially at high temperatures. Thus, the necessity of relying on the usual cladding materials with relatively low temperature limitations for structural strength is removed. (AEC)
Fail-safe reactivity compensation method for a nuclear reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.
The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on themore » constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.« less
NASA Astrophysics Data System (ADS)
Borisov, A. A.; Deryabina, N. A.; Markovskij, D. V.
2017-12-01
Instant power is a key parameter of the ITER. Its monitoring with an accuracy of a few percent is an urgent and challenging aspect of neutron diagnostics. In a series of works published in Problems of Atomic Science and Technology, Series: Thermonuclear Fusion under a common title, the step-by-step neutronics analysis was given to substantiate a calibration technique for the DT and DD modes of the ITER. A Gauss quadrature scheme, optimal for processing "expensive" experiments, is used for numerical integration of 235U and 238U detector responses to the point sources of 14-MeV neutrons. This approach allows controlling the integration accuracy in relation to the number of coordinate mesh points and thus minimizing the number of irradiations at the given uncertainty of the full monitor response. In the previous works, responses of the divertor and blanket monitors to the isotropic point sources of DT and DD neutrons in the plasma profile and to the models of real sources were calculated within the ITER model using the MCNP code. The neutronics analyses have allowed formulating the basic principles of calibration that are optimal for having the maximum accuracy at the minimum duration of in situ experiments at the reactor. In this work, scenarios of the preliminary and basic experimental ITER runs are suggested on the basis of those principles. It is proposed to calibrate the monitors only with DT neutrons and use correction factors to the DT mode calibration for the DD mode. It is reasonable to perform full calibration only with 235U chambers and calibrate 238U chambers by responses of the 235U chambers during reactor operation (cross-calibration). The divertor monitor can be calibrated using both direct measurement of responses at the Gauss positions of a point source and simplified techniques based on the concepts of equivalent ring sources and inverse response distributions, which will considerably reduce the amount of measurements. It is shown that the monitor based on the average responses of the horizontal and vertical neutron chambers remains spatially stable as the source moves and can be used in addition to the staff monitor at neutron fluxes in the detectors four orders of magnitude lower than on the first wall, where staff detectors are located. Owing to low background, detectors of neutron chambers do not need calibration in the reactor because it is actually determination of the absolute detector efficiency for 14-MeV neutrons, which is a routine out-of-reactor procedure.
System and method for air temperature control in an oxygen transport membrane based reactor
Kelly, Sean M
2016-09-27
A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.
System and method for temperature control in an oxygen transport membrane based reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Sean M.
A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, R.M.
1959-03-01
Developments relative to decontamination achieved under the Yankee Reasearch and Development program are reported. The decontamination of a large test loop which had been used to conduct corrosion rate studies for the Yankee reactor program is described. The basic permanganate-citrate decontamination procedure suggested for application in Yankee reactor primary system cleanup was used. A study of the chemistry of this decontamination operation is presented, together with conclusions pertaining to the effectiveness of the solutions under the conditions studied. In an attempt to further improve the efficiency of the procedure, an additional series of static and dynamic tests was performcd usingmore » contaminated sections of stainless steel tubing from the original SlW steam generator. Survival variables in the process (reagent composition, contact time, temperature, and flow velocity) were studied. The changes in decontamination efficiency produced by these variations are discussed and compared with results obtained throughthe use of similar procedures. Based on the observations made, conclusions are drawn concerning the optimum conditions for this cleanup process, a new set of suggested basic permanganate-citrate decontamination instructions is presented, and recommendations are made concerning future studies involving this procedure. (auth)« less
Lichtenberger, H.V.; Cameron, R.A.
1959-03-31
S>A control rod operating device in a nuclear reactor of the type in which the control rod is gradually withdrawn from the reactor to a position desired during stable operation is described. The apparatus is comprised essentially of a stop member movable in the direction of withdrawal of the control rod, a follower on the control rod engageable with the stop and means urging the follower against the stop in the direction of withdrawal. A means responsive to disengagement of the follower from the stop is provided for actuating the control rod to return to the reactor shut-down position.
Researcher Poses with a Nuclear Rocket Model
1961-11-21
A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.
NASA Astrophysics Data System (ADS)
Freidberg, Jeffrey; Dogra, Akshunna; Redman, William; Cerfon, Antoine
2016-10-01
The development of high field, high temperature superconductors is thought to be a game changer for the development of fusion power based on the tokamak concept. We test the validity of this assertion for pilot plant scale reactors (Q 10) for two different but related missions: pulsed operation and steady-state operation. Specifically, we derive a set of analytic criteria that determines the basic design parameters of a given fusion reactor mission. As expected there are far more constraints than degrees of freedom in any given design application. However, by defining the mission of the reactor under consideration, we have been able to determine the subset of constraints that drive the design, and calculate the values for the key parameters characterizing the tokamak. Our conclusions are as follows: 1) for pulsed reactors, high field leads to more compact designs and thus cheaper reactors - high B is the way to go; 2) steady-state reactors with H-mode like transport are large, even with high fields. The steady-state constraint is hard to satisfy in compact designs - high B helps but is not enough; 3) I-mode like transport, when combined with high fields, yields relatively compact steady-state reactors - why is there not more research on this favorable transport regime?
BOILING SLURRY REACTOR AND METHOD FO CONTROL
Petrick, M.; Marchaterre, J.F.
1963-05-01
The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)
Dual annular rotating "windowed" nuclear reflector reactor control system
Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.
1994-01-01
A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.
Self-teaching neural network learns difficult reactor control problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jouse, W.C.
1989-01-01
A self-teaching neural network used as an adaptive controller quickly learns to control an unstable reactor configuration. The network models the behavior of a human operator. It is trained by allowing it to operate the reactivity control impulsively. It is punished whenever either the power or fuel temperature stray outside technical limits. Using a simple paradigm, the network constructs an internal representation of the punishment and of the reactor system. The reactor is constrained to small power orbits.
NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR
Young, G.J.
1959-06-30
The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Steven A.; Sanchez, Travis
2005-02-06
The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK{sup TM} (Simulink, 2004). SIMULINK{sup TM} is a development environment packaged with MatLab{sup TM} (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion componentsmore » such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK{sup TM} models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK{sup TM} modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator)« less
Control system for a small fission reactor
Burelbach, James P.; Kann, William J.; Saiveau, James G.
1986-01-01
A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired. In another embodiment, a plurality of flexible hollow tubes each containing a neutron absorber are positioned adjacent to one another in spaced relation around the periphery of the reactor vessel and inside the outer neutron reflector with reactivity controlled by the extension and compression of all or some of the coiled hollow tubes. Yet another embodiment of the invention envisions the neutron reflector in the form of an expandable coil spring positioned in an annular space between the reactor vessel and an outer neutron absorbing structure for controlling the neutron flux reflected back into the reactor vessel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatayama, Ariyoshi; Ogasawara, Masatada; Yamauchi, Michinori
1994-08-01
Plasma size and other basic performance parameters for 1000-MW(electric) power production are calculated with the blanket energy multiplication factor, the M value, as a parameter. The calculational model is base don the International Thermonuclear Experimental Reactor (ITER) physics design guidelines and includes overall plant power flow. Plasma size decreases as the M value increases. However, the improvement in the plasma compactness and other basic performance parameters, such as the total plant power efficiency, becomes saturated above the M = 5 to 7 range. THus, a value in the M = 5 to 7 range is a reasonable choice for 1000-MW(electric)more » hybrids. Typical plasma parameters for 1000-MW(electric) hybrids with a value of M = 7 are a major radius of R = 5.2 m, minor radius of a = 1.7 m, plasma current of I{sub p} = 15 MA, and toroidal field on the axis of B{sub o} = 5 T. The concept of a thermal fission blanket that uses light water as a coolant is selected as an attractive candidate for electricity-producing hybrids. An optimization study is carried out for this blanket concept. The result shows that a compact, simple structure with a uniform fuel composition for the fissile region is sufficient to obtain optimal conditions for suppressing the thermal power increase caused by fuel burnup. The maximum increase in the thermal power is +3.2%. The M value estimated from the neutronics calculations is {approximately}7.0, which is confirmed to be compatible with the plasma requirement. These studies show that it is possible to use a tokamak fusion core with design requirements similar to those of ITER for a 1000-MW(electric) power reactor that uses existing thermal reactor technology for the blanket. 30 refs., 22 figs., 4 tabs.« less
Current status of SPINNORs designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki
2010-06-22
This study discuss about the SPINNOR (Small Power Reactor, Indonesia, No On-site Refuelling) and the VSPINNOR (Very Small Power Reactor, Indonesia, No On-site Refuelling) which are small lead-bismuth cooled nuclear power reactors with fast neutron spectrum that could be operated for more than 10 or 15 years without on-site refuelling. They are based on the concept of a long-life core reactor developed in Indonesia since early 1990 in collaboration with the Research Laboratory for Nuclear Reactors of the Tokyo Institute of Technology (RLNR TITech). The reactor cores are designed to have near zero (less then one effective delayed neutron fraction)more » burn-up reactivity swing during the whole course of their operation to avoid a possibility of prompt criticality accident. The basic concept is that central region of the reactor core is filled with fertile (blanket) material. During the reactor operation fissile material accumulates in this central region, which helps to compensate fissile material loss in the peripheral core region and also contributes to negative coolant loss reactivity effect. A concept of high fuel volume fraction in the core is applied to achieve smaller size of a critical reactor. In this paper we consider to add Np-237 to the fuel to enhance non proliferation characteristics of the systems. The effect of Np-237 amount variation is discussed.« less
NASA Astrophysics Data System (ADS)
Chi, Jinling; Wang, Bo; Zhang, Shijie; Xiao, Yunhan
2010-02-01
The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion (CLC) combined cycle. A sensitivity analysis of the CLC reactor system was conducted, which shows that the parameters that influence the temperatures of the CLC reactors most are the flow rate and temperature of air entering the air reactor. For the ambient temperature variation, three off-design control strategies have been assumed and compared: 1) without any Inlet Guide Vane (IGV) control, 2) IGV control to maintain air reactor temperature and 3) IGV control to maintain constant fuel reactor temperature, aside from fuel flow rate adjusting. Results indicate that, compared with the conventional combined cycle, due to the requirement of pressure balance at outlet of the two CLC reactors, CLC combined cycle shows completely different off-design thermodynamic characteristics regardless of the control strategy adopted. For the first control strategy, temperatures of the two CLC reactors both rise obviously as ambient temperature increases. IGV control adopted by the second and the third strategy has the effect to maintain one of the two reactors' temperatures at design condition when ambient temperature is above design point. Compare with the second strategy, the third would induce more severe decrease of efficiency and output power of the CLC combined cycle.
Condensation model for the ESBWR passive condensers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revankar, S. T.; Zhou, W.; Wolf, B.
2012-07-01
In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data frommore » separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)« less
ADAPTATION OF CRACK GROWTH DETECTION TECHNIQUES TO US MATERIAL TEST REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis
2015-04-01
A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some test reactors outside the United States, such as the Halden Boiling Water Reactor (HBWR), have developed techniques to measure crack growth propagation during irradiation. The basic approach is to use a custom-designed compact loading mechanism to stress the specimen during irradiation, while the crack in the specimen is monitored in-situ using the Direct Currentmore » Potential Drop (DCPD) method. In 2012 the US Department of Energy commissioned the Idaho National Laboratory and the MIT Nuclear Reactor Laboratory (MIT NRL) to take the basic concepts developed at the HBWR and adapt them to a test rig capable of conducting in-pile IASCC tests in US Material Test Reactors. The first two and half years of the project consisted of designing and testing the loader mechanism, testing individual components of the in-pile rig and electronic support equipment, and autoclave testing of the rig design prior to insertion in the MIT Reactor. The load was applied to the specimen by means of a scissor like mechanism, actuated by a miniature metal bellows driven by pneumatic pressure and sized to fit within the small in-core irradiation volume. In addition to the loader design, technical challenges included developing robust connections to the specimen for the applied current and voltage measurements, appropriate ceramic insulating materials that can endure the LWR environment, dealing with the high electromagnetic noise environment of a reactor core at full power, and accommodating material property changes in the specimen, due primarily to fast neutron damage, which change the specimen resistance without additional crack growth. The project culminated with an in-pile demonstration at the MIT Reactor. The test rig and associated support equipment were used to apply loads to a representative Compact Tensile specimen during one MITR operating cycle, while measuring crack growth using the DCPD method. Although the test period was short (approximately 70 days), and the accumulated neutron dose relatively small, successful operation of the test rig was demonstrated. The specimen was cycled more than 8000 times (more than would be typical for a long term IASCC test), which was sufficient to propagate a crack of over 2 mm.« less
Globally linearized control on diabatic continuous stirred tank reactor: a case study.
Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal
2005-07-01
This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.
Composting on Mars or the Moon: I. Comparative evaluation of process design alternatives
NASA Technical Reports Server (NTRS)
Finstein, M. S.; Strom, P. F.; Hogan, J. A.; Cowan, R. M.; Janes, H. W. (Principal Investigator)
1999-01-01
As a candidate technology for treating solid wastes and recovering resources in bioregenerative Advanced Life Support, composting potentially offers such advantages as compactness, low mass, near ambient reactor temperatures and pressures, reliability, flexibility, simplicity, and forgiveness of operational error or neglect. Importantly, the interactions among the physical, chemical, and biological factors that govern composting system behavior are well understood. This article comparatively evaluates five Generic Systems that describe the basic alternatives to composting facility design and control. These are: 1) passive aeration; 2) passive aeration abetted by mechanical agitation; 3) forced aeration--O2 feedback control; 4) forced aeration--temperature feedback control; 5) forced aeration--integrated O2 and temperature feedback control. Each of the five has a distinctive pattern of behavior and process performance characteristics. Only Systems 4 and 5 are judged to be viable candidates for ALS on alien worlds, though which is better suited in this application is yet to be determined.
Modeling and simulation of CANDU reactor and its regulating system
NASA Astrophysics Data System (ADS)
Javidnia, Hooman
Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different phenomena related to the transfer of the energy from the core. The main function of the reactor regulating system is to control the power of the reactor. This is achieved by using a set of detectors. reactivity devices. and digital control algorithms. Three main reactivity devices that are activated during short-term or intermediate-term transients are modeled in this thesis. The main elements of the digital control system are implemented in accordance to the program specifications for the actual control system in CANDU reactors. The simulation results are validated against requirements of the reactor regulating system. actual plant data. and pre-validated data from other computer codes. The validation process shows that the simulation results can be trusted in making engineering decisions regarding the reactor regulating system and prediction of the system performance in response to upset conditions or disturbances. KEYWORDS: CANDU reactors. reactor regulating system. nodal model. spatial kinetics. reactivity devices. simulation.
Treshow, M.
1959-02-10
A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.
Bhatt, Praveena; Kumar, M Suresh; Mudliar, Sandeep; Chakrabarti, Tapan
2008-05-01
Anaerobic dechlorination of technical grade hexachlorocyclohexane (THCH) was studied in a continuous upflow anaerobic sludge blanket (UASB) reactor with methanol as a supplementary substrate and electron donor. A reactor without methanol served as the experimental control. The inlet feed concentration of THCH in both the experimental and the control UASB reactor was 100 mg l(-1). After 60 days of continuous operation, the removal of THCH was >99% in the methanol-supplemented reactor as compared to 20-35% in the control reactor. THCH was completely dechlorinated in the methanol fed reactor at 48 h HRT after 2 months of continuous operation. This period was also accompanied by increase in biomass in the reactor, which was not observed in the experimental control. Batch studies using other supplementary substrates as well as electron donors namely acetate, butyrate, formate and ethanol showed lower % dechlorination (<85%) and dechlorination rates (<3 mg g(-1)d(-1)) as compared to methanol (98%, 5 mg g(-1)d(-1)). The optimum concentration of methanol required, for stable dechlorination of THCH (100 mg l(-1)) in the UASB reactor, was found to be 500 mg l(-1). Results indicate that addition of methanol as electron donor enhances dechlorination of THCH at high inlet concentration, and is also required for stable UASB reactor performance.
NASA Technical Reports Server (NTRS)
Grishin, S. D.; Chekalin, S. V.
1984-01-01
Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.
Combustion pinhole-camera system
Witte, A.B.
1982-05-19
A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.
Combustion pinhole camera system
Witte, A.B.
1984-02-21
A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor. 2 figs.
Combustion pinhole camera system
Witte, Arvel B.
1984-02-21
A pinhole camera system utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.
Effects of imperfect mixing on low-density polyethylene reactor dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, C.M.; Dihora, J.O.; Ray, W.H.
1998-07-01
Earlier work considered the effect of feed conditions and controller configuration on the runaway behavior of LDPE autoclave reactors assuming a perfectly mixed reactor. This study provides additional insight on the dynamics of such reactors by using an imperfectly mixed reactor model and bifurcation analysis to show the changes in the stability region when there is imperfect macroscale mixing. The presence of imperfect mixing substantially increases the range of stable operation of the reactor and makes the process much easier to control than for a perfectly mixed reactor. The results of model analysis and simulations are used to identify somemore » of the conditions that lead to unstable reactor behavior and to suggest ways to avoid reactor runaway or reactor extinction during grade transitions and other process operation disturbances.« less
Applications of nuclear physics
NASA Astrophysics Data System (ADS)
Hayes, A. C.
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Badve, Mandar P; Gogate, Parag R; Pandit, Aniruddha B; Csoka, Levente
2014-01-01
The present work deals with application of hydrodynamic cavitation for intensification of delignification of wheat straw as an essential step in the paper manufacturing process. Wheat straw was first treated with potassium hydroxide (KOH) for 48 h and subsequently alkali treated wheat straw was subjected to hydrodynamic cavitation. Hydrodynamic cavitation reactor used in the work is basically a stator and rotor assembly, where the rotor is provided with indentations and cavitational events are expected to occur on the surface of rotor as well as within the indentations. It has been observed that treatment of alkali treated wheat straw in hydrodynamic cavitation reactor for 10-15 min increases the tensile index of the synthesized paper sheets to about 50-55%, which is sufficient for paper board manufacture. The final mechanical properties of the paper can be effectively managed by controlling the processing parameters as well as the cavitational parameters. It has also been established that hydrodynamic cavitation proves to be an effective method over other standard digestion techniques of delignification in terms of electrical energy requirements as well as the required time for processing. Overall, the work is first of its kind application of hydrodynamic cavitation for enhancing the effectiveness of delignification and presents novel results of significant interest to the paper and pulp industry opening an entirely new area of application of cavitational reactors. Copyright © 2013 Elsevier B.V. All rights reserved.
Applications of nuclear physics
Hayes-Sterbenz, Anna Catherine
2017-01-10
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less
Applications of nuclear physics.
Hayes, A C
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Applications of nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes-Sterbenz, Anna Catherine
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less
NASA Technical Reports Server (NTRS)
1972-01-01
The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.
Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.
Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier
2013-08-01
This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. Copyright © 2013 Elsevier Ltd. All rights reserved.
Control rod system useable for fuel handling in a gas-cooled nuclear reactor
Spurrier, Francis R.
1976-11-30
A control rod and its associated drive are used to elevate a complete stack of fuel blocks to a position above the core of a gas-cooled nuclear reactor. A fuel-handling machine grasps the control rod and the drive is unlatched from the rod. The stack and rod are transferred out of the reactor, or to a new location in the reactor, by the fuel-handling machine.
Dual annular rotating [open quotes]windowed[close quotes] nuclear reflector reactor control system
Jacox, M.G.; Drexler, R.L.; Hunt, R.N.M.; Lake, J.A.
1994-03-29
A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures.
156. ARAIII Reactor building (ARA608) Electrical and control details of ...
156. ARA-III Reactor building (ARA-608) Electrical and control details of mobile work bridge over reactor and pipiing pits. Aerojet-general 880-area/GCRE-608-E-6. Date: November 1958. Ineel index code no. 063-0608-10-013-102621. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of researchmore » reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark; Sridharan, Kumar; Morgan, Dane
2015-01-22
The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsinmore » had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re-evaluate thermophysical properties of flibe and flinak. Pacific Northwest National Laboratories has focused on evaluating the fluorinating gas nitrogen trifluoride as a potential salt purification agent. Work there was performed on removing hydroxides and oxides from flinak salt under controlled conditions. Lastly, the University of California Berkeley has spent considerable time designing and simulating reactor components with fluoride salts at high temperatures. Despite the hurdles presented by the innate chemical hazards, considerable progress has been made. The stage has been set to perform new research on salt chemical control which could advance the fluoride salt cooled reactor concept towards commercialization. What were previously thought of as chemical undesirable, but nuclear certified, alloys have been shown to be theoretically compatible with fluoride salts at high temperatures. This preliminary report has been prepared to communicate the construction of the basic infrastructure required for flibe, as well as suggest original research to performed at the University of Wisconsin. Simultaneously, the contents of this report can serve as a detailed, but introductory guide to allow anyone to learn the fundamentals of chemistry, engineering, and safety required to work with flibe salt.« less
The international atom: evolution of radiation control programs.
Bradley, F J
2002-07-01
Under the Atoms for Peace program, Turkey received a one MWt swimming pool reactor in 1962 that initiated a health physics program for the reactor and a Radiation Control Program (RCP) for the country's use of ionizing radiation. Today, over 13,000 radiation workers, concentrated in the medical field, provide improved medical care with 6,200 x-ray units, including 494 CAT scanners, 222 radioimmunoassay (RIA) labs and 42 radiotherapy centers. Industry has a large stake in the safe use of ionizing radiation with over 1,200 x-ray and gamma radiography and fluoroscopic units, 2,500 gauges in automated process control and five irradiators. A 48-person RCP staff oversees this expanded radiation use. One incident involving a spent 3.3 TBq (88 Ci) 60Co source resulted in 10 overexposures but no fatalities. Taiwan received a 1.6 MWt swimming pool reactor in 1961 and rapidly applied nuclear technology to the medical and industrial fields. Today, there are approximately 24,000 licensed radiation workers in nuclear power field, industry, medicine and academia. Four BWRs and two PWRs supply about 25% of the island's electrical power needs. One traumatic event galvanized the RCP when an undetermined amount of 60Co was accidentally incorporated into reinforcing bars, which in turn were incorporated into residential and commercial buildings. Public exposures were estimated to range up to 15 mSv (1.3 rem) per annum. There were no reported ill effects, except possibly psychological, to date. The RCP now has instituted stringent control measures to ensure radiation-free dwellings and work places. Albania's RCP is described as it evolved since 1972. Regulations were promulgated which followed the IAEA Basic Safety Standards of that era. With 525 licenses and 600 radiation workers, the problem was not in the regulations per se but in their enforcement. The IAEA helped to upgrade the RCP as the economy evolved from one that was centrally planned economy to a free market economy. As this transition takes place, public radiation exposures in the medical field will continue to be high until the old x-ray equipment is phased out. A small conscientious health physics staff works with limited resources to keep radiation exposures at acceptable levels. These three country RCPs, as they have evolved, have some commonality. Today, all radiation installations are licensed, both for radioactive material and x-ray equipment. Radiation workers are individually licensed or registered. All RCPs have, or are striving to have, their radiation regulations conform to ICRP 60 recommendations as spelled out in the Basic Safety Standard (1996). Finally, all three countries have as yet to find a permanent solution for their radioactive waste.
Adaptive control method for core power control in TRIGA Mark II reactor
NASA Astrophysics Data System (ADS)
Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd
2018-01-01
The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... Applications for Instrumentation and Control Upgrades for Non-Power Reactors AGENCY: Nuclear Regulatory...-Power Reactors: Format and Content,'' for instrumentation and control upgrades and NUREG-1537, Part 2, ``Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors: Standard Review...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R. M.; Schaefer, R. W.; McKnight, R. D.
Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactormore » physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of demonstration-size LMFBRs. As a benchmark, ZPR-6/7 was devoid of many 'real' reactor features, such as simulated control rods and multiple enrichment zones, in its reference form. Those kinds of features were investigated experimentally in variants of the reference ZPR-6/7 or in other critical assemblies in the Demonstration Reactor Benchmark Program.« less
Radionuclide Basics: Cesium-137
The most common radioactive form of cesium (chemical symbol Cs) is Cesium-137. Cesium-137 is produced by nuclear fission for use in medical devices and gauges and is one of the byproducts of nuclear fission in nuclear reactors and nuclear weapons testing.
Verification of a neutronic code for transient analysis in reactors with Hex-z geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Pintor, S.; Verdu, G.; Ginestar, D.
Due to the geometry of the fuel bundles, to simulate reactors such as VVER reactors it is necessary to develop methods that can deal with hexagonal prisms as basic elements of the spatial discretization. The main features of a code based on a high order finite element method for the spatial discretization of the neutron diffusion equation and an implicit difference method for the time discretization of this equation are presented and the performance of the code is tested solving the first exercise of the AER transient benchmark. The obtained results are compared with the reference results of the benchmarkmore » and with the results provided by PARCS code. (authors)« less
Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.; Reich, W.J.
1991-09-01
The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactormore » concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.« less
Integrated head package for top mounted nuclear instrumentation
Malandra, Louis J.; Hornak, Leonard P.; Meuschke, Robert E.
1993-01-01
A nuclear reactor such as a pressurized water reactor has an integrated head package providing structural support and increasing shielding leading toward the vessel head. A reactor vessel head engages the reactor vessel, and a control rod guide mechanism over the vessel head raises and lowers control rods in certain of the thimble tubes, traversing penetrations in the reactor vessel head, and being coupled to the control rods. An instrumentation tube structure includes instrumentation tubes with sensors movable into certain thimble tubes disposed in the fuel assemblies. Couplings for the sensors also traverse penetrations in the reactor vessel head. A shroud is attached over the reactor vessel head and encloses the control rod guide mechanism and at least a portion of the instrumentation tubes when retracted. The shroud forms a structural element of sufficient strength to support the vessel head, the control rod guide mechanism and the instrumentation tube structure, and includes radiation shielding material for limiting passage of radiation from retracted instrumentation tubes. The shroud is thicker at the bottom adjacent the vessel head, where the more irradiated lower ends of retracted sensors reside. The vessel head, shroud and contents thus can be removed from the reactor as a unit and rested safely and securely on a support.
Laccase/mediator assisted degradation of triarylmethane dyes in a continuous membrane reactor.
Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy
2009-08-10
Laccase/mediator systems are important bioremediation agents as the rates of reactions can be enhanced in the presence of the mediators. The decolorization mechanism of two triarylmethane dyes, namely, Basic Green 4 and Acid Violet 17 is reported using Cyathus bulleri laccase. Basic Green 4 was decolorized through N-demethylation by laccase alone, while in mediator assisted reactions, dye breakdown was initiated from oxidation of carbinol form of the dye. Benzaldehyde and N,N-dimethyl aniline were the major end products. With Acid Violet 17, laccase carried out N-deethylation and in mediator assisted reactions, oxidation of the carbinol form of the dye occurred resulting in formation of formyl benzene sulfonic acid, carboxy benzene sulfonic acid and benzene sulfonic acid. Toxicity analysis revealed that Basic Green 4 was toxic and treatment with laccase/mediators resulted in 80-100% detoxification. The treatment of the textile dye solution using laccase and 2,2'-azino-di-(-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was demonstrated in an enzyme membrane reactor. At a hydraulic retention time of 6h, the process was operated for a period of 15 days with nearly 95% decolorization, 10% reduction in flux and 70% recovery of active ABTS.
Control system for a small fission reactor
Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.
1985-02-08
A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.
Reactor transient control in support of PFR/TREAT TUCOP experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrows, D.R.; Larsen, G.R.; Harrison, L.J.
1984-01-01
Unique energy deposition and experiment control requirements posed bythe PFR/TREAT series of transient undercooling/overpower (TUCOP) experiments resulted in equally unique TREAT reactor operations. New reactor control computer algorithms were written and used with the TREAT reactor control computer system to perform such functions as early power burst generation (based on test train flow conditions), burst generation produced by a step insertion of reactivity following a controlled power ramp, and shutdown (SCRAM) initiators based on both test train conditions and energy deposition. Specialized hardware was constructed to simulate test train inputs to the control computer system so that computer algorithms couldmore » be tested in real time without irradiating the experiment.« less
Neutron physics with accelerators
NASA Astrophysics Data System (ADS)
Colonna, N.; Gunsing, F.; Käppeler, F.
2018-07-01
Neutron-induced nuclear reactions are of key importance for a variety of applications in basic and applied science. Apart from nuclear reactors, accelerator-based neutron sources play a major role in experimental studies, especially for the determination of reaction cross sections over a wide energy span from sub-thermal to GeV energies. After an overview of present and upcoming facilities, this article deals with state-of-the-art detectors and equipment, including the often difficult sample problem. These issues are illustrated at selected examples of measurements for nuclear astrophysics and reactor technology with emphasis on their intertwined relations.
3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenbuch, S.; Velkov, K.; Lizorkin, M.
1997-07-01
This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.
Autonomous Control of Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, H.
2003-10-20
A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that maymore » be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.« less
MacNeill, J.H.; Estabrook, J.Y.
1960-05-10
A reactor control system including a continuous tape passing through a first coolant passageway, over idler rollers, back through another parallel passageway, and over motor-driven rollers is described. Discrete portions of fuel or poison are carried on two opposed active sections of the tape. Driving the tape in forward or reverse directions causes both active sections to be simultaneously inserted or withdrawn uniformly, tending to maintain a more uniform flux within the reactor. The system is particularly useful in mobile reactors, where reduced inertial resistance to control rod movement is important.
Metcalf, H.E.
1958-10-14
Methods of controlling reactors are presented. Specifically, a plurality of neutron absorber members are adjustably disposed in the reactor core at different distances from the center thereof. The absorber members extend into the core from opposite faces thereof and are operated by motive means coupled in a manner to simultaneously withdraw at least one of the absorber members while inserting one of the other absorber members. This feature effects fine control of the neutron reproduction ratio by varying the total volume of the reactor effective in developing the neutronic reaction.
Krustok, I; Odlare, M; Truu, J; Nehrenheim, E
2016-02-01
The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Moore, R.V.; Bowen, J.H.; Dent, K.H.
1958-12-01
A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.
Bian, Wei; Zhang, Shuyan; Zhang, Yanzhuo; Li, Wenjing; Kan, Ruizhe; Wang, Wenxiao; Zheng, Zhaoming; Li, Jun
2017-02-01
A ratio control strategy was implemented in a continuous moving bed biofilm reactor (MBBR) to investigate the response to different temperatures. The control strategy was designed to maintain a constant ratio between dissolved oxygen (DO) and total ammonia nitrogen (TAN) concentrations. The results revealed that a stable nitritation in a biofilm reactor could be achieved via ratio control, which compensated the negative influence of low temperatures by stronger oxygen-limiting conditions. Even with a temperature as low as 6°C, stable nitritation could be achieved when the controlling ratio did not exceed 0.17. Oxygen-limiting conditions in the biofilm reactor were determined by the DO/TAN concentrations ratio, instead of the mere DO concentration. This ratio control strategy allowed the achievement of stable nitritation without complete wash-out of NOB from the reactor. Through the ratio control strategy full nitritation of sidestream wastewater was allowed; however, for mainstream wastewater, only partial nitritation was recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusev, S. I.; Karpov, V. N.; Kiselev, A. N.
2009-09-15
The results of systems tests of the 500 kV busbar magnetization-controllable shunting reactor (CSR), set up in the Tavricheskaya substation, including measurements of the quality of the electric power, the harmonic composition of the network currents of the reactor for different values of the reactive power consumed, the determination of the regulating characteristics of the reactor, the speed of response of the shunting reactor in the current and voltage stabilization modes, and also the operation of the reactor under dynamic conditions for different perturbations, are presented. The results obtained are analyzed.
Macarie, Hervé; Esquivel, Maricela; Laguna, Acela; Baron, Olivier; El Mamouni, Rachid; Guiot, Serge R; Monroy, Oscar
2017-08-26
Granulation of biomass is at the basis of the operation of the most successful anaerobic systems (UASB, EGSB and IC reactors) applied worldwide for wastewater treatment. Despite of decades of studies of the biomass granulation process, it is still not fully understood and controlled. "Degranulation/lack of granulation" is a problem that occurs sometimes in anaerobic systems resulting often in heavy loss of biomass and poor treatment efficiencies or even complete reactor failure. Such a problem occurred in Mexico in two full-scale UASB reactors treating cheese wastewater. A close follow-up of the plant was performed to try to identify the factors responsible for the phenomenon. Basically, the list of possible causes to a granulation problem that were investigated can be classified amongst nutritional, i.e. related to wastewater composition (e.g. deficiency or excess of macronutrients or micronutrients, too high COD proportion due to proteins or volatile fatty acids, high ammonium, sulphate or fat concentrations), operational (excessive loading rate, sub- or over-optimal water upflow velocity) and structural (poor hydraulic design of the plant). Despite of an intensive search, the causes of the granulation problems could not be identified. The present case remains however an example of the strategy that must be followed to identify these causes and could be used as a guide for plant operators or consultants who are confronted with a similar situation independently of the type of wastewater. According to a large literature based on successful experiments at lab scale, an attempt to artificially granulate the industrial reactor biomass through the dosage of a cationic polymer was also tested but equally failed. Instead of promoting granulation, the dosage caused a heavy sludge flotation. This shows that the scaling of such a procedure from lab to real scale cannot be advised right away unless its operability at such a scale can be demonstrated.
Analysis of granular flow in a pebble-bed nuclear reactor.
Rycroft, Chris H; Grest, Gary S; Landry, James W; Bazant, Martin Z
2006-08-01
Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10 m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Chen; CM Regan; D. Noe
2006-01-09
Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas releasemore » and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.« less
In-vessel composting of household wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyengar, Srinath R.; Bhave, Prashant P.
The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for amore » period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes.« less
NASA Astrophysics Data System (ADS)
Pagkoura, Chrysoula; Karagiannakis, George; Halevas, Eleftherios; Konstandopoulos, Athanasios G.
2016-05-01
Over the last years, several research groups have focused on developing efficient thermochemical heat storage (THS) systems, in-principle capable of being coupled with next generation high temperature Concentrated Solar Power plants. Among systems studied, the Co3O4/CoO redox system is a promising candidate. Currently, research efforts extend beyond basic level identification of promising materials to more application-oriented approaches aiming at validation of THS performance at pilot scale reactors. The present work focuses on the investigation of cobalt oxide based honeycomb structures as candidate reactors/heat exchangers to be employed for such purposes. In the evaluation conducted and presented here, cobalt oxide-based structures with different composition and geometrical characteristics were subjected to redox cycles in the temperature window between 800 and 1000°C under air flow. Basic aspects related to redox performance of each system are briefly discussed but the main focus lies on the evaluation of the segments structural stability after multi-cyclic operation. The latter is based on macroscopic visual observation and also supplemented by pre- (i.e. fresh samples) and post-characterization (i.e. after long term exposure) of extruded honeycombs via combined mercury porosimetry and SEM analysis.
Hydraulic Actuator for Ganged Control Rods
NASA Technical Reports Server (NTRS)
Thompson, D. C.; Robey, R. M.
1986-01-01
Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.
Shannon, R.H.; Williamson, H.E.
1962-10-30
A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)
Monte Carlo modelling of TRIGA research reactor
NASA Astrophysics Data System (ADS)
El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.
2010-10-01
The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.
Reactor control rod timing system. [LMFBR
Wu, P.T.K.
1980-03-18
A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.
Reactor control rod timing system
Wu, Peter T. K.
1982-01-01
A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.
ETR CONTROL BUILDING, TRA647, INTERIOR. CONTROL ROOM, CONTEXTUAL VIEW. INSTRUMENT ...
ETR CONTROL BUILDING, TRA-647, INTERIOR. CONTROL ROOM, CONTEXTUAL VIEW. INSTRUMENT PANELS AT REAR OF OPERATOR'S CONSOLE GAVE OPERATOR STATUS OF REACTOR PERFORMANCE, COOLANT-WATER CHARACTERISTICS AND OTHER INDICATORS. WINDOWS AT RIGHT LOOKED INTO ETR BUILDING FIRST FLOOR. CAMERA FACING EAST. INL NEGATIVE NO. HD42-6. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Nuclear electric propulsion reactor control systems status
NASA Technical Reports Server (NTRS)
Ferg, D. A.
1973-01-01
The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.
Fortescue, P.; Nicoll, D.
1962-04-24
A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)
Quick release latch for reactor scram
Johnson, Melvin L.; Shawver, Bruce M.
1976-01-01
A simple, reliable, and fast-acting means for releasing a control element and allowing it to be inserted rapidly into the core region of a nuclear reactor for scram purposes. A latch mechanism grips a coupling head on a nuclear control element to connect the control element to the control drive assembly. The latch mechanism is closed by tensioning a cable or rod with an actuator. The control element is released by de-energizing the actuator, providing fail-safe, rapid release of the control element to effect reactor shutdown. A sensing rod provides indication that the control element is properly positioned in the latch. Two embodiments are illustrated, one involving a collet-type latch mechanism, the other a pliers-type latch mechanism with the actuator located inside the reactor vessel.
Quick release latch for reactor scram
Johnson, M.L.; Shawver, B.M.
1975-09-16
A simple, reliable, and fast-acting means for releasing a control element and allowing it to be inserted rapidly into the core region of a nuclear reactor for scram purposes is described. A latch mechanism grips a coupling head on a nuclear control element to connect the control element to the control drive assembly. The latch mechanism is closed by tensioning a cable or rod with an actuator. The control element is released by de-energizing the actuator, providing fail-safe, rapid release of the control element to effect reactor shutdown. A sensing rod provides indication that the control element is properly positioned in the latch. Two embodiments are illustrated, one involving a collet- type latch mechanism, the other a pliers-type latch mechanism with the actuator located inside the reactor vessel. (auth)
Nuclear Hybrid Energy System Model Stability Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwood, Michael Scott; Cetiner, Sacit M.; Fugate, David W.
2017-04-01
A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idahomore » National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.« less
Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.
2016-01-01
Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.
The effect of cover use on plastic pyrolysis reactor heating process
NASA Astrophysics Data System (ADS)
Armadi, Benny H.; Rangkuti, Chalilullah; Fauzi, M. D.; Permatasari, R.
2017-03-01
Plastic pyrolysis process to produce liquid fuel is an endothermic process that uses heat from the combustion of fuel as heat source. The reactor used is usually a vertical cylindrical in shape, with LPG fuel combustion under the flat bottom of the reactor, and the combustion gases is dispersed into the surrounding environment, so that heat transferred to the plastic inside the reactor is not effective, causing high LPG consumption. In this study, the reactor is made of stainless steel plate, with a vertical cylindrical shape, with a basic cylindrical conical truncated by a pit pass hot flue gas in the middle that serves to deliver flue gas into the chimney. The contact area between the hot combusted LPG gases to the processed plastic inside the reactor becomes bigger and gets better heat transfer, and required less LPG consumption. For more effective heat transfer process, an outer cover of this reactor was made and the relatively hot combustion gases are used to heat the outside of the reactor by directing the flow of the flue gas from the chimney down along the outer wall of the reactor and out the bottom lid. This construction makes the heating process to be faster and the LPG fuel is used more efficiently. From the measurements, it was found to raise 1°C of temperature inside the covered reactor, the LPG consumed is 0.59 gram, and if the reactor cover is removed, the gas demand will rise nearly threefold to 1.43 grams. With this method, in addition to reducing the rate of heat loss will also help reduce LPG consumption significantly.
NASA Astrophysics Data System (ADS)
Mosunova, N. A.
2018-05-01
The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium-plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal-hydraulic, neutronics, and thermal-mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal-hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code's thermal-hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.
Control rod calibration and reactivity effects at the IPEN/MB-01 reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, Letícia Negrão; Gonnelli, Eduardo; Santos, Adimir dos
2014-11-11
Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of themore » control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, J.A.
1989-09-01
This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power onmore » spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.« less
Thermodynamic analysis of the advanced zero emission power plant
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Job, Marcin
2016-03-01
The paper presents the structure and parameters of advanced zero emission power plant (AZEP). This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i) oxygen separation from the air through the membrane, (ii) combustion of the fuel, and (iii) heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC) through the main heat recovery steam generator (HRSG). Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-01
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-20
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.
Fluidic self-actuating control assembly
Grantz, Alan L.
1979-01-01
A fluidic self-actuating control assembly for use in a reactor wherein no external control inputs are required to actuate (scram) the system. The assembly is constructed to scram upon sensing either a sudden depressurization of reactor inlet flow or a sudden increase in core neutron flux. A fluidic control system senses abnormal flow or neutron flux transients and actuates the system, whereupon assembly coolant flow reverses, forcing absorber balls into the reactor core region.
METHOD FOR SENSING DEGREE OF FLUIDIZATION IN FLUIDIZED BED
Levey, R.P. Jr.; Fowler, A.H.
1961-12-12
A method is given for detecting, indicating, and controlling the degree of fluidization in a fluid-bed reactor into which powdered material is fed. The method comprises admitting of gas into the reactor, inserting a springsupported rod into the powder bed of the reactor, exciting the rod to vibrate at its resonant frequency, deriving a signal responsive to the amplitude of vibi-ation of the rod and spring, the signal being directiy proportional to the rate of flow of the gas through the reactor, displaying the signal to provide an indication of the degree of fluidization within the reactor, and controlling the rate of gas flow into the reactor until said signal stabilizes at a constant value to provide substantially complete fluidization within the reactor. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohachek, Randolph Charles
2015-09-01
The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: “contemporary practice in commercial power reactorsmore » is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).” This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.« less
Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.
1959-03-24
A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberto, J.; Diaz de la Rubia, T.; Gibala, R.
2006-10-01
The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 newmore » nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.« less
Overview of the Westinghouse Small Modular Reactor building layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronje, J. M.; Van Wyk, J. J.; Memmott, M. J.
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of themore » plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)« less
Plum Brook Reactor Facility Control Room during Facility Startup
1961-02-21
Operators test the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility systems in the months leading up to its actual operation. The “Reactor On” signs are illuminated but the reactor core was not yet ready for chain reactions. Just a couple weeks after this photograph, Plum Brook Station held a media open house to unveil the 60-megawatt test reactor near Sandusky, Ohio. More than 60 members of the print media and radio and television news services met at the site to talk with community leaders and representatives from NASA and Atomic Energy Commission. The Plum Brook reactor went critical for the first time on the evening of June 14, 1961. It was not until April 1963 that the reactor reached its full potential of 60 megawatts. The reactor control room, located on the second floor of the facility, was run by licensed operators. The operators manually operated the shim rods which adjusted the chain reaction in the reactor core. The regulating rods could partially or completely shut down the reactor. The control room also housed remote area monitoring panels and other monitoring equipment that allowed operators to monitor radiation sensors located throughout the facility and to scram the reactor instantly if necessary. The color of the indicator lights corresponded with the elevation of the detectors in the various buildings. The reactor could also shut itself down automatically if the monitors detected any sudden irregularities.
Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia.
Tian, Hailin; Fotidis, Ioannis A; Mancini, Enrico; Angelidaki, Irini
2017-05-01
Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH 3 -NL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Rada, Elena Cristina; Ragazzi, Marco; Torretta, Vincenzo
2013-01-01
This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8-9 gCOD L(-1) and 0.9 gCOD g(-1) volatile solids.
Clean catalytic combustor program
NASA Technical Reports Server (NTRS)
Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.
1983-01-01
A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.
Reactor Neutronics: Impact of Fissile Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidet, F.; Hill, R. N.
Here, given a wide variety of reactor designs and fuel types, it can be difficult to identify the underlying cause of basic performance differences such as flux level and enrichment requirement. In this paper, using solely the definitions of the core multiplication factor and core power, simple relations have been derived allowing estimates of the flux ratio and fissile material concentration ratio for any reactor concept when 235U is replaced with 239Pu or vice-versa. These relations are functions of the neutron non-leakage probability, and one only needs to know number of neutrons emitted per fission, and the fission cross-section ratiomore » between the 235U system and the 239Pu system. It is found that for a reactor concept having significant leakage, the achievable flux level when using 239Pu as fissile material can be up to 45% larger than when using 235U as fissile material, and the required fissile concentration of 239Pu is up to 48% lower than that of 235U to achieve criticality.« less
Neutronics calculation of RTP core
NASA Astrophysics Data System (ADS)
Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.
2017-01-01
Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.
Reactor Neutronics: Impact of Fissile Material
Heidet, F.; Hill, R. N.
2017-06-09
Here, given a wide variety of reactor designs and fuel types, it can be difficult to identify the underlying cause of basic performance differences such as flux level and enrichment requirement. In this paper, using solely the definitions of the core multiplication factor and core power, simple relations have been derived allowing estimates of the flux ratio and fissile material concentration ratio for any reactor concept when 235U is replaced with 239Pu or vice-versa. These relations are functions of the neutron non-leakage probability, and one only needs to know number of neutrons emitted per fission, and the fission cross-section ratiomore » between the 235U system and the 239Pu system. It is found that for a reactor concept having significant leakage, the achievable flux level when using 239Pu as fissile material can be up to 45% larger than when using 235U as fissile material, and the required fissile concentration of 239Pu is up to 48% lower than that of 235U to achieve criticality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, A. S.
2013-01-15
A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.
NEUTRONIC REACTOR CONTROL ROD DRIVE APPARATUS
Oakes, L.C.; Walker, C.S.
1959-12-15
ABS>A suspension mechanism between a vertically movable nuclear reactor control rod and a rod extension, which also provides information for the operator or an automatic control signal, is described. A spring connects the rod extension to a drive shift. The extension of the spring indicates whether (1) the rod is at rest on the reactor, (2) the rod and extension are suspended, or (3) the extension alone is suspended, the spring controlling a 3-position electrical switch.
NEUTRONIC REACTOR CONTROL ELEMENT
Newson, H.W.
1960-09-13
A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.
Split-core heat-pipe reactors for out-of-pile thermionic power systems.
NASA Technical Reports Server (NTRS)
Niederauer, G.; Lantz, E.; Breitweiser, R.
1971-01-01
Description of the concept of splitting a heat-pipe reactor for out-of-core thermionics into two identical halves and using the resulting center gap for reactivity control. Short Li-W reactor heat pipes penetrate the axial reflectors and form a heat exchanger with long heat pipes which wind through the shield to the thermionic diodes. With one reactor half anchored to the shield, the other is attached to a long arm with a pivot behind the shield and swings through a small arc for reactivity control. A safety shim prevents large reactivity inputs, and a fueled control arm drive shaft acts as a power stabilizer. Reactors fueled with U-235C and with U-233C have been studied.-
PRELIMINARY HAZARDS SUMMARY REPORT FOR THE VALLECITOS SUPERHEAT REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J.L.
1961-02-01
BS>The Vallecitos Superheat Reactor (VSR) is a light-watermoderated, thermal-spectrum reactor, cooled by a combination of moderator boiling and forced convection cooling with saturated steam. The reactor core consists of 32 fuel hurdles containing 5300 lb of UO/sub 2/ enriched in U/sub 235/ to 3.6%. The fuel elements are arranged in individual process tubes that direct the cooling steam flow and separate the steam from the water moderator. The reactor vessel is designed for 1250 psig and operates at 960 to 1000 psig. With the reactor operating at 12.5 Mw(t), the maximum fuel cladding temperature is 1250 deg F and themore » cooling steam is superheated to an average temperature of about 810 deg F at 905 psig. Nu clear operation of the reactor is controlled by 12 control rods, actuated by drives mounted on the bottom of the reactor vessel. The water moderator recirculates inside the reactor vessel and through the core region by natural convection. Inherent safety features of the reactor include the negative core reactivity effects upon heating the UO/sub 2/ fuel (Doppler effect), upon increasing the temperature or void content of the moderator in the operating condition, and upon unflooding the fuel process tubes in the hot condition. Snfety features designed into the reactor and plant systems include a system of sensors and devices to detect petentially unsafe operating conditions and to initiate automatically the appropriate countermeasures, a set of fast and reliable control rods for scramming the reactor if a potentially unsafe condition occurs, a manually-actuated liquid neutron poison system, and an emergency cooling system to provide continued steam flow through the reactor core in the event the reactor becomes isolated from either its normal source of steam supply or discharge. The release of radioactivity to unrestricted areas is maintained within permissible limits by monitoring the radioactivity of wastes and controlling their release. The reactor and many of its auxiliaries are housed within a high-integrity essentially leak-tight containment vessel. (auth)« less
65. ARAII. Interior view of SL1 reactor building control piping ...
65. ARA-II. Interior view of SL-1 reactor building control piping for water purification system. On operating floor of building. March 21, 1958. Ineel photo no. 58-1360. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Combustible gas control for nuclear power reactors. 50.44 Section 50.44 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere with...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Combustible gas control for nuclear power reactors. 50.44 Section 50.44 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere with...
77 FR 41670 - Definition of Terms
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
... cryptography'', 2. On page 642, add the term ``Explosives'', 3. On page 650, add the term ``Nuclear reactor... ``Commerce Control List''. * * * * * Nuclear reactor. (Cat 0 and 2) includes the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the...
NEUTRONIC REACTOR MANIPULATING DEVICE
Ohlinger, L.A.
1962-08-01
A cable connecting a control rod in a reactor with a motor outside the reactor for moving the rod, and a helical conduit in the reactor wall, through which the cable passes are described. The helical shape of the conduit prevents the escape of certain harmful radiations from the reactor. (AEC)
BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.
1981-06-01
This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given.
Fission control system for nuclear reactor
Conley, G.H.; Estes, G.P.
Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamov, E.O.; Lebedev, V.A.; Kuznetsov, Yu.N.
Zheleznogorsk is situated near the territorial center -- Krasnoyarsk on the Yenisei river. Mining and chemical complex is the main industrial enterprise of the town, which has been constructed for generation and used for isolation of weapons-grade plutonium. Heat supply to the chemical complex and town at the moment is largely provided by nuclear co-generation plant (NCGP) on the basis of the ADEh-2 dual-purpose reactor, generating 430 Gcal/h of heat and, partially, by coal backup peak-load boiler houses. NCGP also provides 73% of electric power consumed. In line with agreements between Russia and USA on strategic arms reduction and phasingmore » out of weapons-grade plutonium production, decommissioning of the ADEh-2 reactor by 2000 is planned. Thus, a problem arises relative to compensation for electric and thermal power generation for the needs of the town and industrial enterprises, which is now supplied by the reactor. A nuclear power plant constructed on the same site as a substituting power source should be considered as the most practical option. Basic requirements to the reactor of substituting nuclear power plant are as follows. It is to be a new generation reactor on the basis of verified technologies, having an operating prototype optimal for underground siting and permitting utmost utilization of the available mining workings and those being disengaged. NCGP with the reactor is to be constructed in the time period required and is to become competitive with other possible power sources. Analysis has shown that the VK-300 simplified vessel-type boiling reactor meets the requirements made in the maximum extent. Its design is based on the experience of the VK-50 reactor operation for a period of 30 years in Dimitrovgrad (Russia) and allows for experience in the development of the SBWR type reactors. The design of the reactor is discussed.« less
Graham, R.H.
1962-09-01
A wholly mechanical compact control device is designed for automatically rendering the core of a fission reactor subcritical in response to core temperatures in excess of the design operating temperature limit. The control device comprises an expansible bellows interposed between the base of a channel in a reactor core and the inner end of a fuel cylinder therein which is normally resiliently urged inwardly. The bellows contains a working fluid which undergoes a liquid to vapor phase change at a temperature substantially equal to the design temperature limit. Hence, the bellows abruptiy expands at this limiting temperature to force the fuel cylinder outward and render the core subcritical. The control device is particularly applicable to aircraft propulsion reactor service. (AEC)
Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes
NASA Technical Reports Server (NTRS)
Hegde, Uday; Hicks, Michael
2013-01-01
The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.
REACTOR CONTROL ROD OPERATING SYSTEM
Miller, G.
1961-12-12
A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)
The spectral properties of uranium hexafluoride and its thermal decomposition products
NASA Technical Reports Server (NTRS)
Krascella, N. L.
1976-01-01
This investigation was initiated to provide basic spectral data for gases of interest to the plasma core reactor concept. The attenuation of vacuum ultraviolet (VUV) radiation by helium at pressures up to 20 atm over path lengths of about 61 cm and in the approximate wavelength range between 80 and 300 nm was studied. Measurements were also conducted to provide basic VUV data with respect to UF6 and UF6/argon mixtures in the wavelength range between 80 and 120 nm. Finally, an investigation was initiated to provide basic spectral emission and absorption data for UF6 and possible thermal decomposition products of UF6 at elevated temperatures.
40 CFR 63.1406 - Reactor batch process vent provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions by...
40 CFR 63.1406 - Reactor batch process vent provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions by...
28. A typical main control panel in a 105 reactor ...
28. A typical main control panel in a 105 reactor building, in this case 105-F in February 1945. A single operator sat at the controls to regulate the pile's rate of reaction and monitor it for safety. The galvanometer screens (the two horizontal bars just below the nine round gauges that showed the positions of the control rods) showed the pile's current power setting. With that information, the operator could set the control rod positions to increase, decrease, or maintain the power. D-8310 - B Reactor, Richland, Benton County, WA
Safety control circuit for a neutronic reactor
Ellsworth, Howard C.
2004-04-27
A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.
OVERALL CONTROL SYSTEM FOR HIGH FLUX PILE
Newson, H.W.; Durham, N.C.; Wigner, E.P.; Princeton, N.J.; Epler, E.P.
1961-05-23
A control system is given for a high fiux reactor incorporating an anti- scram control feature whereby a neutron absorbing control rod acts as a fine adjustment while a neutron absorbing shim rod, actuated upon a command received from reactor period and level signals, has substantially greater effect on the neutron level and is moved prior to scram conditions to alter the reactor activity before a scram condition is created. Thus the probability that a scram will have to be initiated is substantially decreased.
Hawke, Basil C.
1986-01-01
A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.
NASA Astrophysics Data System (ADS)
Trifonenkov, A. V.; Trifonenkov, V. P.
2017-01-01
This article deals with a feature of problems of calculating time-average characteristics of nuclear reactor optimal control sets. The operation of a nuclear reactor during threatened period is considered. The optimal control search problem is analysed. The xenon poisoning causes limitations on the variety of statements of the problem of calculating time-average characteristics of a set of optimal reactor power off controls. The level of xenon poisoning is limited. There is a problem of choosing an appropriate segment of the time axis to ensure that optimal control problem is consistent. Two procedures of estimation of the duration of this segment are considered. Two estimations as functions of the xenon limitation were plot. Boundaries of the interval of averaging are defined more precisely.
The role and control of sludge age in biological nutrient removal activated sludge systems.
Ekama, G A
2010-01-01
The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.
NASA Astrophysics Data System (ADS)
Syarip; Po, L. C. C.
2018-05-01
In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.
Rebuilding the Brookhaven high flux beam reactor: A feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brynda, W.J.; Passell, L.; Rorer, D.C.
1995-01-01
After nearly thirty years of operation, Brookhaven`s High Flux Beam Reactor (HFBR) is still one of the world`s premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR`s value as a nationalmore » scientific resource, members of the Laboratory`s scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor`s research capabilities.« less
KERENA safety concept in the context of the Fukushima accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharias, T.; Novotny, C.; Bielor, E.
Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basicmore » physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)« less
Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators
NASA Technical Reports Server (NTRS)
Kindler, Andrew; Narayan, Sri R.
2009-01-01
Two hydrogen generators based on reactions involving magnesium and steam have been proposed as means for generating the fuel (hydrogen gas) for such fuel-cell power systems as those to be used in the drive systems of advanced motor vehicles. The hydrogen generators would make it unnecessary to rely on any of the hydrogen storage systems developed thus far that are, variously, too expensive, too heavy, too bulky, and/or too unsafe to be practical. The two proposed hydrogen generators are denoted basic and advanced, respectively. In the basic hydrogen generator (see figure), steam at a temperature greater than or equals 330 C would be fed into a reactor charged with magnesium, wherein hydrogen would be released in the exothermic reaction Mg + H2O yields MgO + H2. The steam would be made in a flash boiler. To initiate the reaction, the boiler could be heated electrically by energy borrowed from a storage battery that would be recharged during normal operation of the associated fuel-cell subsystem. Once the reaction was underway, heat from the reaction would be fed to the boiler. If the boiler were made an integral part of the hydrogen-generator reactor vessel, then the problem of transfer of heat from the reactor to the boiler would be greatly simplified. A pump would be used to feed water from a storage tank to the boiler.
MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG ...
MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG WALL. WORKERS MAKE ELECTRICAL AND OTHER CONNECTIONS. INL NEGATIVE NO. 4289. Unknown Photographer, 2/26/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Roman, W.G.
1961-06-27
A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.
Reactor design and integration into a nuclear electric spacecraft
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Koenig, D. R.
1978-01-01
One of the well-defined applications for nuclear power in space is nuclear electric propulsion (NEP). Mission studies have identified the optimum power level (400 kWe). A single Shuttle launch requirement and science-package integration have added additional constraints to the design. A reactor design which will meet these constraints has been studied. The reactor employs 90 fuel elements, each heat pipe cooled. Reactor control is obtained with BeO/B4C drums in a BeO reflector. The balance of the spacecraft is shielded from the reactor with LiH. Power conditioning and reactor control drum drives are located behind the LiH with the power conditioning. Launch safety, mechanical design and integration with the power conversion subsystem are discussed.
Analysis of a boron-carbide-drum-controlled critical reactor experiment
NASA Technical Reports Server (NTRS)
Mayo, W. T.
1972-01-01
In order to validate methods and cross sections used in the neutronic design of compact fast-spectrum reactors for generating electric power in space, an analysis of a boron-carbide-drum-controlled critical reactor was made. For this reactor the transport analysis gave generally satisfactory results. The calculated multiplication factor for the most detailed calculation was only 0.7-percent Delta k too high. Calculated reactivity worth of the control drums was $11.61 compared to measurements of $11.58 by the inverse kinetics methods and $11.98 by the inverse counting method. Calculated radial and axial power distributions were in good agreement with experiment.
Symposium on the peaceful uses of atomic energy in Australia, 1958, held in Sydney, in June 1958
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Thirty-nine papers presented at the conference are collected here. The papers are divided into five sections: Materials, Power Engineering, Power Auxiliaries and Research Reactors, Basic Sciences, and Associated Techniques. Separate abstracts of each section have been prepared. (T.R.H.)
ERIC Educational Resources Information Center
Department of Energy, Washington, DC.
This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and the role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: the role of nuclear power; the role of electricity; generating electricity with the…
Protective interior wall and attaching means for a fusion reactor vacuum vessel
Phelps, R.D.; Upham, G.A.; Anderson, P.M.
1985-03-01
The wall basically consists of an array of small rectangular plates attached to the existing walls with threaded fasteners. The protective wall effectively conceals and protects all mounting hardware beneath the plate array, while providing a substantial surface area that will absorb plasma energy.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Nuclear Energy Office.
This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: (1) "The Role of Nuclear Power"; (2) "The Role of Electricity"; (3)…
Fast-spectrum space-power-reactor concepts using boron control devices
NASA Technical Reports Server (NTRS)
Mayo, W.
1973-01-01
Several fast-spectrum space power reactor concepts that use boron carbide control devices were examined to determine the neutronic feasibility of the designs. The designs considered were (1) a 199-fuel-pin, 12-poison-reflector-control-drum reactor; (2) a 232-fuel-pin reactor with 12 reflector drums and three in-core control rods; (3) a 337-fuel-pin design with 12 incore control rods; and a 181-fuel-pin design with six drums closely coupled to the core to increase reactivity per drum. Adequate reactivity control and excess reactivity could be obtained for each concept, and the goals of 50,000 hours at 2.17 thermal megawatts with a lithium-7 coolant outlet temperature of 1222 K could be met without exceeding the 1-percent-clad-creep criterion. Heating rates in the boron carbide were calculated, but a heat transfer analysis was not done.
Anticipatory control of xenon in a pressurized water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Impink, A.J. Jr.
1987-02-10
A method is described for automatically dampening xenon-135 spatial transients in the core of a pressurized water reactor having control rods which regulate reactor power level, comprising the steps of: measuring the neutron flu in the reactor core at a plurality of axially spaced locations on a real-time, on-line basis; repetitively generating from the neutron flux measurements, on a point-by-point basis, signals representative of the current axial distribution of xenon-135, and signals representative of the current rate of change of the axial distribution of xenon-135; generating from the xenon-135 distribution signals and the rate of change of xenon distribution signals,more » control signals for reducing the xenon transients; and positioning the control rods as a function of the control signals to dampen the xenon-135 spatial transients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.
The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most ofmore » what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.« less
A novel plant protection strategy for transient reactors
NASA Astrophysics Data System (ADS)
Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.
A novel plant protection system designed for use in the TREAT Upgrade (TU) reactor is described. The TU reactor is designed for controlled transient operation in the testing of reactor fuel behavior under simulated reactor accident conditions. Safe operation of the reactor is of paramount importance and the Plant Protection System (PPS) had to be designed to exacting requirements. Researchers believe that the strategy developed for the TU has potential application to the multimegawatt space reactors and represents the state of the art in terrestrial transient reactor protection systems.
Pressurized reactor system and a method of operating the same
Isaksson, J.M.
1996-06-18
A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Super-atmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gasification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor. 2 figs.
Pressurized reactor system and a method of operating the same
Isaksson, Juhani M.
1996-01-01
A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Superatmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gassification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor.
Raboni, Massimo; Gavasci, Renato; Viotti, Paolo
2015-01-01
Low concentrations of dissolved oxygen (DO) are usually found in biological anoxic pre-denitrification reactors, causing a reduction in nitrogen removal efficiency. Therefore, the reduction of DO in such reactors is fundamental for achieving good nutrient removal. The article shows the results of an experimental study carried out to evaluate the effect of the anoxic reactor hydrodynamic model on both residual DO concentration and nitrogen removal efficiency. In particular, two hydrodynamic models were considered: the single completely mixed reactor and a series of four reactors that resemble plug-flow behaviour. The latter prove to be more effective in oxygen consumption, allowing a lower residual DO concentration than the former. The series of reactors also achieves better specific denitrification rates and higher denitrification efficiency. Moreover, the denitrification food to microrganism (F:M) ratio (F:MDEN) demonstrates a relevant synergic action in both controlling residual DO and improving the denitrification performance.
Research on pressure control of pressurizer in pressurized water reactor nuclear power plant
NASA Astrophysics Data System (ADS)
Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang
2010-07-01
Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.
LTCC based bioreactors for cell cultivation
NASA Astrophysics Data System (ADS)
Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.
2016-01-01
LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.
Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.; Erpyleva, S. F.
2017-05-01
Results of implementation of the secondary circuit organic amine water chemistry at Russian nuclear power plant (NPP) with VVER-1000 reactors are presented. The requirements for improving the reliability, safety, and efficiency of NPPs and for prolonging the service life of main equipment items necessitate the implementation of new technologies, such as new water chemistries. Data are analyzed on the chemical control of power unit coolant for quality after the changeover to operation with the feed of higher amines, such as morpholine and ethanolamine. Power units having equipment containing copper alloy components were converted from the all-volatile water chemistry to the ethanolamine or morpholine water chemistry with no increase in pH of the steam generator feedwater. This enables the iron content in the steam generator feedwater to be decreased from 6-12 to 2.0-2.5 μg/dm3. It is demonstrated that pH of high-temperature water is among the basic factors controlling erosion and corrosion wear of the piping and the ingress of corrosion products into NPP steam generators. For NPP power units having equipment whose construction material does not include copper alloys, the water chemistries with elevated pH of the secondary coolant are adopted. Stable dosing of correction chemicals at these power units maintains pH25 of 9.5 to 9.7 in the steam generator feedwater with a maximum iron content of 2 μg/dm3 in the steam generator feedwater.
Control console replacement at the WPI Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less
Oxidative coupling of methane using inorganic membrane reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Y.H.; Moser, W.R.; Dixon, A.G.
1995-12-31
The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gasmore » phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.« less
Samani, Saeed; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Amin, Mohammad Mehdi
Electrical current in the hydrolytic phase of the biogas process might affect biogas yield. In this study, four 1,150 mL single membrane-less chamber electrochemical bioreactors, containing two parallel titanium plates were connected to the electrical source with voltages of 0, -0.5, -1 and -1.5 V, respectively. Reactor 1 with 0 V was considered as a control reactor. The trend of biogas production was precisely checked against pH, oxidation reduction potential and electrical power at a temperature of 37 ± 0.5°C amid cattle manure as substrate for 120 days. Biogas production increased by voltage applied to Reactors 2 and 3 when compared with the control reactor. In addition, the electricity in Reactors 2 and 3 caused more biogas production than Reactor 4. Acetogenic phase occurred more quickly in Reactor 3 than in the other reactors. The obtained results from Reactor 4 were indicative of acidogenic domination and its continuous behavior under electrical stimulation. The results of the present investigation clearly revealed that phasic electrical current could enhance the efficiency of biogas production.
Controlled CO preferential oxidation
Meltser, Mark A.; Hoch, Martin M.
1997-01-01
Method for controlling the supply of air to a PROX reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference therebetween correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference.
Szilard, L.
1963-09-10
A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ariani, Menik; Su'ud, Zaki; Waris, Abdul
2012-06-06
A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it ismore » shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senor, David J.; Painter, Chad L.; Geelhood, Ken J.
2007-12-01
Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling,more » core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.« less
PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.
1981-09-01
This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity.more » The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.« less
Chakrabortty, S; Sen, M; Pal, P
2014-03-01
A simulation software (ARRPA) has been developed in Microsoft Visual Basic platform for optimization and control of a novel membrane-integrated arsenic separation plant in the backdrop of absence of such software. The user-friendly, menu-driven software is based on a dynamic linearized mathematical model, developed for the hybrid treatment scheme. The model captures the chemical kinetics in the pre-treating chemical reactor and the separation and transport phenomena involved in nanofiltration. The software has been validated through extensive experimental investigations. The agreement between the outputs from computer simulation program and the experimental findings are excellent and consistent under varying operating conditions reflecting high degree of accuracy and reliability of the software. High values of the overall correlation coefficient (R (2) = 0.989) and Willmott d-index (0.989) are indicators of the capability of the software in analyzing performance of the plant. The software permits pre-analysis, manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. Performance analysis of the whole system as well as the individual units is possible using the tool. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for removal of arsenic from contaminated groundwater.
SNAP 10A FS-3 reactor performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawley, J.P.; Johnson, R.A.
1966-08-15
SNAP 10FS-3 was the first flight-qualified SNAP reactor system to be operated in a simulated space environment. Prestart-up qualification testing, automatic start-up, endurance period performance, extended operation test and reactor shutdown are described as they affected, or were affected by, overall reactor performance. Performance of the reactor control system and the diagnostic instrumentation is critically evaluted.
New approach to control the methanogenic reactor of a two-phase anaerobic digestion system.
von Sachs, Jürgen; Meyer, Ulrich; Rys, Paul; Feitkenhauer, Heiko
2003-03-01
A new control strategy for the methanogenic reactor of a two-phase anaerobic digestion system has been developed and successfully tested on the laboratory scale. The control strategy serves the purpose to detect inhibitory effects and to achieve good conversion. The concept is based on the idea that volatile fatty acids (VFA) can be measured in the influent of the methanogenic reactor by means of titration. Thus, information on the output (methane production) and input of the methanogenic reactor is available, and a (carbon) mass balance can be obtained. The control algorithm comprises a proportional/integral structure with the ratio of (a) the methane production rate measured online and (b) a maximum methane production rate expected (derived from the stoichiometry) as a control variable. The manipulated variable is the volumetric feed rate. Results are shown for an experiment with VFA (feed) concentration ramps and for experiments with sodium chloride as inhibitor.
Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program
NASA Astrophysics Data System (ADS)
Deswandri; Subekti, M.; Sunaryo, Geni Rina
2018-02-01
Multipurpose Research Reactor G.A. Siwabessy (RSG-GAS) which has been operating since 1987 is one of the main facilities on supporting research, development and application of nuclear energy programs in BATAN. Until now, the RSG-GAS research reactor has been successfully operated safely and securely. However, because it has been operating for nearly 30 years, the structures, systems and components (SSCs) from the reactor would have started experiencing an aging phase. The process of aging certainly causes a decrease in reliability and safe performances of the reactor, therefore the aging management program is needed to resolve the issues. One of the programs in the aging management is to evaluate the safety and reliability of the system and also screening the critical components to be managed.One method that can be used for such purposes is the Fault Tree Analysis (FTA). In this papers FTA method is used to screening the critical components in the RSG-GAS Primary Cooling System. The evaluation results showed that the primary isolation valves are the basic events which are dominant against the system failure.
Thermionic converter temperature controller
Shaner, Benjamin J [McMurray, PA; Wolf, Joseph H [Pittsburgh, PA; Johnson, Robert G. R. [Trafford, PA
2001-04-24
A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.
NASA Technical Reports Server (NTRS)
Fox, T. A.
1973-01-01
An experimental reflector reactivity study was made with a compact cylindrical reactor using a uranyl fluoride - water fuel solution. The reactor was axially unreflected and radially reflected with segments of molybdenum. The reflector segments were displaced incrementally in both the axial and radial dimensions, and the shutdown of each configuration was measured by using the pulsed-neutron source technique. The reactivity effects for axial and radial displacement of reflector segments are tabulated separately and compared. The experiments provide data for control-system studies of compact-space-power-reactor concepts.
Overview of the US Fusion Materials Sciences Program
NASA Astrophysics Data System (ADS)
Zinkle, Steven
2004-11-01
The challenging fusion reactor environment (radiation, heat flux, chemical compatibility, thermo-mechanical stresses) requires utilization of advanced materials to fulfill the promise of fusion to provide safe, economical, and environmentally acceptable energy. This presentation reviews recent experimental and modeling highlights on structural materials for fusion energy. The materials requirements for fusion will be compared with other demanding technologies, including high temperature turbine components, proposed Generation IV fission reactors, and the current NASA space fission reactor project to explore the icy moons of Jupiter. A series of high-performance structural materials have been developed by fusion scientists over the past ten years with significantly improved properties compared to earlier materials. Recent advances in the development of high-performance ferritic/martensitic and bainitic steels, nanocomposited oxide dispersion strengthened ferritic steels, high-strength V alloys, improved-ductility Mo alloys, and radiation-resistant SiC composites will be reviewed. Multiscale modeling is providing important insight on radiation damage and plastic deformation mechanisms and fracture mechanics behavior. Electron microscope in-situ straining experiments are uncovering fundamental physical processes controlling deformation in irradiated metals. Fundamental modeling and experimental studies are determining the behavior of transmutant helium in metals, enabling design of materials with improved resistance to void swelling and helium embrittlement. Recent chemical compatibility tests have identified promising new candidates for magnetohydrodynamic insulators in lithium-cooled systems, and have established the basic compatibility of SiC with Pb-Li up to high temperature. Research on advanced joining techniques such as friction stir welding will be described. ITER materials research will be briefly summarized.
A study on using fireclay as a biomass carrier in an activated sludge system.
Tilaki, Ramazan Ali Dianati
2011-01-01
By adding a biomass carrier to an activated sludge system, the biomass concentration will increase, and subsequently the organic removal efficiency will be enhanced. In this study, the possibility of using excess sludge from ceramic and tile manufacturing plants as a biomass carrier was investigated. The aim of this study was to determine the effect of using fireclay as a biomass carrier on biomass concentration, organic removal and nitrification efficiency in an activated sludge system. Experiments were conducted by using a bench scale activated sludge system operating in batch and continuous modes. Artificial simulated wastewater was made by using recirculated water in a ceramic manufacturing plant. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22 h. In the batch mode, aeration time was 8 and 16 h. Fireclay doses were 500, 1,400 and 2,250 mg l(-1), and were added to the reactors in each experiment separately. The reactor with added fireclay was called a Hybrid Biological Reactor (HBR). A reactor without added fireclay was used as a control. Efficiency parameters such as COD, MLVSS and nitrate were measured in the control and HBR reactors according to standard methods. The average concentration of biomass in the HBR reactor was greater than in the control reactor. The total biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 3,000 mg l(-1) and in the batch mode was 2,400 mg l(-1). The attached biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 1,500 mg l(-1) and in the batch mode was 980 mg l(-1). Efficiency for COD removal in the HBR and control reactor was 95 and 55%, respectively. In the HBR reactor, nitrification was enhanced, and the concentration of nitrate was increased by 80%. By increasing the fireclay dose, total and attached biomass was increased. By adding fireclay as a biomass carrier, the efficiency of an activated sludge system to treat wastewater from ceramic manufacturing plants was increased.
Automated power control system for reactor TRIGA PUSPATI
NASA Astrophysics Data System (ADS)
Ghazali, Anith Khairunnisa; Minhat, Mohd Sabri; Hassan, Mohd Khair
2017-01-01
Reactor TRIGA PUSPATI (RTP) Mark II type undergoes safe operation for more than 30 years and the only research reactor exists in Malaysia. The main safety feature of Instrumentation and Control (I&C) system design is such that any failure in the electronic, or its associated components, does not lead to an uncontrolled rate of reactivity. The existed controller using feedback approach to control the reactor power. This paper introduces proposed controllers such as Model Reference Adaptive Control (MRAC) and Proportional Integral Derivatives (PID) controller for the RTP simulation. In RTP, the most important considered parameter is the reactor power and act as nervous system. To design a controller for complex plant like RTP is quite difficult due to high cost and safety factors cause by the failure of the controller. Furthermore, to overcome these problems, a simulator can be used to replace functions the hardware and test could then be simulated using this simulator. In order to find the best controller, several controllers were proposed and the result will be analysed for study the performances of the controller. The output result will be used to find out the best RTP power controller using MATLAB/Simulink and gives result as close as the real RTP performances. Currently, the structures of RTP was design using MATLAB/Simulink tool that consist of fission chamber, controller, control rod position, height-to-worth of control rods and a RTP model. The controller will control the control rod position to make sure that the reactivity still under the limitation parameter. The results given from each controller will be analysed and validated through experiment data collected from RTP.
Miller, H.I.; Smith, R.C.
1958-01-21
This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.
Model predictive control of a solar-thermal reactor
NASA Astrophysics Data System (ADS)
Saade Saade, Maria Elizabeth
Solar-thermal reactors represent a promising alternative to fossil fuels because they can harvest solar energy and transform it into storable and transportable fuels. The operation of solar-thermal reactors is restricted by the available sunlight and its inherently transient behavior, which affects the performance of the reactors and limits their efficiency. Before solar-thermal reactors can become commercially viable, they need to be able to maintain a continuous high-performance operation, even in the presence of passing clouds. A well-designed control system can preserve product quality and maintain stable product compositions, resulting in a more efficient and cost-effective operation, which can ultimately lead to scale-up and commercialization of solar thermochemical technologies. In this work, we propose a model predictive control (MPC) system for a solar-thermal reactor for the steam-gasification of biomass. The proposed controller aims at rejecting the disturbances in solar irradiation caused by the presence of clouds. A first-principles dynamic model of the process was developed. The model was used to study the dynamic responses of the process variables and to identify a linear time-invariant model used in the MPC algorithm. To provide an estimation of the disturbances for the control algorithm, a one-minute-ahead direct normal irradiance (DNI) predictor was developed. The proposed predictor utilizes information obtained through the analysis of sky images, in combination with current atmospheric measurements, to produce the DNI forecast. In the end, a robust controller was designed capable of rejecting disturbances within the operating region. Extensive simulation experiments showed that the controller outperforms a finely-tuned multi-loop feedback control strategy. The results obtained suggest that our controller is suitable for practical implementation.
CONTROL RODS FOR NUCLEAR REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1963-01-16
A means for controlling the control rod in emergency, when it is desired to shutdown the reactor with the shortest possible delay, is described. When the emergency occurs the control rod is allowed to drop freely under gravity from the control rod support tube into the bore in the reactor core. A normal shutdown is reached almost at the lowest rod position. In the shut-down position and also below it, the control rod had its full effect of reducing the level of activity in the core. When the shut-down position was reached, a brake came into action to decelerate themore » rod and reduce shock and the likelihood of damage. (C.E.S.)« less
Magnetic switch for reactor control rod. [LMFBR
Germer, J.H.
1982-09-30
A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.
Magnetic switch for reactor control rod
Germer, John H.
1986-01-01
A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.
The paper gives results of a study to develop baseline engineering data to demonstrate the feasibility of application of plasma reactors to the destruction of various volatile organic compounds at ppm levels. Two laboratory-scale reactors, an alternating current energized ferroel...
A Semi-Batch Reactor Experiment for the Undergraduate Laboratory
ERIC Educational Resources Information Center
Derevjanik, Mario; Badri, Solmaz; Barat, Robert
2011-01-01
This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…
Teaching Reaction Engineering Using the Attainable Region
ERIC Educational Resources Information Center
Metzger, Matthew J.; Glasser, Benjamin J.; Glasser, David; Hausberger, Brendon; Hildebrandt, Diane
2007-01-01
Ask a graduating chemical engineering student the following question: What makes one reactor different from the next? The answers received will often be unsatisfactory and will vary widely in scope. Some may cite the difference between the basic design equations, others may point out a PFR is "longer," and still others may state that it…
CONTROL RODS FOR NUCLEAR REACTOR CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1961-11-15
A reactor control rod is designed which has increased effectiveness as compared with the width of the aperture in the pressure vessel through which it passes. The control rod carries six fins, three on each side, and two of the fins are fixed while the other, being adjustable, is capable of movement from between the fixed fins to an extended position. Thus, the control rod assembly can be arranged so that the parts within the core form a substantially complete shell around the reactor central axis, while the apertures on the pressure vessel wall are well spaced for strength. (D.L.C.)
Dynamic analysis of gas-core reactor system
NASA Technical Reports Server (NTRS)
Turner, K. H., Jr.
1973-01-01
A heat transfer analysis was incorporated into a previously developed model CODYN to obtain a model of open-cycle gaseous core reactor dynamics which can predict the heat flux at the cavity wall. The resulting model was used to study the sensitivity of the model to the value of the reactivity coefficients and to determine the system response for twenty specified perturbations. In addition, the model was used to study the effectiveness of several control systems in controlling the reactor. It was concluded that control drums located in the moderator region capable of inserting reactivity quickly provided the best control.
SELF-REGULATING BOILING-WATER NUCLEAR REACTORS
Ransohoff, J.A.; Plawchan, J.D.
1960-08-16
A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.
Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1995-01-01
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less
Design of a self-tuning regulator for temperature control of a polymerization reactor.
Vasanthi, D; Pranavamoorthy, B; Pappa, N
2012-01-01
The temperature control of a polymerization reactor described by Chylla and Haase, a control engineering benchmark problem, is used to illustrate the potential of adaptive control design by employing a self-tuning regulator concept. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. The conventional cascade control provides a robust operation, but often lacks in control performance concerning the required strict temperature tolerances. The self-tuning control concept presented in this contribution solves the problem. This design calculates a trajectory for the cooling jacket temperature in order to follow a predefined trajectory of the reactor temperature. The reaction heat and the heat transfer coefficient in the energy balance are estimated online by using an unscented Kalman filter (UKF). Two simple physically motivated relations are employed, which allow the non-delayed estimation of both quantities. Simulation results under model uncertainties show the effectiveness of the self-tuning control concept. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Kim, Lavane; Pagaling, Eulyn; Zuo, Yi Y.
2014-01-01
The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes. PMID:24141134
Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles
Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek
2016-01-01
This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less
Droplet Core Nuclear Rocket (DCNR)
NASA Technical Reports Server (NTRS)
Anghaie, Samim
1991-01-01
The most basic design feature of the droplet core nuclear reactor is to spray liquid uranium into the core in the form of droplets on the order of five to ten microns in size, to bring the reactor to critical conditions. The liquid uranium fuel ejector is driven by hydrogen, and more hydrogen is injected from the side of the reactor to about one and a half meters from the top. High temperature hydrogen is expanded through a nozzle to produce thrust. The hydrogen pressure in the system can be somewhere between 50 and 500 atmospheres; the higher pressure is more desirable. In the lower core region, hydrogen is tangentially injected to serve two purposes: (1) to provide a swirling flow to protect the wall from impingement of hot uranium droplets: (2) to generate a vortex flow that can be used for fuel separation. The reactor is designed to maximize the energy generation in the upper region of the core. The system can result in and Isp of 2000 per second, and a thrust-to-weight ratio of 1.6 for the shielded reactor. The nuclear engine system can reduce the Mars mission duration to less than 200 days. It can reduce the hydrogen consumption by a factor of 2 to 3, which reduces the hydrogen load by about 130 to 150 metric tons.
Accelerator–Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek
2015-01-01
This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focused on issues of interest, e.g. the impact of the energy required to run the accelerator and associated systems onmore » the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are a critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also reviewed the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity versus a critical fast reactor with recycle of uranium and plutonium.« less
Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek
This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.
Jeong, K; Choo, Y S; Hong, H J; Yoon, Y S; Song, M H
2015-03-01
Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, K.; Choo, Y. S.; Hong, H. J.
Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 mlmore » and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.« less
Habashi, Nima; Alighardashi, Abolghasem; Mennerich, Artur; Mehrdadi, Nasser; Torabian, Ali
2018-04-01
Hydrodynamic cavitation (HC) was evaluated as a pretreatment for synthetic oily wastewater (OWW) to be co-digested with waste-activated sludge (WAS). The main objective of the present research was the enhancement of biogas production by the application of HC pretreatment. HC was applied to the OWW, and the OWW and WAS were added to a 50 L continuous digestion reactor. As a control system, an identical digestion reactor was set up for co-digestion of the WAS and the OWW without pretreatment. The reactors were initially filled with inoculum and the hydraulic retention time (HRT) was set to 22 d. The HRT was gradually reduced to 19, 16, and finally 13 d, but the substrate quality was kept constant. The loading rate, accordingly, increased from 0.86 to 1.46 g TVS/(L d). The biogas volume was recorded online and its quality was analyzed regularly. The HC improved biogas production up to 43% at 22 d of HRT. Reducing the HRT decreased biogas production from the main reactor while that of the control reactor was more or less constant. HC also increased the biogas methane content; the methane concentration of the main reactor was about 3% higher than the methane concentration of the control reactor. The main reactor experienced no clogging or accumulation of fatty materials.
Nuclear reactor fuel containment safety structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewell, M.P.
A nuclear reactor fuel containment safety structure is disclosed and is shown to include an atomic reactor fuel shield with a fuel containment chamber and exhaust passage means, and a deactivating containment base attached beneath the fuel reactor shield and having exhaust passages, manifold, and fluxing and control material and vessels. 1 claim, 8 figures.
A novel plant protection strategy for transient reactors
NASA Astrophysics Data System (ADS)
Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.
The present plant protection system (PPS) has been defined for use in the TREAT-upgrade (TU) reactor for controlled transient operation of reactor-fuel behavior testing under simulated reactor-accident conditions. A PPS with energy-dependent trip set points lowered worst-case clad temperatures by as much as 180 K, relative to the use of conventional fixed-level trip set points. The multilayered multilevel protection strategy represents the state-of-the-art in terrestrial transient reactor protection systems, and should be applicable to multi-MW space reactors.
2009-12-10
Small Modular Reactors Rising cost estimates for large conventional nuclear power plants—widely projected to be $6 billion or more—have contributed to growing interest in proposals for smaller, modular reactors. Ranging from about 40 to 350 megawatts of electrical capacity, such reactors would be only a fraction of the size of current commercial reactors. Several modular reactors would be installed together to make up a power block with a single control room, under most concepts. Modular reactor concepts would use a variety of technologies,
Developments and Tendencies in Fission Reactor Concepts
NASA Astrophysics Data System (ADS)
Adamov, E. O.; Fuji-Ie, Y.
This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC) - as an advanced and promising reactor system that offers solutions to the above problems. The difference (not confrontation) between the approaches to nuclear power development based on the principles of “inherent safety” and “natural safety” is demonstrated.
Lozada, Mariana; Basile, Laura; Erijman, Leonardo
2007-01-01
The development of bacterial communities in replicate lab-scale-activated sludge reactors degrading a non-ionic surfactant was evaluated by statistical analysis of denaturing gradient gel electrophoresis (DGGE) fingerprints. Four sequential batch reactors were fed with synthetic sewage, two of which received, in addition, 0.01% of nonylphenol ethoxylates (NPE). The dynamic character of bacterial community structure was confirmed by the differences in species composition among replicate reactors. Measurement of similarities between reactors was obtained by pairwise similarity analysis using the Bray Curtis coefficient. The group of NPE-amended reactors exhibited the highest similarity values (Sjk=0.53+/-0.03), indicating that the bacterial community structure of NPE-amended reactors was better replicated than control reactors (Sjk=0.36+/-0.04). Replicate NPE-amended reactors taken at different times of operation clustered together, whereas analogous relations within the control reactor cluster were not observed. The DGGE pattern of isolates grown in conditioned media prepared with media taken at the end of the aeration cycle grouped separately from other conditioned and synthetic media regardless of the carbon source amendment, suggesting that NPE degradation residuals could have a role in the shaping of the community structure.
Control console replacement at the WPI Reactor. [Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less
Physical and chemical controls on the critical zone
Anderson, S.P.; Von Blanckenburg, F.; White, A.F.
2007-01-01
Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.
Nuclear reactor with low-level core coolant intake
Challberg, Roy C.; Townsend, Harold E.
1993-01-01
A natural-circulation boiling-water reactor has skirts extending downward from control rod guide tubes to about 10 centimeters from the reactor vessel bottom. The skirts define annular channels about control rod drive housings that extend through the reactor vessel bottom. Recirculating water is forced in through the low-level entrances to these channels, sweeping bottom water into the channels in the process. The sweeping action prevents cooler water from accumulating at the bottom. This in turn minimizes thermal shock to bottom-dwelling components as would occur when accumulated cool water is swept away and suddenly replaced by warmer water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyack, B.E.; Steiner, J.L.; Harmony, S.C.
The PIUS advanced reactor is a 640-MWe pressurized water reactor concept developed by Asea Brown Boveri. A unique feature of PIUS is the absence of mechanical control and shutdown rods. Reactivity is controlled by coolant boron concentration and the temperature of the moderator coolant. Los Alamos supported the US Nuclear Regulatory Commission`s preapplication review of the PIUS reactor. Baseline calculations of the PIUS design were performed for active and passive reactor scrams using TRAC-PF1/MOD2. Additional sensitivity studies examined flow blockage and boron dilution events to explore the robustness of the PIUS concept for low-probability combination events following active-system scrams.
Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott
2012-01-01
A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.
Study of the Photon Strength Functions for Gadolinium Isotopes with the DANCE Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dashdorj, D.; Mitchell, G. E.; Baramsai, B.
2009-03-10
The gadolinium isotopes are interesting for reactor applications as well as for medicine and astrophysics. The gadolinium isotopes have some of the largest neutron capture cross sections. As a consequence they are used in the control rod in reactor fuel assembly. From the basic science point of view, there are seven stable isotopes of gadolinium with varying degrees of deformation. Therefore they provide a good testing ground for the study of deformation dependent structure such as the scissors mode. Decay gamma rays following neutron capture on Gd isotopes are detected by the DANCE array, which is located at flight pathmore » 14 at the Lujan Neutron Scattering Center at Los Alamos National Laboratory. The high segmentation and close packing of the detector array enable gamma-ray multiplicity measurements. The calorimetric properties of the DANCE array coupled with the neutron time-of-flight technique enables one to gate on a specific resonance of a specific isotope in the time-of-flight spectrum and obtain the summed energy spectrum for that isotope. The singles gamma-ray spectrum for each multiplicity can be separated by their DANCE cluster multiplicity. Various photon strength function models are used for comparison with experimentally measured DANCE data and provide insight for understanding the statistical decay properties of deformed nuclei.« less
Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit
NASA Astrophysics Data System (ADS)
Mason, L.; Palac, D.; Gibson, M.; Houts, M.; Warren, J.; Werner, J.; Poston, D.; Qualls, L.; Radel, R.; Harlow, S.
A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.
On some control problems of dynamic of reactor
NASA Astrophysics Data System (ADS)
Baskakov, A. V.; Volkov, N. P.
2017-12-01
The paper analyzes controllability of the transient processes in some problems of nuclear reactor dynamics. In this case, the mathematical model of nuclear reactor dynamics is described by a system of integro-differential equations consisting of the non-stationary anisotropic multi-velocity kinetic equation of neutron transport and the balance equation of delayed neutrons. The paper defines the formulation of the linear problem on control of transient processes in nuclear reactors with application of spatially distributed actions on internal neutron sources, and the formulation of the nonlinear problems on control of transient processes with application of spatially distributed actions on the neutron absorption coefficient and the neutron scattering indicatrix. The required control actions depend on the spatial and velocity coordinates. The theorems on existence and uniqueness of these control actions are proved in the paper. To do this, the control problems mentioned above are reduced to equivalent systems of integral equations. Existence and uniqueness of the solution for this system of integral equations is proved by the method of successive approximations, which makes it possible to construct an iterative scheme for numerical analyses of transient processes in a given nuclear reactor with application of the developed mathematical model. Sufficient conditions for controllability of transient processes are also obtained. In conclusion, a connection is made between the control problems and the observation problems, which, by to the given information, allow us to reconstruct either the function of internal neutron sources, or the neutron absorption coefficient, or the neutron scattering indicatrix....
Advanced gray rod control assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drudy, Keith J; Carlson, William R; Conner, Michael E
An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber tomore » enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.« less
NASA Astrophysics Data System (ADS)
Bragg-Sitton, Shannon M.
The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable ambitious space exploration missions. The natural space radiation environment provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Applying the approximate proton source in geosynchronous orbit during a solar particle event, investigation using MCNPX 2.5.b for proton transport through the SAFE-400 heat pipe cooled reactor indicates an incoming secondary neutron current of (1.16 +/- 0.03) x 107 n/s at the core-reflector interface. This neutron current may affect reactor operation during low power maneuvers (e.g., start-up) and may provide a sufficient reactor start-up source. It is important that a reactor control system be designed to automatically adjust to changes in reactor power levels, maintaining nominal operation without user intervention. A robust, autonomous control system is developed and analyzed for application during reactor start-up, accounting for fluctuations in the radiation environment that result from changes in vehicle location or to temporal variations in the radiation field. Development of a nuclear reactor for space applications requires a significant amount of testing prior to deployment of a flight unit. High confidence in fission system performance can be obtained through relatively inexpensive non-nuclear tests performed in relevant environments, with the heat from nuclear fission simulated using electric resistance heaters. A series of non-nuclear experiments was performed to characterize various aspects of reactor operation. This work includes measurement of reactor core deformation due to material thermal expansion and implementation of a virtual reactivity feedback control loop; testing and thermal hydraulic characterization of the coolant flow paths for two space reactor concepts; and analysis of heat pipe operation during start-up and steady state operation.
NASA Astrophysics Data System (ADS)
Karriem, Veronica V.
Nuclear reactor design incorporates the study and application of nuclear physics, nuclear thermal hydraulic and nuclear safety. Theoretical models and numerical methods implemented in computer programs are utilized to analyze and design nuclear reactors. The focus of this PhD study's is the development of an advanced high-fidelity multi-physics code system to perform reactor core analysis for design and safety evaluations of research TRIGA-type reactors. The fuel management and design code system TRIGSIMS was further developed to fulfill the function of a reactor design and analysis code system for the Pennsylvania State Breazeale Reactor (PSBR). TRIGSIMS, which is currently in use at the PSBR, is a fuel management tool, which incorporates the depletion code ORIGEN-S (part of SCALE system) and the Monte Carlo neutronics solver MCNP. The diffusion theory code ADMARC-H is used within TRIGSIMS to accelerate the MCNP calculations. It manages the data and fuel isotopic content and stores it for future burnup calculations. The contribution of this work is the development of an improved version of TRIGSIMS, named TRIGSIMS-TH. TRIGSIMS-TH incorporates a thermal hydraulic module based on the advanced sub-channel code COBRA-TF (CTF). CTF provides the temperature feedback needed in the multi-physics calculations as well as the thermal hydraulics modeling capability of the reactor core. The temperature feedback model is using the CTF-provided local moderator and fuel temperatures for the cross-section modeling for ADMARC-H and MCNP calculations. To perform efficient critical control rod calculations, a methodology for applying a control rod position was implemented in TRIGSIMS-TH, making this code system a modeling and design tool for future core loadings. The new TRIGSIMS-TH is a computer program that interlinks various other functional reactor analysis tools. It consists of the MCNP5, ADMARC-H, ORIGEN-S, and CTF. CTF was coupled with both MCNP and ADMARC-H to provide the heterogeneous temperature distribution throughout the core. Each of these codes is written in its own computer language performing its function and outputs a set of data. TRIGSIMS-TH provides an effective use and data manipulation and transfer between different codes. With the implementation of feedback and control- rod-position modeling methodologies, the TRIGSIMS-TH calculations are more accurate and in a better agreement with measured data. The PSBR is unique in many ways and there are no "off-the-shelf" codes, which can model this design in its entirety. In particular, PSBR has an open core design, which is cooled by natural convection. Combining several codes into a unique system brings many challenges. It also requires substantial knowledge of both operation and core design of the PSBR. This reactor is in operation decades and there is a fair amount of studies and developments in both PSBR thermal hydraulics and neutronics. Measured data is also available for various core loadings and can be used for validation activities. The previous studies and developments in PSBR modeling also aids as a guide to assess the findings of the work herein. In order to incorporate new methods and codes into exiting TRIGSIMS, a re-evaluation of various components of the code was performed to assure the accuracy and efficiency of the existing CTF/MCNP5/ADMARC-H multi-physics coupling. A new set of ADMARC-H diffusion coefficients and cross sections was generated using the SERPENT code. This was needed as the previous data was not generated with thermal hydraulic feedback and the ARO position was used as the critical rod position. The B4C was re-evaluated for this update. The data exchange between ADMARC-H and MCNP5 was modified. The basic core model is given a flexibility to allow for various changes within the core model, and this feature was implemented in TRIGSIMS-TH. The PSBR core in the new code model can be expanded and changed. This allows the new code to be used as a modeling tool for design and analyses of future code loadings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1963-01-16
An arrangement was described for scramming a reactor in an emergency. Control rods were position adjusted by an electric motor and transmission. A locking system kept the control rods in position but was arranged to be released in an emergency to allow the rods to drop into their shutdown position. (C.E.S.)
Autonomous Control of Space Reactor Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo
2007-11-30
Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.
Electric-stepping-motor tests for a control-drum actuator of a nuclear reactor
NASA Technical Reports Server (NTRS)
Kieffer, A. W.
1972-01-01
Experimental tests were conducted on two stepping motors for application as reactor control-drum actuators. Various control-drum loads with frictional resistances ranging from approximately zero to 40 N-m and inertias ranging from zero to 0.424 kg-sq m were tested.
Properties of the ion-ion hybrid resonator in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, George J.
2015-10-06
The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvén resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts betweenmore » experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.« less
Self-actuating reactor shutdown system
Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.
1988-01-01
A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.
Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Masri Husam Fayiz, Al
2017-01-01
The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.
Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor
Jones, Robert D.
1978-01-01
A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.
Integrated intelligent systems in advanced reactor control rooms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckmeyer, R.R.
1989-01-01
An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs.,more » 5 figs.« less
Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst
Matthews, Charles W.
1977-01-01
A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.
Screening of redox couples and electrode materials
NASA Technical Reports Server (NTRS)
Giner, J.; Swette, L.; Cahill, K.
1976-01-01
Electrochemical parameters of selected redox couples that might be potentially promising for application in bulk energy storage systems were investigated. This was carried out in two phases: a broad investigation of the basic characteristics and behavior of various redox couples, followed by a more limited investigation of their electrochemical performance in a redox flow reactor configuration. In the first phase of the program, eight redox couples were evaluated under a variety of conditions in terms of their exchange current densities as measured by the rotating disk electrode procedure. The second phase of the program involved the testing of four couples in a redox reactor under flow conditions with a varity of electrode materials and structures.
Water NSTF Design, Instrumentation, and Test Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, Darius D.; Gerardi, Craig D.; Hu, Rui
The following report serves as a formal introduction to the water-based Natural convection Shutdown heat removal Test Facility (NSTF) program at Argonne. Since 2005, this US Department of Energy (DOE) sponsored program has conducted large scale experimental testing to generate high-quality and traceable validation data for guiding design decisions of the Reactor Cavity Cooling System (RCCS) concept for advanced reactor designs. The most recent facility iteration, and focus of this report, is the operation of a 1/2 scale model of a water-RCCS concept. Several features of the NSTF prototype align with the conceptual design that has been publicly released formore » the AREVA 625 MWt SC-HTGR. The design of the NSTF also retains all aspects common to a fundamental boiling water thermosiphon, and thus is well poised to provide necessary experimental data to advance basic understanding of natural circulation phenomena and contribute to computer code validation. Overall, the NSTF program operates to support the DOE vision of aiding US vendors in design choices of future reactor concepts, advancing the maturity of codes for licensing, and ultimately developing safe and reliable reactor technologies. In this report, the top-level program objectives, testing requirements, and unique considerations for the water cooled test assembly are discussed, and presented in sufficient depth to support defining the program’s overall scope and purpose. A discussion of the proposed 6-year testing program is then introduced, which outlines the specific strategy and testing plan for facility operations. The proposed testing plan has been developed to meet the toplevel objective of conducting high-quality test operations that span across a broad range of single- and two-phase operating conditions. Details of characterization, baseline test cases, accident scenario, and parametric variations are provided, including discussions of later-stage test cases that examine the influence of geometric variations and off-normal configurations. The facility design follows, including as-built dimensions and specifications of the various mechanical and liquid systems, design choices for the test section, water storage tank, and network piping. Specifications of the instrumentation suite are then presented, along with specific information on performance windows, measurement uncertainties, and installation locations. Finally, descriptions of the control systems and heat removal networks are provided, which have been engineered to support precise quantification of energy balances and facilitate well-controlled test operations.« less
Cost-Effective Systems for Atomic Layer Deposition
ERIC Educational Resources Information Center
Lubitz, Michael; Medina, Phillip A., IV; Antic, Aleks; Rosin, Joseph T.; Fahlman, Bradley D.
2014-01-01
Herein, we describe the design and testing of two different home-built atomic layer deposition (ALD) systems for the growth of thin films with sub-monolayer control over film thickness. The first reactor is a horizontally aligned hot-walled reactor with a vacuum purging system. The second reactor is a vertically aligned cold-walled reactor with a…
RADIOACTIVE CONTAMINATION OF FOODS. PROBLEMS IN THE FOOD CONSUMPTION OF THE ITALIAN POPULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferro-Luzzi, A.; Mariani, A.
The aspects of health physics that are basically applications of physics are reviewed. Units of radiation measurement, RBE, permissible doses, personnel monitoring, applications of radiation spectrometry, and measurement of body activity are considered, as well as the release, dispersion, and deposition of radioactive material in reactor accidents. 140 references. (D.C.W.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, R.M.; Madaras, J.J.; Trowbridge, F.R. Jr.
Experimental tests on the Annular Core Research Reactor have confirmed that the Three-Bean-Salad'' control algorithm based on the Pontryagin maximum principle can change the power of a nuclear reactor many decades with a very fast startup rate and minimal overshoot. The paper describes the results of simulations and operations up to 25 MW and 87 decades per minute. 3 refs., 4 figs., 1 tab.
Controlled CO preferential oxidation
Meltser, M.A.; Hoch, M.M.
1997-06-10
Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.
MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...
MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Self isolating high frequency saturable reactor
Moore, James A.
1998-06-23
The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.
Microprocessor tester for the treat upgrade reactor trip system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenkszus, F.R.; Bucher, R.G.
1984-01-01
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety systemmore » is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.« less
Nuclear reactor shutdown control rod assembly
Bilibin, Konstantin
1988-01-01
A temperature responsive, self-actuated nuclear reactor shutdown control rod assembly 10. The upper end 18 of a lower drive line 17 fits within the lower end of an upper drive line 12. The lower end (not shown) of the lower drive line 17 is connected to a neutron absorber. During normal temperature conditions the lower drive line 17 is supported by detent means 22,26. When an overtemperature condition occurs thermal actuation means 34 urges ring 26 upwardly sufficiently to allow balls 22 to move radially outwardly thereby allowing lower drive line 17 to move downwardly toward the core of the nuclear reactor resulting in automatic reduction of the reactor powder.
Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation.
Passalía, Claudio; Alfano, Orlando M; Brandi, Rodolfo J
2017-06-07
An integral reactor design methodology was developed to address the optimal design of photocatalytic wall reactors to be used in air pollution control. For a target pollutant to be eliminated from an air stream, the proposed methodology is initiated with a mechanistic derived reaction rate. The determination of intrinsic kinetic parameters is associated with the use of a simple geometry laboratory scale reactor, operation under kinetic control and a uniform incident radiation flux, which allows computing the local superficial rate of photon absorption. Thus, a simple model can describe the mass balance and a solution may be obtained. The kinetic parameters may be estimated by the combination of the mathematical model and the experimental results. The validated intrinsic kinetics obtained may be directly used in the scaling-up of any reactor configuration and size. The bench scale reactor may require the use of complex computational software to obtain the fields of velocity, radiation absorption and species concentration. The complete methodology was successfully applied to the elimination of airborne formaldehyde. The kinetic parameters were determined in a flat plate reactor, whilst a bench scale corrugated wall reactor was used to illustrate the scaling-up methodology. In addition, an optimal folding angle of the corrugated reactor was found using computational fluid dynamics tools.
METHOD AND APPARATUS FOR REACTOR SAFETY CONTROL
Huston, N.E.
1961-06-01
A self-contained nuclear reactor fuse controlled device tron absorbing material, normally in a compact form but which can be expanded into an extended form presenting a large surface for neutron absorption when triggered by an increase in neutron flux, is described.
Anderson, H.L.
1958-10-01
The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.
Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, L. B.; Kolb, J. O.
1970-01-01
Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.
PRESSURIZED WATER REACTOR CORE WITH PLUTONIUM BURNUP
Puechl, K.H.
1963-09-24
A pressurized water reactor is described having a core containing Pu/sup 240/ in which the effective microscopic neutronabsorption cross section of Pu/sup 240/ in unconverted condition decreases as the time of operation of the reactor increases, in order to compensate for loss of reactivity resulting from fission product buildup during reactor operation. This means serves to improve the efficiency of the reactor operation by reducing power losses resulting from control rods and burnable poisons. (AEC)
Energy efficient continuous flow ash lockhopper
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)
1989-01-01
The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.
REACTIVITY MEASUREMENT FACILITY. CAMERA LOOKS DOWN INTO MTR CANAL. REACTOR ...
REACTIVITY MEASUREMENT FACILITY. CAMERA LOOKS DOWN INTO MTR CANAL. REACTOR IS FUELED AS AN ETR MOCK-UP. LIGHTS DANGLE BELOW WATER LEVEL. CONTROL RODS AND OTHER APPARATUS DESCEND FROM ABOVE WATER LEVEL. INL NEGATIVE NO. 56-900. Jack L. Anderson, Photographer, 3/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
40 CFR 63.494 - Back-end process provisions-residual organic HAP and emission limitations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be measured after the stripping operation (or the reactor(s), if the plant has no stripper(s)), as... operation (or the reactor(s), if the plant has no stripper(s)). The limitation shall be calculated and... = Controlled emissions in 2009, Mg/yr P2009 = Total elastomer product leaving the stripper in 2009, Mg/yr...
40 CFR 63.494 - Back-end process provisions-residual organic HAP and emission limitations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... be measured after the stripping operation (or the reactor(s), if the plant has no stripper(s)), as... operation (or the reactor(s), if the plant has no stripper(s)). The limitation shall be calculated and... = Controlled emissions in 2009, Mg/yr P2009 = Total elastomer product leaving the stripper in 2009, Mg/yr...
Variable flow control for a nuclear reactor control rod
Carleton, Richard D.; Bhattacharyya, Ajay
1978-01-01
A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.
Chapellier, R.A.
1960-05-24
BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.
Automatic safety rod for reactors. [LMFBR
Germer, J.H.
1982-03-23
An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.
Automatic safety rod for reactors
Germer, John H.
1988-01-01
An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.
Skelton, V; Greenway, G M; Haswell, S J; Styring, P; Morgan, D O; Warrington, B H; Wong, S Y
2001-01-01
The stereoselective control of chemical reactions has been achieved by applying electrical fields in a micro reactor generating controlled concentration gradients of the reagent streams. The chemistry based upon well-established Wittig synthesis was carried out in a micro reactor device fabricated in borosilicate glass using photolithographic and wet etching techniques. The selectivity of the cis (Z) to trans (E) isomeric ratio in the product synthesised was controlled by varying the applied voltages to the reagent reservoirs within the micro reactor. This subsequently altered the relative reagent concentrations within the device resulting in Z/E ratios in the range 0.57-5.21. By comparison, a traditional batch method based on the same reaction length, concentration, solvent and stoichiometry (i.e., 1.0:1.5:1.0 reagent ratios) gave a Z/E in the range 2.8-3.0. However, when the stoichiometric ratios were varied up to ten times as much, the Z/E ratios varied in accordance to the micro reactor i.e., when the aldehyde is in excess, the Z isomer predominates whereas when the aldehyde is in low concentrations, the E isomer is the more favourable form. Thus indicating that localised concentration gradients generated by careful flow control due to the diffusion limited non-turbulent mixing regime within a micro reactor, leads to the observed stereo selectivity for the cis and trans isomers.
Factors Affecting Herd Status for Bovine Tuberculosis in Dairy Cattle in Northern Thailand
Singhla, Tawatchai; Punyapornwithaya, Veerasak; VanderWaal, Kimberly L.; Alvarez, Julio; Sreevatsan, Srinand; Phornwisetsirikun, Somphorn; Sankwan, Jamnong; Srijun, Mongkol; Wells, Scott J.
2017-01-01
The objective of this case-control study was to identify farm-level risk factors associated with bovine tuberculosis (bTB) in dairy cows in northern Thailand. Spatial analysis was performed to identify geographical clustering of case-farms located in Chiang Mai and Chiang Rai provinces in northern Thailand. To identify management factors affecting bTB status, a matched case-control study was conducted with 20 case-farms and 38 control-farms. Case-farms were dairy farms with at least single intradermal tuberculin test- (SIT-) reactor(s) in the farms during 2011 to 2015. Control-farms were dairy farms with no SIT-reactors in the same period and located within 5 km from case-farms. Questionnaires were administered for data collection with questions based on epidemiological plausibility and characteristics of the local livestock industry. Data were analyzed using multiple logistic regressions. A significant geographic cluster was identified only in Chiang Mai province (p < 0.05). The risk factor associated with presence of SIT-reactors in dairy herds located in this region was purchasing dairy cows from dealers (OR = 5.85, 95% CI = 1.66–20.58, and p = 0.006). From this study, it was concluded that geographic clustering was identified for dairy farms with SIT-reactors in these provinces, and the cattle movements through cattle dealers increased the risks for SIT-reactor farm status. PMID:28553557
NASA Astrophysics Data System (ADS)
Kasilov, V. F.; Dudolin, A. A.; Gospodchenkov, I. V.
2015-05-01
The design of a modular SVBR-100 reactor with a lead-bismuth alloy liquid-metal coolant is described. The basic thermal circuit of a power unit built around the SVBR-100 reactor is presented together with the results of its calculation. The gross electrical efficiency of the turbine unit driven by saturated steam at a pressure of 6.7 MPa is estimated at η{el/gr} = 35.5%. Ways for improving the efficiency of this power unit and increasing its power output by applying gas-turbine and combined-cycle technologies are considered. With implementing a combined-cycle power-generating system comprising two GE-6101FA gas-turbine units with a total capacity of 140 MW, it becomes possible to obtain the efficiency of the combined-cycle plant equipped with the SVBR-100 reactor η{el/gr} = 45.39% and its electrical power output equal to 328 MW. The heat-recovery boiler used as part of this power installation generates superheated steam with a temperature of 560°C, due to which there is no need to use a moisture separator/steam reheater in the turbine unit thermal circuit.
NASA Technical Reports Server (NTRS)
Jefferies, K. S.; Tew, R. C.
1974-01-01
A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.
Automatic reactor control system for transient operation
NASA Astrophysics Data System (ADS)
Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.
Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.
Boiling water reactor radiation shielded Control Rod Drive Housing Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baversten, B.; Linden, M.J.
1995-03-01
The Control Rod Drive (CRD) mechanisms are located in the area below the reactor vessel in a Boiling Water Reactor (BWR). Specifically, these CRDs are located between the bottom of the reactor vessel and above an interlocking structure of steel bars and rods, herein identified as CRD Housing Supports. The CRD Housing Supports are designed to limit the travel of a Control Rod and Control Rod Drive in the event that the CRD vessel attachement went to fail, allowing the CRD to be ejected from the vessel. By limiting the travel of the ejected CRD, the supports prevent a nuclearmore » overpower excursion that could occur as a result of the ejected CRD. The Housing Support structure must be disassembled in order to remove CRDs for replacement or maintenance. The disassembly task can require a significant amount of outage time and personnel radiation exposure dependent on the number and location of the CRDs to be changed out. This paper presents a way to minimize personal radiation exposure through the re-design of the Housing Support structure. The following paragraphs also delineate a method of avoiding the awkward, manual, handling of the structure under the reactor vessel during a CRD change out.« less
Lei, Yuqing; Sun, Dezhi; Dang, Yan; Chen, Huimin; Zhao, Zhiqiang; Zhang, Yaobin; Holmes, Dawn E
2016-12-01
Bio-methanogenic digestion of incineration leachate is hindered by high OLRs, which can lead to build-up of VFAs, drops in pH and ultimately in reactor souring. It was hypothesized that incorporation of carbon cloth into reactors treating leachate would promote DIET and enhance reactor performance. To examine this possibility, carbon cloth was added to laboratory-scale UASB reactors that were fed incineration leachate. As expected, the carbon-cloth amended reactor could operate stably with a 34.2% higher OLR than the control (49.4 vs 36.8kgCOD/(m 3 d)). Microbial community analysis showed that bacteria capable of extracellular electron transfer and methanogens known to participate in DIET were enriched on the carbon cloth surface, and conductivity of sludge from the carbon cloth amended reactor was almost twofold higher than sludge from the control (9.77 vs 5.47μS/cm), suggesting that microorganisms in the experimental reactor may have been expressing electrically conductive filaments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oxide dispersion strengthened ferritic steels: a basic research joint program in France
NASA Astrophysics Data System (ADS)
Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.
2014-12-01
AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.
Advanced Shutter Control for a Molecular Beam Epitaxy Reactor
An open-source hardware and software-based shutter controller solution was developed that communicates over Ethernet with our original equipment...manufacturer (OEM) molecular beam epitaxy (MBE) reactor control software. An Arduino Mega microcontroller is the used for the brain of the shutter... controller , while a custom-designed circuit board distributes 24-V power to each of the 16 shutter solenoids available on the MBE. Using Ethernet
NASA Astrophysics Data System (ADS)
Bather, Wayne Anthony
The metalorganic chemical vapor deposition (MOCVD) growth of compound semiconductors has become important in producing many high performance electronic and optoelectronic devices from the wide bandgaps III-V nitrides, for example, aluminum nitride (AlN). A systematic theoretical and experimental investigation of the chemistry and mass transport process in a MOCVD system can yield predictive models of the deposition process. The chemistries and fluid dynamics of the MOCVD growth of AlN in a vertical reactor is analyzed and characterized in order to parameterize and model the deposition process. A Fourier Transform Infrared (FTIR) spectroscopic study of the predeposition reactions between trimethylaluminum (TMAl) and ammonia (NHsb3) is carried out in a static gas cell to examine the primary homogeneous gas phase reactions, pyrolysis of the reactants, and adduct formation, possibly accompanied by elimination reactions. A series of reactions, based on laboratory studies and literature review, is then proposed to model the deposition process. All pertinent kinetic, thermochemical, and transport properties were obtained. Utilizing a mass transport model, we performed computational fluid dynamics calculations using the FLUENT software package. We determined temperature, velocity, and concentration profiles, along with deposition rates inside the experimental vertical CVD reactor in the Howard University Material Science Research Center of Excellence. Experimental deposition rate data were found to be in good agreement with those predicted from the simulations, thus validating the proposed model. The control of the homogeneous gas phase reaction leading to the formation and subsequent decomposition of the adduct is critical to the formation of device-grade AlN films. Many basic processes occurring during MOCVD of AlN are still not completely understood, and none of the detailed surface reaction mechanisms are known.
Two-phase reduced gravity experiments for a space reactor design
NASA Technical Reports Server (NTRS)
Antoniak, Zenen I.
1987-01-01
Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.
High Throughput Plasma Water Treatment
NASA Astrophysics Data System (ADS)
Mujovic, Selman; Foster, John
2016-10-01
The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).
Operational Philosophy for the Advanced Test Reactor National Scientific User Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Benson; J. Cole; J. Jackson
2013-02-01
In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groupsmore » conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frybort, Jan
A critical experiment is a standard part of training of students at the Training Reactor VR-1 operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague. In autumn 2005 the HEU fuel IRT-3M with enrichment 36 % {sup 235}U was replaced by the LEU fuel IRT-4M with enrichment 19.7 % {sup 235}U. The fuel replacement at the VR-1 Reactor is a part of an international program RERTR. This Paper presents basic information about preparation for the fuel replacement and approaching of the first critical state with the new zone configuration C1 which replacedmore » B1 core with the old IRT-3M fuel. The whole process was carried out according to the Czech law and the relevant international recommendations. The experience with the VR-1 operation confirms the assumption that the C1 core configuration will be suitable from the point of view of the reactivity balance for the long term safe operation of the Training Reactor VR-1. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcwilliams, A. J.
2015-09-08
This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniquesmore » through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.« less
Proposal for a novel type of small scale aneutronic fusion reactor
NASA Astrophysics Data System (ADS)
Gruenwald, J.
2017-02-01
The aim of this work is to propose a novel scheme for a small scale aneutronic fusion reactor. This new reactor type makes use of the advantages of combining laser driven plasma acceleration and electrostatic confinement fusion. An intense laser beam is used to create a lithium-proton plasma with high density, which is then collimated and focused into the centre of the fusion reaction chamber. The basic concept presented here is based on the 7Li-proton fusion reaction. However, the physical and technological fundamentals may generally as well be applied to 11B-proton fusion. The former fusion reaction path offers higher energy yields while the latter has larger fusion cross sections. Within this paper a technological realisation of such a fusion device, which allows a steady state operation with highly energetic, well collimated ion beam, is presented. It will be demonstrated that the energetic break even can be reached with this device by using a combination of already existing technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kymaelaeinen, O.; Tuomisto, H.; Theofanous, T.G.
1997-02-01
The concept of lower head coolability and in-vessel retention of corium has been approved as a basic element of the severe accident management strategy for IVO`s Loviisa Plant (VVER-440) in Finland. The selected approach takes advantage of the unique features of the plant such as low power density, reactor pressure vessel without penetrations at the bottom and ice-condenser containment which ensures flooded cavity in all risk significant sequences. The thermal analyses, which are supported by experimental program, demonstrate that in Loviisa the molten corium on the lower head of the reactor vessel is coolable externally with wide margins. This papermore » summarizes the approach and the plant modifications being implemented. During the approval process some technical concerns were raised, particularly with regard to thermal loadings caused by contact of cool cavity water and hot corium with the reactor vessel. Resolution of these concerns is also discussed.« less
Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP
NASA Astrophysics Data System (ADS)
Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio
1988-09-01
This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.
Flow Induced Vibration Program at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
1984-01-01
The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.
Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle
NASA Astrophysics Data System (ADS)
Alekseev, P. N.; Bobrov, E. A.; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.
2015-12-01
The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U-Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium-plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.
Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.
2015-12-15
The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no usemore » of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.« less
Iwasaki, K; Inoue, M; Matsubara, Y
1998-01-01
Enzymatic hydrolysis of pectate was carried out continuously to produce pectate oligosaccharides by immobilized endo-polygalacturonase in a continuous stirred tank reactor (CSTR) with high efficiency. The enzyme was immobilized on to chitosan beads by the absorption method, and the reaction was performed with an initial pectate concentration of 10 gl(-1) at 35°C and pH 4.0 at a dilution rate of 0.87-2.8 h(-1). The hydrolysis products mainly consisted of mono-, di-, tri-, tetra-, penta-, hexa- and heptasaccharides, with the highest conversion being 0.78. A higher volumetric production rate of the total hydrolyzate, which was dependent on the dilution rate, was obtained than that by a batch reaction. The hydrolysis process was mathematically modeled from the basic material balance and rate equations, and showed agreement between the simulated and experimental results. This reactor system was found to be effective for obtaining pectate oligosaccharides with a high production rate.
Inverted Control Rod Lock-In Device
Brussalis, W. G.; Bost, G. E.
1962-12-01
A mechanism which prevents control rods from dropping out of the reactor core in the event the vessel in which the reactor is mounted should capsize is described. The mechanism includes a pivoted toothed armature which engages the threaded control rod lead screw and prevents removal of the rod whenever the armature is not attracted by the provided electromagnetic means. (AEC)
CONTROL MEANS FOR A NUCLEAR REACTOR
Teitel, R.J.
1961-09-01
A control means is described for a reactor which employs a liquid fuel consisting of a fissile isotope in a liquid bismuth solvent. The liquid fuel is contained in a plurality of tubular vessels. Control is effected by inserting plungers in the vessels to displace the liquid fuel and provide a critical or non- critical fuel configuration as desired.
CONTROL ROD FOR A NUCLEAR REACTOR AND METHOD OF PREPARATION
Hausner, H.H.
1958-12-30
BS>An improved control rod is presented for a nuclear reactor. This control rod is comprised of a rare earth metal oxide or rare earth metal carbide such as gadolinium oxide or gadolinium carbide, uniformly distributed in a metal matrix having a low cross sectional area of absorption for thermal neutrons, such as aluminum, beryllium, and zirconium.
HOMOGENEOUS NUCLEAR POWER REACTOR
King, L.D.P.
1959-09-01
A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.
Plasma spark discharge reactor and durable electrode
Cho, Young I.; Cho, Daniel J.; Fridman, Alexander; Kim, Hyoungsup
2017-01-10
A plasma spark discharge reactor for treating water. The plasma spark discharge reactor comprises a HV electrode with a head and ground electrode that surrounds at least a portion of the HV electrode. A passage for gas may pass through the reactor to a location proximate to the head to provide controlled formation of gas bubbles in order to facilitate the plasma spark discharge in a liquid environment.
Gebremariam, Seyoum Yami; Beutel, Marc W; Christian, David; Hess, Thomas F
2012-10-01
The effects of glucose on enhanced biological phosphorus removal (EBPR) activated sludge enriched with acetate was investigated using sequencing batch reactors. A glucose/acetate mixture was serially added to the test reactor in ratios of 25/75%, 50/50%, and 75/25% and the EBPR activity was compared to the control reactor fed with 100% acetate. P removal increased at a statistically significant level to a near-complete in the test reactor when the mixture increased to 50/50%. However, EBPR deteriorated when the glucose/acetate mixture increased to 75/25% in the test reactor and when the control reactor abruptly switched to 100% glucose. These results, in contrast to the EBPR conventional wisdom, suggest that the addition of glucose at moderate levels in wastewaters does not impede and may enhance EBPR, and that glucose waste products should be explored as an economical sustainable alternative when COD enhancement of EBPR is needed. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, E. N.; Cooper, S. P.; Clement, S. L.
A continuous biparticle fluidized bed reactor is developed for the simultaneous fermentation and purification of lactic acid. In this processing scheme, bacteria are immobilized in gelatin beads and are fluidized in a columnar reactor. Solid particles with sorbent capacity for the product are introduced at the top of the reactor, and fall counter currently to the biocatalyst, effecting in situ removal of the inhibitory product, while also controlling reactor pH at optimal levels. Initial long-term fermentation trials using immobilized Lactobacillus delbreuckii have demonstrated a 12 fold increase in volumetric productivity during adsorbent addition as opposed to control fermentations in themore » same reactor. Unoptimized regeneration of the loaded sorbent has effected at least an 8 fold concentration of lactic acid, and a 68 fold enhancement in separation from glucose compared to original levels in the fermentation broth. The benefits of this reactor system as opposed to conventional batch fermentation are discussed in terms of productivity and process economics.« less
Mechanical design of a light water breeder reactor
Fauth, Jr., William L.; Jones, Daniel S.; Kolsun, George J.; Erbes, John G.; Brennan, John J.; Weissburg, James A.; Sharbaugh, John E.
1976-01-01
In a light water reactor system using the thorium-232 -- uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, E.N.; Cooper, S.P.; Clement, S.L.
1995-12-31
A continuous biparticle fluidized-bed reactor is developed for the simultaneous fermentation and purification of lactic acid. In this processing scheme, bacteria are immobilized in gelatin beads and are fluidized in a columnar reactor. Solid particles with sorbent capacity for the product are introduced at the top of the reactor, and fall counter currently to the biocatalyst, effecting in situ removal of the inhibitory product, while also controlling reactor pH at optimal levels. Initial long-term fermentation trials using immobilized Lactobacillus delbreuckii have demonstrated a 12-fold increase in volumetric productivity during absorbent addition as opposed to control fermentations in the same reactor.more » Unoptimized regeneration of the loaded sorbent has effected at least an eightfold concentration of lactic acid and a 68-fold enhancement in separation from glucose compared to original levels in the fermentation broth. The benefits of this reactor system as opposed to conventional batch fermentation are discussed in terms of productivity and process economics.« less
Process for operating equilibrium controlled reactions
Nataraj, Shankar; Carvill, Brian Thomas; Hufton, Jeffrey Raymond; Mayorga, Steven Gerard; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard
2001-01-01
A cyclic process for operating an equilibrium controlled reaction in a plurality of reactors containing an admixture of an adsorbent and a reaction catalyst suitable for performing the desired reaction which is operated in a predetermined timed sequence wherein the heating and cooling requirements in a moving reaction mass transfer zone within each reactor are provided by indirect heat exchange with a fluid capable of phase change at temperatures maintained in each reactor during sorpreaction, depressurization, purging and pressurization steps during each process cycle.
Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine
NASA Astrophysics Data System (ADS)
Jen, Coty N.; McMurry, Peter H.; Hanson, David R.
2014-06-01
This study experimentally explores how ammonia (NH3), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) affect the chemical formation mechanisms of electrically neutral clusters that contain two sulfuric acid molecules (dimers). Dimers may also contain undetectable compounds, such as water or bases, that evaporate upon ionization and sampling. Measurements were conducted using a glass flow reactor which contained a steady flow of humidified nitrogen with sulfuric acid concentrations of 107 to 109 cm-3. A known molar flow rate of a basic gas was injected into the flow reactor. The University of Minnesota Cluster Chemical Ionization Mass Spectrometer was used to measure the resulting sulfuric acid vapor and cluster concentrations. It was found that, for a given concentration of sulfuric acid vapor, the dimer concentration increases with increasing concentration of the basic gas, eventually reaching a plateau. The base concentrations at which the dimer concentrations saturate suggest NH3 < MA < TMA ≲ DMA in forming stabilized sulfuric acid dimers. Two heuristic models for cluster formation by acid-base reactions are developed to interpret the data. The models provide ranges of evaporation rate constants that are consistent with observations and leads to an analytic expression for nucleation rates that is consistent with atmospheric observations.
On Study of Application of Micro-reactor in Chemistry and Chemical Field
NASA Astrophysics Data System (ADS)
Zhang, Yunshen
2018-02-01
Serving as a micro-scale chemical reaction system, micro-reactor is characterized by high heat transfer efficiency and mass transfer, strictly controlled reaction time and good safety performance; compared with the traditional mixing reactor, it can effectively shorten reaction time by virtue of these advantages and greatly enhance the chemical reaction conversion rate. However, problems still exist in the process where micro-reactor is used for production in chemistry and chemical field, and relevant researchers are required to optimize and perfect the performance of micro-reactor. This paper analyzes specific application of micro-reactor in chemistry and chemical field.
Ruano, W.J.
1957-12-10
This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.
Reactor for producing large particles of materials from gases
NASA Technical Reports Server (NTRS)
Flagan, Richard C. (Inventor); Alam, Mohammed K. (Inventor)
1987-01-01
A method and apparatus is disclosed for producing large particles of material from gas, or gases, containing the material (e.g., silicon from silane) in a free-space reactor comprised of a tube (20) and controlled furnace (25). A hot gas is introduced in the center of the reactant gas through a nozzle (23) to heat a quantity of the reactant gas, or gases, to produce a controlled concentration of seed particles (24) which are entrained in the flow of reactant gas, or gases. The temperature profile (FIG. 4) of the furnace is controlled for such a slow, controlled rate of reaction that virtually all of the material released condenses on seed particles and new particles are not nucleated in the furnace. A separate reactor comprised of a tube (33) and furnace (30) may be used to form a seed aerosol which, after passing through a cooling section (34) is introduced in the main reactor tube (34) which includes a mixer (36) to mix the seed aerosol in a controlled concentration with the reactant gas or gases.
A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.
Robles, A; Latrille, E; Ruano, M V; Steyer, J P
2017-01-01
The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra
IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors.more » The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leppik, P.A.
This paper presents results of a study designed to confirm that the interaction of the neutron flux and the coolant flow plays an important role in the mechanism of high-frequency (HF) resonant instability of the VK-50 boiling water reactor. To do this and to check the working model, signals from probes measuring the flow rate of the coolant and the neutron flux were recorded simultaneously (with the help of a magnetograph) in experiments performed in 1981 on driving the VK-50 reactor into the HF reonant instability regimes. Estimates were then obtained for the statistical characteristics of the pulsations of themore » flow rate and of the neutron flux, including the cross-correlation functions and coherence functions. The basic results of these studies are reported here.« less
Engineering design aspects of the heat-pipe power system
NASA Technical Reports Server (NTRS)
Capell, B. M.; Houts, M. G.; Poston, D. I.; Berte, M.
1997-01-01
The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.
Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides
NASA Technical Reports Server (NTRS)
Collins, J.; Rosner, D. E.; Castillo, J.
1992-01-01
A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.
Advanced propulsion engine assessment based on a cermet reactor
NASA Technical Reports Server (NTRS)
Parsley, Randy C.
1993-01-01
A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.
NASA Astrophysics Data System (ADS)
Turinsky, Paul J.; Martin, William R.
2017-04-01
In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.
Code of Federal Regulations, 2013 CFR
2013-01-01
... COOPERATIVE CONTROL AND ERADICATION OF LIVESTOCK OR POULTRY DISEASES ANIMALS DESTROYED BECAUSE OF BRUCELLOSIS... affected, including the reactor tag number of each brucellosis reactor animal and the registration name and number of each brucellosis reactor registered animal. A copy of the applicable test record shall be given...
Code of Federal Regulations, 2011 CFR
2011-01-01
... COOPERATIVE CONTROL AND ERADICATION OF LIVESTOCK OR POULTRY DISEASES ANIMALS DESTROYED BECAUSE OF BRUCELLOSIS... affected, including the reactor tag number of each brucellosis reactor animal and the registration name and number of each brucellosis reactor registered animal. A copy of the applicable test record shall be given...
Code of Federal Regulations, 2012 CFR
2012-01-01
... COOPERATIVE CONTROL AND ERADICATION OF LIVESTOCK OR POULTRY DISEASES ANIMALS DESTROYED BECAUSE OF BRUCELLOSIS... affected, including the reactor tag number of each brucellosis reactor animal and the registration name and number of each brucellosis reactor registered animal. A copy of the applicable test record shall be given...
Code of Federal Regulations, 2014 CFR
2014-01-01
... COOPERATIVE CONTROL AND ERADICATION OF LIVESTOCK OR POULTRY DISEASES ANIMALS DESTROYED BECAUSE OF BRUCELLOSIS... affected, including the reactor tag number of each brucellosis reactor animal and the registration name and number of each brucellosis reactor registered animal. A copy of the applicable test record shall be given...
A Special Topic From Nuclear Reactor Dynamics for the Undergraduate Physics Curriculum
ERIC Educational Resources Information Center
Sevenich, R. A.
1977-01-01
Presents an intuitive derivation of the point reactor equations followed by formulation of equations for inverse and direct kinetics which are readily programmed on a digital computer. Suggests several computer simulations involving the effect of control rod motion on reactor power. (MLH)
Cai, Weiwei; Han, Tingting; Guo, Zechong; Varrone, Cristiano; Wang, Aijie; Liu, Wenzong
2016-05-01
Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic AD) and the anode on the outside cylinder (anodic AD). In cathodic AD, average methane production rate goes up to 0.070 mL CH4/mL reactor/day, which is 2.59 times higher than AD control reactor (0.027 m(3) CH4/m(3)/d). And COD removal is increased ∼15% over AD control. When changing to sludge fermentation liquid, methane production rate has been further increased to 0.247 mL CH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study indicates that cathodic AD could cost-effectively enhance methane production rate and degradation of glucose and fermentative liquid. Copyright © 2016 Elsevier Ltd. All rights reserved.
Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene
2015-08-01
The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.
1994-01-01
This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.
Damper mechanism for nuclear reactor control elements
Taft, William Elwood
1976-01-01
A damper mechanism which provides a nuclear reactor control element decelerating function at the end of the scram stroke. The total damping function is produced by the combination of two assemblies, which operate in sequence. First, a tapered dashram assembly decelerates the control element to a lower velocity, after which a spring hydraulic damper assembly takes over to complete the final damping.
Kaufman, H.B.; Weiss, A.A.
1959-08-18
A shadow control device for controlling a nuclear reactor is described. The device comprises a series of hollow neutron-absorbing elements arranged in groups, each element having a cavity for substantially housing an adjoining element and a longitudinal member for commonly supporting the groups of elements. Longitudinal actuation of the longitudinal member distributes the elements along its entire length in which position maximum worth is achieved.
Nuclear reactor remote disconnect control rod coupling indicator
Vuckovich, Michael
1977-01-01
A coupling indicator for use with nuclear reactor control rod assemblies which have remotely disengageable couplings between the control rod and the control rod drive shaft. The coupling indicator indicates whether the control rod and the control rod drive shaft are engaged or disengaged. A resistive network, utilizing magnetic reed switches, senses the position of the control rod drive mechanism lead screw and the control rod position indicating tube, and the relative position of these two elements with respect to each other is compared to determine whether the coupling is engaged or disengaged.
Buitrón, G; Moreno-Andrade, I; Linares-García, J A; Pérez, J; Betancur, M J; Moreno, J A
2007-01-01
This work presents the results and discussions of the application of an optimally controlled influent flow rate strategy to biodegrade, in a discontinuous reactor, a synthetic wastewater constituted by 4-chlorophenol. An aerobic automated discontinuous reactor system of 1.3 m3, with a useful volume of 0.75 m3 and an exchange volume of 60% was used. As part of the control strategy influent is fed into the reactor in such a way as to obtain the maximal degradation rate avoiding inhibition of microorganisms. Such an optimal strategy was able to manage increments of 4-chlorophenol concentrations in the influent between 250 and 1000 mg/L. it was shown that the optimally controlled influent flow rate strategy brings savings in reaction time and flexibility in treating high concentrations of an influent with toxic characteristics.
Support arrangement for core modules of nuclear reactors
Bollinger, Lawrence R.
1987-01-01
A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.
Glass, J.A.F.
1958-07-01
A reactor control mechanism is described wherein the control is achieved by the partial or total withdrawal of the fissile material which is in the form of a fuel rod. The fuel rod is designed to be raised and lowered from the reactor core area by means of two concentric ball nut and screw assemblies that may telescope one within the other. These screw mechanisms are connected through a magnetic clutch to a speed reduction gear and an accurately controllable prime motive source. With the clutch energized, the fuel rod may be moved into the reactor core area, and fine adjustments may be made through the reduction gearing. However, in the event of a power failure or an emergency signal, the magnetic clutch will become deenergized, and the fuel rod will drop out of the core area by the force of gravity, thus shutting down the operation of the reactor.
Support arrangements for core modules of nuclear reactors. [PWR
Bollinger, L.R.
1983-11-03
A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.
Hutter, Ernest
1986-01-01
A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.
Volcke, E I P; van Loosdrecht, M C M; Vanrolleghem, P A
2007-01-01
The combined SHARON-Anammox process is a promising technique for nitrogen removal from wastewater streams with high ammonium concentrations. It is typically applied to sludge digestion reject water, in order to relieve the activated sludge tanks, to which this stream is typically recycled. This contribution assesses the impact of the applied control strategy in the SHARON-reactor, both on the effluent quality of the subsequent Anammox reactor as well as on the plant-wide level by means of an operating cost index. Moreover, it is investigated to which extent the usefulness of a certain control strategy depends on the reactor design (volume). A simulation study is carried out using the plant-wide Benchmark Simulation Model no. 2 (BSM2), extended with the SHARON and Anammox processes. The results reveal a discrepancy between optimizing the reject water treatment performance and minimizing plant-wide operating costs.
HWCTR CONTROL ROD AND SAFETY ROD DRIVE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kale, S.H.
1963-07-01
The Heavy Water Components Test Reactor (HWCTR) is a pressurized, D/sub 2/O reactor designed for operation up to 70 Mw at 1500 psig and 3l5 deg C. It has 18 control rods and six safety rods, each driven by an electric motor through a rack and pinion gear train. Racks, pinions, and bearings are located inside individual pressure housings that are penetrated by means of floating ring labyrinth seals. The drives are mounted on the reactor vessel top head. Safety rods have electromagnetic clutches and fall into the reactor when scrammed. The reliability and performance of the rod drives aremore » very good. Seal leakage is well within design limits. Recent inspections of seals and control rod plants showed no evidence of crud buildup or stress corrosion cracking of type 17- 4PH'' stainless steel components. (auth)« less
DOE R&D Accomplishments Database
Teller, E.
1958-07-03
Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.
NEUTRONIC REACTOR BURIAL ASSEMBLY
Treshow, M.
1961-05-01
A burial assembly is shown whereby an entire reactor core may be encased with lead shielding, withdrawn from the reactor site and buried. This is made possible by a five-piece interlocking arrangement that may be easily put together by remote control with no aligning of bolt holes or other such close adjustments being necessary.
77 FR 39521 - Application for a License To Export Nuclear Reactor Major Components and Equipment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... LLC reactor coolant equipment for four constructing four plant May 14, 2012 pumps with motors, APR1400... Emirates. XR176 monitoring and plant in Braka. 110060011 control equipment, auxiliary equipment and... NUCLEAR REGULATORY COMMISSION Application for a License To Export Nuclear Reactor Major Components...
Criticality Safety Basics for INL FMHs and CSOs
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. L. Putman
2012-04-01
Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticalitymore » safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information from readers and from personnel who took course 00INL189. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that fissionable material handlers and criticality safety officers must understand. The reorganization is based on and consistent with changes made to course 00INL189 due to a review of course exam results and to discussions with personnel who conduct area-specific training.« less
Method of controlling crystallite size in nuclear-reactor fuels
Lloyd, Milton H.; Collins, Jack L.; Shell, Sam E.
1985-01-01
Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.
An eye on reactor and computer control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, J.; Knee, B.
1992-01-01
At ORNL computer software has been developed to make possible an improved eye-gaze measurement technology. Such an inovation could be the basis for advanced eye-gaze systems that may have applications in reactor control, software development, cognitive engineering, evaluation of displays, prediction of mental workloads, and military target recognition.
MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR
Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.
1962-06-26
A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)
Method of controlling crystallite size in nuclear-reactor fuels
Lloyd, M.H.; Collins, J.L.; Shell, S.E.
Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.
Space Nuclear Power Plant Pre-Conceptual Design Report, For Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Levine
2006-01-27
This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.
Growth of plant root cultures in liquid- and gas-dispersed reactor environments.
McKelvey, S A; Gehrig, J A; Hollar, K A; Curtis, W R
1993-01-01
The growth of Agrobacterium transformed "hairy root" cultures of Hyoscyamus muticus was examined in various liquid- and gas-dispersed bioreactor configurations. Reactor runs were replicated to provide statistical comparisons of nutrient availability on culture performance. Accumulated tissue mass in submerged air-sparged reactors was 31% of gyratory shake-flask controls. Experiments demonstrate that poor performance of sparged reactors is not due to bubble shear damage, carbon dioxide stripping, settling, or flotation of roots. Impaired oxygen transfer due to channeling and stagnation of the liquid phase are the apparent causes of poor growth. Roots grown on a medium-perfused inclined plane grew at 48% of gyratory controls. This demonstrates the ability of cultures to partially compensate for poor liquid distribution through vascular transport of nutrients. A reactor configuration in which the medium is sprayed over the roots and permitted to drain down through the root tissue was able to provide growth rates which are statistically indistinguishable (95% T-test) from gyratory shake-flask controls. In this type of spray/trickle-bed configuration, it is shown that distribution of the roots becomes a key factor in controlling the rate of growth. Implications of these results regarding design and scale-up of bioreactors to produce fine chemicals from root cultures are discussed.
A high resolution pneumatic stepping actuator for harsh reactor environments
NASA Astrophysics Data System (ADS)
Tippetts, Thomas B.; Evans, Paul S.; Riffle, George K.
1993-01-01
A reactivity control actuator for a high-power density nuclear propulsion reactor must be installed in close proximity to the reactor core. The energy input from radiation to the actuator structure could exceed hundreds of W/cc unless low-cross section, low-absorptivity materials are chosen. Also, for post-test handling and subsequent storage, materials should not be used that are activated into long half-life isotopes. Pneumatic actuators can be constructed from various reactor-compatible materials, but conventional pneumatic piston actuators generally lack the stiffness required for high resolution reactivity control unless electrical position sensors and compensated electronic control systems are used. To overcome these limitations, a pneumatic actuator is under development that positions an output shaft in response to a series of pneumatic pulses, comprising a pneumatic analog of an electrical stepping motor. The pneumatic pulses are generated remotely, beyond the strong radiation environment, and transmitted to the actuator through tubing. The mechanically simple actuator uses a nutating gear harmonic drive to convert motion of small pistons directly to high-resolution angular motion of the output shaft. The digital nature of this actuator is suitable for various reactor control algorithms but is especially compatible with the three bean salad algorithm discussed by Ball et al. (1991).
Muñoz, C; Young, H; Antileo, C; Bornhardt, C
2009-01-01
This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).
Autonomous Control Capabilities for Space Reactor Power Systems
NASA Astrophysics Data System (ADS)
Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.
2004-02-01
The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.
Chemical morphogenesis: recent experimental advances in reaction–diffusion system design and control
Szalai, István; Cuiñas, Daniel; Takács, Nándor; Horváth, Judit; De Kepper, Patrick
2012-01-01
In his seminal 1952 paper, Alan Turing predicted that diffusion could spontaneously drive an initially uniform solution of reacting chemicals to develop stable spatially periodic concentration patterns. It took nearly 40 years before the first two unquestionable experimental demonstrations of such reaction–diffusion patterns could be made in isothermal single phase reaction systems. The number of these examples stagnated for nearly 20 years. We recently proposed a design method that made their number increase to six in less than 3 years. In this report, we formally justify our original semi-empirical method and support the approach with numerical simulations based on a simple but realistic kinetic model. To retain a number of basic properties of real spatial reactors but keep calculations to a minimal complexity, we introduce a new way to collapse the confined spatial direction of these reactors. Contrary to similar reduced descriptions, we take into account the effect of the geometric size in the confinement direction and the influence of the differences in the diffusion coefficient on exchange rates of species with their feed environment. We experimentally support the method by the observation of stationary patterns in red-ox reactions not based on oxihalogen chemistry. Emphasis is also brought on how one of these new systems can process different initial conditions and memorize them in the form of localized patterns of different geometries. PMID:23919126
ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies
NASA Astrophysics Data System (ADS)
Whyte, Dennis; ADX Team
2015-11-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.
Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less
Gruber, Pia; Marques, Marco P C; Sulzer, Philipp; Wohlgemuth, Roland; Mayr, Torsten; Baganz, Frank; Szita, Nicolas
2017-06-01
Monitoring and control of pH is essential for the control of reaction conditions and reaction progress for any biocatalytic or biotechnological process. Microfluidic enzymatic reactors are increasingly proposed for process development, however typically lack instrumentation, such as pH monitoring. We present a microfluidic side-entry reactor (μSER) and demonstrate for the first time real-time pH monitoring of the progression of an enzymatic reaction in a microfluidic reactor as a first step towards achieving pH control. Two different types of optical pH sensors were integrated at several positions in the reactor channel which enabled pH monitoring between pH 3.5 and pH 8.5, thus a broader range than typically reported. The sensors withstood the thermal bonding temperatures typical of microfluidic device fabrication. Additionally, fluidic inputs along the reaction channel were implemented to adjust the pH of the reaction. Time-course profiles of pH were recorded for a transketolase and a penicillin G acylase catalyzed reaction. Without pH adjustment, the former showed a pH increase of 1 pH unit and the latter a pH decrease of about 2.5 pH units. With pH adjustment, the pH drop of the penicillin G acylase catalyzed reaction was significantly attenuated, the reaction condition kept at a pH suitable for the operation of the enzyme, and the product yield increased. This contribution represents a further step towards fully instrumented and controlled microfluidic reactors for biocatalytic process development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.; ...
2017-02-26
Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less
PBF Reactor Building (PER620). Plot plan shows layout, including auxiliary ...
PBF Reactor Building (PER-620). Plot plan shows layout, including auxiliary buildings: Emergency Generator (621), Hose House (622), Cooling Tower Auxiliary (624), Maintenance and Storage Warehouse (625), Gas Cylinder Storage (627), Hose House (628), Cooling Tower (720), Substation (719), and other features. Road connections between PBF Reactor, its control building, and SPERT-I site. Note cable trenches along road to control building. Date: July 1965. Ebasco Services, PER-U-101. INEEL index no. 761-0100-00-205-123005 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Silane-Pyrolysis Reactor With Nonuniform Heating
NASA Technical Reports Server (NTRS)
Iya, Sridhar K.
1991-01-01
Improved reactor serves as last stage in system processing metallurgical-grade silicon feedstock into silicon powder of ultrahigh purity. Silane pyrolized to silicon powder and hydrogen gas via homogeneous decomposition reaction in free space. Features set of individually adjustable electrical heaters and purge flow of hydrogen to improve control of pyrolysis conditions. Power supplied to each heater set in conjunction with flow in reactor to obtain desired distribution of temperature as function of position along reactor.
Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo
Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N 1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.
Modeling of transient heat pipe operation
NASA Technical Reports Server (NTRS)
Colwell, Gene T.
1987-01-01
The use of heat pipes is being considered as a means of reducing the peak temperature and large thermal gradients at the leading edges of reentry vehicles and hypersonic aircraft and in nuclear reactors. In the basic cooling concept, the heat pipe covers the leading edge, a portion of the lower wing surface, and a portion of the upper wing surface. Aerodynamic heat is mainly absorbed at the leading edge and transported through the heat pipe to the upper and lower wing surface, where it is rejected by thermal radiation and convection. Basic governing equations are written to determine the startup, transient, and steady state performance of a haet pipe which has initially frozen alkali-metal as the working fluid.
MEANS FOR CONTROLLING A NUCLEAR REACTOR
Wilson, V.C.; Overbeck, W.P.; Slotin, L.; Froman, D.K.
1957-12-17
This patent relates to nuclear reactors of the type using a solid neutron absorbing material as a means for controlling the reproduction ratio of the system and thereby the power output. Elongated rods of neutron absorbing material, such as boron steel for example, are adapted to be inserted and removed from the core of tae reactor by electronic motors and suitable drive means. The motors and drive means are controlled by means responsive to the neutron density, such as ionization chambers. The control system is designed to be responsive also to the rate of change in neutron density to automatically maintain the total power output at a substantially constant predetermined value. A safety rod means responsive to neutron density is also provided for keeping the power output below a predetermined maximum value at all times.
Steam Reformer With Fibrous Catalytic Combustor
NASA Technical Reports Server (NTRS)
Voecks, Gerald E.
1987-01-01
Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.
Optimization of the nitrification process of wastewater resulting from cassava starch production.
Fleck, Leandro; Ferreira Tavares, Maria Hermínia; Eyng, Eduardo; Orssatto, Fabio
2018-05-14
The present study has the objective of optimizing operational conditions of an aerated reactor applied to the removal of ammoniacal nitrogen from wastewater resulting from the production of cassava starch. An aerated reactor with a usable volume of 4 L and aeration control by rotameter was used. The airflow and cycle time parameters were controlled and their effects on the removal of ammoniacal nitrogen and the conversion to nitrate were evaluated. The highest ammoniacal nitrogen removal, of 96.62%, occurred under conditions of 24 h and 0.15 L min -1 L reactor -1 . The highest nitrate conversion, of 24.81%, occurred under conditions of 40.92 h and 0.15 L min -1 L reactor -1 . The remaining value of ammoniacal nitrogen was converted primarily into nitrite, energy, hydrogen and water. The optimal operational values of the aerated reactor are 29.25 h and 0.22 L min -1 L reactor -1 . The mathematical models representative of the process satisfactorily describe ammoniacal nitrogen removal efficiency and nitrate conversion, presenting errors of 2.87% and 3.70%, respectively.
Positron Annihilation Spectroscopy Characterization of Nanostructural Features in Reactor Steels
NASA Astrophysics Data System (ADS)
Glade, Stephen; Wirth, Brian; Asoka-Kumar, Palakkal; Sterne, Philip; Alinger, Matthew; Odette, George
2004-03-01
Irradiation embrittlement in nuclear reactor pressure vessel steels results from the formation of a high number density of nanometer sized copper rich precipitates and sub-nanometer defect-solute clusters. We present results of study to characterize the size and compositions of simple binary and ternary Fe-Cu-Mn model alloys and more representative Fe-Cu-Mn-Ni-Si-Mo-C reactor pressure vessel steels using positron annihilation spectroscopy (PAS). Using a recently developed spin-polarized PAS technique, we have also measured the magnetic properties of the nanometer-sized copper rich precipitates. Mn retards the precipitation kinetics and inhibits large vacancy cluster formation, suggesting a strong Mn-vacancy interaction which reduces radiation enhanced diffusion. The spin-polarized PAS measurements reveal the non-magnetic nature of the copper precipitates, discounting the notion that the precipitates contain significant quantities of Fe and providing an upper limit of at most a few percent Fe in the precipitates. PAS results on oxide dispersion-strengthened steel for use in fusion reactors will also be presented. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract No. W-7405-ENG-48 with partial support provided from Basic Energy Sciences, Division of Materials Science.
Advanced In-Pile Instrumentation for Materials Testing Reactors
NASA Astrophysics Data System (ADS)
Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.
2014-08-01
The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.
NASA Astrophysics Data System (ADS)
Sagara, A.; Miyazawa, J.; Tamura, H.; Tanaka, T.; Goto, T.; Yanagi, N.; Sakamoto, R.; Masuzaki, S.; Ohtani, H.; The FFHR Design Group
2017-08-01
The Fusion Engineering Research Project (FERP) at the National Institute for Fusion Science (NIFS) is conducting conceptual design activities for the LHD-type helical fusion reactor FFHR-d1A. This paper newly defines two design options, ‘basic’ and ‘challenging.’ Conservative technologies, including those that will be demonstrated in ITER, are chosen in the basic option in which two helical coils are made of continuously wound cable-in-conduit superconductors of Nb3Sn strands, the divertor is composed of water-cooled tungsten monoblocks, and the blanket is composed of water-cooled ceramic breeders. In contrast, new ideas that would possibly be beneficial for making the reactor design more attractive are boldly included in the challenging option in which the helical coils are wound by connecting high-temperature REBCO superconductors using mechanical joints, the divertor is composed of a shower of molten tin jets, and the blanket is composed of molten salt FLiNaBe including Ti powers to increase hydrogen solubility. The main targets of the challenging option are early construction and easy maintenance of a large and three-dimensionally complicated helical structure, high thermal efficiency, and, in particular, realistic feasibility of the helical reactor.
Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005
NASA Technical Reports Server (NTRS)
Bowles, Mark D.
2006-01-01
Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.
Nuclear reactor control apparatus
Sridhar, Bettadapur N.
1983-11-01
Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.
10 CFR 54.21 - Contents of application-technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
...), motors, diesel generators, air compressors, snubbers, the control rod drive, ventilation dampers..., the reactor vessel, the reactor coolant system pressure boundary, steam generators, the pressurizer...
10 CFR 54.21 - Contents of application-technical information.
Code of Federal Regulations, 2010 CFR
2010-01-01
...), motors, diesel generators, air compressors, snubbers, the control rod drive, ventilation dampers..., the reactor vessel, the reactor coolant system pressure boundary, steam generators, the pressurizer...
PBF Reactor Building (PER620) as seen from control room window ...
PBF Reactor Building (PER-620) as seen from control room window in PER-619. Photographer stood just outside window. Note exposed communication cables on desert surface. Date: July 2004. INEEL negative no. HD-41-9-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.
1983-01-01
A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matinyan, A. M., E-mail: al-drm@mail.ru; Peshkov, M. V.; Karpov, V. N.
2016-09-15
The design and current spectrum of a thyristor valve controlled shunt reactor (TCSR) with split valveside windings are described. The dependence of the amplitudes of higher-order harmonics of the power winding current on the TCSR operating regime are presented for this TCSR design.
PROCESS WATER BUILDING, TRA605. CONTROL PANEL SUPPLIES STATUS INDICATORS. CARD ...
PROCESS WATER BUILDING, TRA-605. CONTROL PANEL SUPPLIES STATUS INDICATORS. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 4219. Unknown Photographer, 2/13/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Characterization of elemental release during microbe-basalt interactions
NASA Astrophysics Data System (ADS)
Wu, L.; Jacobson, A. D.; Hausner, M.
2006-12-01
This study used batch reactors to characterize the rates, mechanisms, and stoichiometry of elemental release during the interaction of Burkholderia fungorum, a common soil microbe, with Columbia River Flood Basalt at 28°C for 36 d. We especially focused on the release of Ca, Mg, P, Si, and Sr under a variety of biotic and abiotic conditions with the ultimate aim of evaluating how actively metabolizing bacteria might influence basalt weathering on the continents. Four days after inoculating P-limited reactors (those lacking P in the growth medium), pH decreased from ~7 to 4, and glucose was depleted. Theoretical calculations suggest that the lowered pH resulted from the release of organic acids and/or CO2. Purely abiotic control reactors as well as control reactors containing nonviable cells showed constant glucose concentrations and near-neutral pH. Over the entire 36 day period, the P-limited reactors yielded Ca, Mg, Si, and Sr release rates several times higher than those observed in the P-bearing biotic reactors and the abiotic controls. Release rates directly correlate with pH, indicating that proton-promoted dissolution was the dominant reaction mechanism. Ligand- promoted dissolution was probably less important because the P-limited and P-bearing reactors experienced nearly identical rates of microbial growth, but the P-bearing reactors displayed overall lower dissolution rates at near-neutral pH, where presumably, the effect of ligand-promoted dissolution would be most evident. Chemical analyses of bacteria collected at the end of the experiments, combined with mass-balances between the biological and fluid phases, demonstrate that the low P concentration in the biotic reactors was an artifact of P uptake during microbial growth. These findings suggest that when bacteria utilize basalt as a nutrient source, they can potentially elevate the rate of long-term atmospheric CO2 consumption by Ca-Mg silicate weathering by a factor of 5 over the corresponding inorganic rate.
HEDL FACILITIES CATALOG 400 AREA
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAYANCSIK BA
1987-03-01
The purpose of this project is to provide a sodium-cooled fast flux test reactor designed specifically for irradiation testing of fuels and materials and for long-term testing and evaluation of plant components and systems for the Liquid Metal Reactor (LMR) Program. The FFTF includes the reactor, heat removal equipment and structures, containment, core component handling and examination, instrumentation and control, and utilities and other essential services. The complex array of buildings and equipment are arranged around the Reactor Containment Building.
TRITIUM LABORATORY, TRA666, INTERIOR. MAIN FLOOR. CONTROL ROOM ENCLOSURE AT ...
TRITIUM LABORATORY, TRA-666, INTERIOR. MAIN FLOOR. CONTROL ROOM ENCLOSURE AT CENTER OF VIEW. SIGN ABOVE DOOR SAYS "HYDRAULIC TEST FACILITY CONTROL ROOM." SIGN IN WINDOW SAYS "EATING AREA." "EVACUATION AND EMERGENCY INFORMATION" IS POSTED ON CABINET AT LEFT OF VIEW. INL NEGATIVE NO. HD30-2-3. Mike Crane, Photographer, 6/2001 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Esselman, W.H.; Kaplan, G.M.
1961-06-20
The control of pressure in pressurized liquid systems, especially a pressurized liquid reactor system, may be achieved by providing a bias circuit or loop across a closed loop having a flow restriction means in the form of an orifice, a storage tank, and a pump connected in series. The subject invention is advantageously utilized where control of a reactor can be achieved by response to the temperature and pressure of the primary cooling system.
Apparatus and method for closed-loop control of reactor power in minimum time
Bernard, Jr., John A.
1988-11-01
Closed-loop control law for altering the power level of nuclear reactors in a safe manner and without overshoot and in minimum time. Apparatus is provided for moving a fast-acting control element such as a control rod or a control drum for altering the nuclear reactor power level. A computer computes at short time intervals either the function: .rho.=(.beta.-.rho.).omega.-.lambda..sub.e '.rho.-.SIGMA..beta..sub.i (.lambda..sub.i -.lambda..sub.e ')+l* .omega.+l* [.omega..sup.2 +.lambda..sub.e '.omega.] or the function: .rho.=(.beta.-.rho.).omega.-.lambda..sub.e .rho.-(.lambda..sub.e /.lambda..sub.e)(.beta.-.rho.)+l* .omega.+l* [.omega..sup.2 +.lambda..sub.e .omega.-(.lambda..sub.e /.lambda..sub.e).omega.] These functions each specify the rate of change of reactivity that is necessary to achieve a specified rate of change of reactor power. The direction and speed of motion of the control element is altered so as to provide the rate of reactivity change calculated using either or both of these functions thereby resulting in the attainment of a new power level without overshoot and in minimum time. These functions are computed at intervals of approximately 0.01-1.0 seconds depending on the specific application.
Design of MSR primary circuit with minimum pressure losses
NASA Astrophysics Data System (ADS)
Noga, Tomáš; Žitek, Pavel; Valenta, Václav
This article describes a design of a MSR primary circuit with minimum pressure losses. It includes a brief description of this type of a reactor and its integral layout, properties, purpose, etc. The objective of this paper is to define problems of pressure losses calculation and to design a proper device for a primary circuit of MSR reactor, including its basic dimensions. Thanks to this, it can become an initial project for a construction of a real piece of work. This is the main contribution of the carried out study. Of course, this article is not a detailed solution, but it points out facts and problems, which future designers may have to face. The further step of our work will be a reconstruction of the current experiment for a two-stage flowing.
Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Mustafa Sacit; none,; Flanagan, George F.
2014-07-30
An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two typesmore » of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.« less
DESIGN AND HAZARDS SUMMARY REPORT, BOILING REACTOR EXPERIMENT V (BORAX V)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-05-01
Design data for BORAX V are presented along with results of hazards evaluation studies. Considcration of the hazards associated with the operation of BORAX V was based on the following conditions: For normal steady-state power and experimental operation, the reactor and plant are adequately shielded and ventilated to allow personnel to be safely stationed in the turbine building and on the main floor of the reactor building. The control building is located one- half mile distant from the reactor building. For special, hazardous experiments, personnel are withdrawn from the reactor area. (M.C.G.)
Neutrino oscillation studies with reactors
Vogel, P.; Wen, L.J.; Zhang, C.
2015-01-01
Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819
Neutrino oscillation studies with reactors
Vogel, P.; Wen, L.J.; Zhang, C.
2015-04-27
Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ 13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.
Neutrino oscillation studies with reactors.
Vogel, P; Wen, L J; Zhang, C
2015-04-27
Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.
Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis
NASA Astrophysics Data System (ADS)
Hoogenboom, J. Eduard; Sjenitzer, Bart L.
2014-06-01
To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.
32 CFR 761.7 - Basic controls.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Basic controls. 761.7 Section 761.7 National... OF THE PACIFIC ISLANDS Criteria and Basic Controls § 761.7 Basic controls. (a) General. Except for such persons, ship, or aircraft as are issued an authorization to enter by an Entry Control Commander...
32 CFR 761.7 - Basic controls.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Basic controls. 761.7 Section 761.7 National... OF THE PACIFIC ISLANDS Criteria and Basic Controls § 761.7 Basic controls. (a) General. Except for such persons, ship, or aircraft as are issued an authorization to enter by an Entry Control Commander...
32 CFR 761.7 - Basic controls.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Basic controls. 761.7 Section 761.7 National... OF THE PACIFIC ISLANDS Criteria and Basic Controls § 761.7 Basic controls. (a) General. Except for such persons, ship, or aircraft as are issued an authorization to enter by an Entry Control Commander...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR); Notice of Meeting The ACRS Subcommittee on U.S. EPR... of the Safety Evaluation Report (SER) with open items associated with U.S. EPR Design Control...
NASA Astrophysics Data System (ADS)
Cole, Christopher J. P.
Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96°C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has highlighted additional areas that should be investigated. These include developing a detailed point nodel kinetic model coupled with a finite element heat transfer model, undertaking radiation protection shielding calculations in accordance with international and national regulations, and exploring the effects of advanced fuels.
Biogeochemical controls on interactions of microbial iron and sulfate reduction
NASA Astrophysics Data System (ADS)
Kirk, M. F.; Paper, J. M.; Haller, B. R.; Shodunke, G. O.; Marquart, K. A.; Jin, Q.
2016-12-01
Although iron and sulfate reduction are two of the most common microbial electron accepting processes in anoxic settings, the relative influences of environmental factors that guide interactions between each are poorly known. Identifying these factors is a key to predicting how those interactions will respond to future environmental changes. In this study, we used semi-continuous bioreactors to examine the influence of pH, electron donor flux, and sulfate availability. The reactors contained 100 mL of aqueous media and 1 g of marsh sediment amended with goethite (1 mmol). One set of reactors received acidic media (pH 6) while the other set received alkaline media (pH 7.5). Media for both sets of reactors included acetate (0.25 and 1 mM), which served as an electron donor, and sulfate (2.5 mM). We also included sets of sulfate-deficient and acetate-deficient control reactors. We maintained a fluid residence time of 35 days in the reactors by sampling and feeding them every seven days during the 91-day incubation. Our results show that, under the conditions tested, pH had a larger influence on the balance between each reaction than acetate concentration. In acidic reactors, the molar amount of iron reduced exceeded the amount of sulfate reduced by a factor of 3 in reactors receiving media with 0 and 0.25 mM acetate and a factor of 2 in reactors receiving 1 mM acetate. Under alkaline conditions, iron and sulfate were reduced in nearly equal proportions, regardless of influent acetate concentration. Results from sulfate-deficient control reactors show that the presence of sulfate reduction increased the extent of iron reduction in all reactors, but particularly those with alkaline pH. Under acidic conditions, the amount of iron reduced was greater by a factor of 1.2 if sulfate reduction occurred simultaneously than if it did not. Under alkaline conditions, that factor increased to 8.2. Hence, pH influenced the extent to which sulfate reduction promoted iron reduction.
POSITIONING MEANS FOR THE CONTROL ROD IN A NUCLEAR REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1963-09-26
An electric motor and transmission means for adjusting the position of the control rod in relation to the reactor core to control the level of activity in either sense and a lock that is retained in a locking condition by a longitudinal force derived electrically from the motor but arranged to be released when the electrical force is removed to allow the control rod in an emergency to drop into its shut-down position are described. (Gmelin Inst.)
Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor.
Luo, Gang; Johansson, Sara; Boe, Kanokwan; Xie, Li; Zhou, Qi; Angelidaki, Irini
2012-04-01
The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic methanogenesis with conversion of more than 90% of the consumed hydrogen to methane. The hydrogen consumption rates were affected by both P(H₂) (hydrogen partial pressure) and mixing intensity. Inhibition of propionate and butyrate degradation by hydrogen (1 atm) was only observed under high mixing intensity (shaking speed 300 rpm). Continuous addition of hydrogen (flow rate of 28.6 mL/(L/h)) to an anaerobic reactor fed with manure, showed that more than 80% of the hydrogen was utilized. The propionate and butyrate level in the reactor was not significantly affected by the hydrogen addition. The methane production rate of the reactor with H₂ addition was 22% higher, compared to the control reactor only fed with manure. The CO₂ content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due to the consumption of bicarbonate, which subsequently caused slight inhibition of methanogenesis. Copyright © 2011 Wiley Periodicals, Inc.
Preliminary Comparison of Radioactive Waste Disposal Cost for Fusion and Fission Reactors
NASA Astrophysics Data System (ADS)
Seki, Yasushi; Aoki, Isao; Yamano, Naoki; Tabara, Takashi
1997-09-01
The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a fission reactor has been evaluated and compared. Possible radwaste disposal scenario of fusion radwaste in Japan is considered. The exposure doses were evaluated for the skyshine of gamma-ray during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical light water fission reactor was evaluated using the same methodology as for the fusion reactors. It is found that radwaste from the fusion reactors using F82H and SiC/SiC composites without impurities could be disposed by the shallow land disposal presently applied to the low level waste in Japan. The disposal cost of radwaste from five fusion power reactors and a typical light water reactor were roughly evaluated and compared.
Eddy Current Flow Measurements in the FFTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Deborah L.; Polzin, David L.; Omberg, Ronald P.
2017-02-02
The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuablemore » information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.« less
Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...
2016-05-24
We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less
Improving online risk assessment with equipment prognostics and health monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie B.; Liu, Xiaotong; Briere, Chris
The current approach to evaluating the risk of nuclear power plant (NPP) operation relies on static probabilities of component failure, which are based on industry experience with the existing fleet of nominally similar light water reactors (LWRs). As the nuclear industry looks to advanced reactor designs that feature non-light water coolants (e.g., liquid metal, high temperature gas, molten salt), this operating history is not available. Many advanced reactor designs use advanced components, such as electromagnetic pumps, that have not been used in the US commercial nuclear fleet. Given the lack of rich operating experience, we cannot accurately estimate the evolvingmore » probability of failure for basic components to populate the fault trees and event trees that typically comprise probabilistic risk assessment (PRA) models. Online equipment prognostics and health management (PHM) technologies can bridge this gap to estimate the failure probabilities for components under operation. The enhanced risk monitor (ERM) incorporates equipment condition assessment into the existing PRA and risk monitor framework to provide accurate and timely estimates of operational risk.« less
Who will save the tokamak - Harry Potter, Arnold Schwarzenegger, or Shaquille O'Neil?
NASA Astrophysics Data System (ADS)
Freidberg, J.; Mangiarotti, F.; Minervini, J.
2014-10-01
The tokamak is the current leading contender for a fusion power reactor. The reason for the preeminence of the tokamak is its high quality plasma physics performance relative to other concepts. Even so, it is well known that the tokamak must still overcome two basic physics challenges before becoming viable as a DEMO and ultimately a reactor: (1) the achievement of non-inductive steady state operation, and (2) the achievement of robust disruption free operation. These are in addition to the PMI problems faced by all concepts. The work presented here demonstrates by means of a simple but highly credible analytic calculation that a ``standard'' tokamak cannot lead to a reactor - it is just not possible to simultaneously satisfy all the plasma physics plus engineering constraints. Three possible solutions, some more well-known than others, to the problem are analyzed. These visual image generating solutions are defined as (1) the Harry Potter solution, (2) the Arnold Schwarzenegger solution, and (3) the Shaquille O'Neil solution. Each solution will be described both qualitatively and quantitatively at the meeting.
Energy-technological complex with reactor for torrefaction
NASA Astrophysics Data System (ADS)
Kuzmina, J. S.; Director, L. B.; Zaichenko, V. M.
2016-11-01
To eliminate shortcomings of raw plant materials pelletizing process with thermal treatment (low-temperature pyrolysis or torrefaction) can be applied. This paper presents a mathematical model of energy-technological complex (ETC) for combined production of heat, electricity and solid biofuels torrefied pellets. According to the structure the mathematical model consists of mathematical models of main units of ETC and the relationships between them and equations of energy and material balances. The equations describe exhaust gas straining action through a porous medium formed by pellets. Decomposition rate of biomass was calculated by using the gross-reaction diagram, which is responsible for the disintegration of raw material. A mathematical model has been tested according to bench experiments on one reactor module. From nomographs, designed for a particular configuration of ETC it is possible to determine the basic characteristics of torrefied pellets (rate of weight loss, heating value and heat content) specifying only two parameters (temperature and torrefaction time). It is shown that the addition of reactor for torrefaction to gas piston engine can improve the energy efficiency of power plant.
COAXIAL CONTROL ROD DRIVE MECHANISM FOR NEUTRONIC REACTORS
Fox, R.J.; Oakes, L.C.
1959-04-14
A drive mechanism is presented for the control rod or a nuclear reactor. In this device the control rod is coupled to a drive shaft which extends coaxially through the rotor of an electric motor for relative rotation with respect thereto. A gear reduction mehanism is coupled between the rotor and the drive shaft to convert the rotary motion of the motor into linear motion of the shaft with a comparatively great reduction in speed, thereby providing relatively glow linear movement of the shaft and control rod for control purposes.
CONTROL SYSTEM FOR NEUTRONIC REACTORS
Crever, F.E.
1962-05-01
BS>A slow-acting shim rod for control of major variations in reactor neutron flux and a fast-acting control rod to correct minor flux variations are employed to provide a sensitive, accurate control system. The fast-acting rod is responsive to an error signal which is produced by changes in the neutron flux from a predetermined optimum level. When the fast rod is thus actuated in a given direction, means is provided to actuate the slow-moving rod in that direction to return the fast rod to a position near the midpoint of its control range. (AEC)
Preparation of dielectric coating of variable dielectric constant by plasma polymerization
NASA Technical Reports Server (NTRS)
Hudis, M.; Wydeven, T. (Inventor)
1979-01-01
A plasma polymerization process for the deposition of a dielectric polymer coating on a substrate comprising disposing of the substrate in a closed reactor between two temperature controlled electrodes connected to a power supply is presented. A vacuum is maintained within the closed reactor, causing a monomer gas or gas mixture of a monomer and diluent to flow into the reactor, generating a plasma between the electrodes. The vacuum varies and controls the dielectric constant of the polymer coating being deposited by regulating the gas total and partial pressure, the electric field strength and frequency, and the current density.
Marshall, J. Jr.
1961-10-24
A reactor is described in which natural-uranium bodies are located in parallel channels which extend through the graphite mass in a regular lattice. The graphite mass has additional channels that are out of the lattice and contain no uranium. These additional channels decrease in number per unit volume of graphite from the center of the reactor to the exterior and have the effect of reducing the density of the graphite more at the center than at the exterior, thereby spreading neutron activity throughout the reactor. (AEC)
Systems and methods for dismantling a nuclear reactor
Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon
2014-10-28
Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.
Improved hydrocracker temperature control: Mobil quench zone technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarli, M.S.; McGovern, S.J.; Lewis, D.W.
1993-01-01
Hydrocracking is a well established process in the oil refining industry. There are over 2.7 million barrels of installed capacity world-wide. The hydrocracking process comprises several families of highly exothermic reactions and the total adiabatic temperature rise can easily exceed 200 F. Reactor temperature control is therefore very important. Hydrocracking reactors are typically constructed with multiple catalyst beds in series. Cold recycle gas is usually injected between the catalyst beds to quench the reactions, thereby controlling overall temperature rise. The design of this quench zone is the key to good reactor temperature control, particularly when processing poorer quality, i.e., highermore » heat release, feeds. Mobil Research and Development Corporation (MRDC) has developed a robust and very effective quench zone technology (QZT) package, which is now being licensed to the industry for hydrocracking applications.« less
Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.; ...
2016-12-21
Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.
Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less
Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues
NASA Astrophysics Data System (ADS)
Mackowiak, C. L.; Stutte, G. W.; Garland, J. L.; Finger, B. W.; Ruffe, L. M.
1997-01-01
Bioregenerative methods are being developed for recycling plant minerals from harvested inedible biomass as part of NASA's Advanced Life Support (ALS) research. Anaerobic processing produces secondary metabolites, a food source for yeast production, while providing a source of water soluble nutrients for plant growth. Since NH_4-N is the nitrogen product, processing the effluent through a nitrification reactor was used to convert this to NO_3-N, a more acceptable form for plants. Potato (Solanum tuberosum L.) cv. Norland plants were used to test the effects of anaerobically-produced effluent after processing through a yeast reactor or nitrification reactor. These treatments were compared to a mixed-N treatment (75:25, NO_3:NH_4) or a NO_3-N control, both containing only reagent-grade salts. Plant growth and tuber yields were greatest in the NO_3-N control and yeast reactor effluent treatments, which is noteworthy, considering the yeast reactor treatment had high organic loading in the nutrient solution and concomitant microbial activity.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on September 7, 2011, Room T-2B1, 11545 Rockville...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-03
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on June 7, 2011, Room T-2B1, 11545 Rockville Pike...