Sample records for control root rot

  1. Control of black walnut root rot diseases in nurseries.

    Treesearch

    Kenneth J. Jr. Kessler

    1982-01-01

    Current nursery methods used to control black walnut root rot diseases are considered in terms of integrated pest management. Suggestions for future root rot control research studies and procedures to minimize root rot problems are provided.

  2. Efficacy of management tools for control of Pythium root rot of Douglas fir seedlings, 2010

    USDA-ARS?s Scientific Manuscript database

    This study investigated the efficacy of management tools for control of Pythium root rot of Douglas fir seedlings. This effort was conducted as part of the IR-4 Ornamental Horticulture program to evaluate fungicides and biopesticides for management of root, crown and stem rot of ornamental plants ca...

  3. 40 CFR Appendix L to Subpart A of... - Approved Critical Uses and Limiting Critical Conditions for Those Uses for the 2010 Control Period

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... infestation. Strawberry Fruit (a) California growers Moderate to severe black root rot or crown rot.Moderate... or purple nutsedge infestation.Moderate to severe nematode infestation. Moderate to severe black root.... (b) North Carolina and Tennessee growers Moderate to severe black root rot.Moderate to severe root...

  4. 40 CFR Appendix L to Subpart A of... - Approved Critical Uses and Limiting Critical Conditions for Those Uses for the 2010 Control Period

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... infestation. Strawberry Fruit (a) California growers Moderate to severe black root rot or crown rot.Moderate... or purple nutsedge infestation.Moderate to severe nematode infestation. Moderate to severe black root.... (b) North Carolina and Tennessee growers Moderate to severe black root rot.Moderate to severe root...

  5. Fungicides reduce Rhododendron root rot and mortality caused by Phytophthora cinnamomi, but not by P. plurivora

    USDA-ARS?s Scientific Manuscript database

    Rhododendron root rot, caused by several Phytophthora species, can cause devastating losses in nursery-grown plants. Most research on chemical control of root rot has focused on Phytophthora cinnamomi. However, it is unknown whether treatments recommended for P. cinnamomi are also effective for othe...

  6. Etiology and Epidemiological Conditions Promoting Fusarium Root Rot in Sweetpotato.

    PubMed

    Scruggs, A C; Quesada-Ocampo, L M

    2016-08-01

    Sweetpotato production in the United States is limited by several postharvest diseases, and one of the most common is Fusarium root rot. Although Fusarium solani is believed to be the primary causal agent of disease, numerous other Fusarium spp. have been reported to infect sweetpotato. However, the diversity of Fusarium spp. infecting sweetpotato in North Carolina is unknown. In addition, the lack of labeled and effective fungicides for control of Fusarium root rot in sweetpotato creates the need for integrated strategies to control disease. Nonetheless, epidemiological factors that promote Fusarium root rot in sweetpotato remain unexplored. A survey of Fusarium spp. infecting sweetpotato in North Carolina identified six species contributing to disease, with F. solani as the primary causal agent. The effects of storage temperature (13, 18, 23, 29, and 35°C), relative humidity (80, 90, and 100%), and initial inoculum level (3-, 5-, and 7-mm-diameter mycelia plug) were examined for progression of Fusarium root rot caused by F. solani and F. proliferatum on 'Covington' sweetpotato. Fusarium root rot was significantly reduced (P < 0.05) at lower temperatures (13°C), low relative humidity levels (80%), and low initial inoculum levels for both pathogens. Sporulation of F. proliferatum was also reduced under the same conditions. Qualitative mycotoxin analysis of roots infected with one of five Fusarium spp. revealed the production of fumonisin B1 by F. proliferatum when infecting sweetpotato. This study is a step toward characterizing the etiology and epidemiology of Fusarium root rot in sweetpotato, which allows for improved disease management recommendations to limit postharvest losses to this disease.

  7. [Research progress in root rot diseases of Chinese herbal medicine and control strategy by antagonistic microorganisms].

    PubMed

    Gao, Fen; Ren, Xiao-xia; Wang, Meng-liang; Qin, Xue-mei

    2015-11-01

    In recent years, root rot diseases of Chinese herbal medicine have been posing grave threat to the development of the traditional Chinese medicine industry. This article presents a review on the occurring situation of the root rot disease, including the occurrence of the disease, the diversity of the pathogens, the regional difference in dominant pathogens,and the complexity of symptoms and a survey of the progress in bio-control of the disease using antagonistic microorganisms. The paper also discusses the existing problems and future prospects in the research.

  8. Control of Root Rot and Wilt Diseases of Roselle under Field Conditions

    PubMed Central

    Hassan, Naglaa; Elsharkawy, Mohsen Mohamed; Shimizu, Masafumi

    2014-01-01

    Roselle (Hibiscus sabdariffa L.) is one of the most important medicinal crops in many parts of the world. In this study, the effects of microelements, antioxidants, and bioagents on Fusarium oxysporum, F. solani, and Macrophomina phaseolina, the causal pathogens of root rot and wilt diseases in roselle, were examined under field conditions. Preliminary studies were carried out in vitro in order to select the most effective members to be used in field control trials. Our results showed that microelements (copper and manganese), antioxidants (salicylic acid, ascorbic acid, and EDTA), a fungicide (Dithane M45) and biological control agents (Trichoderma harzianum and Bacillus subtilis) were significantly reduced the linear growth of the causal pathogens. Additionally, application of the previous microelements, antioxidants, a fungicide and biological control agents significantly reduced disease incidence of root rot and wilt diseases under field conditions. Copper, salicylic acid, and T. harzianum showed the best results in this respect. In conclusion, microelements, antioxidants, and biocontrol agents could be used as alternative strategies to fungicides for controlling root rot and wilt diseases in roselle. PMID:25606010

  9. Root rots

    Treesearch

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  10. 40 CFR Appendix L to Subpart A of... - Approved critical uses and limiting critical conditions for those uses for the 2012 control period

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) California growers Moderate to severe black root rot or crown rot.Moderate to severe yellow or purple... to severe nematode infestation. Moderate to severe black root and crown rot. Strawberry Nurseries... dates (in Riverside county only) in California Rapid fumigation required to meet a critical market...

  11. 40 CFR Appendix L to Subpart A of... - Approved Critical Uses and Limiting Critical Conditions for Those Uses for the 2012 Control Period

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) California growers Moderate to severe black root rot or crown rot.Moderate to severe yellow or purple... to severe nematode infestation. Moderate to severe black root and crown rot. Strawberry Nurseries... dates (in Riverside county only) in California Rapid fumigation required to meet a critical market...

  12. Using airborne imagery to monitor cotton root rot infection before and after fungicide treatment

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot is a severe soilborne disease that has affected cotton production for over a century. Recent research has shown that a commercial fungicide, flutriafol, has potential for the control of this disease. To effectively and economically control this disease, it is necessary to identify in...

  13. A mineral seed coating for control of seedling diseases of alfalfa suitable for organic production systems

    USDA-ARS?s Scientific Manuscript database

    Most alfalfa seed is treated with the systemic fungicide mefenoxam (Apron XL) for control of soilborne seedling diseases. However, Apron XL does not have activity against Aphanomyces euteiches, the causal agent of Aphanomyces root rot (ARR), which is an important component of the alfalfa root rot co...

  14. Response of the Andean diversity panel to root rot in a root rot nursery in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    The Andean Diversity Panel (ADP) was evaluated under low-fertility and root rot conditions in two trials conducted in 2013 and 2015 in Isabela, Puerto Rico. About 246 ADP lines were evaluated in the root rot nursery with root rot and stem diseases caused predominantly by Fusarium solani, which cause...

  15. Root rot in sugar beet piles at harvest

    USDA-ARS?s Scientific Manuscript database

    Sugar beet root rots are not only a concern because of reduced yields, but can also be associated with losses in storage. Our primary sugar beet root rot disease problem in the Amalgamated production area is Rhizoctonia root rot. However, this rot frequently only penetrates a short distance past t...

  16. Site-specific management of cotton root rot using airborne and satellite imagery

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot is a serious cotton disease that can now be effectively controlled with Topguard Terra Fungicide. The objectives of this research were to demonstrate how site-specific fungicide application could be implemented based on historical remote sensing imagery and variable rate technology. ...

  17. Creating prescription maps from historical imagery for site-specific management of cotton root rot

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is a severe plant disease that has affected cotton production for over a century. Recent research found that a commercial fungicide, Topguard (flutriafol), was able to control this disease. As a result, Topguard Terra Fungic...

  18. Combining fuzzy set theory and nonlinear stretching enhancement for unsupervised classification of cotton root rot

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot is a destructive disease affecting cotton production. Accurate identification of infected areas within fields is useful for cost-effective control of the disease. The uncertainties caused by various infection stages and newly infected plants make it difficult to achieve accurate clas...

  19. Evaluating unsupervised and supervised image classification methods for mapping cotton root rot

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivora, is one of the most destructive plant diseases occurring throughout the southwestern United States. This disease has plagued the cotton industry for over a century, but effective practices for its control are still lacking. R...

  20. Evaluating spectral measures derived from airborne multispectral imagery for detecting cotton root rot

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is one of the most destructive plant diseases occurring throughout the southwestern United States. This disease has plagued the cotton industry for more than 100 years, but effective practices for its control are still lacki...

  1. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber.

    PubMed

    Khabbaz, Salah Eddin; Abbasi, Pervaiz A

    2014-01-01

    Antagonistic bacteria are common soil inhabitants with potential to be developed into biofungicides for the management of seedling damping-off, root rot, and other soil-borne diseases of various crops. In this study, antagonistic bacteria were isolated from a commercial potato field and screened for their growth inhibition of fungal and oomycete pathogens in laboratory tests. The biocontrol potential of the 3 most effective antagonistic bacteria from the in vitro tests was evaluated against seedling damping-off and root rot of cucumber caused by Pythium ultimum. Based on phenotypic characteristics, biochemical tests, and sequence analysis of 16S-23S rDNA gene, the 3 antagonistic bacteria were identified as Pseudomonas fluorescens (isolate 9A-14), Pseudomonas sp. (isolate 8D-45), and Bacillus subtilis (isolate 8B-1). All 3 bacteria promoted plant growth and suppressed Pythium damping-off and root rot of cucumber seedlings in growth-room assays. Both pre- and post-planting application of these bacteria to an infested peat mix significantly increased plant fresh masses by 113%-184% and percentage of healthy seedlings by 100%-290%, and decreased damping-off and root rot severity by 27%-50%. The peat and talc formulations of these antagonistic bacteria applied as seed or amendment treatments to the infested peat mix effectively controlled Pythium damping-off and root rot of cucumber seedlings and enhanced plant growth. The survival of all 3 antagonistic bacteria in peat and talc formulations decreased over time at room temperature, but the populations remained above 10(8) CFU/g during the 180-day storage period. The peat formulation of a mixture of 3 bacteria was the best seed treatment, significantly increasing the plant fresh masses by 245% as compared with the Pythium control, and by 61.4% as compared with the noninfested control. This study suggests that the indigenous bacteria from agricultural soils can be developed and formulated as biofungicides for minimizing the early crop losses caused by seedling damping-off and root rot diseases.

  2. Application of chloropicrin to Douglas-fir stumps to control laminated root rot does not affect infection or growth of regeneration 16 growing seasons after treatment.

    Treesearch

    Walter G. Thies; Douglas J. Westlind

    2006-01-01

    Phellinus weirii (Murr.) Gilb. causes laminated root rot (LRR), a major disease affecting growth and survival of Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) and other commercially important conifer species throughout the Pacific Northwest. This disease is known to spread to a replacement stand by root contact between...

  3. Change detection of cotton root rot infection over a 10-year interval using airborne multispectral imagery

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot is a very serious and destructive disease of cotton grown in the southwestern and south central United States. Accurate information regarding the spatial and temporal infections of the disease within fields is important for effective management and control of the disease. The objecti...

  4. Site-specific management of cotton root rot using historical remote sensing imagery

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot can now be effectively controlled with Topguard Terra Fungicide, but site-specific application of the fungicide can greatly reduce treatment cost as only portions of the field are infested with the disease. The overall goal of this three-year project was to demonstrate how to use his...

  5. Effect of cultural practices and fungicide treatments on the severity of Phytophthora root rot of blueberries grown in Mississippi

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root rot is an important disease of blueberries, especially those grown in areas with poor drainage. Reliable cultural and chemical management strategies are needed for control of this disease. Two studies were conducted to evaluate the effects of cultural practices and fungicide treat...

  6. Characterizing and mapping resistance in synthetic-derived wheat to Rhizoctonia root rot in a green bridge environment

    USDA-ARS?s Scientific Manuscript database

    Root rot caused by Rhizoctonia species is an economically important soilborne disease of spring planted wheat in growing regions of the Pacific Northwest (PNW). The main method of controlling the disease currently is through tillage, which deters farmers from adopting the benefits of minimal tillage...

  7. Cultivar selection for bacterial root rot in sugar beet

    USDA-ARS?s Scientific Manuscript database

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States, which has frequently been found in association with Rhizoctonia root rot. To reduce the impact of bacterial root rot on sucrose loss in the field, st...

  8. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress.

    PubMed

    Egamberdieva, Dilfuza; Wirth, Stephan J; Shurigin, Vyacheslav V; Hashem, Abeer; Abd Allah, Elsayed F

    2017-01-01

    Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non-rhizobial endophytic bacteria from the root nodules of chickpea ( Cicer arietinum L.), and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1 , Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H 2 O 2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani . This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress.

  9. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan J.; Shurigin, Vyacheslav V.; Hashem, Abeer; Abd_Allah, Elsayed F.

    2017-01-01

    Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non–rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L.), and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress. PMID:29033922

  10. Creating prescription maps from satellite imagery for site-specific management of cotton root rot

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot is a century-old cotton disease that can now be controlled with Topguard Terra Fungicide. However, as this disease tends to occur in the same general areas within fields year after year, site-specific treatment can be more effective and economical. The objective of this study was to ...

  11. Efficacy of management tools for control of Pythium root rot of Douglas-fir seedlings, 2013

    USDA-ARS?s Scientific Manuscript database

    This study was conducted as part of the IR-4 Ornamental Horticulture program to evaluate fungicides and biopesticides for management of root, crown and stem rots of ornamental plants caused by Pythium species. Pythium species used in this study were P. vipa (isolate 09), P. dissotocum (isolate 41-08...

  12. Seventeen years of research on genetics of resistance to Aphanomyces root rot of pea

    USDA-ARS?s Scientific Manuscript database

    Aphanomyces root rot, caused by the oomycete Aphanomyces euteiches, is a major soil borne disease of pea in many countries. Genetic resistance is considered to be a main way to control the disease. Since 2000, INRA has engaged a long-term research program to study genetic resistance to A. euteiches ...

  13. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas CMR12a was previously selected as an efficient biocontrol strain producing phenazines and cyclic lipopeptides (CLPs). In this study, biocontrol capacity of Pseudomonas CMR12a against Rhizoctonia root rot of bean and the involvement of phenazines and CLPs in this ability were tested. Two ...

  14. Site-specific management of cotton root rot using airborne and satellite imagery and variable rate technology

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot is a serious cotton disease that can now be effectively controlled with Topguard Terra Fungicide. However, its recurrence in the same areas year after year makes fungicide application only to infested areas more effective and economical than uniform application. Base on 17 years of r...

  15. Long-term effects of stump removal to control root rot on forest soil bulk density, soil carbon and nitrogen content.

    Treesearch

    D. Zabowski; D. Chambrear; N. Rotramel; W.G. Thies

    2008-01-01

    Phellinus weirii (Mum.) Gilb is a native pathogen in the forests of the Northwestern United States causing laminated root rot and mortality in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and other susceptible conifer species. This facultative saprophyte is a natural part of the ecosystem, present in most Douglas-fir...

  16. Site-specific management of cotton root rot using airborne and high resolution satellite imagery and variable rate technology

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot is a century-old cotton disease that can now be effectively controlled with Topguard Terra Fungicide. As this disease tends to occur in the same general areas within fields in recurring years, site-specific application of the fungicide only to the infested areas can be more effective...

  17. Effect of seed pelleting with biocontrol agents on growth and colonisation of roots of mungbean by root-infecting fungi.

    PubMed

    Ramzan, Nadia; Noreen, Nayara; Perveen, Zahida; Shahzad, Saleem

    2016-08-01

    Mungbean (Vigna radiata (L.) Wilczek) is a leguminous pulse crop that is a major source of proteins, vitamins and minerals. Root-infecting fungi produce severe plant diseases like root rot, charcoal rot, damping-off and stem rot. The soil-borne pathogens can be controlled by chemicals, but these chemicals have several negative effects. Use of microbial antagonist such as fungi and bacteria is a safe, effective and eco-friendly method for the control of many soil-borne pathogens. Biological control agents promote plant growth and develop disease resistance. Application of bacteria and fungi as seed dressing suppressed the root-infecting fungi on leguminous crops. Seeds of mungbean were pelleted with different biocontrol agents to determine their effect on plant growth and colonisation of roots by root-infecting fungi, viz. Fusarium solani, Macrophomina phaseolina, Pythium aphanidermatum, Rhizoctonia solani and Sclerotium rolfsii. Treatment of mungbean seeds with fungal antagonists showed more shoot and root length as compared to bacterial antagonists, whereas seed treated with bacterial antagonists showed maximum shoot and root weight. Trichoderma harzianum and Bacillus subtilis were the best among all the biocontrol agents since they provided the highest plant growth and greater reduction in root colonisation by all root-infecting fungi. Bacillus cereus, Trichoderma virens, Pseudomonas fluorescens and Micrococcus varians were also effective against root-infecting fungi but to a lesser extent. T. harzianum, T. virens, B. subtilis and P. fluorescens were found to be best among all biocontrol agents. The root-infecting fungi can be controlled by pelleting seeds with biocontrol agents as it is safe and effective method. Additionally, plant growth was promoted more by this method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Corky root rot

    USDA-ARS?s Scientific Manuscript database

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  19. Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybeans.

    PubMed

    Arias, María M Díaz; Leandro, Leonor F; Munkvold, Gary P

    2013-08-01

    Fusarium spp. are commonly isolated from soybean roots but the pathogenic activity of most species is poorly documented. Aggressiveness and yield impact of nine species of Fusarium were determined on soybean in greenhouse (50 isolates) and field microplot (19 isolates) experiments. Root rot severity and shoot and root dry weights were compared at growth stages V3 or R1. Root systems were scanned and digital image analysis was conducted; yield was measured in microplots. Disease severity and root morphology impacts varied among and within species. Fusarium graminearum was highly aggressive (root rot severity >90%), followed by F. proliferatum and F. virguliforme. Significant variation in damping-off (20 to 75%) and root rot severity (<20 to >60%) was observed among F. oxysporum isolates. In artificially-infested microplots, root rot severity was low (<25%) and mean yield was not significantly reduced. However, there were significant linear relationships between yield and root symptoms for some isolates. Root morphological characteristics were more consistent indicators of yield loss than root rot severity. This study provides the first characterization of aggressiveness and yield impact of Fusarium root rot species on soybean at different plant stages and introduces root image analysis to assess the impact of root pathogens on soybean.

  20. Cultivar Selection for Sugar Beet Root Rot Resistance

    USDA-ARS?s Scientific Manuscript database

    Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...

  1. Cultivar selection for sugarbeet root rot resistance.

    USDA-ARS?s Scientific Manuscript database

    Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...

  2. Influence of Rhizoctonia-Bacterial root rot complex on storability of sugar beet

    USDA-ARS?s Scientific Manuscript database

    The root rot complex, caused by Rhizoctonia solani and Leuconostoc mesenteroides, can lead to yield loss in the field but may also lead to problems with sucrose loss in storage. Thus, studies were conducted to investigate if placing sugar beet roots suffering from root rot together with healthy roo...

  3. Poly-γ-glutamic acid productivity of Bacillus subtilis BsE1 has positive function in motility and biocontrol against Fusarium graminearum.

    PubMed

    Wang, Luyao; Wang, Ning; Mi, Dandan; Luo, Yuming; Guo, Jianhua

    2017-07-01

    In this study, we investigate the relationship between γ-PGA productivity and biocontrol capacity of Bacillus subtilis BsE1; one bacterial isolate displayed 62.14% biocontrol efficacy against Fusarium root rot. The γ-PGA yield assay, motility assay, wheat root colonization assay, and biological control assay were analysed in different γ-PGA yield mutants of BsE1. The pgsB (PGA-synthase-CapB gene) deleted mutant of BsE1 reduced γ-PGA yield and exhibited apparent decline of in vitro motile ability. Deletion of pgsB impaired colonizing capacity of BsE1 on wheat root in 30 days, also lowered biocontrol efficacies from 62.08% (wild type BsE1) to 14.22% in greenhouse experiment against Fusarium root rot. The knockout of pgdS and ggt (genes relate to two γ-PGA degrading enzymes) on BsE1, leads to a considerable improvement in polymer yield and biocontrol efficacy, which attains higher level compared with wild type BsE1. Compared with ΔpgsB mutant, defense genes related to reactive oxygen species (ROS) and phytoalexin expressed changes by notable levels on wheat roots treated with BsE1, demonstrating the functional role γ-PGA plays in biocontrol against Fusarium root rot. γ-PGA is not only important to the motile and plant root colonization ability of BsE1, but also essential to the biological control performed by BsE1 against Fusarium root rot. Our goal in this study is to reveals a new perspective of BCAs screening on bacterial isolates, without good performance during pre-assays of antagonism ability.

  4. Sugarbeet Cultivar Evaluation for Bacterial Root Rot

    USDA-ARS?s Scientific Manuscript database

    Bacterial root rot of sugarbeet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, studies were conducted to establish an assa...

  5. Nonchemical, cultural management strategies to suppress phytophthora root rot in northern highbush blueberry

    USDA-ARS?s Scientific Manuscript database

    Phytophthora cinnamomi causes root rot of highbush blueberry and decreases plant growth, yield, and profitability for growers. Fungicides can suppress root rot, but cannot be used in certified organic production systems and fungicide resistance may develop. Alternative, non-chemical, cultural manag...

  6. First report of root rot of cowpea caused by Fusarium equiseti in Georgia in the United States

    USDA-ARS?s Scientific Manuscript database

    Root rot was observed on cowpea in Tift County, Georgia, in May of 2015. The disease occurred on approximately 10% of cowpea plants in 2 fields (2 ha). Symptoms appeared as sunken reddish brown lesions on roots and stems under the soil line, secondary roots became dark brown and rotted, and infected...

  7. Root Interactions in a Maize/Soybean Intercropping System Control Soybean Soil-Borne Disease, Red Crown Rot

    PubMed Central

    Gao, Xiang; Wu, Man; Xu, Ruineng; Wang, Xiurong; Pan, Ruqian; Kim, Hye-Ji; Liao, Hong

    2014-01-01

    Background Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control. Principal Findings In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum). The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro. Conclusions To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices. PMID:24810161

  8. Management of Rhizoctonia root and crown rot of subarbeet

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia root and crown rot is caused by the fungus Rhizoctonia solani and is one of the most severe soil-borne diseases of sugarbeet in Minnesota and North Dakota. Rhizoctonia root and crown rot may reduce yield significantly, and diseased beets may cause problems in storage piles. Fields with...

  9. Annosus Root Rot in Eastern Conifers

    Treesearch

    Kathryn Robbins

    1984-01-01

    The fungus Heterobasidion annosum (Fr.) Bref. (= Fomes annosus (Fr.) Karst.) causes a root and butt rot of conifers in many temperate parts of the world. The decay, called annosus root rot, often kills infected conifers; infected trees that survive grow more slowly and are susceptible to windthrow and bark beetle attack.

  10. Pathogenicity and genetic diversity of Fusarium oxysporum causing soybean root rot in northeast China

    USDA-ARS?s Scientific Manuscript database

    Soybean is an important edible legume cultivated around the world. However, soybean production is seriously impacted by the widespread occurrence of root rot disease. In this study, genetic diversity and pathogenicity of Fusarium oxysporum associated with root rot of soybean in Heilongjiang province...

  11. Evaluation of Sentinel-2A satellite imagery for mapping cotton root rot

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) is an economically important crop that is highly susceptible to cotton root rot. Remote sensing technology provides a useful and effective means for detecting and mapping cotton root rot infestations in cotton fields. This research assessed the potential of 10-m Sentin...

  12. A diagnostic guide for Fusarium Root Rot of pea

    USDA-ARS?s Scientific Manuscript database

    Fusarium root rot, caused by Fusarium solani f. sp. pisi, is a major root rot pathogen in pea production areas worldwide. Here we provide a diagnostic guide that describes: the taxonomy of the pathogen, signs and symptoms of the pathogen, host range, geographic distribution, methods used to isolate ...

  13. Comparison of Pratylenchus penetrans Infection and Maladera castanea Feeding on Strawberry Root Rot

    PubMed Central

    LaMondia, J. A.; Cowles, R. S.

    2005-01-01

    The interaction of lesion nematodes, black root rot disease caused by Rhizoctonia fragariae, and root damage caused by feeding of the scarab larva, Maladera castanea, was determined in greenhouse studies. Averaged over all experiments after 12 weeks, root weight was reduced 13% by R. fragariae and 20% by M. castanea. The percentage of the root system affected by root rot was increased by inoculation with either R. fragariae (35% more disease) or P. penetrans (50% more disease) but was unaffected by M. castanea. Rhizoctonia fragariae was isolated from 9.2% of the root segments from plants not inoculated with R. fragariae. The percentage of R. fragariae-infected root segments was increased 3.6-fold by inoculation with R. fragariae on rye seeds. The presence of P. penetrans also increased R. fragariae root infection. The type of injury to root systems was important in determining whether roots were invaded by R. fragariae and increased the severity of black root rot. Pratylenchus penetrans increased R. fragariae infection and the severity of black root rot. Traumatic cutting action by Asiatic garden beetle did not increase root infection or root disease by R. fragariae. Both insects and diseases need to be managed to extend the productive life of perennial strawberry plantings. PMID:19262852

  14. Mapping Fusarium solani and Aphanomyces euteiches root rot resistance and root architecture quantitative trait loci in common bean (Phaseolus vulgaris)

    USDA-ARS?s Scientific Manuscript database

    Root rot diseases of bean (Phaseolus vulgaris L.) are a constraint to dry and snap bean production. We developed the RR138 RIL mapping population from the cross of OSU5446, a susceptible line that meets current snap bean processing industry standards, and RR6950, a root rot resistant dry bean in th...

  15. First report of lily root rot caused by Thantephorus cucumeris AG 2-1 in the United States

    USDA-ARS?s Scientific Manuscript database

    A disease survey was undertaken in April, 2016 to profile the soilborne fungal pathogens causing root rot and lesions on lily (Lilium longiflorum) cv. Nellie White in Brookings, Oregon, Curry County. Diseased root samples were either blackened or rotted. Several fungal isolates were cultured from in...

  16. Variation in disease severity caused by Phytophthora cinnamomi, P. plurivora, and Pythium cryptoirregulare on two rhododendron cultivars

    USDA-ARS?s Scientific Manuscript database

    Rhododendrons are an important component of the ornamental nursery industry, but are prone to Phytophthora root rot. Phytophthora root rot is a continuing issue on rhododendrons despite decades of research. Several Phytophthora species are known to cause root rot, but most research has focused on P....

  17. Commercial Sugar Beet Cultivars Evaluated for Resistance to Bacterial Root Rot in Idaho, 2008

    USDA-ARS?s Scientific Manuscript database

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, a study was conducted to identify resistan...

  18. Experimental Sugar Beet Cultivars Evaluated for Resistance Bacterial Root Rot in Idaho, 2008

    USDA-ARS?s Scientific Manuscript database

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, a study was conducted to identify resistan...

  19. Laminated root rot in a western Washington plantation: 8-year mortality and growth of Douglas-fir as related to infected stumps, tree density, and fertilization.

    Treesearch

    Richard E. Miller; Timothy B. Harrington; Walter G. Thies; Jeff. Madsen

    2006-01-01

    A 4-year-old Douglas-fir plantation in the western Washington Cascades was monitored for 8 years after fertilization with potassium (K), nitrogen (N), and K+N to determine fertilizer effects on rates of mortality from laminated root rot (LRR) and other causes relative to a nonfertilized control. Each element was applied at a rate of 300 lb/acre on and around 0.2-acre...

  20. 40 CFR Appendix L to Subpart A of... - Approved Critical Uses and Limiting Critical Conditions for Those Uses for the 2013 Control Period

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... growers Moderate to severe black root rot or crown rot.Moderate to severe yellow or purple nutsedge... meet a critical market window, such as during the holiday season. Dry Cured Pork Products Members of...

  1. Efficacy of Chaetomium Species as Biological Control Agents against Phytophthora nicotianae Root Rot in Citrus

    PubMed Central

    Wattanachai, Pongnak; Kasem, Soytong; Poeaim, Supattra

    2015-01-01

    Thailand is one of the largest citrus producers in Southeast Asia. Pathogenic infection by Phytophthora, however, has become one of major impediments to production. This study identified a pathogenic oomycete isolated from rotted roots of pomelo (Citrus maxima) in Thailand as Phytophthora nicotianae by the internal transcribed spacer ribosomal DNA sequence analysis. Then, we examined the in vitro and in vivo effects of Chaetomium globosum, Chaetomium lucknowense, Chaetomium cupreum and their crude extracts as biological control agents in controlling this P. nicotianae strain. Represent as antagonists in biculture test, the tested Chaetomium species inhibited mycelial growth by 50~56% and parasitized the hyphae, resulting in degradation of P. nicotianae mycelia after 30 days. The crude extracts of these Chaetomium species exhibited antifungal activities against mycelial growth of P. nicotianae, with effective doses of 2.6~101.4 µg/mL. Under greenhouse conditions, application of spores and methanol extracts of these Chaetomium species to pomelo seedlings inoculated with P. nicotianae reduced root rot by 66~71% and increased plant weight by 72~85% compared to that in the control. The method of application of antagonistic spores to control the disease was simple and economical, and it may thus be applicable for large-scale, highly effective biological control of this pathogen. PMID:26539045

  2. Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion

    USDA-ARS?s Scientific Manuscript database

    Airborne imagery has been successfully used for mapping cotton root rot within cotton fields toward the end of the growing season. To better understand the progression of cotton root rot within the season, time series monitoring is required. In this study, an improved spatial and temporal data fusio...

  3. Integrated management of foot rot of lentil using biocontrol agents under field condition.

    PubMed

    Hannan, M A; Hasan, M M; Hossain, I; Rahman, S M E; Ismail, Alhazmi Mohammed; Oh, Deog-Hwan

    2012-07-01

    The efficacy of cowdung, Bangladesh Institute of Nuclear Agriculture (BINA)-biofertilizer, and Bangladesh Agricultural University (BAU)-biofungicide, alone or in combination, was evaluated for controlling foot rot disease of lentil. The results exhibited that BINA-biofertilizer and BAUbiofungicide (peat soil-based Rhizobium leguminosarum and black gram bran-based Trichoderma harzianum) are compatible and have combined effects in controlling the pathogenic fungi Fusarium oxysporum and Sclerotium rolfsii, which cause the root rot of lentil. Cowdung mixing with soil (at 5 t/ha) during final land preparation and seed coating with BINA-biofertilizer and BAU-biofungicide (at 2.5% of seed weight) before sowing recorded 81.50% field emergence of lentil, which showed up to 19.85% higher field emergence over the control. Post-emergence deaths of plants due to foot rot disease were significantly reduced after combined seed treatment with BINA-biofertilizer and BAU-biofungicide. Among the treatments used, only BAU-biofungicide as the seed treating agent resulted in higher plant stand (84.82%). Use of BINA-biofertilizer and BAU-biofungicide as seed treating biocontrol agents and application of cowdung in the soil as an organic source of nutrient resulted in higher shoot and root lengths, and dry shoot and root weights of lentil. BINA-biofertilizer significantly increased the number of nodules per plant and nodules weight of lentil. Seeds treating with BAUbiofungicide and BINA-biofertilizer and soil amendment with cowdung increased the biomass production of lentil up to 75.56% over the control.

  4. [Research on bacteria microecology in root rot rhizosphere soil of Coptis chinensis produced in Shizhu city].

    PubMed

    Song, Xu-Hong; Wang, Yu; Li, Long-Yun; Tan, Jun

    2017-04-01

    Illumina Hiseq 2500 high-throughput sequencing platform was used to study the bacteria richness and diversity, the soil enzyme activities, nutrients in unplanted soil, root-rot and healthy rhizophere soil of Coptis chinensis for deeply discussing the mechanism of the root-rot of C. chinensis. The high-throughput sequencing result showed that the artificial cultivation effected the bacteria community richness and diversity. The bacteria community richness in healthy and diseased rhizosphere soil showed significant lower than that of in unplanted soil (P<0.05) and declined bacteria diversity. The bacteria community richness in root-rot rhizosphere soil increased significantly than that of health and unplanted soil and the diversity was lower significant than that of unplanted soil (P<0.05). The results of soil nutrients and enzyme activities detected that the pH value, available phosphorus and urease activity decreased and the sucrase activity increased significantly (P<0.05). The content of organic carbon and alkaline hydrolysis nitrogen the catalase and urease activity in root rot soil samples was significantly lower than that of healthy soil samples (P<0.05). However, the contents of available phosphorus and available potassium were significantly in root-rot sample higher than that of healthy soil samples (P<0.05). Comprehensive analysis showed that the artificial cultivation declined the bacteria community richness and diversity. The bacteria community richness decreased significantly and the decreased diversity may be the cause of the root-rot. Meanwhile, the decrease of carbon and the catalase activity may be another cause of the root-rot in C. chinensis produced in Shizhu city, Chongqing province. Copyright© by the Chinese Pharmaceutical Association.

  5. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam.

    PubMed

    Tran, H; Kruijt, M; Raaijmakers, J M

    2008-03-01

    Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity and potential to control Phy. capsici root rot was determined. Biosurfactant-producing pseudomonads were genotypically and biochemically characterized by BOX-polymerase chain reaction (PCR), 16S-rDNA sequencing, reverse-phase-high-performance liquid chromatography and liquid chromatography-mass spectrometry analyses. Biosurfactant-producing fluorescent pseudomonads make up c. 1.3% of the culturable Pseudomonas population in the rhizosphere of black pepper. Although BOX-PCR revealed substantial genotypic diversity, the isolates were shown to produce the same biosurfactants and were all identified as Pseudomonas putida. When applied to black pepper stem cuttings, several of the biosurfactant-producing strains provided significant disease control. In absence of the disease, several of the bacterial strains promoted shoot and root growth of black pepper stem cuttings. Biosurfactant-producing pseudomonads indigenous to the rhizosphere of black pepper plants are genotypically diverse and provide a novel resource for the control of Phy. capsici root rot and growth promotion of black pepper stem cuttings. The results of this study provide a strong basis for further development of supplementary strategies with antagonistic bacteria to control foot and root rot of black pepper and to promote plant growth.

  6. Co-Inoculation with Rhizobia and AMF Inhibited Soybean Red Crown Rot: From Field Study to Plant Defense-Related Gene Expression Analysis

    PubMed Central

    Gao, Xiang; Lu, Xing; Wu, Man; Zhang, Haiyan; Pan, Ruqian; Tian, Jiang; Li, Shuxian; Liao, Hong

    2012-01-01

    Background Soybean red crown rot is a major soil-borne disease all over the world, which severely affects soybean production. Efficient and sustainable methods are strongly desired to control the soil-borne diseases. Principal Findings We firstly investigated the disease incidence and index of soybean red crown rot under different phosphorus (P) additions in field and found that the natural inoculation of rhizobia and arbuscular mycorrhizal fungi (AMF) could affect soybean red crown rot, particularly without P addition. Further studies in sand culture experiments showed that inoculation with rhizobia or AMF significantly decreased severity and incidence of soybean red crown rot, especially for co-inoculation with rhizobia and AMF at low P. The root colony forming unit (CFU) decreased over 50% when inoculated by rhizobia and/or AMF at low P. However, P addition only enhanced CFU when inoculated with AMF. Furthermore, root exudates of soybean inoculated with rhizobia and/or AMF significantly inhibited pathogen growth and reproduction. Quantitative RT-PCR results indicated that the transcripts of the most tested pathogen defense-related (PR) genes in roots were significantly increased by rhizobium and/or AMF inoculation. Among them, PR2, PR3, PR4 and PR10 reached the highest level with co-inoculation of rhizobium and AMF. Conclusions Our results indicated that inoculation with rhizobia and AMF could directly inhibit pathogen growth and reproduction, and activate the plant overall defense system through increasing PR gene expressions. Combined with optimal P fertilization, inoculation with rhizobia and AMF could be considered as an efficient method to control soybean red crown rot in acid soils. PMID:22442737

  7. Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum.

    PubMed

    Wang, Lu-Yao; Xie, Yue-Shen; Cui, Yuan-Yu; Xu, Jianjun; He, Wei; Chen, Huai-Gu; Guo, Jian-Hua

    2015-08-01

    Fusarium root-rot and fusarium head blight are plant diseases caused by Fusarium sp. in different growth periods of wheat, bring heavy losses to crop production in China. This research is aiming to screen biocontrol agents conjunctively for controlling these two diseases at the same time, as well as evaluate our previous BCAs (Biological Control Agents) screening strategies in more complex situation, considering biocontrol is well concerned as an environmental-friendly plant disease controlling method. Totally 966 bacterial isolates were screened from different parts of wheat tissues, of which potential biocontrol values were detected according to their abilities in antagonism inhibition and secreting extracellular hydrolytic enzyme. Biocontrol tests against fusarium root rot and fusarium head blight were carried out on 37 bacterial isolates with potential biocontrol capacity after pre-selection through ARDRA- and BOX-PCR analysis on strains with high assessment points. We acquired 10 BCAs with obvious biocontrol efficacy (more than 40%) in greenhouse and field tests. Pseudomonas fluorescens LY1-8 performed well in both two tests (biocontrol efficacy: 44.62% and 58.31%), respectively. Overall, correlation coefficient is 0.720 between assessment values of 37 tested BCA strains and their biocontrol efficacy in trails against fusarium root rot; correlation coefficient is 0.806 between their assessment values and biocontrol efficacy in trails against fusarium head blight. We acquired 10 well-performed potential BCAs, especially P. fluorescens LY1-8 displayed good biocontrol capacity against two different diseases on wheat. Biocontrol efficacies results in both greenhouse and field tests showed high positive correlation with assessment values (0.720 and 0.806), suggesting that the BCAs screening and assessing strategy previously developed in our lab is also adaptable for conjunctively screening BCAs for controlling both root and shoot diseases on wheat caused by same fungal pathogen. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Agricultural Plant Pest Control. Bulletin 763.

    ERIC Educational Resources Information Center

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  9. Interaction of Pratylenchus penetrans and Rhizoctonia fragariae in Strawberry Black Root Rot

    PubMed Central

    LaMondia, J. A.

    2003-01-01

    A split-root technique was used to examine the interaction between Pratylenchus penetrans and the cortical root-rotting pathogen Rhizoctonia fragariae in strawberry black root rot. Plants inoculated with both pathogens on the same half of a split-root crown had greater levels of root rot than plants inoculated separately or with either pathogen alone. Isolation of R. fragariae from field-grown roots differed with root type and time of sampling. Fungal infection of structural roots was low until fruiting, whereas perennial root colonization was high. Isolation of R. fragariae from feeder roots was variable, but was greater from feeder roots on perennial than from structural roots. Isolation of the fungus was greater from structural roots with nematode lesions than from non-symptomatic roots. Rhizoctonia fragariae was a common resident on the sloughed cortex of healthy perennial roots. From this source, the fungus may infect additional roots. The direct effects of lesion nematode feeding and movement are cortical cell damage and death. Indirect effects include discoloration of the endodermis and early polyderm formation. Perhaps weakened or dying cells caused directly or indirectly by P. penetrans are more susceptible to R. fragariae, leading to increased disease. PMID:19265969

  10. Attempts to control Fusarium root rot of bean by seed dressing.

    PubMed

    Gilardi, G; Baudino, M; Gullino, M L; Garibaldi, A

    2008-01-01

    In summer 2006, a root rot caused by Fusarium oxysporum was observed in commercial farms on common bean (Phaseolus vulgaris) on the cv Billò and Borlotto. A study was undertaken in order to evaluate the efficacy of different biological control agents applied as seed dressing. In the presence of a medium-high disease incidence, among the biocontrol agents tested, Trichoderma harzianum T 22, Bacillus subtilis QST 713, followed by Pseudomonas chlororaphis, provided generally the best control. Their efficacy was also consistent in the different trials. Also the mixture of T. harzianum + T. viride provide a good disease control. Streptomyces griseoviridis and the 3 strains of Fusarim oxysporum, although less effective, provided a partial control of the disease. The fungicide mancozeb provided only a partial disease control.

  11. Disease notes - Bacterial root rot

    USDA-ARS?s Scientific Manuscript database

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  12. Isolation screening and characterisation of local beneficial rhizobacteria based upon their ability to suppress the growth of Fusarium oxysporum f. sp. radicis-lycopersici and tomato foot and root rot

    USDA-ARS?s Scientific Manuscript database

    Tomato crown and root rot or tomato foot and root rot (TFRR) is caused by the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici (Forl). The disease occurs in both greenhouse and outdoor tomato cultivations and cannot be treated efficiently with the existing fungicides. We conducte...

  13. Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt.

    PubMed

    Hassan, Naglaa; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-03-01

    Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt.

  14. Applicator Training Manual for: Agriculture Plant Pest Control.

    ERIC Educational Resources Information Center

    Witt, William W.; And Others

    This manual gives information on insects that damage crops. These fall in two categories: (1) insects with a complete life cycle such as butterflies and moths, boring insects, and beetles; and (2) those with a gradual life cycle. Also included are descriptions of leaf diseases, wilts and root and crown rots, stem cankers, fruit rots, seed and…

  15. Armillaria root rot

    USDA-ARS?s Scientific Manuscript database

    First described on grapevines in California in the 1880s, Armillaria root rot occurs in all major grape-growing regions of the state. The causal fungus, Armillaria mellea, infects woody grapevine roots and the base of the trunk (the root collar), resulting in a slow decline and eventual death of the...

  16. Postharvet losses associated with Rhizoctonia crown and root rot of sugarbeet

    USDA-ARS?s Scientific Manuscript database

    As the prevalence of Rhizoctonia crown and root rot (RCRR) increases, more diseased sugarbeet (Beta vulgaris L.) roots are destined for storage piles. To investigate the effect of RCRR on storage properties, roots with similar symptoms were grouped and extractable sucrose, invert sugar, and respirat...

  17. Hardwood Diseases in Plantations and Nurseries

    Treesearch

    T. H. Filer

    1979-01-01

    Root disease is the most important problem of hardwoods in nurseries with most mortality from damping-off occurring during the first 6 weeks of seedling emergence. The root rots can persist throughout the growing season and cause stunting that makes seedlings unsaleable. Chemical fumigation of nursery beds is the best control method available for root disease. Methyl...

  18. Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt

    PubMed Central

    Hassan, Naglaa; Shimizu, Masafumi

    2014-01-01

    Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt. PMID:24808737

  19. Pre-Breeding for root rot resistance using root morphology traits

    USDA-ARS?s Scientific Manuscript database

    Root rot caused by the fungal pathogen Rhizoctonia solani can be a major yield-limiting disease in minimal tillage or direct-seeded cereal production systems. Reduced tillage greatly influences the plant residue retained on the soil surfaces. This retained residue (green bridge) provides increased d...

  20. Endophytic bacteria from Piper tuberculatum Jacq.: isolation, molecular characterization, and in vitro screening for the control of Fusarium solani f. sp piperis, the causal agent of root rot disease in black pepper (Piper nigrum L.).

    PubMed

    Nascimento, S B; Lima, A M; Borges, B N; de Souza, C R B

    2015-07-06

    Endophytic bacteria have been found to colonize internal tissues in many different plants, where they can have several beneficial effects, including defense against pathogens. In this study, we aimed to identify endophytic bacteria associated with roots of the tropical piperaceae Piper tuberculatum, which is known for its resistance to infection by Fusarium solani f. sp piperis, the causal agent of black pepper (Piper nigrum) root rot disease in the Amazon region. Based on 16S rRNA gene sequence analysis, we isolated endophytes belonging to 13 genera: Bacillus, Paenibacillus, Pseudomonas, Enterobacter, Rhizobium, Sinorhizobium, Agrobacterium, Ralstonia, Serratia, Cupriavidus, Mitsuaria, Pantoea, and Staphylococcus. The results showed that 56.52% of isolates were associated with the phylum Proteobacteria, which comprised α, β, and γ classes. Other bacteria were related to the phylum Firmicutes, including Bacillus, which was the most abundant genus among all isolates. Antagonistic assays revealed that Pt12 and Pt13 isolates, identified as Pseudomonas putida and Pseudomonas sp, respectively, were able to inhibit F. solani f. sp piperis growth in vitro. We describe, for the first time, the molecular identification of 23 endophytic bacteria from P. tuberculatum, among which two Pseudomonas species have the potential to control the pathogen responsible for root rot disease in black pepper in the Amazon region.

  1. Pre-breeding for root rot resistance using root morphology and shoot length.

    USDA-ARS?s Scientific Manuscript database

    Our goal is to identify new wheat varieties that display field resistance/tolerance to root rot diseases, such as those caused by Rhizoctonia and Pythium. We are tapping into the genetic diversity of ‘synthetic’ hexaploid wheats (genome composition AABBDD), which were generated at CIMMYT by artifici...

  2. Dry borax applicator operator's manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsky, Richard, J.

    1999-01-01

    Annosum root rot affects conifers throughout the Northern Hemisphere, infecting their roots and eventually killing the trees. The fungus Heterobasidion annosum causes annosum root rot. The fungus colonizes readily on freshly cut stumps. Partially cut stands have a high risk of infestation because the fungus can colonize on each of the stumps and potentially infect the neighboring trees. Wind and rain carry the annosum spores. Spores that land on freshly cut stumps grow down the stump's root system where they can infect living trees through root grafts or root contacts. Once annosum becomes established, it can remain active for manymore » years in the Southern United States and for several decades in the north. About 7% of the trees that become infected die. When thinning, stumps can be treated successfully using a competing fungus, Phlebia gigantea, and with ''Tim-Bor'' in liquid formulations. These liquid products are no longer approved in the United States. Only the dry powder form is registered and approved by the EPA. Stumps can be treated with a dry formula of borax, (Sporax), significantly reducing one of the primary routes by which Heterobasidion annosum infects a stand of trees. Sporax is used by the USDA Forest Service to control annosum root rot. Sporax is now applied by hand, but once the felled trees are skidded it becomes very hard to locate the stumps. A stump applicator will reduce error, labor costs, and hazards to workers.« less

  3. Comparing methods for inducing root rot of Rhododendron with Phytophthora cinnamomi and P. plurivora

    USDA-ARS?s Scientific Manuscript database

    Root rot, caused by Phytophthora cinnamomi and P. plurivora in containerized Rhododendron, can cause significant losses in the nursery industry. Studies commonly use a 48 h flooding event to stimulate root infection. While flooding rarely occurs in container nurseries, plants may sit in a shallow pu...

  4. A novel penicillium sp. causes rot in stored sugar beet roots in Idaho

    USDA-ARS?s Scientific Manuscript database

    Penicillium vulpinum along with a number of other fungi can lead to the rot of stored sugar beet roots. However, Penicillium isolates associated with necrotic lesions on roots from a recent sugar beet storage study were determined to be different from P. vulpinum and other recognized Penicillium sp...

  5. Laminated root rot in western North America.

    Treesearch

    Walter G. Thies; Rona N. Sturrock

    1995-01-01

    Laminated root rot, caused by Phellinus weirii (Murr.) Gilb., is a serious root disease affecting Douglas-fir and other commercially important species of conifers in northwestern North America. This report gives an overview of the dis-ease as it occurs in the Pacific Northwest in Canada and the United States. Information on recognizing crown...

  6. Root rot symptoms in sugar beet lines caused by Fusarium oxysporum f. sp. betae

    USDA-ARS?s Scientific Manuscript database

    The soil-borne fungus Fusarium oxysporum may cause both Fusarium yellows and Fusarium root rot diseases with severe yield losses in cultivated sugar beet worldwide. These two diseases cause similar foliar symptoms but different root response and have been proposed to be due to two distinct F. oxyspo...

  7. Hardwood Diseases

    Treesearch

    T. H. Filer

    1981-01-01

    Damping-off and root-rot continue to cause the most losses of young hardwood seedlings. We know how to control these losses but we gamble by not taking preventative methods. The most effective control is to use soil fumigation or solar soil sterilization.

  8. Integrated options for the management of black root rot of strawberry caused by Rhizoctonia solani Kuhn.

    PubMed

    Asad-Uz-Zaman, Md; Bhuiyan, Mohammad Rejwan; Khan, Mohammad Ashik Iqbal; Alam Bhuiyan, Md Khurshed; Latif, Mohammad Abdul

    2015-02-01

    An investigation was made to manage strawberry black root rot caused by Rhizoctonia solani (R. solani) through the integration of Trichoderma harzianum (T. harzianum) isolate STA7, mustard oil cake and Provax 200. A series of preliminary experiments were conducted to select a virulent isolate of R. solani, an effective isolate of T. harzianum, a suitable organic amendment, and a suitable fungicide before setting the experiment for integration. The pathogenicity of the selected four isolates of R. solani was evaluated against strawberry and isolate SR1 was selected as the test pathogen due to its highest virulent (95.47% mortality) characteristics. Among the 20 isolates of T. harzianum, isolate STA7 showed maximum inhibition (71.97%) against the test pathogen (R. solani). Among the fungicides, Provax-200 was found to be more effective at lowest concentration (100 ppm) and highly compatible with Trichoderma isolates STA7. In the case of organic amendments, maximum inhibition (59.66%) of R. solani was obtained through mustard oil cake at the highest concentration (3%), which was significantly superior to other amendments. Minimum percentages of diseased roots were obtained with pathogen (R. solani)+Trichoderma+mustard oil cake+Provax-200 treatment, while the highest was observed with healthy seedlings with a pathogen-inoculated soil. In the case of leaf and fruit rot diseases, significantly lowest infected leaves as well as fruit rot were observed with a pathogen+Trichoderma+mustard oil cake+Provax-200 treatment in comparison with the control. A similar trend of high effectiveness was observed by the integration of Trichoderma, fungicide and organic amendments in controlling root rot and fruit diseases of strawberry. Single application of Trichoderma isolate STA7, Provax 200 or mustard oil cake did not show satisfactory performance in terms of disease-free plants, but when they were applied in combination, the number of healthy plants increased significantly. The result of the current study suggests the superiority of our integrated approach to control the sclerotia forming pathogen R. solani compared to the individual treatment either by an antagonist or by a fungicide or by mustard oil cake. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Seedling mortality and development of root rot in white pine seedlings in two bare-root nurseries

    Treesearch

    J. Juzwik; D. J. Rugg

    1996-01-01

    Seedling mortality and development of root rot in white pine (Pinus strobus) were followed across locations and over time within three operational nursery fields with loamy sand soils at a provincial nursery in southwestern Ontario, Canada, and a state nursery in southern Wisconsin, USA. One Ontario field was fumigated with dazomet; the other was not...

  10. Involvement of phenazines and lipopeptides in interactions between Pseudomonas species and Sclerotium rolfsii, causal agent of stem rot disease on groundnut.

    PubMed

    Le, C N; Kruijt, M; Raaijmakers, J M

    2012-02-01

    To determine the role of phenazines (PHZ) and lipopeptide surfactants (LPs) produced by Pseudomonas in suppression of stem rot disease of groundnut, caused by the fungal pathogen Sclerotium rolfsii. In vitro assays showed that PHZ-producing Pseudomonas chlororaphis strain Phz24 significantly inhibited hyphal growth of S. rolfsii and suppressed stem rot disease of groundnut under field conditions. Biosynthesis and regulatory mutants of Phz24 deficient in PHZ production were less effective in pathogen suppression. Pseudomonas strains SS101, SBW25 and 267, producing viscosin or putisolvin-like LPs, only marginally inhibited hyphal growth of S. rolfsii and did not suppress stem rot disease. In contrast, Pseudomonas strain SH-C52, producing the chlorinated LP thanamycin, inhibited hyphal growth of S. rolfsii and significantly reduced stem rot disease of groundnut in nethouse and field experiments, whereas its thanamycin-deficient mutant was less effective. Phenazines and specific lipopeptides play an important role in suppression of stem rot disease of groundnut by root-colonizing Pseudomonas strains. Pseudomonas strains Phz24 and SH-C52 showed significant control of stem rot disease. Treatment of seeds or soil with these strains provides a promising supplementary strategy to control stem rot disease of groundnut. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  11. Nitric oxide detoxification by Fusarium verticillioides flavohemoglobin and role in pathogenicity of maize

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a non-obligate plant pathogen of maize causing a number of specific diseases, including root rot, kernel rot, seed rot, stalk rot, and seedling blight. The saprophytic nature of this fungus, its production of the mycotoxin fumonisin, and complex relationship maize puts t...

  12. Spread of Fomes annosus root rot in thinned shortleaf pine plantations

    Treesearch

    Frederick H. Berry

    1968-01-01

    Plots were established in thinned shortleaf pine plantations in Missouri to determine the rate of spread of Fomes annosus root rot over a 5-year period. On these plots mortality from F. annosus was about 5 trees per acre per year.

  13. Screening of bioagents against root rot of mung bean caused by Rhizoctonia solani.

    PubMed

    Singh, Surender; Chand, Hari

    2006-01-01

    A laboratory and green house experiment was carried out on the comparative antagonistic performance of four different bioagents (Aspergillus sp. Gliocladium virens, Trichoderma harzianum and T. viride) isolated from soil against Rhizoctonia solani. Under laboratory conditions, T. harzianum exhibited maximum (75.55%) mycelial growth inhibition of R. solani. This was followed by T. viride, which showed 65.93% mycelial growth inhibition of the pathogen. Gliocladium virens was also found to be effective antagonists, which exhibited 57.77% mycelial growth inhibition. While Aspergillus sp exhibited minimum growth inhibition (45.74%) in comparison to other bioagents. Under green house conditions, T. harzianum gave maximum protection of the disease (72.72%) followed by T. viride, which exhibited 54.54% disease control. However, G. virens and Aspergillus sp were found least effective in controlling root rot of mungbean.

  14. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices.

    PubMed

    Tan, Yong; Cui, Yinshan; Li, Haoyu; Kuang, Anxiu; Li, Xiaoran; Wei, Yunlin; Ji, Xiuling

    2017-01-01

    Rhizosphere and endophytic fungal communities are considered critically important for plant health and soil fertility. In response to continuous cropping, Panax notoginseng becomes vulnerable to attack by fungal pathogens. In the present study, culture-independent Illumina MiSeq was used to investigate the rhizospheric and root endophytic fungi in response to continuous Panax notoginseng cropping practices. The results demonstrated that fungal diversity is increased inside the roots and in rhizospheric. Ascomycota, Zygomycota, Basidiomycota and Chytridiomycota were the dominant phyla detected during the continuous cropping of Panax notoginseng. The fungal diversity in the rhizospheric soil and roots of root-rot P. notoginseng plants are less than that of healthy plants in the same cultivating year, thus showing that root-rot disease also affects the community structure and diversity of rhizospheric and root endophytic fungi. Similarities in the major fungal components show that endophytic fungal communities are similar to rhizospheric soil fungal community based on a specialized subset of organisms. Canonical correspondence analysis on the fungal communities in root-rot rhizospheric from both healthy plants and rotation soils reveals that the soil pH and organic matter have the greatest impact upon the microbial community composition during continuous cropping, whereas soil nutrition status does not significantly affect the fungal community composition in response to continuous cropping practices. In addition, the results suggest that the unclassified genera Leotiomycetes, Cylindrocarpon, Fusarium and Mycocentrospora are shown as the potential pathogens which are responsible for the obstacles in continuous cropping of P. notoginseng. Further exploration of these potential pathogens might be useful for the biological control of continuous cropping of P. notoginseng. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root rot of soybean (Glycine max Merr.) is caused by the oomycete Phytophthora sojae (Kaufm. and Gerd.). P. sojae has a narrow host range, consisting primarily of soybean, and it is a serious pathogen worldwide. It exists in root and stem tissues as mycelium, wherein it can form oospo...

  16. Influence of sugarbeet tillage Systems on the rhizoctonia-bacterial root rot complex

    USDA-ARS?s Scientific Manuscript database

    The Rhizoctonia-bacterial root rot complex in sugarbeet caused by Rhizoctonia solani and Leuconostoc mesenteroides can cause significant yield losses. To investigate the impact of different tillage systems on this complex, field studies were conducted from 2009 to 2011. Split blocks with conventio...

  17. Influence of sugarbeet tillage systems on rhizoctonia-bacterial root rot complex

    USDA-ARS?s Scientific Manuscript database

    The Rhizoctonia-bacterial root rot complex on sugarbeet caused by Rhizoctonia solani and Leuconostoc mesenteroides can cause significant yield losses. To investigate the impact of different tillage systems on this complex, field studies were conducted from 2009 to 2011. Split blocks with conventio...

  18. Rhizoctonia crown and root rot disease nursery

    USDA-ARS?s Scientific Manuscript database

    The BSDF cooperative CRR Eastern Evaluation Nursery Rhizoctonia crown and root rot Evaluation Nursery in 2016 was a randomized complete-block design with five replications in 15 feet long, one-row plots (20 in row spacing), at the Saginaw Valley Research and Education Center near Frankenmuth, MI. F...

  19. Influence of tillage systems on Rhizoctonia-bacterial root rot complex in sugar beet

    USDA-ARS?s Scientific Manuscript database

    The Rhizoctonia-bacterial root rot complex on sugarbeet caused by Rhizoctonia solani and Leuconostoc mesenteroides can cause significant yield losses. To investigate the impact of different tillage systems on this complex, field studies were conducted from 2009 to 2011. Split blocks with conventio...

  20. Heroes and villains: Research identifies harmful and beneficial microbes in nursery soil

    USDA-ARS?s Scientific Manuscript database

    Phytophthora and Pythium species are common pathogens in nursery systems that can cause rhododendron root rot. Plants with root rot are often stunted, and may wilt and die, thus directly reducing nursery profit. Rhododendrons are an important crop in Pacific Northwest nurseries, but are highly susc...

  1. Integration of soil application and seed treatment formulations of Trichoderma species for management of wet root rot of mungbean caused by Rhizoctonia solani.

    PubMed

    Dubey, Sunil C; Bhavani, Ranganaicker; Singh, Birendra

    2011-09-01

    The efficacy of seed dressing and soil application formulations from the isolates of Trichoderma viride (IARI P1; MTCC 5369), T. virens (IARI P3; MTCC 5370) and T. harzianum (IARI P4; MTCC 5371) were evaluated individually and in combination in pot and field experiments during the rainy seasons of 2005, 2006 and 2007 for the management of wet root rot (Rhizoctonia solani) and improvement in the yield of mungbean. A seed dressing formulation, Pusa 5SD, and soil application formulations, Pusa Biogranule 6 (PBG 6) and Pusa Biopellet 16G (PBP 16G), based on Trichoderma virens, were found to be superior to other formulations in reducing disease incidence and increasing seed germination and shoot and root lengths in mungbean. In field experiments, a combination of soil application with PBP 16G (T. virens) and seed treatment with Pusa 5SD (T. virens) + carboxin was superior to any of these formulations individually in increasing seed germination, shoot and root lengths and grain yield and reducing wet root rot incidence in mungbean. Seed treatment was more effective than soil application for all the evaluated parameters. The combined application of Pusa 5SD and carboxin was also superior to individual treatment. The efficacy of the evaluated formulations against wet root rot of mungbean proved that the integration of soil application of PBP 16G and seed treatment with Pusa 5SD + carboxin is highly effective for the management of wet root rot, increasing plant growth and grain yield of mungbean. Copyright © 2011 Society of Chemical Industry.

  2. Development of a DNA Microarray-Based Assay for the Detection of Sugar Beet Root Rot Pathogens.

    PubMed

    Liebe, Sebastian; Christ, Daniela S; Ehricht, Ralf; Varrelmann, Mark

    2016-01-01

    Sugar beet root rot diseases that occur during the cropping season or in storage are accompanied by high yield losses and a severe reduction of processing quality. The vast diversity of microorganism species involved in rot development requires molecular tools allowing simultaneous identification of many different targets. Therefore, a new microarray technology (ArrayTube) was applied in this study to improve diagnosis of sugar beet root rot diseases. Based on three marker genes (internal transcribed spacer, translation elongation factor 1 alpha, and 16S ribosomal DNA), 42 well-performing probes enabled the identification of prevalent field pathogens (e.g., Aphanomyces cochlioides), storage pathogens (e.g., Botrytis cinerea), and ubiquitous spoilage fungi (e.g., Penicillium expansum). All probes were proven for specificity with pure cultures from 73 microorganism species as well as for in planta detection of their target species using inoculated sugar beet tissue. Microarray-based identification of root rot pathogens in diseased field beets was successfully confirmed by classical detection methods. The high discriminatory potential was proven by Fusarium species differentiation based on a single nucleotide polymorphism. The results demonstrate that the ArrayTube constitute an innovative tool allowing a rapid and reliable detection of plant pathogens particularly when multiple microorganism species are present.

  3. Aphanomyces root rot of alfalfa: widespread distribution of race 2

    USDA-ARS?s Scientific Manuscript database

    The early spring of 2012 with prolonged wet soil conditions in many parts of the country resulted in reports of poor performance of alfalfa due to Aphanomyces root rot (ARR). Varieties with resistance to ARR are available, although fewer varieties have resistance to both race 1 and race 2 of the pat...

  4. Root rots of common and tepary beans in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Root rots are a disease complex affecting common bean and can be severe in bean growing areas in the tropics and subtropics. The presence of several pathogens makes it difficult to breed for resistance because of the synergistic effect of the pathogens in the host and the interaction of soil factors...

  5. Irrigation affects severity of root rot caused by Phythophthora plurivora and P. cinnamomi on rhododendron

    USDA-ARS?s Scientific Manuscript database

    Plant pathogens in the genus Phytophthora cause root rot that decrease product quality and result in plant death and economic losses to the nursery industry. Recently, we found Phytophthora plurivora prevalent on rhododendron in nurseries in the Pacific Northwest, USA, but there is little informatio...

  6. First report of Phytophthora root rot, caused by Phytophthora cryptogea, on spinach in California

    USDA-ARS?s Scientific Manuscript database

    In 2006 and 2007, commercially grown spinach (Spinacia oleracea) in California’s coastal Salinas Valley (Monterey County) was affected by an unreported root rot disease. Disease was limited to patches along the edges of fields. Affected plants were stunted with chlorotic older leaves. As disease pro...

  7. QTL analysis of Fusarium root rot resistance in an Andean x Middle American common bean RIL population

    USDA-ARS?s Scientific Manuscript database

    Aims Fusarium root rot (FRR) is a soil-borne disease that constrains common bean (Phaseolus vulgaris L.) production. FRR causal pathogens include clade 2 members of the Fusarium solani species complex. Here we characterize common bean reaction to four Fusarium species and identify genomic regions as...

  8. Wilt, crown, and root rot of common rose mallow (Hibiscus moscheutos) caused by a novel Fusarium sp

    USDA-ARS?s Scientific Manuscript database

    A new crown and root rot disease of landscape plantings of the malvaceous ornamental common rose mallow (Hibiscus moscheutos) was first detected in Washington State in 2012. The main objectives of this study were to complete Koch's postulates, document the disease sypmtoms photographically, and iden...

  9. Jasmonic acid and salicylic acid inhibit growth of three sugarbeet storage rot pathogens

    USDA-ARS?s Scientific Manuscript database

    Storage rots contribute to postharvest losses by consuming sucrose and increasing carbohydrate impurities that increase sugar loss to molasses during processing. They also increase root respiration rate, which causes additional sucrose loss and contributes to pile warming. Currently, storage rots ...

  10. Effect of Environment and Sugar Beet Genotype on Root Rot Development and Pathogen Profile During Storage.

    PubMed

    Liebe, Sebastian; Varrelmann, Mark

    2016-01-01

    Storage rots represent an economically important factor impairing the storability of sugar beet by increasing sucrose losses and invert sugar content. Understanding the development of disease management strategies, knowledge about major storage pathogens, and factors influencing their occurrence is crucial. In comprehensive storage trials conducted under controlled conditions, the effects of environment and genotype on rot development and associated quality changes were investigated. Prevalent species involved in rot development were identified by a newly developed microarray. The strongest effect on rot development was assigned to environment factors followed by genotypic effects. Despite large variation in rot severity (sample range 0 to 84%), the spectrum of microorganisms colonizing sugar beet remained fairly constant across all treatments with dominant species belonging to the fungal genera Botrytis, Fusarium, and Penicillium. The intensity of microbial tissue necrotization was strongly correlated with sucrose losses (R² = 0.79 to 0.91) and invert sugar accumulation (R² = 0.91 to 0.95). A storage rot resistance bioassay was developed that could successfully reproduce the genotype ranking observed in storage trials. Quantification of fungal biomass indicates that genetic resistance is based on a quantitative mechanism. Further work is required to understand the large environmental influence on rot development in sugar beet.

  11. Forest-Site Planning and Prescription for Control of Annosus Root Disease in Ponderosa Pine and Mixed Conifer Stands

    Treesearch

    John Nesbitt

    1989-01-01

    In order to successfully combat pathogens such as annosus root rot, the land manager and pathologist must have periodic dialogue about the pest, its identification, effects, impacts, and cures. The author presents four important topics to structure this dialogue. These are (1) training from the pathologist to the silviculturist or other land manager, (2) site specific...

  12. Laminated Root Rot of Western Conifers

    Treesearch

    E.E. Nelson; N.E. Martin; R.E. Williams

    1981-01-01

    Laminated root rot is caused by the native fungus Phellinus weirii (Murr.) Gilb. It occurs throughout the Northwestern United States and in southern British Columbia, Canada. The disease has also been reported in Japan and Manchuria. In the United States, the pathogen is most destructive in pure Douglas-fir stands west of the crest of the Cascade Range in Washington...

  13. Genetic architecture and evolution of the mating type locus in fusaria that cause soybean sudden death syndrome and bean root rot

    USDA-ARS?s Scientific Manuscript database

    Fusarium tucumaniae is the only known sexually reproducing species among the seven closely related fusaria that cause soybean sudden death syndrome (SDS) or bean root rot (BRR). Laboratory mating of F. tucumaniae required two mating-compatible strains, indicating that it is heterothallic. To assess ...

  14. Pathogenicity, fungicide resistance, and genetic variability of Phytophthora rubi isolates from raspberry (Rubus idaeus) in the Western United States

    USDA-ARS?s Scientific Manuscript database

    Root rot of raspberry (Rubus idaeus), thought to be primarily caused by Phytophthora rubi, is an economically important disease in the western United States. The objectives of this study were to determine which Phytophthora species are involved in root rot, examine the efficacy of different isolatio...

  15. Temperature, Moisture, and Fungicide Effects in Managing Rhizoctonia Root and Crown Rot of Sugar Beet

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani AG-2-2 is the causal agent of Rhizoctonia root and crown rot in sugar beet. To assess the capacity at which other anastomosis groups (AGs) are able to infect sugar beet, 15 AGs and subgroups were tested for pathogenicity on resistant (FC708 CMS) and susceptible (Monohikari) seedl...

  16. Laminated root rot damage in a young Douglas-fir stand.

    Treesearch

    E.E. Nelson

    1980-01-01

    Damage occurring from the disease laminated root rot {Phellinus weirii (Murr.) Gilbertson) on two 10-acre plots in a young (40-year-old) stand of Douglas-fir was studied for 25 years. After 25 years, nearly 5 percent of the basal area was killed by the disease. Stand damage caused by vegetative spread of the fungus was significantly related to...

  17. Occurrence of the root-rot pathogen, Fusarium commune, in midwestern and western United States

    Treesearch

    J. E. Stewart; R. K. Dumroese; N. B. Klopfenstein; M. -S. Kim

    2012-01-01

    Fusarium commune can cause damping-off and root rot of conifer seedlings in forest nurseries. The pathogen is only reported in Oregon, Idaho, and Washington within United States. Fusarium isolates were collected from midwestern and western United States to determine occurrence of this pathogen. DNA sequences of mitochondrial small subunit gene were used to identify F....

  18. Potassium fertilizer applied immediately after planting had no impact on Douglas-fir seedling mortality caused by laminated root rot on a forested site in Washington State.

    Treesearch

    Walter G. Thies; Rick G. Kelsey; Douglas J. Westlind; Jeff Madsen

    2006-01-01

    Phellinus weirii causes laminated root rot (LRR), a major disease affecting growth and survival of Pseudotsuga menziesii (Douglas-fir) and other commercially important conifer species throughout the Pacific Northwest. Increasing tree vigor and resistance to pathogens through application of K fertilizer is a suggested disease...

  19. Multiplex assay for the quantitative assessment of Rhizoctonia solani AG2-2, AG4 and Rhizoctonia zeae from the soil

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani causes damping off and root and crown rot in sugar beets resulting in substantial losses in the field and during storage. Root rot is a difficult fungal disease to diagnose and manage, as the pathogen is usually not detected until after damage has occurred. The objective of this s...

  20. QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea

    USDA-ARS?s Scientific Manuscript database

    More knowledge about diversity of Quantitative Trait Loci (QTL) controlling polygenic disease resistance in natural genetic variation of crop species is required for durably improving plant genetic resistances to pathogens. Polygenic partial resistance to Aphanomyces root rot, due to Aphanomcyces eu...

  1. Recent change in the nomenclature of Phellinus pini: What is Porodaedalea?

    Treesearch

    Jessie A. Glaeser; Karen K. Nakasone

    2010-01-01

    The white-rot genus Phellinus contains many important forest pathogens and saprotrophs, including those that produce heartrot, saprot, and root-rot or butt-rot. One of the most notorious species is Phellinus pini, the causal agent of "red ring decay" or "white fleck," which primarily affects older stands of...

  2. Postharvest salicylic acid treatment reduces storage rots in water-stressed but no unstressed sugarbeet roots

    USDA-ARS?s Scientific Manuscript database

    Exogenous application of salicylic acid (SA) reduces storage rots in a number of postharvest crops. SA’s ability to protect sugarbeet (Beta vulgaris L.) taproots from common storage rot pathogens, however, is unknown. To determine the potential of SA to reduce storage losses caused by three common...

  3. Protective Effect of Polygonum orientale L. Extracts against Clavibater michiganense subsp. sepedonicum, the Causal Agent of Bacterial Ring Rot of Potato

    PubMed Central

    Cai, Jin; Xie, Shulian; Feng, Jia; Wang, Feipeng; Xu, Qiufeng

    2013-01-01

    The Polygonum orientale L. extracts were investigated for antibacterial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causal agent of a serious disease called bacterial ring rot of potato. The results showed that the leaf extracts of P. orientale had significantly (p<0.05) greater antibacterial activity against C. michiganense subsp. sepedonicum than root, stem, flower extracts in vitro. According to the results of single factor experiments and L273(13) orthogonal experiments, optimum extraction conditions were A1B3C1, extraction time 6 h, temperature 80°C, solid to liquid ratio 1∶10 (g:mL). The highest (p<0.05) antibacterial activity was observed when pH was 5, excluding the effect of control. The extracts were stable under ultraviolet (UV). In vivo analysis revealed that 50 mg/mL of P. orientale leaf extracts was effective in controlling decay. Under field conditions, 50 mg/mL of P. orientale leaf extracts also improved growth parameters (whole plant length, shoot length, root length, plant fresh weight, shoot fresh weight, root fresh weight, dry weight, and number of leaves), in the 2010 and 2011 two growing seasons. Further solvent partition assays showed that the most active compounds were in the petroleum ether fractionation. Transmission electron microscopy (TEM) showed drastic ultrastructural changes caused by petroleum ether fractionation, including bacterial deformation, electron-dense particles, formation of vacuoles and lack of cytoplasmic materials. These results indicated that P. orientale extracts have strong antibacterial activity against C. michiganense subsp. sepedonicum and a promising effect in control of bacterial ring rot of potato disease. PMID:23861908

  4. DNA-based characterization of wood-, butt- and root-rot fungi from the western Pacific Islands

    Treesearch

    Sara M. Ashiglar; Phil G. Cannon; Robert L. Schlub; Mee-Sook Kim; Yuko Ota; Norio Sahashi; Ned B. Klopfenstein

    2015-01-01

    Although the islands of the western Pacific comprise a hotspot of species, including fungi, a large number of these species have not been catalogued or documented in the scientific literature on an island to island basis. Butt- and root-rot fungi were collected from infected wood and fruiting bodies of diverse tropical trees from forest, agricultural, and...

  5. Occurrence of the root-rot pathogen, Fusarium commune, in forest nurseries of the midwestern and western United States

    Treesearch

    Mee-Sook Kim; Jane E. Stewart; R. Kasten Dumroese; Ned B. Klopfenstein

    2012-01-01

    Fusarium commune can cause damping-off and root rot of conifer seedlings in forest nurseries, and this pathogen has been previously reported from Oregon, Idaho, and Washington, USA. We collected Fusarium isolates from additional nurseries in the midwestern and western USA to more fully determine occurrence of this pathogen. We used DNA sequences of the mitochondrial...

  6. GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat.

    PubMed

    Wang, Aiyun; Wei, Xuening; Rong, Wei; Dang, Liang; Du, Li-Pu; Qi, Lin; Xu, Hui-Jun; Shao, Yanjun; Zhang, Zengyan

    2015-05-01

    Take-all (caused by the fungal pathogen Gaeumannomyces graminis var. tritici, Ggt) and common root rot (caused by Bipolaris sorokiniana) are devastating root diseases of wheat (Triticum aestivum L.). Development of resistant wheat cultivars has been a challenge since no resistant wheat accession is available. GmPGIP3, one member of polygalacturonase-inhibiting protein (PGIP) family in soybean (Glycine max), exhibited inhibition activity against fungal endopolygalacturonases (PGs) in vitro. In this study, the GmPGIP3 transgenic wheat plants were generated and used to assess the effectiveness of GmPGIP3 in protecting wheat from the infection of Ggt and B. sorokiniana. Four independent transgenic lines were identified by genomic PCR, Southern blot, and reverse transcription PCR (RT-PCR). The introduced GmPGIP3 was integrated into the genomes of these transgenic lines and could be expressed. The expressing GmPGIP3 protein in these transgenic wheat lines could inhibit the PGs produced by Ggt and B. sorokiniana. The disease response assessments postinoculation showed that the GmPGIP3-expressing transgenic wheat lines displayed significantly enhanced resistance to both take-all and common root rot diseases caused by the infection of Ggt and B. sorokiniana. These data suggested that GmPGIP3 is an attractive gene resource in improving resistance to both take-all and common root rot diseases in wheat.

  7. Controlling Infectious Diseases in Nurseries

    Treesearch

    T. H. Filer

    1968-01-01

    At least 300 publications have been written about non-infectious and infectious diseases of tree seedlings. I will outline some of the progress that is being made in finding ways to control infectious diseases, those caused by pathogens. I will touch upon pre- and post-emergence damping-off, root rots, leaf spots, and fusiform rust, which are the most serious diseases...

  8. Spatial Distribution of Root and Crown Rot Fungi Associated With Winter Wheat in the North China Plain and Its Relationship With Climate Variables

    PubMed Central

    Xu, Fei; Yang, Gongqiang; Wang, Junmei; Song, Yuli; Liu, Lulu; Zhao, Kai; Li, Yahong; Han, Zihang

    2018-01-01

    The distribution frequency of pathogenic fungi associated with root and crown rot of winter wheat (Triticum aestivum) from 104 fields in the North China Plain was determined during the period from 2013 to 2016. The four most important species identified were Bipolaris sorokiniana (24.0% from roots; 33.7% from stems), Fusarium pseudograminearum (14.9% from roots; 27.8% from stems), Rhizoctonia cerealis (1.7% from roots; 4.4% from stems), and Gaeumannomyces graminis var. tritici (9.8% from roots; 4.4% from stems). We observed that the recovered species varied with the agronomic zone. Fusarium pseudograminearum was predominant in regions 1 and 3, whereas F. graminearum, F. acuminatum, and R. cerealis were predominant in regions 2 and 4. The incidence of F. pseudograminearum and R. cerealis was significantly different between regions 1 and 4, while no significant association was found in the distribution of the other species and the agronomic zones. A negative correlation between the frequency of occurrence of F. pseudograminearum and mean annual precipitation during 2013–2016 (r = −0.71; P < 0.01) in the North China Plain and a positive correlation between the mean annual precipitation during 2013–2016 and the frequency of occurrence of F. asiaticum (r = 0.74; P < 0.01) were observed. Several Fusarium species were also found with low frequencies of ~2.1%−3.4 % (F. graminearum, F. acuminatum, and F. sinensis) and ~0.1%−1.3% (F. equiseti, F. oxysporum, F. proliferatum, F. culmorum, F. avenaceum, and F. asiaticum). In more than 93% of the fields, from the root and crown tissues of wheat, two or more root and crown rot species were isolated. The coexistence of Fusarium spp. and B. sorokiniana in one field (65.4%) or in individual plants (11.6%) was more common than for the other species combinations. Moreover, this is the first report on the association between F. sinensis and root and crown rot of wheat. Our results would be useful in the framing guidelines for the management of root and crown rot fungi in wheat in different agronomic zones of the North China Plain. PMID:29887840

  9. Population genomic analyses of the brown root-rot pathogen, Phellinus noxius, examine potential invasive spread among Pacific islands

    Treesearch

    Jane E. Stewart; Mee-Sook Kim; Louise Shuey; Norio Sahashi; Yuko Ota; Robert L. Schlub; Phil G. Cannon; Ned B. Klopfenstein

    2016-01-01

    Phellinus noxius (Corner) G. H. Cunn is a vastly destructive, fast-growing fungal pathogen that affects a wide range of woody hosts in pan-tropical areas, including Asia, Australia, Africa, and Oceania (Ann et al. 2002; Figure 1) . This pathogen causes brown root-rot disease on cacao, coffee, and rubber, as well as diverse fruit, nut, ornamental, and other...

  10. USSR Report Agriculture.

    DTIC Science & Technology

    1986-03-04

    per hectare) is employed against snow mould in the autumn and Bayleton (0.5 kg) is used upon the appearance of powdery mildew , brown rust and root rots...mould in the autumn and Bayleton (0.5 kg) is used upon the appearance of powdery mildew , brown rust and root rots prior to the forming of the grain. At...33 Fallow as Wheat Predecessor Stressed for Kazakhstan (A. Zadorin, L. Mozhayev; SELSKOYE KHOZYAYSTVO KAZAKHSTANA

  11. Development and application of qPCR and RPA genus and species-specific detection of Phytophthora sojae and Phytophthora sansomeana root rot pathogens of soybean

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root rot of soybean, caused by Phytophthora sojae is one of the most important diseases in the Midwest US, causing losses of up to 44 million bushels per year. Disease may also be caused by P. sansomeana, however the prevalence and damage caused by this species is not well known, partl...

  12. Potential worldwide distribution of Fusarium dry root rot in common beans based on the optimal environment for disease occurrence.

    PubMed

    Macedo, Renan; Sales, Lilian Patrícia; Yoshida, Fernanda; Silva-Abud, Lidianne Lemes; Lobo, Murillo

    2017-01-01

    Root rots are a constraint for staple food crops and a long-lasting food security problem worldwide. In common beans, yield losses originating from root damage are frequently attributed to dry root rot, a disease caused by the Fusarium solani species complex. The aim of this study was to model the current potential distribution of common bean dry root rot on a global scale and to project changes based on future expectations of climate change. Our approach used a spatial proxy of the field disease occurrence, instead of solely the pathogen distribution. We modeled the pathogen environmental requirements in locations where in-situ inoculum density seems ideal for disease manifestation. A dataset of 2,311 soil samples from commercial farms assessed from 2002 to 2015 allowed us to evaluate the environmental conditions associated with the pathogen's optimum inoculum density for disease occurrence, using a lower threshold as a spatial proxy. We encompassed not only the optimal conditions for disease occurrence but also the optimal pathogen's density required for host infection. An intermediate inoculum density of the pathogen was the best disease proxy, suggesting density-dependent mechanisms on host infection. We found a strong convergence on the environmental requirements of both the host and the disease development in tropical areas, mostly in Brazil, Central America, and African countries. Precipitation and temperature variables were important for explaining the disease occurrence (from 17.63% to 43.84%). Climate change will probably move the disease toward cooler regions, which in Brazil are more representative of small-scale farming, although an overall shrink in total area (from 48% to 49% in 2050 and 26% to 41% in 2070) was also predicted. Understanding pathogen distribution and disease risks in an evolutionary context will therefore support breeding for resistance programs and strategies for dry root rot management in common beans.

  13. Potential worldwide distribution of Fusarium dry root rot in common beans based on the optimal environment for disease occurrence

    PubMed Central

    Macedo, Renan; Sales, Lilian Patrícia; Yoshida, Fernanda; Silva-Abud, Lidianne Lemes

    2017-01-01

    Root rots are a constraint for staple food crops and a long-lasting food security problem worldwide. In common beans, yield losses originating from root damage are frequently attributed to dry root rot, a disease caused by the Fusarium solani species complex. The aim of this study was to model the current potential distribution of common bean dry root rot on a global scale and to project changes based on future expectations of climate change. Our approach used a spatial proxy of the field disease occurrence, instead of solely the pathogen distribution. We modeled the pathogen environmental requirements in locations where in-situ inoculum density seems ideal for disease manifestation. A dataset of 2,311 soil samples from commercial farms assessed from 2002 to 2015 allowed us to evaluate the environmental conditions associated with the pathogen’s optimum inoculum density for disease occurrence, using a lower threshold as a spatial proxy. We encompassed not only the optimal conditions for disease occurrence but also the optimal pathogen’s density required for host infection. An intermediate inoculum density of the pathogen was the best disease proxy, suggesting density-dependent mechanisms on host infection. We found a strong convergence on the environmental requirements of both the host and the disease development in tropical areas, mostly in Brazil, Central America, and African countries. Precipitation and temperature variables were important for explaining the disease occurrence (from 17.63% to 43.84%). Climate change will probably move the disease toward cooler regions, which in Brazil are more representative of small-scale farming, although an overall shrink in total area (from 48% to 49% in 2050 and 26% to 41% in 2070) was also predicted. Understanding pathogen distribution and disease risks in an evolutionary context will therefore support breeding for resistance programs and strategies for dry root rot management in common beans. PMID:29107985

  14. Anaerobic soil disinfestation reduces survival and infectivity of Phytophthora nicotianae chlamydospores in pepper

    USDA-ARS?s Scientific Manuscript database

    Phytophthora nicotianae is the principal causal agent of root and crown rot disease of pepper plants in Extremadura (western Spain), a spring-summer crop in this region. Preplant soil treatment by anaerobic soil disinfestation (ASD) may effectively control plant pathogens in many crop production sys...

  15. Timing and Methodology of Application of Azoxystrobin to Control Rhizoctonia Solani in Sugarbeet

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani AG 2-2 is the causal agent of Rhizoctonia root and crown rot of sugar beet (Beta vulgaris) in North Dakota and Minnesota. This disease is a major limiting factor to sugar beet production. Management strategies currently include using partially resistant cultivars and fungicides. ...

  16. Phylogenetic and population analyses of the invasive brown root-rot pathogen (Phellinus noxius) highlight the existence of at least two distinct populations

    Treesearch

    J. E. Stewart; N. Sahashi; T. Hattori; M. Akiba; Y. Ota; L. Shuey; R. L. Schlub; N. Atibalentia; F. Brooks; A. M. C. Tang; R. Y. C. Lam; M. W. K. Leung; L. M. Chu; H. S. Kwan; A. Mohd Farid; S. S. Lee; C. -L. Chung; H. -H. Lee; Y.- C. Huang; R. -F. Liou; J. -N. Tsai; P. G. Cannon; J. W. Hanna; N. B. Klopfenstein; M. -S. Kim

    2017-01-01

    Phellinus noxius (Corner) G. H. Cunn is a vastly destructive, fast-growing pathogen that affects a wide range of woody hosts in pan-tropical areas, including Asia, Australia, Africa, and Oceania (Ann et al. 2002). This invasive pathogen causes brown root-rot disease on cacao, coffee, and rubber, as well as diverse fruit, nut, ornamental, and other native/exotic trees,...

  17. Resistance mechanisms to toxin-mediated charcoal rot infection in maturity group III soybean: role of seed phenol lignin soflavones sugars and seed minerals in charcoal rot resistance

    USDA-ARS?s Scientific Manuscript database

    Charcoal rot is a disease caused by the fungus Macrophomina phaseolina (Tassi) Goid, and thought to infect the plants through roots by a toxin-mediated mechanism, resulting in yield loss and poor seed quality, especially under drought conditions. The mechanism by which this infection occurs is not y...

  18. The development of spectro-signature indicators of root disease impacts on forest stands

    NASA Technical Reports Server (NTRS)

    Weber, F. P.; Wear, J. F.

    1970-01-01

    A field research program was begun in 1969 and intensified in 1970 on the physiology and biophysical responses of second-growth Douglas fir infected with root rot fungus. A double tramway system was suspended between three 100-foot instrument towers to carry sensors for measuring the energy response from above both healthy and infected trees. Processing and analysis was completed of airborne multispectral scanner imagery collected over the Wind River research area in 1969. Likelihood ratio processing of three-channel infrared data and Euclidean distance analysis of ten-channel spectrometer data did not identify incipient root rot infection outside the training sets. In all cases infected fir was misclassified as healthy fir. It was concluded from careful examination of physiological data that Poria root rot infection has little effect on water metabolism and energy exchange. What was identified was a low-grade stress that affects respiration and metabolism over long periods of time. This led to minor changes in the external physical symptoms of Poria-infected trees which was revealed only in the shortwave reflectance data.

  19. Wide variation in virulence and genetic diversity of binucleate Rhizoctonia isolates associated with root rot of strawberry in Western Australia.

    PubMed

    Fang, Xiangling; Finnegan, Patrick M; Barbetti, Martin J

    2013-01-01

    Strawberry (Fragaria×ananassa) is one of the most important berry crops in the world. Root rot of strawberry caused by Rhizoctonia spp. is a serious threat to commercial strawberry production worldwide. However, there is no information on the genetic diversity and phylogenetic status of Rhizoctonia spp. associated with root rot of strawberry in Australia. To address this, a total of 96 Rhizoctonia spp. isolates recovered from diseased strawberry plants in Western Australia were characterized for their nuclear condition, virulence, genetic diversity and phylogenetic status. All the isolates were found to be binucleate Rhizoctonia (BNR). Sixty-five of the 96 BNR isolates were pathogenic on strawberry, but with wide variation in virulence, with 25 isolates having high virulence. Sequence analysis of the internal transcribed spacers of the ribosomal DNA separated the 65 pathogenic BNR isolates into six distinct clades. The sequence analysis also separated reference BNR isolates from strawberry or other crops across the world into clades that correspond to their respective anastomosis group (AG). Some of the pathogenic BNR isolates from this study were embedded in the clades for AG-A, AG-K and AG-I, while other isolates formed clades that were sister to the clades specific for AG-G, AG-B, AG-I and AG-C. There was no significant association between genetic diversity and virulence of these BNR isolates. This study demonstrates that pathogenic BNR isolates associated with root rot of strawberry in Western Australia have wide genetic diversity, and highlights new genetic groups not previously found to be associated with root rot of strawberry in the world (e.g., AG-B) or in Australia (e.g., AG-G). The wide variation in virulence and genetic diversity identified in this study will be of high value for strawberry breeding programs in selecting, developing and deploying new cultivars with resistance to these multi-genetic groups of BNR.

  20. Evaluation of fungicide and biological treatments for control of fungal storage rots in sugar beet, 2014

    USDA-ARS?s Scientific Manuscript database

    Preventing sucrose losses in storage is important to the economic viability of the sugar beet industry. In an effort to establish additional measures for reducing sucrose losses in storage, ten fungicide and/or biological treatments were evaluated on sugar beet roots in a commercial sugar beet stor...

  1. Identification of loci Associated with Resistance to Root-Rot Diseases in Autotetraploid Alfalfa using Genome-Wide Sequencing and Association Mapping

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa L.) is the world-wide forage crop. Changing trends to multipurpose uses increases demand for alfalfa. However, the production of alfalfa is challenged by endemic and emerging diseases. Identification of genes/loci controlling disease resistance will facilitate breeding for i...

  2. The Lack of a Long-Term Growth Effect of Annosus Control in Southeastern United States

    Treesearch

    F. H. Tainter; J. G. Williams; N. J. Hess; S. W. Oak; D. A. Starkey

    1989-01-01

    An evaluation of basal area increment was made in 1988 of six pine plantations located across the southeastern United States. These plantations had been thinned in 1969-1970 and stumps treated with borax to measure long-term efficacy of annosus root rot control. In the present study, no long-term growth effects were identified. There were neither negative growth...

  3. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea

    PubMed Central

    Mangar, Preeti; Saha, Aniruddha

    2018-01-01

    The aim of the present study is to evaluate plant growth promoting and biocontrol efficacy of a Serratia marcescens strain ETR17 isolated from tea rhizosphere for the effective management of root rot disease in tea. Isolated bacterial culture ETR17 showed significant level of in vitro antagonism against nine different foliar and root pathogens of tea. The phenotypic and molecular characterization of ETR17 revealed the identity of the bacterium as Serratia marcescens. The bacterium was found to produce several hydrolytic enzymes like chitinase, protease, lipase, cellulase and plant growth promoting metabolites like IAA and siderophore. Scanning electron microscopic studies on the interaction zone between pathogen and antagonistic bacterial isolate revealed severe deformities in the fungal mycelia. Spectral analyses (LC-ESI-MS, UV-VIS spectrophotometry and HPLC) and TLC indicated the presence of the antibiotics pyrrolnitrin and prodigiosin in the extracellular bacterial culture extracts. Biofilm formation by ETR17 on polystyrene surface was also observed. In vivo application of talc-based formulations prepared with the isolate ETR17 in tea plantlets under green house conditions revealed effective reduction of root-rot disease as well as plant growth promotion to a considerable extent. Viability studies with the ETR17 talc formulation showed the survivability of the isolate up to six months at room temperature. The sustenance of ETR17 (concentration of 8-9x108 cfu g-1) in the soil after the application of talc formulation was recorded by ELISA. Safety studies revealed that ETR17 did not produce hemolysin as observed in pathogenic Serratia strains. The biocontrol strain reported in this study can be used for field application in order to minimize the use of chemical fungicides for disease control in tea gardens. PMID:29466418

  4. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea.

    PubMed

    Dhar Purkayastha, Gargee; Mangar, Preeti; Saha, Aniruddha; Saha, Dipanwita

    2018-01-01

    The aim of the present study is to evaluate plant growth promoting and biocontrol efficacy of a Serratia marcescens strain ETR17 isolated from tea rhizosphere for the effective management of root rot disease in tea. Isolated bacterial culture ETR17 showed significant level of in vitro antagonism against nine different foliar and root pathogens of tea. The phenotypic and molecular characterization of ETR17 revealed the identity of the bacterium as Serratia marcescens. The bacterium was found to produce several hydrolytic enzymes like chitinase, protease, lipase, cellulase and plant growth promoting metabolites like IAA and siderophore. Scanning electron microscopic studies on the interaction zone between pathogen and antagonistic bacterial isolate revealed severe deformities in the fungal mycelia. Spectral analyses (LC-ESI-MS, UV-VIS spectrophotometry and HPLC) and TLC indicated the presence of the antibiotics pyrrolnitrin and prodigiosin in the extracellular bacterial culture extracts. Biofilm formation by ETR17 on polystyrene surface was also observed. In vivo application of talc-based formulations prepared with the isolate ETR17 in tea plantlets under green house conditions revealed effective reduction of root-rot disease as well as plant growth promotion to a considerable extent. Viability studies with the ETR17 talc formulation showed the survivability of the isolate up to six months at room temperature. The sustenance of ETR17 (concentration of 8-9x108 cfu g-1) in the soil after the application of talc formulation was recorded by ELISA. Safety studies revealed that ETR17 did not produce hemolysin as observed in pathogenic Serratia strains. The biocontrol strain reported in this study can be used for field application in order to minimize the use of chemical fungicides for disease control in tea gardens.

  5. Antifungal Compound Isolated from Catharanthus roseus L. (Pink) for Biological Control of Root Rot Rubber Diseases.

    PubMed

    Zahari, R; Halimoon, N; Ahmad, M F; Ling, S K

    2018-01-01

    Rigidoporus microporus, Ganoderma philippii, and Phellinus noxius are root rot rubber diseases and these fungi should be kept under control with environmentally safe compounds from the plant sources. Thus, an antifungal compound isolated from Catharanthus roseus was screened for its effectiveness in controlling the growth of these fungi. The antifungal compound isolated from C. roseus extract was determined through thin layer chromatography (TLC) and nuclear magnetic resonance (NMR) analysis. Each C. roseus of the DCM extracts was marked as CRD1, CRD2, CRD3, CRD4, CRD5, CRD6, and CRD7, respectively. TLC results showed that all of the C. roseus extracts peaked with red colour at Rf = 0.61 at 366 nm wavelength, except for CRD7. The CRD4 extract was found to be the most effective against R. microporus and G. philippii with inhibition zones of 3.5 and 1.9 mm, respectively, compared to that of other extracts. These extracts, however, were not effective against P. noxius. The CRD4 extract contained ursolic acid that was detected by NMR analysis and the compound could be developed as a biocontrol agent for controlling R. microporus and G. philippii. Moreover, little or no research has been done to study the effectiveness of C. roseus in controlling these fungi.

  6. Effect of fungal decay on the hygroscopic thickness swelling rate of lignocellulosic filler-polyolefin biocomposites

    NASA Astrophysics Data System (ADS)

    Kord, B.; Hosseinihashemi, S. Kh.

    2014-01-01

    The influence of fungal decay on the hygroscopic thickness swelling rate of lignocellulosic filler-polyolefin biocomposites has been investigated. Composites based on polypropylene (PP), bagasse fiber (BF), and a coupling agent (PP-g-MA) were made by melt compounding and injection molding. The weigt ratio of BF to PP was controlled at 60/40 for all blends. The amount of coupling agent was fixed at 2% for all formulations. The samples obtained were exposed to the action of brown-rot (Coniophora puteana) and white-rot (Trametes versicolor) fungi for 8, 12, and 16 weeks according to the Kolle-flask method. The thickness swelling of the samples was evaluated by immersing them in water at room temperature for several weeks. The morphology of the composites was characterized using the scanning electron microscopy (SEM). The results indicated that the fungal decay had an adverse affect on the dimensional stability of BF/PP composites due to an increase in the thickness swelling rate. The thickness swelling of white-rotted samples was higher than that of brown-rotted ones and control samples. Also, the thickness swelling of BF/PP composites increased with increasing time of fungal decay. In addition, after 16 weeks of exposure to white-rot fungi, the composites exhibited a higher parameter of swelling rate K SR than control samples. The K SR of the composites was influenced both by the type of rooting and the exposure time. Furthermore, the SEM micrographs showed that the extent of degradation increased with growing exposure time to fungi.

  7. Biological Control of Diseases of Vegetables Grown Hydroponically in Thailand: Challenge and Opportunity.

    PubMed

    Kanjanamaneesathian, Mana

    2015-01-01

    In Thailand, yield loss due to plant diseases in vegetables grown hydroponically is very high as a result of the growers` lack of knowledge for controlling diseases and their un- willingness to invest in setting-up the proper hydroponic system from the beginning. Severe root rot disease caused by Pythium spp. is frequent and can be anticipated in the hot climate in Thailand. This review focuses on the diseases in temperate lettuces which have been produced hydroponically and have been attacked by plant pathogens, particularly Pythium spp. Biological control of vegetable diseases grown hydroponically has been investigated in Thailand. Research is being carried out to identify effective strains of the antagonists, formulating the applicable products and delivering them appropriately to control the disease. Products of Bacillus subtilis, Chaetomium globosom and Trichoderma harzianum have been recommended for use to control diseases in vegetables grown hydroponically. Control efficacy of these products is varied as the biological products have been used by the growers in the paradigm of using chemical fungicide for disease control in hydroponic production system, overlooking the intrinsic characteristics of the biological control products. The recent patent, which minimizes the effects of sunlight and heat on the nutrient solution without the use of an external energy for cooling the nutrient, should be applied in producing hydroponic vegetables to mitigate poor plant growth and root rot disease outbreak in Thailand.

  8. Biology, diagnosis and management of Heterobasidion Root Disease of southern pines

    Treesearch

    Tyler J. Dreaden; Jason A.  Smith; Michelle M. Cram; David R   Coyle

    2016-01-01

    Heterobasidion root disease (previously called annosum, annosus, or Fomes root disease / root rot) is one of the most economically damaging forest diseases in the Northern Hemisphere. Heterobasidion root disease (HRD) in the southeastern U.S. is caused by the pathogen Heterobasidion irregulare, which infects loblolly, longleaf, pitch, shortleaf, slash, Virginia, and...

  9. Achievements and challenges in legume breeding for pest and disease resistance

    USDA-ARS?s Scientific Manuscript database

    Yield stability of legume crops is constrained by a number of pest and diseases. Major diseases are rusts, powdery and downy mildews, ascochyta blight, botrytis gray molds, anthracnoses, damping-off, root rots, collar rot, vascular wilts and white mold. Parasitic weeds, viruses, bacteria, nematodes ...

  10. Carbon source-dependent efficacy of anaerobic soil disinfestation (ASD) in suppression of Rhizoctonia root rot of apple

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani AG-5 is a significant component of the pathogen complex that incites apple replant disease (ARD). A non-fumigant alternative, such as ASD, is highly desired for control of ARD. We examined the influence of carbon input as a determinant of ASD efficacy in the supression of apple ...

  11. Virulence of Fusarium oxysporum and F. commune to Douglas-fir (Pseudotsuga menziesii) seedlings

    Treesearch

    J. E. Stewart; Z. Abdo; R. K. Dumroese; N. B. Klopfenstein; M. -S. Kim

    2012-01-01

    Fusarium species can cause damping-off and root rot of young conifer seedlings, resulting in severe crop and economic losses in forest nurseries. Disease control within tree nurseries is difficult because of the inability to characterize and quantify Fusarium spp. populations with regard to disease potential because of high variability in isolate virulence. Fusarium...

  12. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions

    PubMed Central

    Voisard, Christophe; Keel, Christoph; Haas, Dieter; Dèfago, Geneviève

    1989-01-01

    Pseudomonas fluorescens CHA0 suppresses black root rot of tobacco, a disease caused by the fungus Thielaviopsis basicola. Strain CHA0 excretes several metabolites with antifungal properties. The importance of one such metabolite, hydrogen cyanide, was tested in a gnotobiotic system containing an artificial, iron-rich soil. A cyanidenegative (hcn) mutant, CHA5, constructed by a gene replacement technique, protected the tobacco plant less effectively than did the wild-type CHA0. Complementation of strain CHA5 by the cloned wild-type hcn+ genes restored the strain's ability to suppress disease. An artificial transposon carrying the hcn+ genes of strain CHA0 (Tnhcn) was constructed and inserted into the genome of another P.fluorescens strain, P3, which naturally does not produce cyanide and gives poor plant protection. The P3::Tnhcn derivative synthesized cyanide and exhibited an improved ability to suppress disease. All bacterial strains colonized the roots similarly and did not influence significantly the survival of T.basicola in soil. We conclude that bacterial cyanide is an important but not the only factor involved in suppression of black root rot. Images PMID:16453871

  13. Biocontrol of Fusarium Crown and Root Rot and Promotion of Growth of Tomato by Paenibacillus Strains Isolated from Soil

    PubMed Central

    Xu, Sheng Jun

    2014-01-01

    In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited the mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici in vitro. The seven Paenibacillus strains enhanced a range of growth parameters in tomato plants under greenhouse conditions, in comparison with non-inoculated control plants. Notably, treatment of tomato plants with one identified strain, P. polymyxa SC09-21, resulted in 80.0% suppression of fusarium crown and root rot under greenhouse conditions. The plant growth promoting and antifungal activity of P. polymyxa SC09-21 identified in this study highlight its potential suitability as a bioinoculant. PMID:25071385

  14. Development of molecular methods to detect Macrophomina phaseolina from strawberry plants and soil

    USDA-ARS?s Scientific Manuscript database

    Macrophomina phaseolina is a broad-host range fungus that shows some degree of host preference on strawberry, and causes symptoms including charcoal rot and root rot. Recently, this pathogen has impacted strawberry production as fumigation practices have changed, leaving many growers in California a...

  15. Meiotic drive-based strategy to minimize mycotoxins in corn

    USDA-ARS?s Scientific Manuscript database

    Some fungi pose a dual threat to corn production by causing disease (seedling, root, stalk or ear rots) and by producing mycotoxins that pose health risks to humans and domestic animals. For example, the fungus Fusarium verticillioides can cause stalk and ear rot of corn and produce fumonisins, a fa...

  16. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici.

    PubMed

    Aravind, R; Kumar, A; Eapen, S J; Ramana, K V

    2009-01-01

    To isolate and identify black pepper (Piper nigrum L) associated endophytic bacteria antagonistic to Phytophthora capsici causing foot rot disease. Endophytic bacteria (74) were isolated, characterized and evaluated against P. capsici. Six genera belong to Pseudomonas spp (20 strains), Serratia (1 strain), Bacillus spp. (22 strains), Arthrobacter spp. (15 strains), Micrococcus spp. (7 strains), Curtobacterium sp. (1 strain) and eight unidentified strains were isolated from internal tissues of root and stem. Three isolates, IISRBP 35, IISRBP 25 and IISRBP 17 were found effective for Phytophthora suppression in multilevel screening assays which recorded over 70% disease suppression in greenhouse trials. A species closest match (99% similarity) of IISRBP 35 was established as Pseudomonas aeruginosa (Pseudomonas EF568931), IISRBP 25 as P. putida (Pseudomonas EF568932), and IISRBP 17 as Bacillus megaterium (B. megaterium EU071712) based on 16S rDNA sequencing. Black pepper associated P. aeruginosa, P. putida and B. megaterium were identified as effective antagonistic endophytes for biological control of Phytophthora foot rot in black pepper. This work provides the first evidence for endophytic bacterial diversity in black pepper stem and roots, with biocontrol potential against P. capsici infection.

  17. Virulence of Three Cylindrocladium Species to Yellow-Poplar Seedlings

    Treesearch

    T. H. Filer

    1970-01-01

    Cylindrocladium crotalariae and C. scoparium caused severe root rot on potted yellow-poplar seedlings. They appeared to be equally virulent. C. floridanum caused necrosis only on feeder roots of the seedlings.

  18. Evaluation of a portable MOS electronic nose to detect root rots in shade tree species

    Treesearch

    Manuela Baietto; Letizia Pozzi; Alphus Dan Wilson; Daniele Bassi

    2013-01-01

    The early detection of wood decays in high-value standing trees is very important in urban areas because mitigating control measures must be implemented long before tree failures result in property damage or injuries to citizens. Adverse urban environments increase physiological stresses in trees, causing greater susceptibility to attacks by pathogenic decay fungi. The...

  19. Biological Control of Phytophthora palmivora Causing Root Rot of Pomelo Using Chaetomium spp.

    PubMed Central

    Wattanachai, Pongnak; Kasem, Soytong; Poaim, Supatta

    2015-01-01

    Phytophthora diseases have become a major impediment in the citrus production in Thailand. In this study, an isolate of Phytophthora denominated as PHY02 was proven to be causal pathogen of root rot of Pomelo (Citrus maxima) in Thailand. The isolate PHY02 was morphologically characterized and identified as Phytophthora palmivora based on molecular analysis of an internal transcribed spacer rDNA sequence. This work also presents in vitro evaluations of the capacities of Chaetomium spp. to control the P. palmivora PHY02. As antagonists, Chaetomium globosum CG05, Chaetomium cupreum CC3003, Chaetomium lucknowense CL01 inhibited 50~61% mycelial growth, degraded mycelia and reduced 92~99% sporangial production of P. palmivora PHY02 in bi-culture test after 30 days. Fungal metabolites from Chaetomium spp. were tested against PHY02. Results showed that, methanol extract of C. globosum CG05 expressed strongest inhibitory effects on mycelial growth and sporangium formation of P. palmivora PHY02 with effective dose ED50 values of 26.5 µg/mL and 2.3 µg/mL, respectively. It is interesting that C. lucknowense is reported for the first time as an effective antagonist against a species of Phytophthora. PMID:25892917

  20. Evaluation of Intego Solo (ethaboxam) for management of metalaxyl-resistant Pythium spp. in chickpea

    USDA-ARS?s Scientific Manuscript database

    Pythium damping-off and Pythium root rot, caused by numerous species of Pythium, can be a major limiting factor in the emergence and stand establishment of chickpea. Pythium spp. infect the germinating seed and seedling, often resulting in seed rot and subsequent damping-off in northern Idaho. Cur...

  1. Growth in microgravity increases susceptibility of soybean to a fungal pathogen

    NASA Technical Reports Server (NTRS)

    Ryba-White, M.; Nedukha, O.; Hilaire, E.; Guikema, J. A.; Kordyum, E.; Leach, J. E.; Spooner, B. S. (Principal Investigator)

    2001-01-01

    The influence of microgravity on the susceptibility of soybean roots to Phytophthora sojae was studied during the Space Shuttle Mission STS-87. Seedlings of soybean cultivar Williams 82 grown in spaceflight or at unit gravity were untreated or inoculated with the soybean root rot pathogen P. sojae. At 3, 6 and 7 d after launch while still in microgravity, seedlings were photographed and then fixed for subsequent microscopic analysis. Post-landing analysis of the seedlings revealed that at harvest day 7 the length of untreated roots did not differ between flight and ground samples. However, the flight-grown roots infected with P. sojae showed more disease symptoms (percentage of brown and macerated areas) and the root tissues were more extensively colonized relative to the ground controls exposed to the fungus. Ethylene levels were higher in spaceflight when compared to ground samples. These data suggest that soybean seedlings grown in microgravity are more susceptible to colonization by a fungal pathogen relative to ground controls.

  2. Influence of cultural practices on edaphic factors related to root disease in Pinus nursery seedlings

    Treesearch

    J Juzwik; K. M. Gust; R. R. Allmaras

    1999-01-01

    Conifer seedlings grown in bare-root nurseries are frequently damaged and destroyed by soil-borne pathogenic fungi that cause root rot. Relationships between nursery cultural practices, soils characteristics, and populations of potential pathogens in the soil were examined in three bare-root tree nurseries in the midwestern USA. Soil-borne populations of ...

  3. Postharvest respiration rate and sucrose content of Rhizoctonia-infected sugarbeet roots

    USDA-ARS?s Scientific Manuscript database

    Rhizotonia crown and root rot of sugarbeet (Beta vulgaris L), caused by Rhizoctonia solani AG 2-2, is increasing in Minnesota and North Dakota. As the disease increases in prevalence and severity, more diseased roots are being stored in piles where they affect storability and postharvest quality. T...

  4. Postharvest respiration rate and sucrose content of Rhizoctonia-infected sugarbeet roots

    USDA-ARS?s Scientific Manuscript database

    Rhizotonia crown and root rot of sugarbeet, caused by Rhizoctonia solani AG 2-2, is increasing in Minnesota and North Dakota. As the disease increases in prevalence and severity, more diseased roots are being stored in piles where they affect storability and postharvest quality. The objective of th...

  5. Colonization of Clonostachys rosea on soybean root inoculated with Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    Soybean root rot, caused by Fusarium graminearum, is a devastating disease. Clonostachys rosea has been reported to have protection against plant pathogens in different crops. The objectives of this study were to determine if a strain of C. rosea (ACM941) can colonize soybean root that were inocula...

  6. Current Research on Wood Decay in the USDA Forest Service

    Treesearch

    Harold H. Burdsall Jr.

    1991-01-01

    The Forest Service's research on decay fungi and decay caused by fungi is done mainly in two research work units at the Forest Products Laboratory. One unit, the Center for Forest Mycology Research, performs biosystematic research on root-rot and products-rot fungi in the genera Armillaria, Phellinus, and Phlebia and maintains the culture collection supporting...

  7. Spatial patterns of Armillaria populations in the walker branch watershed throughfall displacement experiment, Tennessee,USA.

    Treesearch

    Johann N. Bruhn; James A. Brenneman; James J., Jr. Wetteroff; Jeanne D. Mihail; Theodor D. Leininger

    1997-01-01

    Species in the white-rot fungal genus Armillaria vary in parasitic aggressiveness as root and butt rot pathogens of trees. Armillaria genets (individuals) were mapped in the Throughfall Displacement Experiment (TDE) using mushrooms and rhizomorphs collected in 1994 and 1995. Initiated in July 1993, the TDE consists of three 80 x 80...

  8. First report of alfalfa (Medicago sativa L.) seed rot, seedling root rot, and damping off caused by Pythium spp. in Sudanese soil

    USDA-ARS?s Scientific Manuscript database

    Alfalfa is an important forage crop in Sudan but has relatively low biomass yields. In September 2016 soil samples were collected from three commercial alfalfa production fields near Khartoum, Sudan with poor seedling establishment and rapid stand decline. Soil samples from each field were evaluated...

  9. Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07.

    PubMed

    Yang, Ming-Ming; Wen, Shan-Shan; Mavrodi, Dmitri V; Mavrodi, Olga V; von Wettstein, Diter; Thomashow, Linda S; Guo, Jian-Hua; Weller, David M

    2014-03-01

    Pseudomonas fluorescens HC1-07, previously isolated from the phyllosphere of wheat grown in Hebei province, China, suppresses the soilborne disease of wheat take-all, caused by Gaeumannomyces graminis var. tritici. We report here that strain HC1-07 also suppresses Rhizoctonia root rot of wheat caused by Rhizoctonia solani AG-8. Strain HC1-07 produced a cyclic lipopeptide (CLP) with a molecular weight of 1,126.42 based on analysis by electrospray ionization mass spectrometry. Extracted CLP inhibited the growth of G. graminis var. tritici and R. solani in vitro. To determine the role of this CLP in biological control, plasposon mutagenesis was used to generate two nonproducing mutants, HC1-07viscB and HC1-07prtR2. Analysis of regions flanking plasposon insertions in HC1-07prtR2 and HC1-07viscB revealed that the inactivated genes were similar to prtR and viscB, respectively, of the well-described biocontrol strain P. fluorescens SBW25 that produces the CLP viscosin. Both genes in HC1-07 were required for the production of the viscosin-like CLP. The two mutants were less inhibitory to G. graminis var. tritici and R. solani in vitro and reduced in ability to suppress take-all. HC1-07viscB but not HC-07prtR2 was reduced in ability to suppress Rhizoctonia root rot. In addition to CLP production, prtR also played a role in protease production.

  10. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields.

    PubMed

    Bai, Li; Cui, Jiaqi; Jie, Weiguang; Cai, Baiyan

    2015-11-01

    We used rhizosphere soil sampled from one field during zero year and two years of continuous cropping of high-protein soybean to analyze the taxonomic community compositions of fungi during periods of high-incidence of root rot. Our objectives were to identify the dominant pathogens in order to provide a theoretical basis for the study of pathogenesis as well as control tactics for soybean root rot induced by continuous cropping. A total of 17,801 modified internal transcribed spacer (ITS) sequences were obtained from three different soybean rhizosphere soil samples after zero year and 1 or 2 years of continuous cropping using 454 high-throughput sequencing. The dominant eumycote fungal were identified to be Ascomycota and Basidiomycota in the three soil samples. Continuous cropping of soybean affected the diversity of fungi in rhizosphere soils and increased the abundance of Thelebolus and Mortierellales significantly. Thanatephorus, Fusarium, and Alternaria were identified to be the dominant pathogenic fungal genera in rhizosphere soil from continuously cropped soybean fields. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Development of formulations of biological agents for management of root rot of lettuce and cucumber.

    PubMed

    Amer, G A; Utkhede, R S

    2000-09-01

    The effect of various carrier formulations of Bacillus subtilis and Pseudomonas putida were tested on germination, growth, and yield of lettuce and cucumber crops in the presence of Pythium aphanidermatum and Fusarium oxysporum f.sp. cucurbitacearum, respectively. Survival of B. subtilis and P. putida in various carriers under refrigeration (about 0 degree C) and at room temperature (about 22 degrees C) was also studied. In all carrier formulations, B. subtilis strain BACT-0 survived up to 45 days. After 45 days of storage at room temperature (about 22 degrees C), populations B. subtilis strain BACT-0 were significantly higher in vermiculite, kaolin, and bacterial broth carriers compared with other carriers. Populations of P. putida were significantly higher in vermiculite, peat moss, wheat bran, and bacterial broth than in other carriers when stored either under refrigeration (about 0 degree C) or at room temperature (about 22 degrees C) for 15 or 45 days. Germination of lettuce seed was not affected in vermiculite, talc, kaolin, and peat moss carriers, but germination was significantly reduced in alginate and bacterial broth carriers of B. subtilis compared to the non-treated control. Germination of cucumber seed was not affected by any of the carriers. Significantly higher fresh lettuce and root weights were observed in vermiculite and kaolin carriers of B. subtilis compared with P. aphanidermatum-inoculated control plants. Lettuce treated with vermiculite, and kaolin carriers of B. subtilis, or non-inoculated control lettuce plants had significantly lower root rot ratings than talc, peat moss, bacterial broth, and P. aphanidermatum-inoculated control plants. Growth and yield of cucumber plants were significantly higher in vermiculite-based carrier of P. putida than the other carriers and Fusarium oxysporum f.sp. cucurbitacearum-inoculated plants.

  12. Influence of weed species and time of glyphosate application on Rhizoctonia root rot of barley

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani AG-8 causes root disease in wheat, barley, canola and other small grains in the dryland inland Pacific Northwest. The pathogen survives between crops on roots of volunteers and grassy weeds. Destroying this green bridge with herbicides such as glyphosate is a common tactic to cont...

  13. Postharvest respiration rate and sucrose concentration of Rhizoctonia-infected sugar beet roots

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia crown and root rot (RCRR), caused by Rhizoctonia solani AG 2-2, is a common root disease on sugar beet that reduces yield and sucrose during the growing season and causes further losses by increasing respiration and reducing sucrose content during storage. The industry needs to identify...

  14. Studies on black stain root disease in ponderosa pine. pp. 236-240. M. Garbelotto & P. Gonthier (Editors). Proceedings 12th International Conference on Root and Butt Rots of Forest Trees.

    Treesearch

    W. J. Otrosina; J. T. Kliejunas; S. S. Sung; S. Smith; D. R. Cluck

    2008-01-01

    Black stain root disease of ponderosa pine, caused by Lepfographium wageneri var. ponderosum (Harrington & Cobb) Harrington & Cobb, is increasing on many eastside pine stands in northeastern California. The disease is spread from tree to tree via root contacts and grafts but new infections are likely vectored by root...

  15. [DNA marker-assisted selection of medicinal plants (Ⅰ) .Breeding research of disease-resistant cultivars of Panax notoginseng].

    PubMed

    Dong, Lin-Lin; Chen, Zhong-Jian; Wang, Yong; Wei, Fu-Gang; Zhang, Lian-Juan; Xu, Jiang; Wei, Guang-Fei; Wang, Rui; Yang, Juan; Liu, Wei-Lin; Li, Xi-Wen; Yu, Yu-Qi; Chen, Shi-Lin

    2017-01-01

    DNA marker-assisted selection of medicinal plants is based on the DNA polymorphism, selects the DNA sequences related to the phenotypes such as high yields, superior quality, stress-resistance and so on according to the technologies of molecular hybridization, polymerase chain reaction and high-throughput sequencing, and assists the breeding of new cultivars. This study bred the first disease-resistant cultivar of notoginseng "Miaoxiang Kangqi 1" using the technology of DNA marker-assisted selection of medicinal plants and systematic breeding. The disease-resistant cultivar of notoginseng contained 12 special SNPs based on the analysis of Restriction-site Associated DNA Sequencing (RAD-Seq). Among the SNP (record_519688) was related to the root rot-resistant characteristics, which indicated this SNP could serve as genetic markers of disease-resistant cultivars and assist the systematic breeding. Compared to the conventional cultivated cultivars, the incidence rate of root-rot and rust-rot in notoginseng seedlings decreased by 83.6% and 71.8%, respectively. The incidence rate of root-rot respectively declined by 43.6% and 62.9% in notoginseng cultivation for 2 and 3 years compared with those of the conventional cultivated cultivars. Additionally, the potential disease-resistant groups were screened based on the relative SNP, and this model enlarged the target groups and advanced the breeding efficiency. DNA marker-assisted selection of medicinal plants accelerated the breeding and promotion of new cultivars, and guaranteed the healthy development of Chinese medicinal materials industry. Copyright© by the Chinese Pharmaceutical Association.

  16. Candida sake CPA-1 and other biologically based products as potential control strategies to reduce sour rot of grapes.

    PubMed

    Calvo-Garrido, C; Viñas, I; Elmer, P; Usall, J; Teixidó, N

    2013-10-01

    Sour rot of grapes is becoming increasingly important disease in many wine-growing regions, while consistent chemical or biological control has not been reported. Authors evaluated relative incidence and severity of sour rot in untreated grapevines and the effect of different biologically based treatments on sour rot at harvest. Applications of Candida sake CPA-1 plus Fungicover® , Ulocladium oudemansii and chitosan were carried out in an organic vineyard in Lleida area, Spain, during the 2009 and 2010 growing seasons. At harvest, incidence and severity of sour rot were assessed. Significantly higher incidence and severity of sour rot were observed in untreated plots in 2009, when meteorological conditions after veraison were warmer. All treatments including C. sake CPA-1 significantly reduced (P < 0·05) severity of sour rot in both seasons, ranging from 40 to 67% compared with the untreated control. Incidence of sour rot was not significantly reduced by any treatment. This study helps to characterize development of sour rot in the dry Mediterranean climate conditions of the experiment, whereas also represents the first report of biological control of sour rot. Treatments with the tested biologically based products are a promising strategy to control sour rot. Studies on sour rot of grapes are scarce in literature, and this is the first work specifically evaluating sour rot in Spanish vineyards. Sour rot control in field conditions through applications of antagonistic micro-organisms is reported for first time in this study, showing elevated severity reductions (40-67% compared with control). As there are no options available for sour rot control in vineyards, results point Candida sake CPA-1 as an interesting control strategy against grape bunch rots. © 2013 The Society for Applied Microbiology.

  17. The development of spectro-signature indicators of root disease

    NASA Technical Reports Server (NTRS)

    Wear, J. F.

    1968-01-01

    The development and testing of airborne sensors that might be effective in discrimination root rot infected trees from healthy ones are outlined. The sensing device is composed of a thermal infrared radiometer and an instant replay video scan system.

  18. Sensitivity of Rhizoctonia isolates from the Inland Pacific Northwest of the United States to phenazine-1-carboxylic acid and biological control by phenazine-producing Pseudomonas spp

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani AG-8, AG-2-1, and R. oryzae, causal agents of Rhizoctonia root rot and bare patch, are ubiquitous in cereal-based cropping systems of the Columbia Plateau of the Inland Pacific Northwest, yet the severity of this disease differs throughout the region. R. solani AG-8 is most common...

  19. Analysis and mapping of Rhizoctonia root rot resistance traits from the synthetic wheat (Triticum aestivum L.) line SYN-172

    USDA-ARS?s Scientific Manuscript database

    The prevalence of root disease after planting in cold spring soils has hindered the adoption of reduced or no-tillage cereal cropping systems in the Pacific Northwest. In particular, Rhizoctonia solani AG-8, a necrotrophic root pathogen, can cause significant damage to wheat stands under these cond...

  20. Root disease and exotic ecosystems: implications for long-term site productivity

    Treesearch

    W.J. Otrosina; M. Garbelotto

    1998-01-01

    Root disease fungi, particularly root-rotting Basidiomycetes, are key drivers of forest ecosystems. These fungi have co?evolved with their hosts in various forest ecosystems and are in various states of equilibrium with them. Management activities and various land uses have taken place in recent times that have dramatically altered edaphic and environmental conditions...

  1. Analysis and mapping of Rhizoctonia root rot resistance traits from the synthetic wheat (Triticum aestivum L) line SYN-172

    USDA-ARS?s Scientific Manuscript database

    The prevalence of root disease after planting in cold spring soils has hindered the adoption of reduced or no-tillage cereal cropping systems in the Pacific Northwest. In particular, Rhizoctonia solani AG8, a necrotrophic root pathogen, can cause significant damage to wheat stands under these condi...

  2. First Report of Rhizoctonia spp. causing a root rot of the invasive rangeland weed Lepidium draba in North America.

    USDA-ARS?s Scientific Manuscript database

    The exotic, invasive perennial rangeland weed Lepidium draba spreads rapidly and reduces native species diversity. The extensive root system of L. draba constitutes 76% of plant biomass. Thus searches have been done for biocontrol agents that target root tissue or that may interact with a weevil, Ce...

  3. Microbial antagonism as a potential solution for controlling selected root pathogens of crops

    NASA Astrophysics Data System (ADS)

    Cooper, Sarah; Agnew, Linda; Pereg, Lily

    2016-04-01

    Root pathogens of crops can cause large reduction in yield, however, there is a limited range of effective methods to control such pathogens. Soilborne pathogens that infect roots often need to survive in the rhizosphere, where there is high competition from other organisms. In such hot spots of microbial activity and growth, supported by root exudates, microbes have evolved antagonistic mechanisms that give them competitive advantages in winning the limited resources. Among these mechanisms is antibiosis, with production of some significant antifungal compounds including, antibiotics, volatile organic compounds, hydrogen cyanide and lytic enzymes. Some of these mechanisms may suppress disease through controlling the growth of root pathogens. In this project we isolated various fungi and bacteria that suppress the growth of cotton pathogens in vitro. The pathogen-suppressive microbes were isolated from cotton production soils that are under different management strategies, with and without the use of organic amendments. The potential of pathogen-suppressing microbes for controlling the black root rot disease, caused by the soilborne pathogen Thielaviopsis basicola, was confirmed using soil assays. We identified isolates with potential use as inoculant for cotton production in Australia. Having isolated a diverse group of antagonistic microbes enhances the probability that some would survive well in the soil and provide an alternative approach to address the problem of root disease affecting agricultural crops.

  4. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii

    DOE PAGES

    Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert; ...

    2015-02-12

    Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. In this paper, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot andmore » brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Finally, our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.« less

  5. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert

    Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. In this paper, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot andmore » brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Finally, our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.« less

  6. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii

    PubMed Central

    Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert; Nagy, Laszlo G.; Koehler, Gage; Ransdell, Anthony S.; Younus, Hina; Chow, Julianna; Chiniquy, Jennifer; Lipzen, Anna; Tritt, Andrew; Sun, Hui; Haridas, Sajeet; LaButti, Kurt; Ohm, Robin A.; Kües, Ursula; Blanchette, Robert A.; Grigoriev, Igor V.; Minto, Robert E.; Hibbett, David S.

    2015-01-01

    Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white rot fungus Cylindrobasidium torrendii and the brown rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. Cylindrobasidium torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. Fistulina hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition towards a brown rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited. PMID:25683379

  7. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii.

    PubMed

    Floudas, Dimitrios; Held, Benjamin W; Riley, Robert; Nagy, Laszlo G; Koehler, Gage; Ransdell, Anthony S; Younus, Hina; Chow, Julianna; Chiniquy, Jennifer; Lipzen, Anna; Tritt, Andrew; Sun, Hui; Haridas, Sajeet; LaButti, Kurt; Ohm, Robin A; Kües, Ursula; Blanchette, Robert A; Grigoriev, Igor V; Minto, Robert E; Hibbett, David S

    2015-03-01

    Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Suppressive Potential of Paenibacillus Strains Isolated from the Tomato Phyllosphere against Fusarium Crown and Root Rot of Tomato

    PubMed Central

    Sato, Ikuo; Yoshida, Shigenobu; Iwamoto, Yutaka; Aino, Masataka; Hyakumachi, Mitsuro; Shimizu, Masafumi; Takahashi, Hideki; Ando, Sugihiro; Tsushima, Seiya

    2014-01-01

    The suppressive potentials of Bacillus and Paenibacillus strains isolated from the tomato phyllosphere were investigated to obtain new biocontrol candidates against Fusarium crown and root rot of tomato. The suppressive activities of 20 bacterial strains belonging to these genera were examined using seedlings and potted tomato plants, and two Paenibacillus strains (12HD2 and 42NP7) were selected as biocontrol candidates against the disease. These two strains suppressed the disease in the field experiment. Scanning electron microscopy revealed that the treated bacterial cells colonized the root surface, and when the roots of the seedlings were treated with strain 42NP7 cells, the cell population was maintained on the roots for at least for 4 weeks. Although the bacterial strains had no direct antifungal activity against the causal pathogen in vitro, an increase was observed in the antifungal activities of acetone extracts from tomato roots treated with the cells of both bacterial strains. Furthermore, RT-PCR analysis verified that the expression of defense-related genes was induced in both the roots and leaves of seedlings treated with the bacterial cells. Thus, the root-colonized cells of the two Paenibacillus strains were considered to induce resistance in tomato plants, which resulted in the suppression of the disease. PMID:24920171

  9. Association of Neonectria macrodidyma with dry root rot of citrus in California

    USDA-ARS?s Scientific Manuscript database

    The fungal genus Cylindrocarpon (teleomorph: Neonectria Wolenw.) include ubiquitous soilborne pathogens that cause black foot disease on a wide range of hosts, including grapevine, strawberry, apple, and conifers. Hosts typically become infected through natural wounds on roots and other below ground...

  10. Biological Control of Wheat Root Diseases by the CLP-Producing Strain Pseudomonas fluorescens HC1-07

    PubMed Central

    Yang, Ming-Ming; Wen, Shan-Shan; Mavrodi, Dmitri V.; Mavrodi, Olga V.; von Wettstein, Diter; Thomashow, Linda S.; Guo, Jian-Hua; Weller, David M.

    2017-01-01

    Pseudomonas fluorescens HC1-07, previously isolated from the phyllosphere of wheat grown in Hebei province, China, suppresses the soilborne disease of wheat take-all, caused by Gaeumannomyces graminis var. tritici. We report here that strain HC1-07 also suppresses Rhizoctonia root rot of wheat caused by Rhizoctonia solani AG-8. Strain HC1-07 produced a cyclic lipopeptide (CLP) with a molecular weight of 1,126.42 based on analysis by electrospray ionization mass spectrometry. Extracted CLP inhibited the growth of G. graminis var. tritici and R. solani in vitro. To determine the role of this CLP in biological control, plasposon mutagenesis was used to generate two nonproducing mutants, HC1-07viscB and HC1-07prtR2. Analysis of regions flanking plasposon insertions in HC1-07prtR2 and HC1-07viscB revealed that the inactivated genes were similar to prtR and viscB, respectively, of the well-described biocontrol strain P. fluorescens SBW25 that produces the CLP viscosin. Both genes in HC1-07 were required for the production of the viscosin-like CLP. The two mutants were less inhibitory to G. graminis var. tritici and R. solani in vitro and reduced in ability to suppress take-all. HC1-07viscB but not HC-07prtR2 was reduced in ability to suppress Rhizoctonia root rot. In addition to CLP production, prtR also played a role in protease production. PMID:24512115

  11. BFGF neutralization stimulates VEGF secretion in melanoma B16 cells.

    PubMed

    Wang, Zhiyong; Wei, Pei; Xiang, Junjian; Wang, Hong

    2017-08-01

    Fusarium root rot is a major cryptogamic disease in olive trees caused by the soil-borne fungus Fusarium solani. Controlling this disease requires the extensive use of chemicals. However, using BCAs such as some Trichoderma strains may be an opportune alternative to fungicides in protecting olive plantations. A new isolate (Fso14) was isolated from young olive trees showing severe dieback symptoms. The objective of this work was to analyze the biocontrol behavior of a Tunisian strain of T. harzianum (Ths97) on olive trees against Fso14 by assessing both mycoparasitic activity (in planta and in vitro) and ability to locally modulate different gene-related defenses of the plant. Ths97 was found to inhibit Fso14 growth in vitro. Optical microscopic analysis at the confrontation zone between hyphae showed that Ths97 grew alongside Fso14 with numerous contact points suggesting parasitic activity. On olive trees, Ths97 developed a strong protective role against root infestation by Fso14, whether inoculated before or after the pathogenic agent. When inoculated alone, Fso14 and Ths97 did not modulate (or only slightly with inhibitions or inductions, respectively) the expression of genes involved in plant immunity (oxidative stress, phenylpropanoid pathway, PR-proteins and JA/Et-SA hormonal status). However, when Ths97 was inoculated in combination with Fso14, several defense-related genes were highly up-regulated, indicating probable primed-plant events. These promising results provided valuable information on using Ths97 as a beneficial agent to control fusarium root rot disease caused by F. solani in olive trees. Copyright © 2017. Published by Elsevier Ltd.

  12. Relative in vitro wood decay resistance of sapwood from landscape trees of southern temperate regions

    Treesearch

    Manuela Baietto; A. Dan Wilson

    2010-01-01

    The development of wood decay caused by 12 major root-rot and trunk-rot fungi was investigated in vitro with sapwood extracted from nine ornamental and landscape hardwood and conifer species native to southern temperate regions of North America, Europe, and the lower Mississippi Delta. Wood decay rates based on dry weight loss for 108 host tree–wood decay fungi...

  13. Testing and implementing methods for managing Phytophthora root diseases in California native habitats and restoration sites

    Treesearch

    Tedmund J. Swiecki; Elizabeth A. Bernhardt

    2017-01-01

    Over the past 14 years, a variety of native plant communities in northern California have been identified where introduced root-rotting Phytophthora species, most notably Phytophthora cinnamomi, P. cambivora, and P. cactorum, are causing decline and mortality of...

  14. A dry powder stump applicator for a feller-buncher.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsky, Richard, J.; Cram Michelle; Thistle, Harold

    1998-07-11

    Karsky, D., M. Cram, and H. Thistle. 1998. A dry powder borax stump applicator for a feller-buncher. Presented at the 1998 ASAE Annual International Meeting at Colorado Springs Resort, Orlando, Florida, July 11-16, 1998. Paper No. 987023. ASAE, 2950 Niles Road, St. Joseph, MI 49085-9659. Annosum root rot affects conifers throughout the Northern Hemisphere, infecting the roots and eventually killing the trees. An applicator attachment has been developed that mounts to the back of a feller-buncher saw head, that can reduce mortality from Heterobasidion annosum. The attachment applies a borax powder to a stump immediately after the tree has beenmore » cut. This document provides information on the design, development and testing of an applicator for applying dry borax on tree stumps at the time of harvesting to reduce future losses due to root rot.« less

  15. Effects of Meloidogyne spp. and Rhizoctonia solani on the Growth of Grapevine Rootings.

    PubMed

    Walker, G E

    1997-06-01

    A disease complex involving Meloidogyne incognita and Rhizoctonia solani was associated with stunting of grapevines in a field nursery. Nematode reproduction was occurring on both susceptible and resistant cultivars, and pot experiments were conducted to determine the virulence of this M. incognita population, and of M. javanica and M. hapla populations, to V. vinifera cv. Colombard (susceptible) and to V. champinii cv. Ramsey (regarded locally as highly resistant). The virulence of R. solani isolates obtained from roots of diseased grapevines also was determined both alone and in combination with M. incognita. Ramsey was susceptible to M. incognita (reproduction ratio 9.8 to 18.4 in a shadehouse and heated glasshouse, respectively) but was resistant to M. javanica and M. hapla. Colombard was susceptible to M. incognita (reproduction ratio 24.3 and 41.3, respectively) and M. javanica. Shoot growth was suppressed (by 35%) by M. incognita and, to a lesser extent, by M. hapla. Colombard roots were more severely galled than Ramsey roots by all three species, and nematode reproduction was higher on Colombard. Isolates of R. solani assigned to putative anastomosis groups 2-1 and 4, and an unidentified isolate, colonized and induced rotting of grapevine roots. Ramsey was more susceptible to root rotting than Colombard. Shoot growth was inhibited by up to 15% by several AG 4 isolates and by 20% by the AG 2-1 isolate. AG 4 isolates varied in their virulence. Root rotting was higher when grapevines were inoculated with both M. incognita and R. solani and was highest when nematode inoculation preceded the fungus. Shoot weights were lower when vines were inoculated with the nematode 13 days before the fungus compared with inoculation with both the nematode and the fungus on the same day. It was concluded that both the M. incognita population and some R. solani isolates were virulent against both Colombard and Ramsey, and that measures to prevent spread in nursery stock were therefore important.

  16. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.).

    PubMed

    Aguadé, D; Poyatos, R; Gómez, M; Oliva, J; Martínez-Vilalta, J

    2015-03-01

    Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine (Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below -2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. First report of root rot of Chicory caused by Phytophthora cryptogea in Chile

    USDA-ARS?s Scientific Manuscript database

    Chicory (Cichorium intybus L. var sativum Bisch.), a relatively new high value crop in Chile, was introduced for commercial production of inulin. Inulins are polysaccharides extracted from chicory tap roots that are used in processed foods due to their beneficial gastrointestinal properties. Approxi...

  18. Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber.

    PubMed

    Bradley, Geoffrey G; Punja, Zamir K

    2010-11-01

    Three composts (Ball, dairy, and greenhouse) were tested for the ability to suppress the development of Fusarium root and stem rot (caused by Fusarium oxysporum f. sp. radicis-cucumerinum) on greenhouse cucumber. Dairy and greenhouse composts significantly reduced disease severity (P = 0.05), while Ball compost had no effect. Assessment of total culturable microbes in the composts showed a positive relationship between disease suppressive ability and total population levels of pseudomonads. In vitro antagonism assays between compost-isolated bacterial strains and the pathogen showed that strains of Pseudomonas aeruginosa exhibited the greatest antagonism. In growth room trials, strains of P. aeruginosa and nonantagonistic Pseudomonas maculicola, plus 2 biocontrol strains of Pseudomonas fluorescens, were tested for their ability to reduce (i) survival of F. oxysporum, (ii) colonization of plants by the pathogen, and (iii) disease severity. Cucumber seedlings grown in compost receiving P. aeruginosa and P. fluorescens had reduced disease severity index scores after 8 weeks compared with control plants without bacteria. Internal stem colonization by F. oxysporum was significantly reduced by P. aeruginosa. The bacteria colonized plant roots at 1.9 × 10(6) ± 0.73 × 10(6) CFU·(g root tissue)-1 and survival was >107 CFU·(g compost)-1 after 6 weeks. The locus for 2,4-diacetylphloroglucinol production was detected by Southern blot analysis and confirmed by PCR. The production of the antibiotic 2,4-diacetylphloroglucinol in liquid culture by P. aeruginosa was confirmed by thin layer chromatography. These results demonstrate that composts containing antibiotic-producing P. aeruginosa have the potential to suppress diseases caused by Fusarium species.

  19. Differential Responses of Vanilla Accessions to Root Rot and Colonization by Fusarium oxysporum f. sp. radicis-vanillae.

    PubMed

    Koyyappurath, Sayuj; Conéjéro, Geneviève; Dijoux, Jean Bernard; Lapeyre-Montès, Fabienne; Jade, Katia; Chiroleu, Frédéric; Gatineau, Frédéric; Verdeil, Jean Luc; Besse, Pascale; Grisoni, Michel

    2015-01-01

    Root and stem rot (RSR) disease caused by Fusarium oxysporum f. sp. radicis-vanillae (Forv) is the most damaging disease of vanilla (Vanilla planifolia and V. × tahitensis, Orchidaceae). Breeding programs aimed at developing resistant vanilla varieties are hampered by the scarcity of sources of resistance to RSR and insufficient knowledge about the histopathology of Forv. In this work we have (i) identified new genetic resources resistant to RSR including V. planifolia inbreds and vanilla relatives, (ii) thoroughly described the colonization pattern of Forv into selected vanilla accessions, confirming its necrotic non-vascular behavior in roots, and (iii) evidenced the key role played by hypodermis, and particularly lignin deposition onto hypodermal cell walls, for resistance to Forv in two highly resistant vanilla accessions. Two hundred and fifty-four vanilla accessions were evaluated in the field under natural conditions of infection and in controlled conditions using in vitro plants root-dip inoculated by the highly pathogenic isolate Fo072. For the 26 accessions evaluated in both conditions, a high correlation was observed between field evaluation and in vitro assay. The root infection process and plant response of one susceptible and two resistant accessions challenged with Fo072 were studied using wide field and multiphoton microscopy. In susceptible V. planifolia, hyphae penetrated directly into the rhizodermis in the hairy root region then invaded the cortex through the passage cells where it induced plasmolysis, but never reached the vascular region. In the case of the resistant accessions, the penetration was stopped at the hypodermal layer. Anatomical and histochemical observations coupled with spectral analysis of the hypodermis suggested the role of lignin deposition in the resistance to Forv. The thickness of lignin constitutively deposited onto outer cell walls of hypodermis was highly correlated with the level of resistance for 21 accessions tested. The accumulation of p-coumaric and sinapic acids, two phenolic precursors of lignin, was observed in the resistant plants inoculated with Fo072, but not in the susceptible one. Altogether, our analyses enlightened the mechanisms at work in RSR resistant genotypes and should enhance the development of novel breeding strategies aimed at improving the genetic control of RSR of vanilla.

  20. High-throughput sequencing of black pepper root transcriptome.

    PubMed

    Gordo, Sheila M C; Pinheiro, Daniel G; Moreira, Edith C O; Rodrigues, Simone M; Poltronieri, Marli C; de Lemos, Oriel F; da Silva, Israel Tojal; Ramos, Rommel T J; Silva, Artur; Schneider, Horacio; Silva, Wilson A; Sampaio, Iracilda; Darnet, Sylvain

    2012-09-17

    Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host's root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant's root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.

  1. High-throughput sequencing of black pepper root transcriptome

    PubMed Central

    2012-01-01

    Background Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host’s root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant’s root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms. PMID:22984782

  2. Leuconostoc spp. associated with root rot in sugar beet and their interaction with rhizoctonia solani

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia root and crown is an important disease problem in sugar beet caused by Rhizoctonia solani and also shown to be associated with Leuconostoc. Since, the initial Leuconostoc studies were conducted with only a few isolates and the relationship of Leuconostoc with R. solani is poorly underst...

  3. First report of root rot caused by Phytopythium helicoides on pistachio rootstock in California

    USDA-ARS?s Scientific Manuscript database

    We examined pathogenicity of Phytopythium helicoides on UCB-1 rootstock to investigate its role in root disease and collapse observed on potted pistachio plants. Approximately 25 potted 2-year-old pistachio rootstock trees in a Kern County, CA, research plot maintained outdoors and irrigated to cont...

  4. Pathogenicity of Nectriaceous Fungi on Avocado in Australia.

    PubMed

    Parkinson, Louisamarie E; Shivas, Roger G; Dann, Elizabeth K

    2017-12-01

    Black root rot is a severe disease of young avocado trees in Australia causing black necrotic roots, tree stunting, and leaf drop prior to tree death. Nectriaceous fungi (Nectriaceae, Hypocreales), are commonly isolated from symptomatic roots. This research tested the pathogenicity of 19 isolates from Calonectria, Cylindrocladiella, Dactylonectria, Gliocladiopsis, and Ilyonectria, spp. collected from young avocado trees and other hosts. Glasshouse pathogenicity tests with 'Reed' avocado (Persea americana) seedlings confirmed that Calonectria ilicicola is a severe pathogen of avocado, causing stunting, wilting, and seedling death within 5 weeks of inoculation. Isolates of C. ilicicola from peanut, papaya, and custard apple were also shown to be aggressive pathogens of avocado, demonstrating a broad host range. An isolate of a Calonectria sp. from blueberry and avocado isolates of Dactylonectria macrodidyma, D. novozelandica, D. pauciseptata, and D. anthuriicola caused significant root rot but not stunting within 5 to 9 weeks of inoculation. An isolate of an Ilyonectria sp. from grapevine closely related to Ilyonectria liriodendri, and avocado isolates of Cylindrocladiella pseudoinfestans, Gliocladiopsis peggii, and an Ilyonectria sp. were not pathogenic to avocado.

  5. Pythium invasion of plant-based life support systems: biological control and sources

    NASA Technical Reports Server (NTRS)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  6. QTL mapping of fruit rot resistance to the plant pathogen Phytophthora capsici in a recombinant inbred line Capsicum annuum population.

    PubMed

    Naegele, R P; Ashrafi, H; Hill, T A; Chin-Wo, S Reyes; Van Deynze, A E; Hausbeck, M K

    2014-05-01

    Phytophthora capsici is an important pepper (Capsicum annuum) pathogen causing fruit and root rot, and foliar blight in field and greenhouse production. Previously, an F6 recombinant inbred line population was evaluated for fruit rot susceptibility. Continuous variation among lines and partial and isolate-specific resistance were found. In this study, Phytophthora fruit rot resistance was mapped in the same F6 population between Criollo del Morelos 334 (CM334), a landrace from Mexico, and 'Early Jalapeno' using a high-density genetic map. Isolate-specific resistance was mapped independently in 63 of the lines evaluated and the two parents. Heritability of the resistance for each isolate at 3 and 5 days postinoculation (dpi) was high (h(2) = 0.63 to 0.68 and 0.74 to 0.83, respectively). Significant additive and epistatic quantitative trait loci (QTL) were identified for resistance to isolates OP97 and 13709 (3 and 5 dpi) and 12889 (3 dpi only). Mapping of fruit traits showed potential linkage with few disease resistance QTL. The partial fruit rot resistance from CM334 suggests that this may not be an ideal source for fruit rot resistance in pepper.

  7. De novo sequencing, assembly, and analysis of the root transcriptome of Persea americana (Mill.) in response to Phytophthora cinnamomi and flooding.

    PubMed

    Reeksting, Bianca J; Coetzer, Nanette; Mahomed, Waheed; Engelbrecht, Juanita; van den Berg, Noëlani

    2014-01-01

    Avocado is a diploid angiosperm containing 24 chromosomes with a genome estimated to be around 920 Mb. It is an important fruit crop worldwide but is susceptible to a root rot caused by the ubiquitous oomycete Phytophthora cinnamomi. Phytophthora root rot (PRR) causes damage to the feeder roots of trees, causing necrosis. This leads to branch-dieback and eventual tree death, resulting in severe losses in production. Control strategies are limited and at present an integrated approach involving the use of phosphite, tolerant rootstocks, and proper nursery management has shown the best results. Disease progression of PRR is accelerated under high soil moisture or flooding conditions. In addition, avocado is highly susceptible to flooding, with even short periods of flooding causing significant losses. Despite the commercial importance of avocado, limited genomic resources are available. Next generation sequencing has provided the means to generate sequence data at a relatively low cost, making this an attractive option for non-model organisms such as avocado. The aims of this study were to generate sequence data for the avocado root transcriptome and identify stress-related genes. Tissue was isolated from avocado infected with P. cinnamomi, avocado exposed to flooding and avocado exposed to a combination of these two stresses. Three separate sequencing runs were performed on the Roche 454 platform and produced approximately 124 Mb of data. This was assembled into 7685 contigs, with 106 448 sequences remaining as singletons. Genes involved in defence pathways such as the salicylic acid and jasmonic acid pathways as well as genes associated with the response to low oxygen caused by flooding, were identified. This is the most comprehensive study of transcripts derived from root tissue of avocado to date and will provide a useful resource for future studies.

  8. De Novo Sequencing, Assembly, and Analysis of the Root Transcriptome of Persea americana (Mill.) in Response to Phytophthora cinnamomi and Flooding

    PubMed Central

    Reeksting, Bianca J.; Coetzer, Nanette; Mahomed, Waheed; Engelbrecht, Juanita; van den Berg, Noëlani

    2014-01-01

    Avocado is a diploid angiosperm containing 24 chromosomes with a genome estimated to be around 920 Mb. It is an important fruit crop worldwide but is susceptible to a root rot caused by the ubiquitous oomycete Phytophthora cinnamomi. Phytophthora root rot (PRR) causes damage to the feeder roots of trees, causing necrosis. This leads to branch-dieback and eventual tree death, resulting in severe losses in production. Control strategies are limited and at present an integrated approach involving the use of phosphite, tolerant rootstocks, and proper nursery management has shown the best results. Disease progression of PRR is accelerated under high soil moisture or flooding conditions. In addition, avocado is highly susceptible to flooding, with even short periods of flooding causing significant losses. Despite the commercial importance of avocado, limited genomic resources are available. Next generation sequencing has provided the means to generate sequence data at a relatively low cost, making this an attractive option for non-model organisms such as avocado. The aims of this study were to generate sequence data for the avocado root transcriptome and identify stress-related genes. Tissue was isolated from avocado infected with P. cinnamomi, avocado exposed to flooding and avocado exposed to a combination of these two stresses. Three separate sequencing runs were performed on the Roche 454 platform and produced approximately 124 Mb of data. This was assembled into 7685 contigs, with 106 448 sequences remaining as singletons. Genes involved in defence pathways such as the salicylic acid and jasmonic acid pathways as well as genes associated with the response to low oxygen caused by flooding, were identified. This is the most comprehensive study of transcripts derived from root tissue of avocado to date and will provide a useful resource for future studies. PMID:24563685

  9. A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element

    PubMed Central

    Haudenshield, James S.; Song, Jeong Y.; Hartman, Glen L.

    2017-01-01

    Phytophthora root rot of soybean [Glycine max (L.) Merr.] is caused by the oomycete Phytophthora sojae (Kaufm. & Gerd.). P. sojae has a narrow host range, consisting primarily of soybean, and it is a serious pathogen worldwide. It exists in root and stem tissues as mycelium, wherein it can form oospores which subsequently germinate to release motile, infectious zoospores. Molecular assays detecting DNA of P. sojae are useful in disease diagnostics, and for determining the presence of the organism in host tissues, soils, and runoff or ponded water from potentially infested fields. Such assays as published have utilized ITS sequences from the nuclear ribosomal RNA genes in conventional PCR or dye-binding quantitative PCR (Q-PCR) but are not amenable to multiplexing, and some of these assays did not utilize control strategies for type I or type II errors. In this study, we describe primers and a bifunctional probe with specificity to a gypsy-like retroelement in the P. sojae genome to create a fluorogenic 5’-exonuclease linear hydrolysis assay, with a multiplexed internal control reaction detecting an exogenous target to validate negative calls, and with uracil-deglycosylase-mediated protection against carryover contamination. The assay specifically detected 13 different P. sojae isolates, and excluded 17 other Phytophthora species along with 20 non-Phytophthora fungal and oomycete species pathogenic on soybean. A diagnostic limit of detection of 34 fg total P. sojae DNA was observed in serial dilutions, equivalent to 0.3 genome, and a practical detection sensitivity of four zoospores per sample was achieved, despite losses during DNA extraction. PMID:28441441

  10. Effect of Woody Debris abundance on daytime refuge use by cotton mice.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkelman, Travis, M.; Loeb, Susan, C.

    Abstract - Daytime refuges are important to nocturnal rodents for protection from predators and environmental extremes. Because refuges of forest-dwelling rodents are often associated with woody debris, we examined refuge use by 37 radio-collared Peromyscus gossypinus (cotton mice) in experimental plots with different levels of woody debris. Treatment plots had six times (≈ 60 m3/ha) the volume of woody debris as control plots (≈ 10 m3/ha). Of 247 refuges, 159 were in rotting stumps (64%), 32 were in root boles (13%), 19 were in brush piles (8%), and 16 were in logs (6%); 10 refuges could not be identified. Stumpsmore » were the most common refuge type in both treatments, but the distribution of refuge types was significantly different between treatment and control plots. Root boles and brush piles were used more on treatment plots than on control plots, and logs were used more on control plots than on treatment plots. Refuge type and vegetation cover were the best predictors of refuge use by cotton mice; root bole refuges and refuges with less vegetation cover received greater-than-expected use by mice. Abundant refuges, particularly root boles, may improve habitat quality for cotton mice in southeastern pine forests.« less

  11. Aggressive root pathogen Phellinus noxius and implications for western Pacific Islands

    Treesearch

    Sara M. Ashiglar; Phil G. Cannon; Ned B. Klopfenstein

    2015-01-01

    Phellinus noxius is an aggressive root rot pathogen affecting tropical and subtropical forests. Causing much damage in tropical Asia, Africa, Taiwan, Japan and the Pacific Islands, its wide host range encompasses more than 200 plant species representing 59 families (Ann et al. 2002). It can devastate agricultural plantations of tea, rubber, cocoa, avocados,...

  12. nalyses of rhizoctonia screening nursery results over 15 selected years from 1980 to 2015

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS has had a research program at Fort Collins focused on breeding for resistance to Rhizoctonia crown and root rot (Rcrr) since the late 1950s. By 1980, current resistant and susceptible checks were in use. All individual roots from each plot were lifted and rated on a disease index (DI)...

  13. The use of gas-sensor arrays in the detection of bole and root decays in living trees: development of a new non-invasive method of sampling and analysis

    Treesearch

    Manuela Baietto; Sofia Aquaro; Dan Wilson; Letizia Pozzi; Danieli Bassi

    2015-01-01

    Wood rot is a serious fungal disease of trees. Wood decay fungi penetrate and gain entry into trees through pruning cuts or open wounds using extracellular digestive enzymes to attack all components of the cell wall, leading to the destruction of sapwood which compromises wood strength and stability. On living trees, it is often difficult to diagnose wood rot disease,...

  14. Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, U.S.A.

    PubMed

    Agne, Michelle C; Beedlow, Peter A; Shaw, David C; Woodruff, David R; Lee, E Henry; Cline, Steven P; Comeleo, Randy L

    2018-02-01

    Forest disturbance regimes are beginning to show evidence of climate-mediated changes, such as increasing severity of droughts and insect outbreaks. We review the major insects and pathogens affecting the disturbance regime for coastal Douglas-fir forests in western Oregon and Washington State, USA, and ask how future climate changes may influence their role in disturbance ecology. Although the physiological constraints of light, temperature, and moisture largely control tree growth, episodic and chronic disturbances interacting with biological factors have substantial impacts on the structure and functioning of forest ecosystems in this region. Understanding insect and disease interactions is critical to predicting forest response to climate change and the consequences for ecosystem services, such as timber, clean water, fish and wildlife. We focused on future predictions for warmer wetter winters, hotter drier summers, and elevated atmospheric CO 2 to hypothesize the response of Douglas-fir forests to the major insects and diseases influencing this forest type: Douglas-fir beetle, Swiss needle cast, black stain root disease, and laminated root rot. We hypothesize that 1) Douglas-fir beetle and black stain root disease could become more prevalent with increasing, fire, temperature stress, and moisture stress, 2) future impacts of Swiss needle cast are difficult to predict due to uncertainties in May-July leaf wetness, but warmer winters could contribute to intensification at higher elevations, and 3) laminated root rot will be influenced primarily by forest management, rather than climatic change. Furthermore, these biotic disturbance agents interact in complex ways that are poorly understood. Consequently, to inform management decisions, insect and disease influences on disturbance regimes must be characterized specifically by forest type and region in order to accurately capture these interactions in light of future climate-mediated changes.

  15. Organic Amendments to Avocado Crops Induce Suppressiveness and Influence the Composition and Activity of Soil Microbial Communities

    PubMed Central

    Bonilla, Nuria; Vida, Carmen; Martínez-Alonso, Maira; Landa, Blanca B.; Gaju, Nuria; Cazorla, Francisco M.

    2015-01-01

    One of the main avocado diseases in southern Spain is white root rot caused by the fungus Rosellinia necatrix Prill. The use of organic soil amendments to enhance the suppressiveness of natural soil is an inviting approach that has successfully controlled other soilborne pathogens. This study tested the suppressive capacity of different organic amendments against R. necatrix and analyzed their effects on soil microbial communities and enzymatic activities. Two-year-old avocado trees were grown in soil treated with composted organic amendments and then used for inoculation assays. All of the organic treatments reduced disease development in comparison to unamended control soil, especially yard waste (YW) and almond shells (AS). The YW had a strong effect on microbial communities in bulk soil and produced larger population levels and diversity, higher hydrolytic activity and strong changes in the bacterial community composition of bulk soil, suggesting a mechanism of general suppression. Amendment with AS induced more subtle changes in bacterial community composition and specific enzymatic activities, with the strongest effects observed in the rhizosphere. Even if the effect was not strong, the changes caused by AS in bulk soil microbiota were related to the direct inhibition of R. necatrix by this amendment, most likely being connected to specific populations able to recolonize conducive soil after pasteurization. All of the organic amendments assayed in this study were able to suppress white root rot, although their suppressiveness appears to be mediated differentially. PMID:25769825

  16. Carbohydrate and ethane release with Erwinia carotovora subspecies betavasculorum--induced necrosis.

    PubMed

    Kuykendall, L David; Hunter, William J

    2008-02-01

    Erwinia carotovora subspecies betavasculorum, also known as E. betavasculorum and Pectobacterium betavasculorum, is a soil bacterium that has the capacity to cause root rot necrosis of sugarbeets. The qualitatively different pathogenicity exhibited by the virulent E. carotovora strain and two avirulent strains, a Citrobacter sp. and an Enterobacter cloacae, was examined using digital analysis of photographic evidence of necrosis as well as for carbohydrate, ethane, and ethylene release compared with uninoculated potato tuber slices. Visual scoring of necrosis was superior to digital analysis of photographs. The release of carbohydrates and ethane from potato tuber slices inoculated with the soft rot necrosis-causing Erwinia was significantly greater than that of potato tuber slices that had not been inoculated or that had been inoculated with the nonpathogenic E. cloacae and Citrobacter sp. strains. Interestingly, ethylene production from potato slices left uninoculated or inoculated with the nonpathogenic Citrobacter strain was 5- to 10-fold higher than with potato slices inoculated with the pathogenic Erwinia strain. These findings suggest that (1) carbohydrate release might be a useful measure of the degree of pathogenesis, or relative virulence; and that (2) bacterial suppression of ethylene formation may be a critical step in root rot disease formation.

  17. Impact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rot.

    PubMed

    Polonio, Álvaro; Vida, Carmen; de Vicente, Antonio; Cazorla, Francisco M

    2017-06-01

    The biocontrol rhizobacterium Pseudomonas chlororaphis PCL1606 has the ability to protect avocado plants against white root rot produced by the phytopathogenic fungus Rosellinia necatrix. Moreover, PCL1606 displayed direct interactions with avocado roots and the pathogenic fungus. Thus, nonmotile (flgK mutant) and non-chemotactic (cheA mutant) derivatives of PCL1606 were constructed to emphasize the importance of motility and chemotaxis in the biological behaviour of PCL1606 during the biocontrol interaction. Plate chemotaxis assay showed that PCL1606 was attracted to the single compounds tested, such as glucose, glutamate, succinate, aspartate and malate, but no chemotaxis was observed to avocado or R. necatrix exudates. Using the more sensitive capillary assay, it was reported that smaller concentrations (1 mM) of single compounds elicited high chemotactic responses, and strong attraction was confirmed to avocado and R. necatrix exudates. Finally, biocontrol experiments revealed that the cheA and fglK derivative mutants reduced root protection against R. necatrix, suggesting an important role for these biological traits in biocontrol by P. chlororaphis PCL1606. [Int Microbiol 20(2):94-104 (2017)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  18. Differential Responses of Vanilla Accessions to Root Rot and Colonization by Fusarium oxysporum f. sp. radicis-vanillae

    PubMed Central

    Koyyappurath, Sayuj; Conéjéro, Geneviève; Dijoux, Jean Bernard; Lapeyre-Montès, Fabienne; Jade, Katia; Chiroleu, Frédéric; Gatineau, Frédéric; Verdeil, Jean Luc; Besse, Pascale; Grisoni, Michel

    2015-01-01

    Root and stem rot (RSR) disease caused by Fusarium oxysporum f. sp. radicis-vanillae (Forv) is the most damaging disease of vanilla (Vanilla planifolia and V. × tahitensis, Orchidaceae). Breeding programs aimed at developing resistant vanilla varieties are hampered by the scarcity of sources of resistance to RSR and insufficient knowledge about the histopathology of Forv. In this work we have (i) identified new genetic resources resistant to RSR including V. planifolia inbreds and vanilla relatives, (ii) thoroughly described the colonization pattern of Forv into selected vanilla accessions, confirming its necrotic non-vascular behavior in roots, and (iii) evidenced the key role played by hypodermis, and particularly lignin deposition onto hypodermal cell walls, for resistance to Forv in two highly resistant vanilla accessions. Two hundred and fifty-four vanilla accessions were evaluated in the field under natural conditions of infection and in controlled conditions using in vitro plants root-dip inoculated by the highly pathogenic isolate Fo072. For the 26 accessions evaluated in both conditions, a high correlation was observed between field evaluation and in vitro assay. The root infection process and plant response of one susceptible and two resistant accessions challenged with Fo072 were studied using wide field and multiphoton microscopy. In susceptible V. planifolia, hyphae penetrated directly into the rhizodermis in the hairy root region then invaded the cortex through the passage cells where it induced plasmolysis, but never reached the vascular region. In the case of the resistant accessions, the penetration was stopped at the hypodermal layer. Anatomical and histochemical observations coupled with spectral analysis of the hypodermis suggested the role of lignin deposition in the resistance to Forv. The thickness of lignin constitutively deposited onto outer cell walls of hypodermis was highly correlated with the level of resistance for 21 accessions tested. The accumulation of p-coumaric and sinapic acids, two phenolic precursors of lignin, was observed in the resistant plants inoculated with Fo072, but not in the susceptible one. Altogether, our analyses enlightened the mechanisms at work in RSR resistant genotypes and should enhance the development of novel breeding strategies aimed at improving the genetic control of RSR of vanilla. PMID:26734032

  19. Expression of the β-1,3-glucanase gene bgn13.1 from Trichoderma harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant growth.

    PubMed

    Mercado, José A; Barceló, Marta; Pliego, Clara; Rey, Manuel; Caballero, José L; Muñoz-Blanco, Juan; Ruano-Rosa, David; López-Herrera, Carlos; de Los Santos, Berta; Romero-Muñoz, Fernando; Pliego-Alfaro, Fernando

    2015-12-01

    The expression of antifungal genes from Trichoderma harzianum, mainly chitinases, has been used to confer plant resistance to fungal diseases. However, the biotechnological potential of glucanase genes from Trichoderma has been scarcely assessed. In this research, transgenic strawberry plants expressing the β-1,3-glucanase gene bgn13.1 from T. harzianum, under the control of the CaMV35S promoter, have been generated. After acclimatization, five out of 12 independent lines analysed showed a stunted phenotype when growing in the greenhouse. Moreover, most of the lines displayed a reduced yield due to both a reduction in the number of fruit per plant and a lower fruit size. Several transgenic lines showing higher glucanase activity in leaves than control plants were selected for pathogenicity tests. When inoculated with Colletotrichum acutatum, one of the most important strawberry pathogens, transgenic lines showed lower anthracnose symptoms in leaf and crown than control. In the three lines selected, the percentage of plants showing anthracnose symptoms in crown decreased from 61 % to a mean value of 16.5 %, in control and transgenic lines, respectively. Some transgenic lines also showed an enhanced resistance to Rosellinia necatrix, a soil-borne pathogen causing root and crown rot in strawberry. These results indicate that bgn13.1 from T. harzianum can be used to increase strawberry tolerance to crown rot diseases, although its constitutive expression affects plant growth and fruit yield. Alternative strategies such as the use of tissue specific promoters might avoid the negative effects of bgn13.1 expression in plant performance.

  20. Ethanol and acetone from Douglas-fir roots stressed by Phellinus sulphurascens infection: Implications for detecting diseased trees and for beetle host selection

    Treesearch

    Rick G. Kelsey; Gladwin Joseph; Doug Westlind; Walter G. Thies

    2016-01-01

    Phellinus sulphurascens (previously the Douglas-fir form of Phellinus weirii) is an important native pathogen causing laminated root rot in forests of western North America. Visual crown symptoms, or attacks by bark or ambrosia beetles appear only during advanced stages of the disease with extensive infection in the lower bole...

  1. Transcriptome of an Armillaria root disease pathogen reveals candidate genes involved in host substrate utilization at the host­-pathogen interface

    Treesearch

    A. L. Ross-Davis; J. E. Stewart; J. W. Hanna; M.-S. Kim; B. J. Knaus; R. Cronn; H. Rai; B. A. Richardson; G. I. McDonald; N. B. Klopfenstein

    2013-01-01

    Armillaria species display diverse ecological roles ranging from beneficial saprobe to virulent pathogen. Armillaria solidipes (formerly A. ostoyae), a causal agent of Armillaria root disease, is a virulent primary pathogen with a broad host range of woody plants across the Northern Hemisphere. This white-rot pathogen grows between trees as rhizomorphs and attacks...

  2. Control of storage rot by induction of plant defense mechanisms using jasmonic acid and salicylic acid

    USDA-ARS?s Scientific Manuscript database

    Storage rots contribute to sugarbeet postharvest losses by consuming sucrose and producing carbohydrate impurities that increase sugar loss to molasses. Presently, storage rots are controlled by cooling storage piles. This method of control, however, requires favorable weather conditions for stora...

  3. Effects of Silicon Amendment on Soilborne and Fruit Diseases of Avocado

    PubMed Central

    Dann, Elizabeth K.; Le, Duy P.

    2017-01-01

    The effects of silicon (Si) amendment have been studied in several plant/pathogen interactions; however, studies in horticultural tree crops are limited. Effects of amendment with soluble potassium silicate (AgSil®32, approximately 30% available Si), or milled cement building board by-products (Mineral Mulch (MM) or Mineral Dust (MD), containing 5% available Si) were investigated in field and greenhouse trials with avocado. Orchard soil drench applications with potassium silicate improved yield and quality of fruit, but visual health of trees declining from Phytophthora root rot (PRR) was not affected. Orchard spray or trunk injection applications with potassium silicate were ineffective. Amendment of potting mix with MM and MD reduced root necrosis of avocado seedlings after inoculation with Calonectria ilicicola, an aggressive soilborne pathogen causing black root rot. Application of MM to mature orchard trees declining with PRR had a beneficial effect on visual tree health, and Si accumulation in leaves and fruit peel, after only 10 months. Products that deliver available Si consistently for uptake are likely to be most successful in perennial tree crops. PMID:29053639

  4. Pathogen profile update: Fusarium oxysporum.

    PubMed

    Michielse, Caroline B; Rep, Martijn

    2009-05-01

    Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Order Hypocreales; Family Nectriaceae; genus Fusarium. Very broad at the species level. More than 120 different formae speciales have been identified based on specificity to host species belonging to a wide range of plant families. Initial symptoms of vascular wilt include vein clearing and leaf epinasty, followed by stunting, yellowing of the lower leaves, progressive wilting, defoliation and, finally, death of the plant. On fungal colonization, the vascular tissue turns brown, which is clearly visible in cross-sections of the stem. Some formae speciales are not primarily vascular pathogens, but cause foot and root rot or bulb rot. Can cause severe losses in many vegetables and flowers, field crops, such as cotton, and plantation crops, such as banana, date palm and oil palm. Use of resistant varieties is the only practical measure for controlling the disease in the field. In glasshouses, soil sterilization can be performed. http://www.broad.mit.edu/annotation/genome/fusarium_group/MultiHome.html; http://www.fgsc.net/Fusarium/fushome.htm; http://www.phi-base.org/query.php

  5. Genetic Differentiation and Spatial Structure of Phellinus noxius, the Causal Agent of Brown Root Rot of Woody Plants in Japan.

    PubMed

    Akiba, Mitsuteru; Ota, Yuko; Tsai, Isheng J; Hattori, Tsutomu; Sahashi, Norio; Kikuchi, Taisei

    2015-01-01

    Phellinus noxius is a pathogenic fungus that causes brown root rot disease in a variety of tree species. This fungus is distributed in tropical and sub-tropical regions of Southeast and East Asia, Oceania, Australia, Central America and Africa. In Japan, it was first discovered on Ishigaki Island in Okinawa Prefecture in 1988; since then, it has been found on several of the Ryukyu Islands. Recently, this fungus was identified from the Ogasawara (Bonin) Islands, where it has killed trees, including rare endemic tree species. For effective control or quarantine methods, it is important to clarify whether the Japanese populations of P. noxius are indigenous to the area or if they have been introduced from other areas. We developed 20 microsatellite markers from genome assembly of P. noxius and genotyped 128 isolates from 12 of the Ryukyu Islands and 3 of the Ogasawara Islands. All isolates had unique genotypes, indicating that basidiospore infection is a primary dissemination method for the formation of new disease foci. Genetic structure analyses strongly supported genetic differentiation between the Ryukyu populations and the Ogasawara populations of P. noxius. High polymorphism of microsatellite loci suggests that Japanese populations are indigenous or were introduced a very long time ago. We discuss differences in invasion patterns between the Ryukyu Islands and the Ogasawara Islands.

  6. [Antagonism of Trichoderma spp. to fungi caused root rot of Sophora tonkinensis].

    PubMed

    Qin, Liu-yan; Jiang, Ni; Tang, Mei-qiong; Miao, Jian-hua; Li, Lin-xuan

    2011-04-01

    To study the antagonism of Trichoderma spp. to fungi S9(Fusarium solani)which caused root rot of Sophora tonkinensis and discuss the further develop prospects of microbial biological control in soil-borne diseases on Chinese herbal medicines. Antagonism of H2 (Trichoderma harsianum), M6 (Trichoderma viride) and K1 (Trichoderma koningii) to Fusarium solani were researched by growth rate and confront culture. And their mechanisms were discussed. H2 and M6 had obvious competitive advantage, the growth rate of which were 1.43-2.72 times and 1.43-1.95 times as S9 respectively. The space competitive advantage of K1 was relatively weak; the growth rate was slower than S9. The antagonism of three species of Trichoderma spp. to S9 was in varying degrees. The antagonism to S9 of M6 and H2 was better,the inhibition rate were 100% and 82.35% respectively, even cultivated S9 for three days in advance. And their inhibition indexes were both reached class I. The inhibition index and inhibition rate of K1 was respectively 46.36% and class IV. The Trichoderma spp. could cause S9 mycelium to appear some phenomenon just like fracture, constriction reduced, digestion, etc. which were observed under the microscope. Trichoderma harsianum and Trichoderma viride showed the further develop prospects in the fight against soil-borne disease on Chinese herbal medicines.

  7. Genetic Differentiation and Spatial Structure of Phellinus noxius, the Causal Agent of Brown Root Rot of Woody Plants in Japan

    PubMed Central

    Akiba, Mitsuteru; Ota, Yuko; Tsai, Isheng J.; Hattori, Tsutomu; Sahashi, Norio; Kikuchi, Taisei

    2015-01-01

    Phellinus noxius is a pathogenic fungus that causes brown root rot disease in a variety of tree species. This fungus is distributed in tropical and sub-tropical regions of Southeast and East Asia, Oceania, Australia, Central America and Africa. In Japan, it was first discovered on Ishigaki Island in Okinawa Prefecture in 1988; since then, it has been found on several of the Ryukyu Islands. Recently, this fungus was identified from the Ogasawara (Bonin) Islands, where it has killed trees, including rare endemic tree species. For effective control or quarantine methods, it is important to clarify whether the Japanese populations of P. noxius are indigenous to the area or if they have been introduced from other areas. We developed 20 microsatellite markers from genome assembly of P. noxius and genotyped 128 isolates from 12 of the Ryukyu Islands and 3 of the Ogasawara Islands. All isolates had unique genotypes, indicating that basidiospore infection is a primary dissemination method for the formation of new disease foci. Genetic structure analyses strongly supported genetic differentiation between the Ryukyu populations and the Ogasawara populations of P. noxius. High polymorphism of microsatellite loci suggests that Japanese populations are indigenous or were introduced a very long time ago. We discuss differences in invasion patterns between the Ryukyu Islands and the Ogasawara Islands. PMID:26513585

  8. Organic amendments to avocado crops induce suppressiveness and influence the composition and activity of soil microbial communities.

    PubMed

    Bonilla, Nuria; Vida, Carmen; Martínez-Alonso, Maira; Landa, Blanca B; Gaju, Nuria; Cazorla, Francisco M; de Vicente, Antonio

    2015-05-15

    One of the main avocado diseases in southern Spain is white root rot caused by the fungus Rosellinia necatrix Prill. The use of organic soil amendments to enhance the suppressiveness of natural soil is an inviting approach that has successfully controlled other soilborne pathogens. This study tested the suppressive capacity of different organic amendments against R. necatrix and analyzed their effects on soil microbial communities and enzymatic activities. Two-year-old avocado trees were grown in soil treated with composted organic amendments and then used for inoculation assays. All of the organic treatments reduced disease development in comparison to unamended control soil, especially yard waste (YW) and almond shells (AS). The YW had a strong effect on microbial communities in bulk soil and produced larger population levels and diversity, higher hydrolytic activity and strong changes in the bacterial community composition of bulk soil, suggesting a mechanism of general suppression. Amendment with AS induced more subtle changes in bacterial community composition and specific enzymatic activities, with the strongest effects observed in the rhizosphere. Even if the effect was not strong, the changes caused by AS in bulk soil microbiota were related to the direct inhibition of R. necatrix by this amendment, most likely being connected to specific populations able to recolonize conducive soil after pasteurization. All of the organic amendments assayed in this study were able to suppress white root rot, although their suppressiveness appears to be mediated differentially. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Fighting phytophthora in blueberries

    USDA-ARS?s Scientific Manuscript database

    Phytophthora cinnamomi Rands is a ubiquitous soilborne pathogen associated with root rot in many woody perennial plant species, including highbush blueberry (Vaccinium sp.). To identify genotypes with resistance to the pathogen, cultivars and advanced selections of highbush blueberry were grown in a...

  10. National Dam Safety Program. West Millpond Dam (NY 01060), Mohawk River Basin, City of Gloversville, Fulton County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-09-02

    numerous and constantly changing internal and external con- ditions, and is evolutionary in nature. It would be incorrect to assume that the present...to seepage and piping ( internal erosion) problems if a tree blows over and pulls out its roots or if a tree dies and its roots rot. The roots of...for the actual size of the drainage area (same for 10 square miles or less) were inputted to the program as percentages of the index PKF in

  11. Biological suppression of potato ring rot by fluorescent pseudomonads.

    PubMed Central

    de la Cruz, A R; Poplawsky, A R; Wiese, M V

    1992-01-01

    Three strains of fluorescent pseudomonads (IS-1, IS-2, and IS-3) isolated from potato underground stems with roots showed in vitro antibiosis against 30 strains of the ring rot bacterium Clavibacter michiganensis subsp. sepedonicus. On the basis of morphological and biochemical tests and fatty acid analysis, IS-1 and IS-2 were identified as Pseudomonas aureofaciens and IS-3 was identified as P. fluorescens biovar III. IS-1 was the most inhibitory to C. michiganensis subsp. sepedonicus strains in vitro, followed by IS-3 and IS-2. Suppression of ring rot by these antagonists was demonstrated in greenhouse trials with stem-cultured potato (cv. Russet Burbank) seedlings. Although each antagonist significantly reduced C. michiganensis subsp. sepedonicus populations, only IS-1 reduced infection by C. michiganensis subsp. sepedonicus. In a second experiment, treatment with IS-1 (10(9) CFU/ml) significantly reduced ring rot infection by 23.4 to 26.7% after 5 to 8 weeks. The average C. michiganensis subsp. sepedonicus population was also significantly reduced by 50 to 52%. Application of different combinations of antagonist strains was not more effective than single-strain treatment. Images PMID:1622275

  12. "Dentinal microcracks after root canal preparation" a comparative evaluation with hand, rotary and reciprocating instrumentation.

    PubMed

    Priya, N Tulasi; Chandrasekhar, Veeramachaneni; Anita, S; Tummala, Muralidhar; Raj, T B Phanindhar; Badami, Vijetha; Kumar, Pradeep; Soujanya, E

    2014-12-01

    The purpose of this study was to compare the incidence of dentinal micro cracks after instrumentation with various types of NiTi files in rotary and reciprocating motion. One hundred human extracted mandibular central incisors were taken and divided into 10 groups (n=10 teeth per group). Group 1- No preparation, Group 2 - Hand instrumentation, Groups 3,4 - ProTaper files in rotary and reciprocating motion, Groups 5,6 - ProTaper Next files in rotary and reciprocating motion, Groups 7,8 - Oneshape files in rotary and reciprocating motion, Groups 9,10 - Reciproc files in rotary and reciprocating motion. Specimens were sectioned horizontally at 3,6 and 9 mm from the apex and dentinal micro cracks were observed under a stereomicroscope. There was a statistically significant difference between the groups (p<0.05). There were no significant differences in crack formation between the groups (Protaper Next - Rot, Protaper Next - Rec, Reciproc - Rec); (ProTaper - Rot, ProTaper - Rec, Oneshape - Rot), (Oneshape - Rot, Reciproc - Rot), (One shape Reciproc, Reciproc - Rec); (p >.05). Least cracks were seen in canals instrumented with Pro Taper Next files both in rotary and reciprocating motion. Full sequence rotary systems showed less cracks than single file systems and full sequence rotary systems showed less cracks in reciprocating motion than in rotary motion.

  13. Toxic Ipomeamarone Accumulation in Healthy Parts of Sweetpotato (Ipomoea batatas L. Lam) Storage Roots upon Infection by Rhizopus stolonifer

    PubMed Central

    2015-01-01

    Furanoterpenoid accumulation in response to microbial attack in rotting sweetpotatoes has long been linked to deaths and lung edema of cattle in the world. However, it is not known whether furanoterpenoid ipomeamarone accumulates in the healthy-looking parts of infected sweetpotato storage roots. This is critical for effective utilization as animal feed and assessment of the potential negative impact on human health. Therefore, we first identified the fungus from infected sweetpotatoes as a Rhizopus stolonifer strain and then used it to infect healthy sweetpotato storage roots for characterization of furanoterpenoid content. Ipomeamarone and its precursor, dehydroipomeamarone, were identified through spectroscopic analyses, and detected in all samples and controls at varying concentrations. Ipomeamarone concentration was at toxic levels in healthy-looking parts of some samples. Our study provides fundamental information on furanoterpenoids in relation to high levels reported that could subsequently affect cattle on consumption and high ipomeamarone levels in healthy-looking parts. PMID:25418792

  14. Heterobasidion (Fornes) Annosum Incidence in Pre-Commercially Thinned Coastal Washington Western Hemlock Stands

    Treesearch

    Willis R. Littke; John E. Browning

    1989-01-01

    Heterobasidion annosum infects western hemlock (Tsuga heterophylla) and causes a root and butt-rot disease. A disease survey was initiated in thinned Southwestern Washington hemlock stands to determine current disease incidence caused by H. annosum.

  15. GammaScorpion: mobile gamma-ray tomography system for early detection of basal stem rot in oil palm plantations

    NASA Astrophysics Data System (ADS)

    Abdullah, Jaafar; Hassan, Hearie; Shari, Mohamad Rabaie; Mohd, Salzali; Mustapha, Mahadi; Mahmood, Airwan Affendi; Jamaludin, Shahrizan; Ngah, Mohd Rosdi; Hamid, Noor Hisham

    2013-03-01

    Detection of the oil palm stem rot disease Ganoderma is a major issue in estate management and production in Malaysia. Conventional diagnostic techniques are difficult and time consuming when using visual inspection, and destructive and expensive when based on the chemical analysis of root or stem tissue. As an alternative, a transportable gamma-ray computed tomography system for the early detection of basal stem rot (BSR) of oil palms due to Ganoderma was developed locally at the Malaysian Nuclear Agency, Kajang, Malaysia. This system produces high quality tomographic images that clearly differentiate between healthy and Ganoderma infected oil palm stems. It has been successfully tested and used to detect the extent of BSR damage in oil palm plantations in Malaysia without the need to cut down the trees. This method offers promise for in situ inspection of oil palm stem diseases compared to the more conventional methods.

  16. Trehalose-related gene deletions in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a widespread corn pathogen that causes root, stalk, and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Our goal is to assess the feasibility of exploiting trehalose metabolism as a target for F. verticillioide...

  17. Trehalose-related Gene Deletions in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a widespread corn pathogen that causes root, stalk and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Our goal is to assess the feasibility of exploiting trehalose metabolism as a target for F. verticillioides...

  18. Effectiveness of Neutral Electrolyzed Water on Incidence of Fungal Rot on Tomato Fruits ( Solanum lycopersicum L.).

    PubMed

    Vásquez-López, Alfonso; Villarreal-Barajas, Tania; Rodríguez-Ortiz, Gerardo

    2016-10-01

    We assessed the effect of neutral electrolyzed water (NEW) on the incidence of rot on tomato ( Solanum lycopersicum L.) fruits inoculated with Fusarium oxysporum , Galactomyces geotrichum , and Alternaria sp. at sites with lesions. The inoculated fruits were treated with NEW at 10, 30, and 60 mg liter -1 active chlorine, with copper oxychloride fungicide, and with sterile distilled water (control) for 3, 5, and 10 min. In the experiment with F. oxysporum , 50 to 80% of the control fruits and 50 to 60% of the fruits treated with the fungicide exhibited symptoms of rot at the inoculated sites. The lowest incidence recorded was 30% for fruits treated with NEW at 60 mg liter -1 active chlorine with an immersion time of 5 min. In the experiment with G. geotrichum , incidence of rot on control fruits was 70 to 90%, and for treatment with fungicide rot incidence was 50 to 90%. NEW at 60 mg liter -1 active chlorine significantly reduced incidence of symptomatic fruit: only 30% of the inoculated fruits washed for 5 min had damage from rot. In the experiment with Alternaria sp., 60 to 90% of the fruits in the control group and 60 to 70% of the fruits in the fungicide group were symptomatic. The lowest incidence was recorded for the treatment in which the fruits were submerged in NEW with 60 mg liter -1 active chlorine for 3 min. In this group, 40 to 50% of the fruits exhibited symptoms of rot. These results were obtained 8 days after inoculation. NEW, with 60 mg liter -1 active chlorine, significantly reduced incidence of rot symptoms on fruits inoculated with one of the experimental fungi relative to the control (P ≤ 0.05). NEW at 60 mg liter -1 is effective in the control of fungal rot in tomatoes.

  19. Stand-structural effects on Heterobasidion abietinum-related mortality following drought events in Abies pinsapo.

    PubMed

    Linares, Juan Carlos; Camarero, Jesús Julio; Bowker, Matthew A; Ochoa, Victoria; Carreira, José Antonio

    2010-12-01

    Climate change may affect tree-pathogen interactions. This possibility has important implications for drought-prone forests, where stand dynamics and disease pathogenicity are especially sensitive to climatic stress. In addition, stand structural attributes including density-dependent tree-to-tree competition may modulate the stands' resistance to drought events and pathogen outbreaks. To assess the effects of stand structure on root-rot-related mortality after severe droughts, we focused on Heterobasidion abietinum mortality in relict Spanish stands of Abies pinsapo, a drought-sensitive fir. We compared stand attributes and tree spatial patterns in three plots with H. abietinum root-rot disease and three plots without root-rot. Point-pattern analyses were used to investigate the scale and extent of mortality patterns and to test hypotheses related to the spread of the disease. Dendrochronology was used to date the year of death and to assess the association between droughts and growth decline. We applied a structural equation modelling approach to test if tree mortality occurs more rapidly than predicted by a simple distance model when trees are subjected to high tree-to-tree competition and following drought events. Contrary to expectations of drought mortality, the effect of precipitation on the year of death was strong and negative, indicating that a period of high precipitation induced an earlier tree death. Competition intensity, related to the size and density of neighbour trees, also induced an earlier tree death. The effect of distance to the disease focus was negligible except in combination with intensive competition. Our results indicate that infected trees have decreased ability to withstand drought stress, and demonstrate that tree-to-tree competition and fungal infection act as predisposing factors of forest decline and mortality.

  20. Potential Reasons for Prevalence of Fusarium Wilt in Oriental Melon in Korea

    PubMed Central

    Seo, Yunhee; Kim, Young Ho

    2017-01-01

    This study aims to examine the potential reasons for the current prevalence of the fusarium wilt in the oriental melon. Twenty-seven Fusarium isolates obtained from oriental melon greenhouses in 2010–2011 were identified morphologically and by analysis of elongation factor-1 alpha gene (EF-1α) and internal transcribed spacer (ITS) rDNA sequences as 6 Fusarium species (8 isolates of F. oxysporum, 8 F. commune, 5 F. proliferatum, 3 F. equiseti, 2 F. delphinoides, and 1 F. andiyazi), which were classified as same into 6 EF-1α sequence-based phylogenetic clades. Pathogenicity of the Fusarium isolates on the oriental melon was highest in F. proliferatum, next in F. oxysporum and F. andiyazi, and lowest in the other Fusarium species tested, suggesting F. proliferatum and F. oxysporum were major pathogens of the oriental melon, inducing stem rots and vascular wilts, respectively. Oriental melon and watermelon were more susceptible to F. oxysporum than shintosa and cucumber; and cucumber was most, oriental melon and watermelon, medially, and shintosa was least susceptible to F. proliferatum, whose virulence varied among and within their phylogenetic subclades. Severe root-knot galls were formed on all the crops infected with Meloidogyne incognita; however, little indication of vascular wilts or stem and/or root rots was shown by the nematode infection. These results suggest the current fungal disease in the oriental melon may be rarely due to virulence changes of the fusarium wilt pathogen and the direct cause of the severe root-knot nematode infection, but may be potentially from other Fusarium pathogen infection that produces seemingly wilting caused by severe stem rotting. PMID:28592944

  1. Opportunities for addressing laminated root rot caused by Phellinus sulphuracens in Washington's forests: A Report from the Washington State Academy of Sciences in cooperation with the Washington State Department of Natural Resources

    Treesearch

    R. James Cook; Robert L. Edmonds; Ned B. Klopfenstein; Willis Littke; Geral McDonald; Daniel Omdahl; Karen Ripley; Charles G. Shaw; Rona Sturrock; Paul Zambino

    2013-01-01

    This report from the Washington State Academy of Sciences (WSAS) is in response to a request from the Washington State Department of Natural Resources (DNR) to "identify approaches and opportunities ripe for research on understanding and managing root diseases of Douglas-fir." Similar to the process used by the National Research Council, the WSAS upon...

  2. Can a fake fir tell the truth about Swiss needle cast?

    EPA Science Inventory

    A key question in dendrochronology to reconstruct forest disturbance history is how to distinguish between the effects of Swiss needle cast (SNC) and other forest disturbance agents (e.g., Douglas-fir beetle, tussock moth, western spruce budworm, laminated root rot, Armillaria ro...

  3. Remote sensing for cotton farming

    USDA-ARS?s Scientific Manuscript database

    Application of remote sensing technologies in agriculture began with the use of aerial photography to identify cotton root rot in the late 1920s. From then on, agricultural remote sensing has developed gradually until the introduction of precision farming technologies in the late 1980s and biotechno...

  4. Data Mining Feature Subset Weighting and Selection Using Genetic Algorithms

    DTIC Science & Technology

    2002-03-01

    seed-stain, anthracnose, phyllosticta-leaf-spot, alternarialeaf-spot, frog-eye-leaf- spot, diaporthe-pod-&-stem-blight, cyst - nematode , 2-4-d-injury...seed-discolor: absent,present,?. 33. seed-size: norm,lt-norm,?. 34. shriveling: absent,present,?. 35. roots: norm,rotted,galls- cysts

  5. Introduction to Oomycetes

    USDA-ARS?s Scientific Manuscript database

    The oomycetes, also known as “water molds”, are a group of several hundred organisms that include some of the most devastating plant pathogens. The diseases they cause include seedling blights, damping-off, root rots, foliar blights and downy mildews. Some notable diseases are the late blight of po...

  6. Application of time-lapse ERT to characterize soil-water-disease interactions of young citrus trees

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; R M, P. G.

    2016-12-01

    Vidarbha region in Maharashtra, India is witnessing a continuous decrease in orange crop due to the propagation of `Phytopthora root rot', a water mold disease. Under favorable conditions, the disease causing bacteria can attack the plant root system and propagates to the surface (where first visual impression is made), making difficult to regain the plant health. This research aims at co-relating eco-hydrological fluxes with disease sensing parameters of orange trees. Two experimental plots around a healthy-young and declined-young orange trees were selected for our analysis. A 3-dimentional electrical resistivity tomography (ERT) (Figure) was carried at each plot to quantify the soil moisture distribution at a vadose zone. Pedo-electric relations were obtained considering modified Archie's law parameters. ERT derived moisture data was validated with time domain reflectometry (TDR) point observations. Soil moisture profiles derived from ERT were observed to be differ marginally between the two plots. Disease quantification was done by estimating the density of Phytopthora spp. inoculum in soils sampled along the root zone. Identification of Phytopthora spp. was done in the laboratory using taxonomic and morphologic criteria of the colonies. Spatio-temporal profiles of soil moisture and inoculum density were then co-related to comment on the eco-hydrological fluxes contributing to the health propagation of root rot in orange tree for implementing effective water management practices.

  7. Root planing with Er:YAG laser X Gracey curette: a study in vitro using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Mello, Fabiano A. S.; Mello, Andrea M. D.; Matson, Edmir; Mattos, Adriana B.; Mello, Guilherme P. S.

    2001-04-01

    The Er:YAG laser has been studied for periodontal therapies, so much for removal of the subgingival calculus and its bactericidal effects. The proposal of this study is to evaluate the effectiveness of the Er:YAG laser in root planning in comparison to the traditional method, not surgical. Six recently extracted due top the disease periodontal, were cut longitudinally tends like this two half of the root. These half were separate in four groups. The first group is the natural tooth, the second group was accomplished to rot planing with Graceycurette. And in the third to Er:YAG laser with a contact tip, using a 45 degree angle in relation to the root; in the fourth group was scraped and planed with Er:YAG laser and complemented rot planing with Graceycurette. The used energy was of 60 to 300mJ and the frequency of 10 Hz accomplished with irrigation. The obtained results were similar in the groups 2 and 3 in comparison to the amount of smear-layer. In group 4 however, better result was obtained, because the image was much more regular and with less amount of smear-layer. The conclusion of the work is that with the association of the Er:YAG laser technique and Graceycurette the results are superior to the conventional treatment.

  8. The Effect of Fungicides on Mycelial Growth and Conidial Germination of the Ginseng Root Rot Fungus, Cylindrocarpon destructans

    PubMed Central

    Shin, Jong-Hwan; Fu, Teng; Park, Kyeong Hun

    2017-01-01

    Ginseng root rot caused by Cylindrocarpon destructans is the most destructive disease of ginseng. Six different fungicides (thiophanate-methyl, benomyl, prochloraz, mancozeb, azoxystrobin, and iprodione) were selected to evaluate the inhibitory effect on the mycelial growth and conidial germination of C. destructans isolates. Benomyl and prochloraz were found to be the most effective fungicides in inhibiting mycelial growth of all tested isolates, showing 64.7% to 100% inhibition at a concentration of 10 µg/mL, whereas thiophanate-methyl was the least effective fungicide, showing less than 50% inhibition even at a higher concentration of 100 µg/mL. The tested fungicides exhibited less than 20% inhibition of conidium germination at concentrations of 0.01, 0.1, and 1 µg/mL. However, the inhibition effect of mancozeb on condium germination of C. destructans was significantly increased to 92% to 99% at a higher concentration of 100 µg/mL, while the others still showed no higher than 30% inhibition. PMID:29138629

  9. Structure-based functional characterization of repressor of toxin (Rot), a central regulator of staphylococcus aureus virulence

    DOE PAGES

    Killikelly, April; Jakoncic, Jean; Benson, Meredith A.; ...

    2014-10-20

    Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle, S. aureus has to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of the S. aureus virulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulating S. aureus virulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure ofmore » Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R 91, at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y 66, predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. As a result, this work provides insight into a precise mechanism by which Rot controls virulence factor regulation in S. aureus.« less

  10. Structure-based functional characterization of repressor of toxin (Rot), a central regulator of staphylococcus aureus virulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killikelly, April; Jakoncic, Jean; Benson, Meredith A.

    Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle, S. aureus has to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of the S. aureus virulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulating S. aureus virulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure ofmore » Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R 91, at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y 66, predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. As a result, this work provides insight into a precise mechanism by which Rot controls virulence factor regulation in S. aureus.« less

  11. Modeling Effects of Temperature, Soil, Moisture, Nutrition and Variety As Determinants of Severity of Pythium Damping-Off and Root Disease in Subterranean Clover

    PubMed Central

    You, Ming P.; Rensing, Kelly; Renton, Michael; Barbetti, Martin J.

    2017-01-01

    Subterranean clover (Trifolium subterraneum) is a critical pasture legume in Mediterranean regions of southern Australia and elsewhere, including Mediterranean-type climatic regions in Africa, Asia, Australia, Europe, North America, and South America. Pythium damping-off and root disease caused by Pythium irregulare is a significant threat to subterranean clover in Australia and a study was conducted to define how environmental factors (viz. temperature, soil type, moisture and nutrition) as well as variety, influence the extent of damping-off and root disease as well as subterranean clover productivity under challenge by this pathogen. Relationships were statistically modeled using linear and generalized linear models and boosted regression trees. Modeling found complex relationships between explanatory variables and the extent of Pythium damping-off and root rot. Linear modeling identified high-level (4 or 5-way) significant interactions for each dependent variable (dry shoot and root weight, emergence, tap and lateral root disease index). Furthermore, all explanatory variables (temperature, soil, moisture, nutrition, variety) were found significant as part of some interaction within these models. A significant five-way interaction between all explanatory variables was found for both dry shoot and root dry weights, and a four way interaction between temperature, soil, moisture, and nutrition was found for both tap and lateral root disease index. A second approach to modeling using boosted regression trees provided support for and helped clarify the complex nature of the relationships found in linear models. All explanatory variables showed at least 5% relative influence on each of the five dependent variables. All models indicated differences due to soil type, with the sand-based soil having either higher weights, greater emergence, or lower disease indices; while lowest weights and less emergence, as well as higher disease indices, were found for loam soil and low temperature. There was more severe tap and lateral root rot disease in higher moisture situations. PMID:29184544

  12. De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.).

    PubMed

    Ho, Chai-Ling; Tan, Yung-Chie; Yeoh, Keat-Ai; Ghazali, Ahmad-Kamal; Yee, Wai-Yan; Hoh, Chee-Choong

    2016-01-19

    Basal stem rot (BSR) is a fungal disease in oil palm (Elaeis guineensis Jacq.) which is caused by hemibiotrophic white rot fungi belonging to the Ganoderma genus. Molecular responses of oil palm to these pathogens are not well known although this information is crucial to strategize effective measures to eradicate BSR. In order to elucidate the molecular interactions between oil palm and G. boninense and its biocontrol fungus Trichoderma harzianum, we compared the root transcriptomes of untreated oil palm seedlings with those inoculated with G. boninense and T. harzianum, respectively. Differential gene expression analyses revealed that jasmonate (JA) and salicylate (SA) may act in an antagonistic manner in affecting the hormone biosynthesis, signaling, and downstream defense responses in G. boninense-treated oil palm roots. In addition, G. boninense may compete with the host to control disease symptom through the transcriptional regulation of ethylene (ET) biosynthesis, reactive oxygen species (ROS) production and scavenging. The strengthening of host cell walls and production of pathogenesis-related proteins as well as antifungal secondary metabolites in host plants, are among the important defense mechanisms deployed by oil palm against G. boninense. Meanwhile, endophytic T. harzianum was shown to improve the of nutrition status and nutrient transportation in host plants. The findings of this analysis have enhanced our understanding on the molecular interactions of G. boninense and oil palm, and also the biocontrol mechanisms involving T. harzianum, thus contributing to future formulations of better strategies for prevention and treatment of BSR.

  13. Detoxification of fusaric acid by the soil microbe Mucor rouxii

    USDA-ARS?s Scientific Manuscript database

    An unusually aggressive biotype of the root rotting pathogen of cotton, Fusarium oxysporum f. sp. vasinfectum (Fov), has been identified in the Western Hemisphere in some cotton fields in California. This pathogen produces copious quantities of the plant toxin fusaric acid (5-butyl-2-pyridinecarbox...

  14. Effect of Brassicaceae seed meals with different glucosinolate profiles on Rhizoctonia root rot of wheat

    USDA-ARS?s Scientific Manuscript database

    Tissues of plants in the family Brassicaceae contain glucosinolates, compounds whose hydrolysis results in the release of various bioactive products including isothiocyanates. The broad spectrum of biological activity of these glucosinolate hydrolysis products has led to the promotion of brassicace...

  15. Distribution and severity of alder phytophthora in Alaska

    Treesearch

    G.C. Adams; M. Catal; L. Trummer

    2010-01-01

    In Alaska, an unprecedented dieback and mortality of Alnus incana ssp. tenuifolia has occurred which stimulated an effort to determine causal agents of the disease. In Europe, similar dieback and mortality of Alnus incana and Alnus glutinosa has been attributed to root rot by a spectrum...

  16. Usage of the Heterologous Expression of the Antimicrobial Gene afp From Aspergillus giganteus for Increasing Fungal Resistance in Olive.

    PubMed

    Narvaez, Isabel; Khayreddine, Titouh; Pliego, Clara; Cerezo, Sergio; Jiménez-Díaz, Rafael M; Trapero-Casas, José L; López-Herrera, Carlos; Arjona-Girona, Isabel; Martín, Carmen; Mercado, José A; Pliego-Alfaro, Fernando

    2018-01-01

    The antifungal protein (AFP) produced by Aspergillus giganteus , encoded by the afp gene, has been used to confer resistance against a broad range of fungal pathogens in several crops. In this research, transgenic olive plants expressing the afp gene under the control of the constitutive promoter CaMV35S were generated and their disease response against two root infecting fungal pathogens, Verticillium dahliae and Rosellinia necatrix , was evaluated. Embryogenic cultures derived from a mature zygotic embryo of cv. 'Picual' were used for A. tumefaciens transformation. Five independent transgenic lines were obtained, showing a variable level of afp expression in leaves and roots. None of these transgenic lines showed enhanced resistance to Verticillium wilt. However, some of the lines displayed a degree of incomplete resistance to white root rot caused by R. necatrix compared with disease reaction of non-transformed plants or transgenic plants expressing only the GUS gene. The level of resistance to this pathogen correlated with that of the afp expression in root and leaves. Our results indicate that the afp gene can be useful for enhanced partial resistance to R. necatrix in olive, but this gene does not protect against V. dahliae .

  17. Expression profiles of defence related cDNAs in oil palm (Elaeis guineensis Jacq.) inoculated with mycorrhizae and Trichoderma harzianum Rifai T32.

    PubMed

    Tan, Yung-Chie; Wong, Mui-Yun; Ho, Chai-Ling

    2015-11-01

    Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Fine Mapping of Resistance Genes from Five Brown Stem Rot Resistance Sources in Soybean.

    PubMed

    Rincker, Keith; Hartman, Glen L; Diers, Brian W

    2016-03-01

    Brown stem rot (BSR) of soybean [ (L.) Merr.] caused by (Allington & Chamb.) T.C. Harr. & McNew can be controlled effectively with genetic host resistance. Three BSR resistance genes , , and , have been identified and mapped to a large region on chromosome 16. Marker-assisted selection (MAS) will be more efficient and gene cloning will be facilitated with a narrowed genomic interval containing an gene. The objective of this study was to fine map the positions of genes from five sources. Mapping populations were developed by crossing the resistant sources 'Bell', PI 84946-2, PI 437833, PI 437970, L84-5873, and PI 86150 with either the susceptible cultivar Colfax or Century 84. Plants identified as having a recombination event near genes were selected and individually harvested to create recombinant lines. Progeny from recombinant lines were tested in a root-dip assay and evaluated for foliar and stem BSR symptom development. Overall, 4878 plants were screened for recombination, and progeny from 52 recombinant plants were evaluated with simple-sequence repeat (SSR) genetic markers and assessed for symptom development. Brown stem rot resistance was mapped to intervals ranging from 0.34 to 0.04 Mb in the different sources. In all sources, resistance was fine mapped to intervals inclusive of BARCSOYSSR_16_1114 and BARCSOYSSR_16_1115, which provides further evidence that one locus provides BSR resistance in soybean. Copyright © 2016 Crop Science Society of America.

  19. Aphanomyces root rot of alfalfa: Widespread distribution of race 2 in Minnesota

    USDA-ARS?s Scientific Manuscript database

    Strong seedling establishment in alfalfa is important to achieve the plant density needed to out-compete weeds and produce high biomass yields. Establishing alfalfa can be challenging because alfalfa seeds and seedlings are vulnerable to several pathogens present in soil. Wet soil conditions favor t...

  20. Phytophthora tentaculata

    Treesearch

    Suzanne Rooney-Latham; Cheryl Blomquist; Ted Swiecki; Elizabeth Bernhardt

    2015-01-01

    Phytophthora tentaculata Kröber & Marwitz was described in 1993 in Germany on greenhouse-grown nursery ornamentals. It has since been found in Italy, Spain, China and the U.S. (California) causing a root and stem rot of many different plant species including nursery-grown native species used for habitat restoration. P. tentaculata...

  1. Marker validation for Rpf1 red stele resistance in strawberry

    USDA-ARS?s Scientific Manuscript database

    Red stele is a devastating root rot disease in strawberries. Several sources for genetic resistance are exploited in breeding, and several race-specific R-genes were identified. Recently, a tightly linked SSR marker was found for the Rpf1 gene at Wageningen-UR, The Netherlands. One hundred and forty...

  2. MP-29, a clonal interspecific hybrid rootstock for peach

    USDA-ARS?s Scientific Manuscript database

    MP-29 rootstock has been jointly released for grower trial by the U.S. Department of Agriculture, Agricultural Research Service (Byron, GA) and Florida Agricultural Experiment Station. MP-29 is suggested for trial as a rootstock for peach (Prunus persica L. Batsch) varieties on Armillaria root rot ...

  3. Managing foliar and root rot diseases of alfalfa for improving yield and persistance

    USDA-ARS?s Scientific Manuscript database

    Resistance to the six most common diseases across the United States is available in modern alfalfa cultivars. However, several diseases are becoming increasing problems in many parts of the country. Recognizing these problems is the first step in using crop management strategies to minimize diseases...

  4. RECONSTRUCTING THE EVOLUTIONARY HISTORY OF THE FOREST FUNGAL PATHOGEN, ARMILLARIA MELLEA, IN A TEMPERATE WORLDWIDE POPULATIONS

    USDA-ARS?s Scientific Manuscript database

    The forest pathogen Armillaria mellea s.s. (Basidiomycota, Physalacriaceae) is among the most significant forest pathogens causing root rot in northern temperate forest trees worldwide. Phylogenetic reconstructions for A. mellea show distinct European, Asian and North American lineages. The North Am...

  5. Characterization of stuA mutants in the mycotoxigenic maize pathogen Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a major pathogen of maize, causing root, stalk and ear rots and seedling blight. It also produces fumonisin mycotoxins. Ingestion of fumonisin-contaminated corn causes acute toxicity in livestock and is a potential carcinogen to humans. StuA, an APSES protein class transc...

  6. Mapping resistance to Phytophthora cinnamomi in chestnut (Castanea sp.)

    Treesearch

    Bode A. Olukolu; C. Dana Nelson; Albert G. Abbott

    2012-01-01

    Phytophthora cinnamomi (Phytophthora crown and root rot, or ink disease) is now known to infect several hundred plant species in the world and is especially linked to the widespread death of mature chestnut (Castanea) and evergreen oak (Quercus ilex L.) trees in southeast United States. With an expanding...

  7. The challenge of salinity: Hope for the future with new avocado rootstocks

    USDA-ARS?s Scientific Manuscript database

    California avocado growers face diminishing returns in areas where Phytophthora root rot and saline irrigation water predominate. To help find answers to this production issue, a research trial was planted at the University of California, Riverside (UCR) in 2011. The goal of this trial was to determ...

  8. Status of Macrophomina phaseolina on strawberry in California and preliminary characterization of the pathogen

    USDA-ARS?s Scientific Manuscript database

    Macrophomina crown and root rot has become a significant soilborne disease issue in California. For many locations in the state, the disease is associated with fields that are no longer pre-plant, flat field fumigated with methyl bromide + chloropicrin. Inoculation experiments indicated that some di...

  9. Resistance to Phytophthora cinnamomi in the Genus Abies

    Treesearch

    John Frampton; Fikret Isik; Mike Benson; Jaroslav Kobliha; Jan Stjskal

    2012-01-01

    A major limiting factor for the culture of true firs as Christmas trees is their susceptibility to Oomycete species belonging to the genus Phytophthora. In North Carolina alone, the Fraser fir (Abies fraseri [Pursh] Poir.) Christmas tree industry loses 6 to 7 million dollars annually to root rot primarily caused by ...

  10. What lies beneath, unraveling the mysteries of Rhizoctonia and Pythium

    USDA-ARS?s Scientific Manuscript database

    Washington wheat and barley growers have long recognized that the soil-borne fungal pathogens Rhizoctonia and Pythium cause root rot, stunting and poor emergence and can chip away at yield, resulting in annual losses of 10 percent or more. Since several of these Rhizoctonia and Pythium species attac...

  11. Host range determination and fungicide resistance assessment of Phytophthora lateralis isolates from horticultural nurseries in Oregon

    Treesearch

    Franziska Rupp; Ebba K. Peterson; Joyce Eberhart; Jennifer L. Parke

    2017-01-01

    Phytophthora lateralis causes root rot of Port-Orford cedar (Chamaecyparis lawsoniana; POC) in native forests of northwest California and southwest Oregon and in landscape plantings of horticultural Chamaecyparis cultivars in the western US and Europe. In spring 2015, following observations of mortality...

  12. Use of a beneficial strain of Trichoderma to protect Pinus sylvestris seedlings

    Treesearch

    T. V. Ryazanova; V. S. Gromoykh; S. V. Prudnicova; V. A. Tulpanova

    2002-01-01

    In forest nursery practice, the mechanism of phytopathogen suppression by soil saprophytes is used to protect seedlings against root rot. An important stage is the formation and maintenance of a microbial association which will provide extended inhibition of phytopathogen development and growth of healthy seedlings.

  13. Use of jasmonic acid and salicylic acid to inhibit growth of sugarbeet storage rot pathogens

    USDA-ARS?s Scientific Manuscript database

    Jasmonic acid (JA) and salicylic acid (SA) are endogenous plant hormones that induce native plant defense responses and provide protection against a wide range of diseases. Previously, JA, applied after harvest, was shown to protect sugarbeet roots against the storage pathogens, Botrytis cinerea, P...

  14. RNA-mediated Gene Silencing in the Cereal Fungal Pathogen Cochliobolus sativus

    USDA-ARS?s Scientific Manuscript database

    Cochliobolus sativus (anamorph: Bipolaris sorokiniana) is the causal agent of spot blotch, common root rot and black point in barley and wheat. However, little is known about the mechanisms underlying the pathogenicity and virulence of the pathogen. In this study, we developed a high-throughput RNA-...

  15. Breeding for resistance in Norway spruce to the root and butt rot fungi Heterobasidion spp

    Treesearch

    G. Swedjemark; A.K. Borg-Karlson; B. Karlsson

    2012-01-01

    Results from previous studies of resistance in Norway spruce (Picea abies (L.) Karst.) to the pathogens Heterobasidion spp. show significant genotypic variation in fungal growth and spore susceptibility among Norway spruce clones. The genetic variation and the heritability are large enough for practical breeding purposes and...

  16. Phytotoxicity of the mycotoxin (±)-botryodiplodin produced by Macrophomina phaseolina to soybean and duckweed in vitro

    USDA-ARS?s Scientific Manuscript database

    The fungus Macrophomina phaseolina causes charcoal rot (CR), a major soybean disease. M. phaseolina also produces a toxin, (±)-botryodiplodin (Bot). Our objective was to determine if phytotoxic responses to Bot are consistent with the toxin’s mechanism of soybean root infection. Bot was tested f...

  17. Mapping of quantitative trait loci associated with partial resistance to phytophthora sojae and flooding tolerance in soybean

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root rot (PRR) caused by Phytophthora sojae Kaufm. & Gerd. and flooding can limit growth and productivity, of soybean [Glycine max (L.) Merr.], especially on poorly drained soils. The primary objective of this research project was to map quantitative trait loci (QTL) associated with f...

  18. Induced systemic resistance in Arabidopsis against Pseudomonas syringae pv. tomato by disease suppressive soils

    USDA-ARS?s Scientific Manuscript database

    Two-week-old Arabidopsis thaliana ecotype Col-0 seedlings were transferred into an autoclaved sand-soil mixture amended with 10% or 20% (weight/weight) soil that is suppressive to either take-all or Rhizoctonia root rot of wheat from fields in Washington State USA. These soils contain population siz...

  19. Brachypodium distachyon-Cochliobolus sativus pathosystem is a new model for studying plant-fungal interactions in cereal crops

    USDA-ARS?s Scientific Manuscript database

    Cochliobolus sativus (anamorph: Bipolaris sorokiniana) causes three major diseases in barley and wheat, including spot blotch, common root rot and kernel blight or black point. These diseases significantly reduce the yield and quality of the two most important cereal crops in the US and other region...

  20. The Role of Drought in Outbreaks of Plant-eating Insects

    Treesearch

    William J. Mattson; Robert A. Haack

    1987-01-01

    Substantial evidence indicates that drought stress promotes outbreaks of plant-eating (phytophagous) fungi and insects. Observations and experiments show that colonization success and pervalence of such fungi as root and stalk rots, stem cankers, and sometimes wilts and foliar diseases are much higher on water-stressed plants than on normal plants (Schoeneweiss 1986)....

  1. Resistance to Phytophthora cinnamomi among seedlings from backcross families of hybrid american chestnut

    Treesearch

    Steven N. Jeffers; Inga M. Meadows; Joseph B. James; Paul H. Sisco

    2012-01-01

    American chestnut (Castanea dentata (Marsh.) Borkh.) once was a primary hardwood species in forests of the eastern United States. Sometime during the late 18th century, it is speculated that Phytophthora cinnamomi, which causes Phytophthora root rot (PRR) on many woody plant species, was introduced to the southeast region of...

  2. Estimating the susceptibility to Phytophthora alni globally using both statistical analyses and expert knowledge

    Treesearch

    Marla C. Downing; Thomas Jung; Vernon Thomas; Markus Blaschke; Michael F. Tuffly; Robin Reich

    2010-01-01

    Phytophthora alni subspecies alni Brasier and S.A. Kirk is a recently hybridized soil and waterborne pathogen causing root and collar rot of species of the genus Alnus spp. (alder). It has quickly spread throughout Europe via planting of infested nursery stock and irrigating fields with infested river...

  3. Characterization of Pythium spp. collected from corn and soybean soil in Illinois

    USDA-ARS?s Scientific Manuscript database

    Pythium root rot is widely distributed in major soybean (Glycine max) production areas throughout the world. There are many species of Pythium described on soybean and other crops, although not all species are pathogenic on all crops. The objectives of this study were to isolate, identify, and evalu...

  4. First report of the root-rot pathogen, Armillaria nabsnona, from Hawaii

    Treesearch

    J. W. Hanna; N. B. Klopfenstein; M. -S. Kim

    2007-01-01

    The genus Armillaria (2) and Armillaria mellea sensu lato (3) have been reported previously from Hawaii. However, Armillaria species in Hawaii have not been previously identified by DNA sequences, compatibility tests, or other methods that distinguish currently recognized taxa. In August 2005, Armillaria rhizomorphs and mycelial bark fans were collected from two...

  5. Lack of interaction between glyphosate and fungicide treatments on Rhizoctonia crown and root rot in glyphosate-resistant sugarbeet

    USDA-ARS?s Scientific Manuscript database

    A field experiment was conducted in 2008 and 2009 in the Saginaw Valley region of Michigan to determine if there were potential interactions between applications of glyphosate and the fungicide azoxystrobin and to determine the effectiveness of foliar and in-furrow azoxystrobin applications when Rhi...

  6. Determination of the Ecological and Geographic Distributions of Armillaria Species in Missouri Ozark Forest Ecosystems

    Treesearch

    Johann N. Bruhn; James J. Wetteroff; Jeanne D. Mihail; Susan Burks

    1997-01-01

    Armillaria root rot contributes to oak decline in the Ozarks. Three Armillaria species were detected in Ecological Landtypes (ELT's) representing south- to west-facing side slopes (ELT 17), north- to east-facing side slopes (ELT 18), and ridge tops (ELT 11). Armillaria mellea was detected in 91 percent...

  7. Development and characterization of simple sequence repeats for Bipolaris sokiniana and cross transferability to related species

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeats (SSR) markers were developed from a small insert genomic library for Bipolaris sorokiniana, a mitosporic fungal pathogen that causes spot blotch and root rot in switchgrass. About 59% of sequenced clones (n=384) harbored various SSR motifs. After eliminating the redundant seq...

  8. Effects of Fusarium culmorum and water stress on durum wheat in Tunisia

    USDA-ARS?s Scientific Manuscript database

    The effects of water stress on Fusarium foot and root rot in durum wheat were investigated in growth chamber, greenhouse and field tests in Tunisia. In the seedling stage, emergence of six durum wheat cultivars in the growth chamber was significantly reduced by inoculation with Fusarium culmorum and...

  9. Time-Course Transcriptome Analysis Reveals Resistance Genes of Panax ginseng Induced by Cylindrocarpon destructans Infection Using RNA-Seq.

    PubMed

    Gao, Yuan; He, Xiaoli; Wu, Bin; Long, Qiliang; Shao, Tianwei; Wang, Zi; Wei, Jianhe; Li, Yong; Ding, Wanlong

    2016-01-01

    Panax ginseng C. A. Meyer is a highly valued medicinal plant. Cylindrocarpon destructans is a destructive pathogen that causes root rot and significantly reduces the quality and yield of P. ginseng. However, an efficient method to control root rot remains unavailable because of insufficient understanding of the molecular mechanism underlying C. destructans-P. ginseng interaction. In this study, C. destructans-induced transcriptomes at different time points were investigated using RNA sequencing (RNA-Seq). De novo assembly produced 73,335 unigenes for the P. ginseng transcriptome after C. destructans infection, in which 3,839 unigenes were up-regulated. Notably, the abundance of the up-regulated unigenes sharply increased at 0.5 d postinoculation to provide effector-triggered immunity. In total, 24 of 26 randomly selected unigenes can be validated using quantitative reverse transcription (qRT)-PCR. Gene ontology enrichment analysis of these unigenes showed that "defense response to fungus", "defense response" and "response to stress" were enriched. In addition, differentially expressed transcription factors involved in the hormone signaling pathways after C. destructans infection were identified. Finally, differentially expressed unigenes involved in reactive oxygen species and ginsenoside biosynthetic pathway during C. destructans infection were indentified. To our knowledge, this study is the first to report on the dynamic transcriptome triggered by C. destructans. These results improve our understanding of disease resistance in P. ginseng and provide a useful resource for quick detection of induced markers in P. ginseng before the comprehensive outbreak of this disease caused by C. destructans.

  10. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat.

    PubMed

    Scherm, Barbara; Balmas, Virgilio; Spanu, Francesca; Pani, Giovanna; Delogu, Giovanna; Pasquali, Matias; Migheli, Quirico

    2013-05-01

    Fusarium culmorum is a ubiquitous soil-borne fungus able to cause foot and root rot and Fusarium head blight on different small-grain cereals, in particular wheat and barley. It causes significant yield and quality losses and results in contamination of the grain with mycotoxins. This review summarizes recent research activities related to F. culmorum, including studies into its population diversity, mycotoxin biosynthesis, mechanisms of pathogenesis and resistance, the development of diagnostic tools and preliminary genome sequence surveys. We also propose potential research areas that may expand our basic understanding of the wheat-F. culmorum interaction and assist in the management of the disease caused by this pathogen. Fusarium culmorum (W.G. Smith) Sacc. Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Sordariomycetes; Subclass Hypocreomycetidae; Order Hypocreales; Family Nectriaceae; Genus Fusarium. Foot and root rot (also known as Fusarium crown rot): seedling blight with death of the plant before or after emergence; brown discoloration on roots and coleoptiles of the infected seedlings; brown discoloration on subcrown internodes and on the first two/three internodes of the main stem; tiller abortion; formation of whiteheads with shrivelled white grains; Fusarium head blight: prematurely bleached spikelets or blighting of the entire head, which remains empty or contains shrunken dark kernels. IDENTIFICATION AND DETECTION: Morphological identification is based on the shape of the macroconidia formed on sporodochia on carnation leaf agar. The conidiophores are branched monophialides, short and wide. The macroconidia are relatively short and stout with an apical cell blunt or slightly papillate; the basal cell is foot-shaped or just notched. Macroconidia are thick-walled and curved, usually 3-5 septate, and mostly measuring 30-50 × 5.0-7.5 μm. Microconidia are absent. Oval to globose chlamydospores are formed, intercalary in the hyphae, solitary, in chains or in clumps; they are also formed from macroconidia. The colony grows very rapidly (1.6-2.2 cm/day) on potato dextrose agar (PDA) at the optimum temperature of 25 °C. The mycelium on PDA is floccose, whitish, light yellow or red. The pigment on the reverse plate on PDA varies from greyish-rose, carmine red or burgundy. A wide array of polymerase chain reaction (PCR) and real-time PCR tools, as well as complementary methods, which are summarised in the first two tables, have been developed for the detection and/or quantification of F. culmorum in culture and in naturally infected plant tissue. Fusarium culmorum has a wide range of host plants, mainly cereals, such as wheat, barley, oats, rye, corn, sorghum and various grasses. In addition, it has been isolated from sugar beet, flax, carnation, bean, pea, asparagus, red clover, hop, leeks, Norway spruce, strawberry and potato tuber. Fusarium culmorum has also been associated with dermatitis on marram grass planters in the Netherlands, although its role as a causal agent of skin lesions appears questionable. It is also isolated as a symbiont able to confer resistance to abiotic stress, and has been proposed as a potential biocontrol agent to control the aquatic weed Hydrilla spp. http://isolate.fusariumdb.org/; http://sppadbase.ipp.cnr.it/; http://www.broad.mit.edu/annotation/genome/fusarium_group/MultiHome.html; http://www.fgsc.net/Fusarium/fushome.htm; http://plantpath.psu.edu/facilities/fusarium-research-center; http://www.phi-base.org/; http://www.uniprot.org/; http://www.cabi.org/; http://www.indexfungorum.org/ © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  11. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage

    USDA-ARS?s Scientific Manuscript database

    The ability of chitosan and oligochitosan to enhance the resistance of ginger (Zingiber officinale) to rhizome rot, caused by Fusarium oxysporum, in storage was investigated. Both chitosan and oligochitosan at 1 and 5 g/L significantly inhibited rhizome rot, relative to the untreated control, with...

  12. PAMPs, PRRs, effectors and R-genes associated with citrus–pathogen interactions

    PubMed Central

    Dalio, Ronaldo J. D.; Magalhães, Diogo M.; Rodrigues, Carolina M.; Arena, Gabriella D.; Oliveira, Tiago S.; Souza-Neto, Reinaldo R.; Picchi, Simone C.; Martins, Paula M. M.; Santos, Paulo J. C.; Maximo, Heros J.; Pacheco, Inaiara S.; De Souza, Alessandra A.

    2017-01-01

    Abstract Background Recent application of molecular-based technologies has considerably advanced our understanding of complex processes in plant–pathogen interactions and their key components such as PAMPs, PRRs, effectors and R-genes. To develop novel control strategies for disease prevention in citrus, it is essential to expand and consolidate our knowledge of the molecular interaction of citrus plants with their pathogens. Scope This review provides an overview of our understanding of citrus plant immunity, focusing on the molecular mechanisms involved in the interactions with viruses, bacteria, fungi, oomycetes and vectors related to the following diseases: tristeza, psorosis, citrus variegated chlorosis, citrus canker, huanglongbing, brown spot, post-bloom, anthracnose, gummosis and citrus root rot. PMID:28065920

  13. Derivation of Mutants of Erwinia carotovora subsp. betavasculorum Deficient in Export of Pectolytic Enzymes with Potential for Biological Control of Potato Soft Rot

    PubMed Central

    Costa, José M.; Loper, Joyce E.

    1994-01-01

    Erwinia carotovora subsp. betavasculorum Ecb168 produces an antibiotic(s) that suppresses growth of the related bacterium Erwinia carotovora subsp. carotovora in culture and in wounds of potato tubers. Strain Ecb168 also produces and secretes pectolytic enzymes and causes a vascular necrosis and root rot of sugar beet. Genes (out) involved in secretion of pectolytic enzymes by Ecb168 were localized to two HindIII fragments (8.5 and 10.5 kb) of Ecb168 genomic DNA by hybridization to the cloned out region of E. carotovora subsp. carotovora and by complementation of Out- mutants of E. carotovora subsp. carotovora. Out- mutants of Ecb168, which did not secrete pectate lyase into the culture medium, were obtained when deletions internal to either HindIII fragment were introduced into the genome of Ecb168 through marker exchange mutagenesis. Out- mutants of Ecb168 were complemented to the Out+ phenotype by introduction of the corresponding cloned HindIII fragment. Out- mutants of Ecb168 were less virulent than the Out+ parental strain on potato tubers. Strain Ecb168 and Out- derivatives inhibited the growth of E. carotovora subsp. carotovora in culture, indicating that the uncharacterized antibiotic(s) responsible for antagonism was exported through an out-independent mechanism. Strain Ecb168 and Out- derivatives reduced the establishment of large populations of E. carotovora subsp. carotovora in wounds of potato tubers and suppressed tuber soft rot caused by E. carotovora subsp. carotovora. PMID:16349316

  14. Usage of the Heterologous Expression of the Antimicrobial Gene afp From Aspergillus giganteus for Increasing Fungal Resistance in Olive

    PubMed Central

    Narvaez, Isabel; Khayreddine, Titouh; Pliego, Clara; Cerezo, Sergio; Jiménez-Díaz, Rafael M.; Trapero-Casas, José L.; López-Herrera, Carlos; Arjona-Girona, Isabel; Martín, Carmen; Mercado, José A.; Pliego-Alfaro, Fernando

    2018-01-01

    The antifungal protein (AFP) produced by Aspergillus giganteus, encoded by the afp gene, has been used to confer resistance against a broad range of fungal pathogens in several crops. In this research, transgenic olive plants expressing the afp gene under the control of the constitutive promoter CaMV35S were generated and their disease response against two root infecting fungal pathogens, Verticillium dahliae and Rosellinia necatrix, was evaluated. Embryogenic cultures derived from a mature zygotic embryo of cv. ‘Picual’ were used for A. tumefaciens transformation. Five independent transgenic lines were obtained, showing a variable level of afp expression in leaves and roots. None of these transgenic lines showed enhanced resistance to Verticillium wilt. However, some of the lines displayed a degree of incomplete resistance to white root rot caused by R. necatrix compared with disease reaction of non-transformed plants or transgenic plants expressing only the GUS gene. The level of resistance to this pathogen correlated with that of the afp expression in root and leaves. Our results indicate that the afp gene can be useful for enhanced partial resistance to R. necatrix in olive, but this gene does not protect against V. dahliae. PMID:29875785

  15. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Paralikar, Priti; Anasane, Netravati; Gade, Rajendra; Ingle, Pramod

    2018-06-09

    Ginger (Zingiber officinale Rosc.) is a tropical plant cultivated all over the world due to its culinary and medicinal properties. It is one of the most important spices commonly used in food, which increases its commercial value. However, soft rot (rhizome rot) is a common disease of ginger caused by fungi such as Pythium and Fusarium spp. It is the most destructive disease of ginger, which can reduce the production by 50 to 90%. Application of chemical fungicides is considered as an effective method to control soft rot of ginger but extensive use of fungicides pose serious risk to environmental and human health. Therefore, the development of ecofriendly and economically viable alternative approaches for effective management of soft rot of ginger such diseases is essentially required. An acceptable approach that is being actively investigated involves nanotechnology, which can potentially be used to control Pythium and Fusarium. The present review is aimed to discuss worldwide status of soft rot associated with ginger, the traditional methods available for the management of Pythium and Fusarium spp. and most importantly, the role of various nanomaterials in the management of soft rot of ginger. Moreover, possible antifungal mechanisms for chemical fungicides, biological agents and nanoparticles have also been discussed.

  16. Inferences on the phylogeography of the fungal pathogen Heterobasidion annosum, including evidence of interspecific horizontal genetic transfer and of human-mediated, long-range dispersal

    Treesearch

    R.E. Linzer; W.J. Otrosina; P. Gonthier; J. Bruhn; G. Laflamme; G. Bussieres; M. Garbelotto

    2008-01-01

    Fungi in the basidiomycete species complex Heterobasidion annosum are significant root-rot pathogens of conifers throughout the northern hemisphere. We utilize a multilocus phylogenetic approach to examine hypotheses regarding the evolution and divergence of two Heterobasidion taxa associated with pines: the Eurasian H. ...

  17. Impact of Precommercial Thinning on Development of Heterobasidion annosum in Western Hemlock

    Treesearch

    Robert L. Edmonds; David C. Shaw; Tom Hsiang; Charles H. Driver

    1989-01-01

    The impact of precommercial thinning of western hemlock (Tsuga heterophylla) on the development of Annosus root and butt rot (caused by Heterobasidion annosum) in coastal Washington has been followed for more than 20 years. Infection of stumps and wounds was high following thinning and there was a high probability of residual tree...

  18. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root and stem rot caused by Phytophthora sojae Kaufmann and Gerdmann is one of the most severe soybean [Glycine max (L.) Merr] diseases in the US. Partial resistance is as effective in managing this disease as single-gene (Rps) mediated resistance and is more durable. The objective of t...

  19. Induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens strains that produce the polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are among the most effective rhizobacteria that suppress root and crown rots, wilts and damping-off diseases of a variety of crops, and they play a key role in the natural suppressiveness of ...

  20. Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: Role of trehalose-6-phosphate synthase

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a pathogen of maize that causes root, stalk, and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Environmental stresses such as heat and drought influence disease severity and toxin production, but the effects ...

  1. Registration of a small-red dry bean germplasm, TARS-LFR1, with multiple disease resistance and superior performance in low nitrogen soils

    USDA-ARS?s Scientific Manuscript database

    Root rots, caused primarily by soil-borne fungi and Oomycetes, are important constraints to common bean production. These diseases are becoming a more serious problem under low-input and low fertility production zones with changing climatic conditions adding another layer of constraints. The objecti...

  2. Examples of mortality and reduced annual increments of white fir induced by drought, insects, and disease at different stand densities.

    Treesearch

    P.H. Cochran

    1998-01-01

    Mortality between 1991 and 1995 destroyed a levels-of-growing-stock study installed in four widely separated blocks in the Deschutes and Fremont National Forests in Oregon. Mortality at one block was attributed to root rot (Armillaria ostoyea (Romagnesi) Herink) and western spruce budworm (Choristoneura occidentalis Freeman)....

  3. Biomechanical effects of trees on soil and regolith: beyond treethrow

    Treesearch

    Jonathan D. Phillips; Daniel A. Marion

    2006-01-01

    Forest soils are profoundly influenced by the biomechanical as well as the chemical and biological effects of trees. Studies of biomechanical impacts have focused mainly on uprooting (treethrow), but this study shows that at least two other effects are significant: physical displacement of soil by root growth, and infilling of stump rot pits. Rocky soils in the...

  4. Fusarium species-a British Columbia perspective in forest seedling production

    Treesearch

    Michael Peterson

    2008-01-01

    This review provides a brief biological outline of some species in the genus Fusarium and how these can be implicated as seedborne organisms leading to conifer seed and seedling losses in British Columbia. Fusarium spp. are implicated with pre- and post-emergence damping-off, seedling wilt, late damping-off, root rot, and seedling mortality after outplanting. Current...

  5. Molecular characterization, morphological characteristics, virulence and geographic distribution of Rhizoctonia spp. in Washington State

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia root rot and bare patch, caused by R. solani AG-8 and R. oryzae, are chronic and important yield-limiting diseases of wheat and barley in the Inland Pacific Northwest (PNW) of the USA. Major gaps remain in our understanding of the epidemiology of these diseases, and because multiple Rhiz...

  6. Identification of Rhizopus stolonifer as a Pre-emergence Seedling Disease Pathogen of Beta vulgaris

    USDA-ARS?s Scientific Manuscript database

    Rhizopus stolonifer, a common soil borne fungus in Michigan, is a known root rot pathogen on mature sugar beet. In 2008, Rs was isolated from a sugar beet seed lot showing consistently low germination rates in both the field and lab, and Rs was morphologically identified on malt extract agar. Much o...

  7. Biocontrol Potentials of Antimicrobial Peptide Producing Bacillus Species: Multifaceted Antagonists for the Management of Stem Rot of Carnation Caused by Sclerotinia sclerotiorum

    PubMed Central

    Vinodkumar, S.; Nakkeeran, S.; Renukadevi, P.; Malathi, V. G.

    2017-01-01

    Bacillus species are widely exploited as biocontrol agents because of their efficiency in impeding various plant pathogens with multifaceted approach. In this study, Bacillus species were isolated from rhizosphere of various plants viz., carnations, cotton, turmeric, and bananas in Tamil Nadu state of India. Their potential to control the mycelial growth of Sclerotinia sclerotiorum was assessed in vitro by dual plate and partition plate techniques. B. amyloliquefaciens strain VB7 was much effective in inhibiting mycelial growth (45% inhibition of over control) and sclerotial production (100%). PCR detection of AMP genes revealed that B. amyloliquefaciens (VB7) had a maximum of 10 diverse antibiotic biosynthesis genes, namely, ituD, ipa14, bacA, bacD, bamC, sfP, spaC, spaS, alba, and albF, that resulted in production of the antibiotics iturin, bacilysin, bacillomycin, surfactin, subtilin, and subtilosin. Further, metabolites from B. amyloliquefaciens strains VB2 and VB7, associated with inhibition of S. sclerotiorum, were identified as phenols and fatty acids by gas chromatography mass spectrometry (GC-MS). Delivery of bacterial suspension of the effective strains of Bacillus spp. as root dip was found promising for the management of stem rot of cultivated carnations. Minimal percent disease incidence (4.6%) and maximum plant growth promotion was observed in the plants treated with B. amyloliquefaciens (VB7). PMID:28392780

  8. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    NASA Astrophysics Data System (ADS)

    MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula

    2012-08-01

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth.

  9. Development of dry gram-negative bacteria biocontrol products and small pilot tests against dry rot

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 suppress four important storage potato maladies; dry rot, late blight, pink rot, and sprouting. Studies were designed to identify methods for producing a dried, efficacious biological control product. The strains were evaluated individ...

  10. Formation of dry gram-negative bacteria biocontrol products and small pilot tests against potato dry rot

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 reduce important potato maladies in storage including dry rot, late blight, pink rot, and sprouting. Experiments were conducted to identify methods for producing a dried, efficacious biological control product from one or more of these...

  11. Streptomyces sanglieri which colonised and enhanced the growth of Elaeis guineensis Jacq. seedlings was antagonistic to Ganoderma boninense in in vitro studies.

    PubMed

    Nur Azura, A B; Yusoff, M; Tan, G Y A; Jegadeesh, R; Appleton, D R; Vikineswary, S

    2016-04-01

    Actinomycete strain AUM 00500 was 99.5 % similar to Streptomyces sanglieri NBRC 100784(T) and was evaluated for antagonistic activity towards Ganoderma boninense, the causative fungus of basal stem rot of oil palm. The strain showed strong antifungal activity towards G. boninense in in vitro and SEM analysis showed various modes of inhibition of the fungus. Ethyl acetate extracts of single culture and inhibition zone of cross-plug culture by HPLC indicated that strain AUM 00500 produced two different antibiotics of the glutarimide group namely cycloheximide and actiphenol. In greenhouse trials, oil palm seed treated with spores of S. sanglieri strain AUM 00500 at 10(9) cfu/ml showed significant (P < 0.05) increase in oil palm seedlings growth when compared to the control. Streptomyces sanglieri strain AUM 00500 successfully colonised the epidermal surface of the roots of treated oil palm seedlings and it was recovered from root fragments plated on starch casein agar.

  12. Detection of Oil Palm Root Penetration by Agrobacterium-Mediated Transformed Ganoderma boninense, Expressing Green Fluorescent Protein.

    PubMed

    Govender, Nisha; Wong, Mui-Yun

    2017-04-01

    A highly efficient and reproducible Agrobacterium-mediated transformation protocol for Ganoderma boninense was developed to facilitate observation of the early stage infection of basal stem rot (BSR). The method was proven amenable to different explants (basidiospore, protoplast, and mycelium) of G. boninense. The transformation efficiency was highest (62%) under a treatment combination of protoplast explant and Agrobacterium strain LBA4404, with successful expression of an hyg marker gene and gus-gfp fusion gene under the control of heterologous p416 glyceraldehyde 3-phosphate dehydrogenase promoter. Optimal transformation conditions included a 1:100 Agrobacterium/explant ratio, induction of Agrobacterium virulence genes in the presence of 250 μm acetosyringone, co-cultivation at 22°C for 2 days on nitrocellulose membrane overlaid on an induction medium, and regeneration of transformants on potato glucose agar prepared with 0.6 M sucrose and 20 mM phosphate buffer. Evaluated transformants were able to infect root tissues of oil palm plantlets with needle-like microhyphae during the penetration event. The availability of this model pathogen system for BSR may lead to a better understanding of the pathogenicity factors associated with G. boninense penetration into oil palm roots.

  13. Genome-wide association study of resistance to ear rot by Fusarium verticillioides in a tropical field maize and popcorn core collection

    USDA-ARS?s Scientific Manuscript database

    Fusarium ear rot (caused by Fusarium verticillioides) is one of the most prevalent diseases of maize worldwide, and has one of the greatest negative economic impacts on this cereal crop globally. Fusarium ear rot is a highly complex trait, under polygenic control with minor effects per gene and low ...

  14. The Oil of Matico (Piper aduncum L.) an Alternative for the Control of Cacao Frosty Pod Rot (Moniliophthora roreri) in Peru

    USDA-ARS?s Scientific Manuscript database

    The cacao production in many Latin American countries is significantly reduced by frosty pod rot disease (Moniliophthora roreri) and yield reductions are to the extent of over 90% in many cases. The strategies of control includes: phytosanitation, genetic resistance, chemical and biological control....

  15. Occurrence and impact of the root-rot biocontrol agent Phlebiopsis gigantea on soil fungal communities in Picea abies forests of northern Europe.

    PubMed

    Menkis, Audrius; Burokienė, Daiva; Gaitnieks, Talis; Uotila, Antti; Johannesson, Hanna; Rosling, Anna; Finlay, Roger D; Stenlid, Jan; Vasaitis, Rimvydas

    2012-08-01

    The aim of this study was to assess belowground occurrence, persistence and possible impact of the biocontrol agent Phlebiopsis gigantea (Fr.) Jülich on soil fungi. Sampling of soil and roots of Picea abies (L.) H. Karst. was carried out at 12 P. gigantea-treated and five nontreated control sites representing 1- to 60-month-old clear-cuts and thinned forest sites in Finland and Latvia. The 454-sequencing of ITS rRNA from fine roots, humus and mineral soil resulted in 8626 high-quality fungal sequences. Phlebiopsis gigantea represented 1.3% of all fungal sequences and was found in 14 treated and nontreated sites and in all three substrates. In different substrates, the relative abundance of P. gigantea at stump treatment sites either did not differ significantly or was significantly lower than in nontreated controls. No significant correlation was found between the time elapsed since the tree harvesting and/or application of the biocontrol and abundance of P. gigantea in different substrates. In conclusion, the results demonstrate that P. gigantea occasionally occurs belowground in forest ecosystems but that stump treatment with the biocontrol agent has little or no impact on occurrence and persistence of P. gigantea belowground, and consequently no significant impact on soil fungi. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. [Toxicity of Pythium oligandrum broth to animal and its control effect on rot diseases caused by Penicillium italicum and Penicillium digitatum in orange fruit storage].

    PubMed

    Tan, Yan; Peng, Liangzhi; Yuan, Ling; Wang, Shaobo

    2015-11-04

    In order to develop a safe, nontoxic and efficient biological antistaling agent and to decrease the incidence of rot diseases caused by the Penicillium italicum and Penicillium digitatum in orange fruit storage. the present experiment was carried out with Pythium oligandrum broth (POB) produced by our self-isolated strain (P. oligandrum CQ2010) to study the toxicity to animal. Thereafter, mycelium growth and spore germination of both P. digitatum and P. italicum and control effect of rot disease in orange storage were compared after treated by liquid culture medium (control), POB, prochloraz (PC) , and PC + POB. Gastric lavage with large amount POB did not influence mouse weight. The animals also showed no abnormality in appearance, behaviors and pathology changes in heart, liver, kidney, lung and intestine. POB decreased the hyphal growth by 70.24% - 93.74% and spore germination by 44.91% - 87.82% (24 h after POB addition) of these two pathogenic fungi. Disease incidence of orange fruit following P. italicum inoculation changed in the sequence: CK > POB > PC > PC + POB and the control efficacy behaved otherwise. In commercial simulation storage, the disease incidence of orange fruit caused by P. digitatum and P. italicum was above 50% of the total. The fruit rot rate was 26.40% (CK), 15.03% (POB), 16.61% (PC) and 4.21% (PC + POB). There were no significant differences in fruit quality under different treatments. POB was safe to animal and could decrease rot disease incidence caused by P. italicum and P. digitatum in orange storage whereby producing a positive interaction with prochloraz and controlling rot diseases caused by these two fungi.

  17. Isolation and Identification of Plant Growth Promoting Rhizobacteria from Cucumber Rhizosphere and Their Effect on Plant Growth Promotion and Disease Suppression

    PubMed Central

    Islam, Shaikhul; Akanda, Abdul M.; Prova, Ananya; Islam, Md. T.; Hossain, Md. M.

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) are the rhizosphere bacteria that may be utilized to augment plant growth and suppress plant diseases. The objectives of this study were to identify and characterize PGPR indigenous to cucumber rhizosphere in Bangladesh, and to evaluate their ability to suppress Phytophthora crown rot in cucumber. A total of 66 isolates were isolated, out of which 10 (PPB1, PPB2, PPB3, PPB4, PPB5, PPB8, PPB9, PPB10, PPB11, and PPB12) were selected based on their in vitro plant growth promoting attributes and antagonism of phytopathogens. Phylogenetic analysis of 16S rRNA sequences identified these isolates as new strains of Pseudomonas stutzeri, Bacillus subtilis, Stenotrophomonas maltophilia, and Bacillus amyloliquefaciens. The selected isolates produced high levels (26.78–51.28 μg mL-1) of indole-3-acetic acid, while significant acetylene reduction activities (1.79–4.9 μmole C2H4 mg-1 protein h-1) were observed in eight isolates. Cucumber plants grown from seeds that were treated with these PGPR strains displayed significantly higher levels of germination, seedling vigour, growth, and N content in root and shoot tissue compared to non-treated control plants. All selected isolates were able to successfully colonize the cucumber roots. Moreover, treating cucumber seeds with these isolates significantly suppressed Phytophthora crown rot caused by Phytophthora capsici, and characteristic morphological alterations in P. capsici hyphae that grew toward PGPR colonies were observed. Since these PGPR inoculants exhibited multiple traits beneficial to the host plants, they may be applied in the development of new, safe, and effective seed treatments as an alternative to chemical fungicides. PMID:26869996

  18. Mapping of a Novel Race Specific Resistance Gene to Phytophthora Root Rot of Pepper (Capsicum annuum) Using Bulked Segregant Analysis Combined with Specific Length Amplified Fragment Sequencing Strategy.

    PubMed

    Xu, Xiaomei; Chao, Juan; Cheng, Xueli; Wang, Rui; Sun, Baojuan; Wang, Hengming; Luo, Shaobo; Xu, Xiaowan; Wu, Tingquan; Li, Ying

    2016-01-01

    Phytophthora root rot caused by Phytophthora capsici (P. capsici) is a serious limitation to pepper production in Southern China, with high temperature and humidity. Mapping PRR resistance genes can provide linked DNA markers for breeding PRR resistant varieties by molecular marker-assisted selection (MAS). Two BC1 populations and an F2 population derived from a cross between P. capsici-resistant accession, Criollo de Morelos 334 (CM334) and P. capsici-susceptible accession, New Mexico Capsicum Accession 10399 (NMCA10399) were used to investigate the genetic characteristics of PRR resistance. PRR resistance to isolate Byl4 (race 3) was controlled by a single dominant gene, PhR10, that was mapped to an interval of 16.39Mb at the end of the long arm of chromosome 10. Integration of bulked segregant analysis (BSA) and Specific Length Amplified Fragment sequencing (SLAF-seq) provided an efficient genetic mapping strategy. Ten polymorphic Simple Sequence Repeat (SSR) markers were found within this region and used to screen the genotypes of 636 BC1 plants, delimiting PhR10 to a 2.57 Mb interval between markers P52-11-21 (1.5 cM away) and P52-11-41 (1.1 cM). A total of 163 genes were annotated within this region and 31 were predicted to be associated with disease resistance. PhR10 is a novel race specific gene for PRR, and this paper describes linked SSR markers suitable for marker-assisted selection of PRR resistant varieties, also laying a foundation for cloning the resistance gene.

  19. Phellinus noxius in Guam, Saipan, Yap, Palau, Pohnpei and Kosrae [Chapter IV

    Treesearch

    Phil G. Cannon; Ned B. Klopfenstein; Mee-Sook Kim; Yuko Ota; Norio Sahashi; Robert L. Schlub; Gibson Santos; Rodasio Samuel; Francis Ruegorong; Maxson Nithan; Blair Charley; Erick Waguk; Roland Quitugua; Ashley Lehman; Konrad Engleberger; Victor Guerrero; Sid Cabrerra; Manny Tenorio; Arnold Route

    2014-01-01

    Phellinus noxius has a reputation of being an aggressive root rot pathogen on many forest tree species in parts of Southeast Asia and its symptoms and signs have been well documented. Previous reports from Micronesia indicated that this fungal pathogen is responsible for considerable damage in Saipan and likely present in Kosrae and Pohnpei. In this present...

  20. Semiochemicals provide a deterrent to the black twig borer, Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae)

    Treesearch

    Nick Dudley; John D. Stein; Taylor Jones; Nancy Gillette

    2007-01-01

    The black twig borer (Xylosandrus compactus) (BTB) is a serious pest of agriculture, forestry, and native Hawaiian plants. The BTB is a typical ambrosia beetle that bores into the host and inoculates the galleries with an ambrosia fungus (Fusarium solani) known to cause cankers, root rot, and wilt. The host list for this beetle is...

  1. Metabolome profiling to understand the defense response to sugar beet (Beta vulgaris) to Rhizoctonia solani AG 2-2 IIIB

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia crown and root rot, caused by Rhizoctonia solani Kühn AG 2-2 IIIB, is an important disease of sugar beet (Beta vulgaris L.). The molecular processes that mediate sugar beet resistance to R. solani are largely unknown and identifying the metabolites associated with R. solani infection ma...

  2. Sugar beet activities of the USDA-ARS East Lansing conducted in cooperation with Saginaw Research & Extension Center during 2016

    USDA-ARS?s Scientific Manuscript database

    Evaluation and rating plots were planted at the Saginaw Valley Research & Extension Center (SVREC) in Frankenmuth, MI in 2016 that focused on Cercospora leaf spot (CLS) and Rhizoctonia crown and root rot (CRR) disease performance of a wide range of Beta vulgaris materials. CLS and CRR trials were co...

  3. Winter sowings produce 1-0 sugar pine planting stock in the Sierra Nevada

    Treesearch

    James L. Jenkinson; Arthur H. McCain

    1993-01-01

    Seed source and sowing date effects on first-year seedling growth and Fusarium root and collar rot of sugar pine were analyzed in two consecutive nursery tests at the Pacific Southwest Research Station's Institute of Forest Genetics, near Placerville in the western Sierra Nevada. The experimental design in both tests consisted of four replications of a randomized...

  4. Virulence of Rhizoctonia solani AG2-2 isolates on sugar beet (Beta vulgaris) in response to low temperature

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani AG2-2 is not only the causal agent of Rhizoctonia root and crown rot in sugar beet (Beta vulgaris) but it can also cause a seedling damping-off. Significant losses can occur in all regions where sugar beets are grown. One recommendation for managing seedling losses to R. solani is...

  5. Involvement of phenazines and biosurfactants in biocontrol of Pythium myriotylum root rot on cocoyam by Pseudomonas sp. CMR12A

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas sp. CMR12a was isolated from the rhizosphere of the tropical tuber crop cocoyam and produces both phenazines and cyclic lipopeptide (CLP) biosurfactants. CMR12a was shown to be an efficient biocontrol agent of P. myriotylum on cocoyam. To assess the importance of phenazine and biosurfact...

  6. Sampling tree tops by helicopter...special pole pruner cuts branchlets

    Treesearch

    John F. Wear; Robert G. Winterfeld

    1966-01-01

    A new technique for sampling tops of tall Douglas-fir trees by using a special pole pruner from a helicopter has been developed and field-tested. Thee pole pruner cuts and holds a branchlet. Foliage samples collected will be compared by spectral analysis to show the type of aerial imagery that best differentiates healthy trees from those attacked by root rot.

  7. Diseases of Pacific Coast conifers. Agriculture handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharpf, R.F.

    1993-06-01

    The handbook provides basic information needed to identify the common diseases of Pacific Coast conifers. Hosts, distribution, disease cycles, and identifying characteristics are described for more than 150 diseases, including cankers, diebacks, galls, rusts, needle diseases, root diseases, mistletoes, and rots. Diseases in which abiotic factors are involved are also described. For some groups of diseases, a descriptive key to field identification is included.

  8. Genetic and genomic resources for mapping resistance to Phytophthora cinnamomi in chestnut

    Treesearch

    T. Zhebentyayeva; A. Chandra; A.G. Abbott; M.E. Staton; B.A. Olukolu; F.V. Hebard; L.L. Georgi; S.N. Jeffers; P.H. Sisco; J.B. James; C. Dana Nelson

    2013-01-01

    Root rot (caused by Phytophthora cinnamomi) and chestnut blight (caused by Cryphonectria parasitica) are the two most destructive diseases affecting American chestnut, Castanea dentata. Therefore, breeding for resistance to both pathogens simultaneously is essential before the American chestnut can be restored to its full native range. Using combined genetic and...

  9. Grape Berry Colonization and Biological Control of Botrytis cinerea by Indigenous Vineyard Yeasts

    USDA-ARS?s Scientific Manuscript database

    Botrytis bunch rot, caused by Botrytis cinerea, is the most important disease of grape berries, especially during transportation and storage. Biological control is a potential means of postharvest management of Botrytis bunch rot. The study was aimed at testing the hypothesis that antagonistic yeast...

  10. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea.

    PubMed

    Desgroux, Aurore; Baudais, Valentin N; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2017-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes ( PsLE, PsTFL1 ) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6 , was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches . This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties.

  11. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea

    PubMed Central

    Desgroux, Aurore; Baudais, Valentin N.; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2018-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches. This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties. PMID:29354146

  12. Plant growth and resistance promoted by Streptomyces spp. in tomato.

    PubMed

    Dias, Maila P; Bastos, Matheus S; Xavier, Vanessa B; Cassel, Eduardo; Astarita, Leandro V; Santarém, Eliane R

    2017-09-01

    Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Evaluation of stem rot in 339 Bornean tree species: implications of size, taxonomy, and soil-related variation for aboveground biomass estimates

    NASA Astrophysics Data System (ADS)

    Heineman, K. D.; Russo, S. E.; Baillie, I. C.; Mamit, J. D.; Chai, P. P.-K.; Chai, L.; Hindley, E. W.; Lau, B.-T.; Tan, S.; Ashton, P. S.

    2015-10-01

    Fungal decay of heart wood creates hollows and areas of reduced wood density within the stems of living trees known as stem rot. Although stem rot is acknowledged as a source of error in forest aboveground biomass (AGB) estimates, there are few data sets available to evaluate the controls over stem rot infection and severity in tropical forests. Using legacy and recent data from 3180 drilled, felled, and cored stems in mixed dipterocarp forests in Sarawak, Malaysian Borneo, we quantified the frequency and severity of stem rot in a total of 339 tree species, and related variation in stem rot with tree size, wood density, taxonomy, and species' soil association, as well as edaphic conditions. Predicted stem rot frequency for a 50 cm tree was 53 % of felled, 39 % of drilled, and 28 % of cored stems, demonstrating differences among methods in rot detection ability. The percent stem volume infected by rot, or stem rot severity, ranged widely among trees with stem rot infection (0.1-82.8 %) and averaged 9 % across all trees felled. Tree taxonomy explained the greatest proportion of variance in both stem rot frequency and severity among the predictors evaluated in our models. Stem rot frequency, but not severity, increased sharply with tree diameter, ranging from 13 % in trees 10-30 cm DBH to 54 % in stems ≥ 50 cm DBH across all data sets. The frequency of stem rot increased significantly in soils with low pH and cation concentrations in topsoil, and stem rot was more common in tree species associated with dystrophic sandy soils than with nutrient-rich clays. When scaled to forest stands, the maximum percent of stem biomass lost to stem rot varied significantly with soil properties, and we estimate that stem rot reduces total forest AGB estimates by up to 7 % relative to what would be predicted assuming all stems are composed strictly of intact wood. This study demonstrates not only that stem rot is likely to be a significant source of error in forest AGB estimation, but also that it strongly covaries with tree size, taxonomy, habitat association, and soil resources, underscoring the need to account for tree community composition and edaphic variation in estimating carbon storage in tropical forests.

  14. Cell wall integrity modulates RHO1 activity via the exchange factor ROM2.

    PubMed Central

    Bickle, M; Delley, P A; Schmidt, A; Hall, M N

    1998-01-01

    The essential phosphatidylinositol kinase homologue TOR2 of Saccharomyces cerevisiae controls the actin cytoskeleton by activating a GTPase switch consisting of RHO1 (GTPase), ROM2 (GEF) and SAC7 (GAP). We have identified two mutations, rot1-1 and rot2-1, that suppress the loss of TOR2 and are synthetic-lethal. The wild-type ROT1 and ROT2 genes and a multicopy suppressor, BIG1, were isolated by their ability to rescue the rot1-1 rot2-1 double mutant. ROT2 encodes glucosidase II, and ROT1 and BIG1 encode novel proteins. We present evidence that cell wall defects activate RHO1. First, rot1, rot2, big1, cwh41, gas1 and fks1 mutations all confer cell wall defects and suppress tor2(ts). Second, destabilizing the cell wall by supplementing the growth medium with 0.005% SDS also suppresses a tor2(ts) mutation. Third, disturbing the cell wall with SDS or a rot1, rot2, big1, cwh41, gas1 or fks1 mutation increases GDP/GTP exchange activity toward RHO1. These results suggest that cell wall defects suppress a tor2 mutation by activating RHO1 independently of TOR2, thereby inducing TOR2-independent polarization of the actin cytoskeleton and cell wall synthesis. Activation of RHO1, a subunit of the cell wall synthesis enzyme glucan synthase, by a cell wall alteration would ensure that cell wall synthesis occurs only when and where needed. The mechanism of RHO1 activation by a cell wall alteration is via the exchange factor ROM2 and could be analogous to signalling by integrin receptors in mammalian cells. PMID:9545237

  15. SWEET PEPPER: ASPECTS OF THE BIOLOGY AND CONTROL OF FUSARIUM FRUIT ROT.

    PubMed

    O'Neill, T; Mayne, S

    2015-01-01

    Internal fruit rot of sweet pepper grown in glasshouses has been an increasing problem worldwide since around 2000. In the UK, surveys in 2007 showed infected fruits were present in many crops at levels from 1 to 37%. The disease causes some losses on production nurseries but more importantly also causes rejection by packers and complaints by supermarkets. Losses vary greatly between crops and seasons, and growers are generally unaware a problem may be present until harvest or postharvest. The fruit rot arises through infection of flowers (Yang et al., 2010). Several Fusarium species have been associated with the disease in the UK, notably F. lactis and F. oxysporum. Observations in commercial crops indicate the disease is favoured by high humidity. At present there is no effective method of control. This experimental work aimed to reduce losses to Fusarium internal fruit rot through increased knowledge of factors associated with a high incidence of the disease and use of biofungicides and fungicides to control flower infection.

  16. Incidence of Craesus castaneae (Hymenoptera: Tenthredinidae) on Chestnut Seedlings Planted in the Daniel Boone National Forest, Kentucky

    Treesearch

    Cornelia C. Pinchot; Scott E. Schlarbaum; Arnold M. Saxton; Stacy L. Clark; Callie J. Schweitzer; David R. Smith; Alex. Mangini; Frederick V. Hebard

    2011-01-01

    American chestnut [Castanea dentate (Marshall) Borkhausen, Fagales: Fagaceae] was a dominant forest tree in the eastern forests of the U.S. until it was eliminated as a canopy tree species by 2 exotic pathogens. Ink disease, a root rot caused by Phytophthora cinnamomi Rands (Pythiales: Pythiaceae), began to destroy chestnut populations on bottomland and poorly-drained...

  17. Development of a rapid and simple Agrobacterium tumefaciens mediated transformation system for the fungal pathogen Heterobasidion annosum

    Treesearch

    Nicklas Samils; Malin Elfstrand; Daniel L. Lindner Czederpiltz; Jan Fahleson; Ake Olson; Christina Dixelius; Jan Stenlid

    2006-01-01

    Heterobasidion annosum causes root and butt-rot in trees and is the most serious forest pathogen in the northern hemisphere. We developed a rapid and simple Agrobacterium-mediated method of gene delivery into H. annosum to be used in functional studies of candidate genes and for visualization of mycelial interactions. Heterobasidion annosum TC 32-1 was cocultivated at...

  18. Low carbon amendment rates during anaerobic soil disinfestation (ASD) at moderate soil temperatures do not decrease viability of Sclerotinia sclerotiorum sclerotia or Fusarium root rot of common bean

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD; also termed biological soil disinfestation) is a non-chemical process which includes 1) soil incorporation of a labile carbon (C) source, 2) mulching with polyethylene film to limit gas exchange, and 3) drip irrigation to saturation of the topsoil or bedded area. ...

  19. Synopsis of present information concerning Poria weirii root rot in Douglas-fir.

    Treesearch

    Thomas W. Childs

    1955-01-01

    We still have much to learn about this common disease. Many of the following statements are based on scanty data, and some of them will undoubtedly have to be modified when more detailed and accurate knowledge becomes available. Until that time, however, even the little that is now known can be useful to forest managers in western Washington and Oregon.

  20. Notice of Release of FC1018, FC1019, FC1020 and FC1022 Multigerm Sugarbeet Germplasms with Multiple Disease Resistance

    USDA-ARS?s Scientific Manuscript database

    FC1018 (PI 658059) has excellent resistance to root-rotting strains (AG-2-2) of Rhizoctonia solani Kühn and carries the Rz1 gene, which confers resistance to some strains of Beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania. FC1018 has shown a moderate tolerance to cercospora ...

  1. Postharvest application of organic and inorganic salts to control potato (Solanum tuberosum L.) storage soft rot: plant tissue-salt physicochemical interactions.

    PubMed

    Yaganza, E S; Tweddell, R J; Arul, J

    2014-09-24

    Soft rot caused by Pectobacterium sp. is a devastating disease affecting stored potato tubers, and there is a lack of effective means of controlling this disease. In this study, 21 organic and inorganic salts were tested for their ability to control soft rot in potato tubers. In the preventive treatment, significant control of soft rot was observed with AlCl3 (≥66%) and Na2S2O3 (≥57%) and to a lesser extent with Al lactate and Na benzoate (≥34%) and K sorbate and Na propionate (≥27%). However, only a moderate control was achieved by curative treatment with AlCl3 and Na2S2O3 (42%) and sodium benzoate (≥33%). Overall, the in vitro inhibitory activity of salts was attenuated in the presence of plant tissue (in vivo) to different degrees. The inhibitory action of the salts in the preventive treatment, whether effective or otherwise, showed an inverse linear relationship with water ionization capacity (pK') of the salt ions, whereas in the curative treatment, only the effective salts showed this inverse linear relationship. Salt-plant tissue interactions appear to play a central role in the attenuated inhibitory activity of salts in potato tuber through reduction in the availability of the inhibitory ions for salt-bacteria interactions. This study demonstrates that AlCl3, Na2S2O3, and Na benzoate have potential in controlling potato tuber soft rot and provides a general basis for understanding of specific salt-tissue interactions.

  2. Influence of tree size, taxonomy, and edaphic conditions on heart rot in mixed-dipterocarp Bornean rainforests: implications for aboveground biomass estimates

    NASA Astrophysics Data System (ADS)

    Heineman, K. D.; Russo, S. E.; Baillie, I. C.; Mamit, J. D.; Chai, P. P.-K.; Chai, L.; Hindley, E. W.; Lau, B.-T.; Tan, S.; Ashton, P. S.

    2015-05-01

    Fungal decay of heartwood creates hollows and areas of reduced wood density within the stems of living trees known as heart rot. Although heart rot is acknowledged as a source of error in forest aboveground biomass estimates, there are few datasets available to evaluate the environmental controls over heart rot infection and severity in tropical forests. Using legacy and recent data from drilled, felled, and cored stems in mixed dipterocarp forests in Sarawak, Malaysian Borneo, we quantified the frequency and severity of heart rot, and used generalized linear mixed effect models to characterize the association of heart rot with tree size, wood density, taxonomy, and edaphic conditions. Heart rot was detected in 55% of felled stems > 30 cm DBH, while the detection frequency was lower for stems of the same size evaluated by non-destructive drilling (45%) and coring (23%) methods. Heart rot severity, defined as the percent stem volume lost in infected stems, ranged widely from 0.1-82.8%. Tree taxonomy explained the greatest proportion of variance in heart rot frequency and severity among the fixed and random effects evaluated in our models. Heart rot frequency, but not severity, increased sharply with tree diameter, ranging from 56% infection across all datasets in stems > 50 cm DBH to 11% in trees 10-30 cm DBH. The frequency and severity of heart rot increased significantly in soils with low pH and cation concentrations in topsoil, and heart rot was more common in tree species associated with dystrophic sandy soils than with nutrient-rich clays. When scaled to forest stands, the percent of stem biomass lost to heart rot varied significantly with soil properties, and we estimate that 7% of the forest biomass is in some stage of heart rot decay. This study demonstrates not only that heart rot is a significant source of error in forest carbon estimates, but also that it strongly covaries with soil resources, underscoring the need to account for edaphic variation in estimating carbon storage in tropical forests.

  3. Sweets for the foe - effects of nonstructural carbohydrates on the susceptibility of Quercus robur against Phytophthora quercina.

    PubMed

    Angay, Oguzhan; Fleischmann, Frank; Recht, Sabine; Herrmann, Sylvie; Matyssek, Rainer; Oßwald, Wolfgang; Buscot, François; Grams, Thorsten E E

    2014-09-01

    The root-rot pathogen Phytophthora quercina is a key determinant of oak decline in Europe. The susceptibility of pedunculate oak (Quercus robur) to this pathogen has been hypothesized to depend on the carbon availability in roots as an essential resource for defense. Microcuttings of Q. robur undergo an alternating rhythm of root and shoot growth. Inoculation of mycorrhizal (Piloderma croceum) and nonmycorrhizal oak roots with P. quercina was performed during both growth phases, that is, root flush (RF) and shoot flush (SF). Photosynthetic and morphological responses as well as concentrations of nonstructural carbohydrates (NSC) were analyzed. Infection success was quantified by the presence of pathogen DNA in roots. Concentrations of NSC in roots depended on the alternating root/shoot growth rhythm, being high and low during RF and SF, respectively. Infection success was high during RF and low during SF, resulting in a significantly positive correlation between pathogen DNA and NSC concentration in roots, contrary to the hypothesis. The alternating growth of roots and shoots plays a crucial role for the susceptibility of lateral roots to the pathogen. NSC availability in oak roots has to be considered as a benchmark for susceptibility rather than resistance against P. quercina. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Effect of anaerobic soil disinfestation and mustard seed meal for control of charcoal rot in California strawberries

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD) and mustard seed meal (MSM) appear to be promising non-fumigant alternatives for soilborne disease control. However studies of their effect on charcoal rot caused by Macrophomina phaseolina in California strawberry are limited. ASD with rice bran 20 t ha-1 (ASD-RB...

  5. Selection for Reduced Fusarium Ear Rot and Fumonisin Content in Advanced Backcross Maize Lines and Their Topcross Hybrids

    USDA-ARS?s Scientific Manuscript database

    Backcross breeding is an important method to improve elite cultivars for traits controlled by a small number of loci but has been used less frequently to improve quantitatively controlled traits. Resistances to Fusarium ear rot and contamination by the associated mycotoxin fumonisin in maize are qua...

  6. Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice

    PubMed Central

    Tatulli, Giuseppe; Mitro, Nico; Cannata, Stefano M.; Audano, Matteo; Caruso, Donatella; D’Arcangelo, Giovanna; Lettieri-Barbato, Daniele; Aquilano, Katia

    2018-01-01

    Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson’s disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition. PMID:29387000

  7. Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice.

    PubMed

    Tatulli, Giuseppe; Mitro, Nico; Cannata, Stefano M; Audano, Matteo; Caruso, Donatella; D'Arcangelo, Giovanna; Lettieri-Barbato, Daniele; Aquilano, Katia

    2018-01-01

    Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson's disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.

  8. Control of bull’s-eye rot of apple caused by Neofabraea perennans and Neofabraea kienholzii using pre- and postharvest fungicides

    USDA-ARS?s Scientific Manuscript database

    Bull’s-eye rot is a major postharvest disease of apple caused by several fungi belonging to the Neofabraea and Phlyctema genera. Chemical control of these fungi is a crucial component of disease management for apples that are conventionally grown. The efficacy of several pre-harvest and postharvest ...

  9. A preliminary bioclimatic approach to predicting potential distribution of Phellinus noxious and geographical areas at risk from invasion

    Treesearch

    Ned B. Klopfenstein; Eric W. I. Pitman; John W. Hanna; Phil G. Cannon; Jane E. Stewart; Norio Sahashi; Yuko Ota; Tsutomu Hattori; Mitsuteru Akiba; Louise Shuey; Robert L. Schlub; Fred Brooks; Ndeme Atibalentja; Alvin M. C. Tang; Regent Y. C. Lam; Mike W. K. Leung; L. M. Chu; H. S. Kwan; Mohd Farid bin Ahmad; Su See Lee; Hsin-Han Lee; Jyh-Nong Tsai; Yu-Ching Huang; Chia-Lin Chung; Ruey-Fen Liou; Mee-Sook Kim

    2016-01-01

    Phellinus noxius, the cause of brown root-rot disease, is an invasive pathogen that was first described by Corner in Singapore (Corner 1932). It has a wide host range of primarily woody plants representing over 200 species from diverse families (Ann et al. 2002). This pathogen is also widespread, and has been reported to occur in many tropical/subtropical...

  10. Remember redcedar! An overlooked species reveals its potential

    Treesearch

    Joan O' Callaghan; Leslie Brodie; Constance Harrington; Peter Gould; Warren Devine

    2012-01-01

    People have long valued mature western redcedar for its strong, lightweight wood that is rot-resistant.The species has cultural importance for Northwest tribes who use the tree’s bark and roots as well as the wood. Redcedar is very shade-tolerant and is often found in the understory and midstory of Pacific Northwest forests. It is also very adaptable and can grow on a...

  11. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat.

    PubMed

    Zhu, Xiuliang; Li, Zhao; Xu, Huijun; Zhou, Miaoping; Du, Lipu; Zhang, Zengyan

    2012-08-01

    The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.

  12. Effects of tillage technologies and application of biopreparations on micromycetes in the rhizosphere and rhizoplane of spring wheat

    NASA Astrophysics Data System (ADS)

    Shirokikh, I. G.; Kozlova, L. M.; Shirokikh, A. A.; Popov, F. A.; Tovstik, E. V.

    2017-07-01

    The population density and structure of complexes of soil microscopic fungi in the rhizosphere and rhizoplane of spring wheat ( Triticum aestivum L.), plant damage by root rot and leaf diseases, and crop yield were determined in a stationary field experiment on a silty loamy soddy-podzolic soil (Albic Retisol (Loamic, Aric)) in dependence on the soil tillage technique: (a) moldboard plowing to 20-22 cm and (b) non-inversive tillage to 14-16 cm. The results were treated with the two-way ANOVA method. It was shown that the number of fungal propagules in the rhizosphere and rhizoplane of plants in the variant with non-inversive tillage was significantly smaller than that in the variant with plowing. Minimization of the impact on the soil during five years led to insignificant changes in the structure of micromycete complexes in the rhizosphere of wheat. The damage of the plants with root rot and leaf diseases upon non-inversive tillage did not increase in comparison with that upon plowing. Wheat yield in the variant with non-inversive tillage was insignificantly lower than that in the variant with moldboard plowing. The application of biopreparations based on the Streptomyces hygroscopicus A4 and Pseudomonas aureofaciens BS 1393 resulted in a significant decrease of plant damage with leaf rust.

  13. Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion.

    PubMed

    Wu, Mingquan; Yang, Chenghai; Song, Xiaoyu; Hoffmann, Wesley Clint; Huang, Wenjiang; Niu, Zheng; Wang, Changyao; Li, Wang; Yu, Bo

    2018-01-31

    To better understand the progression of cotton root rot within the season, time series monitoring is required. In this study, an improved spatial and temporal data fusion approach (ISTDFA) was employed to combine 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Different Vegetation Index (NDVI) and 10-m Sentinetl-2 NDVI data to generate a synthetic Sentinel-2 NDVI time series for monitoring this disease. Then, the phenology of healthy cotton and infected cotton was modeled using a logistic model. Finally, several phenology parameters, including the onset day of greenness minimum (OGM), growing season length (GLS), onset of greenness increase (OGI), max NDVI value, and integral area of the phenology curve, were calculated. The results showed that ISTDFA could be used to combine time series MODIS and Sentinel-2 NDVI data with a correlation coefficient of 0.893. The logistic model could describe the phenology curves with R-squared values from 0.791 to 0.969. Moreover, the phenology curve of infected cotton showed a significant difference from that of healthy cotton. The max NDVI value, OGM, GSL and the integral area of the phenology curve for infected cotton were reduced by 0.045, 30 days, 22 days, and 18.54%, respectively, compared with those for healthy cotton.

  14. Signum, a new fungicide with interesting properties in resistance management of fungal diseases in strawberries.

    PubMed

    Hauke, K; Creemers, P; Brugmans, W; Van Laer, S

    2004-01-01

    Signum, a new fungicide developed by BASF, was applied during 6 successive years against fungal diseases in strawberries. The product is formulated as a water dispersible granule, containing 6.7 % pyraclostrobin and 26.7 % boscalid. Pyraclostrobin is similar in chemistry to other strobilurin fungicides like kresoxim-methyl and trifloxystrobin, registered for fruit disease control. Boscalid belongs to the class of carboxyanilides. Both components in the premix formulation combine two different biochemical modes of action in the fungal cell respiration. Therefore, this co-formulation gives a broad-spectrum activity and also a reduced resistance risk for different target pathogens. Botrytis cinerea is the most important disease on strawberry-fruits and thus the control of fruit rot is mainly focused on this fungus. In average over 6 years, Signum has not only given a very good control against Botrytis fruit rot, but it has also shown a high performance in the control of Colletotrichum. Besides, Signum provides good control of powdery mildew (Podosphaera aphanis) and limits the shift to other fruit rots like leather rot (Phytophthora cactorum and leak (Rhizopus, Mucor). The availability of several categories of fungicide families with a different mode of action gives opportunities in alternating different fungicides and is the best guarantee for a sustainable control of fruit rot in all kinds of strawberry production methods. Signum should be integrated in an overall disease management program. Trials, in which the applications of Signum were timed on disease forecasting, based on environmental factors favorable for Botrytis development, were very promising. This tool can also help in establishing the IPM-concept in the production of strawberries.

  15. Effect of essential oil of Satureja hortensis against Bacillus pumilus, which cause of soft rot on some plants

    NASA Astrophysics Data System (ADS)

    Dadaşoǧlu, Fatih

    2017-04-01

    In this study, it is aimmed to be determined the antimicrobial effects of the essential oil in vitro conditions, extracted from wild forms of plant which is known as Satureja hortensis around the world and grows naturally at Erzurum province of Turkey against Bacillus pumilus isolates, which are the agent of Soft Rot for some fruits and vegetables. For this purpose, 18 isolates of B. pumilus which have been determined as the agent of Soft Rot in previous studies performed in plants such as potatos, onions, strawberries, melons and watermelons. As the positive control, Streptomycin antibiotics sold as ready produce were used. According to the obtained results, the essential oil have the antibactericidal effect of 19-29 mm against 18 isolates of B. pumilus. It has been observed that the antibiotics used as the positive control has the antibacterial effect of 16-22 mm. In conclusion, the essential oil has the lethal effect against 18 B. pumilus isolates which are agents of Soft Rot. It is assesed that these essential oil extracted from Satureja hortensis can be used against these Soft Rot pathogens.

  16. The use of wood for wind turbine blade construction

    NASA Technical Reports Server (NTRS)

    Gougeon, M.; Zuteck, M.

    1979-01-01

    The interrelationships between moisture and wood, conditions for dry rot spore activity, the protection of wood fibers from moisture, wood resin composites, wood laminating, quality control, and the mechanical properties of wood are discussed. The laminated veneer and the bonded sawn stock fabrication techniques, used in the construction of a turbine blade with a monocoque 'D' section forming the leading edge and a built up trailing edge section, are described. A 20 foot root end sample complete with 24 bonded-in studs was successfully subjected to large onetime loads in both the flatwise and edgewise directions, and to fatigue tests. Results indicate that wood is both a viable and advantageous material for use in wind turbine blades. The basic material is reasonably priced, domestically available, ecologically sound, and easily fabricated with low energy consumption.

  17. Transcriptome responses of an ungrafted Phytophthora root rot tolerant avocado (Persea americana) rootstock to flooding and Phytophthora cinnamomi.

    PubMed

    Reeksting, B J; Olivier, N A; van den Berg, N

    2016-09-22

    Avocado (Persea americana Mill.) is a commercially important fruit crop worldwide. A major limitation to production is the oomycete Phytophthora cinnamomi, which causes root rot leading to branch-dieback and tree death. The decline of orchards infected with P. cinnamomi occurs much faster when exposed to flooding, even if flooding is only transient. Flooding is a multifactorial stress compromised of several individual stresses, making breeding and selection for tolerant varieties challenging. With more plantations occurring in marginal areas, with imperfect irrigation and drainage, understanding the response of avocado to these stresses will be important for the industry. Maintenance of energy production was found to be central in the response to flooding, as seen by up-regulation of transcripts related to glycolysis and induction of transcripts related to ethanolic fermentation. Energy-intensive processes were generally down-regulated, as evidenced by repression of transcripts related to processes such as secondary cell-wall biosynthesis as well as defence-related transcripts. Aquaporins were found to be down-regulated in avocado roots exposed to flooding, indicating reduced water-uptake under these conditions. The transcriptomic response of avocado to flooding and P. cinnamomi was investigated utilizing microarray analysis. Differences in the transcriptome caused by the presence of the pathogen were minor compared to transcriptomic perturbations caused by flooding. The transcriptomic response of avocado to flooding reveals a response to flooding that is conserved in several species. This data could provide key information that could be used to improve selection of stress tolerant rootstocks in the avocado industry.

  18. Fungal biodegradation of lignopolystyrene graft copolymers. [Pleurotus ostreatus; Phanerochaete chrysosporium; Trametes versicolor; Gloeophyllum trabeum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milstein, O.; Gersonde, R.; Huttermann, A.

    1992-10-01

    White rot basidiomycetes were able to biodegrade styrene (1-phenylethene) graft copolymers of lignin containing different proportions of lignin and polystyrene (poly(1-phenylethylene)). The biodegradation tests were run on lignin-styrene copolymerization products which contained 10.3, 32.2, and 50.4{percent} (wt/wt) lignin. The polymer samples were incubated with the white rot fungi Pleurotus ostreatus, Phanerochaete chrysosporium, and Trametes versicolor and the brown rot fungus Gloeophyllum trabeum. White rot fungi degraded the plastic samples at a rate which increased with increasing lignin content in the copolymer sample. Both polystyrene and lignin components of the copolymer were readily degraded. Polystyrene pellets were not degradable in thesemore » tests. Degradation was verified for both incubated and control samples by weight loss, quantitative UV spectrophotometric analysis of both lignin and styrene residues, scanning electron microscopy of the plastic surface, and the presence of enzymes active in degradation during incubation. Brown rot fungus did not affect any of the plastics. White rot fungi produced and secreted oxidative enzymes associated with lignin degradation in liquid media during incubation with lignin-polystyrene copolymer.« less

  19. STUDIES IN THE STORAGE OF CHESTNUTS TREATED WITH GAMMA RADIATION. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, T.; Ogata, K.

    1961-03-01

    Two varieties of chestnuts were irradiated with relatively high doses of gamma rays, purporting the extension of storage life of the nuts through the inhibition of rooting and sprouting. The materials were treated with the doses of 1.5, 3, and 6 x 10>s4/sup / 6 weeks after harvest and then stored in moist sawdust at 20 deg C. An almost complete inhibiting effect was obtained with all of the doses used regardless of varieties. The contents of ascorbic acid and of reducing sugar were not influenced directly by any dose of irradiation, but the content of non-reducing sugar was affectedmore » to some extent. A sharp increase of respiration was found both in the whole nuts and in the cotyledon part of the nuts immediately after irradiation. In the embryonic axis part of the irradiated nuts, the respiration did not show any change for a considerable period after irradiation; it became fairly lower than the control from the time when some control nuts initiated rooting, and the discoloration of this part took place about the same time. There was a rapid increase of rot incidence when the irradiated nuts have been stored for 4 months at 20 deg C. (auth)« less

  20. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.

    PubMed

    Fan, Haiyan; Ru, Jinjiang; Zhang, Yuanyuan; Wang, Qi; Li, Yan

    2017-06-01

    Apple ring rot, caused by Botryosphaeria dothidea, is a serious apple disease in China. Bacillus subtilis 9407 was isolated from healthy apples and showed strong antifungal activity against B. dothidea. To identify the primary antifungal compound of B. subtilis 9407 and determine its role in controlling apple ring rot, a transposon mutant library was constructed using TnYLB-1, and a mutant completely defective in antifungal activity was obtained. The gene inactivated in the antifungal activity mutant had 98.5% similarity to ppsB in B. subtilis subsp. subtilis str. 168, which encodes one of the five synthetases responsible for synthesizing fengycin. A markerless ppsB deletion mutant was constructed. Compared with the wild-type strain, lipopeptide crude extracts from ΔppsB showed almost no inhibition of B. dothidea mycelial growth. Furthermore, fengycin-like lipopeptides (retention factor 0.1-0.2) that exhibited antifungal activity against B. dothidea were observed in the wild-type strain by thin-layer chromatography (TLC)-bioautography analysis, but not in ΔppsB. Semipreparative reverse-phase high performance liquid chromatography (RP-HPLC) detection revealed that ΔppsB lost the ability to synthesize fengycin. These results suggest that ppsB is responsible for synthesizing fengycin and that fengycin is the major antifungal compound produced by B. subtilis 9407 against B. dothidea. Moreover, a biocontrol assay showed that the control efficacy of ΔppsB was reduced by half compared with the wild-type strain, indicating that fengycin plays a major role in controlling apple ring rot disease. This is the first report on the use of a B. subtilis strain as a potential biological control agent to control apple ring rot disease by the production of fengycin. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens.

    PubMed

    Nayaka, Siddaiah Chandra; Shankar, Arakere C Udaya; Reddy, Munagala S; Niranjana, Siddapura R; Prakash, Harishchandra S; Shetty, Hunthrike S; Mortensen, Carmen N

    2009-07-01

    Maize is one of the staple food crops grown in India. Fusarium verticillioides (Sacc.) Nirenberg is the most important fungal pathogen of maize, associated with diseases such as ear rot and kernel rot. Apart from the disease, it is capable of producing fumonisins, which have elicited considerable attention over the past decade owing to their association with animal disease syndromes. Hence, the present study was conducted to evaluate ecofriendly approaches by using a maize rhizosphere isolate of Pseudomonas fluorescens (Trev.) Mig. and its formulation to control ear rot disease and fumonisin accumulation, and also to study the capacity to promote growth and yield of maize. In vitro assays were conducted to test the efficacy of P. fluorescens as a seed treatment on seed germination, seedling vigour and also the incidence of F. verticillioides in different maize cultivars. The field trials included both seed treatment and foliar spray. For all the experiments, P. fluorescens was formulated using corn starch, wheat bran and talc powder. In each case there were three different treatments of P. fluorescens, a non-treated control and chemical control. Pure culture and the formulations, in comparison with the control, increased plant growth and vigour as measured by seed germination, seedling vigour, plant height, 1000 seed weight and yield. P. fluorescens pure culture used as seed treatment and as spray treatment enhanced the growth parameters and reduced the incidence of F. verticillioides and the level of fumonisins to a maximum extent compared with the other treatments. The study demonstrates the potential role of P. fluorescens and its formulations in ear rot disease management. The biocontrol potential of this isolate is more suited for fumonisin reduction in maize kernels intended for human and animal feed. (c) 2009 Society of Chemical Industry.

  2. Carvacrol and eugenol effectively inhibit Rhizopus stolonifer and control postharvest soft rot decay in peaches.

    PubMed

    Zhou, D; Wang, Z; Li, M; Xing, M; Xian, T; Tu, K

    2018-01-01

    This study aimed to investigate the antifungal mechanism of carvacrol and eugenol to inhibit Rhizopus stolonifer and the control of postharvest soft rot decay in peaches. To investigate the antifungal mechanism, the effects of carvacrol and eugenol on the mycelium growth, leakages of cytoplasmic contents, mycelium morphology, cell membrane and membrane composition of R. stolonifer were studied. Carvacrol and eugenol both exhibited dose-dependent antifungal activity against R. stolonifer, carvacrol at a concentration of 2 μl per plant and eugenol at a concentration of 4 μl per plant inhibited fungal growth completely. The two essential oils (EOs) increased cell membrane penetrability and caused the leakage of cytoplasm, nucleic acid and protein content. The observation using scanning electron microscopy and fluorescent microscopy showed modification of the hyphal morphology and breakage of the cell plasma membrane. Decreased ergosterol contents confirmed that the two EOs could destroy the membrane of R. stolonifer. For the in vivo test, the inhibition of soft rot disease and the induction of defence-related enzymes were investigated. Carvacrol and eugenol significantly reduced the incidence and severity of soft rot decay in inoculated peaches. The best treatments for controlling soft rot decay were obtained at 0·5 μl l -1 for carvacrol and 1 μl l -1 for eugenol. The activities of defence-related enzymes in peaches were also enhanced by fumigation with two EOs. This study showed that carvacrol and eugenol could effectively inhibit the growth of R. stolonifer in vitro and successfully control the incidence of soft rot decay in honey peaches. The above findings may be the main antifungal mechanism of carvacrol and eugenol on R. stolonifer. Furthermore, carvacrol and eugenol are helpful for their commercial application on the preservation of fresh fruit. © 2017 The Society for Applied Microbiology.

  3. Molecular variability among isolates of Fusarium oxysporum associated with root rot disease of Agave tequilana.

    PubMed

    Vega-Ramos, Karla L; Uvalle-Bueno, J Xavier; Gómez-Leyva, Juan F

    2013-04-01

    In this study, 115 isolates of Fusarium oxysporum from roots of Agave tequilana Weber cv azul plants and soil in commercial plantations in western Mexico were characterized using morphological and molecular methods. Genetic analyses of monosporic isolates included restriction enzyme analysis of rDNA (ARDRA) using HaeIII and HinfI, and genetic diversity was determined using Box-PCR molecular markers. Box-PCR analysis generated 14 groups. The groups correlated highly with the geographic location of the isolate and sample type. These results demonstrate the usefulness of ARDRA and Box-PCR techniques in the molecular characterization of the Fusarium genus for the discrimination of pathogenic isolates.

  4. Temporal Occurrence and Niche Preferences of Phytophthora spp. Causing Brown Rot of Citrus in the Central Valley of California.

    PubMed

    Hao, Wei; Miles, Timothy D; Martin, Frank N; Browne, Gregory T; Förster, Helga; Adaskaveg, James E

    2018-03-01

    Brown rot of citrus fruit is caused by several species of Phytophthora and is currently of serious concern for the California citrus industry. Two species, Phytophthora syringae and P. hibernalis, are quarantine pathogens in China, a major export market for California citrus. To maintain trade and estimate the risk of exporting a quarantine pathogen, the distribution and frequency of Phytophthora spp. causing brown rot of orange in major growing areas of California was investigated. Symptomatic fruit were collected from navel (winter to late spring) and Valencia (late spring to summer) orange orchards from 2013 to 2015. Species identification of isolates was based on morphological characteristics, random amplified polymorphic DNA banding patterns, and sequencing of the internal transcribed spacer and the partial cox2/spacer/cox1 regions from axenic cultures, or directly on DNA from fruit tissue using a multiplex TaqMan quantitative polymerase chain reaction assay. In winter samplings, the incidence of P. syringae based on the number of fruit with Phytophthora spp. detection ranged from 73.6 to 96.1% for the two counties surveyed. The remaining isolates were identified as P. citrophthora. In late spring or summer, only P. citrophthora was recovered. P. hibernalis and P. nicotianae were not detected in any fruit with brown rot symptoms. These results indicate that P. syringae is currently an important brown rot pathogen of citrus fruit in California during the cooler seasons of the year. In winter 2016 and 2017, P. syringae was recovered by pear baiting at a high incidence from leaf litter and from a small number of rhizosphere soil or root samples but not from living leaves on the tree. In contrast, P. citrophthora was rarely found in leaf litter but was commonly detected in the rhizosphere. Thus, leaf litter is a major inoculum source for P. syringae and this species occupies a distinct ecological niche.

  5. Resident bacteria of plums and their potential for controlling brown rot after harvest

    USDA-ARS?s Scientific Manuscript database

    Fruit microflora has been the richest source of antagonists against fruit decays and the active ingredient in all currently available commercial biocontrol products. A comprehensive evaluation of plum bacteria for biocontrol activity against Monilinia fructicola, causing brown rot of stone fruit, w...

  6. A Fabry-Pérot electro-optic sensing system using a drive-current-tuned wavelength laser diode.

    PubMed

    Kuo, Wen-Kai; Wu, Pei-Yu; Lee, Chang-Ching

    2010-05-01

    A Fabry-Pérot enhanced electro-optic sensing system that utilizes a drive-current-tuned wavelength laser diode is presented. An electro-optic prober made of LiNbO(3) crystal with an asymmetric Fabry-Pérot cavity is used in this system. To lock the wavelength of the laser diode at resonant condition, a closed-loop power control scheme is proposed. Experiment results show that the system can keep the electro-optic prober at high sensitivity for a long working time when the closed-loop control function is on. If this function is off, the sensitivity may be fluctuated and only one-third of the best level in the worst case.

  7. Roots of symptom-free leguminous cover crop and living mulch species harbor diverse Fusarium communities that show highly variable aggressiveness on pea (Pisum sativum)

    PubMed Central

    Baćanović-Šišić, Jelena; Karlovsky, Petr; Wittwer, Raphaël; Walder, Florian; Campiglia, Enio; Radicetti, Emanuele; Friberg, Hanna; Baresel, Jörg Peter; Finckh, Maria R.

    2018-01-01

    Leguminous cover crop and living mulch species show not only great potential for providing multiple beneficial services to agro-ecosystems, but may also present pathological risks for other crops in rotations through shared pathogens, especially those of the genus Fusarium. Disease severity on roots of subterranean clover, white clover, winter and summer vetch grown as cover crop and living mulch species across five European sites as well as the frequency, distribution and aggressiveness to pea of Fusarium spp. recovered from the roots were assessed in 2013 and 2014. Disease symptoms were very low at all sites. Nevertheless, out of 1480 asymptomatic roots, 670 isolates of 14 Fusarium spp. were recovered. The most frequently isolated species in both years from all hosts were F. oxysporum and F. avenaceum accounting for 69% of total isolation percentage. They were common at the Swiss, Italian and German sites, whereas at the Swedish site F. oxysporum dominated and F. avenaceum occurred only rarely. The agressiveness and effect on pea biomass were tested in greenhouse assays for 72 isolates of six Fusarium species. Isolates of F. avenaceum caused severe root rot symptoms with mean severity index (DI) of 82 and 74% mean biomass reduction compared to the non-inoculated control. Fusarium oxysporum and F. solani isolates were higly variable in agressiveness and their impact on pea biomass. DI varied between 15 and 50 and biomass changes relative to the non-inoculated control -40% to +10%. Isolates of F. tricinctum, F. acuminatum and F. equiseti were non to weakly agressive often enhancing pea biomass. This study shows that some of the major pea pathogens are characterized by high ecological plasticity and have the ability to endophytically colonize the hosts studied that thus may serve as inoculum reservoir for susceptible main legume grain crops such as pea. PMID:29444142

  8. Genetic Architecture of Charcoal Rot (Macrophomina phaseolina) Resistance in Soybean Revealed Using a Diverse Panel

    USDA-ARS?s Scientific Manuscript database

    Charcoal rot disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methodologies available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient ...

  9. Antibacterial activity of plant defensins against alfalfa crown rot pathogens

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa) is the fourth most widely grown crop in the United States. Alfalfa crown rot is a disease complex that severely decreases alfalfa stand density and productivity in all alfalfa-producing areas. Currently, there are no viable methods of disease control. Plant defensins are sm...

  10. Growth kinetics and efficacy as parameters for ranking and selecting biocontrol agents that reduce pink rot in stored potatoes

    USDA-ARS?s Scientific Manuscript database

    Increased production of organic agricultural products and the relative ineffectiveness of traditional control measures support development of new biocontrol technologies for use against pink rot infections in storage. The microbiota of 84 different agricultural soils was individually transferred to...

  11. Culturable bacteria from plum fruit surfaces and their potential for controlling brown rot after harvest

    USDA-ARS?s Scientific Manuscript database

    Fruit microflora has been the richest source of antagonists against fruit decays and the active ingredient in all currently available commercial biocontrol products. A comprehensive evaluation of plum bacteria for biocontrol activity against Monilinia fructicola, causing brown rot of stone fruit, w...

  12. Trichoderma rot on ‘Fallglo’ Tangerine Fruit

    USDA-ARS?s Scientific Manuscript database

    In September 2009, Trichoderma rot symptoms were observed on ‘Fallglo’ fruit after 7 weeks of storage. Fourteen days prior to harvest, fruit were treated by dipping into one of four different fungicide solutions. Control fruit were dipped in tap water. After harvest, the fruit were degreening with 5...

  13. The influence of formulation on Trichoderma biological activity and frosty pod rot disease management in Theobroma cacao

    USDA-ARS?s Scientific Manuscript database

    Frosty pod rot (FPR), caused by Moniliophthora roreri is responsible for significant losses in Theobroma cacao. Due to the limited options for FPR management, biological control methods using Trichoderma are being studied. Combinations of three formulations and two Trichoderma isolates were studied ...

  14. Trichoderma rot on ‘Fallglo’ Tangerine Fruit

    USDA-ARS?s Scientific Manuscript database

    In September 2009, brown rot symptoms were observed on ‘Fallglo’ fruit after 7 weeks of storage. Fourteen days prior to harvest, fruit were treated by dipping into one of four different fungicide solutions. Control fruit were dipped in tap water. After harvest, the fruit were degreened with 5 ppm et...

  15. Pathogenicity of some Rhizoctonia solaniz isolates associated with root/collar rots on the cultivars of bean in greenhouse.

    PubMed

    Bohlooli, A; Okhovvat, S M; Javan-Nikkhah, M

    2006-01-01

    One hundred and eighteen isolates of Rhizoctonia solani were gathered from infected roots and hypocotyls of bean (Phaseolus vulgaris L.) grown in the fields of Tehran Province, Iran. Two isolates of the collected samples belonged to binucleate and 81 isolates to multinucleate of R. solani. The multinucleate isolates showed different anastomosis groups as AG-4 (subg. AG-4 HGI, AG-4HGII), AG-6 and AG-2. In greenhouse, pathogenicity tests carried out on bean cv. Naz in randomized design with 4 replications and each replication (pots) with 5 seeds of bean. Infection was done with seeds of wheat which were infected to the fungus with pasteurized soil. Results showed that the highest disease severity was caused by AG-4 (Rs21) isolates, whereas AG-4 (Rs74) isolates were weakly pathogenic with 90% and 21% infection, respectively. In this test the major pathogenic isolates belonged to AG-4 and they caused seed rot and damping-off of bean and AG-6 isolates were non-pathogenic. Five isolates of the fungus with major pathogenicity (Rs7, Rs18, Rs21, Rs62 and Rs71) selected and used for the reaction with different cultivars of bean. In this test, the cultivars and lines of bean (Pinto, red, white, green) studied in factorial experiment as randomized block design with 4 replications (pots). Results showed that none of the cultivars was completely resistant, however green bean cv. Sanry and pinto cv. Shad with number 4.8 disease severities had the highest susceptibility to seed rot and damping-off and red bean cv. Goli with 2.58 had the lowest susceptibility to the infection. Reaction of the cultivars and lines to the isolates of R. solani was significantly different at 1% level. Isolates of the fungus, Rs7, Rs21 with 84%, 90% pathogenicity was more virulent than the others.

  16. Production and degradation of oxalic acid by brown rot fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espejo, E.; Agosin, E.

    1991-07-01

    Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted {sup 14}C-labeled oxalic acid to CO{sub 2} during cellulose depolymerization. The other brown rot fungi also oxidized {sup 14}C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay.more » Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize {sup 14}C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi.« less

  17. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions.

    PubMed

    Dalio, Ronaldo J D; Magalhães, Diogo M; Rodrigues, Carolina M; Arena, Gabriella D; Oliveira, Tiago S; Souza-Neto, Reinaldo R; Picchi, Simone C; Martins, Paula M M; Santos, Paulo J C; Maximo, Heros J; Pacheco, Inaiara S; De Souza, Alessandra A; Machado, Marcos A

    2017-03-01

    Recent application of molecular-based technologies has considerably advanced our understanding of complex processes in plant-pathogen interactions and their key components such as PAMPs, PRRs, effectors and R-genes. To develop novel control strategies for disease prevention in citrus, it is essential to expand and consolidate our knowledge of the molecular interaction of citrus plants with their pathogens. This review provides an overview of our understanding of citrus plant immunity, focusing on the molecular mechanisms involved in the interactions with viruses, bacteria, fungi, oomycetes and vectors related to the following diseases: tristeza, psorosis, citrus variegated chlorosis, citrus canker, huanglongbing, brown spot, post-bloom, anthracnose, gummosis and citrus root rot. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Impact of Bacillus cereus NRKT on grape ripe rot disease through resveratrol synthesis in berry skin.

    PubMed

    Aoki, Takanori; Aoki, Yoshinao; Ishiai, Shiho; Otoguro, Misa; Suzuki, Shunji

    2017-01-01

    Vine growers are faced with the difficult problem of how to control grape ripe rot disease in vineyards because of fear of accumulation of pesticide residues on grape berries near harvest. Biological control is an alternative non-hazardous technique to control the diseases. Application of resveratrol-synthesis-promoting bacterium, Bacillus cereus strain NRKT, reduced the incidence of grape ripe rot disease caused by Colletotrichum gloeosporioides in a vineyard. The application of NRKT to berry bunches upregulated the gene expression of stilbene synthase, a key enzyme for resveratrol synthesis in berry skins, thereby promoting resveratrol synthesis in berry skins. The potential use of NRKT in vineyards is expected to contribute to the increase in resveratrol content in berry skins, thereby protecting grape berries against fungal diseases. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. First report of the root-rot pathogen, Armillaria gallica, on koa (Acacia koa) and 'Ohi'a lehua (Metrosideros polymorpha) on the island of Kaua'i, Hawai'i

    Treesearch

    M. -S. Kim; N. R. Fonseca; R. D. Hauff; P. G. Cannon; John Hanna; Ned Klopfenstein

    2017-01-01

    Koa (Acacia koa) and 'ohi'a lehua (Metrosideros polymorpha) are the two most dominant native tree species in Hawai‘i. Their populations are continuously decreasing, primarily because of forest disease (Dudley et al. 2007; Keith et al. 2015) and other biotic disturbances. In April 2015, Armillaria rhizomorphs were collected from woody hosts on the...

  20. Interactions of Heterodera glycines, Macrophomina phaseolina, and Mycorrhizal Fungi on Soybean in Kansas.

    PubMed

    Winkler, H E; Hetrick, B A; Todd, T C

    1994-12-01

    The impact of naturally occurring arbuscular mycorrhizal fungi on soybean growth and their interaction with Heterodera glycines were evaluated in nematode-infested and uninfested fields in Kansas. Ten soybean cultivars from Maturity Groups III-V with differential susceptibility to H. glycines were treated with the fungicide benomyl to suppress colonization by naturally occurring mycorrhizal fungi and compared with untreated control plots. In H. glycines-infested soil, susceptible cultivars exhibited 39% lower yields, 28% lower colonization by mycorrhizal fungi, and an eightfold increase in colonization by the charcoal rot fungus, Macrophomina phaseolina, compared with resistant cultivars. In the absence of the nematode, susceptible cultivars exhibited 10% lower yields than resistant cultivars, root colonization of resistant vs. susceptible soybean by mycorrhizal fungi varied with sampling date, and there were no differences in colonization by M. phaseolina between resistant and susceptible cultivars. Benomyl application resulted in 19% greater root growth and 9% higher seed yields in H. glycines-infested soil, but did not affect soybean growth and yield in the absence of the nematode. Colonization of soybean roots by mycorrhizal fungi was negatively correlated with H. glycines population densities due to nematode antagonism to the mycorrhizal fungi rather than suppression of nematode populations. Soybean yields were a function of the pathogenic effects of H. glycines and M. phaseolina, and, to a lesser degree, the stimulatory effects of mycorrhizal fungi.

  1. Protection of turmeric plants from rhizome rot disease under field conditions by β-D-glucan nanoparticle.

    PubMed

    Anusuya, Sathiyanarayanan; Sathiyabama, Muthukrishnan

    2015-01-01

    The rhizome rot caused by Pythium aphanidermatum is one of the most devastating diseases of the turmeric crop. Fungicides are unable to control the rapidly evolving P. aphanidermatum and new control strategies are urgently needed. This study examined the effect of β-d-glucan nanoparticles (GNP) in turmeric plants under field condition by the foliar spray method. Enhanced plant growth, rhizome yield, and curcumin content demonstrate the positive effect of the GNP on turmeric plants. Rapid activation of various defense enzymes was also observed in leaves and rhizomes of treated plants. GNP-treated plants showed a decreased rot incidence. It may be possible that increased defense enzymes might have played a role in reducing the colonization of pathogen. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Incorporation of brassica seed meal soil amendment and wheat cultivation for control of macrophomina phaseolina in strawberry

    USDA-ARS?s Scientific Manuscript database

    Macrophomina phaseolina is the cause of charcoal rot, a disease of emerging importance in strawberry production systems. Brassicaceae seed meals (SM) and prior cultivation of soils with wheat, were evaluated for the capacity to suppress charcoal rot of strawberry and to determine the relative contri...

  3. Gene expression analysis of copper tolerance and wood decay in the brown rot fungus Fibroporia radiculosa

    USDA-ARS?s Scientific Manuscript database

    Many brown rot fungi are capable of rapidly degrading wood and are copper-tolerant. To better understand the genes that control these processes, we examined gene expression of Fibroporia radiculosa growing on wood treated with a copper-based preservative that combined copper carbonate with dimethyld...

  4. Relationship between piercing-sucking insect control and internal lint and seed rot in Southeastern cotton (Gossypium hirsutum)

    USDA-ARS?s Scientific Manuscript database

    In 1999 crop consultants scouting for stink bugs (several Hemiptera spp.) in South Carolina discovered a formerly unobserved seed rot of cotton that caused yield losses ranging from 10 to 15% in certain fields. The same symptoms were subsequently reported in fields throughout the southeastern Cotto...

  5. Acid and neutral trehalase activities in mutants of the corn rot fungus Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a fungal pathogen known to cause corn rot and other plant diseases and to contaminate grain with toxic metabolites. We are characterizing trehalose metabolism in F. verticillioides with the hope that this pathway might serve as a target for controlling Fusarium disease. T...

  6. Heart Rot and Cavity Tree Selection by Red-Cockaded Woodpeckers

    Treesearch

    Robert G. Hooper; Michael R. Lennartz; H. David Muse

    1991-01-01

    Previous studies implied that decayed heartwood was important to cavity tree selection by red-cockaded woodpeckers (Picoides borealfs), but the results were inconclusive because they either lacked a control or were limited to 1 age class of trees. We compared the incidence of heart rot in loblolly and longleaf pines (Pinus taeda...

  7. Control of wood decay by Trichoderma (Gliocladium virens. I, Antagonistic properties

    Treesearch

    T. L. Highley

    1997-01-01

    Antagonistic characteristics of a commercial biofungicide, Trichoderma (Gliocladiurn) virens (GL-21, W. R. Grace and Co., CT), were evaluated against three white-rot fungi, Trametes versicolor, Phlebia brevispora, Irpex lacteus, and three brown-rot fungi, Postia placenta, Neolentinus lepideus, and Gloeophyllum trabeum. In dual cultures of T. virens and wood decay fungi...

  8. Management of bull’s-eye rot of apple using pre- and postharvest fungicides

    USDA-ARS?s Scientific Manuscript database

    Bull’s-eye rot caused by Cryptosporiopsis kienholzii, Neofabraea alba, N. malicorticis and N. perennans is a common postharvest disease of apple and pear in the US Pacific Northwest. Fruit infection by these causal fungi occurs in the orchard and is latent at harvest. A primary practice for control ...

  9. Evaluation of the efficacy of animal-assisted therapy based on the reality orientation therapy protocol in Alzheimer's disease patients: a pilot study.

    PubMed

    Menna, Lucia Francesca; Santaniello, Antonio; Gerardi, Federica; Di Maggio, Annamaria; Milan, Graziella

    2016-07-01

    The aim of this study was to evaluate the efficacy of animal-assisted therapy (AAT) in elderly patients affected by Alzheimer's disease based on the formal reality orientation therapy (ROT) protocol. Our study was carried out at an Alzheimer's centre for 6 months. A homogeneous sample (age, Mini-Mental State Examination (MMSE), 15-item Geriatric Depression Scale (GDS)) of 50 patients was selected at random and successively. Patients were divided into three groups: (i) 20 patients received a course of AAT (AAT group) based on the ROT protocol; (ii) 20 patients were engaged exclusively in activities based on the ROT group; and (iii) 10 patients (control group) participated in no stimulations. MMSE and GDS were administered at time 0 (T0 ) and time 1 (T1 ) to all three groups. Differences within groups between T0 and T1 for GDS and MMSE scores were analyzed by Student's t-test. Differences between group means were analyzed using an anova test with the Bonferroni-Dunn test for post-hoc comparisons. Both the AAT group and ROT group had improved GDS scores and showed a slight improvement in terms of mood. On the GDS, the AAT group improved from 11.5 (T0 ) to 9.5 (T1 ), and the ROT group improved from 11.6 (T0 ) to 10.5 (T1 ). At the same time, a slight improvement in cognitive function, as measured by the MMSE, was observed. In the AAT group, mean MMSE was 20.2 at T0 and 21.5 at T1 , and in the ROT group, it was 19.9 at T0 and 20.0 at T1 . In the control group, the average values of both the GDS and MMSE remained unchanged. The Bonferroni-Dunn results showed statistically significant differences between groups, particularly between the AAT group and the other two (P < 0.001). Pet therapy interventions based on the formal ROT protocol were effective and, compared to the ROT, provided encouraging and statistically significant results. © 2015 The Authors. Psychogeriatrics © 2015 Japanese Psychogeriatric Society.

  10. The Phenylpropanoid Pathway and Lignin in Defense against Ganoderma boninense Colonized Root Tissues in Oil Palm (Elaeis guineensis Jacq.)

    PubMed Central

    Govender, Nisha T.; Mahmood, Maziah; Seman, Idris A.; Wong, Mui-Yun

    2017-01-01

    Basal stem rot, caused by the basidiomycete fungus, Ganoderma boninense, is an economically devastating disease in Malaysia. Our study investigated the changes in lignin content and composition along with activity and expression of the phenylpropanoid pathway enzymes and genes in oil palm root tissues during G. boninense infection. We sampled control (non-inoculated) and infected (inoculated) seedlings at seven time points [1, 2, 3, 4, 8, and 12 weeks post-inoculation (wpi)] in a randomized design. The expression profiles of phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) genes were monitored at 1, 2, and 3 wpi using real-time quantitative polymerase chain reaction. Seedlings at 4, 8, and 12 wpi were screened for lignin content, lignin composition, enzyme activities (PAL, CAD, and POD), growth (weight and height), and disease severity (DS). Gene expression analysis demonstrated up-regulation of PAL, CAD, and POD genes in the infected seedlings, relative to the control seedlings at 1, 2, and 3 wpi. At 2 and 3 wpi, CAD showed highest transcript levels compared to PAL and POD. DS increased progressively throughout sampling, with 5, 34, and 69% at 4, 8, and 12 wpi, respectively. Fresh weight and height of the infected seedlings were significantly lower compared to the control seedlings at 8 and 12 wpi. Lignin content of the infected seedlings at 4 wpi was significantly higher than the control seedlings, remained elicited with no change at 8 wpi, and then collapsed with a significant reduction at 12 wpi. The nitrobenzene oxidation products of oil palm root lignin yielded both syringyl and guaiacyl monomers. Accumulation of lignin in the infected seedlings was in parallel to increased syringyl monomers, at 4 and 8 wpi. The activities of PAL and CAD enzymes in the infected seedlings at DS = 5–34% were significantly higher than the control seedlings and thereafter collapsed at DS = 69%. PMID:28861093

  11. The Phenylpropanoid Pathway and Lignin in Defense against Ganoderma boninense Colonized Root Tissues in Oil Palm (Elaeis guineensis Jacq.).

    PubMed

    Govender, Nisha T; Mahmood, Maziah; Seman, Idris A; Wong, Mui-Yun

    2017-01-01

    Basal stem rot, caused by the basidiomycete fungus, Ganoderma boninense , is an economically devastating disease in Malaysia. Our study investigated the changes in lignin content and composition along with activity and expression of the phenylpropanoid pathway enzymes and genes in oil palm root tissues during G. boninense infection. We sampled control (non-inoculated) and infected (inoculated) seedlings at seven time points [1, 2, 3, 4, 8, and 12 weeks post-inoculation (wpi)] in a randomized design. The expression profiles of phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) genes were monitored at 1, 2, and 3 wpi using real-time quantitative polymerase chain reaction. Seedlings at 4, 8, and 12 wpi were screened for lignin content, lignin composition, enzyme activities (PAL, CAD, and POD), growth (weight and height), and disease severity (DS). Gene expression analysis demonstrated up-regulation of PAL, CAD, and POD genes in the infected seedlings, relative to the control seedlings at 1, 2, and 3 wpi. At 2 and 3 wpi, CAD showed highest transcript levels compared to PAL and POD. DS increased progressively throughout sampling, with 5, 34, and 69% at 4, 8, and 12 wpi, respectively. Fresh weight and height of the infected seedlings were significantly lower compared to the control seedlings at 8 and 12 wpi. Lignin content of the infected seedlings at 4 wpi was significantly higher than the control seedlings, remained elicited with no change at 8 wpi, and then collapsed with a significant reduction at 12 wpi. The nitrobenzene oxidation products of oil palm root lignin yielded both syringyl and guaiacyl monomers. Accumulation of lignin in the infected seedlings was in parallel to increased syringyl monomers, at 4 and 8 wpi. The activities of PAL and CAD enzymes in the infected seedlings at DS = 5-34% were significantly higher than the control seedlings and thereafter collapsed at DS = 69%.

  12. Thyme and Savory Essential Oil Vapor Treatments Control Brown Rot and Improve the Storage Quality of Peaches and Nectarines, but Could Favor Gray Mold

    PubMed Central

    Santoro, Karin; Maghenzani, Marco; Chiabrando, Valentina; Gullino, Maria Lodovica; Giacalone, Giovanna

    2018-01-01

    The effect of biofumigation, through slow-release diffusors, of thyme and savory essential oils (EO), was evaluated on the control of postharvest diseases and quality of peaches and nectarines. EO fumigation was effective in controlling postharvest rots. Naturally contaminated peaches and nectarines were exposed to EO vapors for 28 days at 0 °C in sealed storage cabinets and then exposed at 20 °C for five days during shelf-life in normal atmosphere, simulating retail conditions. Under low disease pressure, most treatments significantly reduced fruit rot incidence during shelf-life, while, under high disease pressure, only vapors of thyme essential oil at the highest concentration tested (10% v/v in the diffusor) significantly reduced the rots. The application of thyme or savory EO favored a reduction of brown rot incidence, caused by Monilinia fructicola, but increased gray mold, caused by Botrytis cinerea. In vitro tests confirmed that M. fructicola was more sensitive to EO vapors than B. cinerea. Essential oil volatile components were characterized in storage cabinets during postharvest. The antifungal components of the essential oils increased during storage, but they were a low fraction of the volatile organic compounds in storage chambers. EO vapors did not influence the overall quality of the fruit, but showed a positive effect in reducing weight loss and in maintaining ascorbic acid and carotenoid content. The application of thyme and savory essential oil vapors represents a promising tool for reducing postharvest losses and preserving the quality of peaches and nectarines. PMID:29303966

  13. Thyme and Savory Essential Oil Vapor Treatments Control Brown Rot and Improve the Storage Quality of Peaches and Nectarines, but Could Favor Gray Mold.

    PubMed

    Santoro, Karin; Maghenzani, Marco; Chiabrando, Valentina; Bosio, Pietro; Gullino, Maria Lodovica; Spadaro, Davide; Giacalone, Giovanna

    2018-01-05

    The effect of biofumigation, through slow-release diffusors, of thyme and savory essential oils (EO), was evaluated on the control of postharvest diseases and quality of peaches and nectarines. EO fumigation was effective in controlling postharvest rots. Naturally contaminated peaches and nectarines were exposed to EO vapors for 28 days at 0 °C in sealed storage cabinets and then exposed at 20 °C for five days during shelf-life in normal atmosphere, simulating retail conditions. Under low disease pressure, most treatments significantly reduced fruit rot incidence during shelf-life, while, under high disease pressure, only vapors of thyme essential oil at the highest concentration tested (10% v / v in the diffusor) significantly reduced the rots. The application of thyme or savory EO favored a reduction of brown rot incidence, caused by Monilinia fructicola , but increased gray mold, caused by Botrytis cinerea . In vitro tests confirmed that M. fructicola was more sensitive to EO vapors than B. cinerea . Essential oil volatile components were characterized in storage cabinets during postharvest. The antifungal components of the essential oils increased during storage, but they were a low fraction of the volatile organic compounds in storage chambers. EO vapors did not influence the overall quality of the fruit, but showed a positive effect in reducing weight loss and in maintaining ascorbic acid and carotenoid content. The application of thyme and savory essential oil vapors represents a promising tool for reducing postharvest losses and preserving the quality of peaches and nectarines.

  14. An insight into spore dispersal of Ganoderma boninense on oil palm.

    PubMed

    Sanderson, F R

    2005-01-01

    The disease of oil palm caused by Ganoderma boninense, although universally referred to as Ganoderma basal stem rot, occurs in three very distinct phases, with basal stem rot only part of the disease cycle. G. boninense also causes a seedling disease and an upper stem rot. An understanding of spore dispersal provides an insight into where spores of G. boninense have a role in the infection process. This role will be discussed in relation to each of these three infection phases. This understanding is a critical component of developing a successful disease control strategy.

  15. Chemical Relationship On Detection Of Ganoderma Disease On Oil Palm Tree System

    NASA Astrophysics Data System (ADS)

    Imran, S. N. M.; Baharudin, F.; Ali, M. F.; Rahiman, M. H. F.

    2018-04-01

    Detection of fungal disease is the major issues in agricultural management and production. This disease would attack the plantation area and damaging the based root or the stem tissue of the trees. In oil palm industry, Basal Stem Rot (BSR) is the major disease in Malaysia that caused by a fungal named Ganoderma Boninense species. Since agricultural areas in Malaysia are the great factors that contribute in the economic sector, therefore the prevention and controlling this disease situation are needed to reduce the extent of the infection. These plant diseases are mostly being caused by the inflectional disease form such as viruses, viroids, bacteria, protozoa and even parasitic plants. It also could included mites and vertebrate or small insects that consume the plant tissues. Studies focused more on the breeding and relationship of the disease in the stumps, roots and soil system if oil palm trees by identifying the heavy metal; Phosphorus, copper, Iron, Manganese, Potassium and Zinc characteristic. Samples were taken from various types of physical appearance of the trees. It shows the relationship of the fungal disease breeding between oil palm trees and the heavy metals does affect the tree’s system.

  16. Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola.

    PubMed

    Zhou, Ting; Schneider, Karin E; Li, Xiu-Zhen

    2008-08-15

    An unconventional strategy of screening food microbes for biocontrol activity was used to develop biocontrol agents for controlling post-harvest peach brown rot caused by Monilinia fructicola. Forty-four microbial isolates were first screened for their biocontrol activity on apple fruit. Compared with the pathogen-only check, seven of the 44 isolates reduced brown rot incidence by >50%, including four bacteria: Bacillus sp. C06, Lactobacillus sp. C03-b and Bacillus sp. T03-c, Lactobacillus sp. P02 and three yeasts: Saccharomyces delbrueckii A50, S. cerevisiae YE-5 and S. cerevisiae A41. Eight microbial isolates were selected for testing on peaches by wound co-inoculation with mixtures of individual microbial cultures and conidial suspension of M. fructicola. Only two of them showed significant biocontrol activity after five days of incubation at 22 degrees C. Bacillus sp. C06 suppressed brown rot incidence by 92% and reduced lesion diameter by 88% compared to the pathogen-only check. Bacillus sp.T03-c reduced incidence and lesion diameter by 40% and 62%, respectively. The two isolates were compared with Pseudomonas syringae MA-4, a biocontrol agent for post-harvest peach diseases, by immersing peaches in an aliquot containing individual microbial isolates and the pathogen conidia. Treatments with isolates MA-4, C06 and T03-c significantly controlled brown rot by 91, 100, and 100% respectively. However, only isolates MA-4 and C06 significantly reduced brown rot by 80% and 15%, respectively when bacterial cells alone were applied. On naturally infected peaches, both the bacterial culture and its cell-free filtrate of the isolate C06 significantly controlled peach decay resulting in 77 and 90% reduction, respectively, whereas the treatment using only the bacterial cells generally had no effect. Isolate C06 is a single colony isolate obtained from a mesophilic cheese starter, and has been identified belonging to Bacillus amyloliquefaciens. The results have clearly demonstrated that isolate C06 has a great potential for being developed into a biocontrol agent.

  17. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp.

    PubMed

    Jaaffar, Ahmad Kamil Mohd; Parejko, James A; Paulitz, Timothy C; Weller, David M; Thomashow, Linda S

    2017-06-01

    Rhizoctonia solani anastomosis groups (AG)-8 and AG-2-1 and R. oryzae are ubiquitous in cereal-based cropping systems of the Columbia Plateau of the Inland Pacific Northwest and commonly infect wheat. AG-8 and R. oryzae, causal agents of Rhizoctonia root rot and bare patch, are most commonly found in fields in the low-precipitation zone, whereas R. solani AG-2-1 is much less virulent on wheat and is distributed in fields throughout the low-, intermediate-, and high-precipitation zones. Fluorescent Pseudomonas spp. that produce the antibiotic phenazine-1-carboxylic acid (PCA) also are abundant in the rhizosphere of crops grown in the low-precipitation zone but their broader geographic distribution and effect on populations of Rhizoctonia is unknown. To address these questions, we surveyed the distribution of PCA producers (Phz + ) in 59 fields in cereal-based cropping systems throughout the Columbia Plateau. Phz + Pseudomonas spp. were detected in 37 of 59 samples and comprised from 0 to 12.5% of the total culturable heterotrophic aerobic rhizosphere bacteria. The frequency with which individual plants were colonized by Phz + pseudomonads ranged from 0 to 100%. High and moderate colonization frequencies of Phz + pseudomonads were associated with roots from fields located in the driest areas whereas only moderate and low colonization frequencies were associated with crops where higher annual precipitation occurs. Thus, the geographic distribution of Phz + pseudomonads overlaps closely with the distribution of R. solani AG-8 but not with that of R. oryzae or R. solani AG-2-1. Moreover, linear regression analysis demonstrated a highly significant inverse relationship between annual precipitation and the frequency of rhizospheres colonized by Phz + pseudomonads. Phz + pseudomonads representative of the four major indigenous species (P. aridus, P. cerealis, P. orientalis, and P. synxantha) suppressed Rhizoctonia root rot of wheat when applied as seed treatments. In vitro, mean 50% effective dose values for isolates of AG-8 and AG-2-1 from fields with high and low frequencies of phenazine producers did not differ significantly, nor was there a correlation between virulence of an isolate and sensitivity to PCA, resulting in rejection of the hypothesis that tolerance in Rhizoctonia spp. to PCA develops in nature upon exposure to Phz + pseudomonads.

  18. Detection and characterization of broad-spectrum antipathogen activity of novel rhizobacterial isolates and suppression of Fusarium crown and root rot disease of tomato.

    PubMed

    Zhang, L; Khabbaz, S E; Wang, A; Li, H; Abbasi, P A

    2015-03-01

    To detect and characterize broad-spectrum antipathogen activity of indigenous bacterial isolates obtained from potato soil and soya bean leaves for their potential to be developed as biofungicides to control soilborne diseases such as Fusarium crown and root rot of tomato (FCRR) caused by Fusarium oxysporum f. sp. radicis-lycopersici (Forl). Thirteen bacterial isolates (Bacillus amyloliquefaciens (four isolates), Paenibacillus polymyxa (three isolates), Pseudomonas chlororaphis (two isolates), Pseudomonas fluorescens (two isolates), Bacillus subtilis (one isolate) and Pseudomonas sp. (one isolate)) or their volatiles showed antagonistic activity against most of the 10 plant pathogens in plate assays. Cell-free culture filtrates (CF) of five isolates or 1-butanol extracts of CFs also inhibited the growth of most pathogen mycelia in plate assays. PCR analysis confirmed the presence of most antibiotic biosynthetic genes such as phlD, phzFA, prnD and pltC in most Pseudomonas isolates and bmyB, bacA, ituD, srfAA and fenD in most Bacillus isolates. These bacterial isolates varied in the production of hydrogen cyanide (HCN), siderophores, β-1,3-glucanases, chitinases, proteases, indole-3-acetic acid, salicylic acid, and for nitrogen fixation and phosphate solubilization. Gas chromatography-mass spectrometry analysis identified 10 volatile compounds from 10 isolates and 18 compounds from 1-butanol extracts of CFs of five isolates. Application of irradiated peat formulation of six isolates to tomato roots prior to transplanting in a Forl-infested potting mix and field soil provided protection of tomato plants from FCRR disease and enhanced plant growth under greenhouse conditions. Five of the 13 indigenous bacterial isolates were antagonistic to eight plant pathogens, both in vitro and in vivo. Antagonistic and plant-growth promotion activities of these isolates might be related to the production of several types of antibiotics, lytic enzymes, phytohormones, secondary metabolites, siderophores and volatile compounds; however, any specific role of each needs to be determined. Indigenous antagonistic bacterial isolates have the potential to be developed as biofungicides for minimizing early crop losses due to soilborne diseases caused by Fusarium and other soilborne pathogens. © 2014 Her Majesty the Queen in Right of Canada © 2014 The Society for Applied Microbiology. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.

  19. Fine mapping of resistance genes from five brown stem rot resistance sources in soybean

    USDA-ARS?s Scientific Manuscript database

    Brown stem rot (BSR) of soybean [Glycine max (L.) Merr.] caused by Cadophora gregata (Allington & Chamb.) T.C. Harr. & McNew, can be controlled effectively with genetic host resistance. Three BSR resistance genes Rbs1, Rbs2, and Rbs3, have been identified and mapped to a large region on chromosome 1...

  20. First report of anthracnose fruit rot of blueberry caused by Colletotrichum fioriniae in New Jersey

    USDA-ARS?s Scientific Manuscript database

    Anthracnose fruit rot is the most important disease of blueberry in New Jersey. Most fungicide applications in New Jersey and other blueberry growing regions is for the control of this disease. The causal agent of this disease has been reported to be Colletotrichum acutatum and other species in the ...

  1. Effects of Bunch Rot (Botrytis cinerea) and Powdery Mildew (Erysiphe necator) Fungal Diseases on Wine Aroma.

    PubMed

    Lopez Pinar, Angela; Rauhut, Doris; Ruehl, Ernst; Buettner, Andrea

    2017-01-01

    This study aimed to characterize the effects of bunch rot and powdery mildew on the primary quality parameter of wine, the aroma. The influence of these fungal diseases was studied by comparative Aroma Extract Dilution Analyses (AEDA) and sensory tests. The effect of bunch rot was investigated on three grape varieties, namely White Riesling, Red Riesling and Gewürztraminer and that of powdery mildew on the hybrid Gm 8622-3; thereby, samples were selected that showed pronounced cases of infection to elaborate potential currently unknown effects. Both infections revealed aromatic differences induced by these fungi. The sensory changes were not associated with one specific compound only, but were due to quantitative variations of diverse substances. Bunch rot predominantly induced an increase in the intensities of peach-like/fruity, floral and liquor-like/toasty aroma notes. These effects were found to be related to variations in aroma substance composition as monitored via AEDA, mainly an increase in the FD factors of lactones and a general moderate increase of esters and alcohols. On the other hand, powdery mildew decreased the vanilla-like character of the wine while the remaining sensory attributes were rather unaffected. Correspondingly, FD factors of the main aroma constituents were either the same or only slightly modified by this disease. Moreover, bunch rot influenced the aroma profiles of the three varieties studied to a different degree. In hedonic evaluation, bunch rot-affected samples were rated as being more pleasant in comparison to their healthy controls in all three varieties while the powdery mildew-affected sample was rated as being less pleasant than its healthy control.

  2. Effects of bunch rot (Botrytis cinerea) and powdery mildew (Erysiphe necator) fungal diseases on wine aroma

    NASA Astrophysics Data System (ADS)

    Lopez Pinar, Angela; Rauhut, Doris; Ruehl, Ernst; Buettner, Andrea

    2017-03-01

    This study aimed to characterize the effects of bunch rot and powdery mildew on the primary quality parameter of wine, the aroma. The influence of these fungal diseases was studied by comparative Aroma Extract Dilution Analyses (AEDA) and sensory tests. The effect of bunch rot was investigated on three grape varieties, namely White Riesling, Red Riesling and Gewürztraminer and that of powdery mildew on the hybrid Gm 8622-3; thereby, samples were selected that showed pronounced cases of infection to elaborate potential currently unknown effects. Both infections revealed aromatic differences induced by these fungi. The sensory changes were not associated with one specific compound only, but were due to quantitative variations of diverse substances. Bunch rot predominantly induced an increase in the intensities of peach-like/fruity, floral and liquor-like/toasty aroma notes. These effects were found to be related to variations in aroma substance composition as monitored via AEDA, mainly an increase in the FD factors of lactones and a general moderate increase of esters and alcohols. On the other hand, powdery mildew decreased the vanilla-like character of the wine while the remaining sensory attributes were rather unaffected. Correspondingly, FD factors of the main aroma constituents were either the same or only slightly modified by this disease. Moreover, bunch rot influenced the aroma profiles of the three varieties studied to a different degree. In hedonic evaluation, bunch rot-affected samples were rated as being more pleasant in comparison to their healthy controls in all three varieties while the powdery mildew-affected sample was rated as being less pleasant than its healthy control.

  3. Potentiality for obtaining poria disease signatures in the Oregon Cascades from orbital altitudes

    NASA Technical Reports Server (NTRS)

    Wear, J. F.

    1972-01-01

    A prime photographic signature indicator of an important forest disease was identified in valuable Douglas-fir stands of the Pacific Northwest. The disease signature was verified by a multidisciplinary team of scientists to be the direct result of the Poria weirii root-rot syndrome in the Douglas-fir and hemlock stands of the high Cascades in Oregon. It is readily discernible on small-scale suborbital photography and has good potential for detection from earth-orbiting satellites or remote sensing platforms.

  4. Interactions between cranberries and fungi: the proposed function of organic acids in virulence suppression of fruit rot fungi

    PubMed Central

    Tadych, Mariusz; Vorsa, Nicholi; Wang, Yifei; Bergen, Marshall S.; Johnson-Cicalese, Jennifer; Polashock, James J.; White, James F.

    2015-01-01

    Cranberry fruit are a rich source of bioactive compounds that may function as constitutive or inducible barriers against rot-inducing fungi. The content and composition of these compounds change as the season progresses. Several necrotrophic fungi cause cranberry fruit rot disease complex. These fungi remain mostly asymptomatic until the fruit begins to mature in late August. Temporal fluctuations and quantitative differences in selected organic acid profiles between fruit of six cranberry genotypes during the growing season were observed. The concentration of benzoic acid in fruit increased while quinic acid decreased throughout fruit development. In general, more rot-resistant genotypes (RR) showed higher levels of benzoic acid early in fruit development and more gradual decline in quinic acid levels than that observed in the more rot-susceptible genotypes. We evaluated antifungal activities of selected cranberry constituents and found that most bioactive compounds either had no effects or stimulated growth or reactive oxygen species (ROS) secretion of four tested cranberry fruit rot fungi, while benzoic acid and quinic acid reduced growth and suppressed secretion of ROS by these fungi. We propose that variation in the levels of ROS suppressive compounds, such as benzoic and quinic acids, may influence virulence by the fruit rot fungi. Selection for crops that maintain high levels of virulence suppressive compounds could yield new disease resistant varieties. This could represent a new strategy for control of disease caused by necrotrophic pathogens that exhibit a latent or endophytic phase. PMID:26322038

  5. The use of pressure controlled Fabry-Pérot interferometer with linear scanning of data for Brillouin-type experiments

    NASA Astrophysics Data System (ADS)

    Błachowicz, Tomasz

    2000-08-01

    The article presents results from work with Fabry-Pérot interferometers in Brillouin laser light scattering experiments, where optical signals of very low level intensity are observed. The information presented here can be useful in other types of optical experiments where scanning in the Fabry-Pérot interferometer spectral range has to be used. In such situations the shape of spectral lines as well as their relative distances can be detected. The key to the solution presented here is the use of a silicon-membrane pressure sensor coupled to a pressure chamber. It makes it possible to view spectral lines equally spaced after nonlinear flow of air from a chamber where the Fabry-Pérot interferometer is placed. Linear scanning in the spectral range equal to a frequency of about 150 GHz is possible. The method can be applied to Fabry-Pérot's etalons, very frequently produced some years ago. Now it should find new fields of application, in a simple and cost effective way, in student laboratories as well as in other research institutions.

  6. Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots.

    PubMed

    Pereira, G S; Camargos, R B; Balestre, M; Von Pinho, R G; C Melo, W M

    2015-09-21

    Leaf disease and ear rot have caused reductions in maize yield in Brazil and other producer countries. Therefore, the aims of this study were to analyze the association between husked ear yield and the severity of maize white spot, gray leaf spot, helminthosporium, and ear rot caused by Fusarium verticillioides and Diplodia maydis using biplots in a mixed-model approach. The responses of 238 lines introduced to Brazil and four controls were evaluated using an incomplete block design with three replicates in two locations: Lavras and Uberlândia, Minas Gerais, Brazil. Two experiments were conducted in each location, one with F. verticillioides and the other with D. maydis. The mixed models elucidated the relationship between yield, leaf disease, and ear disease. Significant genotype x environment and genotype x pathogen interactions were observed. In conclusion, husked ear yield is more associated with ear rot than with the leaf diseases evaluated, justifying the indirect selection for resistance to kernel rot in maize-F. verticillioides and maize-D. maydis pathosystems by yield evaluation.

  7. Rice Sheath Rot: An Emerging Ubiquitous Destructive Disease Complex

    PubMed Central

    Bigirimana, Vincent de P.; Hua, Gia K. H.; Nyamangyoku, Obedi I.; Höfte, Monica

    2015-01-01

    Around one century ago, a rice disease characterized mainly by rotting of sheaths was reported in Taiwan. The causal agent was identified as Acrocylindrium oryzae, later known as Sarocladium oryzae. Since then it has become clear that various other organisms can cause similar disease symptoms, including Fusarium sp. and fluorescent pseudomonads. These organisms have in common that they produce a range of phytotoxins that induce necrosis in plants. The same agents also cause grain discoloration, chaffiness, and sterility and are all seed-transmitted. Rice sheath rot disease symptoms are found in all rice-growing areas of the world. The disease is now getting momentum and is considered as an important emerging rice production threat. The disease can lead to variable yield losses, which can be as high as 85%. This review aims at improving our understanding of the disease etiology of rice sheath rot and mainly deals with the three most reported rice sheath rot pathogens: S. oryzae, the Fusarium fujikuroi complex, and Pseudomonas fuscovaginae. Causal agents, pathogenicity determinants, interactions among the various pathogens, epidemiology, geographical distribution, and control options will be discussed. PMID:26697031

  8. Oxalate production by wood-rotting fungi growing in toxic metal-amended medium.

    PubMed

    Jarosz-Wilkolazka, Anna; Gadd, Geoffrey M

    2003-07-01

    In this report, we have identified oxalic acid as an important metabolite elaborated in the response of wood-rotting fungi to toxic metal stress. The formation of oxalate crystals by white rot fungi (Bjerkandera fumosa, Phlebia radiata and Trametes versicolor) and the brown rot fungus Fomitopsis pinicola, grown on media containing high levels of toxic metal ions has been visualized using scanning electron microscopy (SEM) with energy-dispersive X-ray micro-analysis (EDXA) and HPLC. There were no significant differences between the growth of controls (metal-free) and on the 0.5% CaCO(3), Co(3)(PO(4))(2) or Zn(3)(PO(4))(2)-amended plates. ZnO inhibited the growth of all strains. Crystals were not detected in Zn(3)(PO(4))(2)-amended plates. The four examined strains displayed the formation of crystals on ZnO, Co(3)(PO(4))(2) and CaCO(3)-amended plates.

  9. Macrofaunal involvement in the sublittoral decay of kelp debris: The sea urchin Psammechinus miliaris (Gmelin) (Echinodermata: Echinoidea)

    NASA Astrophysics Data System (ADS)

    Bedford, A. P.; Moore, P. G.

    1985-01-01

    Psammechinus miliaris occurs in the Clyde Sea area in large numbers (<18 individuals per 100 g -1 weed dry wt) on sublittoral beds of detached Laminaria saccharina. Its rôle in weed decomposition has been examined by comparing its responses (behavioural choice, growth rate, absorption efficiencies of both carbon and protein, gut retention times and rate of faecal output) to fresh and rotting weed. Younger urchins grew faster than older individuals on a diet of rotting weed but not on fresh weed. Large seasonal variation existed, however, with fast growth occurring in June-August and little, or no, growth in December-February, irrespective of diet. Starved controls did not grow. Correcting for seasonality, rotting kelp still promoted faster growth of young urchins than did fresh weed. Larger (older) individuals showed no difference. Urchins fed fresh weed had significantly longer gut retention times. Protein absorption efficiency was higher on fresh than rotting weed, varying with weed protein content and size of urchin. Very young individuals can only digest high protein weed efficiently, eg. material derived from near the frond meristem. Organic carbon content of rotting weed was significantly lower than fresh weed. Carbon absorption efficiencies were significantly higher on fresh weed which related to organic carbon content. Standard-sized urchins fed rotting weed produced larger dry weights of faeces per day, reflecting increased ingestion rate. In closed-system choice experiments urchins preferred rotting weed kinetically. Size-frequency analysis of field populations suggested that weed beds are principally colonized by larval settlement from the plankton. Mature Psammechinus have evolved different 'strategies' for exploiting fresh and rotting weed. Fresh weed is relatively difficult to digest and long gut retention times allow high protein absorption efficiencies to be attained. Rotting weed has microbial protein in quantities and a lower organic carbon fraction. Some bacterial protein is seemingly unavailable though and lower protein absorption efficiencies result. Thus gut retention time is shortened and more food passed through the gut. Growth remains equivalent. Substratum digestion is of paramount importance for Psammechinus feeding on either fresh or rotting weed, cf. the 'classical' microbe-stripping detritivore of Fenchel.

  10. Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica.

    PubMed

    Kang, Ji Eun; Han, Jae Woo; Jeon, Byeong Jun; Kim, Beom Seok

    2016-03-01

    To discover potential inhibitors of the quorum sensing (QS) system, a library of microbial culture extracts was screened with Chromobacterium violaceumCV026 strain. The culture extract of Streptomyces xanthocidicus KPP01532 contained quorum-sensing inhibitors (QSIs) of the CV026 strain. The active constituents of the culture extract of strain KPP01532 were purified using a series of chromatographic procedures, and based on data from NMR and mass spectroscopy, piericidin A and glucopiericidin A were identified. Erwinia carotovora subsp. atroseptica (Eca) is a plant pathogen that causes blackleg and soft rot diseases on potato stems and tubers. The virulence factors of Eca are regulated by QS. The expression of virulence genes (pelC, pehA, celV and nip) under the control of QS was monitored using quantitative real-time PCR (qRT-PCR). The transcription levels of the four genes were significantly lower when Eca was exposed to piericidin A or glucopiericidin A. These two compounds displayed similar control efficacies against soft rot caused by Eca in potato slices as furanone C-30. Therefore, piericidin A and glucopiericidin A are potential QSIs that suppress the expression of the virulence genes of Eca, suggesting that they could have potential use as control agents of soft rot disease on potato tubers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Utilization of Cocoa Pod Husk Waste Composting by Tremella Sp and Pleurotus Sp as A Medium to Growth of Cocoa Seedling

    NASA Astrophysics Data System (ADS)

    Rahim, Iradhatullah; Nasruddin, A.; Kuswinanti, T.; Asrul, L.; Rasyid, B.

    2018-05-01

    Cocoa pod husk waste is a problem in the cocoa field, but it potentially as a source of organic matter to improve soil fertility.The paper discuss about the ability of Tremella sp and Pleurotus sp on producing phytohormone and on degrading cocoa pod husks waste. The research start with isolation, screening, and propagation of rot fungi were collected from decayed cocoa plants. The measurement of IAA is according to the method of Glickman and Dessaux (1995), by addition of L-Tryptophan 0.1 g l-1, whereas the Gibberellic Acid content was measured by using the method of Borrow et al., (1955). Composting process of cocoa pod husks waste was revealed during 40 days. This research showed that the IAA and GA3 content in compost fermented with Tremella sp was higher than treatment with Pleurotus sp. Similarly, the result was also observed in the ability of hemicellulose degradation. However, Pleurotus sp was capable to produce compost with higher nutrient levels. Compost fermented by rot fungi gave significant effect to the growth of cocoa seedlings. Nevertheless the difference in varieties of cocoa had no effect on growth of cocoa seedlings. Cocoa pod husk waste composted by Tremella sp and Pleurotus sp gave the significant effect on Leaf Area Index (LAI), Net Assimilation Rate (NAR), Crop Growth Rate (CGR), Root-shoot ratio, and root dry weight of Cocoa seedling.

  12. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.

    PubMed

    Huang, R; Li, G Q; Zhang, J; Yang, L; Che, H J; Jiang, D H; Huang, H C

    2011-07-01

    A study was conducted to identify volatile organic compounds or volatiles produced by Candida intermedia strain C410 using gas chromatography-mass spectrometry, and to determine efficacy of the volatiles of C. intermedia in suppression of conidial germination and mycelial growth of Botrytis cinerea and control of Botrytis fruit rot of strawberry. Results showed that, among 49 volatiles (esters, alcohols, alkenes, alkanes, alkynes, organic acids, ketones, and aldehydes) identified from C. intermedia cultures on yeast extract peptone dextrose agar, two compounds, 1,3,5,7-cyclooctatetraene and 3-methyl-1-butanol, were the most abundant. Synthetic chemicals of 1,3,5,7-cyclooctatetraene; 3-methyl-1-butanol; 2-nonanone; pentanoic acid, 4-methyl-, ethyl ester; 3-methyl-1-butanol, acetate; acetic acid, pentyl ester; and hexanoic acid, ethyl ester were highly inhibitory to conidial germination and mycelial growth of B. cinerea. Inhibition of conidial germination and mycelial growth of B. cinerea by volatiles of C. intermedia was also observed. Meanwhile, results showed that incidence and severity of Botrytis fruit rot of strawberry was significantly (P < 0.01) reduced by exposure of the strawberry fruit to the volatiles from C. intermedia cultures or C. intermedia-infested strawberry fruit. These results suggest that the volatiles of C. intermedia C410 are promising biofumigants for control of Botrytis fruit rot of strawberry.

  13. Control of postharvest soft rot caused by Erwinia carotovora of vegetables by a strain of Bacillus amyloliquefaciens and its potential modes of action.

    PubMed

    Zhao, Yancun; Li, Pengxia; Huang, Kaihong; Wang, Yuning; Hu, Huali; Sun, Ya

    2013-03-01

    Erwinia carotovora subsp. carotovora (Ecc), the causal agent of bacterial soft rot, is one of the destructive pathogens of postharvest vegetables. In this study, a bacterial isolate (BGP20) from the vegetable farm soil showed strong antagonistic activity against Ecc in vitro, and its twofold cell-free culture filtrate showed excellent biocontrol effect in controlling the postharvest bacterial soft rot of potatoes at 25 °C. The anti-Ecc metabolites produced by the isolate BGP20 had a high resistance to high temperature, UV-light and protease K. Based on the colonial morphology, cellular morphology, sporulation, and partial nucleotide sequences of 16S rRNA and gyrB gene, the isolate BGP20 was identified as Bacillus amyloliquefaciens subsp. plantarum. Further in vivo assays showed that the BGP20 cell culture was more effective in controlling the postharvest bacterial soft rot of green peppers and Chinese cabbages than its twofold cell-free culture filtrate. In contrast, the biocontrol effect and safety of the BGP20 cell culture were very poor on potatoes. In the wounds of potatoes treated with both the antagonist BGP20 and the pathogen Ecc, the viable count of Ecc was 31,746 times that of BGP20 at 48 h of incubation at 25 °C. But in the wounds of green peppers, the viable count of BGP20 increased 182.3 times within 48 h, and that of Ecc increased only 51.3 %. In addition, the treatment with both BGP20 and Ecc induced higher activity of phenylalanine ammonia-lyase (PAL) than others in potatoes. But the same treatment did not induce an increase of PAL activity in green peppers. In conclusion, the present study demonstrated that the isolate BGP20 is a promising candidate in biological control of postharvest bacterial soft rot of vegetables, but its main mode of action is different among various vegetables.

  14. Electrical Imaging of Roots and Trunks

    NASA Astrophysics Data System (ADS)

    Al Hagrey, S.; Werban, U.; Meissner, R.; Ismaeil, A.; Rabbel, W.

    2005-05-01

    We applied geoelectric and GPR techniques to analyze problems of botanical structures and even processes, e.g., mapping root zones, internal structure of trunks, and water uptake by roots. The dielectric nature of root zones and trunks is generally a consequence of relatively high moisture content. The electric method, applied to root zones, can discriminate between old, thick, isolated roots (high resistivity) and the network of young, active, and hydraulically conductive zones (low resistivity). Both types of roots show low radar velocity and a strong attenuation caused by the dominant effect of moisture (high dielectric constant) on the electromagnetic wave propagation. Single root branches could be observed in radargrams by their reflection and diffraction parabolas. We have perfected the inversion method for perfect and imperfect cylindrical objects, such as trunks, and developed a new multielectrodes (needle or gel) ring array for fast applications on living trees and discs. Using synthetic models we tested the technique successfully and analyzed it as a function of total electrode number and configuration. Measurements at a trunk show a well established inverse relationship between the imaged resistivity and the moisture content determined from cores. The central resistivity maximum of healthy trees strongly decreases toward the rim. This agrees with the moisture decrease to the outside where active sap flow processes take place. Branching, growth anomalies (new or old shoots) and meteorological effects (sunshine and wind direction) lead to deviations of the concentric electric structure. The strongest anomalies are related to infections causing wet, rotting spots or cavities. The heartwood resistivity is highest in olive and oak trunks, intermediate in young fruit trees and lowest in cork oak trunks that are considered to be anomalously wet. Compared to acoustic tomography our electric technique shows a better resolution in imaging internal ring structures where moisture is the most dominating factor. We conclude that our imaging resistivity technique is applicable for investigating or controlling the botanical and physical conditions of endangered trees (health inspection) and capable to monitor dynamic processes of sap flow if adequate tracers are used.

  15. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards.

    PubMed

    Calvo-Garrido, Carlos; Usall, Josep; Viñas, Inmaculada; Elmer, Philip Ag; Cases, Elena; Teixidó, Neus

    2014-06-01

    Epidemiological studies have described the life cycle of B. cinerea in vineyards. However, there is a lack of information on the several infection pathways and the quantitative relationships between secondary inoculum and bunch rot at harvest. Over two seasons, different spray programmes were used to determine key phenological stages for bunch rot development. Secondary inoculum sources within the bunch were also studied. The relative importance of flowering was evidenced in the given conditions, as treatments that included two fungicide applications at flowering were the most effective. In 2010, under conducive meteorological conditions for B. cinerea development after veraison, an extra application provided significantly higher control. Infections of necrotic tissues inside the bunch and latent infections developed mainly during flowering, while very low quantities of B. cinerea conidia were recovered from the fruit surface at veraison. Regression analysis correlated the incidence of latent infections and B. cinerea incidence on calyptras and aborted fruits at veraison with incidence of Botrytis bunch rot at harvest, presenting R2 = 0.95 for the overall regression model. This work points out key phenological stages during the season for bunch rot and B. cinerea secondary inoculum development and relates quantitatively inoculum sources at veraison to bunch rot at harvest. Recommendations for field applications of antibotrytic products are also suggested. © 2013 Society of Chemical Industry.

  16. Continuous cropping of endangered therapeutic plants via electron beam soil-treatment and neutron tomography.

    PubMed

    Sim, Cheul Muu; Seong, Bong Jae; Kim, Dong Won; Kim, Yong Bum; Wi, Seung Gon; Kim, Gyuil; Oh, Hwasuk; Kim, TaeJoo; Chung, Byung Yeoup; Song, Jeong Young; Kim, Hong Gi; Oh, Sang-Keun; Shin, Young Dol; Seok, Jea Hwan; Kang, Min Young; Lee, Yunhee; Radebe, Mabuti Jacob; Kardjilov, Nikolay; Honermeier, Bernd

    2018-02-01

    Various medicinal plants are threatened with extinction owing to their over-exploitation and the prevalence of soil borne pathogens. In this study, soils infected with root-rot pathogens, which prevent continuous-cropping, were treated with an electron beam. The level of soil-borne fungus was reduced to ≤0.01% by soil electron beam treatment without appreciable effects on the levels of antagonistic microorganism or on the physicochemical properties of the soil. The survival rate of 4-year-old plant was higher in electron beam-treated soil (81.0%) than in fumigated (62.5%), virgin (78%), or untreated-replanting soil (0%). Additionally, under various soils conditions, neutron tomography permitted the monitoring of plant health and the detection of root pathological changes over a period of 4-6 years by quantitatively measuring root water content in situ. These methods allow continual cropping on the same soil without pesticide treatment. This is a major step toward the environmentally friendly production of endangered therapeutic herbs.

  17. Genome Sequence of the Pectobacterium atrosepticum Strain CFBP6276, Causing Blackleg and Soft Rot Diseases on Potato Plants and Tubers

    PubMed Central

    Kwasiborski, Anthony; Mondy, Samuel; Beury-Cirou, Amélie

    2013-01-01

    Pectobacterium atrosepticum strain CFBP6276 is a pectinolytic enterobacterium causing blackleg and soft rot of the stem and tuber of Solanum tuberosum. Its virulence is under the control of quorum sensing, with N-acylhomoserine lactones as communication signals. Here, we report the genome sequence of P. atrosepticum strain CFBP6276. PMID:23788545

  18. Reduction of Fusarium rot and maintenance of fruit quality in melon using eco-friendly hot water treatment.

    PubMed

    Sui, Yuan; Droby, Samir; Zhang, Danfeng; Wang, Wenjie; Liu, Yongsheng

    2014-12-01

    Significant losses in harvested fruit can be directly attributable to decay fungi and quality deterioration. Hot water treatment (HWT) has been demonstrated to be an effective and economic environment-friendly approach for managing postharvest decay and maintaining fruit quality. In this study, the effects of HWT (45 °C for 10, 15, 20, and 25 min) on in vitro growth of Fusarium oxysporum, in vivo Fusarium rot, and natural decay of melon were investigated. HWT inhibited spore germination and germ tube elongation of F. oxysporum. Protein impairment and ATP consumption triggered by HWT contributed to the inhibitory effect. Results of in vivo studies showed that HWT effectively controlled Fusarium rot and natural decay of melon. Correspondingly, HWT induced a significant increase in content of total phenolic compounds and lignin of melon. These findings indicate that the effects of HWT on Fusarium rot may be associated with the direct fungal inhibition and the elicitation of defense responses in fruit. Importantly, HWT used in this study had beneficial effects on fruit quality as well. HWT may represent an effective non-chemical approach for management of postharvest Fusarium rot.

  19. Combination of antagonistic yeasts with two food additives for control of brown rot caused by Monilinia fructicola on sweet cherry fruit.

    PubMed

    Qin, G Z; Tian, S P; Xu, Y; Chan, Z L; Li, B Q

    2006-03-01

    To evaluate beneficial effect of two food additives, ammonium molybdate (NH4-Mo) and sodium bicarbonate (NaBi), on antagonistic yeasts for control of brown rot caused by Monilinia fructicola in sweet cherry fruit under various storage conditions. The mechanisms of action by which food additives enhance the efficacy of antagonistic yeasts were also evaluated. Biocontrol activity of Pichia membranefaciens and Cryptococcus laurentii against brown rot in sweet cherry fruit was improved by addition of 5 mmol l(-1) NH4-Mo or 2% NaBi when stored in air at 20 and 0 degrees C, and in controlled atmosphere (CA) storage with 10% O2 + 10% CO2 at 0 degrees C. Population dynamics of P. membranefaciens in the wounds of fruit were inhibited by NH4-Mo at 20 degrees C after 1 day of incubation and growth of C. laurentii was inhibited by NH4-Mo at 0 degrees C in CA storage after 60 days. In contrast, NaBi did not significantly influence growth of the two yeasts in fruit wounds under various storage conditions except that the growth of P. membranefaciens was stimulated after storage for 45 days at 0 degrees C in CA storage. When used alone, the two additives showed effective control of brown rot in sweet cherry fruit and the efficacy was closely correlated with the concentrations used. The result of in vitro indicated that growth of M. fructicola was significantly inhibited by NH4-Mo and NaBi. Application of additives improved biocontrol of brown rot on sweet cherry fruit under various storage conditions. It is postulated that the enhancement of disease control is directly because of the inhibitory effects of additives on pathogen growth, and indirectly because of the relatively little influence of additives on the growth of antagonistic yeasts. The results obtained in this study suggest that an integration of NH4-Mo or NaBi with biocontrol agents has great potential in commercial management of postharvest diseases of fruit.

  20. Phytophthora cinnamomi.

    PubMed

    Hardham, Adrienne R; Blackman, Leila M

    2018-02-01

    Phytophthora cinnamomi is one of the most devastating plant pathogens in the world. It infects close to 5000 species of plants, including many of importance in agriculture, forestry and horticulture. The inadvertent introduction of P. cinnamomi into natural ecosystems, including a number of recognized Global Biodiversity Hotspots, has had disastrous consequences for the environment and the biodiversity of flora and fauna. The genus Phytophthora belongs to the Class Oomycetes, a group of fungus-like organisms that initiate plant disease through the production of motile zoospores. Disease control is difficult in agricultural and forestry situations and even more challenging in natural ecosystems as a result of the scale of the problem and the limited range of effective chemical inhibitors. The development of sustainable control measures for the future management of P. cinnamomi requires a comprehensive understanding of the cellular and molecular basis of pathogen development and pathogenicity. The application of next-generation sequencing technologies to generate genomic and transcriptomic data promises to underpin a new era in P. cinnamomi research and discovery. The aim of this review is to integrate bioinformatic analyses of P. cinnamomi sequence data with current knowledge of the cellular and molecular basis of P. cinnamomi growth, development and plant infection. The goal is to provide a framework for future research by highlighting potential pathogenicity genes, shedding light on their possible functions and identifying suitable targets for future control measures. Phytophthora cinnamomi Rands; Kingdom Chromista; Phylum Oomycota or Pseudofungi; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; genus Phytophthora. Infects about 5000 species of plants, including 4000 Australian native species. Host plants important for agriculture and forestry include avocado, chestnut, macadamia, oak, peach and pineapple. A root pathogen which causes rotting of fine and fibrous roots, but which can also cause stem cankers. Root damage may inhibit water movement from roots to shoots, leading to dieback of young shoots. USEFUL WEBSITES: http://fungidb.org/fungidb/; http://genome.jgi.doe.gov/Phyci1/Phyci1.home.html; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314365.1; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314505.1. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  1. Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process.

    PubMed

    Calderón, Claudia E; de Vicente, Antonio; Cazorla, Francisco M

    2014-07-01

    Different bacterial traits can contribute to the biocontrol of soilborne phytopathogenic fungus. Among others, (1) antagonism, (2) competition for nutrients and niches, (3) induction of systemic resistance of the plants and (4) predation and parasitism are the most studied. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium that produces the antifungal metabolite 2-hexyl, 5-propyl resorcinol (HPR). This bacterium can biologically control the avocado white root rot caused by Rosellinia necatrix. Confocal laser scanning microscopy of the avocado rhizosphere revealed that this biocontrol bacterium and the fungal pathogen compete for the same niche and presumably also for root exudate nutrients. The use of derivative mutants in the geners related to HPR biosynthesis (dar genes) revealed that the lack of HPR production by P. chlororaphis PCL1606 negatively influences the bacterial colonisation of the avocado root surface. Microscopical analysis showed that P. chlororaphis PCL1606 closely interacts and colonises the fungal hyphae, which may represent a novel biocontrol mechanism in this pseudomonad. Additionally, the presence of HPR-producing biocontrol bacteria negatively affects the ability of the fungi to infect the avocado root. HPR production negatively affects hyphal growth, leading to alterations in the R. necatrix physiology visible under microscopy, including the curling, vacuolisation and branching of hyphae, which presumably affects the colonisation and infection abilities of the fungus. This study provides the first report of multitrophic interactions in the avocado rhizosphere, advancing our understanding of the role of HPR production in those interactions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study

    NASA Astrophysics Data System (ADS)

    Hedges, John I.; Blanchette, Robert A.; Weliky, Karen; Devol, Allan H.

    1988-11-01

    Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. This fungus increased the absolute (weight loss-corrected) yield of the vanillic acid CuO reaction product above its initial level and exponentially decreased the absolute yields of all other lignin-derived phenols. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Although two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. Wood degraded by the three brown-rot fungi exhibited porous cell walls with greatly reduced integrity. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 (12 week samples), total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural environments can be explained by white-rot fungal degradation.

  3. Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a Tomato Soft Rot.

    PubMed

    George, Andrée S; Cox, Clayton E; Desai, Prerak; Porwollik, Steffen; Chu, Weiping; de Moraes, Marcos H; McClelland, Michael; Brandl, Maria T; Teplitski, Max

    2018-03-01

    Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum ) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot. IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility are identified as contributors to the persistence of Salmonella spp. in soft rots. Copyright © 2018 George et al.

  4. Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a Tomato Soft Rot

    PubMed Central

    Cox, Clayton E.; Desai, Prerak; Porwollik, Steffen; Chu, Weiping; de Moraes, Marcos H.; McClelland, Michael; Brandl, Maria T.; Teplitski, Max

    2017-01-01

    ABSTRACT Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum. The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot. IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility are identified as contributors to the persistence of Salmonella spp. in soft rots. PMID:29247060

  5. Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit.

    PubMed

    Ferraz, Luriany Pompeo; Cunha, Tatiane da; da Silva, Aline Caroline; Kupper, Katia Cristina

    2016-01-01

    Sour rot is a major postharvest disease of citrus fruit and is caused by the fungal pathogen Geotrichum citri-aurantii. A lack of chemicals certified for the control of this disease has led to the consideration of alternative methods and strategies, such as the use of yeasts as biocontrol agents. The purpose of the present study was to test the ability of yeasts isolated from leaves, flowers, fruit, and soil, and six Saccharomyces cerevisiae isolates to control citrus sour rot, to assess the mechanisms of action of the yeast isolates that were demonstrated to be effective for biocontrol, and to identify the most effective yeast isolates for the biocontrol of G. citri-aurantii. In in vivo assays, three yeast isolates (ACBL-23, ACBL-44, and ACBL-77) showed a potential for controlling sour rot in citrus fruits, both preventatively and curatively. Most of the eight yeast isolates that were assessed for a mechanism of action did not produce antifungal compounds in an amount sufficient to inhibit the growth of the pathogen. Additionally, nutrient competition among the yeast strains was not found to be a biocontrol strategy. Instead, killer activity and hydrolytic enzyme production were identified as the major mechanisms involved in the biocontrol activity of the yeasts. Isolates ACBL-23, ACBL-44, and ACBL-77, which controlled sour rot most effectively, were identified as Rhodotorula minuta, Candida azyma, and Aureobasidium pullulans, respectively. To our knowledge, this is the first report of the potential of C. azyma as a biological control agent against a postharvest pathogen and its ability to produce a killer toxin. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Development and Evaluation of Glycine max Germplasm Lines with Quantitative Resistance to Sclerotinia sclerotiorum

    PubMed Central

    McCaghey, Megan; Willbur, Jaime; Ranjan, Ashish; Grau, Craig R.; Chapman, Scott; Diers, Brian; Groves, Carol; Kabbage, Mehdi; Smith, Damon L.

    2017-01-01

    Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot, is a devastating fungal pathogen of soybean that can cause significant yield losses to growers when environmental conditions are favorable for the disease. The development of resistant varieties has proven difficult. However, poor resistance in commercial cultivars can be improved through additional breeding efforts and understanding the genetic basis of resistance. The objective of this project was to develop soybean germplasm lines that have a high level of Sclerotinia stem rot resistance to be used directly as cultivars or in breeding programs as a source of improved Sclerotinia stem rot resistance. Sclerotinia stem rot-resistant soybean germplasm was developed by crossing two sources of resistance, W04-1002 and AxN-1-55, with lines exhibiting resistance to Heterodera glycines and Cadophora gregata in addition to favorable agronomic traits. Following greenhouse evaluations of 1,076 inbred lines derived from these crosses, 31 lines were evaluated for resistance in field tests during the 2014 field season. Subsequently, 11 Sclerotinia stem rot resistant breeding lines were moved forward for field evaluation in 2015, and seven elite breeding lines were selected and evaluated in the 2016 field season. To better understand resistance mechanisms, a marker analysis was conducted to identify quantitative trait loci linked to resistance. Thirteen markers associated with Sclerotinia stem rot resistance were identified on chromosomes 15, 16, 17, 18, and 19. Our markers confirm previously reported chromosomal regions associated with Sclerotinia stem rot resistance as well as a novel region of chromosome 16. The seven elite germplasm lines were also re-evaluated within a greenhouse setting using a cut petiole technique with multiple S. sclerotiorum isolates to test the durability of physiological resistance of the lines in a controlled environment. This work presents a novel and comprehensive classical breeding method for selecting lines with physiological resistance to Sclerotinia stem rot and a range of agronomic traits. In these studies, we identify four germplasm lines; 91–38, 51–23, SSR51–70, and 52–82B exhibiting a high level of Sclerotinia stem rot resistance combined with desirable agronomic traits, including high protein and oil contents. The germplasm identified in this study will serve as a valuable source of physiological resistance to Sclerotinia stem rot that could be improved through further breeding to generate high-yielding commercial soybean cultivars. PMID:28912790

  7. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedges, J.I.; Weliky, K.; Devol, A.H.

    1988-11-01

    Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Althoughmore » two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural environments can be explained by white-rot fungal degradation.« less

  8. Candidate gene association mapping of Sclerotinia stalk rot resistance in sunflower (Helianthus annuus L.) uncovers the importance of COI1 homologs.

    PubMed

    Talukder, Zahirul I; Hulke, Brent S; Qi, Lili; Scheffler, Brian E; Pegadaraju, Venkatramana; McPhee, Kevin; Gulya, Thomas J

    2014-01-01

    Functional markers for Sclerotinia basal stalk rot resistance in sunflower were obtained using gene-level information from the model species Arabidopsis thaliana. Sclerotinia stalk rot, caused by Sclerotinia sclerotiorum, is one of the most destructive diseases of sunflower (Helianthus annuus L.) worldwide. Markers for genes controlling resistance to S. sclerotiorum will enable efficient marker-assisted selection (MAS). We sequenced eight candidate genes homologous to Arabidopsis thaliana defense genes known to be associated with Sclerotinia disease resistance in a sunflower association mapping population evaluated for Sclerotinia stalk rot resistance. The total candidate gene sequence regions covered a concatenated length of 3,791 bp per individual. A total of 187 polymorphic sites were detected for all candidate gene sequences, 149 of which were single nucleotide polymorphisms (SNPs) and 38 were insertions/deletions. Eight SNPs in the coding regions led to changes in amino acid codons. Linkage disequilibrium decay throughout the candidate gene regions declined on average to an r (2) = 0.2 for genetic intervals of 120 bp, but extended up to 350 bp with r (2) = 0.1. A general linear model with modification to account for population structure was found the best fitting model for this population and was used for association mapping. Both HaCOI1-1 and HaCOI1-2 were found to be strongly associated with Sclerotinia stalk rot resistance and explained 7.4 % of phenotypic variation in this population. These SNP markers associated with Sclerotinia stalk rot resistance can potentially be applied to the selection of favorable genotypes, which will significantly improve the efficiency of MAS during the development of stalk rot resistant cultivars.

  9. Efficacy of gaseous ozone to counteract postharvest table grape sour rot.

    PubMed

    Pinto, L; Caputo, L; Quintieri, L; de Candia, S; Baruzzi, F

    2017-09-01

    This work aims at studying the efficacy of low doses of gaseous ozone in postharvest control of the table grape sour rot, a disease generally attributed to a consortium of non-Saccharomyces yeasts (NSY) and acetic acid bacteria (AAB). Sour rot incidence of wounded berries, inoculated with 8 NSYstrains, or 7 AAB, or 56 yeast-bacterium associations, was monitored at 25 °C up to six days. Sour rot incidence in wounded berries inoculated with yeast-bacterium associations resulted higher than in berries inoculated with one single NSY or AAB strain. Among all NSY-AAB associations, the yeast-bacterium association composed of Candida zemplinina CBS 9494 (Cz) and Acetobacter syzygii LMG 21419 (As) showed the highest prevalence of sour rot; thus, after preliminary in vitro assays, this simplified As-Cz microbial consortium was inoculated in wounded berries that were stored at 4 °C for ten days under ozone (2.14 mg m -3 ) or in air. At the end of cold storage, no berries showed sour-rot symptoms although ozonation mainly affected As viable cell count. After additional 12 days at 25 °C, the sour rot index of inoculated As-Cz berries previously cold-stored under ozone or in air accounted for 22.6 ± 3.7% and 66.7 ± 4.5%, respectively. Molecular analyses of dominant AAB and NSY populations of both sound and rotten berries during post-refrigeration period revealed the appearance of new strains mainly belonging to Gluconobacter albidus and Hanseniaspora uvarum species, respectively. Cold ozonation resulted an effective approach to extend the shelf-life of table grapes also after cold storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Apple ring rot-responsive putative microRNAs revealed by high-throughput sequencing in Malus × domestica Borkh.

    PubMed

    Yu, Xin-Yi; Du, Bei-Bei; Gao, Zhi-Hong; Zhang, Shi-Jie; Tu, Xu-Tong; Chen, Xiao-Yun; Zhang, Zhen; Qu, Shen-Chun

    2014-08-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which silence target mRNA via cleavage or translational inhibition to function in regulating gene expression. MiRNAs act as important regulators of plant development and stress response. For understanding the role of miRNAs responsive to apple ring rot stress, we identified disease-responsive miRNAs using high-throughput sequencing in Malus × domestica Borkh.. Four small RNA libraries were constructed from two control strains in M. domestica, crabapple (CKHu) and Fuji Naga-fu No. 6 (CKFu), and two disease stress strains, crabapple (DSHu) and Fuji Naga-fu No. 6 (DSFu). A total of 59 miRNA families were identified and five miRNAs might be responsive to apple ring rot infection and validated via qRT-PCR. Furthermore, we predicted 76 target genes which were regulated by conserved miRNAs potentially. Our study demonstrated that miRNAs was responsive to apple ring rot infection and may have important implications on apple disease resistance.

  11. Contribution of the Salmonella enterica KdgR Regulon to Persistence of the Pathogen in Vegetable Soft Rots

    PubMed Central

    George, Andrée S.; Salas González, Isai; Lorca, Graciela L.

    2015-01-01

    During their colonization of plants, human enteric pathogens, such as Salmonella enterica, are known to benefit from interactions with phytopathogens. At least in part, benefits derived by Salmonella from the association with a soft rot caused by Pectobacterium carotovorum were shown to be dependent on Salmonella KdgR, a regulator of genes involved in the uptake and utilization of carbon sources derived from the degradation of plant polymers. A Salmonella kdgR mutant was more fit in soft rots but not in the lesions caused by Xanthomonas spp. and Pseudomonas spp. Bioinformatic, phenotypic, and gene expression analyses demonstrated that the KdgR regulon included genes involved in uptake and metabolism of molecules resulting from pectin degradation as well as those central to the utilization of a number of other carbon sources. Mutant analyses indicated that the Entner-Doudoroff pathway, in part controlled by KdgR, was critical for the persistence within soft rots and likely was responsible for the kdgR phenotype. PMID:26682862

  12. Evaluation of Muscodor suthepensis strain CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum.

    PubMed

    Suwannarach, Nakarin; Bussaban, Boonsom; Nuangmek, Wipornpan; Pithakpol, Wasna; Jirawattanakul, Bantoon; Matsui, Kenji; Lumyong, Saisamorn

    2016-01-15

    This study investigated both the in vitro and in vivo biofumigant ability of the endophytic fungus Muscodor suthepensis CMU-Cib462 to control Penicillium digitatum, the main cause of tangerine fruit rot. Volatile compounds from M. suthepensis inhibited mycelial growth of the pathogen. The most abundant compound was 2-methylpropanoic acid, followed by 3-methylbutan-1-ol. They showed median effective doses (ED50) on P. digitatum growth of 74.91 ± 0.73 and 250.29 ± 0.29 µL L(-1) airspace respectively. Rye grain was found to be a suitable solid medium for M. suthepensis inoculum production. The results indicated that mycofumigation with a 30 g rye grain culture of M. suthepensis for 12 h controlled tangerine fruit rot. The percentage weight loss and soluble solids concentration of fumigated tangerines were similar to those of non-infected and non-fumigated fruits. Muscodor suthepensis has potential as a biofumigant for controlling postharvest disease of tangerine fruit. © 2015 Society of Chemical Industry.

  13. Comparative proteomic analysis of oil palm leaves infected with Ganoderma boninense revealed changes in proteins involved in photosynthesis, carbohydrate metabolism, and immunity and defense.

    PubMed

    Jeffery Daim, Leona Daniela; Ooi, Tony Eng Keong; Ithnin, Nalisha; Mohd Yusof, Hirzun; Kulaveerasingam, Harikrishna; Abdul Majid, Nazia; Karsani, Saiful Anuar

    2015-08-01

    The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Characterization of rhizosphere bacteria for control of phytopathogenic fungi of tomato.

    PubMed

    Pastor, Nicolás; Carlier, Evelin; Andrés, Javier; Rosas, Susana B; Rovera, Marisa

    2012-03-01

    Fluorescent Pseudomonas spp., isolated from rhizosphere soil of tomato and pepper plants, were evaluated in vitro as potential antagonists of fungal pathogens. Strains were characterized using the API 20NE biochemical system, and tested against the causal agents of stem canker and leaf blight (Alternaria alternata f. sp. lycopersici), southern blight (Sclerotium rolfsii Sacc.), and root rot (Fusarium solani). To this end, dual culture antagonism assays were carried out on 25% Tryptic Soy Agar, King B medium, and Potato Dextrose Agar to determine the effect of the strains on mycelial growth of the pathogens. The effect of two concentrations of FeCl(3) on antagonism against Alternaria alternata f. sp. lycopersici was also tested. In addition, strains were screened for ability to produce exoenzymes and siderophores. Finally, the selected Pseudomonas strain, PCI2, was evaluated for effect on tomato seedling development and as a potential candidate for controlling tomato damping-off caused by Sclerotium rolfsii Sacc., under growth chamber conditions. All strains significantly inhibited Alternaria alternata f. sp. lycopersici, particularly in 25% TSA medium. Antagonistic effect on Sclerotium rolfsii Sacc. and Fusarium solani was greater on King B medium. Protease was produced by 30% of the strains, but no strains produced cellulase or chitinase. Growth chamber studies resulted in significant increases in plant stand as well as in root dry weight. PCI2 was able to establish and survive in tomato plants rhizosphere after 40 days following planting of bacterized seeds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Report of postharvest rot of kiwifruit in Korea caused by Sclerotinia sclerotiorum.

    PubMed

    Lee, Jung Han; Kwon, Young Ho; Kwack, Yong-Bum; Kwak, Youn-Sig

    2015-08-03

    In May 2014, sclerotinia rot symptoms caused by Sclerotinia sclerotiorum were observed on stored kiwifruit in Jinju, South Korea. The symptoms appeared as soft, water-soaked lesions on fruit covered with a white mycelium. The morphological characteristics and the internal transcribed spacer sequences of rRNA of the pathogen isolated from the sclerotinia rot showed it to be S. sclerotiorum. This was confirmed by performing a pathogenicity test with pure cultures of S. sclerotiorum and by reisolating S. sclerotiorum from artificially inoculated kiwifruits. Our results should help promote a better understanding of the diseases that affect kiwifruit and improve practices for postharvest disease control in the kiwifruit industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects.

    PubMed

    Kazan, Kemal; Gardiner, Donald M

    2017-11-04

    Diseases caused by Fusarium pathogens inflict major yield and quality losses on many economically important plant species worldwide, including cereals. Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is a cereal disease that occurs in many arid and semi-arid cropping regions of the world. In recent years, this disease has become more prevalent, in part as a result of the adoption of moisture-preserving cultural practices, such as minimum tillage and stubble retention. In this pathogen profile, we present a brief overview of recent research efforts that have not only advanced our understanding of the interactions between F. pseudograminearum and cereal hosts, but have also provided new disease management options. For instance, significant progress has been made in the genetic characterization of pathogen populations, the development of new tools for disease prediction, and the identification and pyramiding of loci that confer quantitative resistance to FCR in wheat and barley. In addition, transcriptome analyses have revealed new insights into the processes involved in host defence. Significant progress has also been made in understanding the mechanistic details of the F. pseudograminearum infection process. The sequencing and comparative analyses of the F. pseudograminearum genome have revealed novel virulence factors, possibly acquired through horizontal gene transfer. In addition, a conserved pathogen gene cluster involved in the degradation of wheat defence compounds has been identified, and a role for the trichothecene toxin deoxynivalenol (DON) in pathogen virulence has been reported. Overall, a better understanding of cereal host-F. pseudograminearum interactions will lead to the development of new control options for this increasingly important disease problem. Taxonomy: Fusarium pseudograminearum O'Donnell & Aoki; Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Sordariomycetes; Subclass Hypocreomycetidae; Order Hypocreales; Family Nectriaceae; Genus Fusarium. Disease symptoms: Fusarium crown rot caused by F. pseudograminearum is also known as crown rot, foot rot and root rot. Infected seedlings can die before or after emergence. If infected seedlings survive, typical disease symptoms are browning of the coleoptile, subcrown internode, lower leaf sheaths and adjacent stems and nodal tissues; this browning can become evident within a few weeks after planting or throughout plant development. Infected plants may develop white heads with no or shrivelled grains. Disease symptoms are exacerbated under water limitation. Identification and detection: Fusarium pseudograminearum macroconidia usually contain three to five septa (22-60.5 × 2.5-5.5 μm). On potato dextrose agar (PDA), aerial mycelia appear floccose and reddish white, with red or reddish-brown reverse pigmentation. Diagnostic polymerase chain reaction (PCR) tests based on the amplification of the gene encoding translation elongation factor-1a (TEF-1a) have been developed for molecular identification. Host range: All major winter cereals can be colonized by F. pseudograminearum. However, the main impact of this pathogen is on bread (Triticum aestivum L.) and durum (Triticum turgidum L. spp. durum (Dest.)) wheat and barley (Hordeum vulgare L.). Oats (Avena sativa L.) can be infected, but show little or no disease symptoms. In addition, the pathogen has been isolated from various other grass genera, such as Phalaris, Agropyron and Bromus, which may occur as common weeds. Useful websites: https://nt.ars-grin.gov/fungaldatabases/; http://plantpath.psu.edu/facilities/fusarium-research-center; https://nt.ars-grin.gov/fungaldatabases/; http://www.speciesfungorum.org/Names/Names.asp. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  17. A sensitive and stable confocal Fabry-Pérot interferometer for surface ultrasonic vibration detection

    NASA Astrophysics Data System (ADS)

    Ding, Hong-sheng; Tong, Li-ge; Chen, Geng-hua

    2001-08-01

    A new confocal Fabry-Pérot interferometer (CFPI) has been constructed. By using both of the conjugate rays, the sensitivity of the system was doubled. Moreover, the negative feedback control loop of a single-chip microcomputer (MCS-51) was applied to stabilize the working point at an optimum position. The system has been used in detecting the piezoelectric ultrasonic vibration on the surface of an aluminium sample.

  18. Induced resistance in tomato fruit by γ-aminobutyric acid for the control of alternaria rot caused by Alternaria alternata.

    PubMed

    Yang, Jiali; Sun, Cui; Zhang, Yangyang; Fu, Da; Zheng, Xiaodong; Yu, Ting

    2017-04-15

    The study investigated the effect of γ-aminobutyric acid (GABA) on the control of alternaria rot in tomato fruit and the possible mechanism involved. Our results showed exogenous GABA could stimulate remarkable resistance to the alternaria rot, while it had no direct antifungal activity against Alternaria alternata. Moreover, the activities of antioxidant enzymes, including peroxidase, superoxide dismutase and catalase, along with the expression of these corresponding genes, were significantly induced in the GABA treatment. The obtained data suggested GABA induced resistance against the necrotrophic pathogen A. alternata, at least in part by activating antioxidant enzymes, restricting the levels of cell death caused by reactive oxygen species. Meanwhile, the key enzyme genes of GABA shunt, GABA transaminase and succinic-semialdehyde dehydrogenase, were found up-regulated in the GABA treatment. The activation of the GABA shunt might play a vital role in the resistance mechanism underpinning GABA-induced plant immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Over-expression of the Pseudomonas syringae harpin-encoding gene hrpZm confers enhanced tolerance to Phytophthora root and stem rot in transgenic soybean.

    PubMed

    Du, Qian; Yang, Xiangdong; Zhang, Jinhua; Zhong, Xiaofang; Kim, Kyung Seok; Yang, Jing; Xing, Guojie; Li, Xiaoyu; Jiang, Zhaoyuan; Li, Qiyun; Dong, Yingshan; Pan, Hongyu

    2018-06-01

    Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most devastating diseases reducing soybean (Glycine max) production all over the world. Harpin proteins in many plant pathogenic bacteria were confirmed to enhance disease and insect resistance in crop plants. Here, a harpin protein-encoding gene hrpZpsta from the P. syringae pv. tabaci strain Psta218 was codon-optimized (renamed hrpZm) and introduced into soybean cultivars Williams 82 and Shennong 9 by Agrobacterium-mediated transformation. Three independent transgenic lines over-expressing hrpZm were obtained and exhibited stable and enhanced tolerance to P. sojae infection in T 2 -T 4 generations compared to the non-transformed (NT) and empty vector (EV)-transformed plants. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of salicylic acid-dependent genes PR1, PR12, and PAL, jasmonic acid-dependent gene PPO, and hypersensitive response (HR)-related genes GmNPR1 and RAR was significantly up-regulated after P. sojae inoculation. Moreover, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), peroxidase, and superoxide dismutase also increased significantly in the transgenic lines compared to the NT and EV-transformed plants after inoculation. Our results suggest that over-expression of the hrpZm gene significantly enhances PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways, thus providing an alternative approach for development of soybean varieties with improved tolerance against the soil-borne pathogen PRR.

  20. Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone-patellar tendon-bone graft.

    PubMed

    Suzuki, Tomoyuki; Shino, Konsei; Otsubo, Hidenori; Suzuki, Daisuke; Mae, Tatsuo; Fujimiya, Mineko; Yamashita, Toshihiko; Fujie, Hiromichi

    2014-10-01

    The purpose of this study was to evaluate the effectiveness of 2 anterior cruciate ligament (ACL) reconstruction techniques using a bone-patellar tendon-bone (BPTB) graft with femoral tunnel, either a rectangular tunnel (RET) or a round tunnel (ROT). For experiment 1, nine fresh-frozen human cadaveric knees were tested with a robotic/universal force-moment sensor system to determine the initial optimal tension: the amount of graft tension at 15° of flexion most closely resembling the anterior laxity of a normal knee. The value was estimated by repeatedly measuring anterior laxity when 100 N of anteroposterior drawer load was applied to the knees at 30° of flexion after RET ACL or ROT ACL reconstruction. For experiment 2, six fresh-frozen human cadaveric knees were selected. On the basis of the initial tension determined in experiment 1, RET ACL reconstruction was conducted with the graft tensioned to 10 N, followed by ROT ACL reconstruction on the same knee at 40 N of initial tension, and the biomechanical efficacy of the 2 methods was compared. For experiment 1, the mean laxity match tension at 15° of flexion was 8.6 ± 4.8 N and 34.8 ± 9.2 N for RET- and ROT-reconstructed knees, respectively. For experiment 2, both RET and ROT ACL reconstructions were successful in controlling anterior tibial translation under anterior tibial loads, with the graft initially tensioned to 10 N in the former and to 40 N in the latter. However, the greater tensioning in ROT reconstruction led to proximal, posterior, and lateral displacement of the tibia along with its external and valgus rotation. The RET ACL-reconstructed knee more closely resembled the normal knee in biomechanical behavior. Although ROT reconstruction successfully controlled anterior translation with greater initial tensioning to the graft, the normal positional relation between the tibia and femur was impaired. Rectangular femoral ACL fixation constructs and grafts may prove more efficacious at restoring in vivo ACL kinematics than round femoral tunnels. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  1. Potential of UVC germicidal irradiation in suppressing crown rot disease, retaining postharvest quality and antioxidant capacity of Musa AAA "Berangan" during fruit ripening.

    PubMed

    S Mohamed, Nuratika Tamimi; Ding, Phebe; Kadir, Jugah; M Ghazali, Hasanah

    2017-09-01

    Crown rot caused by fungal pathogen is the most prevalent postharvest disease in banana fruit that results significant economic losses during transportation, storage, and ripening period. Antifungal effects of ultraviolet C (UVC) irradiation at doses varied from 0.01 to 0.30 kJ m -2 were investigated in controlling postharvest crown rot disease, maintenance of fruit quality, and the effects on antioxidant capacity of Berangan banana fruit during ripening days at 25 ± 2°C and 85% RH. Fruits irradiated with 0.30 kJ m -2 exhibited the highest (i.e., 62.51%) reduction in disease severity. However, the application of UVC at all doses caused significant browning damages on fruit peel except the dose of 0.01 kJ m -2 . This dose synergistically reduced 46.25% development of postharvest crown and did not give adverse effects on respiration rate, ethylene production, weight loss, firmness, color changes, soluble solids concentration, titratable acidity, and pH in banana as compared to the other treatments and control. Meanwhile, the dose also enhanced a significant higher level of total phenolic content, FRAP, and DPPH values than in control fruits indicating the beneficial impact of UVC in fruit nutritional quality. The results of scanning electron micrographs confirmed that UVC irradiation retarded the losses of wall compartments, thereby maintained the cell wall integrity in the crown tissue of banana fruit. The results suggest that using 0.01 kJ m -2 UVC irradiation dose as postharvest physical treatment, the crown rot disease has potential to be controlled effectively together with maintaining quality and antioxidant of banana fruit.

  2. Influence of Rotation Crops on the Strawberry Pathogens Pratylenchus penetrans, Meloidogyne hapla, and Rhizoctonia fragariae

    PubMed Central

    LaMondia, J. A.

    1999-01-01

    Field microplot, small plot, and greenhouse experiments were conducted to determine the effects of rotation crops on Pratylenchus penetrans, Meloidogyne hapla, and Rhizoctonia fragariae populations. Extraction of P. penetrans from roots and soil in microplots and field plots planted to rotation crops was highest for Garry oat, lowest for Triple S sorgho-sudangrass and Saia oat, and intermediate for strawberry, buckwheat, and canola. Isolation of R. fragariae from bait roots was highest for strawberry and canola after 2 years of rotation and lowest for Saia oat. Nematode extraction from roots of rotation crops in field soils was generally higher than from roots in microplots. Grasses were nonhosts of M. hapla. Strawberry, canola, and buckwheat supported root-knot populations over time, but there were no differences in nematode numbers regardless of crop after one season of strawberry growth. Garry oat, canola, and, to a lesser extent, buckwheat supported large populations of P. penetrans without visible root symptoms. Strawberry plants supported fewer nematodes due to root damage. Nematode numbers from soil were less than from roots for all crops. While there were similar trends for pathogen recovery after more than 1 year of strawberry growth following rotation, differences in pathogen density and fruit yield were not significant. In the greenhouse, P. penetrans populations in roots and soil in pots were much higher for Garry oat than for Saia oat. Total P. penetrans adult and juvenile numbers per pot ranged from 40 to 880 (mean = 365.6) for Garry oat and 0 to 40 (mean = 8.7) for Saia oat. Production of Saia oat as a rotation crop may be a means of managing strawberry nematodes and black root rot in Connecticut. PMID:19270931

  3. Integrated Metabolomics and Transcriptomics Reveal Enhanced Specialized Metabolism in Medicago truncatula Root Border Cells1[OPEN

    PubMed Central

    Watson, Bonnie S.; Bedair, Mohamed F.; Urbanczyk-Wochniak, Ewa; Huhman, David V.; Yang, Dong Sik; Allen, Stacy N.; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W.

    2015-01-01

    Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4′-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4′-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously. PMID:25667316

  4. Candida pruni sp. nov. is a new yeast species with antagonistic potential against brown rot of peaches.

    PubMed

    Zhang, Dian-peng; Lu, Cai-ge; Zhang, Tao-tao; Spadaro, Davide; Liu, De-wen; Liu, Wei-cheng

    2014-07-01

    Brown rot caused by Monilinia spp. is among the most important postharvest diseases of commercially grown stone fruits, and application of antagonistic yeasts to control brown rot is one promising strategy alternative to chemical fungicides. In this research, new yeast strains were isolated and tested for their activity against peach brown rot caused by Monilinia fructicola. Three yeast strains were originally isolated from the surface of plums (cv Chinese Angelino) collected in the north of China. In artificially wounded inoculation tests, the yeast reduced the brown rot incidence to 20 %. The population of the yeast within inoculated wounds on peaches significantly increased at 25 °C from an initial level of 5.0×10(6) to 4.45×10(7) CFU per wound after 1 day. The antagonistic strains were belonging to a new species of the genus Candida by sequence comparisons of 26 S rDNA D1/D2 domain and internal transcribed spacer region. The strains are most closely related to C. asparagi, C. musae and C. fructus on the basis of the phylogenetic trees based on the D1/D2 region of 26S rDNA. However, the strains are notably different from C. asparagi, C. musae and C. fructus, in morphological and physiological characteristics. Therefore, the name Candida pruni is proposed for the novel species, with sp-Quan (=CBS12814T=KCTC 27526T=GCMC 6582T) as the type strain. Our study showed that Candida pruni is a novel yeast species with potential biocontrol against brown rot caused by M. fructicola on peaches.

  5. Adulthood Exposure to Lipopolysaccharide Exacerbates the Neurotoxic and Inflammatory Effects of Rotenone in the Substantia Nigra

    PubMed Central

    Huang, Chun; Zhu, Li; Li, Huan; Shi, Fu-Guo; Wang, Guo-Qing; Wei, Yi-Zheng; Liu, Jie; Zhang, Feng

    2017-01-01

    Parkinson’s disease (PD) is the second most neurodegenerative disorder with a regional decrease of dopamine (DA) neurons in the substantia nigra (SN). Despite intense exploration, the etiology of PD progressive process remains unclear. This study was to investigate the synergistic effects of systemic inflammation of lipopolysaccharide (LPS) and neurotoxicity of rotenone (ROT) on exacerbating DA neuron lesion. Male SD adulthood rats received a single intraperitoneal injection of LPS. Seven months later, rats were subcutaneously given ROT five times a week for consecutive 4 weeks. Rat behavior changes were assessed via rotarod and open-field tests. Brain SN was immunostained to evaluate DA neuronal loss and microglia activation. Striatum DA and its metabolites levels were determined by high performance liquid chromatography (HPLC) coupled with electrochemistry. The protein levels of α-synuclein (α-Syn), inflammatory factors and mitogen-activated protein kinase (MAPK) pathway activation were detected by western blotting analysis. Results indicated that no significant difference between the control and LPS alone groups was shown. Compared with ROT alone group, LPS combined with ROT significantly reduced motor activity and induced SN DA neurons loss accompanied by the decreased contents of striatum DA and its metabolites. Furthermore, LPS together with ROT enhanced microglia activation and the increased expressions of α-Syn and inflammatory factors and also MAPK signaling pathway activation. However, LPS alone had no significant effects on the above parameters. These findings suggest that adulthood exposure to LPS exacerbates the neurotoxic and inflammatory effects of ROT in the SN. PMID:28533741

  6. Antifungal properties of organic extracts of eight Cistus L. species against postharvest citrus sour rot.

    PubMed

    Karim, H; Boubaker, H; Askarne, L; Talibi, I; Msanda, F; Boudyach, E H; Saadi, B; Ait Ben Aoumar, A

    2016-01-01

    The effectiveness of methanol and chloroform extracts of eight Cistaceae species to control citrus sour rot decay, caused by Geotrichum citri-aurantii, was investigated in both in vitro and in vivo conditions. Methanol extracts of these plant species exhibited more interesting activity against G. citri-aurantii, in both in vitro and in vivo conditions, compared with chloroforme extracts. Under in vitro trials, obtained results showed that methanol extracts of all tested plants revealed a highest significant antifungal activity with inhibition zones that ranged between 12·33 and 16·33 mm in diameter. All tested methanol extracts totally inhibited spore germination when tested at 10 mg ml(-1) . Incidence of sour rot was significantly lowered to 11·11% when fruits were treated with Cistus populifolius and Cistus ladanifer methanol extracts compared with 100% in the control. The disease severity was lowered to 5·19% and 6·04% when fruits were treated with the same methanol extracts respectively. The methanol Cistus extracts had sufficient antifungal activities in vitro and in vivo against G. citri-aurantii to consider its use in the citrus industry after it has been tested under production and natural infection conditions. Such natural products therefore represent a viable alternative approaches for sour rot postharvest management of citrus. © 2015 The Society for Applied Microbiology.

  7. Onion Thrips (Thysanoptera: Thripidae) Feeding Promotes Infection By Pantoea ananatis in Onion.

    PubMed

    Grode, Ari; Chen, Shicheng; Walker, Edward D; Szendrei, Zsofia

    2017-12-05

    Onion thrips, Thrips tabaci Lindeman, is a primary insect pest of onions (Allium cepa) worldwide. Onion thrips cause feeding damage by destroying epidermal tissue. They are also vectors of Pantoea ananatis (Serrano) Mergaert, the bacteria that causes center rot. Onions with center rot develop white streaks with water-soaked margins along the onion leaves, which turn necrotic and lead to bulb rot during storage. The role of thrips feeding on the establishment and progression of bacterial infection in onions has not been investigated. Onions infested with thrips and inoculated with P. ananatis had more necrotic tissue and symptoms were more severe with increasing thrips density. We conducted a fluorescence microscopy study that examined how P. ananatis (expressing a fluorescence protein gene) colonized a control group of onions without thrips in comparison to a test group of onions with thrips. We found that P. ananatis colonized some onions in the control group because of naturally existing wounds in the epidermal tissue but more colonization was found in the thrips infested group because of the increased presence of entry points caused by thrips feeding. Overall, our results demonstrate that wounds caused by thrips feeding facilitate center rot development by providing entry sites for the bacteria into leaf tissue. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Isolation, characterization, and identification of biological control agent for potato soft rot in Bangladesh.

    PubMed

    Rahman, M M; Ali, M E; Khan, A A; Akanda, A M; Uddin, Md Kamal; Hashim, U; Abd Hamid, S B

    2012-01-01

    A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacterium Erwinia carotovora subsp. carotovora (Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was tested in vitro against the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited the in vitro growth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genus Bacillus and the isolate E-45 as Lactobacillus sp. The stronger antagonistic activity against Ecc P-138 was found in E-65 in vitro screening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5-62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers.

  9. Isolation, Characterization, and Identification of Biological Control Agent for Potato Soft Rot in Bangladesh

    PubMed Central

    Rahman, M. M.; Ali, M. E.; Khan, A. A.; Akanda, A. M.; Uddin, Md. Kamal; Hashim, U.; Abd Hamid, S. B.

    2012-01-01

    A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacterium Erwinia carotovora subsp. carotovora (Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was tested in vitro against the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited the in vitro growth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genus Bacillus and the isolate E-45 as Lactobacillus sp. The stronger antagonistic activity against Ecc P-138 was found in E-65 in vitro screening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5–62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers. PMID:22645446

  10. Magneto-encephalographic measurement of neural activity during period of vertigo induced by cold caloric stimulation.

    PubMed

    Kandori, Akihiko; Oe, Hiroshi; Miyashita, Kotaro; Ohira, Shinji; Naritomi, Hiroaki; Chiba, Yoshihide; Ogata, Kuniomi; Murakami, Masahiro; Miyashita, Tsuyoshi; Tsukada, Keiji

    2003-07-01

    The aim of this study was to investigate neural activity during period of vertiginous sensation, induced by caloric stimulation. After caloric vestibular stimulation (CVS) by cold water of five volunteers (n=5, age: 30+/-10), auditory evoked magnetic fields (AEFs) during the subsequent period of vertiginous sensations were measured by magnetoencephalography (MEG). Current-arrow maps (CAMs) were produced to estimate the spatial current distribution of the AEF responses, and a rotation value (dI(rot)) was calculated from the CAM. The worth of the dI(rot) values as indicators of vertigo was evaluated by comparing them with earlier reported values for elderly control (n=11, age: 67+/-5) and chronic dizziness (CD) (n=27, age: 68+/-8) groups (obtained from AEF responses with no the CVS). Although all volunteers felt vertigo during the AEF measurements, the AEF waveforms and CAM pattern only showed slight changes. While the dI(rot) values (1.43+/-0.73) just after CVS were not significantly different from those (1.59+/-0.46) for the elderly controls, they were significantly different from those (3.54+/-1.34) for the CD patients. These findings suggest that (i) the new parameter (dI(rot)) is more sensitively indicates dizziness (non-rotatory sensation) than vertigo (ii) the auditory cortical region may play an important role in body-balance perception of floating sensations.

  11. Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study.

    PubMed

    Prabhu, S Ashok; Ndlovu, Buyani; Engelbrecht, Juanita; van den Berg, Noëlani

    2017-01-01

    Avocado (Persea americana (Mill.)), an important commercial fruit, is severely affected by Phytophthora Root Rot in areas where the pathogen is prevalent. However, advances in molecular research are hindered by the lack of a high-throughput transient transformation system in this non-model plant. In this study, a proof-of-concept is demonstrated by the successful application of Agrobacterium rhizogenes-mediated plant transformation to produce composite avocado plants. Two ex vitro strategies were assessed on two avocado genotypes (Itzamna and A0.74): In the first approach, 8-week-old etiolated seedlings were scarred with a sterile hacksaw blade at the base of the shoot, and in the second, inch-long incisions were made at the base of the shoot (20-week-old non-etiolated plants) with a sterile blade to remove the cortical tissue. The scarred/wounded shoot surfaces were treated with A. rhizogenes strains (K599 or ARqua1) transformed with or without binary plant transformation vectors pRedRootII (DsRed1 marker), pBYR2e1-GFP (GFP- green fluorescence protein marker) or pBINUbiGUSint (GUS- beta-glucuronidase marker) with and without rooting hormone (Dip 'N' Grow) application. The treated shoot regions were air-layered with sterile moist cocopeat to induce root formation. Results showed that hormone application significantly increased root induction, while Agrobacterium-only treatments resulted in very few roots. Combination treatments of hormone+Agrobacterium (-/+ plasmids) showed no significant difference. Only the ARqua1(+plasmid):A0.74 combination resulted in root transformants, with hormone+ARqua1(+pBINUbiGUSint) being the most effective treatment with ~17 and 25% composite plants resulting from strategy-1 and strategy-2, respectively. GUS- and GFP-expressing roots accounted for less than 4 and ~11%, respectively, of the total roots/treatment/avocado genotype. The average number of transgenic roots on the composite plants was less than one per plant in all treatments. PCR and Southern analysis further confirmed the transgenic nature of the roots expressing the screenable marker genes. Transgenic roots showed hyper-branching compared to the wild-type roots but this had no impact on Phytophthora cinnamomi infection. There was no difference in pathogen load 7-days-post inoculation between transformed and control roots. Strategy-2 involving A0.74:ARqua1 combination was the best ex vitro approach in producing composite avocado plants. The approach followed in this proof-of-concept study needs further optimisation involving multiple avocado genotypes and A. rhizogenes strains to achieve enhanced root transformation efficiencies, which would then serve as an effective high-throughput tool in the functional screening of host and pathogen genes to improve our understanding of the avocado-P. cinnamomi interaction.

  12. Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study

    PubMed Central

    Prabhu, S. Ashok; Ndlovu, Buyani; Engelbrecht, Juanita

    2017-01-01

    Avocado (Persea americana (Mill.)), an important commercial fruit, is severely affected by Phytophthora Root Rot in areas where the pathogen is prevalent. However, advances in molecular research are hindered by the lack of a high-throughput transient transformation system in this non-model plant. In this study, a proof-of-concept is demonstrated by the successful application of Agrobacterium rhizogenes-mediated plant transformation to produce composite avocado plants. Two ex vitro strategies were assessed on two avocado genotypes (Itzamna and A0.74): In the first approach, 8-week-old etiolated seedlings were scarred with a sterile hacksaw blade at the base of the shoot, and in the second, inch-long incisions were made at the base of the shoot (20-week-old non-etiolated plants) with a sterile blade to remove the cortical tissue. The scarred/wounded shoot surfaces were treated with A. rhizogenes strains (K599 or ARqua1) transformed with or without binary plant transformation vectors pRedRootII (DsRed1 marker), pBYR2e1-GFP (GFP- green fluorescence protein marker) or pBINUbiGUSint (GUS- beta-glucuronidase marker) with and without rooting hormone (Dip 'N' Grow) application. The treated shoot regions were air-layered with sterile moist cocopeat to induce root formation. Results showed that hormone application significantly increased root induction, while Agrobacterium-only treatments resulted in very few roots. Combination treatments of hormone+Agrobacterium (-/+ plasmids) showed no significant difference. Only the ARqua1(+plasmid):A0.74 combination resulted in root transformants, with hormone+ARqua1(+pBINUbiGUSint) being the most effective treatment with ~17 and 25% composite plants resulting from strategy-1 and strategy-2, respectively. GUS- and GFP-expressing roots accounted for less than 4 and ~11%, respectively, of the total roots/treatment/avocado genotype. The average number of transgenic roots on the composite plants was less than one per plant in all treatments. PCR and Southern analysis further confirmed the transgenic nature of the roots expressing the screenable marker genes. Transgenic roots showed hyper-branching compared to the wild-type roots but this had no impact on Phytophthora cinnamomi infection. There was no difference in pathogen load 7-days-post inoculation between transformed and control roots. Strategy-2 involving A0.74:ARqua1 combination was the best ex vitro approach in producing composite avocado plants. The approach followed in this proof-of-concept study needs further optimisation involving multiple avocado genotypes and A. rhizogenes strains to achieve enhanced root transformation efficiencies, which would then serve as an effective high-throughput tool in the functional screening of host and pathogen genes to improve our understanding of the avocado-P. cinnamomi interaction. PMID:29053757

  13. Spatial Heterogeneity of SOM Concentrations Associated with White-rot Versus Brown-rot Wood Decay.

    PubMed

    Bai, Zhen; Ma, Qiang; Dai, Yucheng; Yuan, Haisheng; Ye, Ji; Yu, Wantai

    2017-10-23

    White- and brown-rot fungal decay via distinct pathways imparts characteristic molecular imprints on decomposing wood. However, the effect that a specific wood-rotting type of fungus has on proximal soil organic matter (SOM) accumulation remains unexplored. We investigated the potential influence of white- and brown-rot fungi-decayed Abies nephrolepis logs on forest SOM stocks (i.e., soil total carbon (C) and nitrogen (N)) and the concentrations of amino sugars (microbial necromass) at different depths and horizontal distances from decaying woody debris. The brown-rot fungal wood decay resulted in higher concentrations of soil C and N and a greater increase in microbial necromass (i.e., 1.3- to 1.7-fold greater) than the white-rot fungal wood decay. The white-rot sets were accompanied by significant differences in the proportions of the bacterial residue index (muramic acid%) with soil depth; however, the brown-rot-associated soils showed complementary shifts, primarily in fungal necromass, across horizontal distances. Soil C and N concentrations were significantly correlated with fungal rather than bacterial necromass in the brown-rot systems. Our findings confirmed that the brown-rot fungi-dominated degradation of lignocellulosic residues resulted in a greater SOM buildup than the white-rot fungi-dominated degradation.

  14. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi

    PubMed Central

    Riley, Robert; Salamov, Asaf A.; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitrios; Held, Benjamin W.; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika A.; Sun, Hui; LaButti, Kurt M.; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio G.; Walton, Jonathan D.; Blanchette, Robert A.; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David S.; Grigoriev, Igor V.

    2014-01-01

    Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay. PMID:24958869

  15. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage.

    PubMed

    Liu, Yiqing; Wisniewski, Michael; Kennedy, John F; Jiang, Yusong; Tang, Jianmin; Liu, Jia

    2016-10-20

    The ability of chitosan and oligochitosan to enhance ginger (Zingiber officinale) resistance to rhizome rot caused by Fusarium oxysporum in storage was investigated. Both chitosan and oligochitosan at 1 and 5g/L significantly inhibited rhizome rot, with the best control at 5g/L. Chitosan and oligochitosan applied at 5g/L also reduced weight loss, measured as a decrease in fresh weight, but did not affect soluble solids content or titratable acidity of rhizomes. The two compounds applied at 5g/L induced β-1,3-glucanase and phenylalanine ammonia-lyase enzyme activity and the transcript levels of their coding genes, as well as the total phenolic compounds in rhizome tissues. Therefore, the ability of chitosan and oligochitosan to reduce rot in stored rhizomes may be associated with their ability to induce defense responses in ginger. These results have practical implications for the application of chitosan and oligochitosan to harvested ginger rhizomes to reduce postharvest losses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Characterization and Reclassification of Yeasts Used for Biological Control of Postharvest Diseases of Fruits and Vegetables

    PubMed Central

    McLaughlin, R. J.; Wilson, C. L.; Chalutz, E.; Kurtzman, C. P.; Fett, W. F.; Osman, S. F.

    1990-01-01

    In previous studies workers have shown that three yeast strains (strains US-7, 82, and 101) have biological control activity against various postharvest fungal pathogens of fruits and vegetables, including Penicillium rots of apples and citrus and Botrytis rot of apples. In these reports the researchers have described these strains as Debaryomyces hansenii (anamorph, Candida famata) or Candida sp. strains. In this study we performed additional physiological, DNA reassociation, and mannan characterization tests that clearly established a new taxonomic classification for these strains, Candida guilliermondii. We also propose amendment of the physiological test profile in the taxonomic description of C. guilliermondii. PMID:16348361

  17. Effect of different cultural systems on antioxidant capacity, phenolic content, and fruit quality of strawberries (Fragaria x aranassa Duch.).

    PubMed

    Wang, Shiow Y; Millner, Patricia

    2009-10-28

    The effect of cultivation practices for controlling strawberry black root rot (BRR) on fruit quality, antioxidant capacity, and flavonoid content in two strawberry cultivars Allstar and Chandler (Fragaria x ananassa Duch.) was evaluated. Strawberry fruits used in this study were from plants grown in soils which had a prior history of BRR and red stele, and had not been fumigated during the seven years prior to the study. Results from this study showed that fruit from plants grown in compost socks had significantly higher oxygen radical absorbance capacity (ORAC), flavonoids, anthocyanins, soluble solids content (SSC), titratable acid (TA), fructose, glucose, sucrose, malic acid, and citric acid than fruit produced in the black plastic mulch or matted row systems. Cultivar Chandler surpassed cv. Allstar in sugar content, acid content, and flavonoid content regardless of preplanting vinegar drenching and various culture treatments. However, preplanting vinegar treatment increased cyanidin-based and pelargonidin-based anthocyanins but decreased sugar content in fruits of both cultivars.

  18. CFIRP: What we learned in the first ten years

    USGS Publications Warehouse

    Chambers, C.L.; McComb, W.C.; Tappeiner, J. C.; Kellogg, L.D.; Johnson, R.L.; Spycher, G.

    1999-01-01

    In response to public dissatisfaction with forest management methods, we initiated the College of Forestry Integrated Research Project (CFIRP) to test alternative silvicultural systems in Douglas-fir (Pseudotsuga menziesii stands in western Oregon. We compared costs and biological and human responses among a control and three replicated silvicultural alternatives to clearcutting that retained structural features found in old Douglas-fir forests. Treatments were applied within 8- to 15-ha stands and attempted to mimic crown fires (modified clearcut), windthrow (green tree retention), and small-scale impacts such as root rot diseases (small patch group selection). We also compared costs in three unreplicated treatments (large patch group selection, wedge cut, and strip cut). Each treatment included differences in the pattern of retained dead trees (snags), as either scattered individuals or as clumps. Good communication among researchers and managers, a long-term commitment to the project, and careful documentation of research sites and data are important to the success of long-term silvicultural research projects. To date, over 30 publications have resulted from the project.

  19. Changes in metabolic activities of Fusarium oxysporum f. fabae and Rhizoctonia solani in response to Dithan A-40 fungicide.

    PubMed

    Zaki, M M; Mahmoud, S A; Hamed, A S; Sahab, A F

    1979-01-01

    The effect of different concentrations of Dithan A-40 fungicide on the metabolic activities of the wilt fungus Fusarium oxysporum f. fabae and the root rot agent Rhizoctonia solani was studied. All toxicant concentrations reduced energy generation, total phosphorus and nitrogen content of both fungi. In addition, the toxicant caused a shift in free amino acids pool. As a result of these changes, the mycelium dry weight of both fungi was greatly reduced. R. solani was more sensitive to the toxic effect of Dithan A-40 than F. oxysporum.

  20. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/ brown rot paradigm for wood decay fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Robert; Salamov, Asaf; Brown, Daren W.

    Basidiomycota (basidiomycetes) make up 32percent of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white rot/brown rotmore » classification paradigm we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically-informed Principal Components Analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs, but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown rot fungi. Our results suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.« less

  1. Characteristics of Korean ginseng varieties of Gumpoong, Sunun, Sunpoong, Sunone, Cheongsun, and Sunhyang.

    PubMed

    Lee, Jang-Ho; Lee, Joon-Soo; Kwon, Woo-Saeng; Kang, Je-Yong; Lee, Dong-Yun; In, Jun-Gyo; Kim, Yun-Soo; Seo, Jiho; Baeg, In-Ho; Chang, Il-Moo; Grainger, Keith

    2015-04-01

    Ginseng (Panax ginseng Meyer) is an important medicinal herbs in Asia. However, ginseng varieties are less developed. To developed ginseng varieties, a pure line selection method was applied in this study. Gumpoong was testing of 4-yr-old specimens in 2002, the proportions of the below-ground roots that were rusty colored for Gumpoong was 1.29 in Daejeon and 1.45 in Eumseong, whereas the proportions for its yellow berry variant were 2.60 and 2.45 in the two regions, respectively. Thus the Gumpoong was resistant to root rust. Sunpoong has a high yielding property. Its average root weight is 70.6 g for 6-yr-old roots. Its yield is 2.9 kg/1.62m(2) and the rate of heaven- and earth-grade product is 20.9%, which is very high compared to 9.4% for Yunpoong. Sunone is resistance to root rot and the survival rate of 4-yr-old roots was 44.4% in 1997, whereas that of the violet-stem variant landrace was 21.7%. Sunhyang has content of arginyl-fructosyl-glucose (AFG), which produces the unique scent of red ginseng, is 95.1 μmol/g and greater than the 30.8 μmol/g of Chunpoong in 6-yr-old plants. Sunun and Cheongsun are being nurtured to protect genetic resources. Developed ginsneg varieties will be used as the basis for the protection of genetic resources and breeding.

  2. Characteristics of Korean ginseng varieties of Gumpoong, Sunun, Sunpoong, Sunone, Cheongsun, and Sunhyang

    PubMed Central

    Lee, Jang-Ho; Lee, Joon-Soo; Kwon, Woo-Saeng; Kang, Je-Yong; Lee, Dong-Yun; In, Jun-Gyo; Kim, Yun-Soo; Seo, Jiho; Baeg, In-Ho; Chang, Il-Moo; Grainger, Keith

    2015-01-01

    Background Ginseng (Panax ginseng Meyer) is an important medicinal herbs in Asia. However, ginseng varieties are less developed. Method To developed ginseng varieties, a pure line selection method was applied in this study. Results Gumpoong was testing of 4-yr-old specimens in 2002, the proportions of the below-ground roots that were rusty colored for Gumpoong was 1.29 in Daejeon and 1.45 in Eumseong, whereas the proportions for its yellow berry variant were 2.60 and 2.45 in the two regions, respectively. Thus the Gumpoong was resistant to root rust. Sunpoong has a high yielding property. Its average root weight is 70.6 g for 6-yr-old roots. Its yield is 2.9 kg/1.62m2 and the rate of heaven- and earth-grade product is 20.9%, which is very high compared to 9.4% for Yunpoong. Sunone is resistance to root rot and the survival rate of 4-yr-old roots was 44.4% in 1997, whereas that of the violet-stem variant landrace was 21.7%. Sunhyang has content of arginyl-fructosyl-glucose (AFG), which produces the unique scent of red ginseng, is 95.1 μmol/g and greater than the 30.8 μmol/g of Chunpoong in 6-yr-old plants. Sunun and Cheongsun are being nurtured to protect genetic resources. Conclusion Developed ginsneg varieties will be used as the basis for the protection of genetic resources and breeding. PMID:26045682

  3. Binding of RDX to Cell Wall Components of Pinus sylvestris and Picea glauca and Three-Year Mineralisation Study of Tissue-Associated RDX Residues.

    PubMed

    Schoenmuth, Bernd; Schenke, Detlef; Scharnhorst, Tanja; Combrinck, Sandra; McCrindle, Robert I; Mueller, Jakob O; Büttner, Carmen; Pestemer, Wilfried

    2015-01-01

    Contamination of soils with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, Research Department Explosive) as a result of military applications is a large-area problem globally. Since coniferous trees dominate the vegetation of large areas of military land in Central Europe, particularly in Germany, the long-term fate of (14)C-RDX in the conifers Scots pine and Dwarf Alberta spruce was studied. Acetic acid was the most effective solvent for the removal of extractable RDX residues from homogenates of RDX-laden tree material (85%, 80-90% and 64-80% for roots, wood and needles, respectively). On average, only a fifth of RDX-derived (14)C was bound in non-extractable residues (NER). Within the main cell wall compartments, lignin was the dominant binding site for NER (needles: 32-62%; roots: 38-42%). Hemicellulose (needles: 11-18%; roots: 6-11%) and cellulose (needles: 12-24%; roots: 1-2%) were less involved in binding and a considerable proportion of NER (needles: 15-24%; roots: 59-51%) was indigestible. After three-year incubation in rot chambers, mineralisation of tree-associated (14)C-RDX to (14)CO2 clearly dominated the mass balance in both tree species with 48-83%. 13-33% of (14)C-RDX-derived radioactivity remained in an unleachable form and the remobilisation by water leaching was negligible (< 2%).

  4. Oral supplements of inulin during gestation offsets rotenone-induced oxidative impairments and neurotoxicity in maternal and prenatal rat brain.

    PubMed

    Krishna, Gokul; Muralidhara

    2018-05-25

    Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Final Technical Report - Consolidating Biomass Pretreatment with Saccharification by Resolving the Spatial Control Mechanisms of Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilling, Jonathan

    Consolidated bioprocessing (CBP) of lignocellulose combines enzymatic sugar release (saccharification) with fermentation, but pretreatments remain separate and costly. In nature, lignocellulose-degrading brown rot fungi consolidate pretreatment and saccharification, likely using spatial gradients to partition these incompatible reactions. With the field of biocatalysis maturing, reaction partitioning is increasingly reproducible for commercial use. Therefore, my goal was to resolve the reaction partitioning mechanisms of brown rot fungi so that they can be applied to bioconversion of lignocellulosic feedstocks. Brown rot fungi consolidate oxidative pretreatments with saccharification and are a focus for biomass refining because 1) they attain >99% sugar yield without destroyingmore » lignin, 2) they use a simplified cellulase suite that lacks exoglucanase, and 3) their non-enzymatic pretreatment is facilitative and may be accelerated. Specifically, I hypothesized that during brown rot, oxidative pretreatments occur ahead of enzymatic saccharification, spatially, and the fungus partitions these reactions using gradients in pH, lignin reactivity, and plant cell wall porosity. In fact, we found three key results during these experiments for this work: 1) Brown rot fungi have an inducible cellulase system, unlike previous descriptions of a constitutive mechanism. 2) The induction of cellulases is delayed until there is repression of oxidatively-linked genes, allowing the brown rot fungi to coordinate two incompatible reactions (oxidative pretreatment with enzymatic saccharification, to release wood sugars) in the same pieces of wood. 3) This transition is mediated by the same wood sugar, cellobiose, released by the oxidative pretreatment step. Collectively, these findings have been published in excellent journal outlets and have been presented at conferences around the United States, and they offer clear targets for gene discovery en route to making biofuels and biochemicals affordable, commercially.« less

  6. Interactive Effects of Climate Change and Decomposer Communities on the Stabilization of Wood-Derived Carbon Pools: Catalyst for a New Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resh, Sigrid C.

    Globally, forest soils store ~two-thirds as much carbon (C) as the atmosphere. Although wood makes up the majority of forest biomass, the importance of wood contributions to soil C pools is unknown. Even with recent advances in the mechanistic understanding of soil processes, integrative studies tracing C input pathways and biological fluxes within and from soils are lacking. Therefore, our research objectives were to assess the impact of different fungal decay pathways (i.e., white-rot versus brown-rot)—in interaction with wood quality, soil temperature, wood location (i.e., soil surface and buried in mineral soil), and soil texture—on the transformation of woody materialmore » into soil CO 2 efflux, dissolved organic carbon (DOC), and soil C pools. The use of 13C-depleted woody biomass harvested from the Rhinelander, WI free-air carbon dioxide enrichment (Aspen-FACE) experiment affords the unique opportunity to distinguish the wood-derived C from other soil C fluxes and pools. We established 168 treatment plots across six field sites (three sand and three loam textured soil). Treatment plots consisted of full-factorial design with the following treatments: 1. Wood chips from elevated CO 2, elevated CO 2 + O 3, or ambient atmosphere AspenFACE treatments; 2. Inoculated with white rot (Bjerkandera adusta) or brown rot (Gloeophyllum sepiarium) pure fungal cultures, or the original suite of endemic microbial community on the logs; and 3. Buried (15cm in soil as a proxy for coarse roots) or surface applied wood chips. We also created a warming treatment using open-topped, passive warming chambers on a subset of the above treatments. Control plots with no added wood (“no chip control”) were incorporated into the research design. Soils were sampled for initial δ 13C values, CN concentrations, and bulk density. A subset of plots were instrumented with lysimeters for sampling soil water and temperature data loggers for measuring soil temperatures. To determine the early pathways of decomposition, we measured soil surface CO 2 efflux, dissolved organic C (DOC), and DO 13C approximately monthly over two growing seasons from a subsample of the research plots. To determine the portion of soil surface CO 2 efflux attributable to wood-derived C, we used Keeling plot techniques to estimate the associated δ 13C values of the soil CO 2 efflux. We measured the δ 13CO 2 once during the peak of each growing season. Initial values for soil δ 13C values and CN concentrations averaged across the six sites were -26.8‰ (standard error = 0.04), 2.46% (se = 0.11), and 0.15% (se = 0.01), respectively. The labeled wood chips from the Aspen FACE treatments had an average δ13C value of -39.5‰ (se 0.10). The >12 ‰ isotopic difference between the soil and wood chip δ 13C values provides the basis for tracking the wood-derived C through the early stages of decomposition and subsequent storage in the soil. Across our six research sites, average soil surface CO 2 efflux ranged from 1.04 to 2.00 g CO 2 m -2 h -1 for the first two growing seasons. No wood chip controls had an average soil surface CO 2 efflux of 0.67 g CO 2 m -2 h -1 or about half of that of the wood chip treatment plots. Wood-derived CO 2 efflux was higher for loam textured soils relative to sands (0.70 and 0.54 g CO 2 m -2 h -1, respectively; p = 0.045)), for surface relative to buried wood chip treatments (0.92 and 0.39 g CO 2 m -2 h -1, respectively; p < 0.001), for warmed relative to ambient temperature treatments (0.99 and 0.78 g CO 2 m -2 h -1, respectively; 0.004), and for natural rot relative to brown and white rots (0.93, 0.82, and 0.78 g CO 2 m -2 h -1, respectively; p = 0.068). Our first two growing seasons of soil surface CO 2 efflux data show that wood chip location (i.e., surface vs. buried chip application) is very important, with surface chips loosing twice the wood-derived CO 2. The DOC data support this trend for greater loss of ecosystem C from surface chips. This has strong implications for the importance of root and buried wood for ecosystem C retention. This strong chip location effect on wood-derived C loss was significantly modified by soil texture, soil temperature, decomposer communities, and wood quality as effected by potential future CO 2 and O 3 levels.« less

  7. Isolation and characterization of rhizosphere bacteria for the biocontrol of the damping-off disease of tomatoes in Tunisia.

    PubMed

    Hammami, Inés; Ben Hsouna, Anis; Hamdi, Naceur; Gdoura, Radhouane; Triki, Mohamed Ali

    2013-01-01

    Fluorescent Pseudomonas spp., isolated from tomato and pepper plants rhizosphere soil, was evaluated in vitro as a potential antagonist of fungal pathogens. Pseudomonas strains were tested against the causal agents of tomatoes damping-off (Sclerotinia sclerotiorum), root rot (Fusarium solani), and causal agents of stem canker and leaf blight (Alternaria alternata). For this purpose, dual culture antagonism assays were carried out on 25% tryptic soy agar, King B medium and potato dextrose agar to determine the effect of the strains on mycelial growth of the pathogens. In addition, strains were screened for their ability to produce exoenzymes and siderophores. All the strains significantly inhibited Alternaria alternata, particularly in 25% TSA medium. Antagonistic effect on Sclerotinia sclerotiorum and Fusarium solani was greater on King B medium. Protease was produced by 30% of the strains, but no strain produced cellulase or chitinase. Finally, the selected Pseudomonas strain, Psf5, was evaluated on tomato seedling development and as a potential candidate for controlling tomato damping-off caused by Sclerotinia sclerotiorum, under growth chamber conditions. In vivo studies resulted in significant increases in plant stand as well as in root dry weight. Psf5 was able to establish and survive in tomato plants rhizosphere after 40days following the planting of bacterized seeds. © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  8. Evidence from Serpula lacrymans that 2,5-Dimethoxyhydroquinone Is a Lignocellulolytic Agent of Divergent Brown Rot Basidiomycetes

    Treesearch

    Premsagar Korripally; Vitaliy I. Timokhin; Carl J. Houtman; Michael D. Mozuch; Kenneth E. Hammel

    2013-01-01

    Basidiomycetes that cause brown rot of wood are essential biomass recyclers in coniferous forest ecosystems and a major cause of failure in wooden structures. Recent work indicates that distinct lineages of brown rot fungi have arisen independently from ligninolytic white rot ancestors via loss of lignocellulolytic enzymes. Brown rot thus proceeds without significant...

  9. Role of Bacterial Communities in the Natural Suppression of Rhizoctonia solani Bare Patch Disease of Wheat (Triticum aestivum L.)

    PubMed Central

    Yin, Chuntao; Hulbert, Scot H.; Schroeder, Kurtis L.; Mavrodi, Olga; Mavrodi, Dmitri; Dhingra, Amit; Schillinger, William F.

    2013-01-01

    Rhizoctonia bare patch and root rot disease of wheat, caused by Rhizoctonia solani AG-8, develops as distinct patches of stunted plants and limits the yield of direct-seeded (no-till) wheat in the Pacific Northwest of the United States. At the site of a long-term cropping systems study near Ritzville, WA, a decline in Rhizoctonia patch disease was observed over an 11-year period. Bacterial communities from bulk and rhizosphere soil of plants from inside the patches, outside the patches, and recovered patches were analyzed by using pyrosequencing with primers designed for 16S rRNA. Taxa in the class Acidobacteria and the genus Gemmatimonas were found at higher frequencies in the rhizosphere of healthy plants outside the patches than in that of diseased plants from inside the patches. Dyella and Acidobacteria subgroup Gp7 were found at higher frequencies in recovered patches. Chitinophaga, Pedobacter, Oxalobacteriaceae (Duganella and Massilia), and Chyseobacterium were found at higher frequencies in the rhizosphere of diseased plants from inside the patches. For selected taxa, trends were validated by quantitative PCR (qPCR), and observed shifts of frequencies in the rhizosphere over time were duplicated in cycling experiments in the greenhouse that involved successive plantings of wheat in Rhizoctonia-inoculated soil. Chryseobacterium soldanellicola was isolated from the rhizosphere inside the patches and exhibited significant antagonism against R. solani AG-8 in vitro and in greenhouse tests. In conclusion, we identified novel bacterial taxa that respond to conditions affecting bare patch disease symptoms and that may be involved in suppression of Rhizoctonia root rot and bare batch disease. PMID:24056471

  10. Race Characterization of Phytophthora root rot on Capsicum in Taiwan as a Basis for Anticipatory Resistance Breeding.

    PubMed

    Barchenger, Derek W; Sheu, Zong-Ming; Kumar, Sanjeet; Lin, Shih-Wen; Burlakoti, Rishi R; Bosland, Paul W

    2018-02-27

    Peppers (Capsicum sp.) are an increasingly important crop because of their use as a vegetable, spice, and food colorant. The oomycete Phytophthora capsici is one of the most devastating pathogens to pepper production worldwide, causing more than $100 million in losses annually. Developing cultivars resistant to P. capsici is challenging because of the many physiological races that exist and new races that are continuously evolving. This problem is confounded by the lack of a universal system of race characterization. As a basis to develop a global anticipatory breeding program, New Mexico Recombinant Inbred Lines (NMRILs) functioned as a host differential for Phytophthora root rot to characterize the race structure of P. capsici populations in Taiwan. Using the NMRILs, 24 new races were identified, illustrating the utility and usefulness of the NMRILs for anticipatory breeding. Virulence of P. capsici was observed to be geographically specific and in two virulence clusters. Interestingly, all but two isolates collected in 2016 were the A2 mating type, which is a shift from the predominantly A1 mating type isolates collected prior to 2008. The NMRILs host differential provides an approach for scientists to work together on a global scale when breeding for resistance as well as on a local level for regional gene deployment. Additionally, we propose that the current race numbering system, which has no biological meaning, be supplemented with the virulence phenotype, based on the susceptible NMRILs to a given isolate. This work provides insights into the population dynamics of P. capsici and interactions within the highly complex Capsicum-Phytophthora pathosystem, and offers a basis for similar research in other crops.

  11. Cloning of nitric oxide associated 1 (NOA1) transcript from oil palm (Elaeis guineensis) and its expression during Ganoderma infection.

    PubMed

    Kwan, Yee-Min; Meon, Sariah; Ho, Chai-Ling; Wong, Mui-Yun

    2015-02-01

    Nitric oxide associated 1 (NOA1) protein is implicated in plant disease resistance and nitric oxide (NO) biosynthesis. A full-length cDNA encoding of NOA1 protein from oil palm (Elaeis guineensis) was isolated and designated as EgNOA1. Sequence analysis suggested that EgNOA1 was a circular permutated GTPase with high similarity to the bacterial YqeH protein of the YawG/YlqF family. The gene expression of EgNOA1 and NO production in oil palm root tissues treated with Ganoderma boninense, the causal agent of basal stem rot (BSR) disease were profiled to investigate the involvement of EgNOA1 during fungal infection and association with NO biosynthesis. Real-time PCR (qPCR) analysis revealed that the transcript abundance of EgNOA1 in root tissues was increased by G. boninense treatment. NO burst in Ganoderma-treated root tissue was detected using Griess reagent, in advance of the up-regulation of the EgNOA1 transcript. This indicates that NO production was independent of EgNOA1. However, the induced expression of EgNOA1 in Ganoderma-treated root tissues implies that it might be involved in plant defense responses against pathogen infection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. A Permutation-Randomization Approach to Test the Spatial Distribution of Plant Diseases.

    PubMed

    Lione, G; Gonthier, P

    2016-01-01

    The analysis of the spatial distribution of plant diseases requires the availability of trustworthy geostatistical methods. The mean distance tests (MDT) are here proposed as a series of permutation and randomization tests to assess the spatial distribution of plant diseases when the variable of phytopathological interest is categorical. A user-friendly software to perform the tests is provided. Estimates of power and type I error, obtained with Monte Carlo simulations, showed the reliability of the MDT (power > 0.80; type I error < 0.05). A biological validation on the spatial distribution of spores of two fungal pathogens causing root rot on conifers was successfully performed by verifying the consistency between the MDT responses and previously published data. An application of the MDT was carried out to analyze the relation between the plantation density and the distribution of the infection of Gnomoniopsis castanea, an emerging fungal pathogen causing nut rot on sweet chestnut. Trees carrying nuts infected by the pathogen were randomly distributed in areas with different plantation densities, suggesting that the distribution of G. castanea was not related to the plantation density. The MDT could be used to analyze the spatial distribution of plant diseases both in agricultural and natural ecosystems.

  13. Development of Molecular Methods to Detect Macrophomina phaseolina from Strawberry Plants and Soil.

    PubMed

    Burkhardt, Alyssa; Ramon, Marina L; Smith, Brett; Koike, Steven T; Martin, Frank N

    2018-06-05

    Macrophomina phaseolina is a broad-host range fungus that shows some degree of host preference on strawberry, and causes symptoms including crown rot and root rot. Recently, this pathogen has impacted strawberry production as fumigation practices have changed, leaving many growers in California and around the world in need of accurate, rapid diagnostic tools for M. phaseolina in soil and infected plants. This study uses next-generation sequencing and comparative genomics to identify a locus that is unique to isolates within a main genotype shared by a majority of isolates that infect strawberry. This locus was used to develop a quantitative single-tube nested TaqMan qPCR assay which is able to quantify as little as 2-3 microsclerotia/g of soil with 100% genotype specificity. An isothermal assay using recombinase polymerase amplification (RPA) was developed from the same locus and has been validated on over 200 infected strawberry plants with a diagnostic sensitivity of 93% and a diagnostic specificity of 99%, respectively. Together, this work demonstrates the value of using new approaches to identify loci for detection and provides valuable diagnostic tools that can be used to monitor soil and strawberry plant samples for M. phaseolina.

  14. Integrated control of white rot disease on beans caused by Sclerotinia sclerotiorum using Contans® and reduced fungicides application.

    PubMed

    Elsheshtawi, Mohamed; Elkhaky, Maged T; Sayed, Shaban R; Bahkali, Ali H; Mohammed, Arif A; Gambhir, Dikshit; Mansour, Aref S; Elgorban, Abdallah M

    2017-02-01

    This study was conducted to determine the compatibility of Contans® ( Coniothyrium minitans ) with fungicides against Sclerotinia sclerotiorum . Results showed that both Contans® and Topsin® significantly reduced the disease incidence caused by S. sclerotiorum by 90% and 95% survival plants, respectively when they were individually applied and compared to control. While, soil application of Contans® and Sumisclex mixture was the most effective in suppressing the white rot disease incidence that produced 100% survival plants, application of C. minitans combined with the reduced doses of fungicides would be advantageous in saving labor cost, thus increasing production efficiency of bean.

  15. Phylogenetic and expression analysis of the NPR1-like gene family from Persea americana (Mill.).

    PubMed

    Backer, Robert; Mahomed, Waheed; Reeksting, Bianca J; Engelbrecht, Juanita; Ibarra-Laclette, Enrique; van den Berg, Noëlani

    2015-01-01

    The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) forms an integral part of the salicylic acid (SA) pathway in plants and is involved in cross-talk between the SA and jasmonic acid/ethylene (JA/ET) pathways. Therefore, NPR1 is essential to the effective response of plants to pathogens. Avocado (Persea americana) is a commercially important crop worldwide. Significant losses in production result from Phytophthora root rot, caused by the hemibiotroph, Phytophthora cinnamomi. This oomycete infects the feeder roots of avocado trees leading to an overall decline in health and eventual death. The interaction between avocado and P. cinnamomi is poorly understood and as such limited control strategies exist. Thus uncovering the role of NPR1 in avocado could provide novel insights into the avocado - P. cinnamomi interaction. A total of five NPR1-like sequences were identified. These sequences were annotated using FGENESH and a maximum-likelihood tree was constructed using 34 NPR1-like protein sequences from other plant species. The conserved protein domains and functional motifs of these sequences were predicted. Reverse transcription quantitative PCR was used to analyze the expression of the five NPR1-like sequences in the roots of avocado after treatment with salicylic and jasmonic acid, P. cinnamomi infection, across different tissues and in P. cinnamomi infected tolerant and susceptible rootstocks. Of the five NPR1-like sequences three have strong support for a defensive role while two are most likely involved in development. Significant differences in the expression profiles of these five NPR1-like genes were observed, assisting in functional classification. Understanding the interaction of avocado and P. cinnamomi is essential to developing new control strategies. This work enables further classification of these genes by means of functional annotation and is a crucial step in understanding the role of NPR1 during P. cinnamomi infection.

  16. Phylogenetic and expression analysis of the NPR1-like gene family from Persea americana (Mill.)

    PubMed Central

    Backer, Robert; Mahomed, Waheed; Reeksting, Bianca J.; Engelbrecht, Juanita; Ibarra-Laclette, Enrique; van den Berg, Noëlani

    2015-01-01

    The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) forms an integral part of the salicylic acid (SA) pathway in plants and is involved in cross-talk between the SA and jasmonic acid/ethylene (JA/ET) pathways. Therefore, NPR1 is essential to the effective response of plants to pathogens. Avocado (Persea americana) is a commercially important crop worldwide. Significant losses in production result from Phytophthora root rot, caused by the hemibiotroph, Phytophthora cinnamomi. This oomycete infects the feeder roots of avocado trees leading to an overall decline in health and eventual death. The interaction between avocado and P. cinnamomi is poorly understood and as such limited control strategies exist. Thus uncovering the role of NPR1 in avocado could provide novel insights into the avocado – P. cinnamomi interaction. A total of five NPR1-like sequences were identified. These sequences were annotated using FGENESH and a maximum-likelihood tree was constructed using 34 NPR1-like protein sequences from other plant species. The conserved protein domains and functional motifs of these sequences were predicted. Reverse transcription quantitative PCR was used to analyze the expression of the five NPR1-like sequences in the roots of avocado after treatment with salicylic and jasmonic acid, P. cinnamomi infection, across different tissues and in P. cinnamomi infected tolerant and susceptible rootstocks. Of the five NPR1-like sequences three have strong support for a defensive role while two are most likely involved in development. Significant differences in the expression profiles of these five NPR1-like genes were observed, assisting in functional classification. Understanding the interaction of avocado and P. cinnamomi is essential to developing new control strategies. This work enables further classification of these genes by means of functional annotation and is a crucial step in understanding the role of NPR1 during P. cinnamomi infection. PMID:25972890

  17. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi

    Treesearch

    Robert Riley; Asaf A. Salamov; Daren W. Brown; Laszlo G. Nagy; Dimitrios Floudas; Benjamin W. Held; Anthony Levasseur; Vincent Lombard; Emmanuelle Morin; Robert Otillar; Erika A. Lindquist; Hui Sun; Kurt M. LaButti; Jeremy Schmutz; Dina Jabbour; Hong Luo; Scott E. Baker; Antonio G. Pisabarro; Jonathan D. Walton; Robert A. Blanchette; Bernard Henrissat; Francis Martin; Daniel Cullen; David S. Hibbett; Igor V. Grigoriev

    2014-01-01

    Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic...

  18. Pyramiding Sclerotinia head rot and stalk rot resistances into elite sunflower breeding lines with the aid of DNA markers

    USDA-ARS?s Scientific Manuscript database

    Work was conducted in 2008 to determine the stalk rot resistance of RILs from the RHA 280 x RHA 801 population, as well as to begin introgression of previously identified QTL for head rot resistance into elite sunflower germplasm lines. The stalk rot RILs and their testcrosses with cms HA 89 were t...

  19. Antimicrobial Activity of Medicinal Plants Correlates with the Proportion of Antagonistic Endophytes

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Ahmad, Parvaiz; Berg, Gabriele

    2017-01-01

    Medicinal plants are known to harbor potential endophytic microbes, due to their bioactive compounds. In a first study of ongoing research, endophytic bacteria were isolated from two medicinal plants, Hypericum perforatum and Ziziphora capitata with contrasting antimicrobial activities from the Chatkal Biosphere Reserve of Uzbekistan, and their plant-specific traits involved in biocontrol and plant growth promotion were evaluated. Plant extracts of H. perforatum exhibited a remarkable activity against bacterial and fungal pathogens, whereas extracts of Z. capitata did not exhibit any potential antimicrobial activity. Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) was used to identify plant associated culturable endophytic bacteria. The isolated culturable endophytes associated with H. perforatum belong to eight genera (Arthrobacter, Achromobacter, Bacillus, Enterobacter, Erwinia, Pseudomonas, Pantoea, Serratia, and Stenotrophomonas). The endophytic isolates from Z. capitata also contain those genera except Arthrobacter, Serratia, and Stenotrophomonas. H. perforatum with antibacterial activity supported more bacteria with antagonistic activity, as compared to Z. capitata. The antagonistic isolates were able to control tomato root rot caused by Fusarium oxysporum and stimulated plant growth under greenhouse conditions and could thus be a cost-effective source for agro-based biological control agents. PMID:28232827

  20. Cyclopiazonic Acid Is a Pathogenicity Factor for Aspergillus flavus and a Promising Target for Screening Germplasm for Ear Rot Resistance.

    PubMed

    Chalivendra, Subbaiah C; DeRobertis, Catherine; Chang, Perng-Kuang; Damann, Kenneth E

    2017-05-01

    Aspergillus flavus, an opportunistic pathogen, contaminates maize and other key crops with carcinogenic aflatoxins (AFs). Besides AFs, A. flavus makes many more secondary metabolites (SMs) whose toxicity in insects or vertebrates has been studied. However, the role of SMs in the invasion of plant hosts by A. flavus remains to be investigated. Cyclopiazonic acid (CPA), a neurotoxic SM made by A. flavus, is a nanomolar inhibitor of endoplasmic reticulum calcium ATPases (ECAs) and a potent inducer of cell death in plants. We hypothesized that CPA, by virtue of its cytotoxicity, may serve as a key pathogenicity factor that kills plant cells and supports the saprophytic life style of the fungus while compromising the host defense response. This proposal was tested by two complementary approaches. A comparison of CPA levels among A. flavus isolates indicated that CPA may be a determinant of niche adaptation, i.e., isolates that colonize maize make more CPA than those restricted only to the soil. Further, mutants in the CPA biosynthetic pathway are less virulent in causing ear rot than their wild-type parent in field inoculation assays. Additionally, genes encoding ECAs are expressed in developing maize seeds and are induced by A. flavus infection. Building on these results, we developed a seedling assay in which maize roots were exposed to CPA, and cell death was measured as Evans Blue uptake. Among >40 maize inbreds screened for CPA tolerance, inbreds with proven susceptibility to ear rot were also highly CPA sensitive. The publicly available data on resistance to silk colonization or AF contamination for many of the lines was also broadly correlated with their CPA sensitivity. In summary, our studies show that i) CPA serves as a key pathogenicity factor that enables the saprophytic life style of A. flavus and ii) maize inbreds are diverse in their tolerance to CPA. Taking advantage of this natural variation, we are currently pursuing both genome-wide and candidate gene approaches to identify novel components of maize resistance to Aspergillus ear rot.

  1. Combination of UV-C treatment and Metschnikowia pulcherrimas for controlling Alternaria rot in postharvest winter jujube fruit.

    PubMed

    Guo, Dongqi; Zhu, Lixia; Hou, Xujie

    2015-01-01

    The potential of using antagonistic yeast Metschnikowia pulcherrimas alone or in combination with ultraviolet-C (UV-C) treatment for controlling Alternaria rot of winter jujube, and its effects on postharvest quality of fruit was investigated. The results showed that spore germination of Alternaria alternata was significantly inhibited by each of the 3 doses (1, 5, and 10 kJ m(-2) ) in vitro. In vivo, UV-C treatment (5 kJ m(-2) ) or antagonist yeast was capable of reducing the percentage of infected wounds and lesion diameter in artificially inoculated jujube fruits, however, in fruit treated with combination of UV-C treatment and M. pulcherrima, the percentage of infected wounds and lesion diameter was only 16.0% and 0.60 cm, respectively. The decay incidence on winter jujube fruits treated with the combination of UV-C treatment and M. pulcherrima was 23% after storage at 0 ± 1 °C for 45 d followed by 22 °C for 7 d. None of the treatments impaired quality parameters of jujube fruit. Thus, the combination of UV-C radiation and M. pulcherrima could be an alternative to synthetic fungicides for controlling postharvest Alternaria rot of winter jujube. © 2014 Institute of Food Technologists®

  2. Growth Promoting Rhizospheric and Endophytic Bacteria from Curcuma longa L. as Biocontrol Agents against Rhizome Rot and Leaf Blight Diseases.

    PubMed

    Vinayarani, G; Prakash, H S

    2018-06-01

    Plant growth promoting rhizobacteria and endophytic bacteria were isolated from different varieties of turmeric ( Curcuma longa L.) from South India. Totally 50 strains representing, 30 PGPR and 20 endophytic bacteria were identified based on biochemical assays and 16S rDNA sequence analysis. The isolates were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric, by dual culture and liquid culture assays. Results revealed that only five isolates of PGPR and four endophytic bacteria showed more than 70% suppression of test pathogens in both assays. The SEM studies of interaction zone showed significant ultrastructural changes of the hyphae like shriveling, breakage and desication of the pathogens by PGPR B. cereus (RBac-DOB-S24) and endophyte P. aeruginosa (BacDOB-E19). Selected isolates showed multiple Plant growth promoting traits. The rhizome bacterization followed by soil application of B. cereus (RBacDOB-S24) showed lowest Percent Disease Incidence (PDI) of rhizome rot and leaf blight, 16.4% and 15.5% respectively. Similarly, P. aeruginosa (BacDOB-E19) recorded PDI of rhizome rot (17.5%) and leaf blight (17.7%). The treatment of these promising isolates exhibited significant increase in plant height and fresh rhizome yield/plant in comparison with untreated control under greenhouse condition. Thereby, these isolates can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.

  3. Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits.

    PubMed

    Hu, Lan-Ying; Hu, Shu-Li; Wu, Jun; Li, Yan-Hong; Zheng, Ji-Lian; Wei, Zhao-Jun; Liu, Jian; Wang, Hui-Li; Liu, Yong-Sheng; Zhang, Hua

    2012-09-05

    Accumulating evidence shows that hydrogen sulfide (H(2)S) plays various physiological roles in plants, such as seed germination, root organogenesis, abiotic stress tolerance, and senescence of cut flowers. However, whether H(2)S participates in the regulation of ripening and senescence in postharvest fruits remains unknown. In the present study, the effect of H(2)S on postharvest shelf life and antioxidant metabolism in strawberry fruits was investigated. Fumigation with H(2)S gas released from the H(2)S donor NaHS prolonged postharvest shelf life of strawberry fruits in a dose-dependent manner. Strawberry fruits fumigated with various concentrations of H(2)S sustained significantly lower rot index, higher fruit firmness, and kept lower respiration intensity and polygalacturonase activities than controls. Further investigation showed that H(2)S treatment maintained higher activities of catalase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase and lower activities of lipoxygenase relative to untreated controls. H(2)S also reduced malondialdehyde, hydrogen peroxide, and superoxide anion to levels below control fruits during storage. Moreover, H(2)S treatment maintained higher contents of reducing sugars, soluble proteins, free amino acid, and endogenous H(2)S in fruits. We interpret these data as indicating that H(2)S plays an antioxidative role in prolonging postharvest shelf life of strawberry fruits.

  4. Fungal Planet description sheets: 371-399.

    PubMed

    Crous, P W; Wingfield, M J; Le Roux, J J; Richardson, D M; Strasberg, D; Shivas, R G; Alvarado, P; Edwards, J; Moreno, G; Sharma, R; Sonawane, M S; Tan, Y P; Altés, A; Barasubiye, T; Barnes, C W; Blanchette, R A; Boertmann, D; Bogo, A; Carlavilla, J R; Cheewangkoon, R; Daniel, R; de Beer, Z W; de Jesús Yáñez-Morales, M; Duong, T A; Fernández-Vicente, J; Geering, A D W; Guest, D I; Held, B W; Heykoop, M; Hubka, V; Ismail, A M; Kajale, S C; Khemmuk, W; Kolařík, M; Kurli, R; Lebeuf, R; Lévesque, C A; Lombard, L; Magista, D; Manjón, J L; Marincowitz, S; Mohedano, J M; Nováková, A; Oberlies, N H; Otto, E C; Paguigan, N D; Pascoe, I G; Pérez-Butrón, J L; Perrone, G; Rahi, P; Raja, H A; Rintoul, T; Sanhueza, R M V; Scarlett, K; Shouche, Y S; Shuttleworth, L A; Taylor, P W J; Thorn, R G; Vawdrey, L L; Solano-Vidal, R; Voitk, A; Wong, P T W; Wood, A R; Zamora, J C; Groenewald, J Z

    2015-12-01

    Novel species of fungi described in the present study include the following from Australia: Neoseptorioides eucalypti gen. & sp. nov. from Eucalyptus radiata leaves, Phytophthora gondwanensis from soil, Diaporthe tulliensis from rotted stem ends of Theobroma cacao fruit, Diaporthe vawdreyi from fruit rot of Psidium guajava, Magnaporthiopsis agrostidis from rotted roots of Agrostis stolonifera and Semifissispora natalis from Eucalyptus leaf litter. Furthermore, Neopestalotiopsis egyptiaca is described from Mangifera indica leaves (Egypt), Roussoella mexicana from Coffea arabica leaves (Mexico), Calonectria monticola from soil (Thailand), Hygrocybe jackmanii from littoral sand dunes (Canada), Lindgomyces madisonensis from submerged decorticated wood (USA), Neofabraea brasiliensis from Malus domestica (Brazil), Geastrum diosiae from litter (Argentina), Ganoderma wiiroense on angiosperms (Ghana), Arthrinium gutiae from the gut of a grasshopper (India), Pyrenochaeta telephoni from the screen of a mobile phone (India) and Xenoleptographium phialoconidium gen. & sp. nov. on exposed xylem tissues of Gmelina arborea (Indonesia). Several novelties are introduced from Spain, namely Psathyrella complutensis on loamy soil, Chlorophyllum lusitanicum on nitrified grasslands (incl. Chlorophyllum arizonicum comb. nov.), Aspergillus citocrescens from cave sediment and Lotinia verna gen. & sp. nov. from muddy soil. Novel foliicolous taxa from South Africa include Phyllosticta carissicola from Carissa macrocarpa, Pseudopyricularia hagahagae from Cyperaceae and Zeloasperisporium searsiae from Searsia chirindensis. Furthermore, Neophaeococcomyces is introduced as a novel genus, with two new combinations, N. aloes and N. catenatus. Several foliicolous novelties are recorded from La Réunion, France, namely Ochroconis pandanicola from Pandanus utilis, Neosulcatispora agaves gen. & sp. nov. from Agave vera-cruz, Pilidium eucalyptorum from Eucalyptus robusta, Strelitziana syzygii from Syzygium jambos (incl. Strelitzianaceae fam. nov.) and Pseudobeltrania ocoteae from Ocotea obtusata (Beltraniaceae emend.). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

  5. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry

    PubMed Central

    Rineau, Francois; Roth, Doris; Shah, Firoz; Smits, Mark; Johansson, Tomas; Canbäck, Björn; Olsen, Peter Bjarke; Persson, Per; Grell, Morten Nedergaard; Lindquist, Erika; Grigoriev, Igor V; Lange, Lene; Tunlid, Anders

    2012-01-01

    Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter–protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter–protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems. PMID:22469289

  6. Genes associated with lignin degradation in the polyphagous white-rot pathogen Heterobasidion irregulare show substrate-specific regulation.

    PubMed

    Yakovlev, Igor A; Hietala, Ari M; Courty, Pierre-Emmanuel; Lundell, Taina; Solheim, Halvor; Fossdal, Carl Gunnar

    2013-07-01

    The pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H. irregulare genome has exclusively the short-manganese peroxidase type encoding genes (6 short-MnPs) and thereby a slight contraction in the pool of class II heme-containing peroxidases, but an expansion of the MCO laccases with 17 gene models. Furthermore, the genome shows a versatile set of other oxidoreductase genes putatively involved in lignin oxidation and conversion, including 5 glyoxal oxidases, 19 quinone-oxidoreductases and 12 aryl-alcohol oxidases. Their genetic multiplicity and gene-specific regulation patterns on cultures based on defined lignin, cellulose or Norway spruce lignocellulose substrates suggest divergent specificities and physiological roles for these enzymes. While the short-MnP encoding genes showed similar transcript levels upon fungal growth on heartwood and reaction zone (RZ), a xylem defense tissue rich in phenolic compounds unique to trees, a subset of laccases showed higher gene expression in the RZ cultures. In contrast, other oxidoreductases depending on initial MnP activity showed generally lower transcript levels on RZ than on heartwood. These data suggest that the rate of fungal oxidative conversion of xylem lignin differs between spruce RZ and heartwood. It is conceivable that in RZ part of the oxidoreductase activities of laccases are related to the detoxification of phenolic compounds involved in host-defense. Expression of the several short-MnP enzymes indicated an important role for these enzymes in effective delignification of wood by H. irregulare. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Two previously unknown Phytophthora species associated with brown rot of Pomelo (Citrus grandis) fruits in Vietnam.

    PubMed

    Puglisi, Ivana; De Patrizio, Alessandro; Schena, Leonardo; Jung, Thomas; Evoli, Maria; Pane, Antonella; Van Hoa, Nguyen; Van Tri, Mai; Wright, Sandra; Ramstedt, Mauritz; Olsson, Christer; Faedda, Roberto; Magnano di San Lio, Gaetano; Cacciola, Santa Olga

    2017-01-01

    Two distinct Phytophthora taxa were found to be associated with brown rot of pomelo (Citrus grandis), a new disease of this ancestral Citrus species, in the Vinh Long province, Mekong River Delta area, southern Vietnam. On the basis of morphological characters and using the ITS1-5.8S-ITS2 region of the rDNA and the cytochrome oxidase subunit 1 (COI) as barcode genes, one of the two taxa was provisionally named as Phytophthora sp. prodigiosa, being closely related to but distinct from P. insolita, a species in Phytophthora Clade 9, while the other one, was closely related to but distinct from the Clade 2 species P. meadii and was informally designated as Phytophthora sp. mekongensis. Isolates of P. sp. prodigiosa and P. sp. mekongensis were also obtained from necrotic fibrous roots of Volkamer lemon (C. volkameriana) rootstocks grafted with 'King' mandarin (Citrus nobilis) and from trees of pomelo, respectively, in other provinces of the Mekong River Delta, indicating a widespread occurrence of both Phytophthora species in this citrus-growing area. Koch's postulates were fulfilled via pathogenicity tests on fruits of various Citrus species, including pomelo, grapefruit (Citrus x paradisi), sweet orange (Citrus x sinensis) and bergamot (Citrus x bergamia) as well as on the rootstock of 2-year-old trees of pomelo and sweet orange on 'Carrizo' citrange (C. sinensis 'Washington Navel' x Poncirus trifoliata). This is the first report of a Phytophthora species from Clade 2 other than P. citricola and P. citrophthora as causal agent of fruit brown rot of Citrus worldwide and the first report of P. insolita complex in Vietnam. Results indicate that likely Vietnam is still an unexplored reservoir of Phytophthora diversity.

  8. Two previously unknown Phytophthora species associated with brown rot of Pomelo (Citrus grandis) fruits in Vietnam

    PubMed Central

    Schena, Leonardo; Jung, Thomas; Evoli, Maria; Pane, Antonella; Van Hoa, Nguyen; Van Tri, Mai; Wright, Sandra; Ramstedt, Mauritz; Olsson, Christer; Faedda, Roberto; Magnano di San Lio, Gaetano

    2017-01-01

    Two distinct Phytophthora taxa were found to be associated with brown rot of pomelo (Citrus grandis), a new disease of this ancestral Citrus species, in the Vinh Long province, Mekong River Delta area, southern Vietnam. On the basis of morphological characters and using the ITS1-5.8S-ITS2 region of the rDNA and the cytochrome oxidase subunit 1 (COI) as barcode genes, one of the two taxa was provisionally named as Phytophthora sp. prodigiosa, being closely related to but distinct from P. insolita, a species in Phytophthora Clade 9, while the other one, was closely related to but distinct from the Clade 2 species P. meadii and was informally designated as Phytophthora sp. mekongensis. Isolates of P. sp. prodigiosa and P. sp. mekongensis were also obtained from necrotic fibrous roots of Volkamer lemon (C. volkameriana) rootstocks grafted with ‘King’ mandarin (Citrus nobilis) and from trees of pomelo, respectively, in other provinces of the Mekong River Delta, indicating a widespread occurrence of both Phytophthora species in this citrus-growing area. Koch’s postulates were fulfilled via pathogenicity tests on fruits of various Citrus species, including pomelo, grapefruit (Citrus x paradisi), sweet orange (Citrus x sinensis) and bergamot (Citrus x bergamia) as well as on the rootstock of 2-year-old trees of pomelo and sweet orange on ‘Carrizo’ citrange (C. sinensis ‘Washington Navel’ x Poncirus trifoliata). This is the first report of a Phytophthora species from Clade 2 other than P. citricola and P. citrophthora as causal agent of fruit brown rot of Citrus worldwide and the first report of P. insolita complex in Vietnam. Results indicate that likely Vietnam is still an unexplored reservoir of Phytophthora diversity. PMID:28208159

  9. Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities.

    PubMed

    Grote, Richard R; Driscoll, Jeffrey B; Biris, Claudiu G; Panoiu, Nicolae C; Osgood, Richard M

    2011-12-19

    We show by theory and experiment that silicon-dioxide-cladding gratings for Fabry-Pérot cavities on silicon-on-insulator channel ("wire") waveguides provide a low-refractive-index perturbation, which is required for several important integrated photonics components. The underlying refractive index perturbation of these gratings is significantly weaker than that of analogous silicon gratings, leading to finer control of the coupling coefficient κ. Our Fabry-Pérot cavities are designed using the transfer-matrix method (TMM) in conjunction with the finite element method (FEM) for calculating the effective index of each waveguide section. Device parameters such as coupling coefficient, κ, Bragg mirror stop band, Bragg mirror reflectivity, and quality factor Q are examined via TMM modeling. Devices are fabricated with representative values of distributed Bragg reflector lengths, cavity lengths, and propagation losses. The measured transmission spectra show excellent agreement with the FEM/TMM calculations.

  10. A new approach for strawberry disease control

    USDA-ARS?s Scientific Manuscript database

    Strawberry is grown around the world in different production systems and diverse environmental conditions, which creates challenges in controlling fruit-rot causing pathogens before and after harvest. Fungicides have been traditionally used to control these diseases, and in some areas, as many as 2...

  11. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot1[OPEN

    PubMed Central

    Collins, Thomas S.; Vicente, Ariel R.; Doyle, Carolyn L.; Ye, Zirou; Allen, Greg; Heymann, Hildegarde

    2015-01-01

    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. PMID:26450706

  12. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.

    PubMed

    Blanco-Ulate, Barbara; Amrine, Katherine C H; Collins, Thomas S; Rivero, Rosa M; Vicente, Ariel R; Morales-Cruz, Abraham; Doyle, Carolyn L; Ye, Zirou; Allen, Greg; Heymann, Hildegarde; Ebeler, Susan E; Cantu, Dario

    2015-12-01

    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Expression profiles of putative defence-related proteins in oil palm (Elaeis guineensis) colonized by Ganoderma boninense.

    PubMed

    Tan, Yung-Chie; Yeoh, Keat-Ai; Wong, Mui-Yun; Ho, Chai-Ling

    2013-11-01

    Basal stem rot (BSR) is a major disease of oil palm caused by a pathogenic fungus, Ganoderma boninense. However, the interaction between the host plant and its pathogen is not well characterized. To better understand the response of oil palm to G. boninense, transcript profiles of eleven putative defence-related genes from oil palm were measured by quantitative reverse-transcription (qRT)-PCR in the roots of oil palms treated with G. boninense from 3 to 12 weeks post infection (wpi). These transcripts encode putative Bowman-Birk serine protease inhibitors (EgBBI1 and 2), defensin (EgDFS), dehydrin (EgDHN), early methionine-labeled polypeptides (EgEMLP1 and 2), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), metallothionein-like protein (EgMT), pathogenesis-related-1 protein (EgPRP), and type 2 ribosome-inactivating protein (EgT2RIP). The transcript abundance of EgBBI2 increased in G. boninense-treated roots at 3 and 6wpi compared to those of controls; while the transcript abundance of EgBBI1, EgDFS, EgEMLP1, EgMT, and EgT2RIP increased in G. boninense-treated roots at 6 or 12wpi. Meanwhile, the gene expression of EgDHN was up-regulated at all three time points in G. boninense-treated roots. The expression profiles of the eleven transcripts were also studied in leaf samples upon inoculation of G. boninense and Trichoderma harzianum to identify potential biomarkers for early detection of BSR. Two candidate genes (EgEMLP1 and EgMT) that have different profiles in G. boninense-treated leaves compared to those infected by T. harzianum may have the potential to be developed as biomarkers for early detection of G. boninense infection. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato.

    PubMed

    Solanki, Manoj Kumar; Singh, Rajesh Kumar; Srivastava, Supriya; Kumar, Sudheer; Kashyap, Prem Lal; Srivastava, Alok K

    2015-01-01

    To investigate the biocontrol mechanism of two antagonistic Bacillus strains (Bacillus subtilis MB14 and Bacillus amyloliquefaciens MB101), three in vitro antagonism assays were screened and the results were concluded that both strains inhibited Rhizoctonia solani growth in a similar manner by dual culture assay, but the maximum percent of inhibition only resulted with MB101 by volatile and diffusible metabolite assays. Moreover, cell free supernatant (CFS) of MB101 also showed significant (p > 0.05) growth inhibition as compared to MB14, when 10 and 20% CFS mix with the growth medium of R. solani. After in vitro-validation, both strains were evaluated under greenhouse and the results concluded that strain MB101 had significant biocontrol potential as compared to MB14. Strain MB101 was enhanced the plant height, biomass and chlorophyll content of tomato plant through a higher degree of root colonization. In field trials, strain MB101 showed higher lessening in root rot symptoms with significant fruit yield as compare to strain MB14 and infected control. Next to the field study, the presence of four antibiotic genes (srfAA, fenD, ituC, and bmyB) also concluded the antifungal nature of both Bacillus strains. Phylogenetic analysis of protein sequences revealed a close relatedness of three genes (srfAA, fenD, and ituC) with earlier reported sequences of B. subtilis and B. amyloliquefaciens. However, bmyB showed heterogeneity in among both strains (MB14 and MB101) and it may be concluded that higher degree of antagonism, root colonization and different antibiotic producing genes may play an important role in biocontrol mechanism of strain MB101. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Topographic effects on dispersal patterns of Phytophthora cinnamomi at a stand scale in a Spanish heathland

    PubMed Central

    Acedo, Angel; Abad, Enrique

    2018-01-01

    Phytophthora cinnamomi is one of the most important plant pathogens in the world, causing root rot in more than a thousand plant species. This observational study was carried out on a P. cinnamomi infected heathland of Erica umbellata used as goat pasture. The patterns and shapes of disease foci and their distribution were described in a spatial and temporal context using an aerial photograph record. A set of topographic traits was selected on the basis of a disease dynamic hypothesis and their effects on observed spatial disease patterns were analyzed. Incipient infections situated in flat terrain expanded as compact circular front patterns with a low growth rate. On slopes, disease patches developed more rapidly down slope, forming parabolic shapes. The axis direction of the parabolas was highly correlated with terrain aspect, while the parabolic amplitude was associated with land curvature and slope. New secondary foci appeared over the years producing an accelerated increase of the affected surface. These new foci were observed in sites where disease density was higher or near sites more frequently visited by animals such as the stable or the forage crop. In contrast, a smaller number of disease foci occur in areas which animals are reluctant to visit, such as where they have a short range of vision. Our results suggest that 1) the growth of existing P. cinnamomi foci is controlled by a combination of root-to-root contact and water flows, 2) the increase in the diseased area arises mainly from the multiplication of patches, 3) the formation of new foci is mediated by long-distance transport due to the movement of animals and humans along certain preferential pathways, and 4) geomorphology and topography traits are associated with the epidemiology of this soil-borne pathogen. PMID:29601576

  16. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng.

    PubMed

    Chen, Jin-Lian; Sun, Shi-Zhong; Miao, Cui-Ping; Wu, Kai; Chen, You-Wei; Xu, Li-Hua; Guan, Hui-Lin; Zhao, Li-Xing

    2016-10-01

    Biocontrol agents are regarded as promising and environmental friendly approaches as agrochemicals for phytodiseases that cause serious environmental and health problems. Trichoderma species have been widely used in suppression of soil-borne pathogens. In this study, an endophytic fungus, Trichoderma gamsii YIM PH30019, from healthy Panax notoginseng root was investigated for its biocontrol potential. In vitro detached healthy roots, and pot and field experiments were used to investigate the pathogenicity and biocontrol efficacy of T. gamsii YIM PH30019 to the host plant. The antagonistic mechanisms against test phytopathogens were analyzed using dual culture, scanning electron microscopy, and volatile organic compounds (VOCs). Tolerance to chemical fertilizers was also tested in a series of concentrations. The results indicated that T. gamsii YIM PH30019 was nonpathogenic to the host, presented appreciable biocontrol efficacy, and could tolerate chemical fertilizer concentrations of up to 20%. T. gamsii YIM PH30019 displayed antagonistic activities against the pathogenic fungi of P . notoginseng via production of VOCs. On the basis of gas chromatography-mass spectrometry, VOCs were identified as dimethyl disulfide, dibenzofuran, methanethiol, ketones, etc., which are effective ingredients for antagonistic activity. T. gamsii YIM PH30019 was able to improve the seedlings' emergence and protect P. notoginseng plants from soil-borne disease in the continuous cropping field tests. The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.

  17. Energy balance associated with the degradation of lignocellulosic material by white-rot and brown-rot fungi.

    NASA Astrophysics Data System (ADS)

    Derrien, Delphine; Bédu, Hélène; Buée, Marc; Kohler, Annegret; Goodell, Barry; Gelhaye, Eric

    2017-04-01

    Forest soils cover about 30% of terrestrial area and comprise between 50 and 80% of the global stock of soil organic carbon (SOC). The major precursor for this forest SOC is lignocellulosic material, which is made of polysaccharides and lignin. Lignin has traditionally been considered as a recalcitrant polymer that hinders access to the much more labile structural polysaccharides. This view appears to be partly incorrect from a microbiology perspective yet, as substrate alteration depends on the metabolic potential of decomposers. In forest ecosystems the wood-rotting Basidiomycota fungi have developed two different strategies to attack the structure of lignin and gain access to structural polysaccharides. White-rot fungi degrade all components of plant cell walls, including lignin, using enzymatic systems. Brown-rot fungi do not remove lignin. They generate oxygen-derived free radicals, such as the hydroxyl radical produced by the Fenton reaction, that disrupt the lignin polymer and depolymerize polysaccharides which then diffuse out to where the enzymes are located The objective of this study was to develop a model to investigate whether the lignin relative persistence could be related to the energetic advantage of brown-rot degradative pathway in comparison to white-rot degradative pathway. The model simulates the changes in substrate composition over time, and determines the energy gained from the conversion of the lost substrate into CO2. The energy cost for the production of enzymes involved in substrate alteration is assessed using information derived from genome and secretome analysis. For brown-rot fungus specifically, the energy cost related to the production of OH radicals is also included. The model was run, using data from the literature on populous wood degradation by Trametes versicolor, a white-rot fungus, and Gloeophyllum trabeum, a brown-rot fungus. It demonstrates that the brown-rot fungus (Gloeophyllum trabeum) was more efficient than the white-rot fungus (Trametes versicolor). The energy advantage could explain the emergence of the brown-rot degradative pathway from a white-rot degradative pathway and subsequently, the relative persistence of lignin in soil.

  18. Pruning of Manchurian crabapple for management of speck rot and Sphaeropsis rot in apple

    USDA-ARS?s Scientific Manuscript database

    Phacidiopycnis washingtonensis and Sphaeropsis pyriputrescens are two important quarantined fungal pathogens that cause post-harvest speck rot and Sphaeropsis rot, respectively, in apple. Due to detection of these pathogens in fruit shipments and quarantine regulation, export of apple from Washingto...

  19. Impacts of fungal stalk rot pathogens on physicochemical properties of sorghum grain

    USDA-ARS?s Scientific Manuscript database

    Stalk rot diseases are among the most ubiquitous and damaging fungal diseases of sorghum worldwide. Although reports of quantitative stalk rot yield losses are available, the impact of stalk rot on the physicochemical attributes of sorghum grain is currently unknown. This study was conducted to test...

  20. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured tobacco...

Top