Science.gov

Sample records for control rod ejection

  1. Thermo-Mechanical Analysis of Coated Particle Fuel Experiencing a Fast Control Rod Ejection Transient

    SciTech Connect

    Ortensi, J.; Brian Boer; Abderrafi M. Ougouag

    2010-10-01

    A rapid increase of the temperature and the mechanical stress is expected in TRISO coated particle fuel that experiences a fast Total Control Rod Ejection (CRE) transient event. During this event the reactor power in the pebble bed core increases significantly for a short time interval. The power is deposited instantly and locally in the fuel kernel. This could result in a rapid increase of the pressure in the buffer layer of the coated fuel particle and, consequently, in an increase of the coating stresses. These stresses determine the mechanical failure probability of the coatings, which serve as the containment of radioactive fission products in the Pebble Bed Reactor (PBR). A new calculation procedure has been implemented at the Idaho National Laboratory (INL), which analyzes the transient fuel performance behavior of TRISO fuel particles in PBRs. This early capability can easily be extended to prismatic designs, given the availability of neutronic and thermal-fluid solvers. The full-core coupled neutronic and thermal-fluid analysis has been modeled with CYNOD-THERMIX. The temperature fields for the fuel kernel and the particle coatings, as well as the gas pressures in the buffer layer, are calculated with the THETRIS module explicitly during the transient calculation. Results from this module are part of the feedback loop within the neutronic-thermal fluid iterations performed for each time step. The temperature and internal pressure values for each pebble type in each region of the core are then input to the PArticle STress Analysis (PASTA) code, which determines the particle coating stresses and the fraction of failed particles. This paper presents an investigation of a Total Control Rod Ejection (TCRE) incident in the 400 MWth Pebble Bed Modular reactor design using the above described calculation procedure. The transient corresponds to a reactivity insertion of $3 (~2000 pcm) reaching 35 times the nominal power in 0.5 seconds. For each position in the core

  2. Drop Ejection From an Oscillating Rod

    NASA Technical Reports Server (NTRS)

    Wilkes, E. D.; Basaran, O. A.

    1999-01-01

    The dynamics of a drop of a Newtonian liquid that is pendant from or sessile on a solid rod that is forced to undergo time-periodic oscillations along its axis is studied theoretically. The free boundary problem governing the time evolution of the shape of the drop and the flow field inside it is solved by a method of lines using a finite element algorithm incorporating an adaptive mesh. When the forcing amplitude is small, the drop approaches a limit cycle at large times and undergoes steady oscillations thereafter. However, drop breakup is the consequence if the forcing amplitude exceeds a critical value. Over a wide range of amplitudes above this critical value, drop ejection from the rod occurs during the second oscillation period from the commencement of rod motion. Remarkably, the shape of the interface at breakup and the volume of the primary drop formed are insensitive to changes in forcing amplitude. The interface shape at times close to and at breakup is a multi-valued function of distance measured along the rod axis and hence cannot be described by recently popularized one-dimensional approximations. The computations show that drop ejection occurs without the formation of a long neck. Therefore, this method of drop formation holds promise of preventing formation of undesirable satellite droplets.

  3. CONTROL ROD

    DOEpatents

    Zinn, W.H.; Ross, H.V.

    1958-11-18

    A control rod is described for a nuclear reactor. In certaln reactor designs it becomes desirable to use a control rod having great width but relatively llttle thickness. This patent is addressed to such a need. The neutron absorbing material is inserted in a triangular tube, leaving volds between the circular insert and the corners of the triangular tube. The material is positioned within the tube by the use of dummy spacers to achleve the desired absorption pattern, then the ends of the tubes are sealed with suitable plugs. The tubes may be welded or soldered together to form two flat surfaces of any desired width, and covered with sheetmetal to protect the tubes from damage. This design provides a control member that will not distort under the action of outside forces or be ruptured by gases generated within the jacketed control member.

  4. Control rod drive

    DOEpatents

    Hawke, Basil C.

    1986-01-01

    A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.

  5. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.; Rogers, I.

    1961-06-27

    Accurate and controlled drive for the control rod is from an electric motor. A hydraulic arrangement is provided to balance a piston against which a control rod is urged by the application of fluid pressure. The electric motor drive of the control rod for normal operation is made through the aforementioned piston. In the event scramming is required, the fluid pressure urging the control rod against the piston is relieved and an opposite fluid pressure is applied. The lack of mechanical connection between the electric motor and control rod facilitates the scramming operation.

  6. CRUCIFORM CONTROL ROD JOINT

    DOEpatents

    Thorp, A.G. II

    1962-08-01

    An invention is described which relates to nuclear reactor control rod components and more particularly to a joint between cruciform control rod members and cruciform control rod follower members. In one embodiment this invention provides interfitting crossed arms at adjacent ends of a control rod and its follower in abutting relation. This holds the members against relative opposite longitudinal movement while a compression member keys the arms against relative opposite rotation around a common axis. Means are also provided for centering the control rod and its follower on a common axis and for selectively releasing the control rod from its follower for the insertion of a replacement of the control rod and reuse of the follower. (AEC)

  7. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.

    1960-05-24

    BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

  8. INTERCOMPARISON OF RESULTS FOR A PWR ROD EJECTION ACCIDENT

    SciTech Connect

    DIAMOND,D.J.; ARONSON,A.; JO,J.; AVVAKUMOV,A.; MALOFEEV,V.; SIDOROV,V.; FERRARESI,P.; GOUIN,C.; ANIEL,S.; ROYER,M.E.

    1999-10-01

    This study is part of an overall program to understand the uncertainty in best-estimate calculations of the local fuel enthalpy during the rod ejection accident. Local fuel enthalpy is used as the acceptance criterion for this design-basis event and can also be used to estimate fuel damage for the purpose of determining radiological consequences. The study used results from neutron kinetics models in PARCS, BARS, and CRONOS2, codes developed in the US, the Russian Federation, and France, respectively. Since BARS uses a heterogeneous representation of the fuel assembly as opposed to the homogeneous representations in PARCS and CRONOS, the effect of the intercomparison was primarily to compare different intra-assembly models. Quantitative comparisons for core power, reactivity, assembly fuel enthalpy and pin power were carried out. In general the agreement between methods was very good providing additional confidence in the codes and providing a starting point for a quantitative assessment of the uncertainty in calculated fuel enthalpy using best-estimate methods.

  9. COMPOSITE CONTROL ROD

    DOEpatents

    Rock, H.R.

    1963-12-24

    A composite control rod for use in controlling a nuclear reactor is described. The control rod is of sandwich construction in which finned dowel pins are utilized to hold together sheets of the neutron absorbing material and nonabsorbing structural material thereby eliminating the need for being dependent on the absorbing material for structural support. The dowel pins perform the function of absorbing the forces due to differential thermal expansion, seating further with the fins into the sheets of material and crushing before damage is done either to the absorbing or non-absorbing material. (AEC)

  10. Control rod driveline and grapple

    DOEpatents

    Germer, John H.

    1987-01-01

    A control rod driveline and grapple is disclosed for placement between a control rod drive and a nuclear reactor control rod containing poison for parasitic neutron absorption required for reactor shutdown. The control rod is provided with an enlarged cylindrical handle which terminates in an upwardly extending rod to provide a grapple point for the driveline. The grapple mechanism includes a tension rod which receives the upwardly extending handle and is provided with a lower annular flange. A plurality of preferably six grapple segments surround and grip the control rod handle. Each grapple rod segment grips the flange on the tension rod at an interior upper annular indentation, bears against the enlarged cylindrical handle at an intermediate annulus and captures the upwardly flaring frustum shaped handle at a lower and complementary female segment. The tension rods and grapple segments are surrounded by and encased within a cylinder. The cylinder terminates immediately and outward extending annulus at the lower portion of the grapple segments. Excursion of the tension rod relative to the encasing cylinder causes rod release at the handle by permitting the grapple segments to pivot outwardly and about the annulus on the tension rod so as to open the lower defined frustum shaped annulus and drop the rod. Relative movement between the tension rod and cylinder can occur either due to electromagnetic release of the tension rod within defined limits of travel or differential thermal expansion as between the tension rod and cylinder as where the reactor exceeds design thermal limits.

  11. REACTOR CONTROL ROD OPERATING SYSTEM

    DOEpatents

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  12. SAFETY SYSTEM FOR CONTROL ROD

    DOEpatents

    Paget, J.A.

    1963-05-14

    A structure for monitoring the structural continuity of a control rod foi a neutron reactor is presented. A electric conductor readily breakable under mechanical stress is fastened along the length of the control rod at a plurality of positions and forms a closed circuit with remote electrical components responsive to an open circuit. A portion of the conductor between the control rod and said components is helically wound to allow free and normally unrestricted movement of the segment of conductor secured to the control rod relative to the remote components. Any break in the circuit is indicative of control rod breakage. (AEC)

  13. Coupled thermal analysis applied to the study of the rod ejection accident

    SciTech Connect

    Gonnet, M.

    2012-07-01

    An advanced methodology for the assessment of fuel-rod thermal margins under RIA conditions has been developed by AREVA NP SAS. With the emergence of RIA analytical criteria, the study of the Rod Ejection Accident (REA) would normally require the analysis of each fuel rod, slice by slice, over the whole core. Up to now the strategy used to overcome this difficulty has been to perform separate analyses of sampled fuel pins with conservative hypotheses for thermal properties and boundary conditions. In the advanced methodology, the evaluation model for the Rod Ejection Accident (REA) integrates the node average fuel and coolant properties calculation for neutron feedback purpose as well as the peak fuel and coolant time-dependent properties for criteria checking. The calculation grid for peak fuel and coolant properties can be specified from the assembly pitch down to the cell pitch. The comparative analysis of methodologies shows that coupled methodology allows reducing excessive conservatism of the uncoupled approach. (authors)

  14. Reactor control rod timing system

    DOEpatents

    Wu, Peter T. K.

    1982-01-01

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  15. Reactor control rod timing system

    SciTech Connect

    Wu, P.T.

    1982-02-09

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (Above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  16. Advanced gray rod control assembly

    DOEpatents

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  17. NEUTRONIC REACTOR CONTROL ROD DRIVE APPARATUS

    DOEpatents

    Oakes, L.C.; Walker, C.S.

    1959-12-15

    ABS>A suspension mechanism between a vertically movable nuclear reactor control rod and a rod extension, which also provides information for the operator or an automatic control signal, is described. A spring connects the rod extension to a drive shift. The extension of the spring indicates whether (1) the rod is at rest on the reactor, (2) the rod and extension are suspended, or (3) the extension alone is suspended, the spring controlling a 3-position electrical switch.

  18. Inverted Control Rod Lock-In Device

    DOEpatents

    Brussalis, W. G.; Bost, G. E.

    1962-12-01

    A mechanism which prevents control rods from dropping out of the reactor core in the event the vessel in which the reactor is mounted should capsize is described. The mechanism includes a pivoted toothed armature which engages the threaded control rod lead screw and prevents removal of the rod whenever the armature is not attracted by the provided electromagnetic means. (AEC)

  19. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  20. Reactor control rod timing system. [LMFBR

    DOEpatents

    Wu, P.T.K.

    1980-03-18

    A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  1. Control rod drive hydraulic system

    DOEpatents

    Ose, Richard A.

    1992-01-01

    A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

  2. Internal Control Rod Drive Mechanisms, Design Options for IRIS

    SciTech Connect

    Conway, Lawrence E.; Petrovic, Bojan

    2004-07-01

    IRIS (International Reactor Innovative and Secure) is a medium-power (335 MWe) PWR with an integral, primary circuit configuration, where all the reactor coolant system components are contained within the reactor vessel. This integral configuration is a key reason for the success of IRIS' 'safety-by-design' approach, whereby accident initiators are eliminated or the accident consequences and/or frequency are reduced. The most obvious example of the IRIS safety by design approach is the elimination of large LOCA's, since the integral reactor coolant system has no large loop piping. Another serious accident scenario that is being addressed in IRIS is the postulated ejection of a reactor control cluster assembly (RCCA). This accident initiator can be eliminated by locating the RCCA drive mechanisms (CRDMs) inside the reactor vessel. This eliminates the mechanical drive rod penetration between the RCCA and the external CRDM, eliminating the potential for differential pressure across the pressure boundary, and thus eliminating 'by design' the possibility for rod ejection accident. Moreover, the elimination of the 'large' drive-rod penetrations and the external CRDM pressure housings decreases the likelihood of boric acid leakage and subsequent corrosion of the reactor pressure boundary (like the Davis-Besse incident). This paper will discuss the IRIS top level design requirements and objectives for internal CRDMs, and provide examples candidate designs and their specific performance characteristics. (authors)

  3. Control Rod Malfunction at the NRAD Reactor

    SciTech Connect

    Thomas L. Maddock

    2010-05-01

    The neutron Radiography Reactor (NRAD) is a training, research, and isotope (TRIGA) reactor located at the INL. The reactor is normally shut down by the insertion of three control rods that drop into the core when power is removed from electromagnets. During a routine shutdown, indicator lights on the console showed that one of the control rods was not inserted. It was initially thought that the indicator lights were in error because of a limit switch that was out of adjustment. Through further testing, it was determined that the control rod did not drop when the scram switch was initially pressed. The control rod anomaly led to a six month shutdown of the reactor and an in depth investigation of the reactor protective system. The investigation looked into: scram switch operation, console modifications, and control rod drive mechanisms. A number of latent issues were discovered and corrected during the investigation. The cause of the control rod malfunction was found to be a buildup of corrosion in the control rod drive mechanism. The investigation resulted in modifications to equipment, changes to both operation and maintenance procedures, and additional training. No reoccurrences of the problem have been observed since corrective actions were implemented.

  4. Uncertainties propagation in the framework of a Rod Ejection Accident modeling based on a multi-physics approach

    SciTech Connect

    Le Pallec, J. C.; Crouzet, N.; Bergeaud, V.; Delavaud, C.

    2012-07-01

    The control of uncertainties in the field of reactor physics and their propagation in best-estimate modeling are a major issue in safety analysis. In this framework, the CEA develops a methodology to perform multi-physics simulations including uncertainties analysis. The present paper aims to present and apply this methodology for the analysis of an accidental situation such as REA (Rod Ejection Accident). This accident is characterized by a strong interaction between the different areas of the reactor physics (neutronic, fuel thermal and thermal hydraulic). The modeling is performed with CRONOS2 code. The uncertainties analysis has been conducted with the URANIE platform developed by the CEA: For each identified response from the modeling (output) and considering a set of key parameters with their uncertainties (input), a surrogate model in the form of a neural network has been produced. The set of neural networks is then used to carry out a sensitivity analysis which consists on a global variance analysis with the determination of the Sobol indices for all responses. The sensitivity indices are obtained for the input parameters by an approach based on the use of polynomial chaos. The present exercise helped to develop a methodological flow scheme, to consolidate the use of URANIE tool in the framework of parallel calculations. Finally, the use of polynomial chaos allowed computing high order sensitivity indices and thus highlighting and classifying the influence of identified uncertainties on each response of the analysis (single and interaction effects). (authors)

  5. Variable flow control for a nuclear reactor control rod

    DOEpatents

    Carleton, Richard D.; Bhattacharyya, Ajay

    1978-01-01

    A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.

  6. VARIABLE AREA CONTROL ROD FOR NUCLEAR REACTOR

    DOEpatents

    Huston, N.E.

    1960-05-01

    A control rod is described which permits continual variation of its absorbing strength uniformly along the length of the rod. The rod is fail safe and is fully inserted into the core but changes in its absorbing strength do not produce axial flux distortion. The control device comprises a sheet containing a material having a high thermal-neutron absorption cross section. A pair of shafts engage the sheet along the longitudinal axis of the shafts and gears associated with the shafts permit winding and unwinding of the sheet around the shafts.

  7. Control rod for a nuclear reactor

    DOEpatents

    Roman, Walter G.; Sutton, Jr., Harry G.

    1979-01-01

    A control rod assembly for a nuclear reactor is disclosed having a remotely disengageable coupling between the control rod and the control rod drive shaft. The coupling is actuated by first lowering then raising the drive shaft. The described motion causes axial repositioning of a pin in a grooved rotatable cylinder, each being attached to different parts of the drive shaft which are axially movable relative to each other. In one embodiment, the relative axial motion of the parts of the drive shaft is used either to couple or to uncouple the connection by forcing resilient members attached to the drive shaft into or out of shouldered engagement, respectively, with an indentation formed in the control rod.

  8. Magnetic switch for reactor control rod. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  9. Magnetic switch for reactor control rod

    DOEpatents

    Germer, John H.

    1986-01-01

    A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  10. Regulatory perspective on incomplete control rod insertions

    SciTech Connect

    Chatterton, M.

    1997-01-01

    The incomplete control rod insertions experienced at South Texas Unit 1 and Wolf Creek are of safety concern to the NRC staff because they represent potential precursors to loss of shutdown margin. Even before it was determined if these events were caused by the control rods or by the fuel there was an apparent correlation of the problem with high burnup fuel. It was determined that there was also a correlation between high burnup and high drag forces as well as with rod drop time histories and lack of rod recoil. The NRC staff initial actions were aimed at getting a perspective on the magnitude of the problem as far as the number of plants and the amount of fuel that could be involved, as well as the safety significance in terms of shutdown margin. As tests have been performed and data has been analyzed the focus has shifted more toward understanding the problem and the ways to eliminate it. At this time the staff`s understanding of the phenomena is that it was a combination of factors including burnup, power history and temperature. The problem appears to be very sensitive to these factors, the interaction of which is not clearly understood. The model developed by Westinghouse provides a possible explanation but there is not sufficient data to establish confidence levels and sensitivity studies involving the key parameters have not been done. While several fixes to the problem have been discussed, no definitive fixes have been proposed. Without complete understanding of the phenomena, or fixes that clearly eliminate the problem the safety concern remains. The safety significance depends on the amount of shutdown margin lost due to incomplete insertion of the control rods. Were the control rods to stick high in the core, the reactor could not be shutdown by the control rods and other means such as emergency boration would be required.

  11. Nuclear reactor remote disconnect control rod coupling indicator

    DOEpatents

    Vuckovich, Michael

    1977-01-01

    A coupling indicator for use with nuclear reactor control rod assemblies which have remotely disengageable couplings between the control rod and the control rod drive shaft. The coupling indicator indicates whether the control rod and the control rod drive shaft are engaged or disengaged. A resistive network, utilizing magnetic reed switches, senses the position of the control rod drive mechanism lead screw and the control rod position indicating tube, and the relative position of these two elements with respect to each other is compared to determine whether the coupling is engaged or disengaged.

  12. Control rod drive for reactor shutdown

    DOEpatents

    McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.

    1976-01-20

    A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

  13. HIGH STRENGTH CONTROL RODS FOR NEUTRONIC REACTORS

    DOEpatents

    Lustman, B.; Losco, E.F.; Cohen, I.

    1961-07-11

    Nuclear reactor control rods comprised of highly compressed and sintered finely divided metal alloy panticles and fine metal oxide panticles substantially uniformly distributed theretbrough are described. The metal alloy consists essentially of silver, indium, cadmium, tin, and aluminum, the amount of each being present in centain percentages by weight. The oxide particles are metal oxides of the metal alloy composition, the amount of oxygen being present in certain percentages by weight and all the oxygen present being substantially in the form of metal oxide. This control rod is characterized by its high strength and resistance to creep at elevated temperatures.

  14. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  15. CONTROL ROD DRIVE MECHANISM FOR A NUCLEAR REACTOR

    DOEpatents

    Hawke, B.C.; Liederbach, F.J.; Lones, W.

    1963-05-14

    A lead-screw-type control rod drive featuring an electric motor and a fluid motor arranged to provide a selectably alternative driving means is described. The electric motor serves to drive the control rod slowly during normal operation, while the fluid motor, assisted by an automatic declutching of the electric motor, affords high-speed rod insertion during a scram. (AEC)

  16. Rebirth of a control rod at the Phenix power plant

    SciTech Connect

    De Carvalho, Corinne; Vignau, Bernard; Masson, Marc

    2007-07-01

    This paper outlines the operations involved in cleaning the control rod for the complementary shutdown system in the Phenix Power Plant, the French sodium-cooled fast reactor. The Phenix reactor is controlled by six control rods and a complementary shutdown system. The latter comprises a control rod and a mechanism maintaining the rod in position by means of an electromagnet. The electromagnet is continuously supplied with power and holds the rod control assembly in position by magnetisation on a plane circular surface made from pure iron. The bearing capacity of the mechanism on the rod was initially 80 daN with a rod weight of 26.3 daN. This deteriorated progressively over time. The bearing surface of the rod and the electromagnet became contaminated with a deposit of sodium oxides and metallic particles, thus creating an air gap. This reached a figure of 36 daN in 2005 and was deemed not to be sufficient to prevent the rod from dropping at the wrong time during reactor operation. The Power Plant thus decided to replace the rod mechanism in the reactor in an initial phase, followed by the control rod itself. As the Phenix Power Plant had no spare control rods left, they initiated a 'salvage' plan, over two stages, for the rod removed from the reactor and placed in the fuel storage drum: - Inspection of the bearing surface of the rod by means of a borescope to check whether the rod could be salvaged, - A cleaning operation on the bearing face and checks on the bearing capacity of the rod. The operation is subject to very stringent requirements: the rod must not be taken out of the sodium to ensure that it can be reused in the reactor. The operation must thus take place in the fuel storage drum where there are no facilities for such an operation and where operating conditions are very hostile: high temperatures (the sodium in the fuel storage drum is at a temperature of 150 deg. C, high dose rate (3 mGy/h on the bearing surface) and the bearing surface is submerged

  17. Nuclear reactor shutdown control rod assembly

    DOEpatents

    Bilibin, Konstantin

    1988-01-01

    A temperature responsive, self-actuated nuclear reactor shutdown control rod assembly 10. The upper end 18 of a lower drive line 17 fits within the lower end of an upper drive line 12. The lower end (not shown) of the lower drive line 17 is connected to a neutron absorber. During normal temperature conditions the lower drive line 17 is supported by detent means 22,26. When an overtemperature condition occurs thermal actuation means 34 urges ring 26 upwardly sufficiently to allow balls 22 to move radially outwardly thereby allowing lower drive line 17 to move downwardly toward the core of the nuclear reactor resulting in automatic reduction of the reactor powder.

  18. Thermal hydraulic performance of naturally aspirated control rod housing assemblies

    SciTech Connect

    Geiger, G.T.; Randolph, H.W.; Paik, I.K.; Foti, D.J.

    1992-08-01

    Savannah River Site reactors are comprised of heat generating fuel/target assemblies, control rods which regulate reactor power, and heavy water which acts as the coolant and as a moderator. The fuel/target assemblies are cooled by the downflow of heavy water while the control rods are cooled via upflow. Five control rods are grouped with two safety rods in seven-channel assemblies called septifoils. Under normal operating conditions, the reactor power level, radial shape flux and axial power flux are regulated by the positioning of the control rods. The control rods are solid rods of a lithium-aluminum alloy with an thin aluminum outer sheath. Lithium is a good absorber of neutrons and, thus control rod temperatures rise with reactor power. At conditions of sufficiently high reactor power and degraded coolant flow, the control rods could heat sufficiently to cause a metallurigical failure of the sheath leading to molten material coming in contact with water and the possibility of a steam explosion. An accident has been postulated as part of the analysis involving the safety upgrade of Savannah River Site reactors in which the housing is not seated on the pin. Coolant from the upflow pin would not be directed into the housing but, into the moderator space surrounding the housing. Only naturally aspirated cooling due to buoyancy effects would be available to cool the control rods and the coolant mass flow rate would drop significantly from its nominal value. In this study, the mechanisms and limits of cooling heated rods housed in an unseated septifoil are addressed. Experiments were conducted on a shortened, prototypic housing with electrically heated rods to gain an understanding of the phenomena governing the cooling in such a case and develop data which can be used to evaluate predictive models. These experiments are described, their results discussed, and the predictions of current models is presented.

  19. Thermal hydraulic performance of naturally aspirated control rod housing assemblies

    SciTech Connect

    Geiger, G.T.; Randolph, H.W.; Paik, I.K. ); Foti, D.J. )

    1992-01-01

    Savannah River Site reactors are comprised of heat generating fuel/target assemblies, control rods which regulate reactor power, and heavy water which acts as the coolant and as a moderator. The fuel/target assemblies are cooled by the downflow of heavy water while the control rods are cooled via upflow. Five control rods are grouped with two safety rods in seven-channel assemblies called septifoils. Under normal operating conditions, the reactor power level, radial shape flux and axial power flux are regulated by the positioning of the control rods. The control rods are solid rods of a lithium-aluminum alloy with an thin aluminum outer sheath. Lithium is a good absorber of neutrons and, thus control rod temperatures rise with reactor power. At conditions of sufficiently high reactor power and degraded coolant flow, the control rods could heat sufficiently to cause a metallurigical failure of the sheath leading to molten material coming in contact with water and the possibility of a steam explosion. An accident has been postulated as part of the analysis involving the safety upgrade of Savannah River Site reactors in which the housing is not seated on the pin. Coolant from the upflow pin would not be directed into the housing but, into the moderator space surrounding the housing. Only naturally aspirated cooling due to buoyancy effects would be available to cool the control rods and the coolant mass flow rate would drop significantly from its nominal value. In this study, the mechanisms and limits of cooling heated rods housed in an unseated septifoil are addressed. Experiments were conducted on a shortened, prototypic housing with electrically heated rods to gain an understanding of the phenomena governing the cooling in such a case and develop data which can be used to evaluate predictive models. These experiments are described, their results discussed, and the predictions of current models is presented.

  20. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  1. CONTROL ROD FOR A NUCLEAR REACTOR AND METHOD OF PREPARATION

    DOEpatents

    Hausner, H.H.

    1958-12-30

    BS>An improved control rod is presented for a nuclear reactor. This control rod is comprised of a rare earth metal oxide or rare earth metal carbide such as gadolinium oxide or gadolinium carbide, uniformly distributed in a metal matrix having a low cross sectional area of absorption for thermal neutrons, such as aluminum, beryllium, and zirconium.

  2. DEVICE FOR CONTROLLING INSERTION OF ROD

    DOEpatents

    Beaty, B.J.

    1958-10-14

    A device for rapidly inserting a safety rod into a nuclear reactor upon a given signal or in the event of a power failure in order to prevent the possibility of extensive damage caused by a power excursion is described. A piston is slidably mounted within a vertical cylinder with provision for an electromagnetic latch at the top of the cylinder. This assembly, with a safety rod attached to the piston, is mounted over an access port to the core region of the reactor. The piston is normally latched at the top of the cylinder with the safety rod clear of the core area, however, when the latch is released, the piston and rod drop by their own weight to insert the rod. Vents along the side of the cylinder permit the escape of the air entrapped under the piston over the greater part of the distance, however, at the end of the fall the entrapped air is compressed thereby bringing the safety rod gently to rest, thus providing for a rapid automatic insertion of the rod with a minimum of structural shock.

  3. Control rod reactivity measurement by rod-drop method at a fast critical assembly

    SciTech Connect

    Song, L.; Yin, Y.; Lian, X.; Zheng, C.

    2012-07-01

    Rod-drop experiments were carried out to estimate the reactivity of the control rod of a fast critical assembly operated by CAEP. Two power monitor systems were used to obtain the power level and integration method was used to process the data. Three experiments were performed. The experimental results of the reactivity from the two power monitor systems were consistent and showed a reasonable range of reactivity compared to results from positive period method. (authors)

  4. COAXIAL CONTROL ROD DRIVE MECHANISM FOR NEUTRONIC REACTORS

    DOEpatents

    Fox, R.J.; Oakes, L.C.

    1959-04-14

    A drive mechanism is presented for the control rod or a nuclear reactor. In this device the control rod is coupled to a drive shaft which extends coaxially through the rotor of an electric motor for relative rotation with respect thereto. A gear reduction mehanism is coupled between the rotor and the drive shaft to convert the rotary motion of the motor into linear motion of the shaft with a comparatively great reduction in speed, thereby providing relatively glow linear movement of the shaft and control rod for control purposes.

  5. Fatigue Life Improving of Drill Rod by Inclusion Control

    NASA Astrophysics Data System (ADS)

    Wang, Linzhu; Yang, Shufeng; Li, Jingshe; Liu, Wei; Zhou, Yinghao

    2016-08-01

    Large and hard inclusions often deteriorate the service performance and reduce the fatigue lifetime of drill rods. In this paper, the main reasons of the rupture of drill rods were analyzed by the examination of their fracture and it is found that the large inclusions were the main reason of breakage of rod drill. The inclusions were high of Ca content or Al2O3 rich. Smaller and better deformability inclusions were obtained by the optimization of refining slag, calcium treatment process and the flow control devices of tundish. Results of industrial experiment after optimization show that total oxygen content of drill rods decreased by more than 50%, macro-inclusions weight fraction decreased from about 4 mg/10 kg to about 0.3 mg/10 kg and the micro-inclusions average size decreased from 6 to 3.6 μm. The average using times of drill rods after optimization were increased by about 60%.

  6. Computer program for automatic generation of BWR control rod patterns

    SciTech Connect

    Taner, M.S.; Levine, S.H.; Hsia, M.Y. )

    1990-01-01

    A computer program named OCTOPUS has been developed to automatically determine a control rod pattern that approximates some desired target power distribution as closely as possible without violating any thermal safety or reactor criticality constraints. The program OCTOPUS performs a semi-optimization task based on the method of approximation programming (MAP) to develop control rod patterns. The SIMULATE-E code is used to determine the nucleonic characteristics of the reactor core state.

  7. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, Jay E.

    1984-01-01

    A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  8. ALLOY COMPOSITION FOR NEUTRONIC REACTOR CONTROL RODS

    DOEpatents

    Lustman, B.; Losco, E.F.; Snyder, H.J.; Eggleston, R.R.

    1963-01-22

    This invention relates to alloy compositons suitable as cortrol rod material consisting of, by weight, from 85% to 85% Ag, from 2% to 20% In, from up to 10% of Cd, from up to 5% Sn, and from up to 1.5% Al, the amount of each element employed being determined by the equation X + 2Y + 3Z + 3W + 4V = 1.4 and less, where X, Y, Z, W, and V represent the atom fractions of the elements Ag, Cd, In, Al and Sn. (AEC)

  9. BWR control-rod cobalt-alloy replacement. Final report

    SciTech Connect

    Aldred, P.

    1982-03-01

    Cobalt base pin and roller alloys in BWR Control Rods are a source for the Co-60 isotope which contributes to radiation buildup in the BWR core, the recirculation piping system and the spent fuel pool. It thereby influences personnel radiation exposure during BWR plant maintenance. The program objectives were (a) to identify non-cobalt alloys which could potentially replace the cobalt alloys, (b) evaluate the alloys by testing to qualify them for in-reactor surveillance testing, and (c) to initiate reactor tests at 2 BWRs. Wear resistance, an important requirement for pins and rollers, was measured in a simulated BWR environment (excluding irradiation). Prototypic wear tests were emphasized and a prototype control rod drive test facility was used to evaluate several pin and roller alloy combinations during prototype control rod operations.

  10. A Nodal Kinetics and Thermohydraulics Analysis (NOKTA) Code for Analyzing Rod-Ejection Accidents and Other Transients in Nuclear Power Reactor Cores

    SciTech Connect

    Kaya, Sadi; Yavuz, Hasbi

    2000-01-15

    For analyzing nuclear power reactor core transients, a three-dimensional nodal kinetics and thermohydraulics code, NOKTA, was developed. Nodal kinetics calculation is based on a one-group neutron diffusion approach. Thermal-hydraulics analysis is handled as in the COBRA-IV-I code. The NOKTA code was designed for analyzing especially large reactivity accidents, such as sudden rod ejection. It can also analyze intermediate transients, such as sharp power changes that may initiate xenon oscillations, and slow transients, such as boric acid density changes in the flow. The code dimensions are set at 125 subchannels and 30 axial levels. Calculation starts with a saturated xenon density, one-group neutronics parameters, and a flux profile, which is required as an input. Initially, k{sub eff} of each computation cell is set to unity.

  11. Pump-off controllers improve sucker rod lift economics

    SciTech Connect

    Amezcua, J.D.

    1982-02-01

    A controversal issue in the production of reservoir fluids is the application, field acceptance and reliability of automatic pump-off control (POC) devices on rod pumped wells. Three distinct types of pump-off controllers were selected for an extensive evaluation and results indicate that they offer an economical means of operating pumping wells and that field acceptance is attainable.

  12. Estimation and control in HTGR fuel rod fabrication

    SciTech Connect

    Downing, D J; Bailey, M J

    1980-01-01

    A control algorithm has been derived for a HTGR Fuel Rod Fabrication Process utilizing the method of Box and Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented.

  13. Fabrication of control rods for the High Flux Isotope Reactor

    SciTech Connect

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  14. NEUTRONIC REACTOR CONTROL ROD AND METHOD OF FABRICATION

    DOEpatents

    Porembka, S.W. Jr.

    1961-06-27

    A reactor control rod formed from a compacted powder dispersion is patented. The rod consists of titanium sheathed with a cladding alloy. The cladding alloy contains 1.3% to 1.6% by weight of tin, 0.07% to 0.12% by weight of chromium, 0.04% to 0.08% by weight of nickel, 0.09% to 0.16% by weight of iron, carbon not exceeding 0.05%, less than 0.5% by weight of incidental impurities, and the balance zirconium.

  15. VIEW OF CABLES AND TAPES ASSOCIATED WITH ADRIVE CONTROL ROD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CABLES AND TAPES ASSOCIATED WITH A-DRIVE CONTROL ROD SYSTEM, AT LEVEL +15’, DIRECTLY ABOVE PDP CONTROL ROOM, LOOKING NORTHWEST. THE CABLES FROM THE PDP ROOM GO THROUGH THE CONCRETE WALL, MAKE A RIGHT ANGLE TURN DOWNWARD, AND DESCEND INTO THE PDP CONTROL ROOM AS VERTICAL TAPES - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  16. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  17. Influence of control rod worth interactions on LMFBR control systems design

    SciTech Connect

    Lake, J. A.; Rittenberger, R. V.; Rathbun, R. W.

    1980-01-01

    These design criteria are interpreted to define the reactivity worth requirements for the primary and secondary control systems in terms of the minimum control systems capability under faulted conditions which will assure that the reactor can be safely shut down. The faulted conditions are postulated to occur upon the simultaneous failure of one of the redundant safety control systems to scram, a stuck rod in the scramming system, and a reactivity insertion resulting from the uncontrolled withdrawal of the highest worth control rod inserted in the reactor. The resulting positive reactivity insertion from the rod runout envelopes other postulated operational faults and is imposed on the shutdown requirements of both the primary and secondary control systems. In order to determine the minimum shutdown capability, an evaluation is made of the worst combination of control rod runout (reactivity fault) and stuck rod worth.

  18. Reconstitutable control assembly having removable control rods with detachable split upper end plugs

    SciTech Connect

    Gjertsen, R.K.; Knott, R.P.; Sparrow, J.A.

    1989-12-19

    This patent describes, in a reconstitutable control assembly for use with a nuclear fuel assembly, the control assembly including a spider structure and at least one control rod, an attachment joint for detachable fastening the control rod to the spider structure. The attachment joint comprising: a hollow connecting finger on the spider structure; and an elongated detachable split upper end plug on the control rod having a pair of separate upper and lower plug portions, the upper plug portion having integrally-connected tandemly- arranged upper, middle and lower sections. The lower plug portion having integrally-connected tandemly-arranged upper, middle and lower segments.

  19. Implementation of CTRLPOS, a VENTURE module for control rod position criticality searches, control rod worth curve calculations, and general criticality searches

    SciTech Connect

    Smith, L.A.; Renier, J.P.

    1994-06-01

    A module in the VENTURE reactor analysis code system, CTRLPOS, is developed to position control rods and perform control rod position criticality searches. The module is variably dimensioned so that calculations can be performed with any number of control rod banks each having any number of control rods. CTRLPOS can also calculate control rod worth curves for a single control rod or a bank of control rods. Control rod depletion can be calculated to provide radiation source terms. These radiation source terms can be used to predict radiation doses to personnel and estimate the shielding and long-term storage requirements for spent control rods. All of these operations are completely automated. The numerous features of the module are discussed in detail. The necessary input data for the CTRLPOS module is explained. Several sample problems are presented to show the flexibility of the module. The results presented with the sample problems show that the CTRLPOS module is a powerful tool which allows a wide variety of calculations to be easily performed.

  20. Control rod system useable for fuel handling in a gas-cooled nuclear reactor

    DOEpatents

    Spurrier, Francis R.

    1976-11-30

    A control rod and its associated drive are used to elevate a complete stack of fuel blocks to a position above the core of a gas-cooled nuclear reactor. A fuel-handling machine grasps the control rod and the drive is unlatched from the rod. The stack and rod are transferred out of the reactor, or to a new location in the reactor, by the fuel-handling machine.

  1. Method for depleting BWRs using optimal control rod patterns

    SciTech Connect

    Taner, M.S.; Levine, S.H. ); Hsiao, M.Y. )

    1991-01-01

    Control rod (CR) programming is an essential core management activity for boiling water reactors (BWRs). After establishing a core reload design for a BWR, CR programming is performed to develop a sequence of exposure-dependent CR patterns that assure the safe and effective depletion of the core through a reactor cycle. A time-variant target power distribution approach has been assumed in this study. The authors have developed OCTOPUS to implement a new two-step method for designing semioptimal CR programs for BWRs. The optimization procedure of OCTOPUS is based on the method of approximation programming and uses the SIMULATE-E code for nucleonics calculations.

  2. Countercurrent flow-limiting characteristics of a Savannah River Plant control rod septifoil

    SciTech Connect

    Anderson, J.L.

    1992-07-01

    Experiments were performed at the Idaho National Engineering Laboratory to investigate the counter-current flow limiting characteristics of a Savannah River Plant control rod septifoil assembly. These experiments were unheated, using air and water as the working fluids. Results are presented in terms of the Wallis flooding correlation for several different control rod configurations. Flooding was observed to occur in the vicinity of the inlet slots/holes of the septifoil, rather than within the rod bundle at the location of the minimum flow area. Nearly identical flooding characteristics of the septifoil were observed for configurations with zero, three, and four rods inserted, but significantly different results occurred with 5 rods inserted.

  3. Decontamination of control rod housing from Palisades Nuclear Power Station.

    SciTech Connect

    Kaminski, M.D.; Nunez, L.; Purohit, A.

    1999-05-03

    Argonne National Laboratory has developed a novel decontamination solvent for removing oxide scales formed on ferrous metals typical of nuclear reactor piping. The decontamination process is based on the properties of the diphosphonic acids (specifically 1-hydroxyethane-1,1-diphosphonic acid or HEDPA) coupled with strong reducing-agents (e.g., sodium formaldehyde sulfoxylate, SFS, and hydroxylamine nitrate, HAN). To study this solvent further, ANL has solicited actual stainless steel piping material that has been recently removed from an operating nuclear reactor. On March 3, 1999 ANL received segments of control rod housing from Consumers Energy's Palisades Nuclear Plant (Covert, MI) containing radioactive contamination from both neutron activation and surface scale deposits. Palisades Power plant is a PWR type nuclear generating plant. A total of eight segments were received. These segments were from control rod housing that was in service for about 6.5 years. Of the eight pieces that were received two were chosen for our experimentation--small pieces labeled Piece A and Piece B. The wetted surfaces (with the reactor's pressurized water coolant/moderator) of the pieces were covered with as a scale that is best characterized visually as a smooth, shiny, adherent, and black/brown in color type oxide covering. This tenacious oxide could not be scratched or removed except by aggressive mechanical means (e.g., filing, cutting).

  4. Final Report: Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation

    SciTech Connect

    Rowsell, David Leon

    2015-06-01

    This report documents the Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation. The review followed the approved Plan of Action (POA) and Implementation Plan (IP) using the identified core requirements. The activity was limited scope focusing on the control rod drives functional isolation and fuel element movement. The purpose of this review is to ensure the facility's readiness to move fuel elements thus supporting inspection and functionally isolate the control rod drives to maintain the required shutdown margin.

  5. Control rod heterogeneity effects in liquid-metal fast breeder reactors: Method developments and experimental validation

    SciTech Connect

    Carta, M.; Granget, G.; Palmiotti, G.; Salvatores, M.; Soule, R.

    1988-11-01

    The control rod worth assessment in a large liquid-metal fast breeder reactor is strongly dependent on the actual arrangement of the absorber pins inside the control rod subassemblies. The so-called heterogeneity effects (i.e., the effects on the rod reactivity of the actual rod internal geometry versus homogenization of the absorber atoms over all the subassembly volume) have been evaluated, using explicit and variational methods to derive appropriate cross sections. An experimental program performed at the MASURCA facility has been used to validate these methods.

  6. Optimization of boiling water reactor control rod patterns using linear search

    SciTech Connect

    Kiguchi, T.; Doi, K.; Fikuzaki, T.; Frogner, B.; Lin, C.; Long, A.B.

    1984-10-01

    A computer program for searching the optimal control rod pattern has been developed. The program is able to find a control rod pattern where the resulting power distribution is optimal in the sense that it is the closest to the desired power distribution, and it satisfies all operational constraints. The search procedure consists of iterative uses of two steps: sensitivity analyses of local power and thermal margins using a three-dimensional reactor simulator for a simplified prediction model; linear search for the optimal control rod pattern with the simplified model. The optimal control rod pattern is found along the direction where the performance index gradient is the steepest. This program has been verified to find the optimal control rod pattern through simulations using operational data from the Oyster Creek Reactor.

  7. Ultrasound control of magnet growing rod distraction in early onset scoliosis.

    PubMed

    Pérez Cervera, T; Lirola Criado, J F; Farrington Rueda, D M

    2016-01-01

    The growing rod technique is currently one of the most common procedures used in the management of early onset scoliosis. However, in order to preserve spine growth and control the deformity it requires frequent surgeries to distract the rods. Magnetically driven growing rods have recently been introduced with same treatment goal, but without the inconvenience of repeated surgical distractions. One of the limitations of this technical advance is an increase in radiation exposure due to the increase in distraction frequency compared to conventional growing rods. An improvement of the original technique is presented, proposing a solution to the inconvenience of multiple radiation exposure using ultrasound technology to control the distraction process of magnetically driven growing rods.

  8. A survey of control rod measurements in ZPPR and their analysis

    SciTech Connect

    Collins, P.J.

    1988-01-01

    The accurate prediction of control rod worths has been of great concern in the United States. Optimum control configurations need to balance several often conflicting requirements of control through the operating cycle, while maintaining acceptable power shapes, safety considerations of overriding importance, together with seeking economy by minimizing the number of rods, reducing boron enrichment and lengthening replacement intervals. After control and shutdown requirements have been met, the most important safety concern is the transient overpower condition (TOP) which may be initiated by uncontrolled run-out of a primary rod. Stringent criteria for the primary and secondary systems may be that they are independently capable of shutting down the reactor even with one rod stuck. The TOP initiator may be greatly enhanced by control rod interaction effects. Control rod effects may have a strong impact on core design. For example, work on the integral fast reactor with metallic fuel at ANL has studied core designs which minimize the TOP reactivity by maintaining a minimum primary control bank insertion through tailoring the internal breeding gain. The predicted control rod worths are very sensitive to the calculation methods used and to the accuracy of the basic nuclear data files. Required accuracies have been achieved only through the use of critical experiments on the ZPR and ZPPR facilities. Experiments on ZPR-3 and ZPR-9 produced satisfactory control predictions for the SEFOR, EBR-II and FFTF reactors. This document provides a survey of control rod measurements and compares calculated and experimental results. 16 refs., 3 figs., 10 tabs.

  9. Coolability of a control rod which has melted and foamed in its septifoil channel

    SciTech Connect

    Walkowiak, D.A.

    1991-10-01

    During a Loss of Control Rod Cooling (LCRC) event, the control rods which are in the affected septifoil can be postulated to melt. Melting of a control rod which has been irradiated creates a special concern since the entrapped gases expand rapidly and cause the melt to manifest itself initially in a foamed state. The foamed material then contacts the septifoil outer housing and the inner septifoil web material, where heat is conducted out of the foamed material. A second concern relating to the foamed melt is that its thermal conductivity is greatly reduced from that of the solid material, and also that of the non-foamed liquid. The purpose of this report is to address how, even in the presence of decreased thermal conductivity, the foamed melt may aid in cooling the control rod material.

  10. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements.

    PubMed

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-10-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. PMID:26141293

  11. Aerosol behavior during SIC control rod failure in QUENCH-13 test

    NASA Astrophysics Data System (ADS)

    Lind, Terttaliisa; Csordás, Anna Pintér; Nagy, Imre; Stuckert, Juri

    2010-02-01

    In a nuclear reactor severe accident, radioactive fission products as well as structural materials are released from the core by evaporation, and the released gases form particles by nucleation and condensation. In addition, aerosol particles may be generated by droplet formation and fragmentation of the core. In pressurized water reactors (PWR), a commonly used control rod material is silver-indium-cadmium (SIC) covered with stainless steel cladding. The control rod elements, Cd, In and Ag, have relatively low melting temperatures, and especially Cd has also a very low boiling point. Control rods are likely to fail early on in the accident due to melting of the stainless steel cladding which can be accelerated by eutectic interaction between stainless steel and the surrounding Zircaloy guide tube. The release of the control rod materials would follow the cladding failure thus affecting aerosol source term as well as fuel rod degradation. The QUENCH experimental program at Forschungszentrum Karlsruhe investigates phenomena associated with reflood of a degrading core under postulated severe accident conditions. QUENCH-13 test was the first in this program to include a silver-indium-cadmium control rod of prototypic PWR design. To characterize the extent of aerosol release during the control rod failure, aerosol particle size distribution and concentration measurements in the off-gas pipe of the QUENCH facility were carried out. For the first time, it was possible to determine on-line the aerosol concentration and size distribution released from the core. These results are of prime importance for model development for the proper calculation of the source term resulting from control rod failure. The on-line measurement showed that the main aerosol release started at the bundle temperature maximum of T ˜ 1570 K at hottest bundle elevation. A very large burst of aerosols was detected 660 s later at the bundle temperature maximum of T ˜ 1650 K, followed by a relatively

  12. On-line monitoring of control rod integrity in BWRs using a mass spectrometer

    NASA Astrophysics Data System (ADS)

    Larsson, I.; Loner, H.; Ammon, K.; Sihver, L.; Ledergerber, G.

    2013-01-01

    Surveillance of fuel and control rod integrity in the core of a boiling water reactor is essential for maintaining a safe and reliable operation. Control rods of a boiling water reactor are mainly filled with boron carbide as a neutron absorber. Due to the irradiation of boron with neutrons, a continuous production of lithium and helium will occur inside a control rod. Most of the created helium will be retained in the boron carbide lattice; however a small part will escape into the void volume of the control blade. Therefore the integrity of control rods during operation can efficiently be followed by on-line measurements of helium concentration in the reactor off-gas system using a mass spectrometer. Since helium is a fill gas in fuel rods, the same method is a useful early warning system for primary fuel failures. In this paper, we introduce an on-line helium detector system which is installed at the nuclear power plant in Leibstadt. Furthermore the measuring experiences of control rod failure detection at the plant are presented. Different causes of increased helium levels in the off-gas system have been distinguished. There are spontaneous helium releases as well as helium releases caused by changed conditions in the reactor (power reduction, control rod movement, etc.). Helium peaks can also be characterized according to the released amount of helium, the peak shape and the duration of the release, which leads to different interpretations of the release mechanisms. In addition, the measured amount of released helium from a 50 days period (280 l) is also compared to the calculated amount of produced helium from the washed out boron during the same time period (190 l).

  13. Control rod calibration and reactivity effects at the IPEN/MB-01 reactor

    SciTech Connect

    Pinto, Letícia Negrão; Gonnelli, Eduardo; Santos, Adimir dos

    2014-11-11

    Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of the control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.

  14. Control rod calibration and reactivity effects at the IPEN/MB-01 reactor

    NASA Astrophysics Data System (ADS)

    Pinto, Letícia Negrão; Gonnelli, Eduardo; dos Santos, Adimir

    2014-11-01

    Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of the control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.

  15. Experience with incomplete control rod insertion in fuel with burnup exceeding approximately 40 GWD/MTU

    SciTech Connect

    Kee, E.

    1997-01-01

    Analysis and measurement experience with fuel assemblies having incomplete control rod insertion at burnups of approximately 40 GWD/MTU is presented. Control rod motion dynamics and simplified structural analyses are presented and compared to measurement data. Fuel assembly growth measurements taken with the plant Refueling Machine Z-Tape are described and presented. Bow measurements (including plug gauging) are described and potential improvements are suggested. The measurements described and analysis performed show that sufficient guide tube bow (either from creep or yield buckling) is present in some high burnup assemblies to stop the control rods before they reach their full limit of travel. Recommendations are made that, if implemented, could improve cost performance related to testing and analysis activities.

  16. Control Rod Pattern Planning of a BWR using Enhanced Nelder-Mead Method

    SciTech Connect

    Yoko Kobayashi; Eitaro Aiyoshi

    2004-07-01

    We propose a new optimization algorithm for the short-term planning of control rod patterns in an operating BWR. This algorithm is based on the enhanced Nelder-Mead simplex method in which convergence ability is improved for constrained problems in several ways. The main characteristic of this approach is it uses continuous values for the axial positions of control rods. Through calculations in an actual BWR plant, we showed that the new algorithm is effective for automation of short-term planning and reduction of the engineer's workload. (authors)

  17. Degradation in steam of 60 cm-long B4C control rods

    NASA Astrophysics Data System (ADS)

    Dominguez, C.; Drouan, D.

    2014-08-01

    In the framework of nuclear reactor core meltdown accident studies, the degradation of boron carbide control rod segments exposed to argon/steam atmospheres was investigated up to about 2000 °C in IRSN laboratories. The sequence of the phenomena involved in the degradation has been found to take place as expected. Nevertheless, the ZrO2 oxide layer formed on the outer surface of the guide tube was very protective, significantly delaying and limiting the guide tube failure and therefore the boron carbide pellet oxidation. Contrary to what was expected, the presence of the control rod decreases the hydrogen release instead of increasing it by additional oxidation of boron compounds. Boron contents up to 20 wt.% were measured in metallic mixtures formed during degradation. It was observed that these metallic melts are able to attack the surrounding fuel rods, which could have consequences on fuel degradation and fission product release kinetics during severe accidents.

  18. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant.

    PubMed

    Ródenas, J; Abarca, A; Gallardo, S

    2011-08-01

    BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool.

  19. Reporting trends of randomised controlled trials in heart failure with preserved ejection fraction: a systematic review

    PubMed Central

    Zheng, Sean L; Chan, Fiona T; Maclean, Edd; Jayakumar, Shruti; Nabeebaccus, Adam A

    2016-01-01

    Background Heart failure with preserved ejection fraction (HFpEF) causes significant cardiovascular morbidity and mortality. Current consensus guidelines reflect the neutral results from randomised controlled trials (RCTs). Adequate trial reporting is a fundamental requirement before concluding on RCT intervention efficacy and is necessary for accurate meta-analysis and to provide insight into future trial design. The Consolidated Standards of Reporting Trials (CONSORT) 2010 statement provides a framework for complete trial reporting. Reporting quality of HFpEF RCTs has not been previously assessed, and this represents an important validation of reporting qualities to date. Objectives The aim was to systematically identify RCTs investigating the efficacy of pharmacological therapies in HFpEF and to assess the quality of reporting using the CONSORT 2010 statement. Methods MEDLINE, EMBASE and CENTRAL databases were searched from January 1996 to November 2015, with RCTs assessing pharmacological therapies on clinical outcomes in HFpEF patients included. The quality of reporting was assessed against the CONSORT 2010 checklist. Results A total of 33 RCTs were included. The mean CONSORT score was 55.4% (SD 17.2%). The CONSORT score was strongly correlated with journal impact factor (r=0.53, p=0.003) and publication year (r=0.50, p=0.003). Articles published after the introduction of CONSORT 2010 statement had a significantly higher mean score compared with those published before (64% vs 50%, p=0.02). Conclusions Although the CONSORT score has increased with time, a significant proportion of HFpEF RCTs showed inadequate reporting standards. The level of adherence to CONSORT criteria could have an impact on the validity of trials and hence the interpretation of intervention efficacy. We recommend improving compliance with the CONSORT statement for future RCTs. PMID:27547434

  20. Rod examination gauge

    SciTech Connect

    Bacvinskas, W.S.; Bayer, J.E.; Davis, W.W.; Fodor, G.; Kikta, T.J.; Matchett, R.L.; Nilsen, R.J.; Wilczynski, R.

    1991-12-31

    The present invention is directed to a semi-automatic rod examination gauge for performing a large number of exacting measurements on radioactive fuel rods. The rod examination gauge performs various measurements underwater with remote controlled machinery of high reliability. The rod examination gauge includes instruments and a closed circuit television camera for measuring fuel rod length, free hanging bow measurement, diameter measurement, oxide thickness measurement, cladding defect examination, rod ovality measurement, wear mark depth and volume measurement, as well as visual examination. A control system is provided including a programmable logic controller and a computer for providing a programmed sequence of operations for the rod examination and collection of data.

  1. BWR feedwater nozzle and control-rod-drive return line nozzle cracking

    SciTech Connect

    Not Available

    1981-11-01

    In its 1978 Annual Report to Congress, the Nuclear Regulatory Commission identified as an unresolved safety issue the appearance of cracks in feedwater nozzles at boiling-water reactors (BWRs). Later similar cracking, detected in return water lines for control-rod-drive systems at BWRs, was designated Part II of the issue. This article outlines the resolution of these cracking problems.

  2. Parallel Magnetic Flow Electromagnet for Movable Coil Control-rod Driving Mechanism

    SciTech Connect

    Jige, Zhang

    2006-07-01

    The parallel magnetic flow electromagnet can effectively relax the saturation, which easily takes place in the single magnetic flow electromagnet, and accordingly can improve the drive capacity of the movable coil electromagnet drive mechanism for a mobile reactor control rod. (authors)

  3. An Analytical Study of Fuzzy Control of a Flexible Rod Mechanism

    NASA Astrophysics Data System (ADS)

    Beale, D.; Lee, S. W.; Boghiu, D.

    1998-02-01

    The non-linear nature of very high speed, flexible rod mechanisms has been previously confirmed, both experimentally and analytically in reference [1]. Therefore, effective control system design for flexible mechanisms operating at very high speeds must consider the non-linearities when designing a controller for very high speeds. Active control via fuzzy logic is assessed as means to suppress the elastic transverse bending vibration of a flexible rod of a slider crank mechanism. Several pairs of piezoelectric elements are used to provide the control action. Sensor output of deflection is fed to the fuzzy controller, which determines the voltage input to the actuators. A three mode approximation is used in the simulation study. Computer simulation shows that fuzzy control can be used to suppress bending vibrations at high speeds, and even at speeds where the uncontrolled response would be unstable.

  4. Demonstration of EBR-II power maneuvers without control rod movement

    SciTech Connect

    Chang, L.K.; Mohr, D.; Planchon, H.P.; Feldman, E.E.; Messick, N.C.

    1988-01-01

    A group of five plant inherent control tests was successfully conducted in November 1987 in the Experimental Breeder Reactor II. These tests demonstrated that the plant power of a metal-fueled reactor can be passively controlled over a large power range by slowly changing the primary flow and the reactor inlet temperature. These variables are, in turn, regulated by the primary pump speed, the secondary flow, and the turbine inlet pressure. In all tests, control rods were not used to regulate power. It was demonstrated that the plant power can be controlled with reasonable accuracy without using control rods when the reactivity feedback characteristics of the reactor are well understood and the plant controllers are adequately designed.

  5. Development and control of the process for the manufacture of zircaloy-4 tubing for LWBR fuel rods

    SciTech Connect

    Eyler, J.H.

    1981-01-01

    The technical requirements for the Light Water Breeder Reactor (LWBR) fuel elements (fuel rods) imposed certain unique requirements for the low hafnium Zircaloy-4 tubing used as fuel rod cladding. This report describes, in detail, the tube manufacturing process, the product and process controls used, the inspections and tests performed, and the efforts involved in refining a commercial tube reducing process to produce tubes that would satisfy the requirements for LWBR fuel rod cladding.

  6. Maintaining a Critical Spectra within Monteburns for a Gas-Cooled Reactor Array by Way of Control Rod Manipulation

    DOE PAGESBeta

    Adigun, Babatunde John; Fensin, Michael Lorne; Galloway, Jack D.; Trellue, Holly Renee

    2016-06-07

    Our burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4×4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach - where the amount of fissile material in a set configuration is slowly altered until criticalitymore » is attained - in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. Finall, while the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.« less

  7. Controlled self-assembly of conjugated rod-coil block copolymers for applications in organic optoelectronics

    NASA Astrophysics Data System (ADS)

    Tao, Yuefei

    Organic electronics are of great interest in manufacturing light weight, mechanical flexible, and inexpensive large area devices. While significant improvements have been made over the last several years and it is now clear that morphology on the lengthscale of exciton diffusion (10nm) is of crucial importance, a clear relationship between structure and device properties has not emerged. This lack of understanding largely emerges from an inability to control morphology on this lengthscale. This thesis will center around an approach, based on block copolymer self-assembly, to generate equilibrium nanostructures on the 10 nm lengthscale of exciton diffusion and study their effects on device performance. Self-assembly of semiconducting block copolymers is complicated by the non-classical chain shape of conjugated polymers. Unlike classical polymers, the chains do not assume a Gaussian coil shape which is stretched near block copolymer interfaces, instead the chains are elongated and liquid crystalline. Previous work has demonstrated how these new molecular interactions and shapes control the phase diagram of so-called rod-coil block copolymers. Here, we will focus on controlling domain size, orientation, and chemical structure. While domain size can be controlled directly through molecular weight, this requires significant additional synthesis of domain size is to be varied. Here, the domain size is controlled by blending homopolymers into a self-assembling rod-coil block copolymer. When coil-like blocks are incorporated, the domains swell, as expected. When rod-like blocks are incorporated, they interdigitate with the rods of the block copolymers. This results in an increase in interfacial area which forces the coils to rearrange and an overall decrease in domain size with increasing rod content. Control over lamellar orientation is crucial in order to design and control charge transport pathways and exciton recombination or separation interfaces. While numerous

  8. Stereotypical cell division orientation controls neural rod midline formation in zebrafish.

    PubMed

    Quesada-Hernández, Elena; Caneparo, Luca; Schneider, Sylvia; Winkler, Sylke; Liebling, Michael; Fraser, Scott E; Heisenberg, Carl-Philipp

    2010-11-01

    The development of multicellular organisms is dependent on the tight coordination between tissue growth and morphogenesis. The stereotypical orientation of cell divisions has been proposed to be a fundamental mechanism by which proliferating and growing tissues take shape. However, the actual contribution of stereotypical division orientation (SDO) to tissue morphogenesis is unclear. In zebrafish, cell divisions with stereotypical orientation have been implicated in both body-axis elongation and neural rod formation, although there is little direct evidence for a critical function of SDO in either of these processes. Here we show that SDO is required for formation of the neural rod midline during neurulation but dispensable for elongation of the body axis during gastrulation. Our data indicate that SDO during both gastrulation and neurulation is dependent on the noncanonical Wnt receptor Frizzled 7 (Fz7) and that interfering with cell division orientation leads to severe defects in neural rod midline formation but not body-axis elongation. These findings suggest a novel function for Fz7-controlled cell division orientation in neural rod midline formation during neurulation.

  9. Feasibility study of the University of Utah TRIGA reactor power upgrade in respect to control rod system

    NASA Astrophysics Data System (ADS)

    Cutic, Avdo

    The objectives of this thesis are twofold: to determine the highest achievable power levels of the current University of Utah TRIG Reactor (UUTR) core configuration with the existing three control rods, and to design the core for higher reactor power by optimizing the control rod worth. For the current core configuration, the maximum reactor power, eigenvalue keff, shutdown margin, and excess reactivity have been measured and calculated. These calculated estimates resulted from thermal power calibrations, and the control rod worth measurements at various power levels. The results were then used as a benchmark to verify the MCNP5 core simulations for the current core and then to design a core for higher reactor power. This study showed that the maximum achievable power with the current core configuration and control rod system is 150kW, which is 50kW higher than the licensed power of the UUTR. The maximum achievable UUTR core power with the existing fuel is determined by optimizing the core configuration and control rod worth, showing that a power upgrade of 500 kW is achievable. However, it requires a new control rod system consisting of a total of four control rods. The cost of such an upgrade is $115,000.

  10. A rule-based expert system for automatic control rod pattern generation for boiling water reactors

    SciTech Connect

    Lin, L.S.; Lin, C. )

    1991-07-01

    This paper reports on an expert system for generating control rod patterns that has been developed. The knowledge is transformed into IF-THEN rules. The inference engine uses the Rete pattern matching algorithm to match facts, and rule premises and conflict resolution strategies to make the system function intelligently. A forward-chaining mechanism is adopted in the inference engine. The system is implemented in the Common Lisp programming language. The three-dimensional core simulation model performs the core status and burnup calculations. The system is successfully demonstrated by generating control rod programming for the 2894-MW (thermal) Kuosheng nuclear power plant in Taiwan. The computing time is tremendously reduced compared to programs using mathematical methods.

  11. Material ejection

    NASA Technical Reports Server (NTRS)

    Webb, David F.; Forbes, Terry G.; Aurass, Henry; Chen, James; Martens, Piet; Rompolt, Bogdan; Rusin, Vojtech; Martin, Sara F.

    1994-01-01

    This paper reviews the major discussions and conclusions of the Flares 22 Workshop concerning the physical processes involved in mass ejecta events, with an emphasis on large-scale phenomena, especially Coronal Mass Ejections (CMEs). New insights have been gained from recent data obtained from the Solar Maximum Mission (SMM) and Yohkoh spacecraft and from several new ground-based radio and optical instruments, as well as from theoretical advances concerning the origins, driving mechanisms and long-term evolution of CMEs.

  12. A two-step method for developing a control rod program for boiling water reactors

    SciTech Connect

    Taner, M.S.; Levine, S.H. ); Hsiao, M.Y. )

    1992-01-01

    This paper reports on a two-step method that is established for the generation of a long-term control rod program for boiling water reactors (BWRs). The new method assumes a time-variant target power distribution in core depletion. In the new method, the BWR control rod programming is divided into two steps. In step 1, a sequence of optimal, exposure-dependent Haling power distribution profiles is generated, utilizing the spectral shift concept. In step 2, a set of exposure-dependent control rod patterns is developed by using the Haling profiles generated at step 1 as a target. The new method is implemented in a computer program named OCTOPUS. The optimization procedure of OCTOPUS is based on the method of approximation programming, in which the SIMULATE-E code is used to determine the nucleonics characteristics of the reactor core state. In a test in cycle length over a time-invariant, target Haling power distribution case because of a moderate application of spectral shift. No thermal limits of the core were violated. The gain in cycle length could be increased further by broadening the extent of the spetral shift.

  13. A gel aspiration-ejection system for the controlled production and delivery of injectable dense collagen scaffolds.

    PubMed

    Kamranpour, Neysan O; Miri, Amir K; James-Bhasin, Mark; Nazhat, Showan N

    2016-03-01

    A gel aspiration-ejection (GAE) system has been developed for the advanced production and delivery of injectable dense collagen (I-DC) gels of unique collagen fibrillar densities (CFDs). Through the creation of negative pressure, GAE aspirates prefabricated highly hydrated collagen gels into a needle, simultaneously inducing compaction and meso-scale anisotropy (i.e., fibrillar alignment) on the gels, and by subsequent reversal of the pressure, I-DC gels can be controllably ejected. The system generates I-DC gels with CFDs ranging from 5 to 32 wt%, controlling the initial scaffold microstructure, anisotropy, hydraulic permeability, and mechanical properties. These features could potentially enable the minimally invasive delivery of more stable hydrogels. The viability, metabolic activity, and differentiation of seeded mesenchymal stem cells (MSCs) was investigated in the I-DC gels of distinct CFDs and extents of anisotropy produced through two different gauge needles. MSC osteoblastic differentiation was found to be relatively accelerated in I-DC gels that combined physiologically relevant CFDs and increased fibrillar alignment. The ability to not only support homogenous cell seeding, but also to direct and accelerate their differentiation through tissue-equivalent anisotropy, creates numerous opportunities in regenerative medicine. PMID:27003606

  14. Rodding Surgery

    MedlinePlus

    ... Rods can be made of stainless steel or titanium. Regular rods do not expand. They have many ... v regular), the rod materials (stainless steel v titanium) and the age for a first rodding surgery. ...

  15. Monte Carlo simulation of a research reactor with nominal power of 7 MW to design new control safety rods

    NASA Astrophysics Data System (ADS)

    Shoushtari, M. K.; Kakavand, T.; Sadat Kiai, S. M.; Ghaforian, H.

    2010-03-01

    The Monte Carlo simulation has been established for a research reactor with nominal power of 7 MW. A detailed model of the reactor core was employed including standard and control fuel elements, reflectors, irradiation channels, control rods, reactor pool and thermal column. The following physical parameters of reactor core were calculated for the present LEU core: core reactivity ( ρ), control rod (CR) worth, thermal and epithermal neutron flux distributions, shutdown margin and delayed neutron fraction. Reduction of unfavorable effects of blockage probability of control safety rod (CSR)s in their interiors because of not enough space in their sites, and lack of suitable capabilities to fabricate very thin plates for CSR cladding, is the main aim of the present study. Making the absorber rod thinner and CSR cladding thicker by introducing a better blackness absorbing material and a new stainless steel alloy, respectively, are two studied ways to reduce the effects of mentioned problems.

  16. Three Dimensional Analysis of 3-Loop PWR RCCA Ejection Accident for High Burnup

    SciTech Connect

    Marciulescu, Cristian; Sung, Yixing; Beard, Charles L.

    2006-07-01

    The Rod Control Cluster Assembly (RCCA) ejection accident is a Condition IV design basis reactivity insertion event for Pressurized Water Reactors (PWR). The event is historically analyzed using a one-dimensional (1D) neutron kinetic code to meet the current licensing criteria for fuel rod burnup to 62,000 MWD/MTU. The Westinghouse USNRC-approved three-dimensional (3D) analysis methodology is based on the neutron kinetics version of the ANC code (SPNOVA) coupled with Westinghouse's version of the EPRI core thermal-hydraulic code VIPRE-01. The 3D methodology provides a more realistic yet conservative analysis approach to meet anticipated reduction in the licensing fuel enthalpy rise limit for high burnup fuel. A rod ejection analysis using the 3D methodology was recently performed for a Westinghouse 3-loop PWR at an up-rated core power of 3151 MWt with reload cores that allow large flexibility in assembly shuffling and a fuel hot rod burnup to 75,000 MWD/MTU. The analysis considered high enrichment fuel assemblies at the control rod locations as well as bounding rodded depletions in the end of life, zero power and full power conditions. The analysis results demonstrated that the peak fuel enthalpy rise is less than 100 cal/g for the transient initiated at the hot zero power condition. The maximum fuel enthalpy is less than 200 cal/g for the transient initiated from the full power condition. (authors)

  17. Test-fuel power-coupling dependence on TREAT control-rod positions

    SciTech Connect

    Harrison, L.J.; Klotzkin, G.; Hart, P.R.; Swanson, R.W.

    1983-01-01

    The Transient Reactor Test (TREAT) is a graphite moderated, UO/sub 2/ fueled test reactor located at the Idaho National Engineering Laboratory and operated by Argonne National Laboratory. Test fuel is placed in containment vessels in the center of the reactor and subjected to computer-controlled transient irradiations which can result in experimental fuel melting or even vaporizing. The reactor was designed to have a strong negative temperature coefficient and to operate adiabatically. Consequently large reactivity insertions, up to 6.2% ..delta..k/k, may be required during a transient as the core temperature increases as much as 570/sup 0/C. This reactivity insertion is accomplished typically over 10 to 20 seconds by hydraulically actuated transient control rods. Evaluation of empirical data has indicated that control-rod-position changes cause power-coupling changes during a transient and usually are the primary factor in determining the ratio of the transient-averaged to steady-state test-fuel power coupling.

  18. Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses

    SciTech Connect

    Sanders, C.E.

    2001-07-20

    The Interim Staff Guidance on burnup credit (ISG-8) for pressurized water reactor (PWR) spent nuclear fuel (SNF), issued by the Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office, recommends the use of analyses that provide an ''adequate representation of the physics'' and notes particular concern with the ''need to consider the more reactive actinide compositions of fuels burned with fixed absorbers or with control rods fully or partly inserted.'' In the absence of readily available information on the extent of control rod (CR) usage in U.S. PWRs and the subsequent reactivity effect of CR exposure on discharged SNF, NRC staff have indicated a need for greater understanding in these areas. In response, this paper presents results of a parametric study of the effect of CR exposure on the reactivity of discharged SNF for various CR designs (including Axial Power Shaping Rods), fuel enrichments, and exposure conditions (i.e., burnup and axial insertion). The study is performed in two parts. In the first part, two-dimensional calculations are performed, effectively assuming full axial CR insertion. These calculations are intended to bound the effect of CR exposure and facilitate comparisons of the various CR designs. In the second part, three-dimensional calculations are performed to determine the effect of various axial insertion conditions and gain a better understanding of reality. The results from the study demonstrate that the reactivity effect increases with increasing CR exposure (e.g., burnup) and decreasing initial fuel enrichment (for a fixed burnup). Additionally, the results show that even for significant burnup exposures, minor axial CR insertions (e.g., < 20 cm) result in an insignificant effect on the k{sub eff} of a spent fuel cask.

  19. Detection and sizing of defects in control rod drive mechanism penetrations using eddy current and ultrasonics

    SciTech Connect

    Light, G.M.; Fisher, J.L.; Tennis, R.F.; Stolte, J.S.; Hendrix, G.J.

    1996-08-01

    Over the last two years, concern has been generated about the capabilities of performing nondestructive evaluation (NDE) of the closure-head penetrations in nuclear-reactor pressure vessels. These penetrations are primarily for instrumentation and control rod drive mechanisms (CRDMs) and are usually thick-walled Inconel tubes, which are shrink-fitted into the steel closure head. The penetrations are then welded between the outside surface of the penetration and the inside surface of the closure head. Stress corrosion cracks initiating at the inner surface of the penetration have been reported at several plants. Through-wall cracks in the CRDM penetration or CRDM weld could lead to loss of coolant in the reactor vessel. The CRDM penetration presents a complex inspection geometry for conventional NDE techniques. A thermal sleeve, through which pass the mechanical linkages for operating the control rods, is inserted into the penetration in such a way that only a small annulus (nominally 3 mm) exists between the thermal sleeve and inside surface of the penetration. Ultrasonic (UT) and eddy current testing (ET) techniques that could be used to provide defect detection and sizing capability were investigated. This paper describes the ET and UT techniques, the probes developed, and the results obtained using these probes and techniques on CRDM penetration mock-ups.

  20. Aging mechanisms in the Westinghouse PWR (Pressurized Water Reactor) Control Rod Drive system

    SciTech Connect

    Gunther, W.; Sullivan, K.

    1991-01-01

    An aging assessment of the Westinghouse Pressurized Water Reactor (PWR) Control Rod System (CRD) has been completed as part of the US NRC's Nuclear Plant Aging Research, (NPAR) Program. This study examined the design, construction, maintenance, and operation of the system to determine its potential for degradation as the plant ages. Selected results from this study are presented in this paper. The operating experience data were evaluated to identify the predominant failure modes, causes, and effects. From our evaluation of the data, coupled with an assessment of the materials of construction and the operating environment, we conclude that the Westinghouse CRD system is subject to degradation which, if unchecked, could affect its safety function as a plant ages. Ways to detect and mitigate the effects of aging are included in this paper. The current maintenance for the control rod drive system at fifteen Westinghouse PWRs was obtained through a survey conducted in cooperation with EPRI and NUMARC. The results of the survey indicate that some plants have modified the system, replaced components, or expanded preventive maintenance. Several of these activities have effectively addressed the aging issue. 2 refs., 2 figs., 2 tabs.

  1. Cost analysis of magnetically controlled growing rods compared with traditional growing rods for early-onset scoliosis in the US: an integrated health care delivery system perspective

    PubMed Central

    Polly, David W; Ackerman, Stacey J; Schneider, Karen; Pawelek, Jeff B; Akbarnia, Behrooz A

    2016-01-01

    Purpose Traditional growing rod (TGR) for early-onset scoliosis (EOS) is effective but requires repeated invasive surgical lengthenings under general anesthesia. Magnetically controlled growing rod (MCGR) is lengthened noninvasively using a hand-held magnetic external remote controller in a physician office; however, the MCGR implant is expensive, and the cumulative cost savings have not been well studied. We compared direct medical costs of MCGR and TGR for EOS from the US integrated health care delivery system perspective. We hypothesized that over time, the MCGR implant cost will be offset by eliminating repeated TGR surgical lengthenings. Methods For both TGR and MCGR, the economic model estimated the cumulative costs for initial implantation, lengthenings, revisions due to device failure, surgical-site infections, device exchanges (at 3.8 years), and final fusion, over a 6-year episode of care. Model parameters were estimated from published literature, a multicenter EOS database of US institutions, and interviews. Costs were discounted at 3.0% annually and represent 2015 US dollars. Results Of 1,000 simulated patients over 6 years, MCGR was associated with an estimated 270 fewer deep surgical-site infections and 197 fewer revisions due to device failure compared with TGR. MCGR was projected to cost an additional $61 per patient over the 6-year episode of care compared with TGR. Sensitivity analyses indicated that the results were sensitive to changes in the percentage of MCGR dual rod use, months between TGR lengthenings, percentage of hospital inpatient (vs outpatient) TGR lengthenings, and MCGR implant cost. Conclusion Cost neutrality of MCGR to TGR was achieved over the 6-year episode of care by eliminating repeated TGR surgical lengthenings. To our knowledge, this is the first cost analysis comparing MCGR to TGR – from the US provider perspective – which demonstrates the efficient provision of care with MCGR.

  2. Cost analysis of magnetically controlled growing rods compared with traditional growing rods for early-onset scoliosis in the US: an integrated health care delivery system perspective

    PubMed Central

    Polly, David W; Ackerman, Stacey J; Schneider, Karen; Pawelek, Jeff B; Akbarnia, Behrooz A

    2016-01-01

    Purpose Traditional growing rod (TGR) for early-onset scoliosis (EOS) is effective but requires repeated invasive surgical lengthenings under general anesthesia. Magnetically controlled growing rod (MCGR) is lengthened noninvasively using a hand-held magnetic external remote controller in a physician office; however, the MCGR implant is expensive, and the cumulative cost savings have not been well studied. We compared direct medical costs of MCGR and TGR for EOS from the US integrated health care delivery system perspective. We hypothesized that over time, the MCGR implant cost will be offset by eliminating repeated TGR surgical lengthenings. Methods For both TGR and MCGR, the economic model estimated the cumulative costs for initial implantation, lengthenings, revisions due to device failure, surgical-site infections, device exchanges (at 3.8 years), and final fusion, over a 6-year episode of care. Model parameters were estimated from published literature, a multicenter EOS database of US institutions, and interviews. Costs were discounted at 3.0% annually and represent 2015 US dollars. Results Of 1,000 simulated patients over 6 years, MCGR was associated with an estimated 270 fewer deep surgical-site infections and 197 fewer revisions due to device failure compared with TGR. MCGR was projected to cost an additional $61 per patient over the 6-year episode of care compared with TGR. Sensitivity analyses indicated that the results were sensitive to changes in the percentage of MCGR dual rod use, months between TGR lengthenings, percentage of hospital inpatient (vs outpatient) TGR lengthenings, and MCGR implant cost. Conclusion Cost neutrality of MCGR to TGR was achieved over the 6-year episode of care by eliminating repeated TGR surgical lengthenings. To our knowledge, this is the first cost analysis comparing MCGR to TGR – from the US provider perspective – which demonstrates the efficient provision of care with MCGR. PMID:27695352

  3. Fuzzy logic modeling and control of steel rod quenching after hot rolling

    NASA Astrophysics Data System (ADS)

    Giorleo, G.; Memola Capece Minutolo, F.; Sergi, V.

    1997-10-01

    Reinforced concrete rod produced by European Community countries must comply with standards that establish minimum strength and tensile properties along with other technological and geometrical characteristics; however, possible variability within the assigned limits is not specified. Consequently, a number of manufacturing methods are now used, with the result that over time the mechanical properties of these products vary widely. Increased competition has led to the development of new procedures incorporating both process and quality control. One example is a process based on the heat treatment undergone by the metal bars leaving the final stand of the rolling mill train. In this way, the mechanical and technological properties can be graduated, thereby enhancing strength (particularly yield point) without altering the deformability of the material. This procedure does away with the need to alter the chemical composition of the steel used to manufacture the rods. Process adjustment still relies on the experience of the production manager, however. This paper examines the possibility of applying fuzzy logic computer techniques to the heat treatment process in order to render it more rational and independent of operator unreliability.

  4. Rod guide

    SciTech Connect

    Sable, D.E.

    1988-11-29

    This patent describes a rod guide assembly for a sucker rod longitudinally reciprocably movable in a well flow conductor comprising: a pair of longitudinally spaced upper and lower stops rigidly secured to a sucker rod; and a guide body movably mounted on the rod between the stops. The stops being spaced from each other a distance slightly greater than the length of the guide body, the upper stop engaging the guide body to move the guide body downwardly with the rod after an initial short downward movement of the rod after initiation of each downward movement of the rod and the lower stop engaging the guide body to move the second guide body upwardly with the rod after initial short upward movement of the rod after initiation of each upward movement of the rod during the longitudinal reciprocatory movement of the rod in a well flow conductor.

  5. The differential characteristics of control rods of VVER-1000 core simulator at a low number of axial mesh points

    NASA Astrophysics Data System (ADS)

    Bolsunov, A. A.; Karpov, S. A.

    2013-12-01

    An algorithm for refining the differential characteristics of the control rods (CRs) of the control and protection system (CPS) for a neutronics model of the VVER-1000 simulator at a low number of axial mesh points of the core is described. The problem of determining the constants for a cell with a partially inserted CR is solved. The cell constants obtained using the proposed approach ensure smoothing of the differential characteristics of an absorbing rod. The algorithm was used in the VVER-1000 simulators (Bushehr NPP, unit no. 1; Rostov NPP, unit no. 1; and Balakovo NPP, unit no. 4).

  6. STABILIZED RARE EARTH OXIDES FOR A CONTROL ROD AND METHOD OF PREPARATION

    DOEpatents

    McNees, R.A.; Potter, R.A.

    1964-01-14

    A method is given for preparing mixed oxides of the formula MR/sub x/O/ sub 12/ wherein M is tungsten or molybdenum and R is a rare earth in the group consisting of samarium, europium, dysprosium, and gadolinium and x is 4 to 5. Oxides of this formula, and particularly the europiumcontaining species, are useful as control rod material for water-cooled nuclear reactors owing to their stability, favorable nuclear properties, and resistance to hydration. These oxides may be utilized as a dispersion in a stainlesssteel matrix. Preparation of these oxides is effected by blending tungsten oxide or molybdenum oxide with a rare earth oxide, compressing the mixture, and firing at an elevated temperature in an oxygen-containing atmosphere. (AEC)

  7. Nuclear Data Library Effects on Fast to Thermal Flux Shapes Around PWR Control Rod Tips

    NASA Astrophysics Data System (ADS)

    Vasiliev, A.; Ferroukhi, H.; Zhu, T.; Pautz, A.

    2014-04-01

    The development of a high-fidelity computational scheme to estimate the accumulated fluence at the tips of PWR control rods (CR) has been initiated at the Paul Scherrer Institut (PSI). Both the fluence from high-energy (E>1 MeV) neutrons as well as for the thermal range (E<0.625 eV) are required as these affect the CR integrity through stresses/strains induced by coupled clad embrittlement / absorber swelling phenomena. The concept of the PSI scheme under development is to provide from validated core analysis models, the volumetric neutron source to a full core MCNPX model that is then used to compute the neutron fluxes. A particular aspect that needs scrutiny is the ability of the MCNPX-based calculation methodology to accurately predict the flux shapes along the control rod surfaces, especially for fully withdrawn CRs. In that case, the tip is located a short distance above the core/reflector interface and since this situation corresponds to a large part of reactor operation, the accumulated fluence will highly depend on the achieved calculation accuracy and precision in this non-fueled zone. The objective of the work presented in this paper is to quantify the influence of nuclear data on the calculated fluxes at the CR tips by (1) conducting a systematic comparison of modern neutron cross-section libraries, including JENDL-4.0, JEFF-3.1.1 and ENDF/B-VII.0, and (2) by quantifying the uncertainties in the neutron flux calculations with the help of available neutron cross-section variances/covariances data. For completeness, the magnitude of these nuclear data-based uncertainties is also assessed in relation to the influence from other typical sources of modeling uncertainties/biases.

  8. Use of hinged rods for controlled osteoclastic correction of a fixed cervical kyphotic deformity in ankylosing spondylitis.

    PubMed

    Khoueir, Paul; Hoh, Daniel J; Wang, Michael Y

    2008-06-01

    Cervical kyphosis in patients with ankylosing spondylitis (AS) can be severely disabling. Surgical treatment of this disorder is technically demanding, however, with a considerable risk of neurological and vascular injuries. The extension osteotomy is a well-described posterior treatment for this condition, but this approach presents the risk of acute subluxation and spinal column translation during the reduction. In this paper, the authors report the novel use of a hinged posterior cervical rod for controlled correction of cervical kyphosis. After sustaining a traumatic spinal fracture, a 57-year-old man with AS developed a delayed cervical flexion deformity. The patient was neurologically intact, but suffered from disabling impairment in horizontal gaze and activities of daily living, and from neck pain. The patient subsequently underwent surgical correction via a posterior cervical extension osteotomy at C7-T1 with manual extension of the neck for osteoclastic reduction of the cervical kyphosis. Controlled correction was performed by using a hinged rod affixed to posterior cervical and thoracic screws, allowing for free sagittal correction while restricting translational forces. Once the desired angle of correction was achieved, the hinge connector was locked, transforming the rod into a rigid device for permanent internal fixation. The use of hinged rods in cervical kyphosis correction provides a controlled method for reduction at the osteotomy site, decreasing the risk of neurological injury. PMID:18518681

  9. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina.

    PubMed

    Jin, Nan Ge; Chuang, Alice Z; Masson, Philippe J; Ribelayga, Christophe P

    2015-04-01

    Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single-photon responses are smaller due to coupling, but the signal-to-noise ratio for a dim (multiphoton) light response is increased at night because of signal averaging between coupled rods. PMID:25616058

  10. Rod sequence advisor

    SciTech Connect

    Wood, R.M. ); Lu, Yi ); Furia, R.V.; Thompson, R.J. ); Lin, Ching-lu )

    1992-01-01

    During startup and power shaping maneuvers of boiling water reactors (BWR's), control rods are sequentially withdrawn from the reactor core. The withdrawal sequences determine the overall reactor power and the local core power density and are based on the knowledge of station engineers. It is important that the control rods are withdrawn in such a manner that the local power level does not become excessive while the desired reactor power is generated. Rules that constrain the relative positions of control rod groups have been developed to do this. While these rules are relatively simple, applying them to all possible movements of the 17 control rod groups in a typical BWR is complex and time consuming. SMARTRODS, is a rule based pilot expert system, was developed in LISP for the determination of the rod sequences.

  11. Development of a HTSMA-Actuated Surge Control Rod for High-Temperature Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Culley, Dennis; Stevens, Mark; Penney, Nicholas; Gaydosh, Darrell; Quackenbush, Todd; Carpenter, Bernie

    2007-01-01

    In recent years, a demand for compact, lightweight, solid-state actuation systems has emerged, driven in part by the needs of the aeronautics industry. However, most actuation systems used in turbomachinery require not only elevated temperature but high-force capability. As a result, shape memory alloy (SMA) based systems have worked their way to the forefront of a short list of viable options to meet such a technological challenge. Most of the effort centered on shape memory systems to date has involved binary NiTi alloys but the working temperatures required in many aeronautics applications dictate significantly higher transformation temperatures than the binary systems can provide. Hence, a high temperature shape memory alloy (HTSMA) based on NiTiPdPt, having a transformation temperature near 300 C, was developed. Various thermo-mechanical processing schemes were utilized to further improve the dimensional stability of the alloy and it was later extruded/drawn into wire form to be more compatible with envisioned applications. Mechanical testing on the finished wire form showed reasonable work output capability with excellent dimensional stability. Subsequently, the wire form of the alloy was incorporated into a benchtop system, which was shown to provide the necessary stroke requirements of approx.0.125 inches for the targeted surge-control application. Cycle times for the actuator were limited to 4 seconds due to control and cooling constraints but this cycle time was determined to be adequate for the surge control application targeted as the primary requirement was initial actuation of a surge control rod, which could be completed in approximately one second.

  12. A tetrachromatic display for the spatiotemporal control of rod and cone stimulation.

    PubMed

    Bayer, Florian S; Paulun, Vivian C; Weiss, David; Gegenfurtner, Karl R

    2015-08-01

    We present an apparatus that allows independent stimulation of rods and short (S)-, middle (M)-, and long (L)-wavelength-sensitive cones. Previously presented devices allow rod and cone stimulation independently, but only for a spatially invariant stimulus design (Pokorny, Smithson, & Quinlan, 2004; Sun, Pokorny, & Smith, 2001b). We overcame this limitation by using two spectrally filtered projectors with overlapping projections. This approach allows independent rod and cone stimulation in a dynamic two-dimensional scene with appropriate resolution in the spatial, temporal, and receptor domains. Modulation depths were ±15% for M-cones and L-cones, ±20% for rods, and ±50% for S-cones, all with respect to an equal-energy mesopic background at 3.4 cd/m2. Validation was provided by radiometric measures and behavioral data from two trichromats, one protanope, one deuteranope, and one night-blind observer. PMID:26305863

  13. Disposal Of Irradiated Cadmium Control Rods From The Plumbrook Reactor Facility

    SciTech Connect

    Posivak, E.J.; Berger, S.R.; Freitag, A.A.

    2008-07-01

    Innovative mixed waste disposition from NASA's Plum Brook Reactor Facility was accomplished without costly repackaging. Irradiated characteristic hardware with contact dose rates as high as 8 Sv/hr was packaged in a HDPE overpack and stored in a Secure Environmental Container during earlier decommissioning efforts, awaiting identification of a suitable pathway. WMG obtained regulatory concurrence that the existing overpack would serve as the macro-encapsulant per 40CFR268.45 Table 1.C. The overpack vent was disabled and the overpack was placed in a stainless steel liner to satisfy overburden slumping requirements. The liner was sealed and placed in shielded shoring for transport to the disposal site in a US DOT Type A cask. Disposition via this innovative method avoided cost, risk, and dose associated with repackaging the high dose irradiated characteristic hardware. In conclusion: WMG accomplished what others said could not be done. Large D and D contractors advised NASA that the cadmium control rods could only be shipped to the proposed Yucca mountain repository. NASA management challenged MOTA to find a more realistic alternative. NASA and MOTA turned to WMG to develop a methodology to disposition the 'hot and nasty' waste that presumably had no path forward. Although WMG lead a team that accomplished the 'impossible', the project could not have been completed with out the patient, supportive management by DOE-EM, NASA, and MOTA. (authors)

  14. Gas cooled fast reactor control rod drive mechanism deceleration unit. Test program

    SciTech Connect

    Wagner, T.H.

    1981-10-01

    This report presents the results of the airtesting portion of the proof-of-principle testing of a Control Rod Scram Deceleration Device developed for use in the Gas Cooled Fast Reactor (GCFR). The device utilizes a grooved flywheel to decelerate the translating assembly (T/A). Two cam followers on the translating assembly travel in the flywheel grooves and transfer the energy of the T/A to the flywheel. The grooves in the flywheel are straight for most of the flywheel length. Near the bottom of the T/A stroke the grooves are spiraled in a decreasing slope helix so that the cam followers accelerate the flywheel as they transfer the energy of the falling T/A. To expedite proof-of-principle testing, some of the materials used in the fabrication of certain test article components were not prototypic. With these exceptions the concept appears to be acceptable. The initial test of 300 scrams was completed with only one failure and the failure was that of a non-prototypic cam follower outer sleeve material.

  15. Stable Ejection Seat

    NASA Technical Reports Server (NTRS)

    Hirsch, R. S.

    1986-01-01

    Drogue chute for ejection seat slows down seat in more stable fashion than conventional parachutes and thus improves chances for survival. Square drogue linked to seat from its corners suppresses tendency of seat to rotate in pitch and yaw. New parachute expected to reduce dynamic forces on ejected person and extend maximum possible ejection altitude by 50 percent. Used at high or low speeds.

  16. Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch

    NASA Astrophysics Data System (ADS)

    Safa, Khari; Zahra, Rahmani; Behrooz, Rezaie

    2016-05-01

    An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system. In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov’s stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response, and robustness against uncertainties.

  17. Calculation of the Phenix end-of-life test 'Control Rod Withdrawal' with the ERANOS code

    SciTech Connect

    Tiberi, V.

    2012-07-01

    The Inst. of Radiological Protection and Nuclear Safety (IRSN) acts as technical support to French public authorities. As such, IRSN is in charge of safety assessment of operating and under construction reactors, as well as future projects. In this framework, one current objective of IRSN is to evaluate the ability and accuracy of numerical tools to foresee consequences of accidents. Neutronic studies step in the safety assessment from different points of view among which the core design and its protection system. They are necessary to evaluate the core behavior in case of accident in order to assess the integrity of the first barrier and the absence of a prompt criticality risk. To reach this objective one main physical quantity has to be evaluated accurately: the neutronic power distribution in core during whole reactor lifetime. Phenix end of life tests, carried out in 2009, aim at increasing the experience feedback on sodium cooled fast reactors. These experiments have been done in the framework of the development of the 4. generation of nuclear reactors. Ten tests have been carried out: 6 on neutronic and fuel aspects, 2 on thermal hydraulics and 2 for the emergency shutdown. Two of them have been chosen for an international exercise on thermal hydraulics and neutronics in the frame of an IAEA Coordinated Research Project. Concerning neutronics, the Control Rod Withdrawal test is relevant for safety because it allows evaluating the capability of calculation tools to compute the radial power distribution on fast reactors core configurations in which the flux field is very deformed. IRSN participated to this benchmark with the ERANOS code developed by CEA for fast reactors studies. This paper presents the results obtained in the framework of the benchmark activity. A relatively good agreement was found with available measures considering the approximations done in the modeling. The work underlines the importance of burn-up calculations in order to have a fine

  18. Sucker rod coupling

    SciTech Connect

    Klyne, A.A.

    1986-11-11

    An anti-friction sucker rod coupling is described for connecting a pair of sucker rods and centralizing them in a tubing string, comprising: an elongate, rigid, substantially cylindrical body member, each end of the body member forming means for threadably connecting the body member with a sucker rod. The body member further forms a transversely extending, substantially diametric, generally vertical slot extending therethrough. The body member further forms a pin bore, such pin bore extending transversely through the body member so as to intersect the slot substantially perpendicularly; a wheel member positioned within the slot to rotate in a generally vertical plane. The wheel member has a portion thereof extending beyond the periphery of the body member to engage the inner surface of the tubing string and centralize the coupling; and a pin mounted in the pin bore and supporting member thereon, whereby the wheel member is rotatable within the slot; the wheel member having sufficient clearance between its side surfaces and the wall surfaces of the slot, when the wheel member is centered in the slot on the pin, whereby the wheel member may shift along the pin to assist in ejecting sand and oil from the slot.

  19. Nondestructive and Destructive Examination Studies on Removed-from-Service Control Rod Drive Mechanism Penetrations

    SciTech Connect

    Cumblidge, Stephen E.; Crawford, Susan L.; Doctor, Steven R.; Seffens, Rob J.; Schuster, George J.; Toloczko, Mychailo B.; Harris, Robert V.; Bruemmer, Stephen M.

    2007-06-07

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, focused on assessing the effectiveness of nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objectives of this work are to provide information to the U.S. Nuclear Regulatory Commission (NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. Two CRDM assemblies were removed from service, decontaminated, and then used in a series of NDE and destructive examination (DE) measurements; this report addresses the following questions: 1) What did each NDE technique detect? 2) What did each NDE technique miss? 3) How accurately did each NDE technique characterize the detected flaws? 4) Why did the NDE techniques perform or not perform? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. This report focuses on a CRDM assembly that contained suspected PWSCC, based on in-service inspection data and through-wall leakage. The NDE measurements used to examine the CRDM assembly followed standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. These techniques included eddy current testing (ET), time-of-flight diffraction ultrasound, and penetrant testing. In addition, laboratory-based NDE methods were employed to conduct inspections of the CRDM assembly with particular emphasis on inspecting the J-groove weld and buttering. These techniques included volumetric ultrasonic inspection of the J-groove weld metal and visual testing via replicant material of the J-groove weld. The results from these NDE studies were used to

  20. cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade

    PubMed Central

    Astakhova, Luba A.; Samoiliuk, Evgeniia V.; Govardovskii, Victor I.

    2012-01-01

    In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions. PMID:23008435

  1. cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade.

    PubMed

    Astakhova, Luba A; Samoiliuk, Evgeniia V; Govardovskii, Victor I; Firsov, Michael L

    2012-10-01

    In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide-gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca(2+) exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca(2+)](in). Analysis by a complete model of rod phototransduction suggests that an increase of [Ca(2+)](in) might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca(2+)](in) and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions. PMID:23008435

  2. Automatic safety rod for reactors

    DOEpatents

    Germer, John H.

    1988-01-01

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  3. Electrostatic Droplet Ejection Using Planar Needle Inkjet Head

    NASA Astrophysics Data System (ADS)

    Hakiai, Kazunori; Ishida, Yuji; Baba, Akiyoshi; Asano, Tanemasa

    2005-07-01

    For the purpose of investigating the electrostatic droplet ejection event, a planar needle inkjet head with a projected cone-shaped needle (3-D head) was prepared to observe the phenomenon of droplet ejection. As the initial approach to developing a liquid ejection monitoring method, electric current was also measured. The ejection was found to take place as a series of single events that are composed of fine droplet ejections forming the Taylor cone and the subsequent swing back of the liquid front owing to the relationship between surface tension and electrostatic force. The critical factors for ejecting fine droplets in the case of using the inkjet head having a protruding needle were back pressure from the reservoir and the wetting control of the structures. The fast Fourier transform of electric current revealed the appearance of periodic signals during ejection, which may be used in developing a technique of sensing droplet ejection.

  4. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOEpatents

    Thomas, G.; Ahn, J.H.; Kim, N.J.

    1986-10-28

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar[sub 3] temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics. 3 figs.

  5. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOEpatents

    Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  6. Control of the generator current in solitary rods of the Ambystoma tigrinum retina.

    PubMed

    MacLeish, P R; Schwartz, E A; Tachibana, M

    1984-03-01

    THe current suppressed by light, the generator current, was studied in solitary salamander (Ambystoma tigrinum) rod photoreceptors with the single-micropipette voltage-clamp technique. The effects of Ca, cyclic GMP, and voltage were measured while voltage- and Ca-activated currents of the inner segment were blocked with Co, Cs, and TEA (tetraethylammonium). The generator current was increased more than 5-fold by lowering the external Ca concentration from 1.5 mM to 10 microM. The generator current could be decreased approximately 1/2 by injecting Ca into an outer segment. Injection of EGTA quickly increased the generator current approximately 2-fold. After injection ceased, the increase was quickly reversed. The generator current could be increased more than 5-fold by injecting cyclic GMP or 8Br-cyclic GMP. Injection of protons, the pH buffer bicine (N,N-bis[2-hydroxyethyl]glycine), or GMP did not produce a change in the generator current. The current-voltage curve for the generator current was influenced by external Co: in 3 mM-Co the current-voltage curve had a negative resistance between -45 and -90 mV; in 0.1 mM-Co the current-voltage curve paralleled the voltage axis between -45 and -90 mV. The difference is attributed to a voltage-dependent block by Co. Susceptibility to the blocking action of Co was reduced by lowering internal or external Ca concentration, or by injecting cyclic GMP. When rods were bathed in a medium containing 7-100 microM-Ca, a step depolarization produced a time-dependent decline in current. Because the reversal potential remained constant, the decline is attributed to an inactivation. The extent of inactivation was reduced by increasing the concentration of external Ca or injecting cyclic GMP.

  7. Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation

    SciTech Connect

    Pecchia, M.; D'Auria, F.; Mazzantini, O.

    2012-07-01

    Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI for performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)

  8. Evaluation and Repair of Primary Water Stress Corrosion Cracking in Alloy 600/182 Control Rod Drive Mechanism Nozzles

    SciTech Connect

    Frye, Charles R.; Arey, Melvin L. Jr.; Robinson, Michael R.; Whitaker, David E.

    2002-07-01

    In February 2001, a routine visual inspection of the reactor vessel head of Oconee Nuclear Station Unit 3 identified boric acid crystals at nine of sixty-nine locations where control rod drive mechanism housings (CRDM nozzles) penetrate the head. The boric acid deposits resulted from primary coolant leaking from cracks in the nozzle attachment weld and from through-thickness cracks in the nozzle wall. A general overview of the inspection and repair process is presented and results of the metallurgical analysis are discussed in more detail. The analysis confirmed that primary water stress corrosion cracking (PWSCC) is the mechanism of failure of both the Alloy 182 weld filler material and the alloy 600 wrought base material. (authors)

  9. A Flying Ejection Seat

    NASA Technical Reports Server (NTRS)

    Hollrock, R. H.; Barzda, J. J.

    1972-01-01

    To increase aircrewmen's chances for safe rescue in combat zones, the armed forces are investigating advanced escape and rescue concepts that will provide independent flight after ejection and thus reduce the risk of capture. One of the candidate concepts is discussed; namely, a stowable autogyro that serves as the crewman's seat during normal operations and automatically converts to a flight vehicle after ejection. Discussed are (1) the mechanism subsystems that the concept embodies to meet the weight and cockpit-packaging constraints and (2) tests that demonstrated the technical feasibility of the stowage, deployment, and flight operation of the rotor lift system.

  10. Coronal mass ejections

    SciTech Connect

    Steinolfson, R.S.

    1990-01-01

    Coronal mass ejections (CMEs) are now recognized as an important component of the large-scale evolution of the solar corona. Some representative observations of CMEs are reviewed with emphasis on more recent results. Recent observations and theory are examined as they relate to the following aspects of CMEs: (1) the role of waves in determining the white-light signature; and (2) the mechanism by which the CME is driven (or launched) into the corona.

  11. Calibrating and controlling the quantum efficiency distribution of inhomogeneously broadened quantum rods by using a mirror ball.

    PubMed

    Lunnemann, Per; Rabouw, Freddy T; van Dijk-Moes, Relinde J A; Pietra, Francesca; Vanmaekelbergh, Daniël; Koenderink, A Femius

    2013-07-23

    We demonstrate that a simple silver coated ball lens can be used to accurately measure the entire distribution of radiative transition rates of quantum dot nanocrystals. This simple and cost-effective implementation of Drexhage's method that uses nanometer-controlled optical mode density variations near a mirror, not only allows an extraction of calibrated ensemble-averaged rates, but for the first time also to quantify the full inhomogeneous dispersion of radiative and non radiative decay rates across thousands of nanocrystals. We apply the technique to novel ultrastable CdSe/CdS dot-in-rod emitters. The emitters are of large current interest due to their improved stability and reduced blinking. We retrieve a room-temperature ensemble average quantum efficiency of 0.87 ± 0.08 at a mean lifetime around 20 ns. We confirm a log-normal distribution of decay rates as often assumed in literature, and we show that the rate distribution-width, that amounts to about 30% of the mean decay rate, is strongly dependent on the local density of optical states.

  12. Peptidic ligands to control the three-dimensional self-assembly of quantum rods in aqueous media.

    PubMed

    Bizien, Thomas; Even-Hernandez, Pascale; Postic, Marie; Mazari, Elsa; Chevance, Soizic; Bondon, Arnaud; Hamon, Cyrille; Troadec, David; Largeau, Ludovic; Dupuis, Christophe; Gosse, Charlie; Artzner, Franck; Marchi, Valérie

    2014-09-24

    The use of peptidic ligands is validated as a generic chemical platform allowing one to finely control the organization in solid phase of semiconductor nanorods originally dispersed in an aqueous media. An original method to generate, on a macroscopic scale and with the desired geometry, three-dimensional supracrystals composed of quantum rods is introduced. In a first step, nanorods are transferred in an aqueous phase thanks to the substitution of the original capping layer by peptidic ligands. Infrared and nuclear magnetic resonance spectroscopy data prove that the exchange is complete; fluorescence spectroscopy demonstrates that the emitter optical properties are not significantly altered; electrophoresis and dynamic light scattering experiments assess the good colloidal stability of the resulting aqueous suspension. In a second step, water evaporation in a microstructured environment yields superstructures with a chosen geometry and in which nanorods obey a smectic B arrangement, as shown by electron microscopy. Incidentally, bulk drying in a capillary tube generates a similar local order, as evidenced by small angle X-ray scattering.

  13. The inner rod protein controls substrate switching and needle length in a Salmonella type III secretion system

    PubMed Central

    Lefebre, Matthew D.; Galán, Jorge E.

    2014-01-01

    Type III secretion machines are essential for the biology of many bacteria that are pathogenic or symbiotic for animals, plants, or insects. They exert their function by delivering bacterial effector proteins into target eukaryotic cells. The core component of these machines is the needle complex, a multiprotein structure that spans the bacterial envelope and serves as a conduit for proteins that transit this secretion pathway. The needle complex is composed of a multiring base embedded in the bacterial envelope and a filament-like structure, the needle, that projects from the bacterial surface and is linked to the base by the inner rod. Assembly of the needle complex proceeds in a step-wise fashion that is initiated by the assembly of the base and is followed by the export of the building subunits for the needle and inner rod substructures. Once assembled, the needle complex reprograms its specificity and becomes competent for the secretion of effector proteins. Here through genetic, biochemical, and electron microscopy analyses of the Salmonella inner rod protein subunit PrgJ we present evidence that the assembly of the inner rod dictates the timing of substrate switching and needle length. Furthermore, the identification of mutations in PrgJ that specifically alter the hierarchy of protein secretion provides additional support for a complex role of the inner rod substructure in type III secretion. PMID:24379359

  14. Chemical State Mapping of Degraded B4C Control Rod Investigated with Soft X-ray Emission Spectrometer in Electron Probe Micro-analysis

    NASA Astrophysics Data System (ADS)

    Kasada, R.; Ha, Y.; Higuchi, T.; Sakamoto, K.

    2016-05-01

    B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test.

  15. Chemical State Mapping of Degraded B4C Control Rod Investigated with Soft X-ray Emission Spectrometer in Electron Probe Micro-analysis

    PubMed Central

    Kasada, R.; Ha, Y.; Higuchi, T.; Sakamoto, K.

    2016-01-01

    B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test. PMID:27161666

  16. Chemical State Mapping of Degraded B4C Control Rod Investigated with Soft X-ray Emission Spectrometer in Electron Probe Micro-analysis.

    PubMed

    Kasada, R; Ha, Y; Higuchi, T; Sakamoto, K

    2016-01-01

    B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test. PMID:27161666

  17. Chemical State Mapping of Degraded B4C Control Rod Investigated with Soft X-ray Emission Spectrometer in Electron Probe Micro-analysis.

    PubMed

    Kasada, R; Ha, Y; Higuchi, T; Sakamoto, K

    2016-05-10

    B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test.

  18. Action as ejection.

    PubMed

    Franco, Daisy

    2006-01-01

    The systematic analysis of acting-out episodes can be used in assessing analytic progress. Variables to be considered are the nature of the wish, the type of defense, and the degree of concreteness (versus symbolization) of the mental processes used in attempting actualization (as distinct from the resort to action). Two acting-out episodes of a borderline patient who acted out as a character trait, both occurring outside the analytic setting, are presented as illustrations. In the first one, occurring relatively early in the analysis, when split-off negative and positive self-images had to be rigidly maintained, ejection of the negative self-image was actualized via the regressive use of a symbolic equation and the mechanism of displacement, obliterating the distinction between an internal feeling and an external thing that here was literally thrown out. The later episode, occurring after the split was healed and within the context of a frustrating heterosexual involvement, contained an acted-out allusion to identification and competition with the mother. As in a dream, via associations, an unconscious wish for oedipal victory was revealed. Whereas in the first episode the goal of ejection was central, with splitting and denial the underlying defenses, it was absent from the second, in which an attempt was made to actualize a repressed infantile wish and made greater use of symbolization. It is concluded that acting-out episodes at different periods of the analysis, when systematically analyzed, can serve in assessing a patient's progress.

  19. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    DOEpatents

    Young, J.N.

    1958-04-22

    An electromagnetic apparatus for moving a rod-like member in small steps in either direction is described. The invention has particular application in the reactor field where the reactor control rods must be moved only a small distance and where the use of mechanical couplings is impractical due to the high- pressure seals required. A neutron-absorbing rod is mounted in a housing with gripping uaits that engage the rod, and coils for magnetizing the gripping units to make them grip, shift, and release the rod are located outside the housing.

  20. CONTROL ROD ROTATING MECHANISM

    DOEpatents

    Baumgarten, A.; Karalis, A.J.

    1961-11-28

    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  1. High pressure melt ejection

    SciTech Connect

    Tarbell, W.W.; Brockmann, J.E.; Pilch, M.

    1983-01-01

    Recent probabilistic risk assessments have identified the potential for reactor pressure vessel failure while the reactor coolant system is at elevated pressure. The analyses postulate that the blowdown of steam and hydrogen into the reactor cavity will cause the core material to be swept from the cavity region into the containment building. The High Pressure Melt Streaming (HIPS) program is an experimental study of the high pressure ejection of molten material and subsequent interactions within a concrete cavity. The program focuses on using prototypic system conditions and scaled models of reactor geometries to accurately simulate the ex-vessel processes during high-pressure accident sequences. Scaling analyses of the experiment show that the criteria established for core debris removal from the cavity are met or exceeded. Tests are performed at two scales, representing 1/10th and 1/20th linear reproductions of the Zion reactor plant. Results of the 1/20th scale tests are presented.

  2. Development of burnup dependent fuel rod model in COBRA-TF

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mine Ozdemir

    predictions. After confirming that the new fuel thermal conductivity model in CTF worked and provided consistent results with FRAPTRAN predictions for a single fuel rod configuration, the same type of analysis was carried out for a bigger system which is the 4x4 PWR bundle consisting of 15 fuel pins and one control guide tube. Steady- state calculations at Hot Full Power (HFP) conditions for control guide tube out (unrodded) were performed using the 4x4 PWR array with CTF/TORT-TD coupled code system. Fuel centerline, surface and average temperatures predicted by CTF/TORT-TD with and without the new fuel thermal conductivity model were compared against CTF/TORT-TD/FRAPTRAN predictions to demonstrate the improvement in fuel centerline predictions when new model was used. In addition to that constant and CTF dynamic gap conductance model were used with the new thermal conductivity model to show the performance of the CTF dynamic gap conductance model and its impact on fuel centerline and surface temperatures. Finally, a Rod Ejection Accident (REA) scenario using the same 4x4 PWR array was run both at Hot Zero Power (HZP) and Hot Full Power (HFP) condition, starting at a position where half of the control rod is inserted. This scenario was run using CTF/TORT-TD coupled code system with and without the new fuel thermal conductivity model. The purpose of this transient analysis was to show the impact of thermal conductivity degradation (TCD) on feedback effects, specifically Doppler Reactivity Coefficient (DRC) and, eventually, total core reactivity.

  3. Automatic safety rod for reactors. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-03-23

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  4. FUEL ROD ASSEMBLY

    DOEpatents

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  5. Safety rod latch inspection

    SciTech Connect

    Leader, D.R.

    1992-02-01

    During an attempt to raise control rods from the 100 K reactor in December, one rod could not be withdrawn. Subsequent investigation revealed that a small button'' in the latch mechanism had broken off of the lock plunger'' and was wedged in a position that prevented rod withdrawal. Concern that this failure may have resulted from corrosion or some other metallurgical problem resulted in a request that SRL examine six typical latch mechanisms from the 100 L reactor by use of radiography and metallography. During the examination of the L-Area latches, a failed latch mechanism from the 100 K reactor was added to the investigation. Fourteen latches that had a history of problems were removed from K-Area and sent to SRL for inclusion in this study the week after the original seven assemblies were examined, bringing the total of latch assemblies discussed in this report to twenty one. Results of the examination of the K-Area latch that initiated this study is not included in this report.

  6. Safety rod latch inspection

    SciTech Connect

    Leader, D.R.

    1992-02-01

    During an attempt to raise control rods from the 100 K reactor in December, one rod could not be withdrawn. Subsequent investigation revealed that a small ``button`` in the latch mechanism had broken off of the ``lock plunger`` and was wedged in a position that prevented rod withdrawal. Concern that this failure may have resulted from corrosion or some other metallurgical problem resulted in a request that SRL examine six typical latch mechanisms from the 100 L reactor by use of radiography and metallography. During the examination of the L-Area latches, a failed latch mechanism from the 100 K reactor was added to the investigation. Fourteen latches that had a history of problems were removed from K-Area and sent to SRL for inclusion in this study the week after the original seven assemblies were examined, bringing the total of latch assemblies discussed in this report to twenty one. Results of the examination of the K-Area latch that initiated this study is not included in this report.

  7. A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina

    PubMed Central

    Wang, Sui; Sengel, Cem; Emerson, Mark M.; Cepko, Constance L.

    2015-01-01

    SUMMARY Gene regulatory networks (GRNs) regulate critical events during development. In complex tissues, such as the mammalian central nervous system (CNS), networks likely provide the complex regulatory interactions needed to direct the specification of the many CNS cell types. Here we dissect a GRN that regulates a binary fate decision between two siblings in the murine retina, the rod photoreceptor and bipolar interneuron. The GRN centers on Blimp1, one of the transcription factors (TFs) that regulates the rod versus bipolar cell fate decision. We identified a cis-regulatory module (CRM), B108, which mimics Blimp1 expression. Deletion of genomic B108 by CRISPR/Cas9 in vivo using electroporation abolished the function of Blimp1. Otx2 and RORβ were found to regulate Blimp1 expression via B108, and Blimp1 and Otx2 were shown to form a negative feedback loop that regulates the level of Otx2, which regulates the production of the correct ratio of rods and bipolar cells. PMID:25155555

  8. Connexin 36 and rod bipolar cell independent rod pathways drive retinal ganglion cells and optokinetic reflexes.

    PubMed

    Cowan, Cameron S; Abd-El-Barr, Muhammad; van der Heijden, Meike; Lo, Eric M; Paul, David; Bramblett, Debra E; Lem, Janis; Simons, David L; Wu, Samuel M

    2016-02-01

    Rod pathways are a parallel set of synaptic connections which enable night vision by relaying and processing rod photoreceptor light responses. We use dim light stimuli to isolate rod pathway contributions to downstream light responses then characterize these contributions in knockout mice lacking rod transducin-α (Trα), or certain pathway components associated with subsets of rod pathways. These comparisons reveal that rod pathway driven light sensitivity in retinal ganglion cells (RGCs) is entirely dependent on Trα, but partially independent of connexin 36 (Cx36) and rod bipolar cells. Pharmacological experiments show that rod pathway-driven and Cx36-independent RGC ON responses are also metabotropic glutamate receptor 6-dependent. To validate the RGC findings in awake, behaving animals we measured optokinetic reflexes (OKRs), which are sensitive to changes in ON pathways. Scotopic OKR contrast sensitivity was lost in Trα(-/-) mice, but indistinguishable from controls in Cx36(-/-) and rod bipolar cell knockout mice. Mesopic OKRs were also altered in mutant mice: Trα(-/-) mice had decreased spatial acuity, rod BC knockouts had decreased sensitivity, and Cx36(-/-) mice had increased sensitivity. These results provide compelling evidence against the complete Cx36 or rod BC dependence of night vision's ON component. Further, the findings suggest the parallel nature of rod pathways provides considerable redundancy to scotopic light sensitivity but distinct contributions to mesopic responses through complicated interactions with cone pathways. PMID:26718442

  9. Connexin 36 and rod bipolar cell independent rod pathways drive retinal ganglion cells and optokinetic reflexes.

    PubMed

    Cowan, Cameron S; Abd-El-Barr, Muhammad; van der Heijden, Meike; Lo, Eric M; Paul, David; Bramblett, Debra E; Lem, Janis; Simons, David L; Wu, Samuel M

    2016-02-01

    Rod pathways are a parallel set of synaptic connections which enable night vision by relaying and processing rod photoreceptor light responses. We use dim light stimuli to isolate rod pathway contributions to downstream light responses then characterize these contributions in knockout mice lacking rod transducin-α (Trα), or certain pathway components associated with subsets of rod pathways. These comparisons reveal that rod pathway driven light sensitivity in retinal ganglion cells (RGCs) is entirely dependent on Trα, but partially independent of connexin 36 (Cx36) and rod bipolar cells. Pharmacological experiments show that rod pathway-driven and Cx36-independent RGC ON responses are also metabotropic glutamate receptor 6-dependent. To validate the RGC findings in awake, behaving animals we measured optokinetic reflexes (OKRs), which are sensitive to changes in ON pathways. Scotopic OKR contrast sensitivity was lost in Trα(-/-) mice, but indistinguishable from controls in Cx36(-/-) and rod bipolar cell knockout mice. Mesopic OKRs were also altered in mutant mice: Trα(-/-) mice had decreased spatial acuity, rod BC knockouts had decreased sensitivity, and Cx36(-/-) mice had increased sensitivity. These results provide compelling evidence against the complete Cx36 or rod BC dependence of night vision's ON component. Further, the findings suggest the parallel nature of rod pathways provides considerable redundancy to scotopic light sensitivity but distinct contributions to mesopic responses through complicated interactions with cone pathways.

  10. Ejection Fraction Heart Failure Measurement

    MedlinePlus

    ... 70. You can have a normal ejection fraction reading and still have heart failure (called HFpEF or ... to be made. Here we delve into the importance of shared decision making. HF Resources For Life ...

  11. Investigation of combined free and forced convection in a 2 x 6 rod bundle during controlled flow transients

    SciTech Connect

    Bates, J.M.; Khan, E.U.

    1980-10-01

    An experimental study was performed to obtain local fluid velocity and temperature measurements in the mixed (combined free and forced) convection regime for specific flow coastdown transients. A brief investigation of steady-state flows for the purely free-convection regime was also completed. The study was performed using an electrically heated 2 x 6 rod bundle contained in a flow housing. In addition a transient data base was obtained for evaluating the COBRA-WC thermal-hydraulic computer program (a modified version of the COBRA-IV code).

  12. Coronal ejectives in Ahtna Athabaskan

    NASA Astrophysics Data System (ADS)

    Tuttle, Siri

    2005-04-01

    Ahtna, a non-tonal Alaskan language, is one of few Athabaskan languages that has retained word-final ejectives. The loss of stem-final glottal stops and ejectives in the other languages is correlated with tonogenesis. Hargus (2004) finds voice quality distinctions (creakiness, variability, and increased energy in higher harmonics) preceding stem-final glottal consonants in Witsuwiten, another nontonal Northern language. The present study considers the acoustics of stem-initial and stem-final [t'] and [ts'] in Central and Lower Ahtna. Stem-initial ejectives are canonically shaped, with defined silent period following oral release. In stem-final position, as predicted by Kari (1990), variable non-ejective realizations are found in both word-final and intervocalic (suffixed) position. These realizations are accompanied by variable voice quality effects in preceding vowels, more frequent and pronounced than those found variably in vowels following stem-initial ejectives. Stem-final [t'] is frequently pronounced as glottal stop, and final [ts'] as ['s] where <,> stands for glottal stop. Strikingly, non-ejective realizations of stem-finals are found in suffixed and non-suffixed pairs with the same stem, suggesting that stem-final effects generalize to all tokens of stems. These findings support Leers (1979) picture of spirantization and suprasegmentalization in Athabaskan tonogenesis, as glottal effects gravitate to nucleus position.

  13. Piston rod seal

    DOEpatents

    Lindskoug, Stefan

    1984-01-01

    In a piston rod seal of the type comprising a gland through which the piston rod is passed the piston is provided with a sleeve surrounding the piston rod and extending axially so as to axially partly overlap the gland when the piston is in its bottom dead center position.

  14. 1987 Sucker rod tables

    SciTech Connect

    Not Available

    1987-03-01

    This reference identifies manufacturers qualified to produce API sucker rods and related equipment, lists chemical and mechanical properties of the various types of rods and provides dimensional characteristics. In addition, similar information is given for non-API products such as fiberglass and hollow rods.

  15. Sucker rod construction

    SciTech Connect

    Anderson, R.A.; Goodman, J.L.; Tickle, J.D.; Liskey, A.K.

    1987-03-31

    A sucker rod construction is described comprising: a connector member being formed to define a rod receptacle having a closed axially inner end and an open axially outer end, the rod receptacle having axially spaced, tapered annular surfaces, a cylindrical fiberglass rod having an end having an outer surface being received within the rod receptacle through the outer end and cooperating therewith to define an annular chamber between the outer surface of the end of the rod and the tapered annular surfaces, and a bonding means positioned in the annular chamber for bonding to the outer surface of the end of the rod to confront the tapered annular surfaces, each annular surface having an angle of taper with respect to the outer surface of the fiberglass rod, and each angle of taper being progressively and uniformly less toward the open end by an amount between one and one-half degrees and two degrees, inclusive, and a collet connected to the connector member adjacent the open axially outer end of the rod receptacle and having an axial bore therethrough retaining the end of the rod in coaxial position within the rod receptacle.

  16. Wear resistant rod guide

    SciTech Connect

    Gray, K.W.

    1991-12-03

    This paper describes a sucker rod guide. It comprises: a series of sucker rods connected end to end forming a sucker rod string, the sucker rod string extending down into a tubing string of a producing oil well from a pump jack located on the surface of the ground above the tubing string to a pump located at a bottom end of the tubing string, the pump forces produced fluid collected at the bottom end of the tubing string up to the ground's surface, the produced fluid occupies a space between the rod string and the tubing string through which the fluid is channeled from the bottom end of the tubing string to the ground's surface, the pump jack raises and lowers the rod string in the fluid being pumped up the tubing string while the fluid bathes the rod string within the tubing string, wherein the improvement comprises the following structure in combination with the above.

  17. Sucker rod guide

    SciTech Connect

    Edwards, B.J.; Starks, J.A.

    1989-08-22

    This patent describes a sucker rod guide for mounting on a sucker rod and spacing the sucker rod from the tubing in an oil well. The guide comprising a generally cylindrically-shaped, extruded, ultra-high density polyethylene body having a substantially smooth outside surface; a longitudinal bore provided centrally of the body. The bore having a smaller diameter than the diameter of the sucker rod; a plurality of grooves provided in circumferential relationship in the bore; and a tapered slot extending longitudinally through the body from the outside surface to the bore. The tapered slot further comprising a slot mouth located at the outside surface and a slot throat spaced from the slot mouth. The slot throat lying adjacent to the sucker rod bore and wherein the slot throat is wider than the slot mouth for mounting the sucker rod guide on the sucker rod.

  18. Low turbulence rod guide

    SciTech Connect

    Olinger, E.L.

    1992-05-26

    This patent describes an improved sucker rod guide for fixedly engaging around a sucker rod at a selected location along the length of the rod. It comprises a substantially cylindrical polymeric body having a longitudinal axis, a terminal end substantially continually tapered to the rod, a radially-inward surface and a radially outward surface, the radially inward surface of the body adjacent to and in tripping engagement with the rod when the rod guide is fixedly engaged around the rod; and a plurality of substantially continuous, longitudinal vanes carried by the body, a vane having a selected length and width, and longitudinally disposed along the radially outward surface of the guide body, extending radially away from the guide body and having a radially outside wear surface.

  19. A multipurpose satellite ejection system

    NASA Technical Reports Server (NTRS)

    Moore, Michael B.

    1987-01-01

    A design is presented for a pneumatic ejection system capable of ejecting a spin stabilized satellite from the cargo bay of space vehicles. This system was orginally designed for use on the Spacelab 6 shuttle mission, but is now being considered for use with expendable rockets for launching satellites. The ejection system was designed to launch a 150 lb satellite at an initial ejection velocity of 32 ft/sec with a spin rate of 30 rev/min. The ejection system consists of a pneumatic cylinder, satellite retaining mechanism, and bearing assembly to allow the satellite to rotate during the spin up phase. As the cylinder is pressurized rapidly causing movement of the actuation piston, the mechanism automatically releases the spinning satellite by retracting a pneumatic locking pin and three spring loaded holddown pins. When the piston reaches the end of its stroke, it encounters a crushable aluminum honeycomb shock absorber which decelerates the piston and retaining mechanism. The assembly is designed for multiple uses except for the crushable shock absorber and pyrotechnic valves. The advantage of the design is discussed and patent no. and date given.

  20. Effect of rod gap spacing on a suction panel for laminar flow and noise control in supersonic wind tunnels. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.

    1975-01-01

    Results are presented of a coordinated experimental and theoretical study of a sound shield concept which aims to provide a means of noise reduction in the test section of supersonic wind tunnels at high Reynolds numbers. The model used consists of a planar array of circular rods aligned with the flow, with adjustable gaps between them for boundary layer removal by suction, i.e., laminar flow control. One of the basic requirements of the present sound shield concept is to achieve sonic cross flow through the gaps in order to prevent lee-side flow disturbances from penetrating back into the shielded region. Tests were conducted at Mach 6 over a local unit Reynolds number range from about 1.2 x 10 to the 6th power to 13.5 x 10 to the 6th power per foot. Measurements of heat transfer, static pressure, and sound levels were made to establish the transition characteristics of the boundary layer on the rod array and the sound shielding effectiveness.

  1. The Solar Mass Ejection Imager

    NASA Technical Reports Server (NTRS)

    Jackson, B. V.; Buffington, A.; Hick, P. L.; Kahler, S. W.; Altrock, R. C.; Gold, R. E.; Webb, D. F.

    1995-01-01

    We are designing a Solar Mass Ejection Imager (SMEI) capable of observing the Thomson-scattered signal from transient density features in the heliosphere from a spacecraft situated near AU. The imager is designed to trace these features, which include coronal mass ejections. corotating structures and shock waves, to elongations greater than 90 deg from the Sun. The instrument may be regarded as a progeny of the heliospheric imaging capability shown possible by the zodiacal-light photometers of the HELIOS spacecraft. The instrument we are designing would make more effective use of in-situ solar wind data from spacecraft in the vicinity of the imager by extending these observations to the surrounding environment. The observations from the instrument should allow deconvolution of these structures from the perspective views obtained as they pass the spacecraft. An imager at Earth could allow up to three days warning of the arrival of a mass ejection from the Sun .

  2. Pull rod assembly

    DOEpatents

    Cioletti, O.C.

    1988-04-21

    A pull rod assembly comprising a pull rod having three peripheral grooves, a piston device including an adaptor ring and a seal ring, said piston device being mounted on the pull rod by a split ring retainer situated in one groove and extending into an interior groove in the adaptor and a resilient split ring retained in another groove and positioned to engage the piston device and to retain the seal on its adaptor.

  3. Pull rod assembly

    DOEpatents

    Cioletti, Olisse C.

    1990-01-01

    A pull rod assembly comprising a pull rod having three peripheral grooves, a piston device including an adaptor ring and a seal ring, said piston device being mounted on the pull rod by a split ring retainer situated in one groove and extending into an interior groove in the adaptor and a resilient split ring retained in another groove and positioned to engage the piston device and to retain the seal on its adaptor.

  4. Pull rod assembly

    SciTech Connect

    Cioletti, O.C.

    1990-05-22

    This patent describes a pull rod assembly. It comprises: a pull rod having three peripheral grooves, a piston device including an adaptor ring and a seal ring. The piston device is mounted on the pull rod by a split ring retainer situated in one groove and extending into an interior groove in the adaptor and a resilient split ring retained in another groove and positioned to engage the piston device and to retain the seal on its adaptor.

  5. Multivalent counterions inhibit DNA ejection from viral capsid

    NASA Astrophysics Data System (ADS)

    Nguyen, Toan

    2008-03-01

    Viral DNA packaged inside a bacteriophage is tighly bent. This stored bending energy of DNA is believed to be the main driving force to eject viral DNA into host cell upon capsid binding. One can control the amount of ejected DNA by subjecting the virus to a solution of PEG8000 molecules. The molecules cannot penetrate the viral capsid, therefore, they exert an osmotic pressure on the virus preventing DNA ejection. Experiments showed that for a given osmotic pressure, the degree of ejection also depends on the concentration of small ions in solution. Interestingly, for multivalent ions (such as Mg2+, Spd3+ or HexCo3+), this dependence is non-monotonic. We propose a simple electrostatic theory to explain this non-monotonic behavior. This is based on the fact that DNA molecules can invert its net charge at high enough multivalent counterion concentration. In other words, as multivalent counterion concentration is increased from zero, charge of DNA molecules change from negative to positive. At the concentration where DNA net charge is zero, the DNA molecules experience an attraction between different segments and DNA ejected amount is reduced. At low or high counterion concentration, DNA segments are charged (negatively or positively), repel each other and DNA ejected amount is increased. Fitting the result of the theory to experimental data, we obtain a numerical value for Mg2+ mediated DNA - DNA attraction energy to be -0.008kT per base.

  6. FUEL ROD CLUSTERS

    DOEpatents

    Schultz, A.B.

    1959-08-01

    A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

  7. Rod Photoreceptors Detect Rapid Flicker

    ERIC Educational Resources Information Center

    Conner, J. D.; MacLeod, Donald I. A.

    1977-01-01

    Rod-isolation techniques show that light-adapted human rods detect flicker frequencies as high as 28 hertz, and that the function relating rod critical flicker frequency to stimulus intensity contains two distinct branches. (MLH)

  8. A new Doppler method of assessing left ventricular ejection force in chronic congestive heart failure.

    PubMed

    Isaaz, K; Ethevenot, G; Admant, P; Brembilla, B; Pernot, C

    1989-07-01

    A noninvasive method using Doppler echocardiography was developed to determine the force exerted by the left ventricle in accelerating the blood into the aorta. The value of this new Doppler ejection index in the assessment of left ventricular (LV) performance was tested in 36 patients with chronic congestive heart disease undergoing cardiac catheterization and in 11 age-matched normal control subjects. The 36 patients were subgrouped into 3 groups based on angiographic ejection fraction (LV ejection fraction greater than 60, 41 to 60 and less than or equal to 40%). According to Newton's second law of motion (force = mass X acceleration), the LV ejection force was derived from the product of the mass of blood ejected during the acceleration time with the mean acceleration undergone during that time. In patients with LV ejection fraction less than or equal to 40%, LV ejection force, peak aortic velocity and mean acceleration were severely depressed when compared with the other groups (p less than 0.001). In patients with LV ejection fraction of 41 to 60%, LV ejection force was significantly reduced (22 +/- 3 kdynes) when compared with normal subjects (29 +/- 5 kdynes, p = 0.002) and with patients with LV ejection fraction greater than 60% (29 +/- 7 kdynes, p = 0.009); peak velocity and mean acceleration did not differ between these 3 groups. The LV ejection force showed a good linear correlation with LV ejection fraction (r = 0.86) and a better power fit (r = 0.91). Peak aortic blood velocity and mean acceleration showed less good linear correlations with LV ejection fraction (r = 0.73 and r = 0.66, respectively). The mass of blood ejected during the acceleration time also showed a weak linear correlation with LV ejection fraction (r = 0.64). An LV ejection force less than 20 kdynes was associated with a depressed LV performance (LV ejection fraction less than 50%) with 91% sensitivity and 90% specificity. Thus, these findings suggest that LV ejection force is a new

  9. Control of the saturation temperature in magnetic heating by using polyethylene-glycol-coated rod-shaped nickel-ferrite (NiFe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2016-02-01

    Polyethylene-glycol (PEG)-coated nickel-ferrite nanoparticles were prepared for magnetic hyperthermia applications by using the co-precipitation method. The PEG coating occurred during the synthesis of the nanoparticles. The coated nanoparticles were rod-shaped with an average length of 16 nm and an average diameter of 4.5 nm, as observed using transmission electron microscopy. The PEG coating on the surfaces of the nanoparticles was confirmed from the Fourier-transform infrared spectra. The nanoparticles exhibited superparamagnetic characteristics with negligible coercive force. Further, magnetic heating effects were observed in aqueous solutions of the coated nanoparticles. The saturation temperature could be controlled at 42 ℃ by changing the concentration of the nanoparticles in the aqueous solution. Alternately, the saturation temperature could be controlled for a given concentration of nanoparticles by changing the intensity of the magnetic field. The Curie temperature of the nanoparticles was estimated to be 495 ℃. These results for the PEG-coated nickel-ferrite nanoparticles showed the possibility of utilizing them for controlled magnetic hyperthermia at 42 ℃.

  10. Composition of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Zurbuchen, T. H.; Weberg, M.; von Steiger, R.; Mewaldt, R. A.; Lepri, S. T.; Antiochos, S. K.

    2016-07-01

    We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q Fe > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

  11. Ejecting Phage DNA against Cellular Turgor Pressure

    PubMed Central

    Marion, Sanjin; Šiber, Antonio

    2014-01-01

    We examine in vivo ejection of noncondensed DNA from tailed bacteriophages into bacteria. The ejection is dominantly governed by the physical conditions in the bacteria. The confinement of the DNA in the virus capsid only slightly helps the ejection, becoming completely irrelevant during its last stages. A simple calculation based on the premise of condensed DNA in the cell enables us to estimate the maximal bacterial turgor pressure against which the ejection can still be fully realized. The calculated pressure (∼5 atm) shows that the ejection of DNA into Gram-negative bacteria could proceed spontaneously, i.e., without the need to invoke active mechanisms. PMID:25418173

  12. Ejecting phage DNA against cellular turgor pressure.

    PubMed

    Marion, Sanjin; Siber, Antonio

    2014-10-21

    We examine in vivo ejection of noncondensed DNA from tailed bacteriophages into bacteria. The ejection is dominantly governed by the physical conditions in the bacteria. The confinement of the DNA in the virus capsid only slightly helps the ejection, becoming completely irrelevant during its last stages. A simple calculation based on the premise of condensed DNA in the cell enables us to estimate the maximal bacterial turgor pressure against which the ejection can still be fully realized. The calculated pressure (~5 atm) shows that the ejection of DNA into Gram-negative bacteria could proceed spontaneously, i.e., without the need to invoke active mechanisms.

  13. Ejection Regimes in Picosecond Laser-Induced Forward Transfer of Metals

    NASA Astrophysics Data System (ADS)

    Pohl, Ralph; Visser, Claas Willem; Römer, Gert-Willem; Lohse, Detlef; Sun, Chao; Huis in't Veld, Bert

    2015-02-01

    Laser-induced forward transfer (LIFT) is a 3D direct-write method suitable for precision printing of various materials, including pure metals. To understand the ejection mechanism and thereby improve deposition, here we present visualizations of ejection events at high-spatial (submicrometer) and high-temporal resolutions, for picosecond LIFT of copper and gold films with a thickness 50 nm ≤d ≤400 nm . For increasing fluences, these visualizations reveals the fluence threshold below which no ejection is observed, followed by the release of a metal cap (i.e., a hemisphere-shaped droplet), the formation of an elongated jet, and the release of a metal spray. For each ejection regime, the driving mechanisms are analyzed, aided by a two-temperature model. Cap ejection is driven by relaxation of thermal stresses induced by laser-induced heating, whereas jet and spray ejections are vapor driven (as the metal film is partly vaporized). We introduce energy balances that provide the ejection velocity in qualitative agreement with our velocity measurements. The threshold fluences separating the ejection regimes are determined. In addition, the fluence threshold below which no ejection is observed is quantitatively described using a balance between the surface energy and the inertia of the (locally melted) film. In conclusion, the ejection type can now be controlled, which allows for improved deposition of pure metal droplets and sprays.

  14. Why rods and cones?

    PubMed

    Lamb, T D

    2016-02-01

    Under twenty-first-century metropolitan conditions, almost all of our vision is mediated by cones and the photopic system, yet cones make up barely 5% of our retinal photoreceptors. This paper looks at reasons why we additionally possess rods and a scotopic system, and asks why rods comprise 95% of our retinal photoreceptors. It considers the ability of rods to reliably signal the arrival of individual photons of light, as well as the ability of the retina to process these single-photon signals, and it discusses the advantages that accrue. Drawbacks in the arrangement, including the very slow dark adaptation of scotopic vision, are also considered. Finally, the timing of the evolution of cone and rod photoreceptors, the retina, and the camera-style eye is summarised.

  15. Validation of updated neutronic calculation models proposed for Atucha-II PHWR. Part I: Benchmark comparisons of WIMS-D5 and DRAGON cell and control rod parameters with MCNP5

    SciTech Connect

    Mollerach, R.; Leszczynski, F.; Fink, J.

    2006-07-01

    In 2005 the Argentine Government took the decision to complete the construction of the Atucha-II nuclear power plant, which has been progressing slowly during the last ten years. Atucha-II is a 745 MWe nuclear station moderated and cooled with heavy water, of German (Siemens) design located in Argentina. It has a pressure-vessel design with 451 vertical coolant channels, and the fuel assemblies (FA) are clusters of 37 natural UO{sub 2} rods with an active length of 530 cm. For the reactor physics area, a revision and update calculation methods and models (cell, supercell and reactor) was recently carried out covering cell, supercell (control rod) and core calculations. As a validation of the new models some benchmark comparisons were done with Monte Carlo calculations with MCNP5. This paper presents comparisons of cell and supercell benchmark problems based on a slightly idealized model of the Atucha-I core obtained with the WIMS-D5 and DRAGON codes with MCNP5 results. The Atucha-I core was selected because it is smaller, similar from a neutronic point of view, and more symmetric than Atucha-II Cell parameters compared include cell k-infinity, relative power levels of the different rings of fuel rods, and some two-group macroscopic cross sections. Supercell comparisons include supercell k-infinity changes due to the control rods (tubes) of steel and hafnium. (authors)

  16. Heart failure with preserved ejection fraction

    PubMed Central

    ElGuindy, Ahmed; Yacoub, Magdi H

    2012-01-01

    Abstract Heart failure with preserved ejection fraction (HFpEF) has recently emerged as a major cause of cardiovascular morbidity and mortality. Contrary to initial beliefs, HFpEF is now known to be as common as heart failure with reduced ejection fraction (HFrEF) and carries an unacceptably high mortality rate. With a prevalence that has been steadily rising over the past two decades, it is very likely that HFpEF will represent the dominant heart failure phenotype over the coming few years. The scarcity of trials in this semi-discrete form of heart failure and lack of unified enrolment criteria in the studies conducted to date might have contributed to the current absence of specific therapies. Understanding the epidemiological, pathophysiological and molecular differences (and similarities) between these two forms of heart failure is cornerstone to the development of targeted therapies. Carefully designed studies that adhere to unified diagnostic criteria with the recruitment of appropriate controls and adoption of practical end-points are urgently needed to help identify effective treatment strategies. PMID:25610841

  17. Electrically induced drop detachment and ejection

    NASA Astrophysics Data System (ADS)

    Cavalli, Andrea; Preston, Daniel J.; Tio, Evelyn; Martin, David W.; Miljkovic, Nenad; Wang, Evelyn N.; Blanchette, Francois; Bush, John W. M.

    2016-02-01

    A deformed droplet may leap from a solid substrate, impelled to detach through the conversion of surface energy into kinetic energy that arises as it relaxes to a sphere. Electrowetting provides a means of preparing a droplet on a substrate for lift-off. When a voltage is applied between a water droplet and a dielectric-coated electrode, the wettability of the substrate increases in a controlled way, leading to the spreading of the droplet. Once the voltage is released, the droplet recoils, due to a sudden excess in surface energy, and droplet detachment may follow. The process of drop detachment and lift-off, prevalent in both biology and micro-engineering, has to date been considered primarily in terms of qualitative scaling arguments for idealized superhydrophobic substrates. We here consider the eletrically-induced ejection of droplets from substrates of finite wettability and analyze the process quantitatively. We compare experiments to numerical simulations and analyze how the energy conversion efficiency is affected by the applied voltage and the intrinsic contact angle of the droplet on the substrate. Our results indicate that the finite wettability of the substrate significantly affects the detachment dynamics, and so provide new rationale for the previously reported large critical radius for drop ejection from micro-textured substrates.

  18. Flexible sucker rod unit

    SciTech Connect

    Allen, L.F.

    1987-02-03

    This patent describes a deep well having: a. an education tube with an inside diameter extending from the surface of the earth to far below the surface, b. a reciprocating pump housing attached to the bottom of the education tube, c. pump jack means at the surface for reciprocating the pump, d. a light sucker rod connected to the pump jack means and extending into the education tube, and e. a series of heavy sinker bars having a large cross sectional area in the education tube connecting the light sucker rod to the pump; f. an improved integral metal flexible rod unit interconnecting the sinker bars comprising in combination with the above: g. a coupling on each end of the integral metal flexible rod unit connecting the flexible rod unit to the contiguous sinker bar, h. a segment which is flexible as compared to the sinker bars connecting one of the couplings to i. an integral metal bearing adjacent to the other of the couplings, the bearing having j. a cylindrical surface with k. a diameter i. only slightly smaller than the inside diameter of the education tube thereby forming a sliding fit therewith, and ii. greater than the diameter of any other portion of the flexible rod unit and the sinker bar, and l. grooves in the cylindrical surface for the passage of fluid between in the education tube around the bearing.

  19. Analysis of melt ejection during long pulsed laser drilling

    NASA Astrophysics Data System (ADS)

    Ting-Zhong, Zhang; Zhi-Chao, Jia; Hai-Chao, Cui; De-Hua, Zhu; Xiao-Wu, Ni; Jian, Lu

    2016-05-01

    In pulsed laser drilling, melt ejection greatly influences the keyhole shape and its quality as well, but its mechanism has not been well understood. In this paper, numerical simulation and experimental investigations based on 304 stainless steel and aluminum targets are performed to study the effects of material parameters on melt ejection. The numerical method is employed to predict the temperatures, velocity fields in the solid, liquid, and vapour front, and melt pool dynamics of targets as well. The experimental methods include the shadow-graphic technique, weight method, and optical microscope imaging, which are applied to real-time observations of melt ejection phenomena, measurements of collected melt and changes of target mass, observations of surface morphology and the cross-section of the keyhole, respectively. Numerical and experimental results show that the metallic material with high thermal diffusivity like aluminum is prone to have a thick liquid zone and a large quantity of melt ejection. Additionally, to the best of our knowledge, the liquid zone is used to illustrate the relations between melt ejection and material thermal diffusivity for the first time. The research result in this paper is useful for manufacturing optimization and quality control in laser-material interaction. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. KYLX_0341) and the National Natural Science Foundation of China (Grant No. 61405147).

  20. Analysis of melt ejection during long pulsed laser drilling

    NASA Astrophysics Data System (ADS)

    Ting-Zhong, Zhang; Zhi-Chao, Jia; Hai-Chao, Cui; De-Hua, Zhu; Xiao-Wu, Ni; Jian, Lu

    2016-05-01

    In pulsed laser drilling, melt ejection greatly influences the keyhole shape and its quality as well, but its mechanism has not been well understood. In this paper, numerical simulation and experimental investigations based on 304 stainless steel and aluminum targets are performed to study the effects of material parameters on melt ejection. The numerical method is employed to predict the temperatures, velocity fields in the solid, liquid, and vapour front, and melt pool dynamics of targets as well. The experimental methods include the shadow-graphic technique, weight method, and optical microscope imaging, which are applied to real-time observations of melt ejection phenomena, measurements of collected melt and changes of target mass, observations of surface morphology and the cross-section of the keyhole, respectively. Numerical and experimental results show that the metallic material with high thermal diffusivity like aluminum is prone to have a thick liquid zone and a large quantity of melt ejection. Additionally, to the best of our knowledge, the liquid zone is used to illustrate the relations between melt ejection and material thermal diffusivity for the first time. The research result in this paper is useful for manufacturing optimization and quality control in laser-material interaction. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. KYLX_0341) and the National Natural Science Foundation of China (Grant No. 61405147).

  1. Study on Fracture Behavior of 2D-C/C Composite for Application to Control Rod of Very High Temperature Reactor

    NASA Astrophysics Data System (ADS)

    Sumita, J.; Fujita, I.; Shibata, T.; Makita, T.; Takagi, T.; Kunimoto, E.; Sawa, K.; Kim, W.; Park, J.

    2011-10-01

    For a control rod element of the Very High Temperature Reactor, a carbon fiber reinforced carbon matrix composite (C/C composite) is one of the major candidate materials for its high strength and thermal stability. In this study, in order to establish the data base of the 2D-C/C composite, the fracture data was obtained by simulating the crack expected to be generated under the VHTR condition and the oxidation effect on the fracture behavior was evaluated. Moreover, the fracture mechanism of the C/C composite was investigated through scanning electron microscope observation. This study showed that the oxidized matrix caused reduction of the fracture toughness and the reduction ratio was dependent on the density of matrix and a number cracks. With increasing the oxidation, the fracture toughness is mainly dependent on the fiber characteristics. Furthermore, the crack grows along the boundary between fiber bundles without breaking the fiber. The cracks which were initiated at the interface between the matrix and the fiber were gathered into the voids in the boundary between fiber bundles, and, then, the cracks grew up in the matrix.

  2. Ultrasonic Phased Array Assessment of the Interference Fit and Leak Path of the North Anna Unit 2 Control Rod Drive Mechanism Nozzle 63 with Destructive Validation

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; MacFarlan, Paul J.; Hanson, Brady D.; Mathews, Royce

    2012-08-01

    The objective of this investigation was to evaluate the efficacy of ultrasonic testing (UT) for primary water leak path assessments of reactor pressure vessel (RPV) upper head penetrations. Operating reactors have experienced leakage when stress corrosion cracking of nickel-based alloy penetrations allowed primary water into the annulus of the interference fit between the penetration and the low-alloy steel RPV head. In this investigation, UT leak path data were acquired for an Alloy 600 control rod drive mechanism nozzle penetration, referred to as Nozzle 63, which was removed from the North Anna Unit 2 reactor when the RPV head was replaced in 2002. In-service inspection prior to the head replacement indicated that Nozzle 63 had a probable leakage path through the interference fit region. Nozzle 63 was examined using a phased-array UT probe with a 5.0-MHz, eight-element annular array. Immersion data were acquired from the nozzle inner diameter surface. The UT data were interpreted by comparing to responses measured on a mockup penetration with known features. Following acquisition of the UT data, Nozzle 63 was destructively examined to determine if the features identified in the UT examination, including leakage paths and crystalline boric acid deposits, could be visually confirmed. Additional measurements of boric acid deposit thickness and low-alloy steel wastage were made to assess how these factors affect the UT response. The implications of these findings for interpreting UT leak path data are described.

  3. Controlled synthesis of CeO2 microstructures from 1D rod-like to 3D lotus-like and their morphology-dependent properties

    NASA Astrophysics Data System (ADS)

    Gong, Jinfeng; Meng, Fanming; Fan, Zhenghua; Li, Huijie

    2016-10-01

    Monodisperse 3D lotus-like CeO2 microstructures have been successfully synthesized via controlling the morphology of CeCO3OH precursors under hydrothermal condition as well as subsequent calcination. The reaction time was systematically investigated. XRD, FT-IR, SEM, TEM, XPS, Raman scattering and Photoluminescence (PL) spectra were employed to characterize the samples. The lotus-like CeO2 hierarchical structures with an average of 4-6 μm are composed of many nanoplates of 100-200 nm in thickness as the petals stacking together to form open flowers and have a fluorite cubic structure. Based on the time-dependent morphology evolution evidences, a nucleation-dissolution-recrystallization mechanism has been proposed to explain the transformation from rod-like structures to lotus-like CeO2 hierarchical structures with the increase of reaction time. It is found that there are Ce3+ ions and oxygen vacancies in surface of samples. The magnetic and photoluminescence measurements indicated that all CeO2 samples exhibit excellent ferromagnetism and optical properties at room temperature, and while increasing the reaction time, the ferromagnetism and optical properties increase more, which can be reasonably explained for the influences of the different morphology of the particles and the concentration of oxygen vacancies and Ce3+ ions. [Figure not available: see fulltext.

  4. Polished rod liner puller assmbly

    SciTech Connect

    Baxter, B.V.

    1990-01-02

    This patent describes a polished rod liner puller assembly operable with a well casing head assembly to remove a polished rod liner member of a polished rod liner assembly from a well. It comprises: a work table assembly operable to be placed around the well casing head assembly and enclose the polished rod liner assembly; a base plate assembly mounted on the work table assembly; a piston and cylinder jack assembly mounted on the base plate assembly and extended upwardly therefrom; and a winged rod clamp assembly connectable to the piston and cylinder jack assembly and to a polished rod member of the polished rod liner assembly and operable on actuation of the piston and cylinder jack assembly to axially move the polished rod member and the polished rod liner member to remove the polished rod liner member from the well.

  5. Controllable synthesis and enhanced microwave absorbing properties of Fe3O4/NiFe2O4/Ni heterostructure porous rods

    NASA Astrophysics Data System (ADS)

    Li, Yana; Wu, Tong; Jin, Keying; Qian, Yao; Qian, Naxin; Jiang, Kedan; Wu, Wenhua; Tong, Guoxiu

    2016-11-01

    We developed a coordinated self-assembly/precipitate transfer/sintering method that allows the controllable synthesis of Fe3O4/NiFe2O4/Ni heterostructure porous rods (HPRs). A series of characterizations confirms that changing [Ni2+] can effectively control the crystal size, internal strain, composition, textural characteristics, and properties of HPRs. Molar percentages of Ni and NiFe2O4 in HPRs increase with [Ni2+] in various Boltzmann function modes. Saturation magnetization Ms and coercivity Hc show U-shaped change trends because of crystal size, composition, and interface magnetic coupling. High magnetic loss is maintained after decorating NiFe2O4 and Ni on the surface of Fe3O4 PRs. Controlling the NiFe2O4 interface layers and Ni content can improve impedance matching and dielectric losses, thereby leading to lighter weight, stronger absorption, and broader absorption band of Fe3O4/NiFe2O4/Ni HPRs than Fe3O4 PRs. An optimum EM wave absorbing property was exhibited by Fe3O4/NiFe2O4/Ni HPRs formed at [Ni2+] = 0.05 M. The maximum reflection loss (RL) reaches -58.4 dB at 13.68 GHz, which corresponds to a 2.1 mm matching thickness. The absorbing bandwidth (RL ≤ -20 dB) reaches 14.4 GHz with the sample thickness at 1.6-2.4 and 2.8-10.0 mm. These excellent properties verify that Fe3O4/NiFe2O4/Ni HPRs are promising candidates for new and effective absorptive materials.

  6. Experimental investigation on ejecting low-temperature cooling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Zhang, Qiang; Tong, Ming-wei; Hu, Peng; Wu, Shuang-ying; Cai, Qin; Qin, Zeng-hu

    2013-10-01

    With the development of the high-temperature superconducting (HTS) materials and refrigeration technologies, using ejecting refrigeration to cool the superconducting materials becomes the direction of HTS applications. In this paper, an experimental study has been carried out on the basis of the theory of analyzing the ejecting low-temperature cooling superconducting magnet. The relationship between area ratios and refrigeration performance at different system pressures was derived. In addition, the working fluid flow and suction chamber pressure of the ejector with different area ratios at various inlet pressures have been examined to obtain the performance of ejectors under different working conditions. The result shows that the temperature of liquid nitrogen can be reduced to 70 K by controlling the inlet water pressure when the pressurized water at 20 °C is used to eject the saturated liquid nitrogen, which can provide the stable operational conditions for the HTS magnets cooling.

  7. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial

    PubMed Central

    Zannad, Faiez; De Ferrari, Gaetano M.; Tuinenburg, Anton E.; Wright, David; Brugada, Josep; Butter, Christian; Klein, Helmut; Stolen, Craig; Meyer, Scott; Stein, Kenneth M.; Ramuzat, Agnes; Schubert, Bernd; Daum, Doug; Neuzil, Petr; Botman, Cornelis; Castel, Maria Angeles; D'Onofrio, Antonio; Solomon, Scott D.; Wold, Nicholas; Ruble, Stephen B.

    2015-01-01

    Aim The neural cardiac therapy for heart failure (NECTAR-HF) was a randomized sham-controlled trial designed to evaluate whether a single dose of vagal nerve stimulation (VNS) would attenuate cardiac remodelling, improve cardiac function and increase exercise capacity in symptomatic heart failure patients with severe left ventricular (LV) systolic dysfunction despite guideline recommended medical therapy. Methods Patients were randomized in a 2 : 1 ratio to receive therapy (VNS ON) or control (VNS OFF) for a 6-month period. The primary endpoint was the change in LV end systolic diameter (LVESD) at 6 months for control vs. therapy, with secondary endpoints of other echocardiography measurements, exercise capacity, quality-of-life assessments, 24-h Holter, and circulating biomarkers. Results Of the 96 implanted patients, 87 had paired datasets for the primary endpoint. Change in LVESD from baseline to 6 months was −0.04 ± 0.25 cm in the therapy group compared with −0.08 ± 0.32 cm in the control group (P = 0.60). Additional echocardiographic parameters of LV end diastolic dimension, LV end systolic volume, left ventricular end diastolic volume, LV ejection fraction, peak V02, and N-terminal pro-hormone brain natriuretic peptide failed to show superiority compared to the control group. However, there were statistically significant improvements in quality of life for the Minnesota Living with Heart Failure Questionnaire (P = 0.049), New York Heart Association class (P = 0.032), and the SF-36 Physical Component (P = 0.016) in the therapy group. Conclusion Vagal nerve stimulation as delivered in the NECTAR-HF trial failed to demonstrate a significant effect on primary and secondary endpoint measures of cardiac remodelling and functional capacity in symptomatic heart failure patients, but quality-of-life measures showed significant improvement. PMID:25176942

  8. Pilot Fullerton in ejection escape suit (EES) on aft flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton, wearing communications kit assembly (ASSY) mini headset (HDST) and ejection escape suit (EES), holds flexible hose attached to his EES vent hose fitting and second hose for commanders EES while behind pilots ejection seat (S2) seat back on the aft flight deck. Forward flight deck control panels are visible in the background.

  9. Nonlinearity and noise at the rod - rod bipolar cell synapse

    PubMed Central

    Trexler, E. Brady; Casti, Alexander R.R.; Zhang, Yu

    2010-01-01

    In the retina, rod bipolar (RBP) cells synapse with many rods, and suppression of rod outer segment and synaptic noise is necessary for their detection of rod single photon responses (SPRs). Depending on the rods’ signal to noise ratio (SNR), the suppression mechanism will likely eliminate some SPRs as well, resulting in decreased quantum efficiency. We examined this synapse in rabbit, where 100 rods converge onto each RBP. Suction electrode recordings showed that rabbit rod SPRs were difficult to distinguish from noise (independent SNR estimates were 2.3 and 2.8). Nonlinear transmission from rods to RBPs improved response detection (SNR = 8.7), but a large portion of the rod SPRs were discarded. For the dimmest flashes, the loss approached 90%. Despite the high rejection ratio, noise of two distinct types were apparent in the RBP traces: low amplitude rumblings and discrete events that resembled the SPR. The SPR-like event frequency suggests they result from thermal isomerizations of rhodopsin, which occured at the rate 0.033 s−1rod−1. The presence of low amplitude noise is explained by a sigmoidal input-output relationship at the rod - RBP synapse and the input of noisy rods. The rabbit rod SNR and RBP quantum efficiency are the lowest yet reported, suggesting that the quantum efficiency of the rod - RBP synapse may depend on the SNR in rods. These results point to the possibility that fewer photoisomerizations are discarded for species such as primate, which has a higher rod SNR. PMID:21047445

  10. Differential Phosphorylation Provides a Switch to Control How α-Arrestin Rod1 Down-regulates Mating Pheromone Response in Saccharomyces cerevisiae

    PubMed Central

    Alvaro, Christopher G.; Aindow, Ann; Thorner, Jeremy

    2016-01-01

    G-protein-coupled receptors (GPCRs) are integral membrane proteins that initiate stimulus-dependent activation of cognate heterotrimeric G-proteins, triggering ensuing downstream cellular responses. Tight regulation of GPCR-evoked pathways is required because prolonged stimulation can be detrimental to an organism. Ste2, a GPCR in Saccharomyces cerevisiae that mediates response of MATa haploids to the peptide mating pheromone α-factor, is down-regulated by both constitutive and agonist-induced endocytosis. Efficient agonist-stimulated internalization of Ste2 requires its association with an adaptor protein, the α-arrestin Rod1/Art4, which recruits the HECT-domain ubiquitin ligase Rsp5, allowing for ubiquitinylation of the C-terminal tail of the receptor and its engagement by the clathrin-dependent endocytic machinery. We previously showed that dephosphorylation of Rod1 by calcineurin (phosphoprotein phosphatase 2B) is required for optimal Rod1 function in Ste2 down-regulation. We show here that negative regulation of Rod1 by phosphorylation is mediated by two distinct stress-activated protein kinases, Snf1/AMPK and Ypk1/SGK1, and demonstrate both in vitro and in vivo that this phospho-regulation impedes the ability of Rod1 to promote mating pathway desensitization. These studies also revealed that, in the absence of its phosphorylation, Rod1 can promote adaptation independently of Rsp5-mediated receptor ubiquitinylation, consistent with recent evidence that α-arrestins can contribute to cargo recognition by both clathrin-dependent and clathrin-independent mechanisms. However, in cells lacking a component (formin Bni1) required for clathrin-independent entry, Rod1 derivatives that are largely unphosphorylated and unable to associate with Rsp5 still promote efficient adaptation, indicating a third mechanism by which this α-arrestin promotes desensitization of the pheromone-response pathway. PMID:26920760

  11. Factors Affecting Ejection Risk in Rollover Crashes

    PubMed Central

    Funk, James R.; Cormier, Joseph M.; Bain, Charles E.; Wirth, Jeffrey L.; Bonugli, Enrique B.; Watson, Richard A.

    2012-01-01

    Ejection greatly increases the risk of injury and fatality in a rollover crash. The purpose of this study was to determine the crash, vehicle, and occupant characteristics that affect the risk of ejection in rollovers. Information from real world rollover crashes occurring from 2000 – 2010 was obtained from the National Automotive Sampling System (NASS) in order to analyze the effect of the following parameters on ejection risk: seatbelt use, rollover severity, vehicle type, seating position, roof crush, side curtain airbag deployment, glazing type, and occupant age, gender, and size. Seatbelt use was found to reduce the risk of partial ejection and virtually eliminate the risk of complete ejection. For belted occupants, the risk of partial ejection risk was significantly increased in rollover crashes involving more roof inversions, light trucks and vans (LTVs), and larger occupants. For unbelted occupants, the risk of complete ejection was significantly increased in rollover crashes involving more roof inversions, LTVs, far side occupants, and higher levels of roof crush. Roof crush was not a significant predictor of ejection after normalizing for rollover severity. Curtain airbag deployment was associated with reduced rates of partial and complete ejection, but the effect was not statistically significant, perhaps due to the small sample size (n = 89 raw cases with curtain deployments). A much greater proportion of occupants who were ejected in spite of curtain airbag deployment passed through the sunroof and other portals as opposed to the adjacent side window compared to occupants who were ejected in rollovers without a curtain airbag deployment. The primary factors that reduce ejection risk in rollover crashes are, in generally decreasing order of importance: seatbelt use, fewer roof inversions, passenger car body type, curtain airbag deployment, near side seating position, and small occupant size. PMID:23169130

  12. Factors affecting ejection risk in rollover crashes.

    PubMed

    Funk, James R; Cormier, Joseph M; Bain, Charles E; Wirth, Jeffrey L; Bonugli, Enrique B; Watson, Richard A

    2012-01-01

    Ejection greatly increases the risk of injury and fatality in a rollover crash. The purpose of this study was to determine the crash, vehicle, and occupant characteristics that affect the risk of ejection in rollovers. Information from real world rollover crashes occurring from 2000 - 2010 was obtained from the National Automotive Sampling System (NASS) in order to analyze the effect of the following parameters on ejection risk: seatbelt use, rollover severity, vehicle type, seating position, roof crush, side curtain airbag deployment, glazing type, and occupant age, gender, and size. Seatbelt use was found to reduce the risk of partial ejection and virtually eliminate the risk of complete ejection. For belted occupants, the risk of partial ejection risk was significantly increased in rollover crashes involving more roof inversions, light trucks and vans (LTVs), and larger occupants. For unbelted occupants, the risk of complete ejection was significantly increased in rollover crashes involving more roof inversions, LTVs, far side occupants, and higher levels of roof crush. Roof crush was not a significant predictor of ejection after normalizing for rollover severity. Curtain airbag deployment was associated with reduced rates of partial and complete ejection, but the effect was not statistically significant, perhaps due to the small sample size (n = 89 raw cases with curtain deployments). A much greater proportion of occupants who were ejected in spite of curtain airbag deployment passed through the sunroof and other portals as opposed to the adjacent side window compared to occupants who were ejected in rollovers without a curtain airbag deployment. The primary factors that reduce ejection risk in rollover crashes are, in generally decreasing order of importance: seatbelt use, fewer roof inversions, passenger car body type, curtain airbag deployment, near side seating position, and small occupant size. PMID:23169130

  13. Merging galaxies and black hole ejections

    NASA Technical Reports Server (NTRS)

    Valtonen, M. J.

    1990-01-01

    In mergers of galaxies their central black holes are accumulated together. Researchers show that few black hole systems arise which decay through black hole collisions and black hole ejections. The ejection statistics are calculated and compared with two observed systems where ejections have been previously suggested: double radio sources and high redshift quasars near low redshift galaxies. In both cases certain aspects of the associations are explained by the merger hypothesis.

  14. Understanding flame rods

    SciTech Connect

    McAuley, J.A. Jr.

    1995-11-01

    The flame rod is probably the least understood method of flame detection. Although it is not recommended for oilfired equipment, it is very common on atmospheric, or {open_quotes}in-shot,{close_quotes} gas burners. It is also possible, although not common, to have an application with a constant gas pilot, monitored by a flame rod, and maintaining an oil main flame. Regardless of the application, chances are that flame rods will be encountered during the course of servicing. The technician today must be versatile and able to work on many different types of equipment. One must understand the basic principles of flame rods, and how to correct potential problems. The purpose of a flame detection system is two-fold: (1) to prove there is no flame when there shouldn`t be one, and (2) to prove there is a flame when there should be one. Flame failure response time is very important. This is the amount of time it takes to realize there is a loss of flame, two to four seconds is typical today. Prior to flame rods, either bi-metal or thermocouple type flame detectors were common. The response time for these detectors was up to three minutes, seldom less than one minute.

  15. Mass ejections. [during solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Hildner, E.; Hansen, R. T.; Dryer, M.; Mcclymont, A. N.; Mckenna-Lawlor, S. M. P.; Mclean, D. J.; Schmahl, E. J.; Steinolfson, R. S.; Tandberg-Hanssen, E.

    1980-01-01

    Observations and model simulations of solar mass ejection phenomena are examined in an investigation of flare processes. Consideration is given to Skylab and other observations of flare-associated sprays, eruptive prominences, surges and coronal transients, and to MHD, gas dynamic and magnetic loop models developed to account for them. Magnetic forces are found to confine spray material, which originates in preexisting active-region filaments, within steadily expanding loops, while surges follow unmoving, preexisting magnetic field lines. Simulations of effects of a sudden pressure pulse at the bottom of the corona are found to exhibit many characteristics of coronal transients associated with flares, and impulsive heating low in the chromosphere is found to be able to account for surges. The importance of the magnetic field as the ultimate source of energy which drives eruptive phenomena as well as flares is pointed out.

  16. Welded oil well pump rod

    SciTech Connect

    Hughes, R.F.

    1986-06-10

    A friction welded multiple component oil well sucker rod is described which consists of an elongated cylindrical rod section and apposed coupling end portions welded to opposite ends of the rod section, the coupling end portions being of a nominal maximum diameter at least 1.5 times greater than the rod section and including means for connecting the sucker rod to an adjacent rod in end to end relationship. The couplings end portions each include an axial tapered portion between the connecting means and an end face adapted to be butted to the rod section, the coupling end portions being butted against the opposed end portions of the rod section during a friction welding operation to form a radially outward projecting bulge of displaced material on the rod section and the coupling end portions, respectively. A greater cross-sectional area is formed at the transition of the rod section to the coupling end portion to reduce the unit tensile stress on the sucker rod in the vicinity of the weld, wherein the displaced material is machined to form a tapered surface between the rod section and the axial tapered portion of the coupling end portion, the tapered surface having an angle of taper with respect to the longitudinal axis of the sucker rod less than the angle of taper of the coupling end portion.

  17. Class D sucker rods

    SciTech Connect

    Woodings, R. T.

    1984-10-23

    It has been found that API Class D sucker rods can be made inexpensively from low-alloy, low-cost steel by following a suitable induction-normalizing process and using a suitable steel to which there has been added 0.07 to 0.15 percent of vanadium.

  18. Magnetized Accretion-Ejection Structures

    NASA Astrophysics Data System (ADS)

    Ferreira, Jonathan

    1994-09-01

    For both active galactic nuclei (AGN) and young stellar objects (YSO), the common belief is growing that there is an interdependency between accretion of mass onto a central object and the highly collimated jets. This thesis deals with the investigation of the physical mechanism that leads to the formation of jets from a magnetized accretion disk. This has been done by solving the set of magnetohydrodynamical (MHD) equations in the case of an isothermal disk, using a self-similar approach. All the dynamical terms are included, so that the main results are independant of the modelling and thus, completely general. Indeed, a different temperature vertical profile only slightly modifies the parameters required for stationarity. A resistive thin accretion disk is thread by open magnetic field lines, sheared by its differential rotation. The field lines brake the disk and extract both angular momentum and mechanical energy from it. Because of the large magnetic "lever arm" acting on the disk, the magnetic braking is always dominant and the viscous torque is negligible. An equipartition magnetic field is enough, without significantly perturbing the Keplerian rotation. Thus, jets carry away all the angular momentum of the underlying accretion disk. Steady state accretion is achieved in the disk due to an anomalous magnetic diffusivity that allows the matter to slip across the field lines. This anomalous transport coefficient should arise from the saturation of a strong magnetic instability triggered in the disk. Ambipolar diffusion, which could have been used without losing the generality of the present results, remains however smaller than this anomalous diffusivity in the inner parts of a circumstellar disk. It has been found that steady state ejection can be achieved only if the magnetic torque changes its sign at the disk surface. From this point on, the field lines accelerate azimuthaly the matter transfering it both angular momentum and energy. This requires a

  19. Models for coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Jacobs, Carla; Poedts, Stefaan

    2011-06-01

    Coronal mass ejections (CMEs) play a key role in space weather. The mathematical modelling of these violent solar phenomena can contribute to a better understanding of their origin and evolution and as such improve space weather predictions. We review the state-of-the-art in CME simulations, including a brief overview of current models for the background solar wind as it has been shown that the background solar wind affects the onset and initial evolution of CMEs quite substantially. We mainly focus on the attempt to retrieve the initiation and propagation of CMEs in the framework of computational magnetofluid dynamics (CMFD). Advanced numerical techniques and large computer resources are indispensable when attempting to reconstruct an event from Sun to Earth. Especially the simulations developed in dedicated event studies yield very realistic results, comparable with the observations. However, there are still a lot of free parameters in these models and ad hoc source terms are often added to the equations, mimicking the physics that is not really understood yet in detail.

  20. Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2005-01-01

    This paper is a synopsis of the initiation of the strong-field magnetic explosions that produce large, fast coronal mass ejections. Cartoons based on observations are used to describe the inferred basic physical processes and sequences that trigger and drive the explosion. The magnetic field that explodes is a sheared-core bipole that may or may not be embedded in surrounding strong magnetic field, and may or may not contain a flux rope before it starts to explode. We describe three different mechanisms that singly or in combination trigger the explosion: (1) runaway internal tether-cutting reconnection, (2) runaway external tether-cutting reconnection, and (3) ideal MHD instability or loss or equilibrium. For most eruptions, high-resolution, high-cadence magnetograms and chromospheric and coronal movies (such as from TRACE and/or Solar-B) of the pre-eruption region and of the onset of the eruption and flare are needed to tell which one or which combination of these mechanisms is the trigger. Whatever the trigger, it leads to the production of an erupting flux rope. Using a simple model flux rope, we demonstrate that the explosion can be driven by the magnetic pressure of the expanding flux rope, provided the shape of the expansion is "fat" enough.

  1. Dynamics of polymer ejection from capsid

    NASA Astrophysics Data System (ADS)

    Linna, R. P.; Moisio, J. E.; Suhonen, P. M.; Kaski, K.

    2014-05-01

    Polymer ejection from a capsid through a nanoscale pore is an important biological process with relevance to modern biotechnology. Here, we study generic capsid ejection using Langevin dynamics. We show that even when the ejection takes place within the drift-dominated region there is a very high probability for the ejection process not to be completed. Introducing a small aligning force at the pore entrance enhances ejection dramatically. Such a pore asymmetry is a candidate for a mechanism by which viral ejection is completed. By detailed high-resolution simulations we show that such capsid ejection is an out-of-equilibrium process that shares many common features with the much studied driven polymer translocation through a pore in a wall or a membrane. We find that the ejection times scale with polymer length, τ ˜Nα. We show that for the pore without the asymmetry the previous predictions corroborated by Monte Carlo simulations do not hold. For the pore with the asymmetry the scaling exponent varies with the initial monomer density (monomers per capsid volume) ρ inside the capsid. For very low densities ρ ≤0.002 the polymer is only weakly confined by the capsid, and we measure α =1.33, which is close to α =1.4 obtained for polymer translocation. At intermediate densities the scaling exponents α =1.25 and 1.21 for ρ =0.01 and 0.02, respectively. These scalings are in accord with a crude derivation for the lower limit α =1.2. For the asymmetrical pore precise scaling breaks down, when the density exceeds the value for complete confinement by the capsid, ρ ⪆0.25. The high-resolution data show that the capsid ejection for both pores, analogously to polymer translocation, can be characterized as a multiplicative stochastic process that is dominated by small-scale transitions.

  2. Locked-wrap fuel rod

    DOEpatents

    Kaplan, Samuel; Chertock, Alan J.; Punches, James R.

    1977-01-01

    A method for spacing fast reactor fuel rods using a wire wrapper improved by orienting the wire-wrapped fuel rods in a unique manner which introduces desirable performance characteristics not attainable by previous wire-wrapped designs. Use of this method in a liquid metal fast breeder reactor results in: (a) improved mechanical performance, (b) improved rod-to-rod contact, (c) reduced steel volume, and (d) improved thermal-hydraulic performance. The method produces a "locked wrap" design which tends to lock the rods together at each of the wire cluster locations.

  3. Sucker rod centralizer

    SciTech Connect

    Rivas, O.; Newski, A.

    1989-10-03

    This patent describes a device for centralizing at least one sucker rod within a production pipe downhole in a well and for reducing frictional forces between the pipe and at least one sucker rod. It comprises an elongate, substantially cylindrical body member having a longitudinal axis, a plurality of slots within the member and a rotatable member mounted within each slot, each of the plurality of slots has its major dimension along a first axis parallel to the longitudinal axis of the body member and is oriented with respect to the other seats so as to form a helicoidal array for maximizing the total surface contact area between the rotatable members and the pipe and for decreasing the forces acting on each rotatable member.

  4. Coiling of elastic rods on rigid substrates

    PubMed Central

    Jawed, Mohammad K.; Da, Fang; Joo, Jungseock; Grinspun, Eitan; Reis, Pedro M.

    2014-01-01

    We investigate the deployment of a thin elastic rod onto a rigid substrate and study the resulting coiling patterns. In our approach, we combine precision model experiments, scaling analyses, and computer simulations toward developing predictive understanding of the coiling process. Both cases of deposition onto static and moving substrates are considered. We construct phase diagrams for the possible coiling patterns and characterize them as a function of the geometric and material properties of the rod, as well as the height and relative speeds of deployment. The modes selected and their characteristic length scales are found to arise from a complex interplay between gravitational, bending, and twisting energies of the rod, coupled to the geometric nonlinearities intrinsic to the large deformations. We give particular emphasis to the first sinusoidal mode of instability, which we find to be consistent with a Hopf bifurcation, and analyze the meandering wavelength and amplitude. Throughout, we systematically vary natural curvature of the rod as a control parameter, which has a qualitative and quantitative effect on the pattern formation, above a critical value that we determine. The universality conferred by the prominent role of geometry in the deformation modes of the rod suggests using the gained understanding as design guidelines, in the original applications that motivated the study. PMID:25267649

  5. Improvement in Jc performance below liquid nitrogen temperature for SmBa2Cu3Oy superconducting films with BaHfO3 nano-rods controlled by low-temperature growth

    NASA Astrophysics Data System (ADS)

    Miura, S.; Yoshida, Y.; Ichino, Y.; Xu, Q.; Matsumoto, K.; Ichinose, A.; Awaji, S.

    2016-01-01

    For use in high-magnetic-field coil-based applications, the critical current density (Jc) of REBa2Cu3Oy (REBCO, where RE = rare earth) coated conductors must be isotropically improved, with respect to the direction of the magnetic field; these improvements must be realized at the operating conditions of these applications. In this study, improvement of the Jc for various applied directions of magnetic field was achieved by controlling the morphology of the BaHfO3 (BHO) nano-rods in a SmBCO film. We fabricated the 3.0 vol. % BHO-doped SmBCO film at a low growth temperature of 720 °C, by using a seed layer technique (Ts = 720 °C film). The low-temperature growth resulted in a morphological change in the BHO nano-rods. In fact, a high number density of (3.1 ± 0.1) × 103 μm-2 of small (diameter: 4 ± 1 nm), discontinuous nano-rods that grew in various directions, was obtained. In Jc measurements, the Jc of the Ts = 720 °C film in all directions of the applied magnetic field was higher than that of the non-doped SmBCO film. The Jcmin (6.4 MA/cm2) of the former was more than 6 times higher than that (1.0 MA/cm2) of the latter at 40 K, under 3 T. The aforementioned results indicated that the discontinuous BHO nano-rods, which occurred with a high number density, exerted a 3D-like flux pinning at the measurement conditions considered. Moreover, at 4.2 K and under 17 T, a flux pinning force density of 1.6 TN/m3 was realized; this value was comparable to the highest value recorded, to date.

  6. Sucker rod guide

    SciTech Connect

    White, R.C.

    1988-10-25

    This patent describes an improved guide for use in a string of sucker rods for reciprocation in a tubing string in a borehole, the sucker rods having threaded male ends, the guide comprising: an elongated upright cylindrical member of external diameter less than the internal diameter of tubing in which it is to be used, the member having sucker rod receiving female threaded openings at the upper and lower ends, the threaded openings being coaxial of the member cylindrical axis whereby the member may be positioned in a string of sucker rods, and including a plurality of spaced-apart parallel sided slots within the member, each slot being of semi-circular configuration and of depth greater than the radius and less than the diameter of the cylindrical member, the sidewalls of each slot being parallel to and equally spaced from a plane of the member cylindrical axis; the member having an axle bore therein for each of the slots, the axle bores being parallel and spaced apart from each other, a plane of the axis of each bore being perpendicular the member cylindrical axis and the axis of each bore being displaced away from the member cylindrical axis; an axle received in each axle bore; and a wheel received on each axle the diameter of each wheel being approximately the diameter of the cylindrical member, the periphery of each wheel extending beyond the member cylindrical wall whereby the wheels are positioned to engage and roll on the internal cylindrical surface of tubing, the planes of adjacent slots in the member being rotationally displaced from each other, a portion of each wheel extending beyond the cylindrical surface of the member, the opposed portion of each wheel being within the confines of the member cylindrical surface whereby each wheel can contact a tubing wall at only one point on its cylindrical surface.

  7. APPARATUS FOR SHEATHING RODS

    DOEpatents

    Ford, W.K.; Wyatt, M.; Plail, S.

    1961-08-01

    An arrangement is described for sealing a solid body of nuclear fuel, such as a uranium metal rod, into a closelyfitting thin metallic sheath with an internal atmosphere of inert gas. The sheathing process consists of subjecting the sheath, loaded with the nuclear fuel body, to the sequential operations of evacuation, gas-filling, drawing (to entrap inert gas and secure close contact between sheath and body), and sealing. (AEC)

  8. Rod locking device

    SciTech Connect

    Troxell, J.N. Jr.

    1986-07-22

    A ram locking apparatus used on a blowout preventer is described having a housing, a ram, ram actuating means having a closing side and a retracted side and a tail rod having its inner end connected to the ram actuating means and its outer end engaged by the apparatus to lock the ram. The apparatus consists of: a lock housing having a closed end and a hollow interior connected to the exterior of the preventer housing in which the tail rod is positioned, a body positioned within the lock housing, a primary piston, a lost motion connection between the primary piston and the body, a lock piston associated with the primary piston and movable axially with respect to the primary piston, a tapered split locking ring interconnected to the lock piston, wedging means with the split locking ring, and means for supplying fluid under pressure into the lock housing for movement of the pistons, the initial pressure on the primary pistons causing movement of the body to engage the ram tail rod and subsequently moving the lock piston relative to the wedging means and to thereby wedge the split locking ring against the interior of the lock housing to lock the body therein against movement in the lock housing.

  9. Crystal phase-controlled synthesis of rod-shaped AgInTe2 nanocrystals for in vivo imaging in the near-infrared wavelength region.

    PubMed

    Kameyama, Tatsuya; Ishigami, Yujiro; Yukawa, Hiroshi; Shimada, Taisuke; Baba, Yoshinobu; Ishikawa, Tetsuya; Kuwabata, Susumu; Torimoto, Tsukasa

    2016-03-14

    Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region. PMID:26899620

  10. Integrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5

    PubMed Central

    Becuwe, Michel; Léon, Sébastien

    2014-01-01

    After endocytosis, membrane proteins can recycle to the cell membrane or be degraded in lysosomes. Cargo ubiquitylation favors their lysosomal targeting and can be regulated by external signals, but the mechanism is ill-defined. Here, we studied the post-endocytic trafficking of Jen1, a yeast monocarboxylate transporter, using microfluidics-assisted live-cell imaging. We show that the ubiquitin ligase Rsp5 and the glucose-regulated arrestin-related trafficking adaptors (ART) protein Rod1, involved in the glucose-induced internalization of Jen1, are also required for the post-endocytic sorting of Jen1 to the yeast lysosome. This new step takes place at the trans-Golgi network (TGN), where Rod1 localizes dynamically upon triggering endocytosis. Indeed, transporter trafficking to the TGN after internalization is required for their degradation. Glucose removal promotes Rod1 relocalization to the cytosol and Jen1 deubiquitylation, allowing transporter recycling when the signal is only transient. Therefore, nutrient availability regulates transporter fate through the localization of the ART/Rsp5 ubiquitylation complex at the TGN. DOI: http://dx.doi.org/10.7554/eLife.03307.001 PMID:25380227

  11. Aug. 31, 2012 Coronal Mass Ejection

    NASA Video Gallery

    This two part movie shows an Aug. 31 coronal mass ejection (CME) from the sun , the same event that caused depletion and refilling of the radiation belts just after the Relativistic Electron-Proton...

  12. Heart failure with preserved ejection fraction

    PubMed Central

    Gladden, James D.; Linke, Wolfgang A.

    2014-01-01

    As part of this series devoted to heart failure (HF), we review the epidemiology, diagnosis, pathophysiology, and treatment of HF with preserved ejection fraction (HFpEF). Gaps in knowledge and needed future research are discussed. PMID:24663384

  13. Sept. 28, 2012 Coronal Mass Ejection

    NASA Video Gallery

    This Sept. 28 coronal mass ejection (CME) from the sun, captured by NASA’s Solar Dynamics Observatory (SDO), is the event which caused the near total annihilation of the new radiation belt and sl...

  14. Low speed vehicle passenger ejection restraint effectiveness.

    PubMed

    Seluga, Kristopher J; Ojalvo, Irving U; Obert, Richard M

    2005-07-01

    Current golf carts and LSV's (Low Speed Vehicles) produce a significant number of passenger ejections during sharp turns. These LSV's do not typically possess seatbelts, but do provide outboard bench seat hip restraints that also serve as handholds. However, many current restraint designs appear incapable of preventing passenger ejections due to their low height and inefficient handhold position. Alternative handhold and hip restraint designs may improve passenger safety. Accordingly, this paper examines minimum size requirements for hip restraints to prevent passenger ejection during sharp turns and evaluates the effectiveness of a handhold mounted at the center of the bench seat. In this study, a simulation of a turning cart supplies the dynamic input to a biomechanical model of an adult male seated in a golf cart. Various restraint combinations are considered, both with and without the central handhold, to determine the likelihood of passenger ejection. It is shown that only the largest restraint geometries prevent passenger ejection. Adequate hip restraints should be much larger than current designs and a central handhold should be provided. In this way, golf cart and LSV manufacturers could reduce passenger ejections and improve fleet safety by incorporating recommendations provided herein. PMID:15893288

  15. What triggers coronal mass ejections ?

    NASA Astrophysics Data System (ADS)

    Aulanier, Guillaume

    Coronal mass ejections (CMEs) are large clouds of highly magnetized plasma. They are ac-celerated from the solar atmosphere into interplanetary space by the Lorentz force, which is associated to their strong current-carrying magnetic fields. Both theory and observations lead to the inevitable conclusion that the launch of a CME must result from the sudden release of free magnetic energy, which has slowly been accumulated in the corona for a long time before the eruption. Since the incomplete, but seminal, loss-of-equilibrium model was proposed by van Tend and Kuperus (1978), a large variety of analytical and numerical storage-and-release MHD models has been put forward in the past 20 years or so. All these models rely on the slow increase of currents and/or the slow decrease of the restraining magnetic tension preceding the eruption. But they all put the emphazis on different physical mechanisms to achieve this preeruptive evolution, and to suddenly trigger and later drive a CME. Nevertheless, all these models actually share many common features, which all describe many individual observed aspects of solar eruptions. It is therefore not always clear which of all the suggested mecha-nisms do really account for the triggering of observed CMEs in general. Also, these mechanisms should arguably not be as numerous as the models themselves, owing to the common occurence of CMEs. In order to shed some light on this challenging, but unripe, topic, I will attempt to rediscuss the applicability of the models to the Sun, and to rethink the most sensitive ones in a common frame, so as to find their common denominator. I will elaborate on the idea that many of the proposed triggering mechanisms may actually only be considered as different ways to apply a "last push", which puts the system beyond its eruptive threshold. I will argue that, in most cases, the eruptive threshold is determined by the vertical gradient of the magnetic field in the low-β corona, just like the usual

  16. Planet scattering around binaries: ejections, not collisions

    NASA Astrophysics Data System (ADS)

    Smullen, Rachel A.; Kratter, Kaitlin M.; Shannon, Andrew

    2016-09-01

    Transiting circumbinary planets discovered by Kepler provide unique insight into binary star and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in binary systems. We carry out a parameter study of N-body scattering simulations for four distinct planet populations around both binary and single stars. While binarity has little influence on the final system multiplicity or orbital distribution, the presence of a binary dramatically affects the means by which planets are lost from the system. Most circumbinary planets are lost due to ejections rather than planet-planet or planet-star collisions. The most massive planet in the system tends to control the evolution. Systems similar to the only observed multiplanet circumbinary system, Kepler-47, can arise from much more tightly packed, unstable systems. Only extreme initial conditions introduce differences in the final planet populations. Thus, we suggest that any intrinsic differences in the populations are imprinted by formation.

  17. Pulse Ejection Presentation System Synchronized with Breathing

    NASA Astrophysics Data System (ADS)

    Kadowaki, Ami; Sato, Junta; Ohtsu, Kaori; Bannai, Yuichi; Okada, Kenichi

    Trials on transmission of olfactory information together with audio/visual information are currently being conducted in the field of multimedia. However, continuous emission of scents in high concentration creates problems of human adaptation and remnant odors in air. To overcome such problems we developed an olfactory display in conjunction with Canon Inc. This display has high emission control in the ink-jet so that it can provide stable pulse emission of scents. Humans catch a scent when they breathe in and inhale smell molecules in air. Therefore, it is important that the timing of scent presentation is synchronized with human breathing. We also developed a breath sensor which detects human inspiration. In this study, we combined the olfactory display with the breath sensor to make a pulse ejection presentation system synchronized the breath. The experimental evaluation showed that the system had more than 90 percent of detection rate. Another evaluation was held at KEIO TECHNO-MALL 2007. From questionnaire results of the participants, we found that the system made the user feel continuous sense of smell avoiding adaptation. It is expected that our system enables olfactory information to be synchronized with audio/visual information in arbitrary duration at any time.

  18. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  19. Cone rod dystrophies.

    PubMed

    Hamel, Christian P

    2007-01-01

    Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently

  20. Comparing Single Versus Double Screw-Rod Anterior Instrumentation for Treating Thoracolumbar Burst Fractures with Incomplete Neurological Deficit: A Prospective, Randomized Controlled Trial

    PubMed Central

    Yu, Yu; Wang, Juan; Shao, Gaohai; Wang, Qunbo; Li, Bo

    2016-01-01

    Background Following a thoracolumbar burst fracture (TCBF), anterior screw-rods apply pressure upon the graft site. However, there is limited evidence comparing single screw-rod anterior instrumentation (SSRAI) to double screw-rod anterior instrumentation (DSRAI) for TCBFs. Our objective was to compare SSRAI versus DSRAI for TCBFs with incomplete neurological deficit. Material/Methods A total of 51 participants with T11-L2 TCBFs (AO classification: A3) were randomly assigned to receive SSRAI or DSRAI. Key preoperative, perioperative, and postoperative data were collected. Statistical analysis was conducted to determine the independent factors associated with inferior clinical outcomes, as well as the comparative efficacy of SSRAI and DSRAI. Results There were no significant differences in the key demographic and clinical characteristics between the two groups (all p>0.05). Smoking status was significantly associated with inferior three-month and six-month Denis pain scores (Wald statistic=4.246, p=0.039). Both SSRAI and DSRAI were significantly effective in improving three-month and six-month postoperative degree of kyphosis, three-month and six-month postoperative ASIA impairment scale scores, three-month and six-month postoperative Denis pain score, and three-month and six-month postoperative Denis work score (all p<0.001). Although there were no significant differences between DSRAI and SSRAI with respect to all outcomes (all p>0.05), DSRAI displayed significantly longer operating times, as well as significantly larger operative blood losses (both p<0.001). Conclusions SSRAI may be preferable over DSRAI for TCBFs with incomplete neurological deficit due to its lower operating time and amount of operative blood loss. PMID:27197020

  1. Radiation dose distributions due to sudden ejection of cobalt device.

    PubMed

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building.

  2. Radiation dose distributions due to sudden ejection of cobalt device.

    PubMed

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. PMID:27423021

  3. Piston and connecting rod assembly

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor); Chatten, John K. (Inventor)

    2001-01-01

    A piston and connecting rod assembly includes a piston crown, a piston skirt, a connecting rod, and a bearing insert. The piston skirt is a component separate from the piston crown and is connected to the piston crown to provide a piston body. The bearing insert is a component separate from the piston crown and the piston skirt and is fixedly disposed within the piston body. A bearing surface of a connecting rod contacts the bearing insert to thereby movably associate the connecting rod and the piston body.

  4. Sucker rod assembly and method

    SciTech Connect

    Pagan, A.J.

    1986-07-01

    An improved sucker rod assembly is described comprising, in combination: a. a sucker rod; and b. a pair of fittings secured to opposite ends of the rod, each fitting including: i. a rigid elongated casing having interior surfaces defining an open front end and cavity extending rearwardly from the open front end in which cavity one end of the sucker rod is disposed, the side portions of the interior surfaces being contoured to define, with the side portions of the sucker rod end a single, annular elongated tapered wedge-shaped space; and ii. anchoring means filling the space and bonding to the side portions of the rod end to lock the rod end in place, the anchoring means having a narrower diameter at the front end thereof than at about the rear end thereof and being generally frusto-conical, the anchoring means comprising a plurality of separate rigid inserts, the interior surfaces of which collectively define a central elongated passageway in which the rod end is received, the interior surfaces of the inserts being tightly bonded to the side portions of the rod, and the inserts being bonded to each other along the contact lines therebetween to form a unitary structure.

  5. Investigating the optical XNOR gate using plasmonic nano-rods

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Majid; Kaboli, Milad

    2016-04-01

    In this paper, a coherent perfect absorption (CPA)-type XNOR gate based on plasmonic nano particle is proposed. It consists of two plasmonic nano rod arrays on top of two parallel arms with quartz substrate. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-particles waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-rod and the nano rod location, an efficient binary optimization method based the Particle Swarm Optimization (PSO) algorithm is used to design an optimized array of the plasmonic nano-rod in order to achieve the maximum absorption coefficient in the 'off' state and the minimum absorption coefficient in the 'on' state. In Binary PSO (BPSO), a group of birds consists a matrix with binary entries, control the presence ('1‧) or the absence ('0‧) of nano rod in the array.

  6. System for fuel rod removal from a reactor module

    DOEpatents

    Matchett, Richard L.; Roof, David R.; Kikta, Thomas J.; Wilczynski, Rosemarie; Nilsen, Roy J.; Bacvinskas, William S.; Fodor, George

    1990-01-01

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system.

  7. System for fuel rod removal from a reactor module

    DOEpatents

    Matchett, R.L.; Fodor, G.; Kikta, T.J.; Bacvinsicas, W.S.; Roof, D.R.; Nilsen, R.J.; Wilczynski, R.

    1988-07-28

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system. 7 figs.

  8. 26. A typical outer rod room, or rack room, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. A typical outer rod room, or rack room, showing the racks for the nine horizontal control rods (HCRs) that would be inserted or withdrawn from the pile to control the rate of reaction. In this case, it is the 105-F Reactor in February 1945. The view is looking away from the pile, which is out of the picture on the left. Several of the cooling water hose reels for the rods can be seen at the end of the racks near the wall. D-8323 - B Reactor, Richland, Benton County, WA

  9. Polymer ejection from strong spherical confinement

    NASA Astrophysics Data System (ADS)

    Piili, J.; Linna, R. P.

    2015-12-01

    We examine the ejection of an initially strongly confined flexible polymer from a spherical capsid through a nanoscale pore. We use molecular dynamics for unprecedentedly high initial monomer densities. We show that the time for an individual monomer to eject grows exponentially with the number of ejected monomers. By measurements of the force at the pore we show this dependence to be a consequence of the excess free energy of the polymer due to confinement growing exponentially with the number of monomers initially inside the capsid. This growth relates closely to the divergence of mixing energy in the Flory-Huggins theory at large concentration. We show that the pressure inside the capsid driving the ejection dominates the process that is characterized by the ejection time growing linearly with the lengths of different polymers. Waiting time profiles would indicate that the superlinear dependence obtained for polymers amenable to computer simulations results from a finite-size effect due to the final retraction of polymers' tails from capsids.

  10. Bipolar Ejection of Matter from Hot Stars

    NASA Technical Reports Server (NTRS)

    Pismis, P.

    1985-01-01

    A general program on the internal velocities in H II regions was carried out within the past decade by the use of photographic Fabry-Perot interferometry, in the H (alpha) line and lately also in the N IIlambda 6584 line. Among the score of objects studied three H II regions and one planetary nebula possess pronounced symmetry around their ionizing stars. Velocity data combined with morphological properties suggest strongly that the nebulae were formed essentially by matter ejected from the central star and that ejection occurred preferentially from diametrially opposite regions on the star, that is, in a bi-polar fashion. The nebulae are discussed individually and a model for the ejection mechanism is presented.

  11. Coronal mass ejections and coronal structures

    NASA Technical Reports Server (NTRS)

    Hildner, E.; Bassi, J.; Bougeret, J. L.; Duncan, R. A.; Gary, D. E.; Gergely, T. E.; Harrison, R. A.; Howard, R. A.; Illing, R. M. E.; Jackson, B. V.

    1986-01-01

    Research on coronal mass ejections (CMF) took a variety of forms, both observational and theoretical. On the observational side there were: case studies of individual events, in which it was attempted to provide the most complete descriptions possible, using correlative observations in diverse wavelengths; statistical studies of the properties CMEs and their associated activity; observations which may tell us about the initiation of mass ejections; interplanetary observations of associated shocks and energetic particles even observations of CMEs traversing interplanetary space; and the beautiful synoptic charts which show to what degree mass ejections affect the background corona and how rapidly (if at all) the corona recovers its pre-disturbance form. These efforts are described in capsule form with an emphasis on presenting pictures, graphs, and tables so that the reader can form a personal appreciation of the work and its results.

  12. Rod Climbing of Suspensions

    NASA Astrophysics Data System (ADS)

    Guo, Youjing; Wang, Xiaorong

    We wish to report an unexpected effect observed for particle suspensions sucked to pass through a vertical pipe. Above a critical concentration, the suspension on the outside of the pipe may climb along the outside wall of the pipe and then display a surprising rod-climbing effect. Our study shows that the phenomenon is influenced mainly by the suspension composition, the pipe dimension and the suction speed. The effects of the pipe materials of different kinds are negligible. Increasing the suction force and the concentration increases the climbing height. Increasing the pipe diameter and wall thickness reduces the climbing effect. This behavior may be relevant to that the suspensions of the type described are all displaying markedly shear-thickening.

  13. Sucker rod pump

    SciTech Connect

    Brewer, J.R.

    1992-04-14

    This patent describes a subsurface well pump, it comprises: a working barrel; a plunger which reciprocates along the vertical axis within the working barrel between an upper and lower position; a rod connected to the plunger and extending to a means for providing reciprocating force; a well string extending from the top of the working barrel to the surface; an outlet check valve which permits flow to exit the working barrel into the well string and does not permit flow to exit the well string into the working barrel; and an inlet check valve which permits flow into the working barrel from outside of the subsurface pump, the inlet check valve being above the top position of the plunger, the inlet check valve having a cross sectional flow area about equal to or greater than the horizontal cross sectional area of the working barrel, and the inlet check valve being a hinged flapper valve.

  14. Nuclear reactor control apparatus

    DOEpatents

    Sridhar, Bettadapur N.

    1983-11-01

    Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

  15. A transcriptome resource for pharaoh cuttlefish (Sepia pharaonis) after ink ejection by brief pressing.

    PubMed

    Wen, Jing; Zhong, Huan; Xiao, Jun; Zhou, Yi; Chen, Ziming; Zeng, Ling; Chen, Daohai; Sun, Yulin; Zhao, Juan; Wang, Fenghua

    2016-08-01

    Ink ejection is one of the most important defense mechanisms against external stimuli for pharaoh cuttlefish (Sepia pharaonis). The molecular changes during this process remain unknown. To understand the transcriptome changes after ink ejection by brief pressing, two cDNA libraries of pharaoh cuttlefish, from the inkjet group and control group were sequenced using Illumina HiSeq™ 2000. A total of 9,255,502,440nt bases were obtained and by de novo assembly, 73,298 unigenes were generated, which first provided numerous expressed sequence tags from pharaoh cuttlefish. By comparing the expression levels between the two groups, we identified 7064 up-regulated and 2024 down-regulated genes after ink ejection. These differentially-expressed genes included genes related to immunity, cancer, and blood coagulation, which indicated the various effects after ink ejection by brief pressing. These results provide new valuable resources for functional genomic and genetic studies on pharaoh cuttlefish.

  16. A transcriptome resource for pharaoh cuttlefish (Sepia pharaonis) after ink ejection by brief pressing.

    PubMed

    Wen, Jing; Zhong, Huan; Xiao, Jun; Zhou, Yi; Chen, Ziming; Zeng, Ling; Chen, Daohai; Sun, Yulin; Zhao, Juan; Wang, Fenghua

    2016-08-01

    Ink ejection is one of the most important defense mechanisms against external stimuli for pharaoh cuttlefish (Sepia pharaonis). The molecular changes during this process remain unknown. To understand the transcriptome changes after ink ejection by brief pressing, two cDNA libraries of pharaoh cuttlefish, from the inkjet group and control group were sequenced using Illumina HiSeq™ 2000. A total of 9,255,502,440nt bases were obtained and by de novo assembly, 73,298 unigenes were generated, which first provided numerous expressed sequence tags from pharaoh cuttlefish. By comparing the expression levels between the two groups, we identified 7064 up-regulated and 2024 down-regulated genes after ink ejection. These differentially-expressed genes included genes related to immunity, cancer, and blood coagulation, which indicated the various effects after ink ejection by brief pressing. These results provide new valuable resources for functional genomic and genetic studies on pharaoh cuttlefish. PMID:27270126

  17. Determination of the rod-wire transition length in colloidal indium phosphide quantum rods.

    PubMed

    Wang, Fudong; Buhro, William E

    2007-11-21

    Colloidal InP quantum rods (QRs) having controlled diameters and lengths are grown by the solution-liquid-solid method, from Bi nanoparticles in the presence of hexadecylamine and other conventional quantum dot surfactants. These quantum rods show band-edge photoluminescence after HF photochemical etching. Photoluminescence efficiency is further enhanced after the Bi tips are selectively removed from the QRs by oleic acid etching. The QRs are anisotropically 3D confined, the nature of which is compared to the corresponding isotropic 3D confinement in quantum dots and 2D confinement in quantum wires. The 3D-2D rod-wire transition length is experimentally determined to be 25 nm, which is about 2 times the bulk InP exciton Bohr radius (of approximately 11 nm).

  18. Facile morphology-controlled synthesis and luminescence properties of BaMoO4:Eu3+ microparticles and micro-rods obtained by a molten-salt reaction route.

    PubMed

    Xia, Zhiguo; Jin, Shuai; Sun, Jiayue; Du, Haiyan; Du, Peng; Liao, Libing

    2011-11-01

    This work focuses on the synthesis of morphology-controlled BaMoO4:Eu3+ micro-crystals such as microparticles and micro-rods using a facile molten salt method, and their morphology, structural characterization, and luminescent properties were comparatively investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectra. The molten salt method synthesized products from a reaction of BaMoO4 precursor obtained by a co-precipitation method of BaCl2 and Na2MoO4 with an eutectic salt mixture of NaCl-KCl at 700 degrees C. Detailed studies revealed that the formation of the different morphologies of the micro-crystals was strongly dependent on the weight ratio of the salt (NaCl-KCl) to the BaMoO4 precursor, and the formation mechanism of the products in the present molten salt system was also investigated. Based on the investigations of the photoluminescence properties, the samples with different morphologies prepared by the molten salt method had the strongest red emission at 615 nm, corresponding to the Eu3+ 5D0-7F2 transition in the BaMoO4 host lattice, and the emission intensity of BaMoO4:Eu3+ microparticles was stronger than that of BaMoO4:Eu3+ micro-rods. PMID:22413257

  19. Facile morphology-controlled synthesis and luminescence properties of BaMoO4:Eu3+ microparticles and micro-rods obtained by a molten-salt reaction route.

    PubMed

    Xia, Zhiguo; Jin, Shuai; Sun, Jiayue; Du, Haiyan; Du, Peng; Liao, Libing

    2011-11-01

    This work focuses on the synthesis of morphology-controlled BaMoO4:Eu3+ micro-crystals such as microparticles and micro-rods using a facile molten salt method, and their morphology, structural characterization, and luminescent properties were comparatively investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectra. The molten salt method synthesized products from a reaction of BaMoO4 precursor obtained by a co-precipitation method of BaCl2 and Na2MoO4 with an eutectic salt mixture of NaCl-KCl at 700 degrees C. Detailed studies revealed that the formation of the different morphologies of the micro-crystals was strongly dependent on the weight ratio of the salt (NaCl-KCl) to the BaMoO4 precursor, and the formation mechanism of the products in the present molten salt system was also investigated. Based on the investigations of the photoluminescence properties, the samples with different morphologies prepared by the molten salt method had the strongest red emission at 615 nm, corresponding to the Eu3+ 5D0-7F2 transition in the BaMoO4 host lattice, and the emission intensity of BaMoO4:Eu3+ microparticles was stronger than that of BaMoO4:Eu3+ micro-rods.

  20. How much dust does Enceladus eject?

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Srama, Ralf; Postberg, Frank; Schmidt, Juergen

    2016-07-01

    There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about

  1. How much dust does Enceladus eject?

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Southworth, Benjamin; Schmidt, Juergen; Srama, Ralf; Postberg, Frank

    2016-04-01

    There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about

  2. Do centrioles generate a polar ejection force?

    PubMed

    Wells, Jonathan

    2005-01-01

    A microtubule-dependent polar ejection force that pushes chromosomes away from spindle poles during prometaphase is observed in animal cells but not in the cells of higher plants. Elongating microtubules and kinesin-like motor molecules have been proposed as possible causes, but neither accounts for all the data. In the hypothesis proposed here a polar ejection force is generated by centrioles, which are found in animals but not in higher plants. Centrioles consist of nine microtubule triplets arranged like the blades of a tiny turbine. Instead of viewing centrioles through the spectacles of molecular reductionism and neo-Darwinism, this hypothesis assumes that they are holistically designed to be turbines. Orthogonally oriented centriolar turbines could generate oscillations in spindle microtubules that resemble the motion produced by a laboratory vortexer. The result would be a microtubule-mediated ejection force tending to move chromosomes away from the spindle axis and the poles. A rise in intracellular calcium at the onset of anaphase could regulate the polar ejection force by shutting down the centriolar turbines, but defective regulation could result in an excessive force that contributes to the chromosomal instability characteristic of most cancer cells.

  3. Forces during Bacteriophage DNA Packaging and Ejection

    PubMed Central

    Purohit, Prashant K.; Inamdar, Mandar M.; Grayson, Paul D.; Squires, Todd M.; Kondev, Jané; Phillips, Rob

    2005-01-01

    The conjunction of insights from structural biology, solution biochemistry, genetics, and single-molecule biophysics has provided a renewed impetus for the construction of quantitative models of biological processes. One area that has been a beneficiary of these experimental techniques is the study of viruses. In this article we describe how the insights obtained from such experiments can be utilized to construct physical models of processes in the viral life cycle. We focus on dsDNA bacteriophages and show that the bending elasticity of DNA and its electrostatics in solution can be combined to determine the forces experienced during packaging and ejection of the viral genome. Furthermore, we quantitatively analyze the effect of fluid viscosity and capsid expansion on the forces experienced during packaging. Finally, we present a model for DNA ejection from bacteriophages based on the hypothesis that the energy stored in the tightly packed genome within the capsid leads to its forceful ejection. The predictions of our model can be tested through experiments in vitro where DNA ejection is inhibited by the application of external osmotic pressure. PMID:15556983

  4. Do centrioles generate a polar ejection force?

    PubMed

    Wells, Jonathan

    2005-01-01

    A microtubule-dependent polar ejection force that pushes chromosomes away from spindle poles during prometaphase is observed in animal cells but not in the cells of higher plants. Elongating microtubules and kinesin-like motor molecules have been proposed as possible causes, but neither accounts for all the data. In the hypothesis proposed here a polar ejection force is generated by centrioles, which are found in animals but not in higher plants. Centrioles consist of nine microtubule triplets arranged like the blades of a tiny turbine. Instead of viewing centrioles through the spectacles of molecular reductionism and neo-Darwinism, this hypothesis assumes that they are holistically designed to be turbines. Orthogonally oriented centriolar turbines could generate oscillations in spindle microtubules that resemble the motion produced by a laboratory vortexer. The result would be a microtubule-mediated ejection force tending to move chromosomes away from the spindle axis and the poles. A rise in intracellular calcium at the onset of anaphase could regulate the polar ejection force by shutting down the centriolar turbines, but defective regulation could result in an excessive force that contributes to the chromosomal instability characteristic of most cancer cells. PMID:15889341

  5. Regenerative hyperpolarization in rods.

    PubMed Central

    Werblin, F S

    1975-01-01

    1. The electrical properties of the rods in Necturus maculosus were studied at the cell body and the outer segments in dark and light under current and voltage clamp with a pair of intracellular electrodes separated by about 1 mum. 2. The membrane resistance in the dark was voltage- and time-dependent both for the cell body and the outer segment. Slight depolarizations in the cell body reduced the slope resistance from 60 to 10 M omega with a time constant of about 1 sec. Polarization in either direction, at the outer segment, when greater than about 20 mV, reduced the slope resistance from 60 to 30 M omega. The dark potential in the cell body was typically -30 to -35 m V; at the outer segment it was typically only -10 to -15 mV. 3. The light-elicited voltage response in both the cell body and the outer segment was largest with the membrane near the dark potential level. In both regions, the response was reduced when the membrane was polarized in either direction. 4. Under voltage-clamp conditions, a reversal potential for the light response near + 10 mV was measured at the outer segment. At the cell body no reversal potential for the light response was measured; there the clamping current required during the light response was almost of the same magnitude at all potential levels. 5. When the membrane at the cell body was hyperpolarized in the dark under voltage clamp, a transient outward current, typically about one-half the magnitude of the initial inward clamping current was required to maintain the membrane at the clamped potential level. This outward current transient was associated with a decrease in membrane resistance with similar time course. The transient outward current reversed and became inward when the membrane was clamped to potentials more negative than -80 mV. Thus, the transient outward current appears to involve a transient activation initiated by hyperpolarization. I is regenerative in that it is initiated by hyperpolarization and tends to

  6. Eulerian formulation of elastic rods

    NASA Astrophysics Data System (ADS)

    Huynen, Alexandre; Detournay, Emmanuel; Denoël, Vincent

    2016-06-01

    In numerous biological, medical and engineering applications, elastic rods are constrained to deform inside or around tube-like surfaces. To solve efficiently this class of problems, the equations governing the deflection of elastic rods are reformulated within the Eulerian framework of this generic tubular constraint defined as a perfectly stiff normal ringed surface. This reformulation hinges on describing the rod-deformed configuration by means of its relative position with respect to a reference curve, defined as the axis or spine curve of the constraint, and on restating the rod local equilibrium in terms of the curvilinear coordinate parametrizing this curve. Associated with a segmentation strategy, which partitions the global problem into a sequence of rod segments either in continuous contact with the constraint or free of contact (except for their extremities), this re-parametrization not only trivializes the detection of new contacts but also transforms these free boundary problems into classic two-points boundary-value problems and suppresses the isoperimetric constraints resulting from the imposition of the rod position at the extremities of each rod segment.

  7. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    DOEpatents

    Young, J.N.

    1957-08-20

    An electromagnetic device for moving an object in a linear path by increments is described. The device is specifically adapted for moving a neutron absorbing control rod into and out of the core of a reactor and consists essentially of an extension member made of magnetic material connected to one end of the control rod and mechanically flexible to grip the walls of a sleeve member when flexed, a magnetic sleeve member coaxial with and slidable between limit stops along the flexible extension, electromagnetic coils substantially centrally located with respect to the flexible extension to flex the extension member into gripping engagement with the sleeve member when ener gized, moving electromagnets at each end of the sleeve to attract the sleeve when energized, and a second gripping electromagnet positioned along the flexible extension at a distance from the previously mentioned electromagnets for gripping the extension member when energized. In use, the second gripping electromagnet is deenergized, the first gripping electromagnet is energized to fix the extension member in the sleeve, and one of the moving electromagnets is energized to attract the sleeve member toward it, thereby moving the control rod.

  8. Physics analysis of the gang partial rod drive event

    SciTech Connect

    Boman, C.; Frost, R.L.

    1992-08-01

    During the routine positioning of partial-length control rods in Gang 3 on the afternoon of Monday, July 27, 1992, the partial-length rods continued to drive into the reactor even after the operator released the controlling toggle switch. In response to this occurrence, the Safety Analysis and Engineering Services Group (SAEG) requested that the Applied Physics Group (APG) analyze the gang partial rod drive event. Although similar accident scenarios were considered in analysis for Chapter 15 of the Safety Analysis Report (SAR), APG and SAEG conferred and agreed that this particular type of gang partial-length rod motion event was not included in the SAR. This report details this analysis.

  9. Rod coupling for oil well sucker rods and the like

    SciTech Connect

    Bowers, R.

    1986-07-29

    A coupling is described for joining solid reciprocating sucker rods to form a rod string in a well pump or the like comprising a unitary metal sleeve having an axial threaded bore and an irregular outer surface, and a homogeneous and non-fibrous coating on the sleeve over the outer surface providing an externally substantially cylindrical coupling, the coating comprising a flexible and abrasive resistant thermoplastic hydrourethane polymer formed on the irregular outer surface of the sleeve while in the molten state.

  10. Review of major injuries and fatalities in USAF ejections, 1981-1995.

    PubMed

    Collins, R; McCarthy, G W; Kaleps, I; Knox, F S

    1997-01-01

    Our laboratories are examining injuries and deaths resulting from mechanical forces applied to aircrew members in the course of Department of Defense aviation operations. In this paper we report only on bodily injuries sustained during ejection from US Air force, aircraft for the fiscal years 1981-1996, that is, major injuries and fatalities resulting directly from seat acceleration forces, from aerodynamic forces applied to crew members during escape through the effects of windblast and parachute opening shock; from direct contact: and from parachute landing injuries. Such injuries occur typically to the head, neck, cervical spine, thorax, thoracolumbar spine, ribs, pelvis, and the upper and lower extremities. Injuries are usually caused by anomalies in the ejection sequence or by delaying ejection until too close to the ground. Conversely, a planned ejection in a modern ejection seat in controlled, low speed flight imposes forces well below injury thresholds. In the USAF, 10-50 aircrew eject yearly, with a decline since 1991. We conclude that the risk of fatality is 0-11% and of major injury is 2-25%. Both are remarkably low and decreasing in the later years of this study period. The absolute number of head, neck, and spine injuries is 0-10 yearly and similarly decreasing. The results of this study are intended to provide a basis for estimating potential savings in deaths, injuries, and costs expected from the development of improved protective measures. PMID:9731384

  11. Statistical properties of a folded elastic rod

    NASA Astrophysics Data System (ADS)

    Bayart, Elsa; Deboeuf, Stéphanie; Boué, Laurent; Corson, Francis; Boudaoud, Arezki; Adda-Bedia, Mokhtar

    2010-03-01

    A large variety of elastic structures naturally seem to be confined into environments too small to accommodate them; the geometry of folded structures span a wide range of length-scales. The elastic properties of these confined systems are further constrained by self-avoidance as well as by the dimensionality of both structures and container. To mimic crumpled paper, we devised an experimental setup to study the packing of a dimensional elastic object in 2D geometries: an elastic rod is folded at the center of a circular Hele-Shaw cell by a centripetal force. The initial configuration of the rod and the acceleration of the rotating disk allow to span different final folded configurations while the final rotation speed controls the packing intensity. Using image analysis we measure geometrical and mechanical properties of the folded configurations, focusing on length, curvature and energy distributions.

  12. Rod coupling with mounted guide

    SciTech Connect

    Bair, M.L.

    1987-05-26

    This patent describes a well sucker rod string, in a well bore, the combination comprising: an axially elongated coupling section having threads at axially opposite ends thereof for coupling to and between successive sucker rods in the rod string, to transmit string loading. The section has first and second exposed surfaces adjacent an end of the section, and a third surface located between the first and second exposed surfaces; a rod guide consisting of molded plastic material extending about and bonded to the section third surface to project outwardly therefrom for engagement with the well bore during up and down stroking of the string; and one annular groove sunk in the section between the first and third surfaces, and another annular groove sunk in the section between the second and third surfaces. The depth of the one groove is less than about 15% of the radius of the section at the first surface.

  13. Nuclear design of Helical Cruciform Fuel rods

    SciTech Connect

    Shirvan, K.; Kazimi, M. S.

    2012-07-01

    In order to increase the power density of current and new light water reactor designs, the Helical Cruciform Fuel (HCF) rods are proposed. The HCF rods are equivalent to a cylindrical rod, with the fuel in a cruciform shaped, twisted axially. The HCF rods increase the surface area to volume ratio and inter-subchannel mixing behavior due to their cruciform and helical shapes, respectively. In a previous study, the HCF rods have shown the potential to up-rate existing PWRs by 50% and BWRs by 25%. However, HCF rods do display different neutronics modeling and performance. The cruciform cross section of HCF rods creates radially asymmetric heat generation and temperature distribution. The nominal HCF rod's beginning of life reactivity is reduced, compared to a cylindrical rod with the same fuel volume, by 500 pcm, due to increase in absorption in cladding. The rotation of these rods accounts for reactivity changes, which depends on the H/HM ratio of the pin cell. The HCF geometry shows large sensitivities to U{sup 235} or gadolinium enrichments compared to a cylindrical geometry. In addition, the gadolinium-containing HCF rods show a stronger effect on neighboring HCF rods than in case of cylindrical rods, depending on the orientation of the HCF rods. The helical geometry of the rods introduces axial shadowing of about 600 pcm, not seen in typical cylindrical rods. (authors)

  14. Light vehicle occupant ejections--a comprehensive investigation.

    PubMed

    Malliaris, A C; DeBlois, J H; Digges, K H

    1996-01-01

    Occupant ejections, about 1.5% of all crash-involved occupant events, are relatively infrequent but very harmful events in highway crashes of light vehicles, including cars, pickup trucks, vans, and multipurpose vehicles (utility vehicles, jeeps, etc.). The disparity between frequency of harm to ejectees and ejection frequency is at least one order of magnitude. Partial ejections, although less frequent, have an incidence that is comparable to that of complete ejections, except for restrained occupants, where complete ejections are very infrequent. Notwithstanding the high effectiveness of safety belts in preventing ejections, and the multifold growth of safety belt use in the last 10 years, there is no detectable reduction in the ejection rate in the same period. Ejections per se and not other pre-ejection occupant impacts are responsible for the bulk of the harm to ejectees. Furthermore, ejected occupants sustain harm much larger than that which would have occurred, had these occupants not been ejected. "Closed glazing" is the leading ejection path. "Doors" and "windshield" are distant seconds. All glazing except the windshield fail overwhelmingly by disintegration. Latch failure is the primary mode of failure in opening doors. Hinges and other modes of failure are relatively minor concerns. The sources of data in this investigation are: the National Accident Sampling System for the years 1988 to 1991, and the Fatal Accident Reporting System for 1982 to 1992. PMID:8924175

  15. Pilot ejection, parachute, and helicopter crash injuries.

    PubMed

    McBratney, Colleen M; Rush, Stephen; Kharod, Chetan U

    2014-01-01

    USAF Pararescuemen (PJs) respond to downed aircrew as a fundamental mission for personnel recovery (PR), one of the Air Force's core functions. In addition to responding to these in Military settings, the PJs from the 212 Rescue Squadron routinely respond to small plane crashes in remote regions of Alaska. While there is a paucity of information on the latter, there have been articles detailing injuries sustained from helicopter crashes and while ejecting or parachuting from fixed wing aircraft. The following represents a new chapter added to the Pararescue Medical Operations Handbook, Sixth Edition (2014, editors Matt Wolf, MD, and Stephen Rush, MD, in press). It was designed to be a quick reference for PJs and their Special Operations flight surgeons to help with understanding of mechanism of injury with regard to pilot ejection, parachute, and helicopter accident injuries. It outlines the nature of the injuries sustained in such mishaps and provides an epidemiologic framework from which to approach the problem.

  16. MHD shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1991-01-01

    The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).

  17. Interplanetary Coronal Mass Ejections detected by HAWC

    NASA Astrophysics Data System (ADS)

    Lara, Alejandro

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC’s primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), instrumented with 1200 photo-multipliers. The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site (˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effects of Coronal Mass Ejections on the galactic cosmic ray flux, known as Forbush Decreases. In this paper, we present a description of the instrument and its response to interplanetary coronal mass ejections, and other solar wind large scale structures, observed during the August-December 2013 period.

  18. Pilot ejection, parachute, and helicopter crash injuries.

    PubMed

    McBratney, Colleen M; Rush, Stephen; Kharod, Chetan U

    2014-01-01

    USAF Pararescuemen (PJs) respond to downed aircrew as a fundamental mission for personnel recovery (PR), one of the Air Force's core functions. In addition to responding to these in Military settings, the PJs from the 212 Rescue Squadron routinely respond to small plane crashes in remote regions of Alaska. While there is a paucity of information on the latter, there have been articles detailing injuries sustained from helicopter crashes and while ejecting or parachuting from fixed wing aircraft. The following represents a new chapter added to the Pararescue Medical Operations Handbook, Sixth Edition (2014, editors Matt Wolf, MD, and Stephen Rush, MD, in press). It was designed to be a quick reference for PJs and their Special Operations flight surgeons to help with understanding of mechanism of injury with regard to pilot ejection, parachute, and helicopter accident injuries. It outlines the nature of the injuries sustained in such mishaps and provides an epidemiologic framework from which to approach the problem. PMID:25399374

  19. Process-based tolerance assessment of connecting rod machining process

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, P. Srinivasa; Surendra Babu, B.

    2016-01-01

    Process tolerancing based on the process capability studies is the optimistic and pragmatic approach of determining the manufacturing process tolerances. On adopting the define-measure-analyze-improve-control approach, the process potential capability index ( C p) and the process performance capability index ( C pk) values of identified process characteristics of connecting rod machining process are achieved to be greater than the industry benchmark of 1.33, i.e., four sigma level. The tolerance chain diagram methodology is applied to the connecting rod in order to verify the manufacturing process tolerances at various operations of the connecting rod manufacturing process. This paper bridges the gap between the existing dimensional tolerances obtained via tolerance charting and process capability studies of the connecting rod component. Finally, the process tolerancing comparison has been done by adopting a tolerance capability expert software.

  20. Ejection safety for advanced fighter helmets

    NASA Astrophysics Data System (ADS)

    Wiley, Larry L.; Brown, Randall W.; MacMillan, Robert T.

    1995-05-01

    The old saying, `Safety is paramount.' was never more true than it is in the area of ejection safety for high-speed fighter aircraft. The fighter aircraft of today has been designed to endure tremendous structural loading during dogfight or evasive maneuvers. It can fly faster, turn quicker, stay in the air longer (with in-flight refuel) and carry more bombs than its predecessor. Because of human physiological limits, the human has become the weak link in today's fighter aircraft. The fighter pilot must endure and function with peak performance in conditions that are much worse than anything the majority of us will ever encounter. When these conditions reach a point that human endurance is exceeded, devices such as anti-g suits and positive pressure breathing apparatus help the fighter pilot squeeze out that extra percentage of strength necessary to outperform the opponent. As fighter aircraft become more sophisticated, helmet trackers, helmet displays and noise cancellation devices are being added to the helmet. Yet the fighter pilot's helmet must remain lightweight and be aesthetically appealing, while still offering ballistic protection. It must function with existing life support equipment such as the Combined Advanced Technology Enhanced Design g-Ensemble (COMBAT-EDGE). It must not impede the pilot's ability to perform any action necessary to accomplish the planned mission. The helmet must protect the pilot during the harsh environment of ejection. When the pilot's only resort is to pull the handle and initiate the ejection sequence, the helmet becomes his salvation or instant death. This paper discusses the safety concerns relative to the catapult phase of ejecting from a high-speed fighter while wearing an advanced fighter helmet.

  1. Ejectable underwater sound source recovery assembly

    NASA Technical Reports Server (NTRS)

    Irick, S. C. (Inventor)

    1974-01-01

    An underwater sound source is described that may be ejectably mounted on any mobile device that travels over water, to facilitate in the location and recovery of the device when submerged. A length of flexible line maintains a connection between the mobile device and the sound source. During recovery, the sound source is located be particularly useful in the recovery of spent rocket motors that bury in the ocean floor upon impact.

  2. RP cone-rod degeneration.

    PubMed Central

    Heckenlively, J R

    1987-01-01

    A group of patients with progressive retinal degeneration and visual field loss, who meet the basic definition of RP were investigated to better define the relationship of the findings on the ERG with clinical characteristics such as visual field size, presence or absence of scotomata or pseudo-altitudinal defects on visual field, amount of night blindness; and presence or absence of macular or optic nerve changes. These studies suggest that cone-rod degeneration patients of the RP type go through the following stages; early, the ERG has a definite cone-rod pattern where the rod ERG is larger than the cone ERG while both are abnormal. As the disease advances, there is more of a reduction in the scotopic ERG such that both the rod and cone ERGs become nearly equal. As the disease further progresses the ERG becomes non-recordable on single-flash technique, but there is good residual rod function and the final rod threshold remains good until the visual field is reduced, typically less than 10 degrees with the IV-4 isopter. Finally with advanced disease the patient becomes night blind and generally becomes very difficult to distinguished from patients who have advanced rod-cone degeneration. While it may seem logical to find that visual field size correlates with various ERG parameters; this has not been as consistent a finding in patients with rod-cone degeneration in the author's experience. The analysis shows several new pieces of information about visual field changes in cone-rod degeneration; enlarged blind spots are seen earlier in cases which have recordable cone-rod patterns (group I), and pseudo-altitudinal changes are more likely to occur in autosomal recessive patients. Patients with macular lesions and central scotomata had larger amplitudes than patients with normal appearing maculae and no central scotomata. Patients with temporal optic atrophy had an earlier onset of symptoms and significant correlation with both photopic a- and b-waves and bright flash

  3. Potential Method of Predicting Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Imholt, Timothy; Roberts, J. A.; Scott, J. B.; University Of North Texas Team

    2000-10-01

    Coronal Mass Ejections (CME) may be described as a blast of gas and highly charged solar mass fragments ejected into space. These ejections, when directed toward Earth, have many different effects on terrestrial systems ranging from the Aurora Borealis to changes in wireless communications. The importance of an early prediction of these solar events cannot be overlooked. There are several models currently accepted and utilized to predict these events, however, with earlier prediction of both the event and the location on the sun where the event occur allows us to have earlier warnings as to when they will effect man-made systems. A better prediction could perhaps be achieved by utilizing low angular resolution radio telescope arrays to catalog data from the sun at different radio frequencies on a regular basis. Once this data is cataloged a better predictor for these CME's could be found. We propose a model that allows a prediction to be made that appears to be longer than 24 hours.

  4. Potential Method of Predicting Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Imholt, Timothy

    2001-10-01

    Coronal Mass Ejections (CME) may be described as a blast of gas and highly charged solar mass fragments ejected into space. These ejections, when directed toward Earth, have many different effects on terrestrial systems ranging from the Aurora Borealis to changes in wireless communication. The early prediction of these solar events cannot be overlooked. There are several models currently accepted and utilized to predict these events, however, with earlier prediction of both the event and the location on the sun where the event occurs allows us to have earlier warnings as to when they will affect man-made systems. A better prediction could perhaps be achieved by utilizing low angular resolution radio telescope arrays to catalog data from the sun at different radio frequencies on a regular basis. Once this data is cataloged a better predictor for these CME’s could be found. We propose a model that allows a prediction to be made that appears to be longer than 24 hours.

  5. The interval ejection fraction: a cineangiographic and radionuclide study

    SciTech Connect

    Kemper, A.J.; Bianco, J.A.; Shulman, R.M.; Folland, E.D.; Parisi, A.F.; Tow, D.E.

    1982-06-01

    To evaluate the clinical usefulness of the first-third ejection fraction (1/3 EF) for detecting patients with coronary artery disease (CAD), resting contrast ventriculography and first-pass radionuclide angiography with a high-count-rate, multicrystal camera system were performed in 47 subjects: 22 normal controls and 25 patients with clinically stable angina pectoris and severe CAD without and with resting wall motion abnormalities. By contrast angiography, only group 3 had depressed global EF or 1/3 EF compared with control. Whereas 11 of 25 CAD patients had global EF outside the normal range, only two of 25 had depressed 1/3 EF. Both had left ventricular asynergy and a depressed global EF. Studies performed using first-pass radionuclide angiography revealed similar results. A wide range of 1/3 EF values was found in normal subjects by both techniques. Thus, the ejection fraction during the first third of systole at rest is of limited value for detecting patients with CAD.

  6. Analysis of Double-encapsulated Fuel Rods

    SciTech Connect

    Hales, Jason Dean; Medvedev, Pavel G; Novascone, Stephen Rhead; Perez, Danielle Marie; Williamson, Richard L

    2014-09-01

    In an LWR fuel rod, the cladding encapsulates the fuel, contains fission products, and transfers heat directly to the water coolant. In some situations, it may be advantageous to separate the cladding from the coolant through use of a secondary cladding or capsule. This may be done to increase confidence that the fuel or fission products will not mix with the coolant, to provide a mechanism for controlling the rod temperature, or to place multiple experimental rodlets within a single housing. With an axisymmetric assumption, it is possible to derive closed-form expressions for the temperature profile in a fuel rod using radially-constant thermal conductivity in the fuel. This is true for both a traditional fuel-cladding rod and a double-encapsulated fuel (fuel, cladding, capsule) configuration. Likewise, it is possible to employ a fuel performance code to analyse both a traditional and a double-encapsulated fuel. In the case of the latter, two sets of gap heat transfer conditions must be imposed. In this work, we review the equations associated with radial heat transfer in a cylindrical system, present analytic and computational results for a postulated power and gas mixture history for IFA-744, and describe the analysis of the AFC-2A, 2B metallic fuel alloy experiments at the Advanced Test Reactor, including the effect of a release of fission products into the cladding-capsule gap. The computational results for these two cases were obtained using BISON, a fuel performance code under development at Idaho National Laboratory.

  7. Gas Ejection from Spiral Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Durelle, Jeremy

    We present the results of three proposed mechanisms for ejection of gas from a spiral arm into the halo. The mechanisms were modelled using magnetohydrodynamics (MHD) as a theoretical template. Each mechanism was run through simulations using a Fortran code: ZEUS-3D, an MHD equation solver. The first mechanism modelled the gas dynamics with a modified Hartmann flow which describes the fluid flow between two parallel plates. We initialized the problem based on observation of lagging halos; that is, that the rotational velocity falls to a zero at some height above the plane of the disk. When adopting a density profile which takes into account the various warm and cold H I and HII molecular clouds, the system evolves very strangely and does not reproduce the steady velocity gradient observed in edge-on galaxies. This density profile, adopted from Martos and Cox (1998), was used in the remaining models. However, when treating a system with a uniform density profile, a stable simulation can result. Next we considered supernova (SN) blasts as a possible mechanism for gas ejection. While a single SN was shown to be insufficient to promote vertical gas structures from the disk, multiple SN explosions proved to be enough to promote gas ejection from the disk. In these simulations, gas ejected to a height of 0.5 kpc at a velocity of 130 km s--1 from 500 supernovae, extending to an approximate maximum height of 1 kpc at a velocity of 6.7 x 103 km s--1 from 1500 supernovae after 0.15 Myr, the approximate time of propagation of a supernova shock wave. Finally, we simulated gas flowing into the spiral arm at such a speed to promote a jump in the disk gas, termed a hydraulic jump. The height of the jump was found to be slightly less than a kiloparsec with a flow velocity of 41 km s--1 into the halo after 167 Myr. The latter models proved to be effective mechanisms through which gas is ejected from the disk whereas the Hartmann flow (or toy model) mechanism remains unclear as the

  8. Relative risk of death from ejection by crash type and crash mode.

    PubMed

    Esterlitz, J R

    1989-10-01

    In virtually all circumstances, the chance of survival in a crash is much greater if the occupant is not ejected from the vehicle. Several estimates of the increased risk of death as a result of ejection (ranging from 2.5 to 25) have been made, but none were specific to the crash mode and most did not control for crash severity. The current study examined the relative risk of fatality due to ejection, by crash type and crash mode, using the Fatal Accident Reporting System data from the years 1982 through 1986. Crash type was defined as either single vehicle or multivehicle and crash mode included rollover, nonrollover, and/or direction of impact. Crash severity was controlled for using a paired comparison method of analysis. Both crash type and crash mode were found to have substantial effects on the relative risk of death due to ejection. In addition, risk differences across seating position exist. Depending on crash mode or type, the risks ranged from about 1.5 to 8. Single-vehicle rollover crashes have the highest increased risk of death due to ejection: about eightfold for the driver and sevenfold for the right front passenger. PMID:2619855

  9. Numerical Simulation of Ejected Molten Metal Nanoparticles Liquified by Laser Irradiation: Interplay of Geometry and Dewetting

    NASA Astrophysics Data System (ADS)

    Afkhami, S.; Kondic, L.

    2013-07-01

    Metallic nanoparticles, liquified by fast laser irradiation, go through a rapid change of shape attempting to minimize their surface energy. The resulting nanodrops may be ejected from the substrate when the mechanisms leading to dewetting are sufficiently strong, as in the experiments involving gold nanoparticles [Habenicht et al., Science 309, 2043 (2005)]. We use a direct continuum-level approach to accurately model the process of liquid nanodrop formation and the subsequent ejection from the substrate. Our computations show a significant role of inertial effects and an elaborate interplay of initial geometry and wetting properties: e.g., we can control the direction of ejection by prescribing appropriate initial shape and/or wetting properties. The basic insight regarding ejection itself can be reached by considering a simple effective model based on an energy balance. We validate our computations by comparing directly with the experiments specified above involving the length scales measured in hundreds of nanometers and with molecular dynamics simulations on much shorter scales measured in tens of atomic diameters, as by M. Fuentes-Cabrera et al. [Phys. Rev. E 83, 041603 (2011)]. The quantitative agreement, in addition to illustrating how to control particle ejection, shows utility of continuum-based simulation in describing dynamics on nanoscale quantitatively, even in a complex setting as considered here.

  10. Aircrew ejections in the Republic of Bulgaria, 1953-93.

    PubMed

    Milanov, L

    1996-04-01

    We reviewed the ejections of 60 pilots who ejected from 54 aircraft of Soviet production in the Republic of Bulgaria from 1953-93. The following factors were correlated with the degree of injury during ejection: the fliers' height, weight, and age; type of aircraft and ejection seat; altitude and speed of the aircraft at ejection; and the reason for ejection. The act of ejection can be a life-saving procedure when the aircraft gets into a non-recoverable situation, especially when carried out at an altitude above of 300 m, or at ground level. Survival rate of pilots in those cases is 95-100% respectively, compared to the general survival rate, which is 83%. Of the 60 ejectees, 10 (16.7%) were killed, 14 (23.3%) suffered major injuries, 17 (28.3%) suffered minor injuries, and 19 (31.7%) were uninjured. PMID:8900991

  11. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    NASA Astrophysics Data System (ADS)

    Lemay, Serge G.; Panja, Debabrata; Molineux, Ian J.

    2013-02-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution or culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection in vivo; the mechanism is perfectly consistent with phage genome ejection in vitro.

  12. Rod guide/paraffin scraper

    SciTech Connect

    Mabry, J.F.

    1991-02-26

    This patent describes improvement in a rod guide and paraffin scraper. It comprises: a body including longitudinal ribs spaced radially and extending out from the body; having two identical halves with the body surrounding a bore to accept a sucker rod, and each of the identical halves having a locking and tightening feature using a tongue and groove concept for interfitting the halves together over the sucker rod. This improvement comprises a rod guide and paraffin scraper with two identical halves comprising; a cylindrical central body including, at each end, three longitudinal ribs radially spaced to form a triad leaving three flow channels, at each end of the body, of essentially the same size and spacing as the ribs; and an angular wedge with opposingly ramped sides at the inside end of each of the ribs for scraping and directing material into the flow channels; and a set of triangular shaped tongues that interfit with a set of triangular shaped grooves for tightening the identical halves together and over the sucker rod; and a pair of cone-shaped male locks at one end of the identical half to mate with a pair of cone-shaped female locks at the opposite end of the other identical half.

  13. Fission gas release restrictor for breached fuel rod

    DOEpatents

    Kadambi, N. Prasad; Tilbrook, Roger W.; Spencer, Daniel R.; Schwallie, Ambrose L.

    1986-01-01

    In the event of a breach in the cladding of a rod in an operating liquid metal fast breeder reactor, the rapid release of high-pressure gas from the fission gas plenum may result in a gas blanketing of the breached rod and rods adjacent thereto which impairs the heat transfer to the liquid metal coolant. In order to control the release rate of fission gas in the event of a breached rod, the substantial portion of the conventional fission gas plenum is formed as a gas bottle means which includes a gas pervious means in a small portion thereof. During normal reactor operation, as the fission gas pressure gradually increases, the gas pressure interiorly of and exteriorly of the gas bottle means equalizes. In the event of a breach in the cladding, the gas pervious means in the gas bottle means constitutes a sufficient restriction to the rapid flow of gas therethrough that under maximum design pressure differential conditions, the fission gas flow through the breach will not significantly reduce the heat transfer from the affected rod and adjacent rods to the liquid metal heat transfer fluid flowing therebetween.

  14. Stuck fuel rod capping sleeve

    DOEpatents

    Gorscak, Donald A.; Maringo, John J.; Nilsen, Roy J.

    1988-01-01

    A stuck fuel rod capping sleeve to be used during derodding of spent fuel assemblies if a fuel rod becomes stuck in a partially withdrawn position and, thus, has to be severed. The capping sleeve has an inner sleeve made of a lower work hardening highly ductile material (e.g., Inconel 600) and an outer sleeve made of a moderately ductile material (e.g., 304 stainless steel). The inner sleeve may be made of an epoxy filler. The capping sleeve is placed on a fuel rod which is then severed by using a bolt cutter device. Upon cutting, the capping sleeve deforms in such a manner as to prevent the gross release of radioactive fuel material

  15. Ultraviolet Spectroscopy of Narrow Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Dobrzycka, D.; Raymond, J. C.; Biesecker, D. A.; Li, J.; Ciaravella, A.

    2003-05-01

    We present Ultraviolet Coronagraph Spectrometer (UVCS) observations of five narrow coronal mass ejections (CMEs) that were among 15 narrow CMEs originally selected by Gilbert and coworkers. Two events (1999 March 27, April 15) were ``structured,'' i.e., in white-light data they exhibited well-defined interior features, and three (1999 May 9, May 21, June 3) were ``unstructured,'' i.e., appeared featureless. In UVCS data the events were seen as 4°-13° wide enhancements of the strongest coronal lines H I Lyα and O VI λλ1032, 1037. We derived electron densities for several of the events from the Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 white-light observations. They are comparable to or smaller than densities inferred for other CMEs. We modeled the observable properties of examples of the structured (1999 April 15) and unstructured (1999 May 9) narrow CMEs at different heights in the corona between 1.5 and 2 Rsolar. The derived electron temperatures, densities, and outflow speeds are similar for those two types of ejections. They were compared with properties of polar coronal jets and other CMEs. We discuss different scenarios of narrow CME formation as either a jet formed by reconnection onto open field lines or a CME ejected by expansion of closed field structures. Overall, we conclude that the existing observations do not definitively place the narrow CMEs into the jet or the CME picture, but the acceleration of the 1999 April 15 event resembles acceleration seen in many CMEs, rather than constant speeds or deceleration observed in jets.

  16. Dysphoric milk ejection reflex: A case report

    PubMed Central

    2011-01-01

    Dysphoric Milk Ejection Reflex (D-MER) is an abrupt emotional "drop" that occurs in some women just before milk release and continues for not more than a few minutes. The brief negative feelings range in severity from wistfulness to self-loathing, and appear to have a physiological cause. The authors suggest that an abrupt drop in dopamine may occur when milk release is triggered, resulting in a real or relative brief dopamine deficit for affected women. Clinicians can support women with D-MER in several ways; often, simply knowing that it is a recognized phenomenon makes the condition tolerable. Further study is needed. PMID:21645333

  17. Safety belt use, ejection and entrapment.

    PubMed

    O'Day, J; Scott, R E

    1984-01-01

    One in every five occupants thrown from a car receives fatal injuries. A motorist who uses a safety belt, in all probability, will not be thrown from the car during a crash. The rate of fatal injury for ejected occupants was found to be 40 times the rate for occupants not thrown from their cars, as determined from national accident sampling data. These data refute the popular notion that "being thrown clear" has survival benefit. In addition, there was no evidence that wearing a safety belt increased fatality risk from vehicle fire or submersion. PMID:6519997

  18. Analysis of reciprocating compressor piston rod failures

    SciTech Connect

    Tripp, H.A.; Drosjack, M.J.

    1984-02-01

    This report presents the analysis of five piston rod failures which occurred on reciprocating compressors. Calculations are shown for rod stress which includes nominal rod loading sources as well as additional loads due to unusual pressure losses in the compressor valves, flexure of the rods due to misalignment, and manufacturing errors. The additional loads were incorporated on the basis of field measurements. The stress values are used with Baquin's equation to produce fatigue life curves for the rods. Based on the calculations, recommendations for modified rods were made. The calculation procedures are described in a manner which will permit their application to other reciprocating compressors.

  19. Heart failure with a normal left ventricular ejection fraction: diastolic heart failure.

    PubMed

    Little, William C

    2008-01-01

    A reduced left ventricular ejection fraction measured by echocardiography in a patient with clinical features of heart failure demonstrates that the patient has a cardiac abnormality and that the clinical picture is, in fact, due to heart failure. As such, a reduced ejection fraction (< 0.30 or 0.35) has been used as entry criteria for almost all the large clinical trials that guide our therapy of patients with heart failure. However, it has been recently recognized that a substantial and increasing proportion of patients with heart failure have a normal ejection fraction (> 0.50). Such patients are typically elderly women with systolic hypertension. These patients are subject to the sudden development of pulmonary congestion (flash pulmonary edema). The finding of heart failure in patients with a normal ejection fraction has focused attention on the role of diastolic dysfunction in producing symptomatic heart failure. The optimal treatment of patients with heart failure and normal ejection fraction has not yet been defined, but the control of systolic hypertension and the avoidance of fluid overload are important.

  20. Metabolomic Fingerprint of Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Zordoky, Beshay N.; Sung, Miranda M.; Ezekowitz, Justin; Mandal, Rupasri; Han, Beomsoo; Bjorndahl, Trent C.; Bouatra, Souhaila; Anderson, Todd; Oudit, Gavin Y.; Wishart, David S.; Dyck, Jason R. B.

    2015-01-01

    Background Heart failure (HF) with preserved ejection fraction (HFpEF) is increasingly recognized as an important clinical entity. Preclinical studies have shown differences in the pathophysiology between HFpEF and HF with reduced ejection fraction (HFrEF). Therefore, we hypothesized that a systematic metabolomic analysis would reveal a novel metabolomic fingerprint of HFpEF that will help understand its pathophysiology and assist in establishing new biomarkers for its diagnosis. Methods and Results Ambulatory patients with clinical diagnosis of HFpEF (n = 24), HFrEF (n = 20), and age-matched non-HF controls (n = 38) were selected for metabolomic analysis as part of the Alberta HEART (Heart Failure Etiology and Analysis Research Team) project. 181 serum metabolites were quantified by LC-MS/MS and 1H-NMR spectroscopy. Compared to non-HF control, HFpEF patients demonstrated higher serum concentrations of acylcarnitines, carnitine, creatinine, betaine, and amino acids; and lower levels of phosphatidylcholines, lysophosphatidylcholines, and sphingomyelins. Medium and long-chain acylcarnitines and ketone bodies were higher in HFpEF than HFrEF patients. Using logistic regression, two panels of metabolites were identified that can separate HFpEF patients from both non-HF controls and HFrEF patients with area under the receiver operating characteristic (ROC) curves of 0.942 and 0.981, respectively. Conclusions The metabolomics approach employed in this study identified a unique metabolomic fingerprint of HFpEF that is distinct from that of HFrEF. This metabolomic fingerprint has been utilized to identify two novel panels of metabolites that can separate HFpEF patients from both non-HF controls and HFrEF patients. Clinical Trial Registration ClinicalTrials.gov NCT02052804 PMID:26010610

  1. M2-F1 ejection seat test at South Edwards

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 was fitted with an ejection seat before the airtow flights began. The project selected the seat used in the T-37 as modified by the Weber Company to use a rocket rather than a ballistic charge for ejection. To test the ejection seat, the Flight Research Center's Dick Klein constructed a plywood mockup of the M2-F1's top deck and canopy. On the first firings, the test was unsuccessful, but on the final test the dummy in the seat landed safely. The M2-F1 ejection seat was later used in the two Lunar Landing Research Vehicles and the three Lunar Landing Training Vehicles. Three of them crashed, but in each case the pilot ejected from the vehicle successfully. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with

  2. MEMEX: Mechanisms of Energetic Mass Ejection Explorer

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Chappell, C. R.; Clemmons, J. H.; Cully, C. M.; Donovan, E.; Earle, G. D.; Heelis, R. A.; Kistler, L. M.; Kepko, L.; Khazanov, G. V.; Knudsen, D. J.; Lessard, M.; McFadden, J. P.; Nicolls, M. J.; Pollock, C. J.; Pfaff, R. F.; Rankin, R.; Rowland, D. E.; Semeter, J. L.; Thayer, J. P.; Winglee, R.

    2013-12-01

    MEMEX is designed to find out how gravitationally-trapped volatile matter is being lost from atmospheres by energetic processes, depleting them of key constituents, as has occurred most dramatically at Mars. This process is exemplified in geospace by the dissipation of solar energy to produce ionospheric outflows that feed back on dynamics of the solar wind interaction with Earth's magnetosphere. Kinetic and electromagnetic energy flow from the Sun into the coupled (auroral) ionosphere, where resultant electron, ion, and gas heating give rise to upwelling, ionization, and mass ejection. Proposed mechanisms involve wave-particle heating interactions, upward ambipolar electric fields, or ponderomotive forces. A large number of free energy sources have been identified, but empirical guidance remains weak concerning their relative importance. Moreover, it is unclear if the waves interact with particles primarily in a cyclotron resonant mode, or in a lower hybrid exchange of electron (parallel) and ion (perpendicular) energy, or in a bulk ponderomotive mode. MEMEX will answer the questions raised by these issues: Where do the waves that produce mass ejection grow? How do they propagate and transport energy? How can wave amplitudes, heating, and escape rates be derived from solar wind conditions? Is the heating a cyclotron resonant process or a bulk ponderomotive forcing process? To obtain answers, MEMEX will for the first time simultaneously observe the magnetospheric and atmospheric boundary conditions applied to the topside or exobase layer, and the response of ions and electrons to the ensuing battle between electrodynamic forcing and collisional damping.

  3. Solar Mass Ejection Imager (SMEI) space experiment

    NASA Astrophysics Data System (ADS)

    Radick, Richard R.

    2001-12-01

    The Solar Mass Ejection Imager (SMEI) is a proof-of-concept space experiment designed to observe solar coronal mass ejections (CMEs) and forecast their arrival at Earth. SMEI will image CMEs by sensing sunlight scattered from the free electrons in these ejecta (i.e., Thomson scattering). SMEI will be launched by a Titan II rocket into a circular, 830-km, sun-synchronous orbit in mid-2002 as part of the Space Test Program's CORIOLIS mission. SMEI will image nearly the entire sky once per spacecraft orbit over a mission lifetime of three years. Successful operation of SMEI will represent a major step in improving space weather forecasts by providing one- to three-day predictions of geomagnetic storms at the Earth. The SMEI experiment is being designed and constructed by a team of scientists and engineers from the Air Force Research Laboratory, the University of Birmingham (UB) in the United Kingdom, the University of California at San Diego (UCSD), and Boston University. The Air Force, NASA, and UB are providing financial support.

  4. Particle Ejection and Levitation Technology (PELT)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Each of the six Apollo landers touched down at unique sites on the lunar surface. Aside from the Apollo 12 landing site located 180 meters from the Surveyor III lander, plume impingement effects on ground hardware during the landings were not a problem. The planned return to the Moon requires numerous landings at the same site. Since the top few centimeters of lunar soil are loosely packed regolith, plume impingement from the lander will eject the granular material at high velocities. A picture shows what the astronauts viewed from the window of the Apollo 14 lander. There was tremendous dust excavation beneath the vehicle. With high-vacuum conditions on the Moon (10 (exp -14) to 10 (exp -12) torr), motion of all particles is completely ballistic. Estimates derived from damage to Surveyor III caused by the Apollo 12 lander show that the speed of the ejected regolith particles varies from 100 m/s to 2,000 m/s. It is imperative to understand the physics of plume impingement to safely design landing sites for future Moon missions. Aerospace scientists and engineers have examined and analyzed images from Apollo video extensively in an effort to determine the theoretical effects of rocket exhaust impingement. KSC has joined the University of Central Florida (UCF) to develop an instrument that will measure the 3-D vector of dust flow caused by plume impingement during descent of landers. The data collected from the instrument will augment the theoretical studies and analysis of the Apollo videos.

  5. Global Response to Local Ionospheric Mass Ejection

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Fok, M.-C.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.

    2010-01-01

    We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description.

  6. Application of fiberglass sucker rods

    SciTech Connect

    Gibbs, S.G. )

    1991-05-01

    Fiberglass sucker rods are assuming a place in artificial-lift technology. This paper briefly describes the manufacturing process and gives some design and operational hints for practical applications. It also describes some mathematical modeling modifications needed for fiberglass wave-equation design programs.

  7. Three-Rod Linear Ion Traps

    NASA Technical Reports Server (NTRS)

    Janik, Gary R.; Prestage, John D.; Maleki, Lutfollah

    1993-01-01

    Three-parallel-rod electrode structures proposed for use in linear ion traps and possibly for electrostatic levitation of macroscopic particles. Provides wider viewing angle because they confine ions in regions outside rod-electrode structures.

  8. What operators say about fiberglass sucker rods

    SciTech Connect

    Bleakley, W.B.

    1984-11-01

    This article presents the results of an informal survey of oil producing companies and one design engineering firm in the Permian Basin about the use and performance of fiberglass sucker rods in sucker rod pumps.

  9. Hydraulic lock for displacer rod drive mechanism (DRDM) and method of operation

    SciTech Connect

    Rinker, E.D.

    1990-12-18

    This paper describes a drive rod latch in combination with a nuclear reactor having a drive rod disposed in a rod housing characterized in that the drive rod has one end selectively exposed to a first, relatively low pressure zone of the reactor and another end thereof in communication with a second, relatively high pressure zone of the reactor. The drive rod further having disposed on an end thereof a valve member and the rod housing having disposed thereon a corresponding valve seat, and a control valve for selectively establishing communication between the housing and the first zone of the reactor whereby a pressure differential is created across the piston. The pressure differential being sufficient to seat the valve member against the valve seat to thereby establish a pressure boundary.

  10. Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods

    NASA Astrophysics Data System (ADS)

    Conroy, M.; Li, H.; Kusch, G.; Zhao, C.; Ooi, B.; Edwards, P. R.; Martin, R. W.; Holmes, J. D.; Parbrook, P. J.

    2016-05-01

    We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD's confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD

  11. Solid-state-laser-rod holder

    DOEpatents

    Gettemy, D.J.; Barnes, N.P.; Griggs, J.E.

    1981-08-11

    The disclosure relates to a solid state laser rod holder comprising Invar, copper tubing, and epoxy joints. Materials and coefficients of expansion of the components of the holder combine with the rod to produce a joint which will give before the rod itself will. The rod may be lased at about 70 to 80/sup 0/K and returned from such a temperature to room temperature repeatedly without its or the holder's destruction.

  12. Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods.

    PubMed

    Conroy, M; Li, H; Kusch, G; Zhao, C; Ooi, B; Edwards, P R; Martin, R W; Holmes, J D; Parbrook, P J

    2016-06-01

    We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD's confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates. PMID:27174084

  13. Echocardiographic assessment of ejection fraction in left ventricular hypertrophy

    PubMed Central

    Wandt, B; Bojo, L; Tolagen, K; Wranne, B

    1999-01-01

    OBJECTIVE—To investigate the value of Simpson's rule, Teichholz's formula, and recording of mitral ring motion in assessing left ventricular ejection fraction (EF) in patients with left ventricular hypertrophy.
DESIGN—Left ventricular ejection fraction calculated by Simpson's rule and by Techholz's formula and estimated by mitral ring motion was compared with values obtained by radionuclide angiography.
SETTING—Secondary referral centre.
PATIENTS—16 patients with left ventricular hypertrophy and a clinical diagnosis of hypertrophic cardiomyopathy or hypertension.
RESULTS—Calculation by Teichholz's formula overestimated left ventricular ejection fraction by 10% (p = 0.002) and estimation based on mitral ring motion—that is, long axis measurements—underestimated ejection fraction by 19% (p = 0.002), without significant correlation between ring motion and ejection fraction. There was no significant difference between mean values of ejection fraction calculated by Simpson's rule and measured by the reference method, but a considerable scatter about the regression line with a standard error of the estimate of 9.3 EF%.
CONCLUSIONS—In patients with left ventricular hypertrophy the ejection fraction, calculated by Teichholz's formula or Simpson's rule, is a poor measure of left ventricular function. When mitral ring motion is used for the assessment in these patients the function should be expressed in ways other than by the ejection fraction.


Keywords: left ventricular hypertrophy; ejection fraction; mitral ring motion; atrioventricular plane displacement PMID:10409535

  14. Space probe/satellite ejection apparatus for spacecraft

    NASA Technical Reports Server (NTRS)

    Smyly, H. M.; Miller, C. D.; Cloyd, R. A.; Heller, C. (Inventor)

    1985-01-01

    An ejection apparatus for spinning and propelling objects for ejection from a spacecraft at a desired velocity and rotational speed is discussed. The apparatus includes a launch cradle on which the space object to be ejected rests. The cradle is rotatably supported by a central hub secured to the upper end of the pneumatic cylinder piston shaft. Release mechanisms consisting of a retractable pin and locking lug is utilized to hold the cradle and object to be ejected. The release mechanism has a fixed barrier member which holds the retractable pin in engagement with the locking lug until release by upward movement of the launch cradle beyond the barrier height.

  15. Space probe/satellite ejection apparatus for spacecraft

    NASA Technical Reports Server (NTRS)

    Smyly, H. M.; Miller, C. D.; Cloyd, R. A.; Heller, C. (Inventor)

    1984-01-01

    An ejection apparatus for spinning and propelling objects for ejection from a spacecraft at a desired velocity and rotational speed is discussed. The apparatus includes a launch cradle on which the space object to be ejected rests. The cradle is rotatably supported by a central hub secured to the upper end of the pneumatic cylinder piston shaft. Release mechanisms consisting of a retractable pin and locking lug is utilized to hold the cradle and object to be ejected. The release mechanism has a fixed barrier member which holds the retractable pin in engagement with the locking lug until release by upward movement of the launch cradle beyond the barrier height.

  16. Who makes API sucker rods and couplings

    SciTech Connect

    Not Available

    1986-03-01

    This guide identifies manufacturers qualified to produce API sucker rods and related equipment, lists chemical and mechanical properties of the various types of rods and provides dimensional characteristics. In addition, similar information is given for non-API rods such as fiberglass and aluminum.

  17. 21 CFR 876.4270 - Colostomy rod.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Colostomy rod. 876.4270 Section 876.4270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4270 Colostomy rod. (a) Identification. A colostomy rod...

  18. 21 CFR 876.4270 - Colostomy rod.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Colostomy rod. 876.4270 Section 876.4270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4270 Colostomy rod. (a) Identification. A colostomy rod...

  19. 21 CFR 876.4270 - Colostomy rod.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Colostomy rod. 876.4270 Section 876.4270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4270 Colostomy rod. (a) Identification. A colostomy rod...

  20. 21 CFR 876.4270 - Colostomy rod.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Colostomy rod. 876.4270 Section 876.4270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4270 Colostomy rod. (a) Identification. A colostomy rod...

  1. 21 CFR 876.4270 - Colostomy rod.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Colostomy rod. 876.4270 Section 876.4270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4270 Colostomy rod. (a) Identification. A colostomy rod...

  2. Interval ejection fraction: a cineangiographic and radionuclide study

    SciTech Connect

    Kemper, A.J.; Bianco, J.A.; Shulman, R.M.; Folland, E.D.; Paris, A.F.; Tow, D.E.

    1982-06-01

    To evaluate the clinical usefulness of the first-third ejection fraction (1/3 EF) for detecting patients with coronary artery disease (CAD), resting contrast ventriculography and first-pass radionuclide angiography with a high-count-rate, multicrystal camera system were performed in 47 subjects: 22 normal controls (group 1) and 25 patients with clinically stable angina pectoris and severe CAD (mean 2.3 vessels) without (group 2, n = 12) and with (group 3, n = 13) resting wall motion abnormalities. By contrast angiography, only group 3 had depressed global EF or 1/3 EF compared with control (global EF: group 1, 0.71 = 0.09; group 2, 0.67 = 0.09 (NS); group 3, 0.49 = 0.05 (p < 0.01 vs groups 1 and 2); 1/3 EF: group 1, 0.29 = 0.06; group 2, 0.28 = 0.05 (NS); group 3, 0.22 = 0.05 (p < 0.01 vs groups 1 and 2)). Whereas 11 of 25 CAD patients had global EF outside the normal range, only two of 25 had depressed 1/3 EF. Both had left ventricular asynergy and a depressed global EF. Studies performed using first-pass radionuclide angiography revealed similar results, i.e., only four of 25 CAD patients, all with left ventricular asynergy and depressed global EF, had depressed 1/3 EF values. A wide range of 1/3 EF values was found in normal subjects by both techniques. Thus, the ejection fraction during the first third of systole at rest is of limited value for detecting patients with CAD.

  3. ISAAC: A REXUS Student Experiment to Demonstrate an Ejection System with Predefined Direction

    NASA Astrophysics Data System (ADS)

    Balmer, G.; Berquand, A.; Company-Vallet, E.; Granberg, V.; Grigore, V.; Ivchenko, N.; Kevorkov, R.; Lundkvist, E.; Olentsenko, G.; Pacheco-Labrador, J.; Tibert, G.; Yuan, Y.

    2015-09-01

    ISAAC Infrared Spectroscopy to Analyse the middle Atmosphere Composition — was a student experiment launched from SSC's Esrange Space Centre, Sweden, on 29th May 2014, on board the sounding rocket REXUS 15 in the frame of the REXUS/BEXUS programme. The main focus of the experiment was to implement an ejection system for two large Free Falling Units (FFUs) (240 mm x 80 mm) to be ejected from a spinning rocket into a predefined direction. The system design relied on a spring-based ejection system. Sun and angular rate sensors were used to control and time the ejection. The flight data includes telemetry from the Rocket Mounted Unit (RMU), received and saved during flight, as well as video footage from the GoPro camera mounted inside the RMU and recovered after the flight. The FFUs' direction, speed and spin frequency as well as the rocket spin frequency were determined by analyzing the video footage. The FFU-Rocket-Sun angles were 64.3° and 104.3°, within the required margins of 90°+45°. The FFU speeds were 3.98 mIs and 3.74 mIs, lower than the expected 5± 1 mIs. The FFUs' spin frequencies were 1 .38 Hz and 1 .60 Hz, approximately half the rocket's spin frequency. The rocket spin rate slightly changed from 3. 163 Hz before the ejection to 3.1 17 Hz after the ejection of the two FFUs. The angular rate, sun sensor data and temperature on the inside of the rocket module skin were also recorded. The experiment design and results of the data analysis are presented in this paper.

  4. Kinematics of Earth Impacting Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Colaninno, R. C.; Vourlidas, A.

    2012-12-01

    With the data from the STEREO mission, we are able to continuously monitor Coronal Mass Ejections (CMEs) as they progress from the Sun to Earth. However, even with continuous monitoring with remote sensing observations, we are still unable to accurately predict the arrival or terrestrial impact of a CME. In this study, we analyze nine CMEs from the Sun to Earth as observed in both the remote sensing and in situ data sets. In this study, we track nine CMEs from the Sun to 70% - 98% of the distance to Earth with the remote sensing data. We use the Graduate Cyclical Shell (GCS) model to estimate the position of each CME as it is observed in the inner heliosphere. From the derived kinematics, we compare the predicted arrival times and impact velocities with the in situ data. We consider different method for fitting the kinematics and the modeled geometry of the CME to improve the predicted arrival time.

  5. Geometrical Properties of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Cremades, Hebe; Bothmer, Volker

    Based on the SOHO/LASCO dataset, a collection of "structured" coronal mass ejections (CMEs) has been compiled within the period 1996-2002, in order to analyze their three-dimensional configuration. These CME events exhibit white-light fine structures, likely indicative of their possible 3D topology. From a detailed investigation of the associated low coronal and photospheric source regions, a generic scheme has been deduced, which considers the white-light topology of a CME projected in the plane of the sky as being primarily dependent on the orientation and position of the source region's neutral line on the solar disk. The obtained results imply that structured CMEs are essentially organized along a symmetry axis, in a cylindrical manner. The measured dimensions of the cylinder's base and length yield a ratio of 1.6. These CMEs seem to be better approximated by elliptic cones, rather than by the classical ice cream cone, characterized by a circular cross section.

  6. MAGNETOHYDRODYNAMIC SIMULATIONS OF INTERPLANETARY CORONAL MASS EJECTIONS

    SciTech Connect

    Lionello, Roberto; Downs, Cooper; Linker, Jon A.; Török, Tibor; Riley, Pete; Mikić, Zoran E-mail: cdowns@predsci.com E-mail: tibor@predsci.com E-mail: mikic@predsci.com

    2013-11-01

    We describe a new MHD model for the propagation of interplanetary coronal mass ejections (ICMEs) in the solar wind. Accurately following the propagation of ICMEs is important for determining space weather conditions. Our model solves the MHD equations in spherical coordinates from a lower boundary above the critical point to Earth and beyond. On this spherical surface, we prescribe the magnetic field, velocity, density, and temperature calculated typically directly from a coronal MHD model as time-dependent boundary conditions. However, any model that can provide such quantities either in the inertial or rotating frame of the Sun is suitable. We present two validations of the technique employed in our new model and a more realistic simulation of the propagation of an ICME from the Sun to Earth.

  7. Solar Eruptions: Coronal Mass Ejections and Flares

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  8. Coronal Mass Ejections: From Sun to Earth

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.

    2016-06-01

    Coronal Mass Ejections (CMEs) are gigantic expulsions of magnetized plasmas from the solar corona into the interplanetary (IP) space. CMEs spawn ~ 1015 gr of mass and reach speeds ranging between several hundred to a few thousand km/s (e.g., Gopalswamy et al. 2009; Vourlidas et al. 2010). It takes 1-5 days for a CME to reach Earth. CMEs are one of the most energetic eruptive manifestations in the solar system and are major drivers of space weather via their magnetic fields and energetic particles, which are accelerated by CME-driven shocks. In this review we give a short account of recent, mainly observational, results on CMEs from the STEREO and SDO missions which include the nature of their pre-eruptive and eruptive configurations and the CME propagation from Sun to Earth. We conclude with a discussion of the exciting capabilities in CME studies that will soon become available from new solar and heliospheric instrumentation.

  9. Magnetic Reconnection in Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Fermo, R. L.; Opher, M.; Drake, J. F.

    2014-12-01

    Magnetic reconnection is a ubiquitous phenomenon in many varied space and astrophysical plasmas, and as such plays an important role in the dynamics of interplanetary coronal mass ejections (ICMEs). It is widely regarded that reconnection is instrumental in the formation and ejection of the initial CME flux rope, but reconnection also continues to affect the dynamics as it propagates through the interplanetary medium. For example, reconnection on the leading edge of the ICME, by which it interacts with the interplanetary medium, leads to flux erosion. However, recent in situ observations by Gosling et al. found signatures of reconnection exhausts in the interior. In light of this data, we consider the stability properties of systems with this flux rope geometry with regard to their minimum energy Taylor state. Variations from this state will result in the magnetic field relaxing back towards the minimum energy state, subject to the constraints that the toroidal flux and magnetic helicity remain invariant. In reversed field pinches, this relaxation is mediated by reconnection in the interior of the system, as has been shown theoretically and experimentally. By treating the ICME flux rope in a similar fashion, we show analytically that the the elongation of the flux tube cross section in the latitudinal direction will result in a departure from the Taylor state. The resulting relaxation of the magnetic field causes reconnection to commence in the interior of the ICME, in agreement with the observations of Gosling et al. We present MHD simulations in which reconnection initiates at a number of rational surfaces, and ultimately produces a stochastic magnetic field. If the time scales for this process are shorter than the propagation time to 1 AU, this result explains why many ICME flux ropes no longer exhibit the smooth, helical flux structure characteristic of a magnetic cloud.

  10. Combustion of solid carbon rods in zero and normal gravity

    NASA Astrophysics Data System (ADS)

    Spuckler, C. M.

    1981-05-01

    In order to investigate the mechanism of carbon combustion and to assess the importance of gravitational induced convection on the process, zero and normal gravity experiments were conducted in which spectroscopic carbon rods were resistance ignitied and burned in dry oxygen environments. In the zero-gravity drop tower tests, a blue flame surrounded the rod, showing that a gas phase reaction in which carbon monoxide was oxidized to carbon dioxide was taking place. The ratio of flame diameter to rod diameter was obtained as a function of time. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter. In the normal gravity tests, direct mass spectrometric sampling was used to measure gas phase concentrations. The gas sampling probe was positioned near the circumference of a horizontally mounted 0.615 cm diameter carbon rod, either at the top or at angles of 45 deg to 90 deg from the top, and yielded concentration profiles of CO2, CO, and O2 as a function of distance from the surface. The mechanism controlling the combustion process was found to change from chemical process control at the 90 deg and 45 deg probe positions to mass transfer control at the 0 deg probe position at the top of the rod. Under the experimental conditions used, carbon combustion was characterized by two surface reactions, 2C + O2 yields 2CO and CO2 + C yields 2CO, and a gas phase reaction, 2CO + O2 yields 2CO2.

  11. Guide for rotating sucker rods

    SciTech Connect

    Harrel, R.D.

    1986-11-04

    This patent describes an improved guide for use in a string of sucker rods rotated in a tubing string in a borehole, the sucker rods having threaded male ends, the guide comprising: an elongated upright solid cylindrical coupling body of external diameter less than the internal diameter of tubing in which it is to be used; a pair of spaced apart axle holders positioned in three recess; an axle received in each recess in the coupling body, the axis of each axle being parallel and spaced from the body longitudinal axis; a roller rotatably received on each axle, the periphery of each roller extending exteriorly of the external cylindrical surface of the coupling body; and means to retain each of the holders in the coupling body recess.

  12. Exploiting rod technology. Final report

    SciTech Connect

    1990-06-01

    ROD development was proceeding apace until recent budgetary decisions caused funding support for ROD development to be drastically reduced. The funding which was originally provided by DARPA and the Balanced Technology Initiative (BTI) Office has been cut back to zero from $800K. To determine the aeroballistic coefficients of a candidate dart, ARDEC is currently supporting development out of its own 6.2 funds at about $100K. ARDEC has made slow progress toward achieving this end because of failures in the original dart during testing. It appears that the next dart design to be tested will diverge from the original concept visualized by DARPA and Science and Technology Associates (STA). STA, the design engineer, takes exception to these changes on the basis of inappropriate test conditions and insufficient testing. At this time, the full resolution of this issue will be difficult because of the current management structure, which separates the developer (ARDEC) from the designer (STA).

  13. Software design of the ATLAS Muon Cathode Strip Chamber ROD

    NASA Astrophysics Data System (ADS)

    Murillo, R.; Huffer, M.; Claus, R.; Herbst, R.; Lankford, A.; Schernau, M.; Panetta, J.; Sapozhnikov, L.; Eschrich, I.; Deng, J.

    2012-12-01

    The ATLAS Cathode Strip Chamber system consists of two end-caps with 16 chambers each. The CSC Readout Drivers (RODs) are purpose-built boards encapsulating 13 DSPs and around 40 FPGAs. The principal responsibility of each ROD is for the extraction of data from two chambers at a maximum trigger rate of 75 KHz. In addition, each ROD is in charge of the setup, control and monitoring of the on-detector electronics. This paper introduces the design of the CSC ROD software. The main features of this design include an event flow schema that decentralizes the different dataflow streams, which can thus operate asynchronously at its own natural rate; an event building mechanism that associates data transferred by the asynchronous streams belonging to the same event; and a sparcification algorithm that discards uninteresting events and thus reduces the data occupancy volume. The time constraints imposed by the trigger rate have made paramount the use of optimization techniques such as the curiously recurrent template pattern and the programming of critical code in assembly language. The behaviour of the CSC RODs has been characterized in order to validate its performance.

  14. Mechanoresponsive change in photoluminescent color of rod-like liquid-crystalline compounds and control of molecular orientation on photoaligned layer

    NASA Astrophysics Data System (ADS)

    Kondo, Mizuho; Miura, Seiya; Okumoto, Kentaro; Hashimoto, Mayuko; Fukae, Ryohei; Kawatsuki, Nobuhiro

    2014-10-01

    In this paper, we reported novel liquid-crystalline luminophore that switches its photoluminescent color by mechanically grinding. Mechanochromic luminescence (MCL) is expected for mechanical sensor, cellular imaging, detection of microenvironmental changes, and optical memory. In this work, we focused on liquid-crystalline MCL compounds on alignment layer. Controlling the molecular alignment of MCL compounds with photoalignment layer have potential to succeed in functional MCL film such as polarized micropatterned MCL and directional detection of mechanical stimuli. Herein, we prepared asymmetric rodlike MCL compounds containing cyano- and pyridyl molecular terminal and explored their photoluminescence behavior under mechanical stimulus. The cyano terminated compound showed a nematic phase and tuned its photoluminescent color from green to yellow upon grinding, while the pyridyl-terminated compounds that show no mesophase changed its photoluminescent color from blue to green and reverted to its initial color by heating above its melting point. The cyano-terminated MCL was aligned along the orientation direction of photoalignment layer and pyridyl-terminated MCL exhibited uniaxial alignment when it coated on photoaligned film containing carboxylic acid.

  15. The rod circuit in the rabbit retina.

    PubMed

    Vaney, D I; Young, H M; Gynther, I C

    1991-01-01

    Mammalian retinae have a well-defined neuronal pathway that serves rod vision. In rabbit retina, the different populations of interneurons in the rod pathway can be selectively labeled, either separately or in combination. The rod bipolar cells show protein kinase C immunoreactivity; the rod (AII) amacrine cells can be distinguished in nuclear-yellow labeled retina; the rod reciprocal (S1 & S2) amacrine cells accumulate serotonin; and the dopaminergic amacrine cells show tyrosine-hydroxylase immunoreactivity. Furthermore, intracellular dye injection of the microscopically identified interneurons enables whole-population and single-cell studies to be combined in the same tissue. Using this approach, we have been able to analyze systematically the neuronal architecture of the rod circuit across the rabbit retina and compare its organization with that of the rod circuit in central cat retina. In rabbit retina, the rod interneurons are not organized in a uniform neuronal module that is simply scaled up from central to peripheral retina. Moreover, peripheral fields in superior and inferior retina that have equivalent densities of each neuronal type show markedly different rod bipolar to AII amacrine convergence ratios, with the result that many more rod photoreceptors converge on an AII amacrine cell in superior retina. In rabbit retina, much of the convergence in the rod circuit occurs in the outer retina whereas, in central cat retina, it is more evenly distributed between the inner and outer retina.

  16. Tests pinpoint sucker-rod failures

    SciTech Connect

    Elshawesh, F.; Elhoud, A.; Elagdel, E.

    1997-05-26

    A detailed metallurgical examination of a 7/8-inch and a 1-inch sucker rod revealed corrosion fatigue had caused their failure. The 7 to 8-inch rod had failed after a few months of service while the 1-inch rod failed after 1 year. Both rods had been used in a sweet-oil environment. Both rods failed by corrosion fatigue because of repeated loads during operations. Pitting because of the presence of chloride ions and carbon dioxide was initiated on the rod surface, which in turn acted as a crack origin from which the fatigue crack initiated and propagated during operations. The pitting was on the external surface. These pits were large and penetrated through the rod cross-section. Fatigue cracking is initiated at the bottom of the pit where high stress concentration is expected and propagated because the rods were subjected to the alternating stresses during operation. The extent of the fatigue crack varied in the two examined rods because of the difference in the rod heat treatment and microstructure. The paper discusses fatigue failure, the visual examination, macroscopic and microscopic examinations, rod properties, and future operations.

  17. Fuel rod assembly to manifold attachment

    DOEpatents

    Donck, Harry A.; Veca, Anthony R.; Snyder, Jr., Harold J.

    1980-01-01

    A fuel element is formed with a plurality of fuel rod assemblies detachably connected to an overhead support with each of the fuel rod assemblies having a gas tight seal with the support to allow internal fission gaseous products to flow without leakage from the fuel rod assemblies into a vent manifold passageway system on the support. The upper ends of the fuel rod assemblies are located at vertically extending openings in the support and upper threaded members are threaded to the fuel rod assemblies to connect the latter to the support. The preferred threaded members are cap nuts having a dome wall encircling an upper threaded end on the fuel rod assembly and having an upper sealing surface for sealing contact with the support. Another and lower seal is achieved by abutting a sealing surface on each fuel rod assembly with the support. A deformable portion on the cap nut locks the latter against inadvertent turning off the fuel rod assembly. Orienting means on the fuel rod and support primarily locates the fuel rods azimuthally for reception of a deforming tool for the cap nut. A cross port in the fuel rod end plug discharges into a sealed annulus within the support, which serves as a circumferential chamber, connecting the manifold gas passageways in the support.

  18. On Modeling of Ejection Process in a Training Combat Aircraft

    NASA Astrophysics Data System (ADS)

    Głowiński, Sebastian; Krzyżyński, Tomasz

    2011-09-01

    The paper deals with modeling and simulation of motion trajectory of an ejection seat in the training-combat aircraft TS-11 "Iskra". The ejection seat and its operation are characterized. Mathematical and computer models are elaborated with the help of MATLAB-Simulink applications. Additionally, simulations are conducted for various velocities of the aircraft.

  19. Fighter Pilot Ejection Study as an Educational Tool

    ERIC Educational Resources Information Center

    Robinson, Garry; Jovanoski, Zlatko

    2010-01-01

    In this article, we apply the well-known equations of projectile motion to the case of a fighter pilot ejecting from an aircraft, the aim being to establish under what conditions there is danger of impact with the rear vertical stabilizer. The drag force on the pilot after ejection is assumed to vary as the velocity squared and the aircraft motion…

  20. Electric Fuel Rod Simulator Fabrication at ORNL

    SciTech Connect

    Ott, Larry J.; McCulloch, Reg

    2004-02-04

    Commercial vendors could not supply the high-quality, highly instrumented electric fuel rod simulators (FRS) required for large thermal-hydraulic safety-oriented experiments at the Oak Ridge National Laboratory (ORNL) in the 1970s and early 1980s. Staff at ORNL designed, developed, and manufactured the simulators utilized in these safety experiments. Important FRS design requirements include (1) materials of construction, (2) test power requirements and availability, (3) experimental test objectives, (4) supporting thermal analyses, and (5) extensive quality control throughout all phases of FRS fabrication. This paper will present an overview of these requirements (design, analytics, and quality control) as practiced at ORNL to produce a durable high-quality FRS.

  1. Calcium spikes in toad rods.

    PubMed Central

    Fain, G L; Gerschenfeld, H M; Quandt, F N

    1980-01-01

    1. When the retina of the toad, Bufo marinus, was superfused with 6-12 mM-tetraethylammonium chloride (TEA), intracellular recordings from rods showed large, depolarizing regenerative potentials. For brief exposures to TEA, these potentials occurred during the recovery phase of the light responses; whereas, during longer exposures, they were spontaneous in darkness but suppressed during illumination. Similar regenerative potentials were observed during perfusion with 3-10 mM-4-aminopyridine and 1-2 mM-BaCl2. 2. The amplitude of the regenerative potentials depended upon the extracellular Ca concentration ([Ca2+]o). Lowering [Ca2+]o decreased their amplitude and in zero [Ca2+]o they were reversibly abolished. Increasing [Ca2+]o by 1.5-2 times produced a small hyperpolarization of membrane potential and a large augmentation in regenerative response amplitude. However, larger increases in [Ca2+]o produced large membrane hyperpolarizations and reversibly suppressed the regenerative responses. 3. High concentrations of Sr2+ in TEA also enhanced regenerative activity but did not affect the rod resting membrane potential. The amplitude of regenerative potentials increased continuously with increasing [Sr2+]o, and in 28 mM-Sr2+ the rods generated 60-70 mV action potentials, even in the absence of extracellular Na+. 4. The regenerative potentials were blocked by 25 microM-Cd2+, 50-100 microM-Co2+, 5mM-Mg2+, and 100 microM-D-600. They were unaffected by 2 microM-TTX or 2-5 mM-Na aspartate. 5. In Ringer containing 12 mM-TEA, large anode break responses could be recorded from rods at the termination of inward current pulses. These anode break responses were also suppressed by Co2+ and unaffected by TTX or Na aspartate. 6. We conclude that the membrane of toad rods contains a conductance normally selective for Ca2+, which is activated by depolarization. In normal Ringer, the inward current through this conductance produces little effect, since it is balanced by a large outward

  2. Young Star Probably Ejected From Triple System

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Astronomers analyzing nearly 20 years of data from the National Science Foundation's Very Large Array radio telescope have discovered that a small star in a multiple-star system in the constellation Taurus probably has been ejected from the system after a close encounter with one of the system's more-massive components, presumed to be a compact double star. This is the first time any such event has been observed. Path of Small Star, 1983-2001 "Our analysis shows a drastic change in the orbit of this young star after it made a close approach to another object in the system," said Luis Rodriguez of the Institute of Astronomy of the National Autonomous University of Mexico (UNAM). "The young star was accelerated to a large velocity by the close approach, and certainly now is in a very different, more remote orbit, and may even completely escape its companions," said Laurent Loinard, leader of the research team that also included Monica Rodriguez in addition to Luis Rodriguez. The UNAM astronomers presented their findings at the American Astronomical Society's meeting in Seattle, WA. The discovery of this chaotic event will be important for advancing our understanding of classical dynamic astronomy and of how stars evolve, including possibly providing an explanation for the production of the mysterious "brown dwarfs," the astronomers said. The scientists analyzed VLA observations of T Tauri, a multiple system of young stars some 450 light-years from Earth. The observations were made from 1983 to 2001. The T Tauri system includes a "Northern" star, the famous star that gives its name to the class of young visible stars, and a "Southern" system of stars, all orbiting each other. The VLA data were used to track the orbit of the smaller Southern star around the larger Southern object, presumed to be a pair of stars orbiting each other closely. The astronomers' plot of the smaller star's orbit shows that it followed an apparently elliptical orbit around its twin companions

  3. Spinal injuries caused by the acceleration of ejection.

    PubMed

    Lewis, M E

    2002-03-01

    The speed and altitude at which modern military aircraft operate are such that escape can only be achieved by some means of forcibly propelling the aircrew clear of the aircraft. The most common method of doing this is by use of an ejection seat. The use of such seats, whilst generally life saving, exposes aircrew to forces that may be at the limits of human tolerance. Each phase of the ejection sequence is associated with characteristic injury patterns and of particular concern is the occurrence of spinal compression fractures, which are caused by the upward acceleration of the ejection seat. Thorough investigation of aircrew who eject is necessary and magnetic resonance imaging of the spines of these aircrew is now becoming mandatory. Aircrew who sustain stable anterior wedge compression fractures usually require no invasive treatment, but are prevented from flying aircraft fitted with ejection seats for 3-4 months. PMID:12024887

  4. Electrostatics of cell membrane recognition: structure and activity of neutral and cationic rigid push-pull rods in isoelectric, anionic, and polarized lipid bilayer membranes.

    PubMed

    Sakai, N; Gerard, D; Matile, S

    2001-03-21

    Design, synthesis, and structural and functional studies of rigid-rod ionophores of different axial electrostatic asymmetry are reported. The employed design strategy emphasized presence of (a) a rigid scaffold to minimize the conformational complexity, (b) a unimolecular ion-conducting pathway to minimize the suprastructural complexity and monitor the function, (c) an extended fluorophore to monitor structure, (d) variable axial rod dipole, and (e) variable terminal charges to create axial asymmetry. Studies in isoelectric, anionic, and polarized bilayer membranes confirmed a general increase in activity of uncharged rigid push-pull rods in polarized bilayers. The similarly increased activity of cationic rigid push-pull rods with an electrostatic asymmetry comparable to that of alpha-helical bee toxin melittin (positive charge near negative axial dipole terminus) is shown by fluorescence-depth quenching experiments to originate from the stabilization of transmembrane rod orientation by the membrane potential. The reduced activity of rigid push-pull rods having an electrostatic asymmetry comparable to that in alpha-helical natural antibiotics (a positive charge near the positive axial dipole terminus) is shown by structural studies to originate from rod "ejection" by membrane potentials comparable to that found in mammalian plasma membranes. This structural evidence for cell membrane recognition by asymmetric rods is unprecedented and of possible practical importance with regard to antibiotic resistance.

  5. Status of the Solar Mass Ejection Imager

    NASA Astrophysics Data System (ADS)

    Johnston, J. C.; Radick, R. R.; Webb, D. F.

    2001-05-01

    The Solar Mass Ejection Imager (SMEI) is a proof-of-concept experiment designed to detect and track coronal mass ejections (CMEs) as they propagate from the Sun through interplanetary space to the Earth and beyond. SMEI will Image CMEs by sensing sunlight scattered from the free electrons in these structures (Thomson scattering). SMEI will be launched by a Titan II rocket into a circular, sun-synchronous (830 km) orbit in 2002 as part of the Space Test Program's CORIOLIS mission. SMEI will image the entire sky once per spacecraft orbit over a mission lifetime of three years. The major subsystems of SMEI are three electronic camera assemblies and a data-handling unit. Each camera consists of a baffle, a radiator, a bright object sensor, an electronics box, and a strongbox containing a shutter, optics and a CCD. Each camera images a 3x60 degree field. Together, they view a 180-degree slice of sky, and sweep over the entire sky once per orbit. SMEI's basic data product will be a 100-minute cadence of all-sky maps of heliospheric brightness, with stars removed, having an angular resolution of about one degree and a photometric precision of about 0.1%. Successful operation of SMEI will represent a major step in improving space weather forecasts. When combined with in-situ solar wind measurements from upstream monitors such as WIND and ACE, SMEI will provide one- to three-day predictions of impending geomagnetic storms at the Earth. SMEI will complement missions such as SoHO, GOES SXI, Solar-B, and STEREO by providing data relating solar drivers to terrestrial effects. Other benefits of SMEI will include observations of variable stars, extra-Solar planetary transits, novae and supernovae, comets and asteroids. The SMEI experiment is being designed and constructed by a team of scientists and engineers from the Air Force Research Laboratory, the University of Birmingham (UB) in the United Kingdom, the University of California at San Diego (UCSD), and Boston University. The

  6. Investigating pyroclast ejection dynamics using shock-tube experiments: temperature, grain size and vent geometry effects.

    NASA Astrophysics Data System (ADS)

    Cigala, V.; Kueppers, U.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.

  7. Radio-quiet Fast Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Aguilar-Rodriguez, E.; Kaiser, M. L.; Howard, R. A.

    2004-12-01

    Coronal mass ejections (CMEs) drive shocks in the interplanetary medium that produce type II radio emission. These CMEs are faster and wider on the average, than the general population of CMEs. However, when we start from fast (speed > 900 km/s) and wide (angular width > 60 degrees), more than half of them are not associated with radio bursts. In order to understand why these CMEs are radio quiet, we collected all the fast and wide (FW) CMEs detected by the Solar and Heliospheric Observatory (SOHO) mission's Large Angle and Spectrometric Coronagraph (LASCO) and isolated those without associated type II radio bursts. The radio bursts were identified in the dynamic spectra of the Radio and Plasma Wave (WAVES) Experiment on board the Wind spacecraft. We also checked the list against metric type II radio bursts reported in Solar Geophysical Data and isolated those without any radio emission. This exercise resulted in about 140 radio-quiet FW CMEs. We identified the source regions of these CMEs using the Solar Geophysical Data listings, cross-checked against the eruption regions in the SOHO/EIT movies. We explored a number of possibilities for the radio-quietness: (i) Source region being too far behind the limb, (ii) flare size, (iii) brightness of the CME, and (iv) the density of the ambient medium. We suggest that a combination of CME energy and the Alfven speed profile of the ambient medium is primarily responsible for the radio-quietness of these FW CMEs.

  8. Particle Heating Resulting from Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Paul, Suman; Sundar De, Syam; Guha, Gautam

    2016-07-01

    Coronal Mass Ejection (CME) is a continuous phenomena occurring from the entire solar coronal zone responsible for the outflow of solar masses, viz., protons, electrons, neutrons and solar wind in the form of plasma. These perturb the Earth's atmosphere via magnetopause. Very high temperature plasma generator in the solar atmosphere produces huge magnetic dipoles with intense magnetic field. It traps the energetic charged particles released from the solar corona. These particles gyrate along the magnetic field lines and are gradually elongated outwards from the Sun. Due to this, the field lines get detached at some critical limit thereby enhancing the magnetic reconnection with the interplanetary magnetic field releasing huge energy in the form of X-rays and γ-rays. This perturbs the Earth's atmosphere. In this work, the situation has been investigated by momentum balance equation, energy balance equation along with the equations of continuity and states. From the analyses, the dispersive nature of the thermospheric medium is studied. Variation of normalized electron temperature with dimensionless time has been critically contemplated. The altitude dependent electric field in the medium is also investigated.

  9. Dynamic simulation of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Wu, S. T.

    1980-01-01

    A model is developed for the formation and propagation through the lower corona of the loop-like coronal transients in which mass is ejected from near the solar surface to the outer corona. It is assumed that the initial state for the transient is a coronal streamer. The initial state for the streamer is a polytropic, hydrodynamic solution to the steady-state radial equation of motion coupled with a force-free dipole magnetic field. The numerical solution of the complete time-dependent equations then gradually approaches a stationary coronal streamer configuration. The streamer configuration becomes the initial state for the coronal transient. The streamer and transient simulations are performed completely independent of each other. The transient is created by a sudden increase in the pressure at the base of the closed-field region in the streamer configuration. Both coronal streamers and coronal transients are calculated for values of the plasma beta (the ratio of thermal to magnetic pressure) varying from 0.1 to 100.

  10. Why are halo coronal mass ejections faster?

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Min; Guo, Yang; Chen, Peng-Fei; Ding, Ming-De; Fang, Cheng

    2010-05-01

    Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs that clearly display loop-shaped frontal loops. The observational results show a strong tendency that slower CMEs are weaker in white-light intensity. Then, we perform a Monte Carlo simulation of 20000 artificial limb CMEs that have an average velocity of ~523 km s-1. The Thomson scattering of these events is calculated when they are assumed to be observed as limb and halo events, respectively. It is found that the white-light intensity of many slow CMEs becomes remarkably reduced when they turn from being viewed as a limb event to being viewed as a halo event. When the intensity is below the background solar wind fluctuation, it is assumed that they would be missed by coronagraphs. The average velocity of “detectable" halo CMEs is ~922 km s-1 very close to the observed value. This also indicates that wider events are more likely to be recorded. The results soundly suggest that the higher average velocity of halo CMEs is due to that a majority of slow events and some of narrow fast events carrying less material are so faint that they are blended with the solar wind fluctuations, and therefore are not observed.

  11. EIT Observations of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Fisher, Richard B. (Technical Monitor)

    2000-01-01

    Before the Solar and Heliospheric Observatory (SOHO), we had only the sketchiest of clues as to the nature and topology of coronal mass ejections (CMEs) below 1.1 - 1.2 solar radii. Occasionally, dimmings (or 'transient coronal holes') were observed in time series of soft X-ray images, but they were far less frequent than CME's. Simply by imaging the Sun frequently and continually at temperatures of 0.9 - 2.5 MK we have stumbled upon a zoo of CME phenomena in this previously obscured volume of the corona: (1) waves, (2) dimmings, and (3) a great variety of ejecta. In the three and a half years since our first observations of coronal waves associated with CME's, combined Large Angle Spectroscopic Coronagraph (LASCO) and extreme ultra-violet imaging telescope (EIT) synoptic observations have become a standard prediction tool for space weather forecasters, but our progress in actually understanding the CME phenomenon in the low corona has been somewhat slower. I will summarize the observations of waves, hot (> 0.9 MK) and cool ejecta, and some of the interpretations advanced to date. I will try to identify those phenomena, analysis of which could most benefit from the spectroscopic information available from ultraviolet coronograph spectrometer (UVCS) observations.

  12. STREAMER WAVES DRIVEN BY CORONAL MASS EJECTIONS

    SciTech Connect

    Chen, Y.; Song, H. Q.; Li, B.; Xia, L. D.; Wu, Z.; Fu, H.; Li Xing

    2010-05-01

    Between 2004 July 5 and July 7, two intriguing fast coronal mass ejection (CME)-streamer interaction events were recorded by the Large Angle and Spectrometric Coronagraph. At the beginning of the events, the streamer was pushed aside from its equilibrium position upon the impact of the rapidly outgoing and expanding ejecta; then, the streamer structure, mainly the bright streamer belt, exhibited elegant large-scale sinusoidal wavelike motions. The motions were apparently driven by the restoring magnetic forces resulting from the CME impingement, suggestive of magnetohydrodynamic kink mode propagating outward along the plasma sheet of the streamer. The mode is supported collectively by the streamer-plasma sheet structure and is therefore named 'streamer wave' in the present study. With the white light coronagraph data, we show that the streamer wave has a period of about 1 hr, a wavelength varying from 2 to 4 solar radii, an amplitude of about a few tens of solar radii, and a propagating phase speed in the range 300-500 km s{sup -1}. We also find that there is a tendency for the phase speed to decline with increasing heliocentric distance. These observations provide good examples of large-scale wave phenomena carried by coronal structures and have significance in developing seismological techniques for diagnosing plasma and magnetic parameters in the outer corona.

  13. Solar origins of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  14. Stability and failure analysis of steering tie-rod

    NASA Astrophysics Data System (ADS)

    Jiang, GongFeng; Zhang, YiLiang; Xu, XueDong; Ding, DaWei

    2008-11-01

    A new car in operation of only 8,000 km, because of malfunction, resulting in lost control and rammed into the edge of the road, and then the basic vehicle scrapped. According to the investigation of the site, it was found that the tie-rod of the car had been broken. For the subjective analysis of the accident and identifying the true causes of rupture of the tierod, a series of studies, from the angle of theory to experiment on the bended broken tie-rod, were conducted. The mechanical model was established; the stability of the defective tie-rod was simulated based on ANSYS software. Meanwhile, the process of the accident was simulated considering the effect of destabilization of different vehicle speed and direction of the impact. Simultaneously, macro graphic test, chemical composition analysis, microstructure analysis and SEM analysis of the fracture were implemented. The results showed that: 1) the toughness of the tie-rod is at a normal level, but there is some previous flaws. One quarter of the fracture surface has been cracked before the accident. However, there is no relationship between the flaw and this incident. The direct cause is the dynamic instability leading to the large deformation of impact loading. 2) The declining safety factor of the tie-rod greatly due to the previous flaws; the result of numerical simulation shows that previous flaw is the vital factor of structure instability, on the basis of the comparison of critical loads of the accident tie-rod and normal. The critical load can decrease by 51.3% when the initial defect increases 19.54% on the cross-sectional area, which meets the Theory of Koiter.

  15. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.; Hildner, E.

    1983-01-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients.

  16. Magnetohydrodynamic simulations of the ejection of a magnetic flux rope

    NASA Astrophysics Data System (ADS)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2013-06-01

    Context. Coronal mass ejections (CME's) are one of the most violent phenomena found on the Sun. One model to explain their occurrence is the flux rope ejection model. In this model, magnetic flux ropes form slowly over time periods of days to weeks. They then lose equilibrium and are ejected from the solar corona over a few hours. The contrasting time scales of formation and ejection pose a serious problem for numerical simulations. Aims: We simulate the whole life span of a flux rope from slow formation to rapid ejection and investigate whether magnetic flux ropes formed from a continuous magnetic field distribution, during a quasi-static evolution, can erupt to produce a CME. Methods: To model the full life span of magnetic flux ropes we couple two models. The global non-linear force-free field (GNLFFF) evolution model is used to follow the quasi-static formation of a flux rope. The MHD code ARMVAC is used to simulate the production of a CME through the loss of equilibrium and ejection of this flux rope. Results: We show that the two distinct models may be successfully coupled and that the flux rope is ejected out of our simulation box, where the outer boundary is placed at 2.5 R⊙. The plasma expelled during the flux rope ejection travels outward at a speed of 100 km s-1, which is consistent with the observed speed of CMEs in the low corona. Conclusions: Our work shows that flux ropes formed in the GNLFFF can lead to the ejection of a mass loaded magnetic flux rope in full MHD simulations. Coupling the two distinct models opens up a new avenue of research to investigate phenomena where different phases of their evolution occur on drastically different time scales. Movies are available in electronic form at http://www.aanda.org

  17. Spontaneous Patterning of Confined Granular Rods

    NASA Astrophysics Data System (ADS)

    Galanis, Jennifer; Harries, Daniel; Sackett, Dan L.; Losert, Wolfgang; Nossal, Ralph

    2006-01-01

    Vertically vibrated rod-shaped granular materials confined to quasi-2D containers self-organize into distinct patterns. We find, consistent with theory and simulation, a density dependent isotropic-nematic transition. Along the walls, rods interact sterically to form a wetting layer. For high rod densities, complex patterns emerge as a result of competition between bulk and boundary alignment. A continuum elastic energy accounting for nematic distortion and local wall anchoring reproduces the structures seen experimentally.

  18. Improved Measurement of Ejection Velocities From Craters Formed in Sand

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.

    2014-01-01

    A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.

  19. Temperature actuated automatic safety rod release

    DOEpatents

    Hutter, Ernest; Pardini, John A.; Walker, David E.

    1987-01-01

    A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.

  20. Temperature actuated automatic safety rod release

    DOEpatents

    Hutter, E.; Pardini, J.A.; Walker, D.E.

    1984-03-13

    A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.

  1. Improved model for sucker rod pumping

    SciTech Connect

    Doty, D.R.; Schmidt, Z.

    1981-01-01

    An improved model for predicting the behavior of sucker rod pumping installations is presented. This model incorporates the dynamics of the liquid columns as well as the sucker rod string through a system of partial differential equations. The system of equations is solved by a modified method of characteristics on a digital computer. The model predicts the polished rod and pump dynamometer cards and incorporates the effects of liquid inertia and viscosity. It is capable of simulating a wide variety of pumping conditions where liquid physical properties are important. The information predicted by the model is useful in the design and operation of sucker rod pumping installations. Refs.

  2. An improved model for sucker rod pumping

    SciTech Connect

    Doty, D.R.; Schmidt, Z.

    1983-02-01

    An improved model for predicting the behavior of sucker rod pumping installations is presented. This model incorporates the dynamics of the liquid columns as well as the sucker rod string through a system of partial differential equations. This system of equations is solved by a modified method of characteristics on a digital computer. The model predicts the polished-rod and pump dynamometer cards and incorporates the effects of liquid inertia and viscosity. The model is capable of simulating a wide variety of pumping conditions for which liquid physical properties are important. The information predicted by the model is useful in the design and operation of sucker rod pumping installations.

  3. Rotation of a Thin Elastic Rod Injected into a Cylindrical Constraint

    NASA Astrophysics Data System (ADS)

    Mulcahy, Connor; Su, Tianxiang; Wicks, Nathan; Pabon, Jahir; Reis, Pedro

    2015-03-01

    We report the results from an experimental investigation of the buckling of a thin elastic rod injected into a horizontal cylindrical constraint, with an emphasis on comparing the two cases of rotating, or not, the rod at the injection site. We are particularly interested on the total length of rod that can be injected into the pipe prior to the onset of helical buckling. This instability arises due to the frictional rod-constraint contact that eventually leads to the buildup of axial stress on the rod, above a critical value. We explore the dependence of the buckling conditions on the physical and control parameters of the system (e.g. material and geometric parameters, injection speed and rotation frequency) and rationalize the underlying physical mechanism through a reduced model. Funding and support provided by Schlumberger-Doll Research.

  4. Tolvaptan Improves the Long-Term Prognosis in Patients With Congestive Heart Failure With Preserved Ejection Fraction as Well as in Those With Reduced Ejection Fraction.

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro

    2016-09-28

    Tolvaptan (TLV), an arginine vasopressin type 2 antagonist, has been shown to play a role in ameliorating symptomatic congestion and normalizing diluted hyponatremia in patients with congestive heart failure (HF). However, most evidence was derived from patients with HF with reduced ejection fraction (HFrEF), and the clinical efficacy of TLV in patients with HF with preserved ejection fraction (HFpEF) remains uncertain. In this study, we retrospectively enrolled 60 in-hospital patients with stage D HF, who had received TLV to treat symptomatic congestion at our institute between 2011 and 2013. As a control group, we also enrolled 60 background-matched HF patients who did not receive TLV therapy. Patients with HFpEF (n = 29), whose left ventricular ejection fraction was > 45%, had higher age and a lower urine aquaporin-2 level relative to the plasma arginine vasopressin concentration compared with those with HFrEF (n = 91). TLV therapy significantly reduced the 2-year readmission rates in both the HFrEF and HFpEF populations (P < 0.05 for both), indicating that TLV therapy may improve the long-term prognosis not only in patients with HFrEF but also in those with HFpEF. PMID:27581675

  5. Tolvaptan Improves the Long-Term Prognosis in Patients With Congestive Heart Failure With Preserved Ejection Fraction as Well as in Those With Reduced Ejection Fraction.

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro

    2016-09-28

    Tolvaptan (TLV), an arginine vasopressin type 2 antagonist, has been shown to play a role in ameliorating symptomatic congestion and normalizing diluted hyponatremia in patients with congestive heart failure (HF). However, most evidence was derived from patients with HF with reduced ejection fraction (HFrEF), and the clinical efficacy of TLV in patients with HF with preserved ejection fraction (HFpEF) remains uncertain. In this study, we retrospectively enrolled 60 in-hospital patients with stage D HF, who had received TLV to treat symptomatic congestion at our institute between 2011 and 2013. As a control group, we also enrolled 60 background-matched HF patients who did not receive TLV therapy. Patients with HFpEF (n = 29), whose left ventricular ejection fraction was > 45%, had higher age and a lower urine aquaporin-2 level relative to the plasma arginine vasopressin concentration compared with those with HFrEF (n = 91). TLV therapy significantly reduced the 2-year readmission rates in both the HFrEF and HFpEF populations (P < 0.05 for both), indicating that TLV therapy may improve the long-term prognosis not only in patients with HFrEF but also in those with HFpEF.

  6. A Model for Stealth Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Lynch, Benjamin J.; Masson, Sophie; Li, Yan; DeVore, C. Richard; Luhmann, Janet; Antiochos, Spiro K.; Fisher, George H.

    2016-05-01

    Stealth coronal mass ejections (CMEs) are events in which there are almost no observable signatures of the CME eruption in the low corona but often a well-resolved slow flux rope CME observed in the coronagraph data. We present results from a three-dimensional numerical magnetohydrodynamics (MHD) simulation of the 2008 June 1-2 slow streamer blowout CME that Robbrecht et al. [2009] called “the CME from nowhere.” We model the global coronal structure using a 1.4 MK isothermal solar wind and a low-order potential field source surface representation of the Carrington Rotation 2070 magnetogram synoptic map. The bipolar streamer belt arcade is energized by simple shearing flows applied in the vicinity of the helmet streamer’s polarity inversion line. The slow expansion of the energized helmet-streamer arcade results in the formation of a radial current sheet. The subsequent onset of expansion-driven flare reconnection initiates the stealth CME while gradually releasing ~1.5E+30 erg of stored magnetic energy over the 20+ hour eruption duration. We show the energy flux available for flare heating and flare emission during the eruption is approximately two orders of magnitude below the energy flux required to heat the ambient background corona, thus confirming the “stealth” character of the 2008 June 1-2 CME’s lack of observable on disk signatures. We also present favorable comparisons between our simulation results and the multi-viewpoint SOHO-LASCO and STEREO-SECCHI coronagraph observations of the pre-eruption streamer structure and the initiation and evolution of the stealth streamer blowout CME.

  7. Stealth Coronal Mass Ejections: A Perspective

    NASA Astrophysics Data System (ADS)

    Howard, Timothy A.; Harrison, Richard A.

    2013-07-01

    "Stealth CME" has become a commonly used term in recent studies of solar activity. It refers to a coronal mass ejection (CME) with no apparent solar surface association, and therefore has no easily identifiable signature to locate the region on the Sun from which the CME erupted. We review the literature and express caution in categorising CMEs in this way. CMEs were discovered some 40 years ago and there have been numerous statistical studies of associations with phenomena in the solar atmosphere which clearly identify a range of associations, from bright flares and large prominence eruptions to small flares, and even a lack of flares or any identifiable surface activity at all. In this sense the stealth CME concept is not new. One major question relates to whether the range of associations reveal different CME classes, i.e. different CME launch processes, or are indicative of a spectrum of coronal responses to one common process. We favour the latter and stress that this spectrum must be considered in the description of the CME launch, meaning that the physics of a so-called stealth CME must not be fundamentally different from a CME associated with major surface events. On the other hand we also stress that the use of a stealth CME category implies that all surface activity could indeed be detected using modern instrumentation. We argue that this may not be the case, and that even in the SDO era of full-Sun, high resolution imaging, we are restricted by instrument sensitivity and bandwidth issues. Thus, having reviewed the case for stealth CMEs as a distinct category, we stress the need to keep the concept in perspective.

  8. Projection effects in coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Vršnak, B.; Sudar, D.; Ruždjak, D.; Žic, T.

    2007-07-01

    Context: Basic observational parameters of a coronal mass ejection (CME) are its speed and angular width. Measurements of the CME speed and angular width are severely influenced by projection effects. Aims: The goal of this paper is to investigate a statistical relationship between the plane-of-sky speeds of CMEs and the direction of their propagation, hopefully providing an estimate of the true speeds of CMEs. Methods: We analyze the correlation between the plane-of-sky velocity and the position of the CME source region, employing several non-halo CME samples. The samples are formed applying various restrictions to avoid crosstalk of relevant parameters. For example, we select only CMEs observed to radial distances larger than 10 solar radii; we omit CMEs showing a considerable acceleration in the considered distance range and treat CMEs of different angular widths separately. Finally, we combine these restriction criteria, up to the limits beyond which the statistical significance of the results becomes ambiguous. Results: A distinct anti-correlation is found between the angular width of CMEs and their source-region position, clearly showing an increasing trend towards the disc center. Similarly, all of the considered subsamples show a correlation between the CME projected speed and the distance of the source region from the disc center. On average, velocities of non-halo limb-CMEs are 1.5-2 times higher than in the case of non-halo CMEs launched from regions located close to the disc center. Conclusions: Unfortunately, the established empirical relationships provide only a rough estimate of the velocity correction as a function of the source-region location. To a certain degree, the results can be explained in terms of CME cone models, but only after taking crosstalk of various parameters and observational artifacts into account.

  9. How much dust does Enceladus eject?

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Horanyi, Mihaly; Schmidt, Jürgen; Southworth, Ben

    2015-04-01

    There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon Enceladus eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, as well as to the plume brightness in Cassini imaging, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about 5 kg/s. On the other hand, Ingersoll and Ewald (2011) derived a dust production rate of 51 kg/s from photometry of very high phase-angle images of the plume, a method that is sensitive also to particles in the size range of microns and larger. Knowledge of the production rate is essential for estimating the dust to gas mass ratio, which in turn is an important constraint for finding the plume source mechanism. Here we report on numerical simulations of the Enceladus dust plume. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The magnetic field in the vicinity of Enceladus is based on the model by Simon et al. (2012). The evolution of the electrostatic charge carried by the initially uncharged grains is treated self-consistently. Our numerical simulations reproduce dust measurements by the Cassini Cosmic Dust Analyzer (CDA) during Cassini plume traversals as well as the snowfall pattern derived from ISS observations of the Enceladus surface (Schenk et al, 2011, EPSC abstract). Based on our simulation results we are able to draw conclusions about the dust production rate as well as wether the Enceladus dust plume constitutes a dusty plasma.

  10. ROTATION OF CORONAL MASS EJECTIONS DURING ERUPTION

    SciTech Connect

    Lynch, B. J.; Li, Y.; Luhmann, J. G.; Antiochos, S. K.; DeVore, C. R. E-mail: yanli@ssl.berkeley.edu E-mail: spiro.k.antiochos@nasa.gov

    2009-06-01

    Understanding the connection between coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) is one of the most important problems in solar-terrestrial physics. We calculate the rotation of erupting field structures predicted by numerical simulations of CME initiation via the magnetic breakout model. In this model, the initial potential magnetic field has a multipolar topology and the system is driven by imposing a shear flow at the photospheric boundary. Our results yield insight on how to connect solar observations of the orientation of the filament or polarity inversion line (PIL) in the CME source region, the orientation of the CME axis as inferred from coronagraph images, and the ICME flux rope orientation obtained from in situ measurements. We present the results of two numerical simulations that differ only in the direction of the applied shearing motions (i.e., the handedness of the sheared-arcade systems and their resulting CME fields). In both simulations, eruptive flare reconnection occurs underneath the rapidly expanding sheared fields transforming the ejecta fields into three-dimensional flux rope structures. As the erupting flux ropes propagate through the low corona (from 2 to 4 R{sub sun}) the right-handed breakout flux rope rotates clockwise and the left-handed breakout flux rope rotates counterclockwise, in agreement with recent observations of the rotation of erupting filaments. We find that by 3.5 R {sub sun} the average rotation angle between the flux rope axes and the active region PIL is approximately 50 deg. We discuss the implications of these results for predicting, from the observed chirality of the pre-eruption filament and/or other properties of the CME source region, the direction and amount of rotation that magnetic flux rope structures will experience during eruption. We also discuss the implications of our results for CME initiation models.

  11. Review: Heart failure with preserved ejection fraction in African Americans.

    PubMed

    Shah, Sachil

    2012-01-01

    Heart failure (HF) affects 5,700 000 people in the United States, with heart failure with preserved ejection fraction (HFPEF) being responsible for between 30%-50% of acute admissions. Epidemiological studies and HF registries have found HFPEF patients to be older, hypertensive and to have a history of atrial fibrillation. These findings, however, may not be fully applicable to African Americans, as they have been poorly studied making up only a minority of the test subjects. This review article is intended to discuss the pathophysiology and epidemiology of HFPEF within African Americans, highlight the differences compared to Caucasian populations and review current treatment guidelines. Studies looking at African Americans in particular have shown them to be younger, female and have worse diastolic dysfunction compared to Caucasian populations. African Americans also have been shown to have a worse mortality outcome especially in patients without coronary artery disease. The treatment of HFPEF is primarily symptomatic with no survival benefit seen in randomized controlled trials. Mechanisms postulated for the worse prognosis in African Americans with HFPEF include: greater incidence of hypertension and diastolic dysfunction, undefined race-driven genetic predispositions or relative resistance to medications that treat HF in general. The biological predispositions may also be compounded by inequality of healthcare access; something still felt to exist today. Prospective studies and randomized controlled trials need to be conducted with particular emphasis on African American populations to fully elucidate this disease and to formulate race specific treatment outcomes for the future.

  12. Light extraction method for mixing rods based in grooves with elliptical shape

    NASA Astrophysics Data System (ADS)

    Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Ceballos-Herrera, Daniel E.; Selvas-Aguilar, Romeo

    2015-08-01

    Homogenize light is the principal purpose of mixing rods. Light extraction from mixing rods is proposed by changing the shape of the face, the rod or a combination of both for many applications. Light extraction also can be done by its lateral face by cutting the Mixing rod. In this work a simulation of square and hexagonal poly(methyl methacrylate) (PMMA) mixing rods were made in Radiant Zemax ® 12 release 2 designed with an elliptical transversal cut to extract light from a lateral face. The cut is specular for rays that fulfill the total internal reflection condition, the reflected rays are deviated and the Total Internal Reflection (TIR) condition broken, then, extracted. An advantage of this cut is that it can be controlled in depth to extract the amount of light required and the remaining light used for other purposes. Also it can reduce the size of the mixing rods and optical components. For the simulation, an LED light were used as source, the light were homogenized by the mixing rod and due to it, the light extracted is also homogenous. The polar power map, radiant intensity and color of the light extracted are presented and compared in both mixing rods.

  13. Simulation of a liquid droplet ejection device using multi-actuator

    NASA Astrophysics Data System (ADS)

    Ono, Yoshihiro; Yoshino, Michitaka; Yasuda, Akira; Tanuma, Chiaki

    2016-07-01

    An equivalent circuit model for a liquid droplet ejection device using a multiactuator has been developed. The equivalent circuit was simplified using a gyrator in the synthesis of the outputs of many elements. The simulation was performed for an inkjet head having three piezoelectric elements using MATLAB/Simulink. In this model, the pressure chamber is filled with a Newtonian fluid. For this reason, the model assumed only the resistance component of the pressure chamber and the nozzle as a load. Furthermore, since the resistance component of the inlet is much larger than that of the nozzle, it is not considered in this model. As a result, by providing a time difference between the driving signals of the piezoelectric elements, we found that the pressure of the ink chamber could be arbitrarily controlled. By this model, it becomes possible to control the pressure in the ink chamber of the inkjet head required for the ejection of various inks.

  14. Comet ejection and dynamics of nonspherical dust particles and meteoroids

    SciTech Connect

    Gustafson, B.A.S.

    1989-02-01

    This paper generalizes the formalism for calculating the ejection velocity of meteoroids and dust from comets and the forces to which such objects are subject in interplanetary space, including the dust tail of comets. It is found that spheres have the smallest cross section of any geometrical figures of the same valume averaged over random orientations, so for a fixed volume and mass, both the ejection velocity and beta reaches a minimum for bodies of spherical shapes. Flakes in random orientation are ejected near 70 percent of the highest ejection velocity for any orientation. Needles in random orientation escape a comet at nearly 90 percent of their maximum velocities. Randomly oriented cylinders of finite thickness escape at lower velocities that are slightly closer to their maximum velocities. The average beta acting on spin-aligned, perfectly absorbing needles is more than half that acting on a sphere of the same material and radius. 16 references.

  15. Mass ejected by impacts with materials of various strengths

    SciTech Connect

    Canavan, G.H.

    1997-02-01

    Similarity solutions are used to discuss impacts on asteroids of various strengths, concentrating on the voids produced, the mass ejected, and its thermodynamic and mechanical state. Numerical calculations have advantages and limitations for the next step in complexity.

  16. Particle ejection during mergers of dark matter halos

    SciTech Connect

    Carucci, Isabella P.; Sparre, Martin; Hansen, Steen H.; Joyce, Michael E-mail: sparre@dark-cosmology.dk E-mail: joyce@lpnhe.in2p3.fr

    2014-06-01

    Dark matter halos are built from accretion and merging. During merging some of the dark matter particles may be ejected with velocities higher than the escape velocity. We use both N-body simulations and single-particle smooth-field simulations to demonstrate that rapid changes to the mean field potential are responsible for such ejection, and in particular that dynamical friction plays no significant role in it. Studying a range of minor mergers, we find that typically between 5–15% of the particles from the smaller of the two merging structures are ejected. We also find that the ejected particles originate essentially from the small halo, and more specifically are particles in the small halo which pass later through the region in which the merging occurs.

  17. CONTROL FOR NEUTRONIC REACTOR

    DOEpatents

    Lichtenberger, H.V.; Cameron, R.A.

    1959-03-31

    S>A control rod operating device in a nuclear reactor of the type in which the control rod is gradually withdrawn from the reactor to a position desired during stable operation is described. The apparatus is comprised essentially of a stop member movable in the direction of withdrawal of the control rod, a follower on the control rod engageable with the stop and means urging the follower against the stop in the direction of withdrawal. A means responsive to disengagement of the follower from the stop is provided for actuating the control rod to return to the reactor shut-down position.

  18. "Paradoxical" reduction in postexercise ejection time and increased transthoracic impedance.

    PubMed

    Nakamura, Y; Kotilainen, P; Haffty, B; Jolda, R; Bishop, R; Spodick, D

    1978-12-01

    Despite decreasing heart rate, left ventricular ejection time (LVET) transiently falls immediately following bicycle exercise. In seven normal, untrained subjects LVET decreases at 15 s postexercise corresponded (r = 0.78) with an increase in transthoracic electrical impedance (Z) consistent with decreased venous return to the thorax. Because the determinants of LVET are stroke volume (SV) and ejection rate, the deltaZ implies that decreased SV contributed to the "paradoxical" fall in LVET.

  19. Ejection of gaseous clumps from gravitationally unstable protostellar disks

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.

    2016-05-01

    Aims: We investigate the dynamics of gaseous clumps formed via gravitational fragmentation in young protostellar disks, focusing on the fragments that are ejected from the disk via many-body gravitational interaction. Methods: Numerical hydrodynamics simulations were employed to study the evolution of young protostellar disks that were formed from the collapse of rotating pre-stellar cores. Results: The protostellar disks that formed in our models undergo gravitational fragmentation driven by continuing mass-loading from parental collapsing cores. Several fragments can be ejected from the disk during the early evolution, but the low-mass fragments (<15 MJup) disperse, which creates spectacular bow-type structures while passing through the disk and collapsing core. The least massive fragment that survived the ejection (21 MJup) straddles the planetary-mass limit, while the most massive ejected fragments (145 MJup) can break up into several pieces, leading to the ejection of wide separation binary clumps in the brown-dwarf mass range. About half of the ejected fragments are gravitationally bound, the majority are supported by rotation against gravity, and all fragments have the specific angular momentum that is much higher than that expected for brown dwarfs. We found that the internal structure of the ejected fragments is distinct from what would be expected for gravitationally contracting clumps formed via molecular cloud fragmentation, which can help in differentiating their origin. Conclusions: The ejection of fragments is an important process, which is inherent to massive protostellar disks, and which produces freely floating pre-brown dwarf cores, regulates the disk and stellar masses and, potentially, enriches the intracluster medium with processed dust and complex organics.

  20. Vertebral fracture after aircraft ejection during Operation Desert Storm.

    PubMed

    Osborne, R G; Cook, A A

    1997-04-01

    During Operation Desert Storm, 21 United States and 2 Italian military personnel were held in Iraq as prisoners of war. Of these, 18 had ejected from fixed-wing, ejection seat-equipped, combat aircraft prior to their capture. Of the 18, 6 (33%) had sustained vertebral fractures; 4 of these were compression fractures. This fracture rate is comparable to that of previously studied groups. Fractures were noted to be at several different vertebral sites and after ejecting from a variety of aircraft. Apart from contusions and abrasions, vertebral fractures were the most common injuries discovered in this repatriated population. None of the vertebral fractures produced recognizable neurological disability. The development of vertebral fractures was neither associated with the use of any particular ejection system or aircraft nor did the development of vertebral fractures appear dependent on the age, height or length of service of the affected personnel. Ejected aircrew with low altitude mission profiles seemed more predisposed to vertebral fracture than those at high altitudes, but with a small sample population, this relationship was not statistically significant (p > 0.25). Reliable data were unavailable on aircrew positioning and preparation time for ejection. PMID:9096832

  1. CONTROL SYSTEM FOR NEUTRONIC REACTORS

    DOEpatents

    Crever, F.E.

    1962-05-01

    BS>A slow-acting shim rod for control of major variations in reactor neutron flux and a fast-acting control rod to correct minor flux variations are employed to provide a sensitive, accurate control system. The fast-acting rod is responsive to an error signal which is produced by changes in the neutron flux from a predetermined optimum level. When the fast rod is thus actuated in a given direction, means is provided to actuate the slow-moving rod in that direction to return the fast rod to a position near the midpoint of its control range. (AEC)

  2. Heart Failure with Preserved Ejection Fraction - Concept, Pathophysiology, Diagnosis and Challenges for Treatment.

    PubMed

    Miljkovik, Lidija Veterovska; Spiroska, Vera

    2015-09-15

    Heart failure (HF) with preserved left ventricular (LV) ejection fraction (HFpEF) occurs in 40 to 60% of the patients with HF, with a prognosis which is similar to HF with reduced ejection fraction (HFrEF). HFpEF pathophysiology is different from that of HFrEF, and has been characterized with diastolic dysfunction. Diastolic dysfunction has been defined with elevated left ventricular stiffness, prolonged iso-volumetric LV relaxation, slow LV filing and elevated LV end-diastolic pressure. Arterial hypertension occurs in majority cases with HFpEF worldwide. Patients are mostly older and obese. Diabetes mellitus and atrial fibrillation appear proportionally in a high frequency of patients with HFpEF. The HFpEF diagnosis is based on existence of symptoms and signs of heart failure, normal or approximately normal ejection and diagnosing of LV diastolic dysfunction by means of heart catheterization or Doppler echocardiography and/or elevated concentration of plasma natriuretic peptide. The present recommendations for HFpEF treatment include blood pressure control, heart chamber frequency control when atrial fibrillation exists, in some situations even coronary revascularization and an attempt for sinus rhythm reestablishment. Up to now, it is considered that no medication or a group of medications improve the survival of HFpEF patients. Due to these causes and the bad prognosis of the disorder, rigorous control is recommended of the previously mentioned precipitating factors for this disorder. This paper presents a universal review of the most important parameters which determine this disorder.

  3. Computing Temperatures In Optically Pumped Laser Rods

    NASA Technical Reports Server (NTRS)

    Farrukh, Usamah O.

    1991-01-01

    Computer program presents new model solving temperature-distribution problem for laser rods of finite length and calculates both radial and axial components of temperature distributions in these rods. Contains several self-checking schemes to prevent over-writing of memory blocks and to provide simple tracing of information in case of trouble. Written in Microsoft FORTRAN 77.

  4. Sucker rod makers offer a selection

    SciTech Connect

    Savage, D.

    1983-11-01

    In their ongoing effort to produce better, more cost-effective sucker rods, manufacturers have selected one of three materials - fiberglass, aluminum, and steel - that they feel best suits the production system function of the rods, which is to connect the downhole pump to the pumpjack on the surface. Characteristics of each are described.

  5. Longitudinal Impact of Rods: A Continuing Experiment.

    ERIC Educational Resources Information Center

    Britton, W. G. B.; And Others

    1978-01-01

    Describes an undergraduate experiment of research potential. The experiment cconsists of measuring the time of contact of a metal rod bouncing on a steel base as a function of the velocity of impact, length, diameter, and material of the rod. (GA)

  6. Tipping Time of a Quantum Rod

    ERIC Educational Resources Information Center

    Parrikar, Onkar

    2010-01-01

    The behaviour of a quantum rod, pivoted at its lower end on an impenetrable floor and restricted to moving in the vertical plane under the gravitational potential, is studied analytically under the approximation that the rod is initially localized to a "small-enough" neighbourhood around the point of classical unstable equilibrium. It is shown…

  7. Are halo coronal mass ejections special events?

    NASA Astrophysics Data System (ADS)

    Lara, Alejandro; Gopalswamy, Nat; Xie, Hong; Mendoza-Torres, Eduardo; PéRez-EríQuez, RomáN.; Michalek, Gregory

    2006-06-01

    We revisited the properties of wide coronal mass ejections (CMEs) called halo CMEs. Using the large LASCO/SOHO CMEs data set, from 1996 to 2004, we examined the statistical properties of (partial and full) halo CMEs and compare with the same properties of "normal" width (lower than 120°) CMEs. We found that halo CMEs have different properties than "normal" CMEs, which cannot be explained merely by the current geometric interpretation that they are seen as halos because they are traveling in the Sun Earth direction. We found that the CME width distribution is formed by, at least, three different populations: Two gaussians: a narrow and a medium distribution centered at ˜17° and ˜38°, respectively; the narrow population most likely corresponds to the "true" observed widths, whereas the medium width population is the product of projection effects. The third distribution corresponds to wider CMEs (80° < W < 210°) which behaves as a power law. Partial and full halo CMEs wider than these do not follow any particular distribution. This lack of regularity may be due to the small number of such events. In particular, we found (and test by a statistical approach) that the number of observed full halo CMEs is lower than expected. The CME speed follows a log-normal distribution, except for the very low speed CME population, which follows a gaussian distribution centered at ˜100 km/s and is probably due to projection effects. When the CMEs are divided by width into nonhalo, partial halo, and full halo, we found that the peaks of the distributions are shifted toward higher speeds, ˜300, ˜400 and ˜600 km/s for nonhalo, partial halo, and full halo CMEs, respectively. This confirms that halo CMEs tend to be high speed CMEs. The acceleration of full halo CMEs tends to be more negative compared with nonhalo and partial halo CMEs. We introduce a new observational CME parameter: The final observed distance (FOD), i.e., the highest point within the coronograph field of view

  8. Vortex Noise from Rotating Cylindrical Rods

    NASA Technical Reports Server (NTRS)

    Stowell, E Z; Deming, A F

    1935-01-01

    A series of round rods of the some diameter were rotated individually about the mid-point of each rod. Vortices are shed from the rods when in motion, giving rise to the emission of sound. With the rotating system placed in the open air, the distribution of sound in space, the acoustical power output, and the spectral distribution have been studied. The frequency of emission of vortices from any point on the rod is given by the formula von Karman. From the spectrum estimates are made of the distribution of acoustical power along the rod, the amount of air concerned in sound production, the "equivalent size" of the vortices, and the acoustical energy content for each vortex.

  9. Attachment for sucker rod depth adjustment

    SciTech Connect

    Collins, N.D.

    1992-04-07

    This patent describes a surface unit of an oil well pumping system, having a walking beam, a suspended carrier bar and an interconnected sucker rod assembly for stroking a reciprocating down-hole pump. It comprises a cross bar having a centrally located passage therein for the sucker rod assembly and adapted to be transversely supported by the carrier bar; a depth adjusting bar, having a centrally located passage therein for the sucker rod assembly, positioned at a selected fixed dimension above and parallel to the cross bar and adapted to operatively support the sucker rod assembly; clamping means for fixing the sucker rod relative to the depth adjusting bar; and hydraulically extendable means supportively connecting the depth adjusting bar to the cross bar on at least each side of the carrier bar for adjusting the selected fixed dimension and maintaining the adjustment during operation.

  10. Rod-Coil Block Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  11. Initial condition influence on coronal mass ejection propagation

    NASA Astrophysics Data System (ADS)

    Wu, P.; Schwadron, N. A.; Siscoe, G. L.; Riley, P.

    2008-09-01

    In the melon-seed-overpressure-expansion (MSOE) model described by Siscoe et al. (2006) for the acceleration of coronal mass ejections (CMEs), magnetic repulsion force plays a central role. MSOE is a combination of Pneuman's (1984) melon seed concept with an overpressure expansion analytically formulated by Siscoe et al. (2006). The MSOE model creates a reduced formalism to describe CME acceleration and is highly advantageous for comparative studies. As originally presented, the MSOE model has the drawback of being able to produce only fast CMEs. For the work presented in this paper, we compare the acceleration of a 2.5-D magnetohydrodynamics (MHD)-modeled CME with that of a version of the MSOE model. On the basis of the results of the MHD simulations, we divide the acceleration of a CME into two phases: (1) a tethered phase before detachment (when the CME is tethered by external closed loops) and (2) a repulsion phase after detachment (when the tethering force that binds the CME is much smaller than outward magnetic repulsion force). We find that during the repulsion phase, the acceleration can be described well by the standard MSOE model. However, during the tethered phase, the CME acceleration is much slower than MSOE predictions. We therefore refine the MSOE model to include tethering and can account for both fast and slow CMEs with the final CME speed controlled by the CME detachment height.

  12. Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches

    SciTech Connect

    Harper-Slaboszewicz, Victor J.; Leckbee, Joshua; Bennett, Nichelle; Madrid, Elizabeth A.; Rose, David V.; Thoma, Carsten; Welch, Dale R.; Lake, Patrick W.; McCourt, Andrew L.

    2014-12-10

    A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and post-shot analysis of the experimental results are supported by 3D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface of the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.

  13. Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches

    DOE PAGESBeta

    Harper-Slaboszewicz, Victor J.; Leckbee, Joshua; Bennett, Nichelle; Madrid, Elizabeth A.; Rose, David V.; Thoma, Carsten; Welch, Dale R.; Lake, Patrick W.; McCourt, Andrew L.

    2014-12-10

    A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and post-shot analysis of the experimental results are supported by 3D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface ofmore » the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.« less

  14. Eulerian Formulation of Spatially Constrained Elastic Rods

    NASA Astrophysics Data System (ADS)

    Huynen, Alexandre

    Slender elastic rods are ubiquitous in nature and technology. For a vast majority of applications, the rod deflection is restricted by an external constraint and a significant part of the elastic body is in contact with a stiff constraining surface. The research work presented in this doctoral dissertation formulates a computational model for the solution of elastic rods constrained inside or around frictionless tube-like surfaces. The segmentation strategy adopted to cope with this complex class of problems consists in sequencing the global problem into, comparatively simpler, elementary problems either in continuous contact with the constraint or contact-free between their extremities. Within the conventional Lagrangian formulation of elastic rods, this approach is however associated with two major drawbacks. First, the boundary conditions specifying the locations of the rod centerline at both extremities of each elementary problem lead to the establishment of isoperimetric constraints, i.e., integral constraints on the unknown length of the rod. Second, the assessment of the unilateral contact condition requires, in principle, the comparison of two curves parametrized by distinct curvilinear coordinates, viz. the rod centerline and the constraint axis. Both conspire to burden the computations associated with the method. To streamline the solution along the elementary problems and rationalize the assessment of the unilateral contact condition, the rod governing equations are reformulated within the Eulerian framework of the constraint. The methodical exploration of both types of elementary problems leads to specific formulations of the rod governing equations that stress the profound connection between the mechanics of the rod and the geometry of the constraint surface. The proposed Eulerian reformulation, which restates the rod local equilibrium in terms of the curvilinear coordinate associated with the constraint axis, describes the rod deformed configuration

  15. Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Testing high-burnup spent nuclear fuel (SNF) presents many challenges in areas such as specimen preparation, specimen installation, mechanical loading, load control, measurements, data acquisition, and specimen disposal because these tasks are complicated by the radioactivity of the test specimens. Research and comparison studies conducted at Oak Ridge National Laboratory (ORNL) resulted in a new concept in 2010 for a U-frame testing setup on which to perform hot-cell reversible bending fatigue testing. Subsequently, the three-dimensional finite element analysis and the engineering design of components were completed. In 2013 the ORNL team finalized the upgrade of the U-frame testing setup and the integration of the U-frame setup into a Bose dual linear motor test bench to develop a cyclic integrated reversible-bending fatigue tester (CIRFT). A final check was conducted on the CIRFT test system in August 2013, and the CIRFT was installed in the hot cell in September 2013 to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The fatigue responses of Zircaloy-4 (Zry-4) cladding and the role of pellet pellet and pellet clad interactions are critical to SNF vibration integrity, but such data are not available due to the unavailability of an effective testing system. While the deployment of the developed CIRFT test system in a hot cell will provide the opportunity to generate the data, the use of a surrogate rod has proven quite effective in identifying the underlying deformation mechanism of an SNF composite rod under an equivalent loading condition. This paper presents the experimental results of using surrogate rods under CIRFT reversible cyclic loading. Specifically, monotonic and cyclic bending tests were conducted on surrogate rods made of a Zry-4 tube and alumina pellet inserts, both with and without an epoxy bond.

  16. Enhancement of fiberglass sucker-rod design is offered

    SciTech Connect

    Hallden, D.F.

    1985-09-30

    This paper discribes the effective use of fiberglass-reinforced plastic sucker rods (FRP). FRP sucker rods have proven to be an economical solution to many sucker rod beam pumping problems. Two important characteristics that contribute to the effectiveness of FRP sucker rods are effective modulus of elasticity and fatigue life. Computerized simulations show that FRP sucker rod installations can benefit from using rod designs with a lower modulus of elasticity.

  17. [Baroreflex activation therapy. A novel interventional approach to treat heart failure with reduced ejection fraction].

    PubMed

    Halbach, M; Fritz, T; Madershahian, N; Pfister, R; Reuter, H

    2015-11-01

    Sympathovagal imbalance plays an important role in the progression of heart failure with reduced ejection fraction. Baroreflex activation therapy (BAT), i. e. electrical stimulation of baroreceptors located at the carotid sinus, can reduce sympathetic and enhance parasympathetic tone. Large animal studies on BAT demonstrated improvements in cardiac function, arrhythmogenic risk and a survival benefit compared to untreated controls. The recently published Neo Randomized Heart Failure Study, the first multicenter, randomized and controlled trial of optimal medical and device therapy alone or plus BAT in patients with a left ventricular ejection fraction ≤ 35 %, demonstrated a reasonable safety profile of BAT in this severely ill patient population and no relevant interactions with other devices. The study found significant improvements in the New York Heart Association (NYHA) class of heart failure, quality of life as well as 6 min walking distance and data pointed to a reduction in hospitalization rates. Moreover, N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were significantly reduced. This review gives an overview on BAT for the treatment of heart failure with reduced ejection fraction, from the rationale and animal experiments to the most recent clinical data and future perspectives.

  18. Characterizing the original ejection velocity field of the Koronis family

    NASA Astrophysics Data System (ADS)

    Carruba, V.; Nesvorný, D.; Aljbaae, S.

    2016-06-01

    An asteroid family forms as a result of a collision between an impactor and a parent body. The fragments with ejection speeds higher than the escape velocity from the parent body can escape its gravitational pull. The cloud of escaping debris can be identified by the proximity of orbits in proper element, or frequency, domains. Obtaining estimates of the original ejection speed can provide valuable constraints on the physical processes occurring during collision, and used to calibrate impact simulations. Unfortunately, proper elements of asteroids families are modified by gravitational and non-gravitational effects, such as resonant dynamics, encounters with massive bodies, and the Yarkovsky effect, such that information on the original ejection speeds is often lost, especially for older, more evolved families. It has been recently suggested that the distribution in proper inclination of the Koronis family may have not been significantly perturbed by local dynamics, and that information on the component of the ejection velocity that is perpendicular to the orbital plane (vW), may still be available, at least in part. In this work we estimate the magnitude of the original ejection velocity speeds of Koronis members using the observed distribution in proper eccentricity and inclination, and accounting for the spread caused by dynamical effects. Our results show that (i) the spread in the original ejection speeds is, to within a 15% error, inversely proportional to the fragment size, and (ii) the minimum ejection velocity is of the order of 50 m/s, with larger values possible depending on the orbital configuration at the break-up.

  19. The effect of an exteroceptive stimulus on milk ejection in lactating rats

    PubMed Central

    Deis, R. P.

    1968-01-01

    1. The exteroceptive stimulus emanating from a lactating rat and the litter while suckling was used to induce milk ejection in another lactating mother 15 min before the replacement of her own litter. The effect of the external stimulus on milk ejection during one 30 min period and four 15 min periods of nursing was studied. 2. After being isolated for 9 hr the litter from the mother subjected to the exteroceptive nursing stimulus (induced rat) obtained a significantly greater amount of milk during 30 min of nursing than that obtained by the litter from the control mother. 3. When deaf mother rats were used the gain of milk by the litter showed no difference between the control and the induced mother. This result indicated that the effective external stimulus is an auditory one and is probably produced by the mother rat and the young while suckling. 4. The administration of oxytocin (Syntocinon, Sandoz) 20 m-u./100 g body wt., 15 min before the replacement of the litter produced a milk ejection similar to that obtained under the influence of the auditory stimulus. This would indicate that the exteroceptive stimulus probably evokes the release of oxytocin from the neurohypophysis. 5. When nursing was performed in four periods of 15 min each the litter of the control mother obtained milk only in the second period of nursing while the litter of the induced mother obtained milk in all four periods of nursing and the amount of milk obtained in the whole hour was greater than that from the control rat. 6. The administration of oxytocin just before the replacement of the litter every 15 min produced milk ejection only in the first two periods of suckling in the control rats but the induced rats were capable of ejecting milk during all four periods. 7. The most satisfactory conclusion for the results obtained is that the C.N.S. regulates both the release of oxytocin in response to suckling and the response of the mammary gland to oxytocin, in the lactating rat. PMID

  20. Calculated concrete target damage by multiple rod impact and penetration

    SciTech Connect

    Pincosy, P A; Murphy, M J

    2006-12-29

    The effect of enhanced crater formation has been demonstrated experimentally when multiple and delayed shaped charge jets impact and penetrate concrete. The concept for enhancement utilizes a single follow-on jet at the centerline of holes produced by multiple precursor jets penetrating the surrounding the region. Calculations of the 3D crater enhancement phenomena have been conducted with multiple rods to simulate the steady state portion of the multiple jet penetration process. It is expected that this analysis methodology will be beneficial for optimization of the multiple jet crater enhancement application. We present calculated results using ALE3D where the model uses the standard Gruneisen equation of state combined with a rate dependent strength model including material damage parameters. This study focuses on the concrete material damage model as a representation of the portion of the target that would eventually be ejected creating a large bore-hole. The calculations are compared with the experimental evidence and limitations of the modeling approach are discussed.

  1. Method speeds tapered rod design for directional well

    SciTech Connect

    Hu Yongquan; Yuan Xiangzhong

    1995-10-16

    Determination of the minimum rod diameter, from statistical relationships, can decrease the time needed for designing a sucker-rod string for a directional well. A tapered rod string design for a directional well is more complex than for a vertical well. Based on the theory of a continuous beam column, the rod string design in a directional well is a trial and error method. The key to reduce the time to obtain a solution is to rapidly determine the minimum rod diameter. This can be done with a statistical relationship. The paper describes sucker rods, design method, basic analysis rod design, and minimum rod diameter.

  2. Genetic predisposition in patients with hypertension and normal ejection fraction to oxidative stress.

    PubMed

    Fazakas, Ádám; Szelényi, Zsuzsanna; Szénási, Gábor; Nyírő, Gábor; Szabó, Péter M; Patócs, Attila; Tegze, Narcis; Fekete, Bertalan C; Molvarec, Attila; Nagy, Bálint; Jakus, Judit; Örsi, Ferenc; Karádi, István; Vereckei, András

    2016-02-01

    The role of oxidative stress (OXS) due to myocardial nitric oxide synthase (NOS) uncoupling related to oxidative depletion of its cofactor tetrahydrobiopterin (BH4) emerged in the pathogenesis of heart failure with preserved ejection fraction. We determined the prevalence of six single nucleotide polymorphisms (SNPs) of genes encoding enzymes related to OXS, BH4 metabolism, and NOS function in ≥60-year-old 94 patients with hypertension and 18 age-matched controls with normal ejection fraction. Using echocardiography, 56/94 (60%) patients with hypertension had left ventricular (LV) diastolic dysfunction (HTDD+ group) and 38/94 (40%) patients had normal LV diastolic function (HTDD- group). Four SNPs (rs841, rs3783641, rs10483639, and rs807267) of guanosine triphosphate cyclohydrolase-1, the rate-limiting enzyme in BH4 synthesis, one (rs4880) of manganese superoxide dismutase, and one (rs1799983) of endothelial NOS genes were genotyped using real-time polymerase chain reaction method and Taqman probes. Protein carbonylation, BH4, and total biopterin levels were measured from plasma samples. No between-groups difference in minor allele frequency of SNPs was found. We calculated a genetic score indicating risk for OXS based on the minor allele frequencies of the SNPs. A high genetic risk for OXS was significantly associated with HTDD+ even after adjustment for confounding variables (odds ratio [95% confidence interval]:4.79 [1.12-20.54]; P = .035). In both patient groups protein carbonylation (P < .05 for both), plasma BH4 (P < .01 for both) and in the HTDD+ group total biopterin (P < .05) increased versus controls. In conclusion, in patients with hypertension and normal ejection fraction, a potential precursor of heart failure with preserved ejection fraction, a partly genetically determined increased OXS, seems to be associated with the presence of LV diastolic dysfunction. PMID:26778769

  3. Induced Current Measurement of Rod Vibrations

    NASA Astrophysics Data System (ADS)

    Sawicki, Charles A.

    2003-01-01

    The longitudinal normal modes of vibration of rods are similar to the modes seen in pipes open at both ends. A maximum of particle displacement exists at both ends and an integral number (n) of half wavelengths fit into the rod length. The frequencies fn of the normal modes is given by Eq. (1), where L is the rod length and V is the wave velocity: fn = nV/2L. Many methods have been used to measure the velocity of these waves. The Kundt's tube method commonly used in student labs will not be discussed here. A simpler related method has been described by Nicklin.2 Kluk3 measured velocities in a wide range of materials using a frequency counter and microphone to study sounds produced by impacts. Several earlier methods4,5 used phonograph cartridges complete with needles to detect vibrations in excited rods. A recent interesting experiment6 used wave-induced changes in magnetization produced in an iron rod by striking one end. The travel time, measured as the impulsive wave reflects back and forth, gave the wave velocity for the iron rod. In the method described here, a small magnet is attached to the rod with epoxy, and vibrations are detected using the current induced in a few loops of wire. The experiment is simple and yields very accurate velocity values.

  4. Gelation and mechanical response of patchy rods.

    PubMed

    Kazem, Navid; Majidi, Carmel; Maloney, Craig E

    2015-10-28

    We perform Brownian dynamics simulations to study the gelation of suspensions of attractive, rod-like particles. We show that in detail the rod-rod surface interactions can dramatically affect the dynamics of gelation and the structure and mechanics of the networks that form. If the attraction between the rods is perfectly smooth along their length, they will collapse into compact bundles. If the attraction is sufficiently corrugated or patchy, over time, a rigid space-spanning network will form. We study the structure and mechanical properties of the networks that form as a function of the fraction of the surface, f, that is allowed to bind. Surprisingly, the structural and mechanical properties are non-monotonic in f. At low f, there are not a sufficient number of cross-linking sites to form networks. At high f, rods bundle and form disconnected clusters. At intermediate f, robust networks form. The elastic modulus and yield stress are both non-monotonic in the surface coverage. The stiffest and strongest networks show an essentially homogeneous deformation under strain with rods re-orienting along the extensional axis. Weaker, more clumpy networks at high f re-orient relatively little with strong non-affine deformation. These results suggest design strategies for tailoring surface interactions between rods to yield rigid networks with optimal mechanical properties.

  5. Thermoreversible Gels Composed of Colloidal Silica Rods with Short-Range Attractions.

    PubMed

    Murphy, Ryan P; Hong, Kunlun; Wagner, Norman J

    2016-08-23

    Dynamic arrest transitions of colloidal suspensions containing nonspherical particles are of interest for the design and processing of various particle technologies. To better understand the effects of particle shape anisotropy and attraction strength on gel and glass formation, we present a colloidal model system of octadecyl-coated silica rods, termed as adhesive hard rods (AHR), which enables control of rod aspect ratio and temperature-dependent interactions. The aspect ratios of silica rods were controlled by varying the initial TEOS concentration following the work of Kuijk et al. (J. Am. Chem. Soc., 2011, 133, 2346-2349) and temperature-dependent attractions were introduced by coating the calcined silica rods with an octadecyl-brush and suspending in tetradecane. The rod length and aspect ratio were found to increase with TEOS concentration as expected, while other properties such as the rod diameter, coating coverage, density, and surface roughness were nearly independent of the aspect ratio. Ultrasmall angle X-ray scattering measurements revealed temperature-dependent attractions between octadecyl-coated silica rods in tetradecane, as characterized by a low-q upturn in the scattered intensity upon thermal quenching. Lastly, the rheology of a concentrated AHR suspension in tetradecane demonstrated thermoreversible gelation behavior, displaying a nearly 5 orders of magnitude change in the dynamic moduli as the temperature was cycled between 15 and 40 °C. The adhesive hard rod model system serves as a tunable platform to explore the combined influence of particle shape anisotropy and attraction strength on the dynamic arrest transitions in colloidal suspensions with thermoreversible, short-range attractions. PMID:27466883

  6. Core design study of a supercritical light water reactor with double row fuel rods

    SciTech Connect

    Zhao, C.; Wu, H.; Cao, L.; Zheng, Y.; Yang, J.; Zhang, Y.

    2012-07-01

    An equilibrium core for supercritical light water reactor has been designed. A novel type of fuel assembly with dual rows of fuel rods between water rods is chosen and optimized to get more uniform assembly power distributions. Stainless steel is used for fuel rod cladding and structural material. Honeycomb structure filled with thermal isolation is introduced to reduce the usage of stainless steel and to keep moderator temperature below the pseudo critical temperature. Water flow scheme with ascending coolant flow in inner regions is carried out to achieve high outlet temperature. In order to enhance coolant outlet temperature, the radial power distributions needs to be as flat as possible through operation cycle. Fuel loading pattern and control rod pattern are optimized to flatten power distribution at inner regions. Axial fuel enrichment is divided into three parts to control axial power peak, which affects maximum cladding surface temperature. (authors)

  7. Fast-acting nuclear reactor control device

    DOEpatents

    Kotlyar, Oleg M.; West, Phillip B.

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  8. The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

    PubMed Central

    Karakasli, Ahmet; Karaarslan, Ahmet A.; Ozcanhan, Mehmet Hilal; Ertem, Fatih; Erduran, Mehmet

    2016-01-01

    Objective Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, 20° kyphotic, and 20° lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of 5 mm min-1, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of 0.5° s-1 to an end point of 5.0°, in a torsion testing machine. Results Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae. PMID:27651858

  9. The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

    PubMed Central

    Karakasli, Ahmet; Karaarslan, Ahmet A.; Ozcanhan, Mehmet Hilal; Ertem, Fatih; Erduran, Mehmet

    2016-01-01

    Objective Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, 20° kyphotic, and 20° lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of 5 mm min-1, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of 0.5° s-1 to an end point of 5.0°, in a torsion testing machine. Results Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.

  10. Generalization and Optimization of Biological and Biomimetic Ejection Mechanisms

    NASA Astrophysics Data System (ADS)

    Dabiri, John O.; Milano, Michele; Gharib, Morteza

    2003-11-01

    Unsteady mechanisms for fluid ejection are found in biological systems from jellyfish to the human heart. An understanding of these mechanisms is needed to correct pathologies in natural systems and to design biomimetic systems. In particular, the formation process of the recurring vortex ring motif must be studied. It has been previously shown that ring formation is limited by the energy available from the vortex generator, and that ejection efficiency is maximized as the limit is reached. To assess the ability of biological systems to extend this limit, we derive a set of nondimensional criteria that facilitate comparison of ejection mechanisms with dissimilar kinematics. We optimize the derived criteria by means of an evolutionary algorithm, to design optimal ejection mechanisms. The results obtained are compared with some natural systems to derive general principles for the design of better unsteady ejection mechanisms. Additionally, the generalized criteria clarify the effect of previous suggestions for extending the vortex ring formation limit. This work is supported by a grant from the National Science Foundation.

  11. Inhibition of DNA ejection from bacteriophage by Mg+2 counterions

    NASA Astrophysics Data System (ADS)

    Lee, Sell; Tran, C. V.; Nguyen, T. T.

    2011-03-01

    The problem of inhibiting viral DNA ejection from bacteriophages by multivalent counterions, specifically Mg+2 counterions, is studied. Experimentally, it is known that MgSO4 salt has a strong and nonmonotonic effect on the amount of DNA ejected. There exists an optimal concentration at which the minimum amount of DNA is ejected from the virus. At lower or higher concentrations, more DNA is ejected from the capsid. We propose that this phenomenon is the result of DNA overcharging by Mg+2 multivalent counterions. As Mg+2 concentration increases from zero, the net charge of DNA changes from negative to positive. The optimal inhibition corresponds to the Mg+2 concentration where DNA is neutral. At lower/higher concentrations, DNA genome is charged. It prefers to be in solution to lower its electrostatic self-energy, which consequently leads to an increase in DNA ejection. By fitting our theory to available experimental data, the strength of DNA-DNA short range attraction energies, mediated by Mg+2, is found to be -0.004 kBT per nucleotide base. This and other fitted parameters agree well with known values from other experiments and computer simulations. The parameters are also in agreement qualitatively with values for tri- and tetravalent counterions.

  12. Inhibition of DNA ejection from bacteriophage by Mg^+2 counterions

    NASA Astrophysics Data System (ADS)

    Lee, Seil; Tran, Cathy V.; Nguyen, Toan T.

    2009-03-01

    The problem of inhibiting viral DNA ejection from bacteriophages by multivalent counterions, especially Mg^+2 counterions, is studied. Experimentally, it is known that MgSO4 salt has a strong and non-monotonic effect on the amount of DNA ejected. There exists an optimal concentration at which the least DNA is ejected from the virus. At lower or higher concentrations, more DNA is ejected from the capsid. We propose that this phenomenon is the result of DNA overcharging by Mg^+2 multivalent counterions. As Mg^+2 concentration increases from zero, DNA net charge changes from negative to positive. The optimal inhibition corresponds to the Mg^+2 concentration where DNA is neutral. At lower/higher concentrations, DNA genome is charged. It prefers to be in solution to lower its electrostatic self-energy, which consequently leads to an increase in DNA ejection. Our theory fits experimental data well. The strength of DNA-DNA short range attraction, mediated by Mg^+2, is found to be -0.003 kBT per nucleotide base.

  13. Could Jupiter or Saturn Have Ejected a Fifth Giant Planet?

    NASA Astrophysics Data System (ADS)

    Cloutier, Ryan; Tamayo, Daniel; Valencia, Diana

    2015-11-01

    Models of the dynamical evolution of the early solar system that follow the dispersal of the gaseous protoplanetary disk have been widely successful in reconstructing the current orbital configuration of the giant planets. Statistically, some of the most successful dynamical evolution simulations have initially included a hypothetical fifth giant planet, of ice giant (IG) mass, which gets ejected by a gas giant during the early solar system’s proposed instability phase. We investigate the likelihood of an IG ejection (IGE) event by either Jupiter or Saturn through constraints imposed by the current orbits of their wide-separation regular satellites Callisto and Iapetus, respectively. We show that planetary encounters that are sufficient to eject an IG often provide excessive perturbations to the orbits of Callisto and Iapetus, making it difficult to reconcile a planet ejection event with the current orbit of either satellite. Quantitatively, we compute the likelihood of reconciling a regular Jovian satellite orbit with the current orbit of Callisto following an IGE by Jupiter of ∼42%, and conclude that such a large likelihood supports the hypothesis of a fifth giant planet’s existence. A similar calculation for Iapetus reveals that it is much more difficult for Saturn to have ejected an IG and reconciled a Kronian satellite orbit with that of Iapetus (likelihood ∼1%), although uncertainties regarding the formation of Iapetus, with its unusual orbit, complicates the interpretation of this result.

  14. Anisotropy in CdSe quantum rods

    SciTech Connect

    Li, Liang-shi

    2003-09-01

    The size-dependent optical and electronic properties of semiconductor nanocrystals have drawn much attention in the past decade, and have been very well understood for spherical ones. The advent of the synthetic methods to make rod-like CdSe nanocrystals with wurtzite structure has offered us a new opportunity to study their properties as functions of their shape. This dissertation includes three main parts: synthesis of CdSe nanorods with tightly controlled widths and lengths, their optical and dielectric properties, and their large-scale assembly, all of which are either directly or indirectly caused by the uniaxial crystallographic structure of wurtzite CdSe. The hexagonal wurtzite structure is believed to be the primary reason for the growth of CdSe nanorods. It represents itself in the kinetic stabilization of the rod-like particles over the spherical ones in the presence of phosphonic acids. By varying the composition of the surfactant mixture used for synthesis we have achieved tight control of the widths and lengths of the nanorods. The synthesis of monodisperse CdSe nanorods enables us to systematically study their size-dependent properties. For example, room temperature single particle fluorescence spectroscopy has shown that nanorods emit linearly polarized photoluminescence. Theoretical calculations have shown that it is due to the crossing between the two highest occupied electronic levels with increasing aspect ratio. We also measured the permanent electric dipole moment of the nanorods with transient electric birefringence technique. Experimental results on nanorods with different sizes show that the dipole moment is linear to the particle volume, indicating that it originates from the non-centrosymmetric hexagonal lattice. The elongation of the nanocrystals also results in the anisotropic inter-particle interaction. One of the consequences is the formation of liquid crystalline phases when the nanorods are dispersed in solvent to a high enough

  15. Taylor impact of glass rods

    NASA Astrophysics Data System (ADS)

    Willmott, G. R.; Radford, D. D.

    2005-05-01

    The deformation and fracture behavior of soda-lime and borosilicate glass rods was examined during classic and symmetric Taylor impact experiments for impact pressures to 4 and 10GPa, respectively. High-speed photography and piezoresistive gauges were used to measure the failure front velocities in both glasses, and for impact pressures below ˜2GPa the failure front velocity increases rapidly with increasing pressure. As the pressure was increased above ˜3GPa, the failure front velocities asymptotically approached maximum values between the longitudinal and shear wave velocities of each material; at ˜4GPa, the average failure front velocities were 4.7±0.5 and 4.6±0.5mmμs-1 for the soda-lime and borosilicate specimens, respectively. The observed mechanism of failure in these experiments involved continuous pressure-dependent nucleation and growth of microcracks behind the incident wave. As the impact pressure was increased, there was a decrease in the time to failure. The density of cracks within the failed region was material dependent, with the more open-structured borosilicate glass showing a larger fracture density.

  16. Taylor impact of glass rods

    SciTech Connect

    Willmott, G.R.; Radford, D.D.

    2005-05-01

    The deformation and fracture behavior of soda-lime and borosilicate glass rods was examined during classic and symmetric Taylor impact experiments for impact pressures to 4 and 10 GPa, respectively. High-speed photography and piezoresistive gauges were used to measure the failure front velocities in both glasses, and for impact pressures below {approx}2 GPa the failure front velocity increases rapidly with increasing pressure. As the pressure was increased above {approx}3 GPa, the failure front velocities asymptotically approached maximum values between the longitudinal and shear wave velocities of each material; at {approx}4 GPa, the average failure front velocities were 4.7{+-}0.5 and 4.6{+-}0.5 mm {mu}s{sup -1} for the soda-lime and borosilicate specimens, respectively. The observed mechanism of failure in these experiments involved continuous pressure-dependent nucleation and growth of microcracks behind the incident wave. As the impact pressure was increased, there was a decrease in the time to failure. The density of cracks within the failed region was material dependent, with the more open-structured borosilicate glass showing a larger fracture density.

  17. Method of cleaning and inhibiting sucker rod corrosion

    SciTech Connect

    Ford, M. B.; Griffin, J. B.

    1985-01-22

    Method of cleaning tubular goods, especially sucker rods, and inhibiting the sucker rods against corrosion as the rod string is being withdrawn from a borehole. The method is carried out by the provision of an enclosure which is attached to the upper end of a cased borehole. The upper end of the sucker rod string is extended axially through the enclosure as the rod string is withdrawn from the casing. A medial length of the rod string is engaged by a resilient packer device which wipes the rod clean of well fluids and loose debris. The rod string is next cleaned within a second chamber by impacting the outer surface thereof with an abrasive substance. The rod surface is again cleaned of any residual material. The rod is then moved through another chamber where corrosion inhibitor is applied to the external surface of the rod. As each treated joint of rod is withdrawn from the enclosure, the rod joints are sequentially unscrewed and suitably stacked, where the rods are protected from the elements, as well as being protected when the rods are subsequently made up into a rod string as the rod is replaced into a borehole.

  18. Polarization instability of Raman solitons ejected during supercontinuum generation.

    PubMed

    Chao, Qing; Wagner, Kelvin H

    2015-12-28

    We numerically investigate polarization instability of soliton fission and the polarization dynamics of Raman solitons ejected during supercontinuum generation in a photonics crystal fiber using the coupled vector generalized nonlinear Schrödinger equations for both linear and circular birefringent fibers. The evolution of the state of polarizations of the ejected Raman soliton as representated on the Poincaré sphere is affected by both nonlinear and linear polarization rotations on the Poincaré sphere. The polarization dynamics reveal the presence of a polarization separatrix and the emergence of stable slow and unstable fast eigen-polarizations for the Raman solitons ejected in the supercontinuum generation process. Circularly birefringent fiber is investigated and found to simplify the nonlinear polarization dynamics. PMID:26832032

  19. Ejection of a rear facing, golf cart passenger.

    PubMed

    Schau, Kyle; Masory, Oren

    2013-10-01

    The following report details the findings of a series of experiments and simulations performed on a commercially available, shuttle style golf cart during several maneuvers involving rapid accelerations of the vehicle. It is determined that the current set of passive restraints on these types of golf carts are not adequate in preventing ejection of a rear facing passenger during rapid accelerations in the forward and lateral directions. Experimental data and simulations show that a hip restraint must be a minimum of 13 in. above the seat in order to secure a rear facing passenger during sharp turns, compared to the current restraint height of 5 in. Furthermore, it is determined that a restraint directly in front of the rear facing passenger is necessary to prevent ejection. In addressing these issues, golf cart manufacturers could greatly reduce the likelihood of injury due to ejection of a rear facing, golf cart passenger. PMID:23958856

  20. The Numerical Simulation of Flow around Ejection System

    NASA Astrophysics Data System (ADS)

    Zhang, Dalin; Wei, Tao

    Aerodynamic characteristics of an Ejection Seat System at different angles of attack are studied by the numerical method and the flow mechanisms for such flows are carefully analyzed. The governing equations are Reynolds-averaged Navier-Stokes equations which are solved by the unstructured finite volume method. Upwind Osher scheme is used for spatial discretization and five-stage Runge-Kutta scheme is applied for temporal discretization. The DES model based on S-A one equation turbulence model is adopted. Parallel computation is based on the domain decomposition method and multi-block is achieved by using METIS system. The experimental data is used to validate this method. This research is helpful to understand the aerodynamic characteristics and flow mechanisms of Ejection Seat System at different angles of attack and Mach numbers, and can provide reasonable reference for Ejection Seat System design.

  1. Lil HAL: digital kneeboard for ejection seat aircraft

    NASA Astrophysics Data System (ADS)

    Parisi, Vince

    2004-09-01

    In the last few years, airlines, commercial air carriers and the military have begun to introduce electronic tools into the cockpit to replace paper versions of flight publications, flight plans, departure and approach plates, maps, etc. These devices have varied from the common laptop to the smaller pen-tablet type computers. In some instances these devices have been connected to aircraft data buses to collect maintenance data, fault codes and other useful information. None of these devices, however, have been found satisfactory in ejection seat aircraft due to their size, weight, and dynamic characteristics when subjected to the inertial and aerodynamic forces that occur during an ejection. This paper describes an electronic digital kneeboard suitable for use in an ejection seat aircraft. The kneeboard consists of a look at helmet-mounted display, a small streamlined kneeboard input device, a carry-on/carry-off computer and its associated support interfaces.

  2. Restraint effectiveness, occupant ejection from cars, and fatality reductions.

    PubMed

    Evans, L

    1990-04-01

    The effectiveness of air cushion restraint systems, or airbags, in preventing fatalities is estimated by assuming that they do not affect ejection probability, and protect only in frontal, or near frontal, crashes with impact-reducing effectiveness equal to that of lap/shoulder belts. In order to compute airbag effectiveness, lap/shoulder belt effectiveness and the fraction of fatalities preventable by eliminating ejection are estimated using Fatal Accident Reporting System (FARS) data. Ejection prevention is found to account for almost half of the effectiveness of lap/shoulder belts (essentially all for lap belts only). Airbag effectiveness is estimated as (18 +/- 4)% in preventing fatalities to drivers and (13 +/- 4)% to right front passengers. Drivers switching from lap/shoulder belt to airbag-only protection increase their fatality risk by 41%. PMID:2331291

  3. Ejection of a rear facing, golf cart passenger.

    PubMed

    Schau, Kyle; Masory, Oren

    2013-10-01

    The following report details the findings of a series of experiments and simulations performed on a commercially available, shuttle style golf cart during several maneuvers involving rapid accelerations of the vehicle. It is determined that the current set of passive restraints on these types of golf carts are not adequate in preventing ejection of a rear facing passenger during rapid accelerations in the forward and lateral directions. Experimental data and simulations show that a hip restraint must be a minimum of 13 in. above the seat in order to secure a rear facing passenger during sharp turns, compared to the current restraint height of 5 in. Furthermore, it is determined that a restraint directly in front of the rear facing passenger is necessary to prevent ejection. In addressing these issues, golf cart manufacturers could greatly reduce the likelihood of injury due to ejection of a rear facing, golf cart passenger.

  4. Capstan Friction Model for DNA Ejection from Bacteriophages

    NASA Astrophysics Data System (ADS)

    Ghosal, Sandip

    2012-12-01

    Bacteriophages infect cells by attaching to the outer membrane and injecting their DNA into the cell. The phage DNA is then transcribed by the cell’s transcription machinery. A number of physical mechanisms by which DNA can be translocated from the phage capsid into the cell have been identified. A fast ejection driven by the elastic and electrostatic potential energy of the compacted DNA within the viral capsid appears to be used by most phages, at least to initiate infection. In recent in vitro experiments, the speed of DNA translocation from a λ phage capsid has been measured as a function of ejected length over the entire duration of the event. Here, a mechanical model is proposed that is able to explain the observed dependence of exit velocity on ejected length, and that is also consistent with the accepted picture of the geometric arrangement of DNA within the viral capsid.

  5. Numerical simulation of fluid ejection from a spinning cylinder

    NASA Astrophysics Data System (ADS)

    Fedele, P. D.

    1985-02-01

    A computer code, based on a convective flux approximation on a finite difference Eulerian grid, was to model the rate of fluid ejection from the opened end of an azimuthally rotating cylinder. The computer code, SOLA-VOF/CSL is described in a previous support. A constantly rotating cylinder, with an 80% fluid fill, is set in equilibrium solid body rotation and one end is instantaneously removed, allowing the centrifugal force to drive the fluid from the opened end. Fluid parameters have been chosen to model the behavior of water and glycerin at 25 C. The ratio of the volume ejection rate to the volume rotation shows similarity when expressed as a function of the cylinder rotation time. The fluid viscosity is observed to have negligible effect on the ejection rate for the spin rates of interest. This behavior is shown to be consistent with a dimensional analysis of the flows considered.

  6. Interaction of Fixed Number of Photons with Retinal Rod Cells

    NASA Astrophysics Data System (ADS)

    Phan, Nam Mai; Cheng, Mei Fun; Bessarab, Dmitri A.; Krivitsky, Leonid A.

    2014-05-01

    New tools and approaches of quantum optics offer a unique opportunity to generate light pulses carrying a precise number of photons. Accurate control over the light pulses helps to improve the characterization of photoinduced processes. Here, we study interaction of a specialized light source which provides flashes containing just one photon, with retinal rod cells of Xenopus laevis toads. We provide unambiguous proof of the single-photon sensitivity of rod cells without relying on the statistical modeling. We determine their quantum efficiencies without the use of any precalibrated detectors and obtain the value of (29±4.7)%. Our approach provides the path for future studies and applications of quantum properties of light in phototransduction, vision, and photosynthesis.

  7. The attenuation of rod signals by bleachings

    PubMed Central

    Alpern, M.; Rushton, W. A. H.; Torii, S.

    1970-01-01

    1. Contrast flash technique allows the rod threshold to be measured even when it lies far above the cone threshold. In this way the rod dark adaptation curve after rhodopsin bleaching can be measured over 6 log units. 2. By retinal densitometry the regeneration of rhodopsin can be measured in the same subject. It is found that the log threshold is raised 1·2 units for each 10% of rhodopsin in the bleached state. 3. We have tried to discover whether bleaching raises the threshold by desensitizing the rods, or (like backgrounds) by attenuating their signals. Neither suggestion satisfies all conditions. 4. All are satisfied by [Formula: see text], where N is the size of rod signal, constant for threshold; θ, θD are steady backgrounds of light and receptor noise; ϕ is the threshold flash with σ a constant of about 2·5 log td sec; B the fraction of pigment in the bleached state. PMID:5499030

  8. Impact of AD995 alumina rods

    SciTech Connect

    Chhabildas, L.C.; Furnish, M.D.; Reinhart, W.D.; Grady, D.E.

    1997-10-01

    Gas guns and velocity interferometric techniques have been used to determine the loading behavior of an AD995 alumina rod 19 mm in diameter by 75 mm and 150 mm long, respectively. Graded-density materials were used to impact both bare and sleeved alumina rods while the velocity interferometer was used to monitor the axial-velocity of the free end of the rods. Results of these experiments demonstrate that (1) a time-dependent stress pulse generated during impact allows an efficient transition from the initial uniaxial strain loading to a uniaxial stress state as the stress pulse propagates through the rod, and (2) the intermediate loading rates obtained in this configuration lie between split Hopkinson bar and shock-loading techniques.

  9. Ventricular ejection force in growth-retarded fetuses.

    PubMed

    Rizzo, G; Capponi, A; Rinaldo, D; Arduini, D; Romanini, C

    1995-04-01

    The objective of this study was to determine whether in growth-retarded fetuses secondary to uteroplacental insufficiency the cardiac ventricles exert a force different from that of appropriately grown fetuses. Doppler echocardiographic studies were performed in 156 appropriately grown fetuses (gestational age 18-38 weeks) and in 72 growth-retarded fetuses (gestational age 24-36 weeks) free from structural and chromosomal abnormalities and characterized by Doppler changes in the umbilical artery and middle cerebral artery suggesting uteroplacental insufficiency as the most likely etiology of the growth defect. Right and left ventricular ejection force values were calculated from velocity waveforms recorded at the level of aortic and pulmonary valves, according to Newton's second law of motion. In appropriately grown fetuses, left and right ventricular ejection force values significantly increased with advancing gestation and the two ventricles exerted similar force. In growth-retarded fetuses, the ventricular ejection force was significantly and symmetrically decreased in both ventricles. Among growth-retarded fetuses, a poorer perinatal outcome was observed in those fetuses in which the ejection force of both ventricles was below the 5th centile of the normal limits for gestation. In 12 growth-retarded fetuses followed longitudinally during the last week preceding intrauterine death or Cesarean section due to antepartum heart-rate late decelerations, a significant decrease of ejection force was found in both ventricles. Finally, a significant relationship was found between the severity of acidosis and right and left ventricular ejection force values in 22 fetuses in which Doppler recordings were performed immediately before cordocentesis.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Double-clad nuclear fuel safety rod

    DOEpatents

    McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan

    1984-01-01

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  11. Calculator program speeds rod pump design

    SciTech Connect

    Engineer, R.; Davis, C.L.

    1984-02-01

    Matching sucker rod pump characteristics to a specific application is greatly simplified with this program, intended for use with an HP-41CV hand-held computer. The user inputs application data and the program calculates all necessary design criteria, including Mill's acceleration factor, peak and minimum polish rod loads and horsepower required. Sample calculations are provided, together with a thorough discussion of special design considerations involved in huff-and-puff applications.

  12. 1984 tubing and sucker rod tables

    SciTech Connect

    Not Available

    1984-01-01

    The first section of this handy reference lists companies that produce API tubing and couplings, giving specifications for pipe in sizes from 3/4 to 41/2 in. Also listed and illustrated are special tubing joints, identified by manufacturer Additional tables provide details on API sucker rods, including manufacturers, mechanical and chemical properties, dimensions and make-up recommendations. Similar data are presented for non-API rods.

  13. Exercise Intolerance In Heart Failure With Preserved Ejection Fraction

    PubMed Central

    Gupte, Anisha A.; Hamilton, Dale J.

    2016-01-01

    More than 50% of Americans with heart failure have preserved ejection fraction (HFpEF). Exercise intolerance is a hallmark of HFpEF, but the pathophysiology is not well understood. Diverse etiologies and incomplete mechanistic understanding have resulted in ineffective management strategies to improve the outcomes of HFpEF. Traditional therapies that have been beneficial in the treatment of heart failure with reduced ejection fraction (HFrEF), neurohormonal blockade in particular, have not been effective in treating HFpEF. In this review, we address underlying mechanisms of HFpEF and present the rationale supporting exercise as a component of comprehensive management. PMID:27486493

  14. Forces in magnetospheric launching of micro-ejections

    NASA Astrophysics Data System (ADS)

    Cemeljic, Miljenko

    2013-07-01

    In 2D-axisymmetric simulations with our resistive MHD code Zeus-347 we show that micro-ejections, a quasi-stationary fast ejecta of matter of small mass and angular momentum fluxes, can be launched from a purely resistive magnetosphere above the disk gap. They are produced by a combination of pressure gradient and magnetic forces, in presence of ongoing magnetic reconnection along the boundary layer between the star and the disk, where a current sheet is formed. Mass flux of micro-ejections increases with increasing magnetic field strength and stellar rotation rate.

  15. Coronal mass ejections and magnetic flux ropes in interplanetary space

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1990-01-01

    Coronal mass ejections (CMEs) are formed in the solar corona by the ejection of material from closed field regions that were not previously participating in the solar wind expansion. CMEs commonly exhibit a signature consisting of a counterstreaming flux of suprathermal electrons with energies above about 80 eV, indicating closed field structures that are either rooted at both ends in the sun or entirely disconnected from it. About 30 percent of all CME events at 1 AU exhibit large, coherent internal field rotations typical of magnetic flux ropes. It is suggested that interplanetary magnetic flux ropes form as a result of reconnection within rising, previously sheared coronal magnetic loops.

  16. Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin

    PubMed Central

    1985-01-01

    Isolated Xenopus laevis retinas were incubated with 3H-labeled mannose or leucine in the presence or absence of tunicamycin (TM), a selective inhibitor of dolichyl phosphate-dependent protein glycosylation. At a TM concentration of 20 micrograms/ml, the incorporation of [3H]mannose and [3H]leucine into retinal macromolecules was inhibited by approximately 66 and 12-16%, respectively, relative to controls. Cellular uptake of the radiolabeled substrates was not inhibited at this TM concentration. Polyacrylamide gel electrophoresis revealed that TM had little effect on the incorporation of [3H]leucine into the proteins of whole retinas and that labeling of proteins (especially opsin) in isolated rod outer segment (ROS) membranes was negligible. The incorporation of [3H]mannose into proteins of whole retinas and ROS membranes was nearly abolished in the presence of TM. Autoradiograms of control retinas incubated with either [3H]mannose or [3H]leucine exhibited a discrete concentration of silver grains over ROS basal disc membranes. In TM-treated retinas, the extracellular space between rod inner and outer segments was dilated and filled with numerous heterogeneously size vesicles, which were labeled with [3H]leucine but not with [3H]mannose. ROS disc membranes per se were not labeled in the TM-treated retinas. Quantitative light microscopic autoradiography of retinas pulse-labeled with [3H]leucine showed no differences in labeling of rod cellular compartments in the presence or absence of TM as a function of increasing chase time. These results demonstrate that TM can block retinal protein glycosylation and normal disc membrane assembly under conditions where synthesis and intracellular transport of rod cell proteins (e.g., opsin) are not inhibited. PMID:3155750

  17. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. I. STATISTICS AND CORONAL MASS EJECTION SOURCE REGION CHARACTERISTICS

    SciTech Connect

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M.; Muhr, N.; Kienreich, I.; Utz, D.

    2011-09-10

    We use high time cadence images acquired by the STEREO EUVI and COR instruments to study the evolution of coronal mass ejections (CMEs) from their initiation through impulsive acceleration to the propagation phase. For a set of 95 CMEs we derived detailed height, velocity, and acceleration profiles and statistically analyzed characteristic CME parameters: peak acceleration, peak velocity, acceleration duration, initiation height, height at peak velocity, height at peak acceleration, and size of the CME source region. The CME peak accelerations we derived range from 20 to 6800 m s{sup -2} and are inversely correlated with the acceleration duration and the height at peak acceleration. Seventy-four percent of the events reach their peak acceleration at heights below 0.5 R{sub sun}. CMEs that originate from compact sources low in the corona are more impulsive and reach higher peak accelerations at smaller heights. These findings can be explained by the Lorentz force, which drives the CME accelerations and decreases with height and CME size.

  18. Close packing of rods on spherical surfaces.

    PubMed

    Smallenburg, Frank; Löwen, Hartmut

    2016-04-28

    We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets.

  19. Close packing of rods on spherical surfaces

    NASA Astrophysics Data System (ADS)

    Smallenburg, Frank; Löwen, Hartmut

    2016-04-01

    We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets.

  20. Oil well sucker rod shock absorber

    SciTech Connect

    Knox, F.B.

    1986-02-18

    An oil well sucker rod shock absorber is described which consists of: an outer cylindrical casing defined by a cylindrical wall and having a removable upper plug and lower plug disposed respectively at upper and lower extremities of the casing. The upper plug has an axial bore and the lower plug defines a closed lower end and has an upwardly facing top surface. The plunger rod is connected to the sucker rod and is slidably disposed in the bore of the upper plug. A piston within the cylindrical casing is coupled to the plunger rod and has a downwardly facing bottom surface. Biasing means have a maximum vertical length disposed vertically within the casing and extending between the downwardly facing surface of the piston and the upwardly facing surface of the lower plug means at all times. This allows vertical reciprocal translation of the plunger rod and the piston within the cylindrical casing downwardly against the biasing means. Apertures are disposed through the cylindrical casing along the entire length thereof opposite the length of the biasing means, allowing downhole fluid pressure to be applied to the piston within the cylindrical casing via the apertures to be added to the force of the biasing means, without causing a fluid lock within the cylinder. Slap and wear of the sucker rod resulting therefrom are reduced and damage prevented.

  1. Crippling Strength of Axially Loaded Rods

    NASA Technical Reports Server (NTRS)

    Natalis, FR

    1921-01-01

    A new empirical formula was developed that holds good for any length and any material of a rod, and agrees well with the results of extensive strength tests. To facilitate calculations, three tables are included, giving the crippling load for solid and hollow sectioned wooden rods of different thickness and length, as well as for steel tubes manufactured according to the standards of Army Air Services Inspection. Further, a graphical method of calculation of the breaking load is derived in which a single curve is employed for determination of the allowable fiber stress. Finally, the theory is discussed of the elastic curve for a rod subject to compression, according to which no deflection occurs, and the apparent contradiction of this conclusion by test results is attributed to the fact that the rods under test are not perfectly straight, or that the wall thickness and the material are not uniform. Under the assumption of an eccentric rod having a slight initial bend according to a sine curve, a simple formula for the deflection is derived, which shows a surprising agreement with test results. From this a further formula is derived for the determination of the allowable load on an eccentric rod. The resulting relations are made clearer by means of a graphical representation of the relation of the moments of the outer and inner forces to the deflection.

  2. High-throughput rod-induced electrospinning

    NASA Astrophysics Data System (ADS)

    Wu, Dezhi; Xiao, Zhiming; Teh, Kwok Siong; Han, Zhibin; Luo, Guoxi; Shi, Chuan; Sun, Daoheng; Zhao, Jinbao; Lin, Liwei

    2016-09-01

    A high throughput electrospinning process, directly from flat polymer solution surfaces induced by a moving insulating rod, has been proposed and demonstrated. Different rods made of either phenolic resin or paper with a diameter of 1–3 cm and a resistance of about 100–500 MΩ, has been successfully utilized in the process. The rod is placed approximately 10 mm above the flat polymer solution surface with a moving speed of 0.005–0.4 m s‑1 this causes the solution to generate multiple liquid jets under an applied voltage of 15–60 kV for the tip-less electrospinning process. The local electric field induced by the rod can boost electrohydrodynamic instability in order to generate Taylor cones and liquid jets. Experimentally, it is found that a large rod diameter and a small solution-to-rod distance can enhance the local electrical field to reduce the magnitude of the applied voltage. In the prototype setup with poly (ethylene oxide) polymer solution, an area of 5 cm  ×  10 cm and under an applied voltage of 60 kV, the maximum throughput of nanofibers is recorded to be approximately144 g m‑2 h‑1.

  3. Long-Rod Moving-Plate Interaction

    NASA Astrophysics Data System (ADS)

    Partom, Y.

    2002-07-01

    Understanding the mechanics of interaction of a long rod projectile with a forward moving plate at an angle is essential to understanding long rod interaction with an explosive reactive armor cassette. To investigate the mechanics of such an interaction we use AUTODIN2D/EULER in plane geometry, although the problem is 3D. We assume that this is a satisfactory approximation, as we're only interested in the main features, and are not comparing fine details to experimental results. From the simulations we learn that the interaction never reaches steady state. Initially each material splits into two streams, and the interaction plane is perpendicular to the rod. But with time the interaction plane rotates slowly, until it becomes parallel to the rod, which is then able to continue moving forward without interruption. During this process interacting rod material of length DeltaL is diverted at an angle and becomes ineffective for penetrating the main target. We made many such runs to determine the dependence of DeltaL on the parameters of the problem. This dependence makes it possible to predict DeltaL for a variety of rod-plate situations.

  4. High-throughput rod-induced electrospinning

    NASA Astrophysics Data System (ADS)

    Wu, Dezhi; Xiao, Zhiming; Teh, Kwok Siong; Han, Zhibin; Luo, Guoxi; Shi, Chuan; Sun, Daoheng; Zhao, Jinbao; Lin, Liwei

    2016-09-01

    A high throughput electrospinning process, directly from flat polymer solution surfaces induced by a moving insulating rod, has been proposed and demonstrated. Different rods made of either phenolic resin or paper with a diameter of 1-3 cm and a resistance of about 100-500 MΩ, has been successfully utilized in the process. The rod is placed approximately 10 mm above the flat polymer solution surface with a moving speed of 0.005-0.4 m s-1 this causes the solution to generate multiple liquid jets under an applied voltage of 15-60 kV for the tip-less electrospinning process. The local electric field induced by the rod can boost electrohydrodynamic instability in order to generate Taylor cones and liquid jets. Experimentally, it is found that a large rod diameter and a small solution-to-rod distance can enhance the local electrical field to reduce the magnitude of the applied voltage. In the prototype setup with poly (ethylene oxide) polymer solution, an area of 5 cm  ×  10 cm and under an applied voltage of 60 kV, the maximum throughput of nanofibers is recorded to be approximately144 g m-2 h-1.

  5. Close packing of rods on spherical surfaces.

    PubMed

    Smallenburg, Frank; Löwen, Hartmut

    2016-04-28

    We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets. PMID:27131565

  6. FORECASTING A CORONAL MASS EJECTION'S ALTERED TRAJECTORY: ForeCAT

    SciTech Connect

    Kay, C.; Opher, M.; Evans, R. M.

    2013-09-20

    To predict whether a coronal mass ejection (CME) will impact Earth, the effects of the background on the CME's trajectory must be taken into account. We develop a model, ForeCAT (Forecasting a CME's Altered Trajectory), of CME deflection due to magnetic forces. ForeCAT includes CME expansion, a three-part propagation model, and the effects of drag on the CME's deflection. Given the background solar wind conditions, the launch site of the CME, and the properties of the CME (mass, final propagation speed, initial radius, and initial magnetic strength), ForeCAT predicts the deflection of the CME. Two different magnetic backgrounds are considered: a scaled background based on type II radio burst profiles and a potential field source surface (PFSS) background. For a scaled background where the CME is launched from an active region located between a coronal hole and streamer region, the strong magnetic gradients cause a deflection of 8. Degree-Sign 1 in latitude and 26. Degree-Sign 4 in longitude for a 10{sup 15} g CME propagating out to 1 AU. Using the PFSS background, which captures the variation of the streamer belt (SB) position with height, leads to a deflection of 1. Degree-Sign 6 in latitude and 4. Degree-Sign 1 in longitude for the control case. Varying the CME's input parameters within observed ranges leads to the majority of CMEs reaching the SB within the first few solar radii. For these specific backgrounds, the SB acts like a potential well that forces the CME into an equilibrium angular position.

  7. Mechanical performance of fiberglass sucker-rod strings

    SciTech Connect

    Tripp, H.A.

    1988-08-01

    The natural frequencies of fiberglass sucker-rod strings can be calculated by treating the rod strings as modified spring/mass vibration systems. The ratio of the pumping-unit operating speed to the rod-string natural frequency can then be used as a basis for understanding fiberglass-rod performance and for predicting downhole pump stroke lengths.

  8. International symposium on fuel rod simulators: development and application

    SciTech Connect

    McCulloch, R.W.

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  9. A simple retinal mechanism contributes to perceptual interactions between rod- and cone-mediated responses in primates.

    PubMed

    Grimes, William N; Graves, Logan R; Summers, Mathew T; Rieke, Fred

    2015-01-01

    Visual perception across a broad range of light levels is shaped by interactions between rod- and cone-mediated signals. Because responses of retinal ganglion cells, the output cells of the retina, depend on signals from both rod and cone photoreceptors, interactions occurring in retinal circuits provide an opportunity to link the mechanistic operation of parallel pathways and perception. Here we show that rod- and cone-mediated responses interact nonlinearly to control the responses of primate retinal ganglion cells; these nonlinear interactions, surprisingly, were asymmetric, with rod responses strongly suppressing subsequent cone responses but not vice-versa. Human psychophysical experiments revealed a similar perceptual asymmetry. Nonlinear interactions in the retinal output cells were well-predicted by linear summation of kinetically-distinct rod- and cone-mediated signals followed by a synaptic nonlinearity. These experiments thus reveal how a simple mechanism controlling interactions between parallel pathways shapes circuit output and perception. PMID:26098124

  10. SSMIR (Solid State Memory Instrumentation Recorder): A new approach to acquiring data during an aircraft seat/sled ejection sequence

    NASA Astrophysics Data System (ADS)

    Watters, D. M.

    1985-04-01

    The current state of ejection seat/sled testing employs an Aydin/Vector Co., pulse code modulation/telemetry instrumentation package. While this system meets all channel/data rate requirements and has proven itself in field testing, some major deficiencies exist. Data turnaround is one drawback; up to several weeks are normally required to process and print out the results from any sled shot. A second major deficiency is the amount of data dropout that can occur. In an ejection seat test, orientation of the skull antenna or misalignment of sending and receiving antennas can result in loss of data. Current technology in data storage media and high speed controllers provides backup mode for data integrity and also permits faster data reduction. This paper summarizes an electrical/mechanical packaging design of a software controlled, nonvolatile data recording system which uses 8 megabits of bubble memory to provide 24 sec of data storage in parallel to the PCM/TM transmission. Preliminary laboratory bench testing of the Solid State Memory Instrumentation (SSMI) Recorder indicates that the bubble memory can withstand the high vibration g loads (20 Gs up to 2000 Hz) and environmental temperatures (85 C) encountered in ejection seat testing. Laboratory shock testing (ejection seat trainer) to 5 Gs has also been successful along with tower testing at the Naval Air Development Center to 25 Gs.

  11. Bacterial Flagella as a Model Rigid Rod of Tunable Shape

    NASA Astrophysics Data System (ADS)

    Schwenger, Walter; Yardimci, Sevim; Gibaud, Thomas; Snow, Henry; Urbach, Jeff; Dogic, Zvonimir

    In this research, we study the physical properties of suspensions of bacterial flagella from Salmonella typhimurium prepared in a variety of rigid polymorphic shapes. Flagella act as a rigid colloidal particle that can exhibit non-trivial geometry including helices of varying dimensions, straight rods, or a combination of the two in the same filament. By controlling the conditions in which flagella are prepared, the polymorphic shape assumed by the filament can be controlled. Utilizing different polymorphic shapes, we combine results from optical microscopy observations of single filaments with bulk rheological measurements to help understand the role that constituent colloidal geometry plays in complex bulk behavior.

  12. Photovoltage of Rods and Cones in the Macaque Retina

    NASA Astrophysics Data System (ADS)

    Schneeweis, David M.; Schnapf, Julie L.

    1995-05-01

    The kinetics, gain, and reliability of light responses of rod and cone photoreceptors are important determinants of overall visual sensitivity. In voltage recordings from photoreceptors in an intact primate retina, rods were found to be functionally isolated from each other, unlike the tightly coupled rods of cold-blooded vertebrates. Cones were observed to receive excitatory input from rods, which indicates that the cone pathway also processes rod signals. This input might be expected to degrade the spatial resolution of mesopic vision.

  13. 49 CFR 571.226 - Standard No. 226; Ejection Mitigation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (within the meaning of 49 CFR 567.7). S3. Definitions. Ejection impactor means a device specified in S7.1... three or fewer carlines, as that term is defined in 49 CFR 583.4, in the United States during a... of 49 CFR 567.7) before September 1, 2018, after having been previously certified in accordance...

  14. 49 CFR 571.226 - Standard No. 226; Ejection Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (within the meaning of 49 CFR 567.7). S3. Definitions. Ejection impactor means a device specified in S7.1... three or fewer carlines, as that term is defined in 49 CFR 583.4, in the United States during a... of 49 CFR 567.7) before September 1, 2018, after having been previously certified in accordance...

  15. Electronic circuit detects left ventricular ejection events in cardiovascular system

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1972-01-01

    Electronic circuit processes arterial blood pressure waveform to produce discrete signals that coincide with beginning and end of left ventricular ejection. Output signals provide timing signals for computers that monitor cardiovascular systems. Circuit operates reliably for heart rates between 50 and 200 beats per minute.

  16. Dynamo-driven plasmoid ejections above a spherical surface

    NASA Astrophysics Data System (ADS)

    Warnecke, J.; Brandenburg, A.; Mitra, D.

    2011-10-01

    Aims: We extend earlier models of turbulent dynamos with an upper, nearly force-free exterior to spherical geometry, and study how flux emerges from lower layers to the upper ones without being driven by magnetic buoyancy. We also study how this affects the possibility of plasmoid ejection. Methods: A spherical wedge is used that includes northern and southern hemispheres up to mid-latitudes and a certain range in longitude of the Sun. In radius, we cover both the region that corresponds to the convection zone in the Sun and the immediate exterior up to twice the radius of the Sun. Turbulence is driven with a helical forcing function in the interior, where the sign changes at the equator between the two hemispheres. Results: An oscillatory large-scale dynamo with equatorward migration is found to operate in the turbulence zone. Plasmoid ejections occur in regular intervals, similar to what is seen in earlier Cartesian models. These plasmoid ejections are tentatively associated with coronal mass ejections (CMEs). The magnetic helicity is found to change sign outside the turbulence zone, which is in agreement with recent findings for the solar wind. Movie is available in electronic form at http://www.aanda.org

  17. Certain optimal parameters of high-velocity Venturi ejection tubes

    NASA Astrophysics Data System (ADS)

    Stark, S. B.; Reznichenko, I. G.; Pavlenko, Y. P.

    1984-11-01

    The influence of the geometrical characteristics of centrifugal nozzles in high velocity Venturi ejection tubes for atomizing liquid in gas cleaning plant is analyzed. An optimal value of the nozzle geometrical characteristic, which is a function of the degree of filling of the nozzle outlet opening by the liquid, is given, at which the throat length is independent of water pressure before the nozzle.

  18. Constraints on the original ejection velocity fields of asteroid families

    NASA Astrophysics Data System (ADS)

    Carruba, V.; Nesvorný, D.

    2016-04-01

    Asteroid families form as a result of large-scale collisions among main belt asteroids. The orbital distribution of fragments after a family-forming impact could inform us about their ejection velocities. Unfortunately, however, orbits dynamically evolve by a number of effects, including the Yarkovsky drift, chaotic diffusion, and gravitational encounters with massive asteroids, such that it is difficult to infer the ejection velocities eons after each family's formation. Here, we analyse the inclination distribution of asteroid families, because proper inclination can remain constant over long time intervals, and could help us to understand the distribution of the component of the ejection velocity that is perpendicular to the orbital plane (vW). From modelling the initial break up, we find that the distribution of vW of the fragments, which manage to escape the parent body's gravity, should be more peaked than a Gaussian distribution (i.e. be leptokurtic) even if the initial distribution was Gaussian. We surveyed known asteroid families for signs of a peaked distribution of vW using a statistical measure of the distribution peakedness or flatness known as kurtosis. We identified eight families whose vW distribution is significantly leptokurtic. These cases (e.g. the Koronis family) are located in dynamically quiet regions of the main belt, where, presumably, the initial distribution of vW was not modified by subsequent orbital evolution. We suggest that, in these cases, the inclination distribution can be used to obtain interesting information about the original ejection velocity field.

  19. 49 CFR 571.226 - Standard No. 226; Ejection Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (within the meaning of 49 CFR 567.7). S3. Definitions. Ejection impactor means a device specified in S7.1... three or fewer carlines, as that term is defined in 49 CFR 583.4, in the United States during a... of 49 CFR 567.7) before September 1, 2018, after having been previously certified in accordance...

  20. NEURONATIN IS A STRESS-RESPONSIVE PROTEIN OF ROD PHOTORECEPTORS

    PubMed Central

    SHINDE, VISHAL; PITALE, PRIYAMVADA M.; HOWSE, WAYNE; GORBATYUK, OLEG; GORBATYUK, MARINA

    2016-01-01

    Neuronatin (NNAT) is a small transmembrane proteolipid that is highly expressed in the embryonic developing brain and several other peripheral tissues. This study is the first to provide evidence that NNAT is detected in the adult retina of various adult rod-dominant mammals, including wild-type (WT) rodents, transgenic rodents expressing mutant S334ter, P23H, or T17M rhodopsin, non-human primates, humans, and cone-dominant tree shrews. Immunohistochemical and quantitative real time polymerase chain reaction (qRT-PCR) analyses were applied to detect NNAT. Confocal microscopy analysis revealed that NNAT immunofluorescence is restricted to the outer segments (OSs) of photoreceptors without evidence of staining in other retinal cell types across all mammalian species. Moreover, in tree shrew retinas, we found NNAT to be co-localized with rhodopsin, indicating its predominant expression in rods. The rod-derived expression of NNAT was further confirmed by qRT-PCR in isolated rod photoreceptor cells. We also used these cells to mimic cellular stress in transgenic retinas by treating them with the endoplasmic reticulum stress inducer, tunicamycin. Thus, our data revealed accumulation of NNAT around the nucleus as compared to dispersed localization of NNAT within control cells. This distribution coincided with the partial intracellular mislocalization of NNAT to the outer nuclear layer observed in transgenic retinas. In addition, stressed retinas demonstrated an increase of NNAT mRNA and protein levels. Therefore, our study demonstrated that NNAT is a novel stress-responsive protein with a potential structural and/or functional role in adult mammalian retinas. PMID:27109921

  1. Improvement in J{sub c} performance below liquid nitrogen temperature for SmBa{sub 2}Cu{sub 3}O{sub y} superconducting films with BaHfO{sub 3} nano-rods controlled by low-temperature growth

    SciTech Connect

    Miura, S. Yoshida, Y.; Ichino, Y.; Xu, Q.; Matsumoto, K.; Ichinose, A.; Awaji, S.

    2016-01-01

    For use in high-magnetic-field coil-based applications, the critical current density (J{sub c}) of REBa{sub 2}Cu{sub 3}O{sub y} (REBCO, where RE = rare earth) coated conductors must be isotropically improved, with respect to the direction of the magnetic field; these improvements must be realized at the operating conditions of these applications. In this study, improvement of the J{sub c} for various applied directions of magnetic field was achieved by controlling the morphology of the BaHfO{sub 3} (BHO) nano-rods in a SmBCO film. We fabricated the 3.0 vol. % BHO-doped SmBCO film at a low growth temperature of 720 °C, by using a seed layer technique (T{sub s} = 720 °C film). The low-temperature growth resulted in a morphological change in the BHO nano-rods. In fact, a high number density of (3.1 ± 0.1) × 10{sup 3} μm{sup −2} of small (diameter: 4 ± 1 nm), discontinuous nano-rods that grew in various directions, was obtained. In J{sub c} measurements, the J{sub c} of the T{sub s} = 720 °C film in all directions of the applied magnetic field was higher than that of the non-doped SmBCO film. The J{sub c}{sup min} (6.4 MA/cm{sup 2}) of the former was more than 6 times higher than that (1.0 MA/cm{sup 2}) of the latter at 40 K, under 3 T. The aforementioned results indicated that the discontinuous BHO nano-rods, which occurred with a high number density, exerted a 3D-like flux pinning at the measurement conditions considered. Moreover, at 4.2 K and under 17 T, a flux pinning force density of 1.6 TN/m{sup 3} was realized; this value was comparable to the highest value recorded, to date.

  2. End fitting for oil well sucker rods

    SciTech Connect

    Fischer, C.P.

    1984-02-07

    An end fitting for a sucker rod for oil wells is described with the end fitting having a chamber portion extending inwardly from one end thereof and an externally threaded portion at its other end. The chamber portion is defined by a plurality of spaced-apart annular ridges which define frusto-conical shaped cavities therebetween. The end fitting also has a bore extending inwardly thereinto from its other end which communicates with the inner end of the chamber portion. A valve is mounted in the end fitting and has a valve stem positioned in the bore and a valve head positioned at the inner end of the chamber portion. The chamber portion is adapted to receive a glass reinforced resin bonded cylindrical rod which is maintained therein by a two-part epoxy resin which surrounds the rod and is received in the cavities to form epoxy wedges bonded to the rod. The outer end of the bore is provided with internal threads which threadably receive a screw therein which engages the end of the valve stem so that longitudinal force may be applied to the valve thereby transmitting longitudinal force to the end of the rod.

  3. Dynamic behavior of rod photoreceptor disks.

    PubMed Central

    Chen, Chunhe; Jiang, Yunhai; Koutalos, Yiannis

    2002-01-01

    Eukaryotic cells use membrane organelles, like the endoplasmic reticulum or the Golgi, to carry out different functions. Vertebrate rod photoreceptors use hundreds of membrane sacs (the disks) for the detection of light. We have used fluorescent tracers and single cell imaging to study the properties of rod photoreceptor disks. Labeling of intact rod photoreceptors with membrane markers and polar tracers revealed communication between intradiskal and extracellular space. Internalized tracers moved along the length of the rod outer segment, indicating communication between the disks as well. This communication involved the exchange of both membrane and aqueous phase and had a time constant in the order of minutes. The communication pathway uses approximately 2% of the available membrane disk area and does not allow the passage of molecules larger than 10 kDa. It was possible to load the intradiskal space with fluorescent Ca(2+) and pH dyes, which reported an intradiskal Ca(2+) concentration in the order of 1 microM and an acidic pH 6.5, both of them significantly different than intracellular and extracellular Ca(2+) concentrations and pH. The results suggest that the rod photoreceptor disks are not discrete, passive sacs but rather comprise an active cellular organelle. The communication between disks may be important for membrane remodeling as well as for providing access to the intradiskal space of the whole outer segment. PMID:12202366

  4. Subclinical LV Dysfunction Detection Using Speckle Tracking Echocardiography in Hypertensive Patients with Preserved LV Ejection Fraction

    PubMed Central

    Ayoub, Amal Mohamed; Keddeas, Viola William; Ali, Yasmin Abdelrazek; El Okl, Reham Atef

    2016-01-01

    BACKGROUND Early detection of subclinical left ventricular (LV) systolic dysfunction in hypertensive patients is important for the prevention of progression of hypertensive heart disease. METHODS We studied 60 hypertensive patients (age ranged from 21 to 49 years, the duration of hypertension ranged from 1 to 18 years) and 30 healthy controls, all had preserved left ventricular ejection fraction (LVEF), detected by two-dimensional speckle tracking echocardiography (2D-STE). RESULTS There was no significant difference between the two groups regarding ejection fraction (EF) by Simpson’s method. Systolic velocity was significantly higher in the control group, and global longitudinal strain was significantly higher in the control group compared with the hypertensive group. In the hypertensive group, 23 of 60 patients had less negative global longitudinal strain than −19.1, defined as reduced systolic function, which is detected by 2D-STE (subclinical systolic dysfunction), when compared with 3 of 30 control subjects. CONCLUSION 2D-STE detected substantial impairment of LV systolic function in hypertensive patients with preserved LVEF, which identifies higher risk subgroups for earlier medical intervention. PMID:27385916

  5. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction

    PubMed Central

    Floras, John S.; Ponikowski, Piotr

    2015-01-01

    Cardiovascular autonomic imbalance, a cardinal phenotype of human heart failure, has adverse implications for symptoms during wakefulness and sleep; for cardiac, renal, and immune function; for exercise capacity; and for lifespan and mode of death. The objectives of this Clinical Review are to summarize current knowledge concerning mechanisms for disturbed parasympathetic and sympathetic circulatory control in heart failure with reduced ejection fraction and its clinical and prognostic implications; to demonstrate the patient-specific nature of abnormalities underlying this common phenotype; and to illustrate how such variation provides opportunities to improve or restore normal sympathetic/parasympathetic balance through personalized drug or device therapy. PMID:25975657

  6. Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.).

    PubMed Central

    Hope, A J; Partridge, J C; Hayes, P K

    1998-01-01

    The rod photoreceptors of the European eel, Anguilla anguilla (L.), alter their wavelength of maximum sensitivity (lambda max) from c.a. 523 nm to c.a. 482 nm at maturation, a switch involving the synthesis of a new visual pigment protein (opsin) that is inserted into the outer segments of existing rods. We artificially induced the switch in rod opsin production by the administration of hormones, and monitored the switch at the level of mRNA accumulation using radiolabelled oligonuleotides that hybridized differently to the two forms of eel rod opsin. The production of the deep-sea form of rod opsin was detected 6 h after the first hormone injection, and the switch in rod opsin expression was complete within four weeks, at which time only the mRNA for the deep-sea opsin was detectable in the retinal cells. It is suggested that this system could be used as a tractable model for studying the regulatory control of opsin gene expression. PMID:9633112

  7. Competing mechanisms in the wear resistance behavior of biomineralized rod-like microstructures

    NASA Astrophysics Data System (ADS)

    Escobar de Obaldia, Enrique; Herrera, Steven; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo

    2016-11-01

    The remarkable mechanical properties observed in biological composite materials relative to those of their individual constituents distinguish them from common engineering materials. Some naturally occurring high-performance ceramics, like the external veneer of the Chiton (Cryptochiton stelleri) tooth, have been shown to have superior hardness and impressive abrasion resistance properties. The mechanical performance of the chiton tooth has been attributed to a hierarchical arrangement of nanostructured magnetite rods surrounded with organic material. While nanoindentation tests provide useful information about the overall performance of this biological composite, understanding the key microstructural features and energy dissipation mechanisms at small scales remains a challenging task. We present a combined experimental/numerical approach to elucidate the role of material deformation in the rods, debonding at the rod interfaces and the influence of energy dissipation mechanisms on the ability of the microstructure to distribute damage under extreme loading conditions. We employ a 3D finite element-based micromechanical model to simulate the nanoindentation tests performed in geological magnetite and cross-sections of the chiton tooth. This proposed model is capable of capturing the inelastic deformation of the rods and the failure of their interfaces, while damage, fracture and fragmentation of the mineralized rods is assessed using a probabilistic function. Our results show that these natural materials achieve their abrasion resistant properties by controlling the interface strength between rods, alleviating the tensile stress on the rods near the indentation tip and therefore decreasing the probability of catastrophic failure without significantly sacrificing resistance to penetration. The understanding of these competing energy dissipating mechanisms provides a path to the prediction of new combination of materials. In turns, these results suggest certain

  8. Rod consolidation at the West Valley Demonstration Project

    SciTech Connect

    Bailey, W.J.

    1986-12-01

    A rod consolidation demonstration with irradiated pressurized water reactor fuel was recently conducted by personnel from Nuclear Assurance Corporation and West Valley Nuclear Services Company at the West Valley Demonstration Project in West Valley, New York. The rod consolidation demonstration involved pulling all of the fuel rods from six fuel Assemblies. In general, the rod pulling proceeded smoothly. The highest compaction ratio attained was 1:8:1. Among the total of 1074 fuel rods were some known degraded rods (they had collapsed cladding, a result of in-reactor fuel densification), but no rods were broken or dropped during the demonstration. One aim was to gather information on the effect of rod consolidation operations on the integrity of the fuel rods during subsequent handling and storage. Another goal was to collect information on the condition and handling of intact, damaged, and failed fuel that has been in storage for an extended period. 9 refs., 8 figs., 1 tab.

  9. Interpretation of calculated forces on sucker rods

    SciTech Connect

    Lea, J.F.; Pattillo, P.D. ); Studenmund, W.R. )

    1995-02-01

    The analysis of working loads in a sucker rod string during a pumping cycle has received substantial coverage in the petroleum literature. These load predictions have tended to focus on mechanical design considerations such as excess load and fatigue prediction. In contrast, the current study addresses the issues of buckling associated with working axial/pressure loads in an attempt to clarify the means of both predicting buckling and minimizing its effects. The study begins with a review of the static loads acting near the pump, and proceeds to a discussion of how these loads relate to the tendency of a rod string to buckle on the downstroke. Critical to this discussion is the concept of effective tension. Definition of the effective tension leads to the application of this concept to sinker bar design as a means of mitigating the buckling tendency of a rod string. Key points are reinforced by illustrative examples.

  10. System analysis for sucker-rod pumping

    SciTech Connect

    Schmidt, Z.; Doty, D.R.

    1989-05-01

    Pumping free gas in an oil well can significantly decrease the efficiency of a sucker-rod-pumping installation. Pump placement depth and use of a downhole gas/liquid separator (gas anchor) were found to be significant variables in improving the overall efficiency. A procedure is presented that shows when and to what degree the use of a gas anchor improves the efficiency of a sucker-rod pumping system. It was found that at lower pump intake pressures, the gas anchor usually improves efficiency, but at higher pump intake pressures, use of a gas anchor produces no positive effect. Also, elevating the pump to the highest position that still allows proper pump loading was found to reduce the operating costs of a sucker-rod-pumping installation significantly. Finally, a procedure is presented to calculate directly the pump volumetric efficiency and required volumetric pump displacement rate.

  11. System analysis for sucker rod pumping

    SciTech Connect

    Schmidt, Z.; Doty, D.R.

    1986-01-01

    Pumping free gas in an oil well can significantly decrease the efficiency of a sucker rod pumping installation. Pump placement depth and the use of a down hole gas-liquid separator (gas anchor) found to be significant variables in improving the overall efficiency. A procedure is presented which shows when and by how much the use of a gas anchor improves the efficiency of a sucker rod pumping system. It was found that at lower pump intake pressures the gas anchor usually improves efficiency, while at higher pump intake pressures the use of a gas anchor will produce no positive effect. Also, it was found at elevating the pump to the highest position which still allows for proper pump loading can significantly reduce the operating costs for a sucker rod pumping installation. Finally, a procedure is presented for directly calculating pump volumetric efficiency as well as the required volumetric pump displacement rate.

  12. Method for producing titanium aluminide weld rod

    DOEpatents

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.

    1995-01-01

    A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.

  13. Pattern selection dynamics in rod eutectics

    NASA Astrophysics Data System (ADS)

    Serefoglu, Melis

    The cooperative or diffusively coupled growth of multiple phases during solidification is one of the most widely observed and generally important classes of phase transformations in materials. Technologically, low melting temperature and small freezing range contribute to excellent casting fluidity and fine composite structures give rise to favorable properties. Both of these features contribute to the wide application of eutectic alloys in the casting, welding, and soldering of engineered components. Despite the broad-based technological importance, many fundamental questions regarding eutectic solidification remain unanswered, severely limiting our ability to employ computational methods in the prediction of microstructure for the effective design of new materials and processes. At the core of the most persistent questions, lie problems involving multicomponent thermodynamics, solid-liquid and solid-solid interfacial phenomena, morphological stability, chemical and thermal diffusion, and nucleation phenomena. In the current study, pattern selection dynamics in rod eutectics are investigated using systematic directional solidification experiments and phase field simulations. Directional solidification of a succinonitrile-camphor (SCN-DC) transparent alloy in thin slab geometries of various thicknesses reveals two main points. First, a velocity is indentified at which a transition in array basis vectors is observed in specimens with many rows of rods (i.e. bulk). This transition amounts to a 90 degree rotation of the rod array, shifting from alignment of 1st nearest neighbors to alignment of 2nd nearest neighbors along the slide wall. Second, significant array distortion is observed with decreasing slide thickness, delta, which ultimately leads to a single-row (quasi-3D) morphology where delta/lambda is on the order of unity. In our analysis of these observations, we use a geometrical model to describe the rod arrangement as a function of slide thickness, providing

  14. Chemical Dosimeter Tube With Coaxial Sensing Rod

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E.

    1993-01-01

    Improved length-of-stain (LOS) chemical dosimeter indicates total dose of chemical vapor in air. Made with rods and tubes of various diameters to obtain various sensitivities and dynamic ranges. Sensitivity larger and dose range smaller when more room for diffusion in gap between tube and rod. Offers greater resistance to changing of color of exposed dye back to color of unexposed condition, greater sensitivity, and higher degree of repeatability. Developed to measure doses of gaseous HCI, dosimeter modified by use of other dyes to indicate doses of other chemical vapors.

  15. Nuclear reactor fuel rod attachment system

    DOEpatents

    Not Available

    1980-09-17

    A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.

  16. Energy distributions in rods and beams

    NASA Technical Reports Server (NTRS)

    Wohlever, J. C.; Bernhard, R. J.

    1989-01-01

    A hypothesis proposed by Nefske and Sung (1987) that the mechanical energy flow in acoustic/structural systems can be modeled using a thermal energy flow analogy was tested for both longitudinal vibration in rods and transverse flexural vibrations in beams. It was found that the rod behaves according to the energy flow analogy. However, the beam solutions behaved significantly differently than predicted by the thermal analogy, unless spatially averaged energy and power flow were considered. Otherwise, the beam analysis is restricted to frequencies where the near-field terms in the displacement solution are negligible over most of the beam.

  17. Intraoperative pulmonary embolism of Harrington rod during spinal surgery: the potential dangers of rod cutting.

    PubMed

    Aylott, Caspar E W; Hassan, Kamran; McNally, Donal; Webb, John K

    2006-12-01

    This is a case report and laboratory-based biomechanics study. The objective is to report the first case of Titanium rod embolisation during scoliosis surgery into the Pulmonary artery. To investigate the potential of an unconstrained cut Titanium rod fragment to cause wounding with reference to recognised weapons. Embolisation of a foreign body to the heart is rare. Bullet embolisation to the heart and lungs is infrequently reported in the last 80 years. Iatrogenic cases of foreign body embolisation are very rare. Fifty 1-2 cm segments of Titanium rod were cut in an unconstrained manner and a novel method was used to calculate velocity. A high-speed camera (6,000 frames/s) was used to further measure velocity and study projectile motion. The wounding potential was investigated using lambs liver, high-speed photography and local dissection. Rod velocities were measured in excess of 23 m s(-1). Rods were seen to tumble end-over-end with a maximum speed of 560 revolutions/s. The maximum kinetic energy was 0.61 J which is approximately 2% that of a crossbow. This is sufficient to cause significant liver damage. The degree of surface damage and internal disruption was influenced by the orientation of the rod fragment at impact. An unconstrained cut segment of a Titanium rod has a significant potential to wound. Precautions should be taken to avoid this potentially disastrous but preventable complication.

  18. Method and means of packaging nuclear fuel rods for handling

    DOEpatents

    Adam, Milton F.

    1979-01-01

    Nuclear fuel rods, especially spent nuclear fuel rods that may show physical distortion, are encased within a metallic enclosing structure by forming a tube about the fuel rod. The tube has previously been rolled to form an overlapping tubular structure and then unrolled and coiled about an axis perpendicular to the tube. The fuel rod is inserted into the tube as the rolled tube is removed from a coiled strip and allowed to reassume its tubular shape about the fuel rod. Rollers support the coiled strip in an open position as the coiled strip is uncoiled and allowed to roll about the fuel rod.

  19. The Accretion Flow–Discrete Ejection Connection in GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Rodriguez, Jérôme; Trushkin, Sergei A.

    2016-07-01

    The microquasar GRS 1915+105 is known for its spectacular discrete ejections. They occur unexpectedly, thus their inception has escaped direct observation. It has been shown that the X-ray flux increases in the hours leading up to a major ejection. In this article, we consider the serendipitous interferometric monitoring of a modest version of a discrete ejection described in Reid et al. that would have otherwise escaped detection in daily radio light curves. The observation begins ˜1 hr after the onset of the ejection, providing unprecedented accuracy on the estimate of the ejection time. The astrometric measurements allow us to determine the time of ejection as {{MJD}} {56436.274}-0.013+0.016, i.e., within a precision of 41 minutes (95% confidence). Just like larger flares, we find that the X-ray luminosity increases in last 2–4 hr preceding ejection. Our finite temporal resolution indicates that this elevated X-ray flux persists within {21.8}-19.1+22.6 minutes of the ejection with 95% confidence, the highest temporal precision of the X-ray–superluminal ejection connection to date. This observation provides direct evidence that the physics that launches major flares occurs on smaller scales as well (lower radio flux and shorter ejection episodes). The observation of a X-ray spike prior to a discrete ejection, although of very modest amplitude, suggests that the process linking accretion behavior to ejection is general from the smallest scales to high luminosity major superluminal flares.

  20. Coronal Mass Ejections and Non-recurrent Forbush Decreases

    NASA Astrophysics Data System (ADS)

    Belov, A.; Abunin, A.; Abunina, M.; Eroshenko, E.; Oleneva, V.; Yanke, V.; Papaioannou, A.; Mavromichalaki, H.; Gopalswamy, N.; Yashiro, S.

    2014-10-01

    Coronal mass ejections (CMEs) and their interplanetary counterparts (interplanetary coronal mass ejections, ICMEs) are responsible for large solar energetic particle events and severe geomagnetic storms. They can modulate the intensity of Galactic cosmic rays, resulting in non-recurrent Forbush decreases (FDs). We investigate the connection between CME manifestations and FDs. We used specially processed data from the worldwide neutron monitor network to pinpoint the characteristics of the recorded FDs together with CME-related data from the detailed online catalog based upon the Solar and Heliospheric Observatory (SOHO)/ Large Angle and Spectrometric Coronagraph (LASCO) data. We report on the correlations of the FD magnitude to the CME initial speed, the ICME transit speed, and the maximum solar wind speed. Comparisons between the features of CMEs (mass, width, velocity) and the characteristics of FDs are also discussed. FD features for halo, partial halo, and non-halo CMEs are presented and discussed.

  1. Light-induced ejection of calcium atoms from polymer surfaces

    NASA Astrophysics Data System (ADS)

    Mango, F.; Maccioni, E.

    2008-12-01

    Laser-induced fluorescence (LIF) of calcium atoms at room temperature has been observed in a polydimethylsiloxane (PDMS) coated cell when the walls are illuminated with non resonant visible light. Ca atomic density in the gas phase, monitored by the LIF, is much higher than normal room-temperature vapour pressure of calcium. In past years photon-stimulated desorption (PSD) was observed for several alkali metals that adsorbed to solid films of PDMS polymers. High yields of photo-desorbed atoms (and molecules in the case of sodium) can be induced, at room temperature and below, by weak intensity radiation. The desorption is characterised by a frequency threshold, whereas any power threshold is undetectable. The calcium photo-ejection is characterised both by a frequency threshold (about 18 500 cm-1) and by an observable power threshold (whose value becomes lower when the photo-ejecting light wavelength decreases).

  2. The impact ejection of living organisms into space

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.

    1985-01-01

    The possibility of natural processes to blast living organisms into space was examined. It is suggested that rocks ejected from the Earth by a giant meteorite or comet impact can carry microorganisms into space. Such microscopic Earth life would have an opportunity to colonize the other planets if it can survive the rigors of space until it falls into the atmosphere of a hospitable planet.

  3. Determining the full halo coronal mass ejection characteristics

    NASA Astrophysics Data System (ADS)

    Fainshtein, V. G.

    2009-03-01

    In this paper we determined the parameters of 45 full halo coronal mass ejections (HCMEs) for various modifications of their cone forms (“ice cream cone models”). We show that the CME determined characteristics depend significantly on the CME chosen form. We show that, regardless of the CME chosen form, the trajectory of practically all the considered HCMEs deviate from the radial direction to the Sun-to-Earth axis at the initial stage of their movement.

  4. Evolving Magnetic Structures and Their Relation to Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Feynman, J.

    1996-01-01

    Solar activity regions are frequently concentrated into cluster which persist for many solar rotations. These activity complexes are associated with weak dispersed magnetic fields which are most apparent after the activity itself has ceased. We call this combination of persistent activity and dispersed Evolving Magnetic Structures (EMS). Here we show examples of EMSs and describe the evolution of an EMS associated with major Coronal Mass Ejections (CME) and other solar and magnetic disturbances.

  5. Associations between coronal mass ejections and interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Howard, R. A.; Koomen, M. J.; Michels, D. J.; Schwenn, R.; Muhlhauser, K. H.; Rosenbauer, H.

    1983-01-01

    Nearly continuous complementary coronal observations and interplanetary plasma measurements for the years 1979-1982 are compared. It is shown that almost all low latitude high speed coronal mass ejections (CME's) were associated with shocks at HELIOS 1. Some suitably directed low speed CME's were clearly associated with shocks while others may have been associated with disturbed plasma (such as NCDE's) without shocks. A few opposite hemisphere CME's associated with great flares seem to be associated with shocks at HELIOS.

  6. Dynamics of bacteriophage genome ejection in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Panja, Debabrata; Molineux, Ian J.

    2010-12-01

    Bacteriophages, phages for short, are viruses of bacteria. The majority of phages contain a double-stranded DNA genome packaged in a capsid at a density of ~500 mg ml-1. This high density requires substantial compression of the normal B-form helix, leading to the conjecture that DNA in mature phage virions is under significant pressure, and that pressure is used to eject the DNA during infection. A large number of theoretical, computer simulation and in vitro experimental studies surrounding this conjecture have revealed many—though often isolated and/or contradictory—aspects of packaged DNA. This prompts us to present a unified view of the statistical physics and thermodynamics of DNA packaged in phage capsids. We argue that the DNA in a mature phage is in a (meta)stable state, wherein electrostatic self-repulsion is balanced by curvature stress due to confinement in the capsid. We show that in addition to the osmotic pressure associated with the packaged DNA and its counterions, there are four different pressures within the capsid: pressure on the DNA, hydrostatic pressure, the pressure experienced by the capsid and the pressure associated with the chemical potential of DNA ejection. Significantly, we analyze the mechanism of force transmission in the packaged DNA and demonstrate that the pressure on DNA is not important for ejection. We derive equations showing a strong hydrostatic pressure difference across the capsid shell. We propose that when a phage is triggered to eject by interaction with its receptor in vitro, the (thermodynamic) incentive of water molecules to enter the phage capsid flushes the DNA out of the capsid. In vivo, the difference between the osmotic pressures in the bacterial cell cytoplasm and the culture medium similarly results in a water flow that drags the DNA out of the capsid and into the bacterial cell.

  7. Ejection behavior characteristics in experimental cratering in sandstone targets

    NASA Astrophysics Data System (ADS)

    Sommer, Frank; Reiser, Fiona; Dufresne, Anja; Poelchau, Michael H.; Hoerth, Tobias; Deutsch, Alex; Kenkmann, Thomas; Thoma, Klaus

    2013-01-01

    Within the frame of the MEMIN research unit (Multidisciplinary Experimental and Numerical Impact Research Network), impact experiments on sandstone targets were carried out to systematically study the influence of projectile mass, velocity, and target water saturation on the cratering and ejection processes. The projectiles were accelerated with two-stage light-gas guns (Ernst-Mach-Institute) onto fine-grained targets (Seeberger sandstone) with about 23% porosity. Collection of the ejecta on custom-designed catchers allowed determination of particle shape, size distribution, ejection angle, and microstructures. Mapping of the ejecta imprints on the catcher surface enabled linking of the different patterns to ejection stages observed on high-speed videos. The increase in projectile mass from 0.067 to 7.1 g correlates with an increase in the total ejected mass; ejecta angles, however, are similar in range for all experiments. The increase in projectile velocity from 2.5 to 5.1 km s-1 correlates with a total ejecta mass increase as well as in an increase in comminution efficiency, and a widening of the ejecta cone. A higher degree of water saturation of the target yields an increase in total ejecta mass up to 400% with respect to dry targets, higher ejecta velocity, and a steeper cone. These data, in turn, suggest that the reduced impedance contrast between the quartz grains of the target and the pores plays a primary role in the ejecta mass increase, while vaporization of water determines the ejecta behavior concerning ejecta velocity and particle distribution.

  8. Multinucleon Ejection Model for Two Body Current Neutrino Interactions

    SciTech Connect

    Sobczyk, Jan T.; /Fermilab

    2012-06-01

    A model is proposed to describe nucleons ejected from a nucleus as a result of two-body-current neutrino interactions. The model can be easily implemented in Monte Carlo neutrino event generators. Various possibilities to measure the two-body-current contribution are discussed. The model can help identify genuine charge current quasielastic events and allow for a better determination of the systematic error on neutrino energy reconstruction in neutrino oscillation experiments.

  9. IR Variability During a Shell Ejection of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2006-02-01

    Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to a very eccentric binary system with a shell ejection occurring at periastron. Mid-IR images and spectra with T-ReCS are needed to measure changes in the current bolometric luminosity and to trace dust formation episodes. This will provide a direct estimate of the mass ejected. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with GNIRS will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula. The complex kinematic structure of η Car's ejecta also holds important clues to its mass ejection history, and is essential for interpreting other data. Phoenix can provide a unique kinematic map of the complex density and time-variable ionization structure of η Car's nebula, which is our best example of the pre-explosion environment of very massive stars.

  10. Investigation of a clamshell roll-out ejection concept

    NASA Technical Reports Server (NTRS)

    Hatakeyama, L. F.

    1971-01-01

    The equations for the motion, forces, and couples generated by clamshells released from spinning sounding rockets in accordance with a roll-out ejection concept are presented. The application of these equations to a study of a system for the Javelin rocket vehicle is discussed. The roll-out ejection concept advocated requires that each deploying clamshell be pivoted about an axis at its trailing edge located in the system sectioning plane. Clamshell despinning is a consequence of this deployment since the pivotal rate is in opposition to the rocket vehicle spin. The energy required by the deployment is derived largely from the rotational energy of the clamshell. Thus, the rocket vehicle will not be significantly despun by this kind of clamshell deployment. This ejection concept also permits a system design which makes it possible to limit clamshell angular motion to rotation about that one of its centroidal principal axes which is brought into parallelism with the rocket vehicle longitudinal axis. Also, by equalizing the moments of inertia about the other centroidal principal axes, the roll-out motion can be decoupled from any extraneous angular motion about these axes.

  11. The Formation of Brown Dwarfs as Ejected Stellar Embryos

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo; Clarke, Cathie

    2001-07-01

    We conjecture that brown dwarfs are substellar objects because they have been ejected from small newborn multiple systems that have decayed in dynamical interactions. In this view, brown dwarfs are stellar embryos for which the star formation process was aborted before the hydrostatic cores could build up enough mass to eventually start hydrogen burning. The disintegration of a small multiple system is a stochastic process, which can be described only in terms of the half-life of the decay. A stellar embryo competes with its siblings in order to accrete infalling matter, and the one that grows slowest is most likely to be ejected. With better luck, a brown dwarf would therefore have become a normal star. This interpretation of brown dwarfs readily explains the rarity of brown dwarfs as close companions to normal stars, the absence of wide brown dwarf binaries, and the flattening of the low-mass end of the initial mass function. Possible observational tests of this scenario include statistics of brown dwarfs near Class 0 sources and the kinematics of brown dwarfs in star-forming regions, while they still retain a kinematic signature of their expulsion. Because the ejection process limits the amount of gas brought along in a disk, it is predicted that substellar equivalents to the classical T Tauri stars should be rather short-lived.

  12. Effects of Slag Ejection on Solid Rocket Motor Performance

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Purinton, David C.; Hengel, John E.; Skelley, Stephen E.

    1995-01-01

    In past firings of the Reusable Solid Rocket Motor (RSRM) both static test and flight motors have shown small pressure perturbations occurring primarily between 65 and 80 seconds. A joint NASA/Thiokol team investigation concluded that the cause of the pressure perturbations was the periodic ingestion and ejection of molten aluminum oxide slag from the cavity around the submerged nozzle nose which tends to trap and collect individual aluminum oxide droplets from the approach flow. The conclusions of the team were supported by numerous data and observations from special tests including high speed photographic films, real time radiography, plume calorimeters, accelerometers, strain gauges, nozzle TVC system force gauges, and motor pressure and thrust data. A simplistic slag ballistics model was formulated to relate a given pressure perturbation to a required slag quantity. Also, a cold flow model using air and water was developed to provide data on the relationship between the slag flow rate and the chamber pressure increase. Both the motor and the cold flow model exhibited low frequency oscillations in conjunction with periods of slag ejection. Motor and model frequencies were related to scaling parameters. The data indicate that there is a periodicity to the slag entrainment and ejection phenomena which is possibly related to organized oscillations from instabilities in the dividing streamline shear layer which impinges on the underneath surface of the nozzle.

  13. Modeling and simulation performance of sucker rod beam pump

    SciTech Connect

    Aditsania, Annisa; Rahmawati, Silvy Dewi Sukarno, Pudjo; Soewono, Edy

    2015-09-30

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.

  14. Modeling and simulation performance of sucker rod beam pump

    NASA Astrophysics Data System (ADS)

    Aditsania, Annisa; Rahmawati, Silvy Dewi; Sukarno, Pudjo; Soewono, Edy

    2015-09-01

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.

  15. Feline left ventricular oxygen consumption is not affected by volume expansion, ejection or redevelopment of pressure during relaxation.

    PubMed

    Duwel, C M; Westerhof, N

    1988-09-01

    We studied the dependency of myocardial oxygen consumption on the mechanical events during left ventricular relaxation in isolated supported cat hearts. The volume of the left ventricle was controlled by means of a balloon connected to a membrane pump. Oxygen consumption (MVO2 in cm3.min-1.100 g-1) for three protocols (PROT) performed at peak isovolumic pressure, was studied: (1) rapid ejection to zero pressure, (2) partial rapid ejection followed by redevelopment of pressure, (3) volume expansion during relaxation, and compared with oxygen consumption of isovolumic (ISOV) beats. We found (mean +/- SD): (table; see text) In the protocols 1 and 3 the differences were not significant (paired Student's t-test, p greater than 0.05). In protocols 1 and 2 left ventricular volume was decreased up to 2.15 cm3 (i.e. stroke volume, SV) during the pressure release. We studied the specific effect of ejection (i.e., wall muscle shortening) in a fourth protocol in which the ventricle ejected up to 2.7 cm3 under nearly zero pressure load (isobaric contraction). There was a small amount of oxygen consumption associable with this unloaded ejection i.e. MVO2 = 3.38 (+/- 0.47) + 0.30 (+/- 0.16) SV, but it was too small to compensate for a decrease in MVO2 expected from the pressure release according to the tension time index. These findings suggest that oxygen consumption does not depend on the mechanical events during ventricular relaxation. PMID:3174398

  16. Analysis of sucker rod and sinkerbar failures

    SciTech Connect

    Waggoner, J.R.; Buchheit, R.G.

    1993-03-01

    This report presents results of a study of performance and failures of the sucker rod/sinkerbar string used in beam-pumping operations through metallography, finite element analysis, and failure data collection. Metallography showed that the microstructure of the steel bar stock needs to be considered to improve the fatigue resistance of the sucker rod strings. The current specification based on tensile strength, or yield strength, may not be appropriate since failure occurs because of fatigue and not yielding, and tensile strength is not always a good measure of fatigue resistance. Finite element analysis of the threaded connection quantitatively assesses the coupling designs under various loading conditions. Subcritical fractures in metallography are also suggested by calculated stress distribution in threaded coupling. Failure data illustrates both magnitude and frequency of failures, as well as categorizing the suspected cause of failure. Application of the results in each of these project areas is expected to yield improved choice of metal bar stock, thread design, and make-up practices which can significantly reduce the frequency of sucker rod failures. Sucker rod failures today are not inherent in the process, but can be minimized through the application of new technology and observation of common-sense practices.

  17. Program optimizes sucker-rod pumping mode

    SciTech Connect

    Takacs, G. )

    1990-10-01

    Direct energy costs for sucker-rod pumping can be optimized by selecting the right pump size, stroke length, and pumping speed for the required liquid production rate. Calculation procedures for a computer program are developed for optimizing the design of conventional pumping units.

  18. Stop sucker rod failures to save money

    SciTech Connect

    Moore, K.H.

    1981-07-01

    This study presents examples of frequent and common sucker rod failures, explains how failures occur, presents methods to recognize these failures, and discusses changes in conditions that cause failure. From early identification, corrective measures can be taken to prevent their recurrence, reducing downtime and lost production.

  19. Method of making class D sucker rods

    SciTech Connect

    Woodings, R. T.

    1984-12-04

    It has been found that API Class D sucker rods can be made inexpensively from low-alloy, low-cost steel by following a suitable induction-normalizing process and using a suitable steel to which there has been added 0.07 to 0.15 percent of vanadium.

  20. Wear simulation of sucker rod couplings

    SciTech Connect

    Schumacher, W.J. )

    1991-09-01

    This paper reports that sucker rod strings are devices used to actuate pumps located at the bottom of oil wells. The individual rods are connected together by threaded couplings. Since the couplings have a larger diameter than the rods, they sometimes contact the inside diameter of the tubing during the up and down pumping cycle. Usually, this is not problem unless buckling occurs in the downstroke; however, this can lead to accelerated wear of the coupling and tubing. In nonvertical wells (offset, deviated, or slanted), the contact is more severe and rapid wear takes place. Couplings are more easily replaced during shutdowns; it is very important to minimize wear to tubing since it is virtually impossible to replace. TRIBONIC 20, an iron-based alloy containing approximately 13% Mn, 5% Si, 5.5% Cr, and 5% Ni, was laboratory evaluated to determine whether or not it could solve the sucker rod coupling-production tubing wear problem. The alloy demonstrated outstanding wear resistance both to itself and in protecting type 1019 steel.

  1. Piston rod seal for a Stirling engine

    DOEpatents

    Shapiro, Wilbur

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  2. A Cambrian origin for vertebrate rods

    PubMed Central

    Asteriti, Sabrina; Grillner, Sten; Cangiano, Lorenzo

    2015-01-01

    Vertebrates acquired dim-light vision when an ancestral cone evolved into the rod photoreceptor at an unknown stage preceding the last common ancestor of extant jawed vertebrates (∼420 million years ago Ma). The jawless lampreys provide a unique opportunity to constrain the timing of this advance, as their line diverged ∼505 Ma and later displayed high-morphological stability. We recorded with patch electrodes the inner segment photovoltages and with suction electrodes the outer segment photocurrents of Lampetra fluviatilis retinal photoreceptors. Several key functional features of jawed vertebrate rods are present in their phylogenetically homologous photoreceptors in lamprey: crucially, the efficient amplification of the effect of single photons, measured by multiple parameters, and the flow of rod signals into cones. These results make convergent evolution in the jawless and jawed vertebrate lines unlikely and indicate an early origin of rods, implying strong selective pressure toward dim-light vision in Cambrian ecosystems. DOI: http://dx.doi.org/10.7554/eLife.07166.001 PMID:26095697

  3. Dark Current and Photocurrent in Retinal Rods

    PubMed Central

    Hagins, W. A.; Penn, R. D.; Yoshikami, S.

    1970-01-01

    The interstitial voltages, currents, and resistances of the receptor layer of the isolated rat retina have been investigated with arrays of micropipette electrodes inserted under direct visual observation by infrared microscopy. In darkness a steady current flows inward through the plasma membrane of the rod outer segments. It is balanced by equal outward current distributed along the remainder of each rod. Flashes of light produce a photocurrent which transiently reduces the dark current with a waveform resembling the PII and a-wave components of the electroretinogram. The photocurrent is produced by a local action of light within 12 μm of its point of absorption in the outer segments. The quantum current gain of the photocurrent is greater than 106. The electrical space constant of rat rods is greater than 25 μm, so that the electrical effects of the photocurrent are large enough at the rod synapses to permit single absorbed photons to be detected by the visual system. The photocurrent is apparently the primary sensory consequence of light absorption by rhodopsin. ImagesFigure 3Figure 8Figure 14 PMID:5439318

  4. Rod Soltis: Making Connections. Appalachian Scene.

    ERIC Educational Resources Information Center

    Baldwin, Fred D.

    1998-01-01

    Describes the work of Rod Soltis in developing interlinked telecommunications networks in all 14 of New York's Appalachian counties. The networks connect to each other, state and federal agencies and networks, schools, social service agencies, hospitals, and museums, and include private partnerships with telephone and cable TV companies. Soltis'…

  5. Kinetics of Turn-offs of Frog Rod Phototransduction Cascade

    PubMed Central

    Astakhova, Luba A.; Firsov, Michael L.; Govardovskii, Victor I.

    2008-01-01

    The time course of the light-induced activity of phototrandsuction effector enzyme cGMP-phosphodiesterase (PDE) is shaped by kinetics of rhodopsin and transducin shut-offs. The two processes are among the key factors that set the speed and sensitivity of the photoresponse and whose regulation contributes to light adaptation. The aim of this study was to determine time courses of flash-induced PDE activity in frog rods that were dark adapted or subjected to nonsaturating steady background illumination. PDE activity was computed from the responses recorded from solitary rods with the suction pipette technique in Ca2+-clamping solution. A flash applied in the dark-adapted state elicits a wave of PDE activity whose rising and decaying phases have characteristic times near 0.5 and 2 seconds, respectively. Nonsaturating steady background shortens both phases roughly to the same extent. The acceleration may exceed fivefold at the backgrounds that suppress ≈70% of the dark current. The time constant of the process that controls the recovery from super-saturating flashes (so-called dominant time constant) is adaptation independent and, hence, cannot be attributed to either of the processes that shape the main part of the PDE wave. We hypothesize that the dominant time constant in frog rods characterizes arrestin binding to rhodopsin partially inactivated by phosphorylation. A mathematical model of the cascade that considers two-stage rhodopsin quenching and transducin inactivation can mimic experimental PDE activity quite well. The effect of light adaptation on the PDE kinetics can be reproduced in the model by concomitant acceleration on both rhodopsin phosphorylation and transducin turn-off, but not by accelerated arrestin binding. This suggests that not only rhodopsin but also transducin shut-off is under adaptation control. PMID:18955597

  6. Design and Integration of an All-Magnetic Attitude Control System for FASTSAT-HSV01's Multiple Pointing Objectives

    NASA Technical Reports Server (NTRS)

    DeKock, Brandon; Sanders, Devon; Vanzwieten, Tannen; Capo-Lugo, Pedro

    2011-01-01

    The FASTSAT-HSV01 spacecraft is a microsatellite with magnetic torque rods as it sole attitude control actuator. FASTSAT s multiple payloads and mission functions require the Attitude Control System (ACS) to maintain Local Vertical Local Horizontal (LVLH)-referenced attitudes without spin-stabilization, while the pointing errors for some attitudes be significantly smaller than the previous best-demonstrated for this type of control system. The mission requires the ACS to hold multiple stable, unstable, and non-equilibrium attitudes, as well as eject a 3U CubeSat from an onboard P-POD and recover from the ensuing tumble. This paper describes the Attitude Control System, the reasons for design choices, how the ACS integrates with the rest of the spacecraft, and gives recommendations for potential future applications of the work.

  7. Duration of diastole versus cycle length as correlates of left ventricular ejection time

    NASA Technical Reports Server (NTRS)

    Weisdorf, D.; Spodick, D. H.

    1976-01-01

    Studies were done on 82 normal subjects to evaluate cycle length vs duration of diastole as determinants of left ventricular ejection time. Cycle length and its reciprocal, heart rate, had the highest correlation with left ventricular ejection time. Removal of the self-correlation of left ventricular ejection time within cycle length reduces the correlation so that, of all intervals, duration of diastole had the highest correlation as a determinant of left ventricular ejection time. Cycle length and heart rate remain valuable as spuriously close but not misleading correlates for predicting or correcting left ventricular ejection time.

  8. Improved designs reduce sucker-rod pumping costs

    SciTech Connect

    Takacs, G.

    1996-10-07

    Pumping mode selection, optimum counterbalance determination, and rod string design are factors that can reduce operational costs and improve sucker-rod pumping operations. To maximize profits from sucker-rod pumped wells, designs must aim at technically and economically optimum conditions. Assessment of surface and downhole energy losses are basic considerations for improving system efficiency. It is important to properly select the pumping mode, such as the combination of plunger size, pumping speed, stroke length, and rod taper design. The best pumping mode maximizes lifting efficiency and, at the same time, reduces prime-mover power requirements and electrical costs. Surface equipment operational efficiency can be improved with optimum counterbalancing of the pumping unit, and top achieve an ideal sucker-rod pumping system, a tapered rod string must have a proper mechanical design. The paper discusses rod pumping, downhole energy losses, surface losses, optimum efficiency, mode selection, counterbalancing, minimizing the cyclic load factor, and rod string design.

  9. Stimulus-evoked outer segment changes in rod photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng

    2016-06-01

    Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation.

  10. 5. DETAIL OF ROD MILL BASE AND CONVEYOR BELT SUPPORT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF ROD MILL BASE AND CONVEYOR BELT SUPPORT, EAST VIEW. - Vanadium Corporation of America (VCA) Naturita Mill, Grinding Rod Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  11. 32 CFR 989.21 - Record of decision (ROD).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the signator. A ROD (40 CFR 1505.2) is a concise public document stating what an agency's decision is... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.21 Record of decision (ROD). (a) The proponent and the...

  12. Transduction heats in retinal rods: tests of the role of cGMP by pyroelectric calorimetry.

    PubMed Central

    Hagins, W A; Ross, P D; Tate, R L; Yoshikami, S

    1989-01-01

    The sensory dark current of vertebrate retinal rods is believed to be controlled by light activation of a chain of coupled biochemical cycles that finally regulate the cationic conductance of the plasma membrane by hydrolytically reducing the level of cGMP in rod outer segment cytoplasm. The scheme has been tested by measuring heat production by live frog retinas when stimulated with sequences of light flashes of progressively increasing energy. Using pyroelectric poly(vinylidene 1,1-difluoride) detectors that simultaneously measure transretinal voltage and retinal temperature change, four heat effects assignable to known biochemical cycles in rods have been found. As the dark current shuts down after a flash causing 180-1800 rhodopsin photoisomerizations per rod, a heat burst, q1, raises the retinal temperature 1-2 microK. q1 is closely regulated in size and slightly precedes dark current shutdown. Isobutylmethylxanthine slows and enlarges q1, delaying the dark-current response. Increasing cytoplasmic Ca2+ stops the dark current without affecting q1. Although rod heat production is consistent with splitting of 1-3 microM of free cytoplasmic cGMP during transduction, the kinetics of the two processes do not match the predictions of current cGMP control models. PMID:2537492

  13. Articulated rods – a novel class of molecular rods based on oligospiroketals (OSK)

    PubMed Central

    Merkel, Roswitha; Müller, Peter

    2015-01-01

    Summary We developed a new type of molecular rods consisting of two (or more) rigid units linked by a flexible joint. Consequently we called these constructs articulated rods (ARs). The syntheses of ARs were carried out by a flexible and modular approach providing access to a number of compounds with various functionalizations in terminal positions. First applications were presented with pyrene, cinnamoyl and anthracenyl labelled ARs. PMID:25670995

  14. Composite models for combined rod and fluid dynamics in sucker-rod pumping well systems

    SciTech Connect

    Lekia, S.D.L.

    1989-01-01

    This study presents the derivation and the numerical solution of composite models in which both the rod string and the fluid dynamics are coupled so as to accurately account for the effects of viscous friction in sucker-rod pumped wells. A viscous damped hyperbolic first order partial differential equation is coupled to the time derivative of Hooke's law to model the rod string motion and Navier Stokes equations are used to model the fluid dynamics in the rod-tubing annulus. A set of four equations comprise the composite model from which four sub-models for different flow scenarios are considered. The equations are solved numerically by a shock capturing algorithm known as the MacCormack Explicit Scheme which is a two-step predictor-corrector scheme and is second order accuracy in time and space. Five example problems covering various pump setting depths, fluid properties and surface pumping unit kinematics are presented to study the effects of certain important variables. From the analyses of the results of these example problems it is concluded that (1) while the effects of fluid dynamics may appear masked in shallow to medium depth sucker-rod pumped wells, they can not be ignored in deeper wells where large discrepancies occur in the prediction of system parameters, (2) the load range decreases moderately as viscosity increases and the predicted polished rod horsepower does not change significantly over the range of viscosities studied in shallow to medium depth sucker-rod pumped wells, (3) the presence of small quantities of the gas phase in the fluid column reduces system peak torque and precipitate the need for smaller counterbalance weights and (4) the influence of two-phase gas-liquid flow in the rod-tubing annulus on system design parameters declines with increasing pump setting depth. The results are compared against other design models appearing in the literature.

  15. 13. SOUTHEAST TO SUCKER ROD WORK BENCH AND WOODEN SUCKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SOUTHEAST TO SUCKER ROD WORK BENCH AND WOODEN SUCKER ROD STORAGE RACKS ALONG EAST WALL OF FACTORY INTERIOR. AT THIS BENCH WORKERS RIVETED THREADED WROUGHT IRON CONNECTORS TO THE ENDS OF 20' LONG WOODEN SUCKER RODS (THE RODS WHICH EXTEND DOWNWARD IN THE WELL FROM THE GROUND SURFACE TO PISTON DISPLACEMENT PUMPS WHICH ACTUALLY ELEVATE WATER TO THE SURFACE). ROZNOR HEATER AT THE FAR RIGHT WAS ADDED CIRCA 1960. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  16. Colour mixing LEDs with short microsphere doped acrylic rods.

    PubMed

    Deller, Chris; Smith, Geoff; Franklin, Jim

    2004-07-26

    The output colour distributions from red, green and blue (RGB) LEDs mixed with cross linked PMMA micro particle doped PMMA mixing rods is compared to output from a plain PMMA mixing rod. Distinctive patterns with clear colour separation result with the undoped rod. These are homogenised by our mixers, resulting in white light. Light output has been photographed, measured and computer simulated at a distance of 10 cm from the output end of the rods.

  17. Feedback induction of a photoreceptor-specific isoform of retinoid-related orphan nuclear receptor β by the rod transcription factor NRL.

    PubMed

    Fu, Yulong; Liu, Hong; Ng, Lily; Kim, Jung-Woong; Hao, Hong; Swaroop, Anand; Forrest, Douglas

    2014-11-21

    Vision requires the generation of cone and rod photoreceptors that function in daylight and dim light, respectively. The neural retina leucine zipper factor (NRL) transcription factor critically controls photoreceptor fates as it stimulates rod differentiation and suppresses cone differentiation. However, the controls over NRL induction that balance rod and cone fates remain unclear. We have reported previously that the retinoid-related orphan receptor β gene (Rorb) is required for Nrl expression and other retinal functions. We show that Rorb differentially expresses two isoforms: RORβ2 in photoreceptors and RORβ1 in photoreceptors, progenitor cells, and other cell types. Deletion of RORβ2 or RORβ1 increased the cone:rod ratio ∼2-fold, whereas deletion of both isoforms in Rorb(-/-) mice produced almost exclusively cone-like cells at the expense of rods, suggesting that both isoforms induce Nrl. Electroporation of either RORβ isoform into retinal explants from Rorb(-/-) neonates reactivated Nrl and rod genes but, in Nrl(-/-) explants, failed to reactivate rod genes, indicating that NRL is the effector for both RORβ isoforms in rod differentiation. Unexpectedly, RORβ2 expression was lost in Nrl(-/-) mice. Moreover, NRL activated the RORβ2-specific promoter of Rorb, indicating that NRL activates Rorb, its own inducer gene. We suggest that feedback activation between Nrl and Rorb genes reinforces the commitment to rod differentiation. PMID:25296752

  18. Carbon Inverse Opal Rods for Nonenzymatic Cholesterol Detection.

    PubMed

    Zhong, Qifeng; Xie, Zhuoying; Ding, Haibo; Zhu, Cun; Yang, Zixue; Gu, Zhongze

    2015-11-18

    Carbon inverse opal rods made from silica photonic crystal rods are used for nonenzymatic cholesterol sensing. The characteristic reflection peak originating from the physical periodic structure works as sensing signals for quantitatively estimating cholesterol concentrations. Carbon inverse opal rods work both in cholesterol standard solutions and human serum. They are suitable for practical use in clinical diagnose. PMID:26415111

  19. Measurement of the Speed of Sound in a Metal Rod.

    ERIC Educational Resources Information Center

    Mak, Se-yuen; Ng, Yee-kong; Wu, Kam-wah

    2000-01-01

    Suggests two improved methods to measure the speed of sound in a metal rod. One employs a fast timer to measure the time required for a compression pulse to travel along the rod from end to end, and a second uses a microphone to measure the frequency of the fundamental mode of a freely suspending singing rod. (Author/ASK)

  20. 32 CFR 989.21 - Record of decision (ROD).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prepare a draft ROD, formally staff it through the MAJCOM EPC, to HQ USAF/A7CI for verification of... the signator. A ROD (40 CFR 1505.2) is a concise public document stating what an agency's decision is... conclusion, the reason for the selection, and the alternatives considered. The ROD must identify the...