31 CFR 592.301 - Controlled through the Kimberley Process Certification Scheme.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Process Certification Scheme. 592.301 Section 592.301 Money and Finance: Treasury Regulations Relating to... Certification Scheme. (a) Except as otherwise provided in paragraph (b) of this section, the term controlled through the Kimberley Process Certification Scheme refers to the following requirements that apply, as...
31 CFR 592.301 - Controlled through the Kimberley Process Certification Scheme.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Process Certification Scheme. 592.301 Section 592.301 Money and Finance: Treasury Regulations Relating to... Certification Scheme. (a) Except as otherwise provided in paragraph (b) of this section, the term controlled through the Kimberley Process Certification Scheme refers to the following requirements that apply, as...
31 CFR 592.301 - Controlled through the Kimberley Process Certification Scheme.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Process Certification Scheme. 592.301 Section 592.301 Money and Finance: Treasury Regulations Relating to... Certification Scheme. (a) Except as otherwise provided in paragraph (b) of this section, the term controlled through the Kimberley Process Certification Scheme refers to the following requirements that apply, as...
31 CFR 592.301 - Controlled through the Kimberley Process Certification Scheme.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Process Certification Scheme. 592.301 Section 592.301 Money and Finance: Treasury Regulations Relating to... Certification Scheme. (a) Except as otherwise provided in paragraph (b) of this section, the term controlled through the Kimberley Process Certification Scheme refers to the following requirements that apply, as...
31 CFR 592.301 - Controlled through the Kimberley Process Certification Scheme.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Process Certification Scheme. 592.301 Section 592.301 Money and Finance: Treasury Regulations Relating to... Certification Scheme. (a) Except as otherwise provided in paragraph (b) of this section, the term controlled through the Kimberley Process Certification Scheme refers to the following requirements that apply, as...
Control of birhythmicity: A self-feedback approach
NASA Astrophysics Data System (ADS)
Biswas, Debabrata; Banerjee, Tanmoy; Kurths, Jürgen
2017-06-01
Birhythmicity occurs in many natural and artificial systems. In this paper, we propose a self-feedback scheme to control birhythmicity. To establish the efficacy and generality of the proposed control scheme, we apply it on three birhythmic oscillators from diverse fields of natural science, namely, an energy harvesting system, the p53-Mdm2 network for protein genesis (the OAK model), and a glycolysis model (modified Decroly-Goldbeter model). Using the harmonic decomposition technique and energy balance method, we derive the analytical conditions for the control of birhythmicity. A detailed numerical bifurcation analysis in the parameter space establishes that the control scheme is capable of eliminating birhythmicity and it can also induce transitions between different forms of bistability. As the proposed control scheme is quite general, it can be applied for control of several real systems, particularly in biochemical and engineering systems.
Adaptive control strategies for flexible robotic arm
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1993-01-01
The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.
Neural self-tuning adaptive control of non-minimum phase system
NASA Technical Reports Server (NTRS)
Ho, Long T.; Bialasiewicz, Jan T.; Ho, Hai T.
1993-01-01
The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity, if not unstable, closed-loop behavior. Therefore, a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.
Linear and nonlinear schemes applied to pitch control of wind turbines.
Geng, Hua; Yang, Geng
2014-01-01
Linear controllers have been employed in industrial applications for many years, but sometimes they are noneffective on the system with nonlinear characteristics. This paper discusses the structure, performance, implementation cost, advantages, and disadvantages of different linear and nonlinear schemes applied to the pitch control of the wind energy conversion systems (WECSs). The linear controller has the simplest structure and is easily understood by the engineers and thus is widely accepted by the industry. In contrast, nonlinear schemes are more complicated, but they can provide better performance. Although nonlinear algorithms can be implemented in a powerful digital processor nowadays, they need time to be accepted by the industry and their reliability needs to be verified in the commercial products. More information about the system nonlinear feature is helpful to simplify the controller design. However, nonlinear schemes independent of the system model are more robust to the uncertainties or deviations of the system parameters.
Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states
NASA Astrophysics Data System (ADS)
Shi, Runhua; Huang, Liusheng; Yang, Wei; Zhong, Hong
2011-12-01
We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.
A Quantum Proxy Weak Blind Signature Scheme Based on Controlled Quantum Teleportation
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Yu, Yao-Feng; Song, Qin; Gao, Lan-Xiang
2015-04-01
Proxy blind signature is applied to the electronic paying system, electronic voting system, mobile agent system, security of internet, etc. A quantum proxy weak blind signature scheme is proposed in this paper. It is based on controlled quantum teleportation. Five-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement message blinding, so it could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.
Active control of the lifetime of excited resonance states by means of laser pulses.
García-Vela, A
2012-04-07
Quantum control of the lifetime of a system in an excited resonance state is investigated theoretically by creating coherent superpositions of overlapping resonances. This control scheme exploits the quantum interference occurring between the overlapping resonances, which can be controlled by varying the width of the laser pulse that creates the superposition state. The scheme is applied to a realistic model of the Br(2)(B)-Ne predissociation decay dynamics through a three-dimensional wave packet method. It is shown that extensive control of the system lifetime is achievable, both enhancing and damping it remarkably. An experimental realization of the control scheme is suggested.
Dealing with the time-varying parameter problem of robot manipulators performing path tracking tasks
NASA Technical Reports Server (NTRS)
Song, Y. D.; Middleton, R. H.
1992-01-01
Many robotic applications involve time-varying payloads during the operation of the robot. It is therefore of interest to consider control schemes that deal with time-varying parameters. Using the properties of the element by element (or Hadarmad) product of matrices, we obtain the robot dynamics in parameter-isolated form, from which a new control scheme is developed. The controller proposed yields zero asymptotic tracking errors when applied to robotic systems with time-varying parameters by using a switching type control law. The results obtained are global in the initial state of the robot, and can be applied to rapidly varying systems.
Direct adaptive control of manipulators in Cartesian space
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.
Adaptive Failure Compensation for Aircraft Tracking Control Using Engine Differential Based Model
NASA Technical Reports Server (NTRS)
Liu, Yu; Tang, Xidong; Tao, Gang; Joshi, Suresh M.
2006-01-01
An aircraft model that incorporates independently adjustable engine throttles and ailerons is employed to develop an adaptive control scheme in the presence of actuator failures. This model captures the key features of aircraft flight dynamics when in the engine differential mode. Based on this model an adaptive feedback control scheme for asymptotic state tracking is developed and applied to a transport aircraft model in the presence of two types of failures during operation, rudder failure and aileron failure. Simulation results are presented to demonstrate the adaptive failure compensation scheme.
Optimal Control for Quantum Driving of Two-Level Systems
NASA Astrophysics Data System (ADS)
Qi, Xiao-Qiu
2018-01-01
In this paper, the optimal quantum control of two-level systems is studied by the decompositions of SU(2). Using the Pontryagin maximum principle, the minimum time of quantum control is analyzed in detail. The solution scheme of the optimal control function is given in the general case. Finally, two specific cases, which can be applied in many quantum systems, are used to illustrate the scheme, while the corresponding optimal control functions are obtained.
Optimal feedback control of turbulent channel flow
NASA Technical Reports Server (NTRS)
Bewley, Thomas; Choi, Haecheon; Temam, Roger; Moin, Parviz
1993-01-01
Feedback control equations were developed and tested for computing wall normal control velocities to control turbulent flow in a channel with the objective of reducing drag. The technique used is the minimization of a 'cost functional' which is constructed to represent some balance of the drag integrated over the wall and the net control effort. A distribution of wall velocities is found which minimizes this cost functional some time shortly in the future based on current observations of the flow near the wall. Preliminary direct numerical simulations of the scheme applied to turbulent channel flow indicates it provides approximately 17 percent drag reduction. The mechanism apparent when the scheme is applied to a simplified flow situation is also discussed.
Robust Stabilization of T-S Fuzzy Stochastic Descriptor Systems via Integral Sliding Modes.
Li, Jinghao; Zhang, Qingling; Yan, Xing-Gang; Spurgeon, Sarah K
2017-09-19
This paper addresses the robust stabilization problem for T-S fuzzy stochastic descriptor systems using an integral sliding mode control paradigm. A classical integral sliding mode control scheme and a nonparallel distributed compensation (Non-PDC) integral sliding mode control scheme are presented. It is shown that two restrictive assumptions previously adopted developing sliding mode controllers for Takagi-Sugeno (T-S) fuzzy stochastic systems are not required with the proposed framework. A unified framework for sliding mode control of T-S fuzzy systems is formulated. The proposed Non-PDC integral sliding mode control scheme encompasses existing schemes when the previously imposed assumptions hold. Stability of the sliding motion is analyzed and the sliding mode controller is parameterized in terms of the solutions of a set of linear matrix inequalities which facilitates design. The methodology is applied to an inverted pendulum model to validate the effectiveness of the results presented.
Development of advanced control schemes for telerobot manipulators
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Zhou, Zhen-Lei
1991-01-01
To study space applications of telerobotics, Goddard Space Flight Center (NASA) has recently built a testbed composed mainly of a pair of redundant slave arms having seven degrees of freedom and a master hand controller system. The mathematical developments required for the computerized simulation study and motion control of the slave arms are presented. The slave arm forward kinematic transformation is presented which is derived using the D-H notation and is then reduced to its most simplified form suitable for real-time control applications. The vector cross product method is then applied to obtain the slave arm Jacobian matrix. Using the developed forward kinematic transformation and quaternions representation of the slave arm end-effector orientation, computer simulation is conducted to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of the Jacobian pseudo-inverse for various sampling times. In addition, the equivalence between Cartesian velocities and quaternion is also verified using computer simulation. The motion control of the slave arm is examined. Three control schemes, the joint-space adaptive control scheme, the Cartesian adaptive control scheme, and the hybrid position/force control scheme are proposed for controlling the motion of the slave arm end-effector. Development of the Cartesian adaptive control scheme is presented and some preliminary results of the remaining control schemes are presented and discussed.
Zhang, Zhijun; Li, Zhijun; Zhang, Yunong; Luo, Yamei; Li, Yuanqing
2015-12-01
We propose a dual-arm cyclic-motion-generation (DACMG) scheme by a neural-dynamic method, which can remedy the joint-angle-drift phenomenon of a humanoid robot. In particular, according to a neural-dynamic design method, first, a cyclic-motion performance index is exploited and applied. This cyclic-motion performance index is then integrated into a quadratic programming (QP)-type scheme with time-varying constraints, called the time-varying-constrained DACMG (TVC-DACMG) scheme. The scheme includes the kinematic motion equations of two arms and the time-varying joint limits. The scheme can not only generate the cyclic motion of two arms for a humanoid robot but also control the arms to move to the desired position. In addition, the scheme considers the physical limit avoidance. To solve the QP problem, a recurrent neural network is presented and used to obtain the optimal solutions. Computer simulations and physical experiments demonstrate the effectiveness and the accuracy of such a TVC-DACMG scheme and the neural network solver.
Suppression of chaos via control of energy flow
NASA Astrophysics Data System (ADS)
Guo, Shengli; Ma, Jun; Alsaedi, Ahmed
2018-03-01
Continuous energy supply is critical and important to support oscillating behaviour; otherwise, the oscillator will die. For nonlinear and chaotic circuits, enough energy supply is also important to keep electric devices working. In this paper, Hamilton energy is calculated for dimensionless dynamical system (e.g., the chaotic Lorenz system) using Helmholtz's theorem. The Hamilton energy is considered as a new variable and then the dynamical system is controlled by using the scheme of energy feedback. It is found that chaos can be suppressed even when intermittent feedback scheme is applied. This scheme is effective to control chaos and to stabilise other dynamical systems.
Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity
NASA Astrophysics Data System (ADS)
Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid
2015-06-01
We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.
Switched Fuzzy-PD Control of Contact Forces in Robotic Microbiomanipulation.
Zhang, Weize; Dong, Xianke; Liu, Xinyu
2017-05-01
Force sensing and control are of paramount importance in robotic micromanipulation. A contact force regulator capable of accurately applying mechanical stimuli to a live Drosophila larva could greatly facilitate mechanobiology research on Drosophila and may eventually lead to novel discoveries in mechanotransduction mechanisms of neuronal circuitries. In this paper, we present a novel contact force control scheme implemented in an automated Drosophila larvae micromanipulation system, featuring a switched fuzzy to proportional-differential (PD) controller and a noise-insensitive extended high gain observer (EHGO). The switched fuzzy-PD control law inherits the fast convergence of fuzzy control and overcomes its drawbacks such as large overshoot and steady-state oscillation. The noise-insensitive EHGO can reliably estimate system modeling errors and is robust to force measurement noises, which is advantageous over conventional high gain observers (sensitive to signal noises). Force control experiments show that, compared to a proportional-integral-differential (PID) controller, this new force control scheme significantly enhances the system dynamic performance in terms of rising time, overshoot, and oscillation. The developed robotic system and the force control scheme will be applied to mechanical stimulation and fluorescence imaging of Drosophila larvae for identifying new mechanotransduction mechanisms.
Haeufle, D F B; Günther, M; Wunner, G; Schmitt, S
2014-01-01
In biomechanics and biorobotics, muscles are often associated with reduced movement control effort and simplified control compared to technical actuators. This is based on evidence that the nonlinear muscle properties positively influence movement control. It is, however, open how to quantify the simplicity aspect of control effort and compare it between systems. Physical measures, such as energy consumption, stability, or jerk, have already been applied to compare biological and technical systems. Here a physical measure of control effort based on information entropy is presented. The idea is that control is simpler if a specific movement is generated with less processed sensor information, depending on the control scheme and the physical properties of the systems being compared. By calculating the Shannon information entropy of all sensor signals required for control, an information cost function can be formulated allowing the comparison of models of biological and technical control systems. Exemplarily applied to (bio-)mechanical models of hopping, the method reveals that the required information for generating hopping with a muscle driven by a simple reflex control scheme is only I=32 bits versus I=660 bits with a DC motor and a proportional differential controller. This approach to quantifying control effort captures the simplicity of a control scheme and can be used to compare completely different actuators and control approaches.
NASA Astrophysics Data System (ADS)
Endelt, B.
2017-09-01
Forming operation are subject to external disturbances and changing operating conditions e.g. new material batch, increasing tool temperature due to plastic work, material properties and lubrication is sensitive to tool temperature. It is generally accepted that forming operations are not stable over time and it is not uncommon to adjust the process parameters during the first half hour production, indicating that process instability is gradually developing over time. Thus, in-process feedback control scheme might not-be necessary to stabilize the process and an alternative approach is to apply an iterative learning algorithm, which can learn from previously produced parts i.e. a self learning system which gradually reduces error based on historical process information. What is proposed in the paper is a simple algorithm which can be applied to a wide range of sheet-metal forming processes. The input to the algorithm is the final flange edge geometry and the basic idea is to reduce the least-square error between the current flange geometry and a reference geometry using a non-linear least square algorithm. The ILC scheme is applied to a square deep-drawing and the Numisheet’08 S-rail benchmark problem, the numerical tests shows that the proposed control scheme is able control and stabilise both processes.
Linear triangular optimization technique and pricing scheme in residential energy management systems
NASA Astrophysics Data System (ADS)
Anees, Amir; Hussain, Iqtadar; AlKhaldi, Ali Hussain; Aslam, Muhammad
2018-06-01
This paper presents a new linear optimization algorithm for power scheduling of electric appliances. The proposed system is applied in a smart home community, in which community controller acts as a virtual distribution company for the end consumers. We also present a pricing scheme between community controller and its residential users based on real-time pricing and likely block rates. The results of the proposed optimization algorithm demonstrate that by applying the anticipated technique, not only end users can minimise the consumption cost, but it can also reduce the power peak to an average ratio which will be beneficial for the utilities as well.
NASA Technical Reports Server (NTRS)
Shyy, W.; Thakur, S.; Udaykumar, H. S.
1993-01-01
A high accuracy convection scheme using a sequential solution technique has been developed and applied to simulate the longitudinal combustion instability and its active control. The scheme has been devised in the spirit of the Total Variation Diminishing (TVD) concept with special source term treatment. Due to the substantial heat release effect, a clear delineation of the key elements employed by the scheme, i.e., the adjustable damping factor and the source term treatment has been made. By comparing with the first-order upwind scheme previously utilized, the present results exhibit less damping and are free from spurious oscillations, offering improved quantitative accuracy while confirming the spectral analysis reported earlier. A simple feedback type of active control has been found to be capable of enhancing or attenuating the magnitude of the combustion instability.
Quantum interference control of an isolated resonance lifetime in the weak-field limit.
García-Vela, A
2015-11-21
Resonance states play an important role in a large variety of physical and chemical processes. Thus, controlling the resonance behavior, and particularly a key property like the resonance lifetime, opens up the possibility of controlling those resonance mediated processes. While such a resonance control is possible by applying strong-field approaches, the development of flexible weak-field control schemes that do not alter significantly the system dynamics still remains a challenge. In this work, one such control scheme within the weak-field regime is proposed for the first time in order to modify the lifetime of an isolated resonance state. The basis of the scheme suggested is quantum interference between two pathways induced by laser fields, that pump wave packet amplitude to the target resonance under control. The simulations reported here show that the scheme allows for both enhancement and quenching of the resonance survival lifetime, being particularly flexible to achieve large lifetime enhancements. Control effects on the resonance lifetime take place only while the pulse is operating. In addition, the conditions required to generate the two interfering quantum pathways are found to be rather easy to meet for general systems, which makes the experimental implementation straightforward and implies the wide applicability of the control scheme.
Unequal error control scheme for dimmable visible light communication systems
NASA Astrophysics Data System (ADS)
Deng, Keyan; Yuan, Lei; Wan, Yi; Li, Huaan
2017-01-01
Visible light communication (VLC), which has the advantages of a very large bandwidth, high security, and freedom from license-related restrictions and electromagnetic-interference, has attracted much interest. Because a VLC system simultaneously performs illumination and communication functions, dimming control, efficiency, and reliable transmission are significant and challenging issues of such systems. In this paper, we propose a novel unequal error control (UEC) scheme in which expanding window fountain (EWF) codes in an on-off keying (OOK)-based VLC system are used to support different dimming target values. To evaluate the performance of the scheme for various dimming target values, we apply it to H.264 scalable video coding bitstreams in a VLC system. The results of the simulations that are performed using additive white Gaussian noises (AWGNs) with different signal-to-noise ratios (SNRs) are used to compare the performance of the proposed scheme for various dimming target values. It is found that the proposed UEC scheme enables earlier base layer recovery compared to the use of the equal error control (EEC) scheme for different dimming target values and therefore afford robust transmission for scalable video multicast over optical wireless channels. This is because of the unequal error protection (UEP) and unequal recovery time (URT) of the EWF code in the proposed scheme.
Receding horizon online optimization for torque control of gasoline engines.
Kang, Mingxin; Shen, Tielong
2016-11-01
This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Quantum state sharing against the controller's cheating
NASA Astrophysics Data System (ADS)
Shi, Run-hua; Zhong, Hong; Huang, Liu-sheng
2013-08-01
Most existing QSTS schemes are equivalent to the controlled teleportation, in which a designated agent (i.e., the recoverer) can recover the teleported state with the help of the controllers. However, the controller may attempt to cheat the recoverer during the phase of recovering the secret state. How can we detect this cheating? In this paper, we considered the problem of detecting the controller's cheating in Quantum State Sharing, and further proposed an effective Quantum State Sharing scheme against the controller's cheating. We cleverly use Quantum Secret Sharing, Multiple Quantum States Sharing and decoy-particle techniques. In our scheme, via a previously shared entanglement state Alice can teleport multiple arbitrary multi-qubit states to Bob with the help of Charlie. Furthermore, by the classical information shared previously, Alice and Bob can check whether there is any cheating of Charlie. In addition, our scheme only needs to perform Bell-state and single-particle measurements, and to apply C-NOT gate and other single-particle unitary operations. With the present techniques, it is feasible to implement these necessary measurements and operations.
Laser control of reactions of photoswitching functional molecules.
Tamura, Hiroyuki; Nanbu, Shinkoh; Ishida, Toshimasa; Nakamura, Hiroki
2006-07-21
Laser control schemes of reactions of photoswitching functional molecules are proposed based on the quantum mechanical wave-packet dynamics and the design of laser parameters. The appropriately designed quadratically chirped laser pulses can achieve nearly complete transitions of wave packet among electronic states. The laser parameters can be optimized by using the Zhu-Nakamura theory of nonadiabatic transition. This method is effective not only for the initial photoexcitation process but also for the pump and dump scheme in the middle of the overall photoswitching process. The effects of momentum of the wave packet crossing a conical intersection on the branching ratio of products have also been clarified. These control schemes mentioned above are successfully applied to the cyclohexadiene/hexatriene photoisomerization (ring-opening) process which is the reaction center of practical photoswitching molecules such as diarylethenes. The overall efficiency of the ring opening can be appreciably increased by using the appropriately designed laser pulses compared to that of the natural photoisomerization without any control schemes.
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-25
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.
Pulse design for multilevel systems by utilizing Lie transforms
NASA Astrophysics Data System (ADS)
Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan
2018-03-01
We put forward a scheme to design pulses to manipulate multilevel systems with Lie transforms. A formula to reverse construct a control Hamiltonian is given and is applied in pulse design in the three- and four-level systems as examples. To demonstrate the validity of the scheme, we perform numerical simulations, which show the population transfers for cascaded three-level and N -type four-level Rydberg atoms can be completed successfully with high fidelities. Therefore, the scheme may benefit quantum information tasks based on multilevel systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, Abraham Anthony
EPOXY is a LLVM base compiler that applies security protections to bare-metal programs on ARM Cortex-M series micro-controllers. This includes privilege overlaying, wherein operations requiring privileged execution are identified and only these operations execute in privileged mode. It also applies code integrity, control-flow hijacking defenses, stack protections, and fine-grained randomization schemes. All of its protections work within the constraints of bare-metal systems.
Sound beam manipulation based on temperature gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Feng; School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500; Quan, Li
Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest tomore » fields such as noise control or acoustic cloaking.« less
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-01
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326
Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.
Sun, Kangkang; Sui, Shuai; Tong, Shaocheng
2018-04-01
This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.
Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum.
Wilson, Emma D; Assaf, Tareq; Pearson, Martin J; Rossiter, Jonathan M; Dean, Paul; Anderson, Sean R; Porrill, John
2015-01-01
The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks.
Performance improvement of robots using a learning control scheme
NASA Technical Reports Server (NTRS)
Krishna, Ramuhalli; Chiang, Pen-Tai; Yang, Jackson C. S.
1987-01-01
Many applications of robots require that the same task be repeated a number of times. In such applications, the errors associated with one cycle are also repeated every cycle of the operation. An off-line learning control scheme is used here to modify the command function which would result in smaller errors in the next operation. The learning scheme is based on a knowledge of the errors and error rates associated with each cycle. Necessary conditions for the iterative scheme to converge to zero errors are derived analytically considering a second order servosystem model. Computer simulations show that the errors are reduced at a faster rate if the error rate is included in the iteration scheme. The results also indicate that the scheme may increase the magnitude of errors if the rate information is not included in the iteration scheme. Modification of the command input using a phase and gain adjustment is also proposed to reduce the errors with one attempt. The scheme is then applied to a computer model of a robot system similar to PUMA 560. Improved performance of the robot is shown by considering various cases of trajectory tracing. The scheme can be successfully used to improve the performance of actual robots within the limitations of the repeatability and noise characteristics of the robot.
Detection of antipersonnel (AP) mines using mechatronics approach
NASA Astrophysics Data System (ADS)
Shahri, Ali M.; Naghdy, Fazel
1998-09-01
At present there are approximately 110 million land-mines scattered around the world in 64 countries. The clearance of these mines takes place manually. Unfortunately, on average for every 5000 mines cleared one mine clearer is killed. A Mine Detector Arm (MDA) using mechatronics approach is under development in this work. The robot arm imitates manual hand- prodding technique for mine detection. It inserts a bayonet into the soil and models the dynamics of the manipulator and environment parameters, such as stiffness variation in the soil to control the impact caused by contacting a stiff object. An explicit impact control scheme is applied as the main control scheme, while two different intelligent control methods are designed to deal with uncertainties and varying environmental parameters. Firstly, a neuro-fuzzy adaptive gain controller (NFAGC) is designed to adapt the force gain control according to the estimated environment stiffness. Then, an adaptive neuro-fuzzy plus PID controller is employed to switch from a conventional PID controller to neuro-fuzzy impact control (NFIC), when an impact is detected. The developed control schemes are validated through computer simulation and experimental work.
Factorization and reduction methods for optimal control of distributed parameter systems
NASA Technical Reports Server (NTRS)
Burns, J. A.; Powers, R. K.
1985-01-01
A Chandrasekhar-type factorization method is applied to the linear-quadratic optimal control problem for distributed parameter systems. An aeroelastic control problem is used as a model example to demonstrate that if computationally efficient algorithms, such as those of Chandrasekhar-type, are combined with the special structure often available to a particular problem, then an abstract approximation theory developed for distributed parameter control theory becomes a viable method of solution. A numerical scheme based on averaging approximations is applied to hereditary control problems. Numerical examples are given.
Using new aggregation operators in rule-based intelligent control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Chen, Yung-Yaw; Yager, Ronald R.
1990-01-01
A new aggregation operator is applied in the design of an approximate reasoning-based controller. The ordered weighted averaging (OWA) operator has the property of lying between the And function and the Or function used in previous fuzzy set reasoning systems. It is shown here that, by applying OWA operators, more generalized types of control rules, which may include linguistic quantifiers such as Many and Most, can be developed. The new aggregation operators, as tested in a cart-pole balancing control problem, illustrate improved performance when compared with existing fuzzy control aggregation schemes.
A problem of optimal control and observation for distributed homogeneous multi-agent system
NASA Astrophysics Data System (ADS)
Kruglikov, Sergey V.
2017-12-01
The paper considers the implementation of a algorithm for controlling a distributed complex of several mobile multi-robots. The concept of a unified information space of the controlling system is applied. The presented information and mathematical models of participants and obstacles, as real agents, and goals and scenarios, as virtual agents, create the base forming the algorithmic and software background for computer decision support system. The controlling scheme assumes the indirect management of the robotic team on the basis of optimal control and observation problem predicting intellectual behavior in a dynamic, hostile environment. A basic content problem is a compound cargo transportation by a group of participants in the case of a distributed control scheme in the terrain with multiple obstacles.
Sliding mode controllers for a tempered glass furnace.
Almutairi, Naif B; Zribi, Mohamed
2016-01-01
This paper investigates the design of two sliding mode controllers (SMCs) applied to a tempered glass furnace system. The main objective of the proposed controllers is to regulate the glass plate temperature, the upper-wall temperature and the lower-wall temperature in the furnace to a common desired temperature. The first controller is a conventional sliding mode controller. The key step in the design of this controller is the introduction of a nonlinear transformation that maps the dynamic model of the tempered glass furnace into the generalized controller canonical form; this step facilitates the design of the sliding mode controller. The second controller is based on a state-dependent coefficient (SDC) factorization of the tempered glass furnace dynamic model. Using an SDC factorization, a simplified sliding mode controller is designed. The simulation results indicate that the two proposed control schemes work very well. Moreover, the robustness of the control schemes to changes in the system's parameters as well as to disturbances is investigated. In addition, a comparison of the proposed control schemes with a fuzzy PID controller is performed; the results show that the proposed SDC-based sliding mode controller gave better results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Two nonlinear control schemes contrasted on a hydrodynamiclike model
NASA Technical Reports Server (NTRS)
Keefe, Laurence R.
1993-01-01
The principles of two flow control strategies, those of Huebler (Luescher and Huebler, 1989) and of Ott et al. (1990) are discussed, and the two schemes are compared for their ability to control shear flow, using fully developed and transitional solutions of the Ginzburg-Landau equation as models for such flows. It was found that the effectiveness of both methods in obtaining control of fully developed flows depended strongly on the 'distance' in state space between the uncontrolled flow and goal dynamics. There were conceptual difficulties in applying the Ott et al. method to transitional convectively unstable flows. On the other hand, the Huebler method worked well, within certain limitations, although at a large cost in energy terms.
Dual adaptive dynamic control of mobile robots using neural networks.
Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato
2009-02-01
This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.
NASA Astrophysics Data System (ADS)
Chen, Dechao; Zhang, Yunong
2017-10-01
Dual-arm redundant robot systems are usually required to handle primary tasks, repetitively and synchronously in practical applications. In this paper, a jerk-level synchronous repetitive motion scheme is proposed to remedy the joint-angle drift phenomenon and achieve the synchronous control of a dual-arm redundant robot system. The proposed scheme is novelly resolved at jerk level, which makes the joint variables, i.e. joint angles, joint velocities and joint accelerations, smooth and bounded. In addition, two types of dynamics algorithms, i.e. gradient-type (G-type) and zeroing-type (Z-type) dynamics algorithms, for the design of repetitive motion variable vectors, are presented in detail with the corresponding circuit schematics. Subsequently, the proposed scheme is reformulated as two dynamical quadratic programs (DQPs) and further integrated into a unified DQP (UDQP) for the synchronous control of a dual-arm robot system. The optimal solution of the UDQP is found by the piecewise-linear projection equation neural network. Moreover, simulations and comparisons based on a six-degrees-of-freedom planar dual-arm redundant robot system substantiate the operation effectiveness and tracking accuracy of the robot system with the proposed scheme for repetitive motion and synchronous control.
Data Quality Screening Service
NASA Technical Reports Server (NTRS)
Strub, Richard; Lynnes, Christopher; Hearty, Thomas; Won, Young-In; Fox, Peter; Zednik, Stephan
2013-01-01
A report describes the Data Quality Screening Service (DQSS), which is designed to help automate the filtering of remote sensing data on behalf of science users. Whereas this process often involves much research through quality documents followed by laborious coding, the DQSS is a Web Service that provides data users with data pre-filtered to their particular criteria, while at the same time guiding the user with filtering recommendations of the cognizant data experts. The DQSS design is based on a formal semantic Web ontology that describes data fields and the quality fields for applying quality control within a data product. The accompanying code base handles several remote sensing datasets and quality control schemes for data products stored in Hierarchical Data Format (HDF), a common format for NASA remote sensing data. Together, the ontology and code support a variety of quality control schemes through the implementation of the Boolean expression with simple, reusable conditional expressions as operands. Additional datasets are added to the DQSS simply by registering instances in the ontology if they follow a quality scheme that is already modeled in the ontology. New quality schemes are added by extending the ontology and adding code for each new scheme.
Xie, Qi; Liu, Wenhao; Wang, Shengbao; Han, Lidong; Hu, Bin; Wu, Ting
2014-09-01
Patient's privacy-preserving, security and mutual authentication between patient and the medical server are the important mechanism in connected health care applications, such as telecare medical information systems and personally controlled health records systems. In 2013, Wen showed that Das et al.'s scheme is vulnerable to the replay attack, user impersonation attacks and off-line guessing attacks, and then proposed an improved scheme using biometrics, password and smart card to overcome these weaknesses. However, we show that Wen's scheme is still vulnerable to off-line password guessing attacks, does not provide user's anonymity and perfect forward secrecy. Further, we propose an improved scheme to fix these weaknesses, and use the applied pi calculus based formal verification tool ProVerif to prove the security and authentication.
On the use of distributed sensing in control of large flexible spacecraft
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.; Ghosh, Dave
1990-01-01
Distributed processing technology is being developed to process signals from distributed sensors using distributed computations. Thiw work presents a scheme for calculating the operators required to emulate a conventional Kalman filter and regulator using such a computer. The scheme makes use of conventional Kalman theory as applied to the control of large flexible structures. The required computation of the distributed operators given the conventional Kalman filter and regulator is explained. A straightforward application of this scheme may lead to nonsmooth operators whose convergence is not apparent. This is illustrated by application to the Mini-Mast, a large flexible truss at the Langley Research Center used for research in structural dynamics and control. Techniques for developing smooth operators are presented. These involve spatial filtering as well as adjusting the design constants in the Kalman theory. Results are presented that illustrate the degree of smoothness achieved.
Fault tolerant control of multivariable processes using auto-tuning PID controller.
Yu, Ding-Li; Chang, T K; Yu, Ding-Wen
2005-02-01
Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.
Multiple model self-tuning control for a class of nonlinear systems
NASA Astrophysics Data System (ADS)
Huang, Miao; Wang, Xin; Wang, Zhenlei
2015-10-01
This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.
Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.
Markowitz, Jared; Krishnaswamy, Pavitra; Eilenberg, Michael F; Endo, Ken; Barnhart, Chris; Herr, Hugh
2011-05-27
Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle-tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle-foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.
Gradient Projection Anti-windup Scheme on Constrained Planar LTI Systems
2010-03-15
was recognized as a largely open problem in a recent survey paper . This report analyzes the properties of the GPAW scheme applied to an input...recent survey paper [2] that anti- windup compensation for nonlinear systems remains largely an open problem. To this end, [3] and relevant references...controllers, the solution of which was recognized as a largely open problem in a recent survey paper . This report analyzes the properties of the GPAW
Energy management of three-dimensional minimum-time intercept. [for aircraft flight optimization
NASA Technical Reports Server (NTRS)
Kelley, H. J.; Cliff, E. M.; Visser, H. G.
1985-01-01
A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission. The proposed scheme has roots in two well known techniques: singular perturbations and neighboring-optimal guidance. Use of singular-perturbation ideas is made in terms of the assumed trajectory-family structure. A heading/energy family of prestored point-mass-model state-Euler solutions is used as the baseline in this scheme. The next step is to generate a near-optimal guidance law that will transfer the aircraft to the vicinity of this reference family. The control commands fed to the autopilot (bank angle and load factor) consist of the reference controls plus correction terms which are linear combinations of the altitude and path-angle deviations from reference values, weighted by a set of precalculated gains. In this respect the proposed scheme resembles neighboring-optimal guidance. However, in contrast to the neighboring-optimal guidance scheme, the reference control and state variables as well as the feedback gains are stored as functions of energy and heading in the present approach. Some numerical results comparing open-loop optimal and approximate feedback solutions are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, H. M. Abdul; Zhu, Feng; Ukkusuri, Satish V.
Here, this research applies R-Markov Average Reward Technique based reinforcement learning (RL) algorithm, namely RMART, for vehicular signal control problem leveraging information sharing among signal controllers in connected vehicle environment. We implemented the algorithm in a network of 18 signalized intersections and compare the performance of RMART with fixed, adaptive, and variants of the RL schemes. Results show significant improvement in system performance for RMART algorithm with information sharing over both traditional fixed signal timing plans and real time adaptive control schemes. Additionally, the comparison with reinforcement learning algorithms including Q learning and SARSA indicate that RMART performs better atmore » higher congestion levels. Further, a multi-reward structure is proposed that dynamically adjusts the reward function with varying congestion states at the intersection. Finally, the results from test networks show significant reduction in emissions (CO, CO 2, NO x, VOC, PM 10) when RL algorithms are implemented compared to fixed signal timings and adaptive schemes.« less
Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation
NASA Technical Reports Server (NTRS)
Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.
2005-01-01
The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.
Sato, Takahide; Kano, Takeshi; Ishiguro, Akio
2011-06-01
A systematic method for an autonomous decentralized control system is still lacking, despite its appealing concept. In order to alleviate this, we focused on the amoeboid locomotion of the true slime mold, and extracted a design scheme for the decentralized control mechanism that leads to adaptive behavior for the entire system, based on the so-called discrepancy function. In this paper, we intensively investigate the universality of this design scheme by applying it to a different type of locomotion based on a 'synthetic approach'. As a first step, we implement this design scheme to the control of a real physical two-dimensional serpentine robot that exhibits slithering locomotion. The experimental results show that the robot exhibits adaptive behavior and responds to the environmental changes; it is also robust against malfunctions of the body segments due to the local sensory feedback control that is based on the discrepancy function. We expect the results to shed new light on the methodology of autonomous decentralized control systems.
A comparative study of advanced shock-capturing schemes applied to Burgers' equation
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Przekwas, A. J.
1990-01-01
Several variations of the TVD scheme, ENO scheme, FCT scheme, and geometrical schemes, such as MUSCL and PPM, are considered. A comparative study of these schemes as applied to the Burgers' equation is presented. The objective is to assess their performance for problems involving formation and propagation of shocks, shock collisions, and expansion of discontinuities.
NASA Technical Reports Server (NTRS)
Kwon, Dong-Soo
1991-01-01
All research results about flexible manipulator control were integrated to show a control scenario of a bracing manipulator. First, dynamic analysis of a flexible manipulator was done for modeling. Second, from the dynamic model, the inverse dynamic equation was derived, and the time domain inverse dynamic method was proposed for the calculation of the feedforward torque and the desired flexible coordinate trajectories. Third, a tracking controller was designed by combining the inverse dynamic feedforward control with the joint feedback control. The control scheme was applied to the tip position control of a single link flexible manipulator for zero and non-zero initial condition cases. Finally, the contact control scheme was added to the position tracking control. A control scenario of a bracing manipulator is provided and evaluated through simulation and experiment on a single link flexible manipulator.
From Fault-Diagnosis and Performance Recovery of a Controlled System to Chaotic Secure Communication
NASA Astrophysics Data System (ADS)
Hsu, Wen-Teng; Tsai, Jason Sheng-Hong; Guo, Fang-Cheng; Guo, Shu-Mei; Shieh, Leang-San
Chaotic systems are often applied to encryption on secure communication, but they may not provide high-degree security. In order to improve the security of communication, chaotic systems may need to add other secure signals, but this may cause the system to diverge. In this paper, we redesign a communication scheme that could create secure communication with additional secure signals, and the proposed scheme could keep system convergence. First, we introduce the universal state-space adaptive observer-based fault diagnosis/estimator and the high-performance tracker for the sampled-data linear time-varying system with unanticipated decay factors in actuators/system states. Besides, robustness, convergence in the mean, and tracking ability are given in this paper. A residual generation scheme and a mechanism for auto-tuning switched gain is also presented, so that the introduced methodology is applicable for the fault detection and diagnosis (FDD) for actuator and state faults to yield a high tracking performance recovery. The evolutionary programming-based adaptive observer is then applied to the problem of secure communication. Whenever the tracker induces a large control input which might not conform to the input constraint of some physical systems, the proposed modified linear quadratic optimal tracker (LQT) can effectively restrict the control input within the specified constraint interval, under the acceptable tracking performance. The effectiveness of the proposed design methodology is illustrated through tracking control simulation examples.
Adaptive control applied to Space Station attitude control system
NASA Technical Reports Server (NTRS)
Lam, Quang M.; Chipman, Richard; Hu, Tsay-Hsin G.; Holmes, Eric B.; Sunkel, John
1992-01-01
This paper presents an adaptive control approach to enhance the performance of current attitude control system used by the Space Station Freedom. The proposed control law was developed based on the direct adaptive control or model reference adaptive control scheme. Performance comparisons, subject to inertia variation, of the adaptive controller and the fixed-gain linear quadratic regulator currently implemented for the Space Station are conducted. Both the fixed-gain and the adaptive gain controllers are able to maintain the Station stability for inertia variations of up to 35 percent. However, when a 50 percent inertia variation is applied to the Station, only the adaptive controller is able to maintain the Station attitude.
Control approach development for variable recruitment artificial muscles
NASA Astrophysics Data System (ADS)
Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew
2016-04-01
This study characterizes hybrid control approaches for the variable recruitment of fluidic artificial muscles with double acting (antagonistic) actuation. Fluidic artificial muscle actuators have been explored by researchers due to their natural compliance, high force-to-weight ratio, and low cost of fabrication. Previous studies have attempted to improve system efficiency of the actuators through variable recruitment, i.e. using discrete changes in the number of active actuators. While current variable recruitment research utilizes manual valve switching, this paper details the current development of an online variable recruitment control scheme. By continuously controlling applied pressure and discretely controlling the number of active actuators, operation in the lowest possible recruitment state is ensured and working fluid consumption is minimized. Results provide insight into switching control scheme effects on working fluids, fabrication material choices, actuator modeling, and controller development decisions.
Adaptive critic neural network-based object grasping control using a three-finger gripper.
Jagannathan, S; Galan, Gustavo
2004-03-01
Grasping of objects has been a challenging task for robots. The complex grasping task can be defined as object contact control and manipulation subtasks. In this paper, object contact control subtask is defined as the ability to follow a trajectory accurately by the fingers of a gripper. The object manipulation subtask is defined in terms of maintaining a predefined applied force by the fingers on the object. A sophisticated controller is necessary since the process of grasping an object without a priori knowledge of the object's size, texture, softness, gripper, and contact dynamics is rather difficult. Moreover, the object has to be secured accurately and considerably fast without damaging it. Since the gripper, contact dynamics, and the object properties are not typically known beforehand, an adaptive critic neural network (NN)-based hybrid position/force control scheme is introduced. The feedforward action generating NN in the adaptive critic NN controller compensates the nonlinear gripper and contact dynamics. The learning of the action generating NN is performed on-line based on a critic NN output signal. The controller ensures that a three-finger gripper tracks a desired trajectory while applying desired forces on the object for manipulation. Novel NN weight tuning updates are derived for the action generating and critic NNs so that Lyapunov-based stability analysis can be shown. Simulation results demonstrate that the proposed scheme successfully allows fingers of a gripper to secure objects without the knowledge of the underlying gripper and contact dynamics of the object compared to conventional schemes.
A secure transmission scheme of streaming media based on the encrypted control message
NASA Astrophysics Data System (ADS)
Li, Bing; Jin, Zhigang; Shu, Yantai; Yu, Li
2007-09-01
As the use of streaming media applications increased dramatically in recent years, streaming media security becomes an important presumption, protecting the privacy. This paper proposes a new encryption scheme in view of characteristics of streaming media and the disadvantage of the living method: encrypt the control message in the streaming media with the high security lever and permute and confuse the data which is non control message according to the corresponding control message. Here the so-called control message refers to the key data of the streaming media, including the streaming media header and the header of the video frame, and the seed key. We encrypt the control message using the public key encryption algorithm which can provide high security lever, such as RSA. At the same time we make use of the seed key to generate key stream, from which the permutation list P responding to GOP (group of picture) is derived. The plain text of the non-control message XORs the key stream and gets the middle cipher text. And then obtained one is permutated according to P. In contrast the decryption process is the inverse process of the above. We have set up a testbed for the above scheme and found our scheme is six to eight times faster than the conventional method. It can be applied not only between PCs but also between handheld devices.
NASA Astrophysics Data System (ADS)
Zhao, L. W.; Du, J. G.; Yin, J. L.
2018-05-01
This paper proposes a novel secured communication scheme in a chaotic system by applying generalized function projective synchronization of the nonlinear Schrödinger equation. This phenomenal approach guarantees a secured and convenient communication. Our study applied the Melnikov theorem with an active control strategy to suppress chaos in the system. The transmitted information signal is modulated into the parameter of the nonlinear Schrödinger equation in the transmitter and it is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory and the adaptive control technique, the controllers are designed to make two identical nonlinear Schrödinger equation with the unknown parameter asymptotically synchronized. The numerical simulation results of our study confirmed the validity, effectiveness and the feasibility of the proposed novel synchronization method and error estimate for a secure communication. The Chaos masking signals of the information communication scheme, further guaranteed a safer and secured information communicated via this approach.
Modeling of power control schemes in induction cooking devices
NASA Astrophysics Data System (ADS)
Beato, Alessio; Conti, Massimo; Turchetti, Claudio; Orcioni, Simone
2005-06-01
In recent years, with remarkable advancements of power semiconductor devices and electronic control systems, it becomes possible to apply the induction heating technique for domestic use. In order to achieve the supply power required by these devices, high-frequency resonant inverters are used: the force commutated, half-bridge series resonant converter is well suited for induction cooking since it offers an appropriate balance between complexity and performances. Power control is a key issue to attain efficient and reliable products. This paper describes and compares four power control schemes applied to the half-bridge series resonant inverter. The pulse frequency modulation is the most common control scheme: according to this strategy, the output power is regulated by varying the switching frequency of the inverter circuit. Other considered methods, originally developed for induction heating industrial applications, are: pulse amplitude modulation, asymmetrical duty cycle and pulse density modulation which are respectively based on variation of the amplitude of the input supply voltage, on variation of the duty cycle of the switching signals and on variation of the number of switching pulses. Each description is provided with a detailed mathematical analysis; an analytical model, built to simulate the circuit topology, is implemented in the Matlab environment in order to obtain the steady-state values and waveforms of currents and voltages. For purposes of this study, switches and all reactive components are modelled as ideal and the "heating-coil/pan" system is represented by an equivalent circuit made up of a series connected resistance and inductance.
NASA Technical Reports Server (NTRS)
Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet
1994-01-01
This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.
Wang, Mingming; Sun, Yuanxiang; Sweetapple, Chris
2017-12-15
Storage is important for flood mitigation and non-point source pollution control. However, to seek a cost-effective design scheme for storage tanks is very complex. This paper presents a two-stage optimization framework to find an optimal scheme for storage tanks using storm water management model (SWMM). The objectives are to minimize flooding, total suspended solids (TSS) load and storage cost. The framework includes two modules: (i) the analytical module, which evaluates and ranks the flooding nodes with the analytic hierarchy process (AHP) using two indicators (flood depth and flood duration), and then obtains the preliminary scheme by calculating two efficiency indicators (flood reduction efficiency and TSS reduction efficiency); (ii) the iteration module, which obtains an optimal scheme using a generalized pattern search (GPS) method based on the preliminary scheme generated by the analytical module. The proposed approach was applied to a catchment in CZ city, China, to test its capability in choosing design alternatives. Different rainfall scenarios are considered to test its robustness. The results demonstrate that the optimal framework is feasible, and the optimization is fast based on the preliminary scheme. The optimized scheme is better than the preliminary scheme for reducing runoff and pollutant loads under a given storage cost. The multi-objective optimization framework presented in this paper may be useful in finding the best scheme of storage tanks or low impact development (LID) controls. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Santosh Kumar; Ghatak Choudhuri, Sumit
2018-05-01
Parallel connection of UPS inverters to enhance power rating is a widely accepted practice. Inter-modular circulating currents appear when multiple inverter modules are connected in parallel to supply variable critical load. Interfacing of modules henceforth requires an intensive design, using proper control strategy. The potentiality of human intuitive Fuzzy Logic (FL) control with imprecise system model is well known and thus can be utilised in parallel-connected UPS systems. Conventional FL controller is computational intensive, especially with higher number of input variables. This paper proposes application of Hierarchical-Fuzzy Logic control for parallel connected Multi-modular inverters system for reduced computational burden on the processor for a given switching frequency. Simulated results in MATLAB environment and experimental verification using Texas TMS320F2812 DSP are included to demonstrate feasibility of the proposed control scheme.
Pavement marking extensions for deceleration lanes.
DOT National Transportation Integrated Search
1974-01-01
Pavement markings have definite and important functions in a proper scheme of traffic control. One such marking, the pavement edge line, has received much favorable public reaction. One of the limitations of the edge line as conventionally applied is...
Effective Control of Computationally Simulated Wing Rock in Subsonic Flow
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Menzies, Margaret A.
1997-01-01
The unsteady compressible, full Navier-Stokes (NS) equations and the Euler equations of rigid-body dynamics are sequentially solved to simulate the delta wing rock phenomenon. The NS equations are solved time accurately, using the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The rigid-body dynamics equations are solved using a four-stage Runge-Kutta scheme. Once the wing reaches the limit-cycle response, an active control model using a mass injection system is applied from the wing surface to suppress the limit-cycle oscillation. The active control model is based on state feedback and the control law is established using pole placement techniques. The control law is based on the feedback of two states: the roll-angle and roll velocity. The primary model of the computational applications consists of a 80 deg swept, sharp edged, delta wing at 30 deg angle of attack in a freestream of Mach number 0.1 and Reynolds number of 0.4 x 10(exp 6). With a limit-cycle roll amplitude of 41.1 deg, the control model is applied, and the results show that within one and one half cycles of oscillation, the wing roll amplitude and velocity are brought to zero.
Frequency response control of semiconductor laser by using hybrid modulation scheme.
Mieda, Shigeru; Yokota, Nobuhide; Isshiki, Ryuto; Kobayashi, Wataru; Yasaka, Hiroshi
2016-10-31
A hybrid modulation scheme that simultaneously applies the direct current modulation and intra-cavity loss modulation to a semiconductor laser is proposed. Both numerical calculations using rate equations and experiments using a fabricated laser show that the hybrid modulation scheme can control the frequency response of the laser by changing a modulation ratio and time delay between the two modulations. The modulation ratio and time delay provide the degree of signal mixing of the two modulations and an optimum condition is found when a non-flat frequency response for the intra-cavity loss modulation is compensated by that for the direct current modulation. We experimentally confirm a 8.64-dB improvement of the modulation sensitivity at 20 GHz compared with the pure direct current modulation with a 0.7-dB relaxation oscillation peak.
Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro.
Duryea, Alexander P; Roberts, William W; Cain, Charles A; Hall, Timothy L
2013-02-01
Stone comminution in shock wave lithotripsy (SWL) has been documented to result from mechanical stresses conferred directly to the stone, as well as the activity of cavitational microbubbles. Studies have demonstrated that the presence of this cavitation activity is crucial for stone subdivision; however, its exact role in the comminution process remains somewhat weakly defined, in part because it is difficult to isolate the cavitational component from the shock waves themselves. In this study, we further explored the importance of cavitation in SWL stone comminution through the use of histotripsy ultrasound therapy. Histotripsy was used to target model stones designed to mimic the mid-range tensile fracture strength of naturally occurring cystine calculi with controlled cavitation at strategic time points in the SWL comminution process. All SWL was applied at a peak positive pressure (p+) of 34 MPa and a peak negative pressure (p-) of 8 MPa; a shock rate of 1 Hz was used. Histotripsy pulses had a p- of 33 MPa and were applied at a pulse repetition frequency (PRF) of 100 Hz. Ten model stones were sonicated in vitro with each of five different treatment schemes: A) 10 min of SWL (600 shocks) with 0.7 s of histotripsy interleaved between successive shocks (totaling to 42 000 pulses); B) 10 min of SWL (600 shocks) followed by 10 min of histotripsy applied in 0.7-s bursts (1 burst per second, totaling to 42 000 pulses); C) 10 min of histotripsy applied in 0.7-s bursts (42 000 pulses) followed by 10 min of SWL (600 shocks); D) 10 min of SWL only (600 shocks); E) 10 min of histotripsy only, applied in 0.7-s bursts (42 000 pulses). Following sonication, debris was collected and sieved through 8-, 6-, 4-, and 2-mm filters. It was found that scheme D, SWL only, generated a broad range of fragment sizes, with an average of 14.9 ± 24.1% of the original stone mass remaining > 8 mm. Scheme E, histotripsy only, eroded the surface of stones to tiny particulate debris that was small enough to pass through the finest filter used in this study (<2 mm), leaving behind a single primary stone piece (>8 mm) with mass 85.1 ± 1.6% of the original following truncated sonication. The combination of SWL and histotripsy (schemes A, B, and C) resulted in a shift in the size distribution toward smaller fragments and complete elimination of debris > 8 mm. When histotripsy-controlled cavitation was applied following SWL (B), the increase in exposed stone surface area afforded by shock wave stone subdivision led to enhanced cavitation erosion. When histotripsy-controlled cavitation was applied before SWL (C), it is likely that stone surface defects induced by cavitation erosion provided sites for crack nucleation and accelerated shock wave stone subdivision. Both of these effects are likely at play in the interleaved therapy (A), although shielding of shock waves by remnant histotripsy microbubble nuclei may have limited the efficacy of this scheme. Nevertheless, these results demonstrate the important role played by cavitation in the stone comminution process, and suggest that the application of controlled cavitation at strategic time points can provide an adjunct to traditional SWL therapy.
Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics.
Linnemann, D; Strobel, H; Muessel, W; Schulz, J; Lewis-Swan, R J; Kheruntsyan, K V; Oberthaler, M K
2016-07-01
We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.
Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokanowski, Olivier, E-mail: boka@math.jussieu.fr; Picarelli, Athena, E-mail: athena.picarelli@inria.fr; Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr
2015-02-15
This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system ofmore » controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.« less
NASA Astrophysics Data System (ADS)
Sabanin, V. R.; Starostin, A. A.; Repin, A. I.; Popov, A. I.
2017-02-01
The problems of operation effectiveness increase of steam boilers are considered. To maintain the optimum fuel combustion modes, it is proposed to use an extremal controller (EC) determining the value of airflow rate, at which the boiler generating the desired amount of heat will consume a minimum amount of fuel. EC sets the determined value of airflow rate to airflow rate controller (ARC). The test results of numerical simulation dynamic nonlinear model of steam boiler with the connected system of automatic control of load and combustion efficiency using EC are presented. The model is created in the Simulink modeling package of MATLAB software and can be used to optimize the combustion modes. Based on the modeling results, the conclusion was drawn about the possibility in principle of simultaneously boiler load control and optimizing by EC the combustion modes when changing the fuel combustion heat and the boiler characteristics and its operating mode. It is shown that it is possible to automatically control the operation efficiency of steam boilers when using EC without applying the standard flue gas analyzers. The article considers the numerical simulation dynamic model of steam boiler with the schemes of control of fuel consumption and airflow rate, the steam pressure and EC; the purpose of using EC in the scheme with linear controllers and the requirements to the quality of its operation; the results of operation of boiler control schemes without EC with estimation of influence of roughness of thermal mode maps on the nature of static and dynamic connection of the control units of fuel consumption and airflow rate; the phase trajectories and the diagrams of transient processes occurring in the control scheme with EC with stepped changing the fuel quality and boiler characteristics; analysis of modeling results and prospects for using EC in the control schemes of boilers.
Enhanced pid vs model predictive control applied to bldc motor
NASA Astrophysics Data System (ADS)
Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.
2018-01-01
BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.
NASA Astrophysics Data System (ADS)
Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon
2017-01-01
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.
A robust and high-performance queue management controller for large round trip time networks
NASA Astrophysics Data System (ADS)
Khoshnevisan, Ladan; Salmasi, Farzad R.
2016-05-01
Congestion management for transmission control protocol is of utmost importance to prevent packet loss within a network. This necessitates strategies for active queue management. The most applied active queue management strategies have their inherent disadvantages which lead to suboptimal performance and even instability in the case of large round trip time and/or external disturbance. This paper presents an internal model control robust queue management scheme with two degrees of freedom in order to restrict the undesired effects of large and small round trip time and parameter variations in the queue management. Conventional approaches such as proportional integral and random early detection procedures lead to unstable behaviour due to large delay. Moreover, internal model control-Smith scheme suffers from large oscillations due to the large round trip time. On the other hand, other schemes such as internal model control-proportional integral and derivative show excessive sluggish performance for small round trip time values. To overcome these shortcomings, we introduce a system entailing two individual controllers for queue management and disturbance rejection, simultaneously. Simulation results based on Matlab/Simulink and also Network Simulator 2 (NS2) demonstrate the effectiveness of the procedure and verify the analytical approach.
Li, Zhenyu; Wang, Bin; Liu, Hong
2016-08-30
Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.
Li, Zhenyu; Wang, Bin; Liu, Hong
2016-01-01
Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme. PMID:27589748
A distributed model predictive control scheme for leader-follower multi-agent systems
NASA Astrophysics Data System (ADS)
Franzè, Giuseppe; Lucia, Walter; Tedesco, Francesco
2018-02-01
In this paper, we present a novel receding horizon control scheme for solving the formation problem of leader-follower configurations. The algorithm is based on set-theoretic ideas and is tuned for agents described by linear time-invariant (LTI) systems subject to input and state constraints. The novelty of the proposed framework relies on the capability to jointly use sequences of one-step controllable sets and polyhedral piecewise state-space partitions in order to online apply the 'better' control action in a distributed receding horizon fashion. Moreover, we prove that the design of both robust positively invariant sets and one-step-ahead controllable regions is achieved in a distributed sense. Simulations and numerical comparisons with respect to centralised and local-based strategies are finally performed on a group of mobile robots to demonstrate the effectiveness of the proposed control strategy.
NASA Astrophysics Data System (ADS)
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Passive and active pulse stacking scheme for pulse shaping
Harney, Robert C.; Schipper, John F.
1977-01-01
Apparatus and method for producing a sequence of radiation pulses with a pulse envelope of time variation which is controllable by an external electromagnetic signal applied to an active medium or by a sectored reflector, through which the radiation passes.
Voltage regulation and power losses reduction in a wind farm integrated MV distribution network
NASA Astrophysics Data System (ADS)
Fandi, Ghaeth; Igbinovia, Famous Omar; Tlusty, Josef; Mahmoud, Rateb
2018-01-01
A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.
Bio-inspired online variable recruitment control of fluidic artificial muscles
NASA Astrophysics Data System (ADS)
Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew
2016-12-01
This paper details the creation of a hybrid variable recruitment control scheme for fluidic artificial muscle (FAM) actuators with an emphasis on maximizing system efficiency and switching control performance. Variable recruitment is the process of altering a system’s active number of actuators, allowing operation in distinct force regimes. Previously, FAM variable recruitment was only quantified with offline, manual valve switching; this study addresses the creation and characterization of novel, on-line FAM switching control algorithms. The bio-inspired algorithms are implemented in conjunction with a PID and model-based controller, and applied to a simulated plant model. Variable recruitment transition effects and chatter rejection are explored via a sensitivity analysis, allowing a system designer to weigh tradeoffs in actuator modeling, algorithm choice, and necessary hardware. Variable recruitment is further developed through simulation of a robotic arm tracking a variety of spline position inputs, requiring several levels of actuator recruitment. Switching controller performance is quantified and compared with baseline systems lacking variable recruitment. The work extends current variable recruitment knowledge by creating novel online variable recruitment control schemes, and exploring how online actuator recruitment affects system efficiency and control performance. Key topics associated with implementing a variable recruitment scheme, including the effects of modeling inaccuracies, hardware considerations, and switching transition concerns are also addressed.
VAN Kesteren, F; Mastin, A; Torgerson, P R; Mytynova, Bermet; Craig, P S
2017-09-01
Echinococcosis is a re-emerging zoonotic disease in Kyrgyzstan. In 2012, an echinococcosis control scheme was started that included dosing owned dogs in the Alay Valley, Kyrgyzstan with praziquantel. Control programmes require large investments of money and resources; as such it is important to evaluate how well these are meeting their targets. However, problems associated with echinococcosis control schemes include remoteness and semi-nomadic customs of affected communities, and lack of resources. These same problems apply to control scheme evaluations, and quick and easy assessment tools are highly desirable. Lot quality assurance sampling was used to assess the impact of approximately 2 years of echinococcosis control in the Alay valley. A pre-intervention coproELISA prevalence was established, and a 75% threshold for dosing compliance was set based on previous studies. Ten communities were visited in 2013 and 2014, with 18-21 dogs sampled per community, and questionnaires administered to dog owners. After 21 months of control efforts, 8/10 communities showed evidence of reaching the 75% praziquantel dosing target, although only 3/10 showed evidence of a reduction in coproELISA prevalence. This is understandable, since years of sustained control are required to effectively control echinococcosis, and efforts in the Alay valley should be and are being continued.
Adaptive Numerical Dissipative Control in High Order Schemes for Multi-D Non-Ideal MHD
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjoegreen, B.
2004-01-01
The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free of numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multi-resolution wavelets (WAV) (for the above types of flow feature). These filter approaches also provide a natural and efficient way for the minimization of Div(B) numerical error. The filter scheme consists of spatially sixth order or higher non-dissipative spatial difference operators as the base scheme for the inviscid flux derivatives. If necessary, a small amount of high order linear dissipation is used to remove spurious high frequency oscillations. For example, an eighth-order centered linear dissipation (AD8) might be included in conjunction with a spatially sixth-order base scheme. The inviscid difference operator is applied twice for the viscous flux derivatives. After the completion of a full time step of the base scheme step, the solution is adaptively filtered by the product of a 'flow detector' and the 'nonlinear dissipative portion' of a high-resolution shock-capturing scheme. In addition, the scheme independent wavelet flow detector can be used in conjunction with spatially compact, spectral or spectral element type of base schemes. The ACM and wavelet filter schemes using the dissipative portion of a second-order shock-capturing scheme with sixth-order spatial central base scheme for both the inviscid and viscous MHD flux derivatives and a fourth-order Runge-Kutta method are denoted.
NASA Astrophysics Data System (ADS)
Al-Gburi, A.; Freeman, C. T.; French, M. C.
2018-06-01
This paper uses gap metric analysis to derive robustness and performance margins for feedback linearising controllers. Distinct from previous robustness analysis, it incorporates the case of output unstructured uncertainties, and is shown to yield general stability conditions which can be applied to both stable and unstable plants. It then expands on existing feedback linearising control schemes by introducing a more general robust feedback linearising control design which classifies the system nonlinearity into stable and unstable components and cancels only the unstable plant nonlinearities. This is done in order to preserve the stabilising action of the inherently stabilising nonlinearities. Robustness and performance margins are derived for this control scheme, and are expressed in terms of bounds on the plant nonlinearities and the accuracy of the cancellation of the unstable plant nonlinearity by the controller. Case studies then confirm reduced conservatism compared with standard methods.
NASA Technical Reports Server (NTRS)
DeMartino, Salvatore; DeSiena, Silvio
1996-01-01
We look at time evolution of a physical system from the point of view of dynamical control theory. Normally we solve motion equation with a given external potential and we obtain time evolution. Standard examples are the trajectories in classical mechanics or the wave functions in Quantum Mechanics. In the control theory, we have the configurational variables of a physical system, we choose a velocity field and with a suited strategy we force the physical system to have a well defined evolution. The evolution of the system is the 'premium' that the controller receives if he has adopted the right strategy. The strategy is given by well suited laboratory devices. The control mechanisms are in many cases non linear; it is necessary, namely, a feedback mechanism to retain in time the selected evolution. Our aim is to introduce a scheme to obtain Quantum wave packets by control theory. The program is to choose the characteristics of a packet, that is, the equation of evolution for its centre and a controlled dispersion, and to give a building scheme from some initial state (for example a solution of stationary Schroedinger equation). It seems natural in this view to use stochastic approach to Quantum Mechanics, that is, Stochastic Mechanics [S.M.]. It is a quantization scheme different from ordinary ones only formally. This approach introduces in quantum theory the whole mathematical apparatus of stochastic control theory. Stochastic Mechanics, in our view, is more intuitive when we want to study all the classical-like problems. We apply our scheme to build two classes of quantum packets both derived generalizing some properties of coherent states.
Irrigation water policy analysis using a business simulation game
NASA Astrophysics Data System (ADS)
Buchholz, M.; Holst, G.; Musshoff, O.
2016-10-01
Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.
An-Min Zou; Kumar, K D; Zeng-Guang Hou; Xi Liu
2011-08-01
A finite-time attitude tracking control scheme is proposed for spacecraft using terminal sliding mode and Chebyshev neural network (NN) (CNN). The four-parameter representations (quaternion) are used to describe the spacecraft attitude for global representation without singularities. The attitude state (i.e., attitude and velocity) error dynamics is transformed to a double integrator dynamics with a constraint on the spacecraft attitude. With consideration of this constraint, a novel terminal sliding manifold is proposed for the spacecraft. In order to guarantee that the output of the NN used in the controller is bounded by the corresponding bound of the approximated unknown function, a switch function is applied to generate a switching between the adaptive NN control and the robust controller. Meanwhile, a CNN, whose basis functions are implemented using only desired signals, is introduced to approximate the desired nonlinear function and bounded external disturbances online, and the robust term based on the hyperbolic tangent function is applied to counteract NN approximation errors in the adaptive neural control scheme. Most importantly, the finite-time stability in both the reaching phase and the sliding phase can be guaranteed by a Lyapunov-based approach. Finally, numerical simulations on the attitude tracking control of spacecraft in the presence of an unknown mass moment of inertia matrix, bounded external disturbances, and control input constraints are presented to demonstrate the performance of the proposed controller.
Operational flood control of a low-lying delta system using large time step Model Predictive Control
NASA Astrophysics Data System (ADS)
Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick
2015-01-01
The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.
On modeling of integrated communication and control systems
NASA Technical Reports Server (NTRS)
Liou, Luen-Woei; Ray, Asok
1990-01-01
The mathematical modeling scheme proposed by Ray and Halevi (1988) for integrated communication and control systems is considered analytically, with an emphasis on the effect of introducing varying and distributed time delays to account for asynchronous time-division multiplexing in the communication part of the system. Ray and Halevi applied a state-transition concept to transform the original continuous-time model into a discrete-time model; the same approach was used by Kalman and Bertram (1959) to model various types of sampled data systems which are not subject to induced delays. The relationship between the two modeling schemes is explored, and it is shown that, although the Kalman-Bertram method has the advantage of a unified approach, it becomes inconvenient when varying delays appear in the control loop.
2012-06-01
the open-loop path is established, the feedback system can be treated as a set of SISO feedback loops and a single SISO control law can be applied...Zernike polynomials are commonly referred to by the names, such as focus, coma, astigmatism , and etc. Zernike polynomials can be transformed into
Huang, Chao-Chi; Chiu, Yang-Hung; Wen, Chih-Yu
2014-01-01
In a vehicular sensor network (VSN), the key design issue is how to organize vehicles effectively, such that the local network topology can be stabilized quickly. In this work, each vehicle with on-board sensors can be considered as a local controller associated with a group of communication members. In order to balance the load among the nodes and govern the local topology change, a group formation scheme using localized criteria is implemented. The proposed distributed topology control method focuses on reducing the rate of group member change and avoiding the unnecessary information exchange. Two major phases are sequentially applied to choose the group members of each vehicle using hybrid angle/distance information. The operation of Phase I is based on the concept of the cone-based method, which can select the desired vehicles quickly. Afterwards, the proposed time-slot method is further applied to stabilize the network topology. Given the network structure in Phase I, a routing scheme is presented in Phase II. The network behaviors are explored through simulation and analysis in a variety of scenarios. The results show that the proposed mechanism is a scalable and effective control framework for VSNs. PMID:25350506
NASA Astrophysics Data System (ADS)
Song, Qi; Song, Y. D.; Cai, Wenchuan
2011-09-01
Although backstepping control design approach has been widely utilised in many practical systems, little effort has been made in applying this useful method to train systems. The main purpose of this paper is to apply this popular control design technique to speed and position tracking control of high-speed trains. By integrating adaptive control with backstepping control, we develop a control scheme that is able to address not only the traction and braking dynamics ignored in most existing methods, but also the uncertain friction and aerodynamic drag forces arisen from uncertain resistance coefficients. As such, the resultant control algorithms are able to achieve high precision train position and speed tracking under varying operation railway conditions, as validated by theoretical analysis and numerical simulations.
Rapid Parameterization Schemes for Aircraft Shape Optimization
NASA Technical Reports Server (NTRS)
Li, Wu
2012-01-01
A rapid shape parameterization tool called PROTEUS is developed for aircraft shape optimization. This tool can be applied directly to any aircraft geometry that has been defined in PLOT3D format, with the restriction that each aircraft component must be defined by only one data block. PROTEUS has eight types of parameterization schemes: planform, wing surface, twist, body surface, body scaling, body camber line, shifting/scaling, and linear morphing. These parametric schemes can be applied to two types of components: wing-type surfaces (e.g., wing, canard, horizontal tail, vertical tail, and pylon) and body-type surfaces (e.g., fuselage, pod, and nacelle). These schemes permit the easy setup of commonly used shape modification methods, and each customized parametric scheme can be applied to the same type of component for any configuration. This paper explains the mathematics for these parametric schemes and uses two supersonic configurations to demonstrate the application of these schemes.
An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models
Alexandridis, Alex; Stogiannos, Marios; Papaioannou, Nikolaos; Zois, Elias; Sarimveis, Haralambos
2018-01-01
This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM) algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS) stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC) motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses. PMID:29361781
Magnetic-field-dependent slow light in strontium atom-cavity system
NASA Astrophysics Data System (ADS)
Liu, Zeng-Xing; Wang, Bao; Kong, Cui; Xiong, Hao; Wu, Ying
2018-03-01
Realizing and controlling a long-lived slow light is of fundamental importance in physics and may find applications in quantum router and quantum information processing. In this work, we propose a feasible scheme to realize the slow light in a strontium atom-cavity system, in which the value of group delay can be continuously adjusted within a range of different Zeeman splittings and vacuum Rabi frequencies by varying the applied static magnetic field and the atom number instead of a strong coherent field. In our scheme, the major limitations of the slow-light structure, namely, dispersion and loss, can be effectively resolved, and so our scheme may help to achieve the practical application of slow light relevant to the optical communication network.
Kinematics and force analysis of a robot hand based on an artificial biological control scheme
NASA Astrophysics Data System (ADS)
Kim, Man Guen
An artificial biological control scheme (ABCS) is used to study the kinematics and statics of a multifingered hand with a view to developing an efficient control scheme for grasping. The ABCS is based on observation of human grasping, intuitively taking it as the optimum model for robotic grasping. A final chapter proposes several grasping measures to be applied to the design and control of a robot hand. The ABCS leads to the definition of two modes of the grasping action: natural grasping (NG), which is the human motion to grasp the object without any special task command, and forced grasping (FG), which is the motion with a specific task. The grasping direction line (GDL) is defined to determine the position and orientation of the object in the hand. The kinematic model of a redundant robot arm and hand is developed by reconstructing the human upper extremity and using anthropometric measurement data. The inverse kinematic analyses of various types of precision and power grasping are studied by replacing the three-link with one virtual link and using the GDL. The static force analysis for grasping with fingertips is studied by applying the ABCS. A measure of grasping stability, that maintains the positions of contacts as well as the configurations of the redundant fingers, is derived. The grasping stability measure (GSM), a measure of how well the hand maintains grasping under the existence of external disturbance, is derived by the torque vector of the hand calculated from the external force applied to the object. The grasping manipulability measure (GMM), a measure of how well the hand manipulates the object for the task, is derived by the joint velocity vector of the hand calculated from the object velocity. The grasping performance measure (GPM) is defined by the sum of the directional components of the GSM and the GMM. Finally, a planar redundant hand with two fingers is examined in order to study the various postures of the hand performing pinch grasping by applying the GSM and the GMM.
NASA Technical Reports Server (NTRS)
Barker, L. Keith; Mckinney, William S., Jr.
1989-01-01
The Laboratory Telerobotic Manipulator (LTM) is a seven-degree-of-freedom robot arm. Two of the arms were delivered to Langley Research Center for ground-based research to assess the use of redundant degree-of-freedom robot arms in space operations. Resolved-rate control equations for the LTM are derived. The equations are based on a scheme developed at the Oak Ridge National Laboratory for computing optimized joint angle rates in real time. The optimized joint angle rates actually represent a trade-off, as the hand moves, between small rates (least-squares solution) and those rates which work toward satisfying a specified performance criterion of joint angles. In singularities where the optimization scheme cannot be applied, alternate control equations are devised. The equations developed were evaluated using a real-time computer simulation to control a 3-D graphics model of the LTM.
NASA Astrophysics Data System (ADS)
Abdul-Majeed, Wameath Sh
This research is dedicated to develop a fully integrated system for heavy metals determination in water samples based on micro fluidic plasma atomizers. Several configurations of dielectric barrier discharge (DBD) atomizer are designed, fabricated and tested toward this target. Finally, a combination of annular and rectangular DBD atomizers has been utilized to develop a scheme for heavy metals determination. The present thesis has combined both theoretical and experimental investigations to fulfil the requirements. Several mathematical studies are implemented to explore the optimal design parameters for best system performance. On the other hand, expanded experimental explorations are conducted to assess the proposed operational approaches. The experiments were designed according to a central composite rotatable design; hence, an empirical model has been produced for each studied case. Moreover, several statistical approaches are adopted to analyse the system performance and to deduce the optimal operational parameters.. The introduction of the examined analyte to the plasma atomizer has been achieved by applying chemical schemes, where the element in the sample has been derivitized by using different kinds of reducing agents to produce vapour species (e.g. hydrides) for a group of nine elements examined in this research individually and simultaneously. Moreover, other derivatization schemes based on photochemical vapour generation assisted by ultrasound irradiation are also investigated. Generally speaking, the detection limits achieved in this research for the examined set of elements (by applying hydroborate scheme) are found to be acceptable in accordance with the standard limits in drinking water. The results of copper compared with the data from other technologies in the literature, showed a competitive detection limit obtained from applying the developed scheme, with an advantage of conducting simultaneous, fully automated, insitu, online- real time analysis as well as a possibility of connecting the proposed device to control loops..
Fravolini, M L; Fabietti, P G
2014-01-01
This paper proposes a scheme for the control of the blood glucose in subjects with type-1 diabetes mellitus based on the subcutaneous (s.c.) glucose measurement and s.c. insulin administration. The tuning of the controller is based on an iterative learning strategy that exploits the repetitiveness of the daily feeding habit of a patient. The control consists of a mixed feedback and feedforward contribution whose parameters are tuned through an iterative learning process that is based on the day-by-day automated analysis of the glucose response to the infusion of exogenous insulin. The scheme does not require any a priori information on the patient insulin/glucose response, on the meal times and on the amount of ingested carbohydrates (CHOs). Thanks to the learning mechanism the scheme is able to improve its performance over time. A specific logic is also introduced for the detection and prevention of possible hypoglycaemia events. The effectiveness of the methodology has been validated using long-term simulation studies applied to a set of nine in silico patients considering realistic uncertainties on the meal times and on the quantities of ingested CHOs.
Watson, Wendy L; Kelly, Bridget; Hector, Debra; Hughes, Clare; King, Lesley; Crawford, Jennifer; Sergeant, John; Chapman, Kathy
2014-01-01
There is evidence that easily accessible, comprehensible and consistent nutrient information on the front of packaged foods could assist shoppers to make healthier food choices. This study used an online questionnaire of 4357 grocery shoppers to examine Australian shoppers' ability to use a range of front-of-pack labels to identify healthier food products. Seven different front-of-pack labelling schemes comprising variants of the Traffic Light labelling scheme and the Percentage Daily Intake scheme, and a star rating scheme, were applied to nine pairs of commonly purchased food products. Participants could also access a nutrition information panel for each product. Participants were able to identify the healthier product in each comparison over 80% of the time using any of the five schemes that provided information on multiple nutrients. No individual scheme performed significantly better in terms of shoppers' ability to determine the healthier product, shopper reliance on the 'back-of-pack' nutrition information panel, and speed of use. The scheme that provided information about energy only and a scheme with limited numerical information of nutrient type or content performed poorly, as did the nutrition information panel alone (control). Further consumer testing is necessary to determine the optimal format and content of an interpretive front-of-pack nutrition labelling scheme. Copyright © 2013 Elsevier Ltd. All rights reserved.
A control method for bilateral teleoperating systems
NASA Astrophysics Data System (ADS)
Strassberg, Yesayahu
1992-01-01
The thesis focuses on control of bilateral master-slave teleoperators. The bilateral control issue of teleoperators is studied and a new scheme that overcomes basic unsolved problems is proposed. A performance measure, based on the multiport modeling method, is introduced in order to evaluate and understand the limitations of earlier published bilateral control laws. Based on the study evaluating the different methods, the objective of the thesis is stated. The proposed control law is then introduced, its ideal performance is demonstrated, and conditions for stability and robustness are derived. It is shown that stability, desired performance, and robustness can be obtained under the assumption that the deviation of the model from the actual system satisfies certain norm inequalities and the measurement uncertainties are bounded. The proposed scheme is validated by numerical simulation. The simulated system is based on the configuration of the RAL (Robotics and Automation Laboratory) telerobot. From the simulation results it is shown that good tracking performance can be obtained. In order to verify the performance of the proposed scheme when applied to a real hardware system, an experimental setup of a three degree of freedom master-slave teleoperator (i.e. three degree of freedom master and three degree of freedom slave robot) was built. Three basic experiments were conducted to verify the performance of the proposed control scheme. The first experiment verified the master control law and its contribution to the robustness and performance of the entire system. The second experiment demonstrated the actual performance of the system while performing a free motion teleoperating task. From the experimental results, it is shown that the control law has good performance and is robust to uncertainties in the models of the master and slave.
An automatic frequency control loop using overlapping DFTs (Discrete Fourier Transforms)
NASA Technical Reports Server (NTRS)
Aguirre, S.
1988-01-01
An automatic frequency control (AFC) loop is introduced and analyzed in detail. The new scheme is a generalization of the well known Cross Product AFC loop that uses running overlapping discrete Fourier transforms (DFTs) to create a discriminator curve. Linear analysis is included and supported with computer simulations. The algorithm is tested in a low carrier to noise ratio (CNR) dynamic environment, and the probability of loss of lock is estimated via computer simulations. The algorithm discussed is a suboptimum tracking scheme with a larger frequency error variance compared to an optimum strategy, but offers simplicity of implementation and a very low operating threshold CNR. This technique can be applied during the carrier acquisition and re-acquisition process in the Advanced Receiver.
Approximation of Optimal Infinite Dimensional Compensators for Flexible Structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Mingori, D. L.; Adamian, A.; Jabbari, F.
1985-01-01
The infinite dimensional compensator for a large class of flexible structures, modeled as distributed systems are discussed, as well as an approximation scheme for designing finite dimensional compensators to approximate the infinite dimensional compensator. The approximation scheme is applied to develop a compensator for a space antenna model based on wrap-rib antennas being built currently. While the present model has been simplified, it retains the salient features of rigid body modes and several distributed components of different characteristics. The control and estimator gains are represented by functional gains, which provide graphical representations of the control and estimator laws. These functional gains also indicate the convergence of the finite dimensional compensators and show which modes the optimal compensator ignores.
Control of parallel manipulators using force feedback
NASA Technical Reports Server (NTRS)
Nanua, Prabjot
1994-01-01
Two control schemes are compared for parallel robotic mechanisms actuated by hydraulic cylinders. One scheme, the 'rate based scheme', uses the position and rate information only for feedback. The second scheme, the 'force based scheme' feeds back the force information also. The force control scheme is shown to improve the response over the rate control one. It is a simple constant gain control scheme better suited to parallel mechanisms. The force control scheme can be easily modified for the dynamic forces on the end effector. This paper presents the results of a computer simulation of both the rate and force control schemes. The gains in the force based scheme can be individually adjusted in all three directions, whereas the adjustment in just one direction of the rate based scheme directly affects the other two directions.
Spacecraft Formation Control and Estimation Via Improved Relative Motion Dynamics
2017-03-30
statistical (e.g. batch least-squares or Extended Kalman Filter ) estimator. In addition, the IROD approach can be applied to classical (ground-based...covariance Test the viability of IROD solutions by injecting them into precise orbit determination schemes (e.g. various strains of Kalman filters
NASA Astrophysics Data System (ADS)
Lee, Yuang-Shung; Chiu, Yin-Yuan; Cheng, Ming-Wang; Ko, Yi-Pin; Hsiao, Sung-Hsin
The proposed quasi-resonant (QR) zero current switching (ZCS) switched-capacitor (SC) converter is a new type of bidirectional power flow control conversion scheme. The proposed converter is able to provide voltage conversion ratios from -3/-{1 \\over 3} (triple-mode/trisection-mode) to -n/-{1 \\over n} (-n-mode/-{1 \\over n}-mode) by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse power flow control schemes. It possesses the advantages of low switching losses and current stress in this QR ZCS SC converter. The principle of operation, theoretical analysis of the proposed triple-mode/trisection-mode bidirectional power conversion scheme is described in detail with circuit model analysis. Simulation and experimental studies are carried out to verify the performance of the proposed inverting type ZCS SC QR bidirectional converter. The proposed converters can be applied to battery equalization for battery management system (BMS).
High capacity reversible watermarking for audio by histogram shifting and predicted error expansion.
Wang, Fei; Xie, Zhaoxin; Chen, Zuo
2014-01-01
Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.
Neuro-fuzzy control of structures using acceleration feedback
NASA Astrophysics Data System (ADS)
Schurter, Kyle C.; Roschke, Paul N.
2001-08-01
This paper described a new approach for the reduction of environmentally induced vibration in constructed facilities by way of a neuro-fuzzy technique. The new control technique is presented and tested in a numerical study that involves two types of building models. The energy of each building is dissipated through magnetorheological (MR) dampers whose damping properties are continuously updated by a fuzzy controller. This semi-active control scheme relies on the development of a correlation between the accelerations of the building (controller input) and the voltage applied to the MR damper (controller output). This correlation forms the basis for the development of an intelligent neuro-fuzzy control strategy. To establish a context for assessing the effectiveness of the semi-active control scheme, responses to earthquake excitation are compared with passive strategies that have similar authority for control. According to numerical simulation, MR dampers are less effective control mechanisms than passive dampers with respect to a single degree of freedom (DOF) building model. On the other hand, MR dampers are predicted to be superior when used with multiple DOF structures for reduction of lateral acceleration.
Action versus Result-Oriented Schemes in a Grassland Agroecosystem: A Dynamic Modelling Approach
Sabatier, Rodolphe; Doyen, Luc; Tichit, Muriel
2012-01-01
Effects of agri-environment schemes (AES) on biodiversity remain controversial. While most AES are action-oriented, result-oriented and habitat-oriented schemes have recently been proposed as a solution to improve AES efficiency. The objective of this study was to compare action-oriented, habitat-oriented and result-oriented schemes in terms of ecological and productive performance as well as in terms of management flexibility. We developed a dynamic modelling approach based on the viable control framework to carry out a long term assessment of the three schemes in a grassland agroecosystem. The model explicitly links grazed grassland dynamics to bird population dynamics. It is applied to lapwing conservation in wet grasslands in France. We ran the model to assess the three AES scenarios. The model revealed the grazing strategies respecting ecological and productive constraints specific to each scheme. Grazing strategies were assessed by both their ecological and productive performance. The viable control approach made it possible to obtain the whole set of viable grazing strategies and therefore to quantify the management flexibility of the grassland agroecosystem. Our results showed that habitat and result-oriented scenarios led to much higher ecological performance than the action-oriented one. Differences in both ecological and productive performance between the habitat and result-oriented scenarios were limited. Flexibility of the grassland agroecosystem in the result-oriented scenario was much higher than in that of habitat-oriented scenario. Our model confirms the higher flexibility as well as the better ecological and productive performance of result-oriented schemes. A larger use of result-oriented schemes in conservation may also allow farmers to adapt their management to local conditions and to climatic variations. PMID:22496746
NASA Astrophysics Data System (ADS)
Park, Sangsoo; Miura, Yushi; Ise, Toshifumi
This paper proposes an intelligent control for the distributed flexible network photovoltaic system using autonomous control and agent. The distributed flexible network photovoltaic system is composed of a secondary battery bank and a number of subsystems which have a solar array, a dc/dc converter and a load. The control mode of dc/dc converter can be selected based on local information by autonomous control. However, if only autonomous control using local information is applied, there are some problems associated with several cases such as voltage drop on long power lines. To overcome these problems, the authors propose introducing agents to improve control characteristics. The autonomous control with agents is called as intelligent control in this paper. The intelligent control scheme that employs the communication between agents is applied for the model system and proved with simulation using PSCAD/EMTDC.
Yang, Jian; Liu, Chuangui; Wang, Boqian; Ding, Xianting
2017-10-13
Superhydrophobic surface, as a promising micro/nano material, has tremendous applications in biological and artificial investigations. The electrohydrodynamics (EHD) technique is a versatile and effective method for fabricating micro- to nanoscale fibers and particles from a variety of materials. A combination of critical parameters, such as mass fraction, ratio of N, N-Dimethylformamide (DMF) to Tetrahydrofuran (THF), inner diameter of needle, feed rate, receiving distance, applied voltage as well as temperature, during electrospinning process, to determine the morphology of the electrospun membranes, which in turn determines the superhydrophobic property of the membrane. In this study, we applied a recently developed feedback system control (FSC) scheme for rapid identification of the optimal combination of these controllable parameters to fabricate superhydrophobic surface by one-step electrospinning method without any further modification. Within five rounds of experiments by testing totally forty-six data points, FSC scheme successfully identified an optimal parameter combination that generated electrospun membranes with a static water contact angle of 160 degrees or larger. Scanning electron microscope (SEM) imaging indicates that the FSC optimized surface attains unique morphology. The optimized setup introduced here therefore serves as a one-step, straightforward, and economic approach to fabricate superhydrophobic surface with electrospinning approach.
NASA Astrophysics Data System (ADS)
Ren, Danping; Wu, Shanshan; Zhang, Lijing
2016-09-01
In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.
Autonomous distributed self-organization for mobile wireless sensor networks.
Wen, Chih-Yu; Tang, Hung-Kai
2009-01-01
This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.
Optimal control theory with continuously distributed target states: An application to NaK
NASA Astrophysics Data System (ADS)
Kaiser, Andreas; May, Volkhard
2006-01-01
Laser pulse control of molecular dynamics is studied theoretically by using optimal control theory. The control theory is extended to target states which are distributed in time as well as in a space of parameters which are responsible for a change of individual molecular properties. This generalized treatment of a control task is first applied to wave packet formation in randomly oriented diatomic systems. Concentrating on an ensemble of NaK molecules which are not aligned the control yield decreases drastically when compared with an aligned ensemble. Second, we demonstrate for NaK the maximization of the probe pulse transient absorption in a pump-probe scheme with an optimized pump pulse. These computations suggest an overall optical control scheme, whereby a flexible technique is suggested to form particular wave packets in the excited state potential energy surface. In particular, it is shown that considerable wave packet localization at the turning points of the first-excited Σ-state potential energy surfaces of NaK may be achieved. The dependency of the control yield on the probe pulse parameters is also discussed.
Feedback power control strategies in wireless sensor networks with joint channel decoding.
Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio
2009-01-01
In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as "balanced SNR" and "unbalanced SNR," respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.
Everstine, Karen; Abt, Eileen; McColl, Diane; Popping, Bert; Morrison-Rowe, Sara; Lane, Richard W; Scimeca, Joseph; Winter, Carl; Ebert, Andrew; Moore, Jeffrey C; Chin, Henry B
2018-01-01
Food fraud, the intentional misrepresentation of the true identity of a food product or ingredient for economic gain, is a threat to consumer confidence and public health and has received increased attention from both regulators and the food industry. Following updates to food safety certification standards and publication of new U.S. regulatory requirements, we undertook a project to (i) develop a scheme to classify food fraud-related adulterants based on their potential health hazard and (ii) apply this scheme to the adulterants in a database of 2,970 food fraud records. The classification scheme was developed by a panel of experts in food safety and toxicology from the food industry, academia, and the U.S. Food and Drug Administration. Categories and subcategories were created through an iterative process of proposal, review, and validation using a subset of substances known to be associated with the fraudulent adulteration of foods. Once developed, the scheme was applied to the adulterants in the database. The resulting scheme included three broad categories: 1, potentially hazardous adulterants; 2, adulterants that are unlikely to be hazardous; and 3, unclassifiable adulterants. Categories 1 and 2 consisted of seven subcategories intended to further define the range of hazard potential for adulterants. Application of the scheme to the 1,294 adulterants in the database resulted in 45% of adulterants classified in category 1 (potentially hazardous). Twenty-seven percent of the 1,294 adulterants had a history of causing consumer illness or death, were associated with safety-related regulatory action, or were classified as allergens. These results reinforce the importance of including a consideration of food fraud-related adulterants in food safety systems. This classification scheme supports food fraud mitigation efforts and hazard identification as required in the U.S. Food Safety Modernization Act Preventive Controls Rules.
Examination of Spectral Transformations on Spectral Mixture Analysis
NASA Astrophysics Data System (ADS)
Deng, Y.; Wu, C.
2018-04-01
While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.
Guaranteeing synchronous message deadlines with the timed token medium access control protocol
NASA Technical Reports Server (NTRS)
Agrawal, Gopal; Chen, Baio; Zhao, Wei; Davari, Sadegh
1992-01-01
We study the problem of guaranteeing synchronous message deadlines in token ring networks where the timed token medium access control protocol is employed. Synchronous capacity, defined as the maximum time for which a node can transmit its synchronous messages every time it receives the token, is a key parameter in the control of synchronous message transmission. To ensure the transmission of synchronous messages before their deadlines, synchronous capacities must be properly allocated to individual nodes. We address the issue of appropriate allocation of the synchronous capacities. Several synchronous capacity allocation schemes are analyzed in terms of their ability to satisfy deadline constraints of synchronous messages. We show that an inappropriate allocation of the synchronous capacities could cause message deadlines to be missed even if the synchronous traffic is extremely low. We propose a scheme called the normalized proportional allocation scheme which can guarantee the synchronous message deadlines for synchronous traffic of up to 33 percent of available utilization. To date, no other synchronous capacity allocation scheme has been reported to achieve such substantial performance. Another major contribution of this paper is an extension to the previous work on the bounded token rotation time. We prove that the time elapsed between any consecutive visits to a particular node is bounded by upsilon TTRT, where TTRT is the target token rotation time set up at system initialization time. The previous result by Johnson and Sevcik is a special case where upsilon = 2. We use this result in the analysis of various synchronous allocation schemes. It can also be applied in other similar studies.
NASA Astrophysics Data System (ADS)
Liu, Yong; Shu, Chi-Wang; Zhang, Mengping
2018-02-01
We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.
Zhang, Fangzheng; Pan, Shilong
2013-11-04
A novel scheme for photonic generation of a millimeter-wave ultra-wideband (MMW-UWB) signal is proposed and experimentally demonstrated based on a dual-parallel Mach-Zehnder modulator (DPMZM). In the proposed scheme, a single-frequency radio frequency (RF) signal is applied to one sub-MZM of the DPMZM to achieve optical suppressed-carrier modulation, and an electrical control pulse train is applied to the other sub-MZM biased at the minimum transmission point, to get an on/off switchable optical carrier. By filtering out the optical carrier with one of the first-order sidebands, and properly setting the amplitude of the control pulse, an MMW-UWB pulse train without the residual local oscillation is generated after photo-detection. The generated MMW-UWB signal is background-free, because the low-frequency components in the electrical spectrum are effectively suppressed. In the experiment, an MMW-UWB pulse train centered at 25 GHz with a 10-dB bandwidth of 5.5 GHz is successfully generated. The low frequency components are suppressed by 22 dB.
Spatial pattern formation facilitates eradication of infectious diseases
Eisinger, Dirk; Thulke, Hans-Hermann
2008-01-01
Control of animal-born diseases is a major challenge faced by applied ecologists and public health managers. To improve cost-effectiveness, the effort required to control such pathogens needs to be predicted as accurately as possible. In this context, we reviewed the anti-rabies vaccination schemes applied around the world during the past 25 years. We contrasted predictions from classic approaches based on theoretical population ecology (which governs rabies control to date) with a newly developed individual-based model. Our spatially explicit approach allowed for the reproduction of pattern formation emerging from a pathogen's spread through its host population. We suggest that a much lower management effort could eliminate the disease than that currently in operation. This is supported by empirical evidence from historic field data. Adapting control measures to the new prediction would save one-third of resources in future control programmes. The reason for the lower prediction is the spatial structure formed by spreading infections in spatially arranged host populations. It is not the result of technical differences between models. Synthesis and applications. For diseases predominantly transmitted by neighbourhood interaction, our findings suggest that the emergence of spatial structures facilitates eradication. This may have substantial implications for the cost-effectiveness of existing disease management schemes, and suggests that when planning management strategies consideration must be given to methods that reflect the spatial nature of the pathogen–host system. PMID:18784795
Robust PBPK/PD-Based Model Predictive Control of Blood Glucose.
Schaller, Stephan; Lippert, Jorg; Schaupp, Lukas; Pieber, Thomas R; Schuppert, Andreas; Eissing, Thomas
2016-07-01
Automated glucose control (AGC) has not yet reached the point where it can be applied clinically [3]. Challenges are accuracy of subcutaneous (SC) glucose sensors, physiological lag times, and both inter- and intraindividual variability. To address above issues, we developed a novel scheme for MPC that can be applied to AGC. An individualizable generic whole-body physiology-based pharmacokinetic and dynamics (PBPK/PD) model of the glucose, insulin, and glucagon metabolism has been used as the predictive kernel. The high level of mechanistic detail represented by the model takes full advantage of the potential of MPC and may make long-term prediction possible as it captures at least some relevant sources of variability [4]. Robustness against uncertainties was increased by a control cascade relying on proportional-integrative derivative-based offset control. The performance of this AGC scheme was evaluated in silico and retrospectively using data from clinical trials. This analysis revealed that our approach handles sensor noise with a MARD of 10%-14%, and model uncertainties and disturbances. The results suggest that PBPK/PD models are well suited for MPC in a glucose control setting, and that their predictive power in combination with the integrated database-driven (a priori individualizable) model framework will help overcome current challenges in the development of AGC systems. This study provides a new, generic, and robust mechanistic approach to AGC using a PBPK platform with extensive a priori (database) knowledge for individualization.
Nonlinear control of voltage source converters in AC-DC power system.
Dash, P K; Nayak, N
2014-07-01
This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Predictive Multiple Model Switching Control with the Self-Organizing Map
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2000-01-01
A predictive, multiple model control strategy is developed by extension of self-organizing map (SOM) local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively model the global response of a nonautonomous system to a finite set of representative prototype controls. Each SOM provides a codebook representation of the dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the global minimization of a similarity metric. The SOM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme that selects the best available model for the applied control. SOM based linear models are used to predict the response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal.
Coordinated Voltage Control of Transformer Taps on account of Hierarchical Structure in Power System
NASA Astrophysics Data System (ADS)
Nakachi, Yoshiki; Kato, Satoshi; Ukai, Hiroyuki
Participation of distributed generators (DG), such as wind turbines, co-generation system etc., is natural trend from ecological point of view and will increase more and more. The outputs of these DGs mainly depend on weather condition but don't correspond to the changes of electrical load demand necessarily. On the other hand, due to the deregulation of electric power market, the power flow in power system will uncertainly vary with several power transactions. Thus, complex power flow by DGs or transactions will cause the voltage deviation. It will be difficult to sustain the voltage quality by using the conventional voltage/reactive power control in near future. In this paper, in order to avoid such a voltage deviation and to decrease the frequency of transformer tap actions, the coordinated voltage control scheme of transformer taps on account of hierarchical structure in power system is proposed. In the proposed scheme, integral of voltage deviation at each layer bus is applied to decide the timing of each transformer tap action. It is confirmed by some numerical simulations that the proposed scheme is able to respond to every conditions on voltage deviation.
Generalized Autobalanced Ramsey Spectroscopy of Clock Transitions
NASA Astrophysics Data System (ADS)
Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.; Zanon-Willette, T.; Pollock, J. W.; Shuker, M.; Donley, E. A.; Kitching, J.
2018-05-01
When performing precision measurements, the quantity being measured is often perturbed by the measurement process itself. Such measurements include precision frequency measurements for atomic clock applications carried out with Ramsey spectroscopy. With the aim of eliminating probe-induced perturbations, a method of generalized autobalanced Ramsey spectroscopy (GABRS) is presented and rigorously substantiated. The usual local-oscillator frequency control loop is augmented with a second control loop derived from secondary Ramsey sequences interspersed with the primary sequences and with a different Ramsey period. This second loop feeds back to a secondary clock variable and ultimately compensates for the perturbation of the clock frequency caused by the measurements in the first loop. We show that such a two-loop scheme can lead to perfect compensation for measurement-induced light shifts and does not suffer from the effects of relaxation, time-dependent pulse fluctuations and phase-jump modulation errors that are typical of other hyper-Ramsey schemes. Several variants of GABRS are explored based on different secondary variables including added relative phase shifts between Ramsey pulses, external frequency-step compensation, and variable second-pulse duration. We demonstrate that a universal antisymmetric error signal, and hence perfect compensation at a finite modulation amplitude, is generated only if an additional frequency step applied during both Ramsey pulses is used as the concomitant variable parameter. This universal technique can be applied to the fields of atomic clocks, high-resolution molecular spectroscopy, magnetically induced and two-photon probing schemes, Ramsey-type mass spectrometry, and the field of precision measurements. Some variants of GABRS can also be applied for rf atomic clocks using coherent-population-trapping-based Ramsey spectroscopy of the two-photon dark resonance.
Co-Production of Quality in the Applied Education Research Scheme
ERIC Educational Resources Information Center
Ozga, Jenny
2007-01-01
This contribution looks at the ways in which research quality is defined and addressed in the Applied Education Research Scheme (AERS), particularly within the network on Schools and Social Capital, which is one of the four areas of work within the overall AERS scheme. AERS is a five-year programme, funded jointly by the Scottish Executive and the…
A novel family of DG methods for diffusion problems
NASA Astrophysics Data System (ADS)
Johnson, Philip; Johnsen, Eric
2017-11-01
We describe and demonstrate a novel family of numerical schemes for handling elliptic/parabolic PDE behavior within the discontinuous Galerkin (DG) framework. Starting from the mixed-form approach commonly applied for handling diffusion (examples include Local DG and BR2), the new schemes apply the Recovery concept of Van Leer to handle cell interface terms. By applying recovery within the mixed-form approach, we have designed multiple schemes that show better accuracy than other mixed-form approaches while being more flexible and easier to implement than the Recovery DG schemes of Van Leer. While typical mixed-form approaches converge at rate 2p in the cell-average or functional error norms (where p is the order of the solution polynomial), many of our approaches achieve order 2p +2 convergence. In this talk, we will describe multiple schemes, including both compact and non-compact implementations; the compact approaches use only interface-connected neighbors to form the residual for each element, while the non-compact approaches add one extra layer to the stencil. In addition to testing the schemes on purely parabolic PDE problems, we apply them to handle the diffusive flux terms in advection-diffusion systems, such as the compressible Navier-Stokes equations.
A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation.
Juang, Jih-Gau; Liu, Wen-Kai; Lin, Ren-Wei
2011-10-01
This paper presents a fuzzy PID control scheme with a real-valued genetic algorithm (RGA) to a setpoint control problem. The objective of this paper is to control a twin rotor MIMO system (TRMS) to move quickly and accurately to the desired attitudes, both the pitch angle and the azimuth angle in a cross-coupled condition. A fuzzy compensator is applied to the PID controller. The proposed control structure includes four PID controllers with independent inputs in 2-DOF. In order to reduce total error and control energy, all parameters of the controller are obtained by a RGA with the system performance index as a fitness function. The system performance index utilized the integral of time multiplied by the square error criterion (ITSE) to build a suitable fitness function in the RGA. A new method for RGA to solve more than 10 parameters in the control scheme is investigated. For real-time control, Xilinx Spartan II SP200 FPGA (Field Programmable Gate Array) is employed to construct a hardware-in-the-loop system through writing VHDL on this FPGA. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Control of a Robotic Hand Using a Tongue Control System-A Prosthesis Application.
Johansen, Daniel; Cipriani, Christian; Popovic, Dejan B; Struijk, Lotte N S A
2016-07-01
The aim of this study was to investigate the feasibility of using an inductive tongue control system (ITCS) for controlling robotic/prosthetic hands and arms. This study presents a novel dual modal control scheme for multigrasp robotic hands combining standard electromyogram (EMG) with the ITCS. The performance of the ITCS control scheme was evaluated in a comparative study. Ten healthy subjects used both the ITCS control scheme and a conventional EMG control scheme to complete grasping exercises with the IH1 Azzurra robotic hand implementing five grasps. Time to activate a desired function or grasp was used as the performance metric. Statistically significant differences were found when comparing the performance of the two control schemes. On average, the ITCS control scheme was 1.15 s faster than the EMG control scheme, corresponding to a 35.4% reduction in the activation time. The largest difference was for grasp 5 with a mean AT reduction of 45.3% (2.38 s). The findings indicate that using the ITCS control scheme could allow for faster activation of specific grasps or functions compared with a conventional EMG control scheme. For transhumeral and especially bilateral amputees, the ITCS control scheme could have a significant impact on the prosthesis control. In addition, the ITCS would provide bilateral amputees with the additional advantage of environmental and computer control for which the ITCS was originally developed.
Andrade Neto, A S; Secchi, A R; Souza, M B; Barreto, A G
2016-10-28
An adaptive nonlinear model predictive control of a simulated moving bed unit for the enantioseparation of praziquantel is presented. A first principle model was applied at the proposed purity control scheme. The main concern about this kind of model in a control framework is in regard to the computational effort to solve it; however, a fast enough solution was achieved. In order to evaluate the controller's performance, several cases were simulated, including external pumps and switching valve malfunctions. The problem of plant-model mismatch was also investigated, and for that reason a parameter estimation step was introduced in the control strategy. In every studied scenario, the controller was able to maintain the purity levels at their set points, which were set to 99% and 98.6% for extract and raffinate, respectively. Additionally, fast responses and smooth actuation were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.
Model predictive control based on reduced order models applied to belt conveyor system.
Chen, Wei; Li, Xin
2016-11-01
In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive control of bivalirudin in the cardiac intensive care unit.
Zhao, Qi; Edrich, Thomas; Paschalidis, Ioannis Ch
2015-02-01
Bivalirudin is a direct thrombin inhibitor used in the cardiac intensive care unit when heparin is contraindicated due to heparin-induced thrombocytopenia. Since it is not a commonly used drug, clinical experience with its dosing is sparse. In earlier work [1], we developed a dynamic system model that accurately predicts the effect of bivalirudin given dosage over time and patient physiological characteristics. This paper develops adaptive dosage controllers that regulate its effect to desired levels. To that end, and in the case that bivalirudin model parameters are available, we develop a Model Reference Control law. In the case that model parameters are unknown, an indirect Model Reference Adaptive Control scheme is applied to estimate model parameters first and then adapt the controller. Alternatively, direct Model Reference Adaptive Control is applied to adapt the controller directly without estimating model parameters first. Our algorithms are validated using actual patient data from a large hospital in the Boston area.
NASA Astrophysics Data System (ADS)
Han, Ke-Zhen; Feng, Jian; Cui, Xiaohong
2017-10-01
This paper considers the fault-tolerant optimised tracking control (FTOTC) problem for unknown discrete-time linear system. A research scheme is proposed on the basis of data-based parity space identification, reinforcement learning and residual compensation techniques. The main characteristic of this research scheme lies in the parity-space-identification-based simultaneous tracking control and residual compensation. The specific technical line consists of four main contents: apply subspace aided method to design observer-based residual generator; use reinforcement Q-learning approach to solve optimised tracking control policy; rely on robust H∞ theory to achieve noise attenuation; adopt fault estimation triggered by residual generator to perform fault compensation. To clarify the design and implementation procedures, an integrated algorithm is further constructed to link up these four functional units. The detailed analysis and proof are subsequently given to explain the guaranteed FTOTC performance of the proposed conclusions. Finally, a case simulation is provided to verify its effectiveness.
An Indirect Adaptive Control Scheme in the Presence of Actuator and Sensor Failures
NASA Technical Reports Server (NTRS)
Sun, Joy Z.; Josh, Suresh M.
2009-01-01
The problem of controlling a system in the presence of unknown actuator and sensor faults is addressed. The system is assumed to have groups of actuators, and groups of sensors, with each group consisting of multiple redundant similar actuators or sensors. The types of actuator faults considered consist of unknown actuators stuck in unknown positions, as well as reduced actuator effectiveness. The sensor faults considered include unknown biases and outages. The approach employed for fault detection and estimation consists of a bank of Kalman filters based on multiple models, and subsequent control reconfiguration to mitigate the effect of biases caused by failed components as well as to obtain stability and satisfactory performance using the remaining actuators and sensors. Conditions for fault identifiability are presented, and the adaptive scheme is applied to an aircraft flight control example in the presence of actuator failures. Simulation results demonstrate that the method can rapidly and accurately detect faults and estimate the fault values, thus enabling safe operation and acceptable performance in spite of failures.
Efficient quantum transmission in multiple-source networks.
Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-04-02
A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.
NASA Astrophysics Data System (ADS)
Qiu, Zhi-cheng; Shi, Ming-li; Wang, Bin; Xie, Zhuo-wei
2012-05-01
A rod cylinder based pneumatic driving scheme is proposed to suppress the vibration of a flexible smart beam. Pulse code modulation (PCM) method is employed to control the motion of the cylinder's piston rod for simultaneous positioning and vibration suppression. Firstly, the system dynamics model is derived using Hamilton principle. Its standard state-space representation is obtained for characteristic analysis, controller design, and simulation. Secondly, a genetic algorithm (GA) is applied to optimize and tune the control gain parameters adaptively based on the specific performance index. Numerical simulations are performed on the pneumatic driving elastic beam system, using the established model and controller with tuned gains by GA optimization process. Finally, an experimental setup for the flexible beam driven by a pneumatic rod cylinder is constructed. Experiments for suppressing vibrations of the flexible beam are conducted. Theoretical analysis, numerical simulation and experimental results demonstrate that the proposed pneumatic drive scheme and the adopted control algorithms are feasible. The large amplitude vibration of the first bending mode can be suppressed effectively.
Overview of KSTAR initial operation
NASA Astrophysics Data System (ADS)
Kwon, M.; Oh, Y. K.; Yang, H. L.; Na, H. K.; Kim, Y. S.; Kwak, J. G.; Kim, W. C.; Kim, J. Y.; Ahn, J. W.; Bae, Y. S.; Baek, S. H.; Bak, J. G.; Bang, E. N.; Chang, C. S.; Chang, D. H.; Chavdarovski, I.; Chen, Z. Y.; Cho, K. W.; Cho, M. H.; Choe, W.; Choi, J. H.; Chu, Y.; Chung, K. S.; Diamond, P.; Do, H. J.; Eidietis, N.; England, A. C.; Grisham, L.; Hahm, T. S.; Hahn, S. H.; Han, W. S.; Hatae, T.; Hillis, D.; Hong, J. S.; Hong, S. H.; Hong, S. R.; Humphrey, D.; Hwang, Y. S.; Hyatt, A.; In, Y. K.; Jackson, G. L.; Jang, Y. B.; Jeon, Y. M.; Jeong, J. I.; Jeong, N. Y.; Jeong, S. H.; Jhang, H. G.; Jin, J. K.; Joung, M.; Ju, J.; Kawahata, K.; Kim, C. H.; Kim, D. H.; Kim, Hee-Su; Kim, H. S.; Kim, H. K.; Kim, H. T.; Kim, J. H.; Kim, J. C.; Kim, Jong-Su; Kim, Jung-Su; Kim, Kyung-Min; Kim, K. M.; Kim, K. P.; Kim, M. K.; Kim, S. H.; Kim, S. S.; Kim, S. T.; Kim, S. W.; Kim, Y. J.; Kim, Y. K.; Kim, Y. O.; Ko, W. H.; Kogi, Y.; Kong, J. D.; Kubo, S.; Kumazawa, R.; Kwak, S. W.; Kwon, J. M.; Kwon, O. J.; LeConte, M.; Lee, D. G.; Lee, D. K.; Lee, D. R.; Lee, D. S.; Lee, H. J.; Lee, J. H.; Lee, K. D.; Lee, K. S.; Lee, S. G.; Lee, S. H.; Lee, S. I.; Lee, S. M.; Lee, T. G.; Lee, W. C.; Lee, W. L.; Leur, J.; Lim, D. S.; Lohr, J.; Mase, A.; Mueller, D.; Moon, K. M.; Mutoh, T.; Na, Y. S.; Nagayama, Y.; Nam, Y. U.; Namkung, W.; Oh, B. H.; Oh, S. G.; Oh, S. T.; Park, B. H.; Park, D. S.; Park, H.; Park, H. T.; Park, J. K.; Park, J. S.; Park, K. R.; Park, M. K.; Park, S. H.; Park, S. I.; Park, Y. M.; Park, Y. S.; Patterson, B.; Sabbagh, S.; Saito, K.; Sajjad, S.; Sakamoto, K.; Seo, D. C.; Seo, S. H.; Seol, J. C.; Shi, Y.; Song, N. H.; Sun, H. J.; Terzolo, L.; Walker, M.; Wang, S. J.; Watanabe, K.; Welander, A. S.; Woo, H. J.; Woo, I. S.; Yagi, M.; Yaowei, Y.; Yonekawa, Y.; Yoo, K. I.; Yoo, J. W.; Yoon, G. S.; Yoon, S. W.; KSTAR Team
2011-09-01
Since the successful first plasma generation in the middle of 2008, three experimental campaigns were successfully made for the KSTAR device, accompanied with a necessary upgrade in the power supply, heating, wall-conditioning and diagnostic systems. KSTAR was operated with the toroidal magnetic field up to 3.6 T and the circular and shaped plasmas with current up to 700 kA and pulse length of 7 s, have been achieved with limited capacity of PF magnet power supplies. The mission of the KSTAR experimental program is to achieve steady-state operations with high performance plasmas relevant to ITER and future reactors. The first phase (2008-2012) of operation of KSTAR is dedicated to the development of operational capabilities for a super-conducting device with relatively short pulse. Development of start-up scenario for a super-conducting tokamak and the understanding of magnetic field errors on start-up are one of the important issues to be resolved. Some specific operation techniques for a super-conducting device are also developed and tested. The second harmonic pre-ionization with 84 and 110 GHz gyrotrons is an example. Various parameters have been scanned to optimize the pre-ionization. Another example is the ICRF wall conditioning (ICWC), which was routinely applied during the shot to shot interval. The plasma operation window has been extended in terms of plasma beta and stability boundary. The achievement of high confinement mode was made in the last campaign with the first neutral beam injector and good wall conditioning. Plasma control has been applied in shape and position control and now a preliminary kinetic control scheme is being applied including plasma current and density. Advanced control schemes will be developed and tested in future operations including active profiles, heating and current drives and control coil-driven magnetic perturbation.
Lattice hydrodynamic model based traffic control: A transportation cyber-physical system approach
NASA Astrophysics Data System (ADS)
Liu, Hui; Sun, Dihua; Liu, Weining
2016-11-01
Lattice hydrodynamic model is a typical continuum traffic flow model, which describes the jamming transition of traffic flow properly. Previous studies in lattice hydrodynamic model have shown that the use of control method has the potential to improve traffic conditions. In this paper, a new control method is applied in lattice hydrodynamic model from a transportation cyber-physical system approach, in which only one lattice site needs to be controlled in this control scheme. The simulation verifies the feasibility and validity of this method, which can ensure the efficient and smooth operation of the traffic flow.
Advanced control architecture for autonomous vehicles
NASA Astrophysics Data System (ADS)
Maurer, Markus; Dickmanns, Ernst D.
1997-06-01
An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.
Practical scheme for optimal measurement in quantum interferometric devices
NASA Astrophysics Data System (ADS)
Takeoka, Masahiro; Ban, Masashi; Sasaki, Masahide
2003-06-01
We apply a Kennedy-type detection scheme, which was originally proposed for a binary communications system, to interferometric sensing devices. We show that the minimum detectable perturbation of the proposed system reaches the ultimate precision bound which is predicted by quantum Neyman-Pearson hypothesis testing. To provide concrete examples, we apply our interferometric scheme to phase shift detection by using coherent and squeezed probe fields.
Finite-volume scheme for anisotropic diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Es, Bram van, E-mail: bramiozo@gmail.com; FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands"1; Koren, Barry
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
Feedback Power Control Strategies in Wireless Sensor Networks with Joint Channel Decoding
Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio
2009-01-01
In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as “balanced SNR” and “unbalanced SNR,” respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm. PMID:22291536
Cell Fate Reprogramming by Control of Intracellular Network Dynamics
Zañudo, Jorge G. T.; Albert, Réka
2015-01-01
Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell’s fate, such as disease therapeutics and stem cell reprogramming. Here we develop a novel network control framework that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our approach drives any initial state to the target state with 100% effectiveness and needs to be applied only transiently for the network to reach and stay in the desired state. We illustrate our method’s potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of helper T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. PMID:25849586
Luo, Ying; Chen, Yangquan; Pi, Youguo
2010-10-01
Cogging effect which can be treated as a type of position-dependent periodic disturbance, is a serious disadvantage of the permanent magnetic synchronous motor (PMSM). In this paper, based on a simulation system model of PMSM position servo control, the cogging force, viscous friction, and applied load in the real PMSM control system are considered and presented. A dual high-order periodic adaptive learning compensation (DHO-PALC) method is proposed to minimize the cogging effect on the PMSM position and velocity servo system. In this DHO-PALC scheme, more than one previous periods stored information of both the composite tracking error and the estimate of the cogging force is used for the control law updating. Asymptotical stability proof with the proposed DHO-PALC scheme is presented. Simulation is implemented on the PMSM servo system model to illustrate the proposed method. When the constant speed reference is applied, the DHO-PALC can achieve a faster learning convergence speed than the first-order periodic adaptive learning compensation (FO-PALC). Moreover, when the designed reference signal changes periodically, the proposed DHO-PALC can obtain not only faster convergence speed, but also much smaller final error bound than the FO-PALC. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
High-fidelity gates in quantum dot spin qubits
Koh, Teck Seng; Coppersmith, S. N.; Friesen, Mark
2013-01-01
Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet–triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning ϵ, which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound that is specific to the qubit-gate combination. We show that similar gate fidelities should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins. PMID:24255105
Adaptive precompensators for flexible-link manipulator control
NASA Technical Reports Server (NTRS)
Tzes, Anthony P.; Yurkovich, Stephen
1989-01-01
The application of input precompensators to flexible manipulators is considered. Frequency domain compensators color the input around the flexible mode locations, resulting in a bandstop or notch filter in cascade with the system. Time domain compensators apply a sequence of impulses at prespecified times related to the modal frequencies. The resulting control corresponds to a feedforward term that convolves in real-time the desired reference input with a sequence of impulses and produces a vibration-free output. An adaptive precompensator can be implemented by combining a frequency domain identification scheme which is used to estimate online the modal frequencies and subsequently update the bandstop interval or the spacing between the impulses. The combined adaptive input preshaping scheme provides the most rapid slew that results in a vibration-free output. Experimental results are presented to verify the results.
Rudasingwa, Martin; Soeters, Robert; Bossuyt, Michel
2015-01-01
To strengthen the health care delivery, the Burundian Government in collaboration with international NGOs piloted performance-based financing (PBF) in 2006. The health facilities were assigned - by using a simple matching method - to begin PBF scheme or to continue with the traditional input-based funding. Our objective was to analyse the effect of that PBF scheme on the quality of health services between 2006 and 2008. We conducted the analysis in 16 health facilities with PBF scheme and 13 health facilities without PBF scheme. We analysed the PBF effect by using 58 composite quality indicators of eight health services: Care management, outpatient care, maternity care, prenatal care, family planning, laboratory services, medicines management and materials management. The differences in quality improvement in the two groups of health facilities were performed applying descriptive statistics, a paired non-parametric Wilcoxon Signed Ranks test and a simple difference-in-difference approach at a significance level of 5%. We found an improvement of the quality of care in the PBF group and a significant deterioration in the non-PBF group in the same four health services: care management, outpatient care, maternity care, and prenatal care. The findings suggest a PBF effect of between 38 and 66 percentage points (p<0.001) in the quality scores of care management, outpatient care, prenatal care, and maternal care. We found no PBF effect on clinical support services: laboratory services, medicines management, and material management. The PBF scheme in Burundi contributed to the improvement of the health services that were strongly under the control of medical personnel (physicians and nurses) in a short time of two years. The clinical support services that did not significantly improved were strongly under the control of laboratory technicians, pharmacists and non-medical personnel. PMID:25948432
Mavroidis, Panayiotis; Milickovic, Natasa; Cruz, Wilbert F; Tselis, Nikolaos; Karabis, Andreas; Stathakis, Sotirios; Papanikolaou, Nikos; Zamboglou, Nikolaos; Baltas, Dimos
2014-01-01
The aim of the present study was the investigation of different fractionation schemes to estimate their clinical impact. For this purpose, widely applied radiobiological models and dosimetric measures were used to associate their results with clinical findings. The dose distributions of 12 clinical high-dose-rate brachytherapy implants for prostate were evaluated in relation to different fractionation schemes. The fractionation schemes compared were: (1) 1 fraction of 20 Gy; (2) 2 fractions of 14 Gy; (3) 3 fractions of 11 Gy; and (4) 4 fractions of 9.5 Gy. The clinical effectiveness of the different fractionation schemes was estimated through the complication-free tumor control probability (P+), the biologically effective uniform dose, and the generalized equivalent uniform dose index. For the different fractionation schemes, the tumor control probabilities were 98.5% in 1×20 Gy, 98.6% in 2×14 Gy, 97.5% in 3×11 Gy, and 97.8% in 4×9.5 Gy. The corresponding P+ values were 88.8% in 1×20 Gy, 83.9% in 2×14 Gy, 86.0% in 3×11 Gy, and 82.3% in 4×9.5 Gy. With use of the fractionation scheme 4×9.5 Gy as reference, the isoeffective schemes regarding tumor control for 1, 2, and 3 fractions were 1×19.68 Gy, 2×13.75 Gy, and 3×11.05 Gy. The optimum fractionation schemes for 1, 2, 3, and 4 fractions were 1×19.16 Gy with a P+ of 91.8%, 2×13.2 Gy with a P+ of 89.6%, 3×10.6 Gy with a P+ of 88.4%, and 4×9.02 Gy with a P+ of 86.9%. Among the fractionation schemes 1×20 Gy, 2×14 Gy, 3×11 Gy, and 4×9.5 Gy, the first scheme was more effective in terms of P+. After performance of a radiobiological optimization, it was shown that a single fraction of 19.2 to 19.7 Gy (average 19.5 Gy) should produce at least the same benefit as that given by the 4×9.5 Gy scheme, and it should reduce the expected total complication probability by approximately 40% to 55%. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavroidis, Panayiotis, E-mail: mavroidis@uthscsa.edu; Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Stockholm; Milickovic, Natasa
2014-01-01
Purpose: The aim of the present study was the investigation of different fractionation schemes to estimate their clinical impact. For this purpose, widely applied radiobiological models and dosimetric measures were used to associate their results with clinical findings. Methods and Materials: The dose distributions of 12 clinical high-dose-rate brachytherapy implants for prostate were evaluated in relation to different fractionation schemes. The fractionation schemes compared were: (1) 1 fraction of 20 Gy; (2) 2 fractions of 14 Gy; (3) 3 fractions of 11 Gy; and (4) 4 fractions of 9.5 Gy. The clinical effectiveness of the different fractionation schemes was estimatedmore » through the complication-free tumor control probability (P{sub +}), the biologically effective uniform dose, and the generalized equivalent uniform dose index. Results: For the different fractionation schemes, the tumor control probabilities were 98.5% in 1 × 20 Gy, 98.6% in 2 × 14 Gy, 97.5% in 3 × 11 Gy, and 97.8% in 4 × 9.5 Gy. The corresponding P{sub +} values were 88.8% in 1 × 20 Gy, 83.9% in 2 × 14 Gy, 86.0% in 3 × 11 Gy, and 82.3% in 4 × 9.5 Gy. With use of the fractionation scheme 4 × 9.5 Gy as reference, the isoeffective schemes regarding tumor control for 1, 2, and 3 fractions were 1 × 19.68 Gy, 2 × 13.75 Gy, and 3 × 11.05 Gy. The optimum fractionation schemes for 1, 2, 3, and 4 fractions were 1 × 19.16 Gy with a P{sub +} of 91.8%, 2 × 13.2 Gy with a P{sub +} of 89.6%, 3 × 10.6 Gy with a P{sub +} of 88.4%, and 4 × 9.02 Gy with a P{sub +} of 86.9%. Conclusions: Among the fractionation schemes 1 × 20 Gy, 2 × 14 Gy, 3 × 11 Gy, and 4 × 9.5 Gy, the first scheme was more effective in terms of P{sub +}. After performance of a radiobiological optimization, it was shown that a single fraction of 19.2 to 19.7 Gy (average 19.5 Gy) should produce at least the same benefit as that given by the 4 × 9.5 Gy scheme, and it should reduce the expected total complication probability by approximately 40% to 55%.« less
An adaptive learning control system for large flexible structures
NASA Technical Reports Server (NTRS)
Thau, F. E.
1985-01-01
The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.
Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition.
Lu, Zhiyuan; Chen, Xiang; Zhang, Xu; Tong, Kay-Yu; Zhou, Ping
2017-08-01
Robot-assisted training provides an effective approach to neurological injury rehabilitation. To meet the challenge of hand rehabilitation after neurological injuries, this study presents an advanced myoelectric pattern recognition scheme for real-time intention-driven control of a hand exoskeleton. The developed scheme detects and recognizes user's intention of six different hand motions using four channels of surface electromyography (EMG) signals acquired from the forearm and hand muscles, and then drives the exoskeleton to assist the user accomplish the intended motion. The system was tested with eight neurologically intact subjects and two individuals with spinal cord injury (SCI). The overall control accuracy was [Formula: see text] for the neurologically intact subjects and [Formula: see text] for the SCI subjects. The total lag of the system was approximately 250[Formula: see text]ms including data acquisition, transmission and processing. One SCI subject also participated in training sessions in his second and third visits. Both the control accuracy and efficiency tended to improve. These results show great potential for applying the advanced myoelectric pattern recognition control of the wearable robotic hand system toward improving hand function after neurological injuries.
Drag reduction in channel flow using nonlinear control
NASA Technical Reports Server (NTRS)
Keefe, Laurence R.
1993-01-01
Two nonlinear control schemes have been applied to the problem of drag reduction in channel flow. Both schemes have been tested using numerical simulations at a mass flux Reynolds numbers of 4408, utilizing 2D nonlinear neutral modes for goal dynamics. The OGY-method, which requires feedback, reduces drag to 60-80 percent of the turbulent value at the same Reynolds number, and employs forcing only within a thin region near the wall. The H-method, or model-based control, fails to achieve any drag reduction when starting from a fully turbulent initial condition, but shows potential for suppressing or retarding laminar-to-turbulent transition by imposing instead a transition to a low drag, nonlinear traveling wave solution to the Navier-Stokes equation. The drag in this state corresponds to that achieved by the OGY-method. Model-based control requires no feedback, but in experiments to date has required the forcing be imposed within a thicker layer than the OGY-method. Control energy expenditures in both methods are small, representing less than 0.1 percent of the uncontrolled flow's energy.
Oliveira, Tiago Roux; Costa, Luiz Rennó; Catunda, João Marcos Yamasaki; Pino, Alexandre Visintainer; Barbosa, William; Souza, Márcio Nogueira de
2017-06-01
This paper addresses the application of the sliding mode approach to control the arm movements by artificial recruitment of muscles using Neuromuscular Electrical Stimulation (NMES). Such a technique allows the activation of motor nerves using surface electrodes. The goal of the proposed control system is to move the upper limbs of subjects through electrical stimulation to achieve a desired elbow angular displacement. Since the human neuro-motor system has individual characteristics, being time-varying, nonlinear and subject to uncertainties, the use of advanced robust control schemes may represent a better solution than classical Proportional-Integral (PI) controllers and model-based approaches, being simpler than more sophisticated strategies using fuzzy logic or neural networks usually applied in this control problem. The objective is the introduction of a new time-scaling base sliding mode control (SMC) strategy for NMES and its experimental evaluation. The main qualitative advantages of the proposed controller via time-scaling procedure are its independence of the knowledge of the plant relative degree and the design/tuning simplicity. The developed sliding mode strategy allows for chattering alleviation due to the impact of the integrator in smoothing the control signal. In addition, no differentiator is applied to construct the sliding surface. The stability analysis of the closed-loop system is also carried out by using singular perturbation methods. Experimental results are conducted with healthy volunteers as well as stroke patients. Quantitative results show a reduction of 45% in terms of root mean square (RMS) error (from 5.9° to [Formula: see text] ) in comparison with PI control scheme, which is similar to that obtained in the literature. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
High-resolution schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Harten, A.
1982-01-01
A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.
A composite controller for trajectory tracking applied to the Furuta pendulum.
Aguilar-Avelar, Carlos; Moreno-Valenzuela, Javier
2015-07-01
In this paper, a new composite scheme is proposed, where the total control action is composed of the sum of a feedback-linearization-based controller and an energy-based compensation. This new proposition is applied to the rotary inverted pendulum or Furuta pendulum. The Furuta pendulum is a well-known underactuated mechanical system with two degrees of freedom. The control objective in this case is the tracking of a desired periodic trajectory in the actuated joint, while the unactuated link is regulated at the upward position. The closed-loop system is analyzed showing uniformly ultimately boundedness of the error trajectories. The design procedure is shown in a constructive form, such that it may be applied to other underactuated mechanical systems, with the proper definitions of the output function and the energy function. Numerical simulations and real-time experiments show the practical viability of the controller. Finally, the proposed algorithm is compared with a tracking controller previously reported in the literature. The new algorithm shows better performance in both arm trajectory tracking and pendulum regulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Research to Assembly Scheme for Satellite Deck Based on Robot Flexibility Control Principle
NASA Astrophysics Data System (ADS)
Guo, Tao; Hu, Ruiqin; Xiao, Zhengyi; Zhao, Jingjing; Fang, Zhikai
2018-03-01
Deck assembly is critical quality control point in final satellite assembly process, and cable extrusion and structure collision problems in assembly process will affect development quality and progress of satellite directly. Aimed at problems existing in deck assembly process, assembly project scheme for satellite deck based on robot flexibility control principle is proposed in this paper. Scheme is introduced firstly; secondly, key technologies on end force perception and flexible docking control in the scheme are studied; then, implementation process of assembly scheme for satellite deck is described in detail; finally, actual application case of assembly scheme is given. Result shows that compared with traditional assembly scheme, assembly scheme for satellite deck based on robot flexibility control principle has obvious advantages in work efficiency, reliability and universality aspects etc.
Ground-based telescope pointing and tracking optimization using a neural controller.
Mancini, D; Brescia, M; Schipani, P
2003-01-01
Neural network models (NN) have emerged as important components for applications of adaptive control theories. Their basic generalization capability, based on acquired knowledge, together with execution rapidity and correlation ability between input stimula, are basic attributes to consider NN as an extremely powerful tool for on-line control of complex systems. By a control system point of view, not only accuracy and speed, but also, in some cases, a high level of adaptation capability is required in order to match all working phases of the whole system during its lifetime. This is particularly remarkable for a new generation ground-based telescope control system. Infact, strong changes in terms of system speed and instantaneous position error tolerance are necessary, especially in case of trajectory disturb induced by wind shake. The classical control scheme adopted in such a system is based on the proportional integral (PI) filter, already applied and implemented on a large amount of new generation telescopes, considered as a standard in this technological environment. In this paper we introduce the concept of a new approach, the neural variable structure proportional integral, (NVSPI), related to the implementation of a standard multi layer perceptron network in new generation ground-based Alt-Az telescope control systems. Its main purpose is to improve adaptive capability of the Variable structure proportional integral model, an already innovative control scheme recently introduced by authors [Proc SPIE (1997)], based on a modified version of classical PI control model, in terms of flexibility and accuracy of the dynamic response range also in presence of wind noise effects. The realization of a powerful well tested and validated telescope model simulation system allowed the possibility to directly compare performances of the two control schemes on simulated tracking trajectories, revealing extremely encouraging results in terms of NVSPI control robustness and reliability.
Lawless, I M; Ding, B; Cazzolato, B S; Costi, J J
2014-09-22
Robotic biomechanics is a powerful tool for further developing our understanding of biological joints, tissues and their repair. Both velocity-based and hybrid force control methods have been applied to biomechanics but the complex and non-linear properties of joints have limited these to slow or stepwise loading, which may not capture the real-time behaviour of joints. This paper presents a novel force control scheme combining stiffness and velocity based methods aimed at achieving six degree of freedom unconstrained force control at physiological loading rates. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bakholdin, Igor
2018-02-01
Various models of a tube with elastic walls are investigated: with controlled pressure, filled with incompressible fluid, filled with compressible gas. The non-linear theory of hyperelasticity is applied. The walls of a tube are described with complete membrane model. It is proposed to use linear model of plate in order to take the bending resistance of walls into account. The walls of the tube were treated previously as inviscid and incompressible. Compressibility of material of walls and viscosity of material, either gas or liquid are considered. Equations are solved numerically. Three-layer time and space centered reversible numerical scheme and similar two-layer space reversible numerical scheme with approximation of time derivatives by Runge-Kutta method are used. A method of correction of numerical schemes by inclusion of terms with highorder derivatives is developed. Simplified hyperbolic equations are derived.
Experimental study of trajectory planning and control of a high precision robot manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.
1991-01-01
The kinematic and trajectory planning is presented for a 6 DOF end-effector whose design was based on the Stewart Platform mechanism. The end-effector was used as a testbed for studying robotic assembly of NASA hardware with passive compliance. Vector analysis was employed to derive a closed-form solution for the end-effector inverse kinematic transformation. A computationally efficient numerical solution was obtained for the end-effector forward kinematic transformation using Newton-Raphson method. Three trajectory planning schemes, two for fine motion and one for gross motion, were developed for the end-effector. Experiments conducted to evaluate the performance of the trajectory planning schemes showed excellent tracking quality with minimal errors. Current activities focus on implementing the developed trajectory planning schemes on mating and demating space-rated connectors and using the compliant platform to acquire forces/torques applied on the end-effector during the assembly task.
Efficient Quantum Transmission in Multiple-Source Networks
Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-01-01
A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590
A Lagrangian particle method with remeshing for tracer transport on the sphere
Bosler, Peter Andrew; Kent, James; Krasny, Robert; ...
2017-03-30
A Lagrangian particle method (called LPM) based on the flow map is presented for tracer transport on the sphere. The particles carry tracer values and are located at the centers and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disorder and two schemes are compared, one using direct tracer interpolation and another using inverse flow map interpolation with sampling of the initial tracer density. Test cases include a moving-vortices flow and reversing-deformational flow with both zero and nonzero divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the computed tracer density and tracermore » integral, and preservation of nonlinear correlation in a pair of tracers. Here, we compare results obtained using LPM and the Lin–Rood finite-volume scheme. An adaptive particle/panel refinement scheme is demonstrated.« less
A Lagrangian particle method with remeshing for tracer transport on the sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosler, Peter Andrew; Kent, James; Krasny, Robert
A Lagrangian particle method (called LPM) based on the flow map is presented for tracer transport on the sphere. The particles carry tracer values and are located at the centers and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disorder and two schemes are compared, one using direct tracer interpolation and another using inverse flow map interpolation with sampling of the initial tracer density. Test cases include a moving-vortices flow and reversing-deformational flow with both zero and nonzero divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the computed tracer density and tracermore » integral, and preservation of nonlinear correlation in a pair of tracers. Here, we compare results obtained using LPM and the Lin–Rood finite-volume scheme. An adaptive particle/panel refinement scheme is demonstrated.« less
Adaptive vibration control of structures under earthquakes
NASA Astrophysics Data System (ADS)
Lew, Jiann-Shiun; Juang, Jer-Nan; Loh, Chin-Hsiung
2017-04-01
techniques, for structural vibration suppression under earthquakes. Various control strategies have been developed to protect structures from natural hazards and improve the comfort of occupants in buildings. However, there has been little development of adaptive building control with the integration of real-time system identification and control design. Generalized predictive control, which combines the process of real-time system identification and the process of predictive control design, has received widespread acceptance and has been successfully applied to various test-beds. This paper presents a formulation of the predictive control scheme for adaptive vibration control of structures under earthquakes. Comprehensive simulations are performed to demonstrate and validate the proposed adaptive control technique for earthquake-induced vibration of a building.
Arnone, Mario; Koppisch, Dorothea; Smola, Thomas; Gabriel, Stefan; Verbist, Koen; Visser, Remco
2015-10-01
Many control banding tools use hazard banding in risk assessments for the occupational handling of hazardous substances. The outcome of these assessments can be combined with advice for the required risk management measures (RMMs). The Globally Harmonised System of Classification and Labelling of Chemicals (GHS) has resulted in a change in the hazard communication elements, i.e. Hazard (H) statements instead of Risk-phrases. Hazard banding schemes that depend on the old form of safety information have to be adapted to the new rules. The purpose of this publication is to outline the rationales for the assignment of hazard bands to H statements under the GHS. Based on this, this publication proposes a hazard banding scheme that uses the information from the safety data sheets as the basis for assignment. The assignment of hazard bands tiered according to the severity of the underlying hazards supports the important principle of substitution. Additionally, the set of assignment rules permits an exposure-route-specific assignment of hazard bands, which is necessary for the proposed route-specific RMMs. Ideally, all control banding tools should apply the same assignment rules. This GHS-compliant hazard banding scheme can hopefully help to establish a unified hazard banding strategy in the various control banding tools. Copyright © 2015 Elsevier Inc. All rights reserved.
Anti-disturbance rapid vibration suppression of the flexible aerial refueling hose
NASA Astrophysics Data System (ADS)
Su, Zikang; Wang, Honglun; Li, Na
2018-05-01
As an extremely dangerous phenomenon in autonomous aerial refueling (AAR), the flexible refueling hose vibration caused by the receiver aircraft's excessive closure speed should be suppressed once it appears. This paper proposed a permanent magnet synchronous motor (PMSM) based refueling hose servo take-up system for the vibration suppression of the flexible refueling hose. A rapid back-stepping based anti-disturbance nonsingular fast terminal sliding mode (NFTSM) control scheme with a specially established finite-time convergence NFTSM observer is proposed for the PMSM based hose servo take-up system under uncertainties and disturbances. The unmeasured load torque and other disturbances in the PMSM system are reconstituted by the NFTSM observer and to be compensated during the controller design. Then, with the back-stepping technique, a rapid anti-disturbance NFTSM controller is proposed for the PMSM angular tracking to improve the tracking error convergence speed and tracking precision. The proposed vibration suppression scheme is then applied to PMSM based hose servo take-up system for the refueling hose vibration suppression in AAR. Simulation results show the proposed scheme can suppress the hose vibration rapidly and accurately even the system is exposed to strong uncertainties and probe position disturbances, it is more competitive in tracking accuracy, tracking error convergence speed and robustness.
Controlled Bidirectional Quantum Secure Direct Communication
Chou, Yao-Hsin; Lin, Yu-Ting; Zeng, Guo-Jyun; Lin, Fang-Jhu; Chen, Chi-Yuan
2014-01-01
We propose a novel protocol for controlled bidirectional quantum secure communication based on a nonlocal swap gate scheme. Our proposed protocol would be applied to a system in which a controller (supervisor/Charlie) controls the bidirectional communication with quantum information or secret messages between legitimate users (Alice and Bob). In this system, the legitimate users must obtain permission from the controller in order to exchange their respective quantum information or secret messages simultaneously; the controller is unable to obtain any quantum information or secret messages from the decoding process. Moreover, the presence of the controller also avoids the problem of one legitimate user receiving the quantum information or secret message before the other, and then refusing to help the other user decode the quantum information or secret message. Our proposed protocol is aimed at protecting against external and participant attacks on such a system, and the cost of transmitting quantum bits using our protocol is less than that achieved in other studies. Based on the nonlocal swap gate scheme, the legitimate users exchange their quantum information or secret messages without transmission in a public channel, thus protecting against eavesdroppers stealing the secret messages. PMID:25006596
Optimal actuator placement in adaptive precision trusses
NASA Technical Reports Server (NTRS)
Baycan, C. M.; Utku, S.; Das, S. K.; Wada, B. K.
1992-01-01
Actuator placement in adaptive truss structures is to cater to two needs: displacement control of precision points and preloading the elements to overcome joint slackness. Due to technological and financial considerations, the number of actuators available is much less than the degrees of freedom of precision points to be controlled and the degree of redundancy of the structure. An approach for optimal actuator location is outlined. Test cases to demonstrate the effectiveness of the scheme are applied to the Precision Segmented Reflector Truss.
Xiao, Bailu; Hang, Lijun; Mei, Jun; ...
2014-09-04
This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less
Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.
Wang, Jia-Jun
2012-11-01
X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive Control Allocation in the Presence of Actuator Failures
NASA Technical Reports Server (NTRS)
Liu, Yu; Crespo, Luis G.
2010-01-01
In this paper, a novel adaptive control allocation framework is proposed. In the adaptive control allocation structure, cooperative actuators are grouped and treated as an equivalent control effector. A state feedback adaptive control signal is designed for the equivalent effector and allocated to the member actuators adaptively. Two adaptive control allocation algorithms are proposed, which guarantee closed-loop stability and asymptotic state tracking in the presence of uncertain loss of effectiveness and constant-magnitude actuator failures. The proposed algorithms can be shown to reduce the controller complexity with proper grouping of the actuators. The proposed adaptive control allocation schemes are applied to two linearized aircraft models, and the simulation results demonstrate the performance of the proposed algorithms.
A new adjustable gains for second order sliding mode control of saturated DFIG-based wind turbine
NASA Astrophysics Data System (ADS)
Bounadja, E.; Djahbar, A.; Taleb, R.; Boudjema, Z.
2017-02-01
The control of Doubly-Fed induction generator (DFIG), used in wind energy conversion, has been given a great deal of interest. Frequently, this control has been dealt with ignoring the magnetic saturation effect in the DFIG model. The aim of the present work is twofold: firstly, the magnetic saturation effect is accounted in the control design model; secondly, a new second order sliding mode control scheme using adjustable-gains (AG-SOSMC) is proposed to control the DFIG via its rotor side converter. This scheme allows the independent control of the generated active and reactive power. Conventionally, the second order sliding mode control (SOSMC) applied to the DFIG, utilize the super-twisting algorithm with fixed gains. In the proposed AG-SOSMC, a simple means by which the controller can adjust its behavior is used. For that, a linear function is used to represent the variation in gain as a function of the absolute value of the discrepancy between the reference rotor current and its measured value. The transient DFIG speed response using the aforementioned characteristic is compared with the one determined by using the conventional SOSMC controller with fixed gains. Simulation results show, accurate dynamic performances, quicker transient response and more accurate control are achieved for different operating conditions.
33 CFR 83.10 - Traffic separation schemes (Rule 10).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Traffic separation schemes (Rule... Visibility § 83.10 Traffic separation schemes (Rule 10). (a) Obligations under other Rules unaffected. This Rule applies to traffic separation schemes and does not relieve any vessel of her obligation under any...
33 CFR 83.10 - Traffic separation schemes (Rule 10).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Traffic separation schemes (Rule... Visibility § 83.10 Traffic separation schemes (Rule 10). (a) Obligations under other Rules unaffected. This Rule applies to traffic separation schemes and does not relieve any vessel of her obligation under any...
33 CFR 83.10 - Traffic separation schemes (Rule 10).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Traffic separation schemes (Rule... Visibility § 83.10 Traffic separation schemes (Rule 10). (a) Obligations under other Rules unaffected. This Rule applies to traffic separation schemes and does not relieve any vessel of her obligation under any...
33 CFR 83.10 - Traffic separation schemes (Rule 10).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Traffic separation schemes (Rule... Visibility § 83.10 Traffic separation schemes (Rule 10). (a) Obligations under other Rules unaffected. This Rule applies to traffic separation schemes and does not relieve any vessel of her obligation under any...
33 CFR 83.10 - Traffic separation schemes (Rule 10).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Traffic separation schemes (Rule... Visibility § 83.10 Traffic separation schemes (Rule 10). (a) Obligations under other Rules unaffected. This Rule applies to traffic separation schemes and does not relieve any vessel of her obligation under any...
A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Jameson, Antony
1986-01-01
A new efficient relaxation scheme in conjunction with a multigrid method is developed for the Euler equations. The LU SSOR scheme is based on a central difference scheme and does not need flux splitting for Newton iteration. Application to transonic flow shows that the new method surpasses the performance of the LU implicit scheme.
A reactive torque control law for gyroscopically controlled space vehicles
NASA Technical Reports Server (NTRS)
Farmer, J. E.
1973-01-01
A method of control is developed based on the reactive torques as seen by the individual CMG gimbals. The application of a torque to the gimbal of a CMG rotates the momentum vector and applies a torque to the spacecraft according to well-known laws. The response (rotation) of the vehicle produces a reverse or reaction torque opposing the torque producing the gimbal movement. The reactive torque and the pseudoinverse control schemes are contrasted in order to point out the simplicity of the first method. Simulation was performed only to the extent necessary to prove that reactive torque stabilization and control is feasible.
Algorithms for adaptive stochastic control for a class of linear systems
NASA Technical Reports Server (NTRS)
Toda, M.; Patel, R. V.
1977-01-01
Control of linear, discrete time, stochastic systems with unknown control gain parameters is discussed. Two suboptimal adaptive control schemes are derived: one is based on underestimating future control and the other is based on overestimating future control. Both schemes require little on-line computation and incorporate in their control laws some information on estimation errors. The performance of these laws is studied by Monte Carlo simulations on a computer. Two single input, third order systems are considered, one stable and the other unstable, and the performance of the two adaptive control schemes is compared with that of the scheme based on enforced certainty equivalence and the scheme where the control gain parameters are known.
Adaptive AOA-aided TOA self-positioning for mobile wireless sensor networks.
Wen, Chih-Yu; Chan, Fu-Kai
2010-01-01
Location-awareness is crucial and becoming increasingly important to many applications in wireless sensor networks. This paper presents a network-based positioning system and outlines recent work in which we have developed an efficient principled approach to localize a mobile sensor using time of arrival (TOA) and angle of arrival (AOA) information employing multiple seeds in the line-of-sight scenario. By receiving the periodic broadcasts from the seeds, the mobile target sensors can obtain adequate observations and localize themselves automatically. The proposed positioning scheme performs location estimation in three phases: (I) AOA-aided TOA measurement, (II) Geometrical positioning with particle filter, and (III) Adaptive fuzzy control. Based on the distance measurements and the initial position estimate, adaptive fuzzy control scheme is applied to solve the localization adjustment problem. The simulations show that the proposed approach provides adaptive flexibility and robust improvement in position estimation.
NASA Astrophysics Data System (ADS)
Kurilenkov, Yu K.; Tarakanov, V. P.; Gus'kov, S. Yu
2016-11-01
The neutron-free reaction of proton-boron nuclear burning accompanied with the yield of three alpha particles (p + 11B → α + 8Be* → 3α) is of great fundamental and applied interest. However, the implementation of the synthesis of p +11B requires such extreme plasma parameters that are difficult to achieve at well-known schemes of controlled thermonuclear fusion. Earlier, the yield of DD neutrons in a compact nanosecond vacuum discharge (NVD) of low energy with deuterated Pd anode have been observed. Further detailed particle-in-cell simulation by the electrodynamic code have recognized that this experiment represents the realization of rather old scheme of inertial electrostatic confinement (IEC). This IEC scheme is one of the few where the energies of ions needed for p + 11B reaction are quite possible. The purpose of this work on simulation of proton-boron reaction is studying the features of possible p + 11B burning at the IEC scheme based on NVD, thus, to look forward and planning the real experiment.
A frequency-based window width optimized two-dimensional S-Transform profilometry
NASA Astrophysics Data System (ADS)
Zhong, Min; Chen, Feng; Xiao, Chao
2017-11-01
A new scheme is proposed to as a frequency-based window width optimized two-dimensional S-Transform profilometry, in which parameters pu and pv are introduced to control the width of a two-dimensional Gaussian window. Unlike the standard two-dimensional S-transform using the Gaussian window with window width proportional to the reciprocal local frequency of the tested signal, the size of window width for the optimized two-dimensional S-Transform varies with the pu th (pv th) power of the reciprocal local frequency fx (fy) in x (y) direction. The paper gives a detailed theoretical analysis of optimized two-dimensional S-Transform in fringe analysis as well as the characteristics of the modified Gauss window. Simulations are applied to evaluate the proposed scheme, the results show that the new scheme has better noise reduction ability and can extract phase distribution more precise in comparison with the standard two-dimensional S-transform even though the surface of the measured object varies sharply. Finally, the proposed scheme is demonstrated on three-dimensional surface reconstruction for a complex plastic cat mask to show its effectiveness.
Fault detection and multiclassifier fusion for unmanned aerial vehicles (UAVs)
NASA Astrophysics Data System (ADS)
Yan, Weizhong
2001-03-01
UAVs demand more accurate fault accommodation for their mission manager and vehicle control system in order to achieve a reliability level that is comparable to that of a pilot aircraft. This paper attempts to apply multi-classifier fusion techniques to achieve the necessary performance of the fault detection function for the Lockheed Martin Skunk Works (LMSW) UAV Mission Manager. Three different classifiers that meet the design requirements of the fault detection of the UAAV are employed. The binary decision outputs from the classifiers are then aggregated using three different classifier fusion schemes, namely, majority vote, weighted majority vote, and Naieve Bayes combination. All of the three schemes are simple and need no retraining. The three fusion schemes (except the majority vote that gives an average performance of the three classifiers) show the classification performance that is better than or equal to that of the best individual. The unavoidable correlation between the classifiers with binary outputs is observed in this study. We conclude that it is the correlation between the classifiers that limits the fusion schemes to achieve an even better performance.
NASA Astrophysics Data System (ADS)
Qiang, Jiang; Meng-wei, Liao; Ming-jie, Luo
2018-03-01
Abstract.The control performance of Permanent Magnet Synchronous Motor will be affected by the fluctuation or changes of mechanical parameters when PMSM is applied as driving motor in actual electric vehicle,and external disturbance would influence control robustness.To improve control dynamic quality and robustness of PMSM speed control system, a new second order integral sliding mode control algorithm is introduced into PMSM vector control.The simulation results show that, compared with the traditional PID control,the modified control scheme optimized has better control precision and dynamic response ability and perform better with a stronger robustness facing external disturbance,it can effectively solve the traditional sliding mode variable structure control chattering problems as well.
Ilyas, Muhammad; Butt, Muhammad Fasih Uddin; Bilal, Muhammad; Mahmood, Khalid; Khaqan, Ali; Ali Riaz, Raja
2017-01-01
Regulating the depth of hypnosis during surgery is one of the major objectives of an anesthesia infusion system. Continuous administration of Propofol infusion during surgical procedures is essential but it unduly increases the load of an anesthetist working in a multitasking scenario in the operation theatre. Manual and target controlled infusion systems are not appropriate to handle instabilities like blood pressure and heart rate changes arising due to interpatient and intrapatient variability. Patient safety, large interindividual variability, and less postoperative effects are the main factors motivating automation in anesthesia administration. The idea of automated system for Propofol infusion excites control engineers to come up with more sophisticated systems that can handle optimum delivery of anesthetic drugs during surgery and avoid postoperative effects. A linear control technique is applied initially using three compartmental pharmacokinetic and pharmacodynamic models. Later on, sliding mode control and model predicative control achieve considerable results with nonlinear sigmoid model. Chattering and uncertainties are further improved by employing adaptive fuzzy control and H ∞ control. The proposed sliding mode control scheme can easily handle the nonlinearities and achieve an optimum hypnosis level as compared to linear control schemes, hence preventing mishaps such as underdosing and overdosing of anesthesia.
Multivariable control of vapor compression systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.D.; Liu, S.; Asada, H.H.
1999-07-01
This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less
Ilyas, Muhammad; Bilal, Muhammad; Mahmood, Khalid; Ali Riaz, Raja
2017-01-01
Regulating the depth of hypnosis during surgery is one of the major objectives of an anesthesia infusion system. Continuous administration of Propofol infusion during surgical procedures is essential but it unduly increases the load of an anesthetist working in a multitasking scenario in the operation theatre. Manual and target controlled infusion systems are not appropriate to handle instabilities like blood pressure and heart rate changes arising due to interpatient and intrapatient variability. Patient safety, large interindividual variability, and less postoperative effects are the main factors motivating automation in anesthesia administration. The idea of automated system for Propofol infusion excites control engineers to come up with more sophisticated systems that can handle optimum delivery of anesthetic drugs during surgery and avoid postoperative effects. A linear control technique is applied initially using three compartmental pharmacokinetic and pharmacodynamic models. Later on, sliding mode control and model predicative control achieve considerable results with nonlinear sigmoid model. Chattering and uncertainties are further improved by employing adaptive fuzzy control and H∞ control. The proposed sliding mode control scheme can easily handle the nonlinearities and achieve an optimum hypnosis level as compared to linear control schemes, hence preventing mishaps such as underdosing and overdosing of anesthesia. PMID:28466018
Infinite horizon optimal impulsive control with applications to Internet congestion control
NASA Astrophysics Data System (ADS)
Avrachenkov, Konstantin; Habachi, Oussama; Piunovskiy, Alexey; Zhang, Yi
2015-04-01
We investigate infinite-horizon deterministic optimal control problems with both gradual and impulsive controls, where any finitely many impulses are allowed simultaneously. Both discounted and long-run time-average criteria are considered. We establish very general and at the same time natural conditions, under which the dynamic programming approach results in an optimal feedback policy. The established theoretical results are applied to the Internet congestion control, and by solving analytically and nontrivially the underlying optimal control problems, we obtain a simple threshold-based active queue management scheme, which takes into account the main parameters of the transmission control protocols, and improves the fairness among the connections in a given network.
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...
2016-04-25
Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme-which is based on a nonisothermal, multiphase hydrological model-provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of themore » subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less
Flyback CCM inverter for AC module applications: iterative learning control and convergence analysis
NASA Astrophysics Data System (ADS)
Lee, Sung-Ho; Kim, Minsung
2017-12-01
This paper presents an iterative learning controller (ILC) for an interleaved flyback inverter operating in continuous conduction mode (CCM). The flyback CCM inverter features small output ripple current, high efficiency, and low cost, and hence it is well suited for photovoltaic power applications. However, it exhibits the non-minimum phase behaviour, because its transfer function from control duty to output current has the right-half-plane (RHP) zero. Moreover, the flyback CCM inverter suffers from the time-varying grid voltage disturbance. Thus, conventional control scheme results in inaccurate output tracking. To overcome these problems, the ILC is first developed and applied to the flyback inverter operating in CCM. The ILC makes use of both predictive and current learning terms which help the system output to converge to the reference trajectory. We take into account the nonlinear averaged model and use it to construct the proposed controller. It is proven that the system output globally converges to the reference trajectory in the absence of state disturbances, output noises, or initial state errors. Numerical simulations are performed to validate the proposed control scheme, and experiments using 400-W AC module prototype are carried out to demonstrate its practical feasibility.
Liu, Lei; Wang, Zhanshan; Zhang, Huaguang
2018-04-01
This paper is concerned with the robust optimal tracking control strategy for a class of nonlinear multi-input multi-output discrete-time systems with unknown uncertainty via adaptive critic design (ACD) scheme. The main purpose is to establish an adaptive actor-critic control method, so that the cost function in the procedure of dealing with uncertainty is minimum and the closed-loop system is stable. Based on the neural network approximator, an action network is applied to generate the optimal control signal and a critic network is used to approximate the cost function, respectively. In contrast to the previous methods, the main features of this paper are: 1) the ACD scheme is integrated into the controllers to cope with the uncertainty and 2) a novel cost function, which is not in quadric form, is proposed so that the total cost in the design procedure is reduced. It is proved that the optimal control signals and the tracking errors are uniformly ultimately bounded even when the uncertainty exists. Finally, a numerical simulation is developed to show the effectiveness of the present approach.
NASA Astrophysics Data System (ADS)
Roozegar, M.; Angeles, J.
2018-05-01
In light of the current low energy-storage capacity of electric batteries, multi-speed transmissions (MSTs) are being considered for applications in electric vehicles (EVs), since MSTs decrease the energy consumption of the EV via gear-shifting. Nonetheless, swiftness and seamlessness are the major concerns in gear-shifting. This study focuses on developing a gear-shifting control scheme for a novel MST designed for EVs. The main advantages of the proposed MST are simplicity and modularity. Firstly, the dynamics model of the transmission is formulated. Then, a two-phase algorithm is proposed for shifting between each two gear ratios, which guarantees a smooth and swift shift. In other words, a separate control set is applied for shifting between each gear pair, which includes two independent PID controllers, tuned using trial-and-error and a genetic algorithm (GA), for the two steps of the algorithm and a switch. A supervisory controller is also employed to choose the proper PID gains, called PID gain-scheduling. Simulation results for various controllers and conditions are reported and compared, indicating that the proposed scheme is highly promising for a desired gear-shifting even in the presence of an unknown external disturbance.
Location of Sinabung volcano magma chamber on 2013 using lavenberg-marquardt inversion scheme
NASA Astrophysics Data System (ADS)
Kumalasari, R.; Srigutomo, W.; Djamal, M.; Meilano, I.; Gunawan, H.
2018-05-01
Sinabung Volcano has been monitoring using GPS after his eruption on August 2010. We Applied Levenberg-Marquardt Inversion Scheme to GPS data on 2013 because deformation of Sinabung Volcano in this year show an inflation and deflation, first we applied Levenberg-Marquardt to velocity data on 23 January 2013 then we applied Levenberg-Marquardt Inversion Scheme to data on 31 December 2013. From our analysis we got the depth of the pressure source modeling results that indicate some possibilities that Sinabung has a deep magma chamber about 15km and also shallow magma chamber about 1km from the surface.
Hazard-Ranking of Agricultural Pesticides for Chronic Health Effects in Yuma County, Arizona
Sugeng, Anastasia J.; Beamer, Paloma I.; Lutz, Eric A.; Rosales, Cecilia B.
2013-01-01
With thousands of pesticides registered by the United States Environmental Protection Agency, it not feasible to sample for all pesticides applied in agricultural communities. Hazard-ranking pesticides based on use, toxicity, and exposure potential can help prioritize community-specific pesticide hazards. This study applied hazard-ranking schemes for cancer, endocrine disruption, and reproductive/developmental toxicity in Yuma County, Arizona. An existing cancer hazard-ranking scheme was modified, and novel schemes for endocrine disruption and reproductive/developmental toxicity were developed to rank pesticide hazards. The hazard-ranking schemes accounted for pesticide use, toxicity, and exposure potential based on chemical properties of each pesticide. Pesticides were ranked as hazards with respect to each health effect, as well as overall chronic health effects. The highest hazard-ranked pesticides for overall chronic health effects were maneb, metam sodium, trifluralin, pronamide, and bifenthrin. The relative pesticide rankings were unique for each health effect. The highest hazard-ranked pesticides differed from those most heavily applied, as well as from those previously detected in Yuma homes over a decade ago. The most hazardous pesticides for cancer in Yuma County, Arizona were also different from a previous hazard-ranking applied in California. Hazard-ranking schemes that take into account pesticide use, toxicity, and exposure potential can help prioritize pesticides of greatest health risk in agricultural communities. This study is the first to provide pesticide hazard-rankings for endocrine disruption and reproductive/developmental toxicity based on use, toxicity, and exposure potential. These hazard-ranking schemes can be applied to other agricultural communities for prioritizing community-specific pesticide hazards to target decreasing health risk. PMID:23783270
7 CFR 786.110 - Misrepresentation, scheme, or device.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 7 2012-01-01 2012-01-01 false Misrepresentation, scheme, or device. 786.110 Section... Misrepresentation, scheme, or device. (a) In addition to other penalties, sanctions, or remedies that may apply, a... FSA to have: (1) Adopted any scheme or device that tends to defeat the purpose of this program, (2...
7 CFR 786.110 - Misrepresentation, scheme, or device.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 7 2011-01-01 2011-01-01 false Misrepresentation, scheme, or device. 786.110 Section... Misrepresentation, scheme, or device. (a) In addition to other penalties, sanctions, or remedies that may apply, a... FSA to have: (1) Adopted any scheme or device that tends to defeat the purpose of this program, (2...
7 CFR 701.36 - Schemes and devices and claims avoidances.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Schemes and devices and claims avoidances. 701.36... RELATED PROGRAMS PREVIOUSLY ADMINISTERED UNDER THIS PART § 701.36 Schemes and devices and claims..., any scheme or device designed to evade the maximum cost-share limitation that applies to the ECP or to...
7 CFR 786.110 - Misrepresentation, scheme, or device.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 7 2013-01-01 2013-01-01 false Misrepresentation, scheme, or device. 786.110 Section... Misrepresentation, scheme, or device. (a) In addition to other penalties, sanctions, or remedies that may apply, a... FSA to have: (1) Adopted any scheme or device that tends to defeat the purpose of this program, (2...
7 CFR 786.110 - Misrepresentation, scheme, or device.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 7 2014-01-01 2014-01-01 false Misrepresentation, scheme, or device. 786.110 Section... Misrepresentation, scheme, or device. (a) In addition to other penalties, sanctions, or remedies that may apply, a... FSA to have: (1) Adopted any scheme or device that tends to defeat the purpose of this program, (2...
7 CFR 786.110 - Misrepresentation, scheme, or device.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Misrepresentation, scheme, or device. 786.110 Section... Misrepresentation, scheme, or device. (a) In addition to other penalties, sanctions, or remedies that may apply, a... FSA to have: (1) Adopted any scheme or device that tends to defeat the purpose of this program, (2...
An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling
NASA Astrophysics Data System (ADS)
Li, Panchi; Zhao, Ya; Xiao, Hong; Cao, Maojun
2017-05-01
In order to solve the problem of embedding the watermark into the quantum color image, in this paper, an improved scheme of using small-scale quantum circuits and color scrambling is proposed. Both color carrier image and color watermark image are represented using novel enhanced quantum representation. The image sizes for carrier and watermark are assumed to be 2^{n+1}× 2^{n+2} and 2n× 2n, respectively. At first, the color of pixels in watermark image is scrambled using the controlled rotation gates, and then, the scrambled watermark with 2^n× 2^n image size and 24-qubit gray scale is expanded to an image with 2^{n+1}× 2^{n+2} image size and 3-qubit gray scale. Finally, the expanded watermark image is embedded into the carrier image by the controlled-NOT gates. The extraction of watermark is the reverse process of embedding it into carrier image, which is achieved by applying operations in the reverse order. Simulation-based experimental results show that the proposed scheme is superior to other similar algorithms in terms of three items, visual quality, scrambling effect of watermark image, and noise resistibility.
High-fidelity gates in quantum dot spin qubits.
Koh, Teck Seng; Coppersmith, S N; Friesen, Mark
2013-12-03
Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.
Non-Hookean Mechanics of Crystalline Membranes
NASA Astrophysics Data System (ADS)
Nicholl, Ryan J. T.
The goal of the thesis is to explore the effect of crumpling on the mechanics of graphene--the ultimate thin membrane. The effect due to crumpling on the mechanical response of 2D materials is almost universally ignored in prior experiments. This is because the most widely used measurement schemes require high and non-uniform applied stress that suppresses crumpling. Experiments that do probe the interplay between crumpling and graphene mechanics remain highly challenging. To measure the mechanical effects of crumpling we need to develop a new measurement scheme which can apply low and uniform stress, allow non-invasive topography measurements, and be applicable at cryogenic temperatures. The motivating questions of this thesis are the following: • How does out-of plane crumpling affect the mechanical constants of 2D materials? • How do we implement measurement techniques sensitive to crumpling? • Can we identify sources of crumpling and distinguish between static and dynamic crumpling? • Can we tune the mechanical properties of 2D materials by controlling crumpling?
Control allocation-based adaptive control for greenhouse climate
NASA Astrophysics Data System (ADS)
Su, Yuanping; Xu, Lihong; Goodman, Erik D.
2018-04-01
This paper presents an adaptive approach to greenhouse climate control, as part of an integrated control and management system for greenhouse production. In this approach, an adaptive control algorithm is first derived to guarantee the asymptotic convergence of the closed system with uncertainty, then using that control algorithm, a controller is designed to satisfy the demands for heat and mass fluxes to maintain inside temperature, humidity and CO2 concentration at their desired values. Instead of applying the original adaptive control inputs directly, second, a control allocation technique is applied to distribute the demands of the heat and mass fluxes to the actuators by minimising tracking errors and energy consumption. To find an energy-saving solution, both single-objective optimisation (SOO) and multiobjective optimisation (MOO) in the control allocation structure are considered. The advantage of the proposed approach is that it does not require any a priori knowledge of the uncertainty bounds, and the simulation results illustrate the effectiveness of the proposed control scheme. It also indicates that MOO saves more energy in the control process.
Control and design heat flux bending in thermal devices with transformation optics.
Xu, Guoqiang; Zhang, Haochun; Jin, Yan; Li, Sen; Li, Yao
2017-04-17
We propose a fundamental latent function of control heat transfer and heat flux density vectors at random positions on thermal materials by applying transformation optics. The expressions for heat flux bending are obtained, and the factors influencing them are investigated in both 2D and 3D cloaking schemes. Under certain conditions, more than one degree of freedom of heat flux bending exists corresponding to the temperature gradients of the 3D domain. The heat flux path can be controlled in random space based on the geometrical azimuths, radial positions, and thermal conductivity ratios of the selected materials.
Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun
2012-01-01
This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.
An effective and secure key-management scheme for hierarchical access control in E-medicine system.
Odelu, Vanga; Das, Ashok Kumar; Goswami, Adrijit
2013-04-01
Recently several hierarchical access control schemes are proposed in the literature to provide security of e-medicine systems. However, most of them are either insecure against 'man-in-the-middle attack' or they require high storage and computational overheads. Wu and Chen proposed a key management method to solve dynamic access control problems in a user hierarchy based on hybrid cryptosystem. Though their scheme improves computational efficiency over Nikooghadam et al.'s approach, it suffers from large storage space for public parameters in public domain and computational inefficiency due to costly elliptic curve point multiplication. Recently, Nikooghadam and Zakerolhosseini showed that Wu-Chen's scheme is vulnerable to man-in-the-middle attack. In order to remedy this security weakness in Wu-Chen's scheme, they proposed a secure scheme which is again based on ECC (elliptic curve cryptography) and efficient one-way hash function. However, their scheme incurs huge computational cost for providing verification of public information in the public domain as their scheme uses ECC digital signature which is costly when compared to symmetric-key cryptosystem. In this paper, we propose an effective access control scheme in user hierarchy which is only based on symmetric-key cryptosystem and efficient one-way hash function. We show that our scheme reduces significantly the storage space for both public and private domains, and computational complexity when compared to Wu-Chen's scheme, Nikooghadam-Zakerolhosseini's scheme, and other related schemes. Through the informal and formal security analysis, we further show that our scheme is secure against different attacks and also man-in-the-middle attack. Moreover, dynamic access control problems in our scheme are also solved efficiently compared to other related schemes, making our scheme is much suitable for practical applications of e-medicine systems.
High-temperature brushless DC motor controller
Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan
2017-05-16
A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.
Stability of the discretization of the electron avalanche phenomenon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, Andrea, E-mail: andrea.villa@rse-web.it; Barbieri, Luca, E-mail: luca.barbieri@rse-web.it; Gondola, Marco, E-mail: marco.gondola@rse-web.it
2015-09-01
The numerical simulation of the discharge inception is an active field of applied physics with many industrial applications. In this work we focus on the drift-reaction equation that describes the electron avalanche. This phenomenon is one of the basic building blocks of the streamer model. The main difficulty of the electron avalanche equation lies in the fact that the reaction term is positive when a high electric field is applied. It leads to exponentially growing solutions and this has a major impact on the behavior of numerical schemes. We analyze the stability of a reference finite volume scheme applied tomore » this latter problem. The stability of the method may impose a strict mesh spacing, therefore a proper stabilized scheme, which is stable whatever spacing is used, has been developed. The convergence of the scheme is treated as well as some numerical experiments.« less
Servo control of an optical trap.
Wulff, Kurt D; Cole, Daniel G; Clark, Robert L
2007-08-01
A versatile optical trap has been constructed to control the position of trapped objects and ultimately to apply specified forces using feedback control. While the design, development, and use of optical traps has been extensive and feedback control has played a critical role in pushing the state of the art, few comprehensive examinations of feedback control of optical traps have been undertaken. Furthermore, as the requirements are pushed to ever smaller distances and forces, the performance of optical traps reaches limits. It is well understood that feedback control can result in both positive and negative effects in controlled systems. We give an analysis of the trapping limits as well as introducing an optical trap with a feedback control scheme that dramatically improves an optical trap's sensitivity at low frequencies.
A new approach to adaptive control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
An approach in which the manipulator inverse is used as a feedforward controller is employed in the adaptive control of manipulators in order to achieve trajectory tracking by the joint angles. The desired trajectory is applied as an input to the feedforward controller, and the controller output is used as the driving torque for the manipulator. An adaptive algorithm obtained from MRAC theory is used to update the controller gains to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal enhance closed-loop stability and achieve faster adaptation. Simulation results demonstrate the effectiveness of the proposed control scheme for different reference trajectories, and despite large variations in the payload.
Raul, Pramod R; Pagilla, Prabhakar R
2015-05-01
In this paper, two adaptive Proportional-Integral (PI) control schemes are designed and discussed for control of web tension in Roll-to-Roll (R2R) manufacturing systems. R2R systems are used to transport continuous materials (called webs) on rollers from the unwind roll to the rewind roll. Maintaining web tension at the desired value is critical to many R2R processes such as printing, coating, lamination, etc. Existing fixed gain PI tension control schemes currently used in industrial practice require extensive tuning and do not provide the desired performance for changing operating conditions and material properties. The first adaptive PI scheme utilizes the model reference approach where the controller gains are estimated based on matching of the actual closed-loop tension control systems with an appropriately chosen reference model. The second adaptive PI scheme utilizes the indirect adaptive control approach together with relay feedback technique to automatically initialize the adaptive PI gains. These adaptive tension control schemes can be implemented on any R2R manufacturing system. The key features of the two adaptive schemes is that their designs are simple for practicing engineers, easy to implement in real-time, and automate the tuning process. Extensive experiments are conducted on a large experimental R2R machine which mimics many features of an industrial R2R machine. These experiments include trials with two different polymer webs and a variety of operating conditions. Implementation guidelines are provided for both adaptive schemes. Experimental results comparing the two adaptive schemes and a fixed gain PI tension control scheme used in industrial practice are provided and discussed. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Event-triggered attitude control of spacecraft
NASA Astrophysics Data System (ADS)
Wu, Baolin; Shen, Qiang; Cao, Xibin
2018-02-01
The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.
Continuous fractional-order Zero Phase Error Tracking Control.
Liu, Lu; Tian, Siyuan; Xue, Dingyu; Zhang, Tao; Chen, YangQuan
2018-04-01
A continuous time fractional-order feedforward control algorithm for tracking desired time varying input signals is proposed in this paper. The presented controller cancels the phase shift caused by the zeros and poles of controlled closed-loop fractional-order system, so it is called Fractional-Order Zero Phase Tracking Controller (FZPETC). The controlled systems are divided into two categories i.e. with and without non-cancellable (non-minimum-phase) zeros which stand in unstable region or on stability boundary. Each kinds of systems has a targeted FZPETC design control strategy. The improved tracking performance has been evaluated successfully by applying the proposed controller to three different kinds of fractional-order controlled systems. Besides, a modified quasi-perfect tracking scheme is presented for those systems which may not have available future tracking trajectory information or have problem in high frequency disturbance rejection if the perfect tracking algorithm is applied. A simulation comparison and a hardware-in-the-loop thermal peltier platform are shown to validate the practicality of the proposed quasi-perfect control algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Hazard-ranking of agricultural pesticides for chronic health effects in Yuma County, Arizona.
Sugeng, Anastasia J; Beamer, Paloma I; Lutz, Eric A; Rosales, Cecilia B
2013-10-01
With thousands of pesticides registered by the United States Environmental Protection Agency, it not feasible to sample for all pesticides applied in agricultural communities. Hazard-ranking pesticides based on use, toxicity, and exposure potential can help prioritize community-specific pesticide hazards. This study applied hazard-ranking schemes for cancer, endocrine disruption, and reproductive/developmental toxicity in Yuma County, Arizona. An existing cancer hazard-ranking scheme was modified, and novel schemes for endocrine disruption and reproductive/developmental toxicity were developed to rank pesticide hazards. The hazard-ranking schemes accounted for pesticide use, toxicity, and exposure potential based on chemical properties of each pesticide. Pesticides were ranked as hazards with respect to each health effect, as well as overall chronic health effects. The highest hazard-ranked pesticides for overall chronic health effects were maneb, metam-sodium, trifluralin, pronamide, and bifenthrin. The relative pesticide rankings were unique for each health effect. The highest hazard-ranked pesticides differed from those most heavily applied, as well as from those previously detected in Yuma homes over a decade ago. The most hazardous pesticides for cancer in Yuma County, Arizona were also different from a previous hazard-ranking applied in California. Hazard-ranking schemes that take into account pesticide use, toxicity, and exposure potential can help prioritize pesticides of greatest health risk in agricultural communities. This study is the first to provide pesticide hazard-rankings for endocrine disruption and reproductive/developmental toxicity based on use, toxicity, and exposure potential. These hazard-ranking schemes can be applied to other agricultural communities for prioritizing community-specific pesticide hazards to target decreasing health risk. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kim, Won S.
1992-01-01
Two schemes of force reflecting control, position-error based force reflection and low-pass-filtered force reflection, both combined with shared compliance control, were developed for dissimilar master-slave arms. These schemes enabled high force reflection gains, which were not possible with a conventional scheme when the slave arm was much stiffer than the master arm. The experimental results with a peg-in-hole task indicated that the newly force reflecting control schemes combined with compliance control resulted in best task performances. As a related application, a simulated force reflection/shared compliance control teleoperation trainer was developed that provided the operator with the feel of kinesthetic force virtual reality.
An architecture for rapid prototyping of control schemes for artificial ventricles.
Ficola, Antonio; Pagnottelli, Stefano; Valigi, Paolo; Zoppitelli, Maurizio
2004-01-01
This paper presents an experimental system aimed at rapid prototyping of feedback control schemes for ventricular assist devices, and artificial ventricles in general. The system comprises a classical mock circulatory system, an actuated bellow-based ventricle chamber, and a software architecture for control schemes implementation and experimental data acquisition, visualization and storing. Several experiments have been carried out, showing good performance of ventricular pressure tracking control schemes.
Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling
Hou, Yan-Hua; Yu, Zhenhua
2015-01-01
Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations. PMID:26483090
A Tikhonov Regularization Scheme for Focus Rotations with Focused Ultrasound Phased Arrays
Hughes, Alec; Hynynen, Kullervo
2016-01-01
Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually-driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations. PMID:27913323
A Tikhonov Regularization Scheme for Focus Rotations With Focused Ultrasound-Phased Arrays.
Hughes, Alec; Hynynen, Kullervo
2016-12-01
Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound-phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations.
Approximated affine projection algorithm for feedback cancellation in hearing aids.
Lee, Sangmin; Kim, In-Young; Park, Young-Cheol
2007-09-01
We propose an approximated affine projection (AP) algorithm for feedback cancellation in hearing aids. It is based on the conventional approach using the Gauss-Seidel (GS) iteration, but provides more stable convergence behaviour even with small step sizes. In the proposed algorithm, a residue of the weighted error vector, instead of the current error sample, is used to provide stable convergence. A new learning rate control scheme is also applied to the proposed algorithm to prevent signal cancellation and system instability. The new scheme determines step size in proportion to the prediction factor of the input, so that adaptation is inhibited whenever tone-like signals are present in the input. Simulation results verified the efficiency of the proposed algorithm.
Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.
Hou, Yan-Hua; Yu, Zhenhua
2015-10-20
Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.
COMPARISON OF NUMERICAL SCHEMES FOR SOLVING A SPHERICAL PARTICLE DIFFUSION EQUATION
A new robust iterative numerical scheme was developed for a nonlinear diffusive model that described sorption dynamics in spherical particle suspensions. he numerical scheme had been applied to finite difference and finite element models that showed rapid convergence and stabilit...
Hu, Wenfeng; Liu, Lu; Feng, Gang
2016-09-02
This paper addresses the output consensus problem of heterogeneous linear multi-agent systems. We first propose a novel distributed event-triggered control scheme. It is shown that, with the proposed control scheme, the output consensus problem can be solved if two matrix equations are satisfied. Then, we further propose a novel self-triggered control scheme, with which continuous monitoring is avoided. By introducing a fixed timer into both event- and self-triggered control schemes, Zeno behavior can be ruled out for each agent. The effectiveness of the event- and self-triggered control schemes is illustrated by an example.
Optimal control of population and coherence in three-level Λ systems
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Malinovskaya, Svetlana A.; Malinovsky, Vladimir S.
2011-08-01
Optimal control theory (OCT) implementations for an efficient population transfer and creation of maximum coherence in a three-level system are considered. We demonstrate that the half-stimulated Raman adiabatic passage scheme for creation of the maximum Raman coherence is the optimal solution according to the OCT. We also present a comparative study of several implementations of OCT applied to the complete population transfer and creation of the maximum coherence. Performance of the conjugate gradient method, the Zhu-Rabitz method and the Krotov method has been analysed.
Fast packet switching algorithms for dynamic resource control over ATM networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, R.P.; Keattihananant, P.; Chang, T.
1996-12-01
Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types ofmore » schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.« less
High-order ENO schemes applied to two- and three-dimensional compressible flow
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang; Erlebacher, Gordon; Zang, Thomas A.; Whitaker, David; Osher, Stanley
1991-01-01
High order essentially non-oscillatory (ENO) finite difference schemes are applied to the 2-D and 3-D compressible Euler and Navier-Stokes equations. Practical issues, such as vectorization, efficiency of coding, cost comparison with other numerical methods, and accuracy degeneracy effects, are discussed. Numerical examples are provided which are representative of computational problems of current interest in transition and turbulence physics. These require both nonoscillatory shock capturing and high resolution for detailed structures in the smooth regions and demonstrate the advantage of ENO schemes.
Design of an extensive information representation scheme for clinical narratives.
Deléger, Louise; Campillos, Leonardo; Ligozat, Anne-Laure; Névéol, Aurélie
2017-09-11
Knowledge representation frameworks are essential to the understanding of complex biomedical processes, and to the analysis of biomedical texts that describe them. Combined with natural language processing (NLP), they have the potential to contribute to retrospective studies by unlocking important phenotyping information contained in the narrative content of electronic health records (EHRs). This work aims to develop an extensive information representation scheme for clinical information contained in EHR narratives, and to support secondary use of EHR narrative data to answer clinical questions. We review recent work that proposed information representation schemes and applied them to the analysis of clinical narratives. We then propose a unifying scheme that supports the extraction of information to address a large variety of clinical questions. We devised a new information representation scheme for clinical narratives that comprises 13 entities, 11 attributes and 37 relations. The associated annotation guidelines can be used to consistently apply the scheme to clinical narratives and are https://cabernet.limsi.fr/annotation_guide_for_the_merlot_french_clinical_corpus-Sept2016.pdf . The information scheme includes many elements of the major schemes described in the clinical natural language processing literature, as well as a uniquely detailed set of relations.
This paper utilizes a two-stage clustering approach as part of an objective classification scheme designed to elucidate 03's dependence on meteorology. hen applied to ten years (1981-1990) of meteorological data for Birmingham, Alabama, the classification scheme identified seven ...
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1992-01-01
The nonlinear stability of compact schemes for shock calculations is investigated. In recent years compact schemes were used in various numerical simulations including direct numerical simulation of turbulence. However to apply them to problems containing shocks, one has to resolve the problem of spurious numerical oscillation and nonlinear instability. A framework to apply nonlinear limiting to a local mean is introduced. The resulting scheme can be proven total variation (1D) or maximum norm (multi D) stable and produces nice numerical results in the test cases. The result is summarized in the preprint entitled 'Nonlinearly Stable Compact Schemes for Shock Calculations', which was submitted to SIAM Journal on Numerical Analysis. Research was continued on issues related to two and three dimensional essentially non-oscillatory (ENO) schemes. The main research topics include: parallel implementation of ENO schemes on Connection Machines; boundary conditions; shock interaction with hydrogen bubbles, a preparation for the full combustion simulation; and direct numerical simulation of compressible sheared turbulence.
Watermarking scheme based on singular value decomposition and homomorphic transform
NASA Astrophysics Data System (ADS)
Verma, Deval; Aggarwal, A. K.; Agarwal, Himanshu
2017-10-01
A semi-blind watermarking scheme based on singular-value-decomposition (SVD) and homomorphic transform is pro-posed. This scheme ensures the digital security of an eight bit gray scale image by inserting an invisible eight bit gray scale wa-termark into it. The key approach of the scheme is to apply the homomorphic transform on the host image to obtain its reflectance component. The watermark is embedded into the singular values that are obtained by applying the singular value decomposition on the reflectance component. Peak-signal-to-noise-ratio (PSNR), normalized-correlation-coefficient (NCC) and mean-structural-similarity-index-measure (MSSIM) are used to evaluate the performance of the scheme. Invisibility of watermark is ensured by visual inspection and high value of PSNR of watermarked images. Presence of watermark is ensured by visual inspection and high values of NCC and MSSIM of extracted watermarks. Robustness of the scheme is verified by high values of NCC and MSSIM for attacked watermarked images.
A shared position/force control methodology for teleoperation
NASA Technical Reports Server (NTRS)
Lee, Jin S.
1987-01-01
A flexible and computationally efficient shared position/force control concept and its implementation in the Robot Control C Library (RCCL) are presented form the point of teleoperation. This methodology enables certain degrees of freedom to be position-controlled through real time manual inputs and the remaining degrees of freedom to be force-controlled by computer. Functionally, it is a hybrid control scheme in that certain degrees of freedom are designated to be under position control, and the remaining degrees of freedom to be under force control. However, the methodology is also a shared control scheme because some degrees of freedom can be put under manual control and the other degrees of freedom put under computer control. Unlike other hybrid control schemes, which process position and force commands independently, this scheme provides a force control loop built on top of a position control inner loop. This feature minimizes the computational burden and increases disturbance rejection. A simple implementation is achieved partly because the joint control servos that are part of most robots can be used to provide the position control inner loop. Along with this control scheme, several menus were implemented for the convenience of the user. The implemented control scheme was successfully demonstrated for the tasks of hinged-panel opening and peg-in-hole insertion.
Possible communication scheme for closely-spaced multi-spacecraft missions
NASA Astrophysics Data System (ADS)
Dikareva, J.; Veselov, M.; Lesina, T.; Prokhorenko, V.; Nikolaeva, N.
2003-04-01
The progress in space instrumentation causes the rising number of the instrument modes, adjustments and other features. The work of the different instrument groups (field, wave, particle complexes) needs in more precise coordination. Furthermore, several spacecraft carry out the measurements simultaneously. All of that requires new approaches for the s/c control and data synchronization. The positive experience of the use of on-board program libraries correlated with different magnetospheric domains crossing prediction applied in INTERBALL project is analyzed. For the case of satellite-several subsatellites the original communication scheme is suggested. Taking into account strict weight and energy limitations it is difficult to establish a direct high bitrate subsatellite-graundstation radio-link. However such a radio-link seems possible for subsatellite-satellite due to the much shorter distance and therefore less power needed. The advantage of the use of main satellite as a communication mediator between a graundstation and subsatellites is considered. The scheme can be useful for multi-spacecraft planetary and deep space missions. The work is supported by INTAS 2000-465.
NASA Astrophysics Data System (ADS)
Ma, Yun-Ming; Wang, Tie-Jun
2017-10-01
Higher-dimensional quantum system is of great interest owing to the outstanding features exhibited in the implementation of novel fundamental tests of nature and application in various quantum information tasks. High-dimensional quantum logic gate is a key element in scalable quantum computation and quantum communication. In this paper, we propose a scheme to implement a controlled-phase gate between a 2 N -dimensional photon and N three-level artificial atoms. This high-dimensional controlled-phase gate can serve as crucial components of the high-capacity, long-distance quantum communication. We use the high-dimensional Bell state analysis as an example to show the application of this device. Estimates on the system requirements indicate that our protocol is realizable with existing or near-further technologies. This scheme is ideally suited to solid-state integrated optical approaches to quantum information processing, and it can be applied to various system, such as superconducting qubits coupled to a resonator or nitrogen-vacancy centers coupled to a photonic-band-gap structures.
Nonlinear truncation error analysis of finite difference schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1983-01-01
It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.
a Cell Vertex Algorithm for the Incompressible Navier-Stokes Equations on Non-Orthogonal Grids
NASA Astrophysics Data System (ADS)
Jessee, J. P.; Fiveland, W. A.
1996-08-01
The steady, incompressible Navier-Stokes (N-S) equations are discretized using a cell vertex, finite volume method. Quadrilateral and hexahedral meshes are used to represent two- and three-dimensional geometries respectively. The dependent variables include the Cartesian components of velocity and pressure. Advective fluxes are calculated using bounded, high-resolution schemes with a deferred correction procedure to maintain a compact stencil. This treatment insures bounded, non-oscillatory solutions while maintaining low numerical diffusion. The mass and momentum equations are solved with the projection method on a non-staggered grid. The coupling of the pressure and velocity fields is achieved using the Rhie and Chow interpolation scheme modified to provide solutions independent of time steps or relaxation factors. An algebraic multigrid solver is used for the solution of the implicit, linearized equations.A number of test cases are anlaysed and presented. The standard benchmark cases include a lid-driven cavity, flow through a gradual expansion and laminar flow in a three-dimensional curved duct. Predictions are compared with data, results of other workers and with predictions from a structured, cell-centred, control volume algorithm whenever applicable. Sensitivity of results to the advection differencing scheme is investigated by applying a number of higher-order flux limiters: the MINMOD, MUSCL, OSHER, CLAM and SMART schemes. As expected, studies indicate that higher-order schemes largely mitigate the diffusion effects of first-order schemes but also shown no clear preference among the higher-order schemes themselves with respect to accuracy. The effect of the deferred correction procedure on global convergence is discussed.
The optimal location of piezoelectric actuators and sensors for vibration control of plates
NASA Astrophysics Data System (ADS)
Kumar, K. Ramesh; Narayanan, S.
2007-12-01
This paper considers the optimal placement of collocated piezoelectric actuator-sensor pairs on a thin plate using a model-based linear quadratic regulator (LQR) controller. LQR performance is taken as objective for finding the optimal location of sensor-actuator pairs. The problem is formulated using the finite element method (FEM) as multi-input-multi-output (MIMO) model control. The discrete optimal sensor and actuator location problem is formulated in the framework of a zero-one optimization problem. A genetic algorithm (GA) is used to solve the zero-one optimization problem. Different classical control strategies like direct proportional feedback, constant-gain negative velocity feedback and the LQR optimal control scheme are applied to study the control effectiveness.
Adaptive Guidance and Control Algorithms applied to the X-38 Reentry Mission
NASA Astrophysics Data System (ADS)
Graesslin, M.; Wallner, E.; Burkhardt, J.; Schoettle, U.; Well, K. H.
International Space Station's Crew Return/Rescue Vehicle (CRV) is planned to autonomously return the complete crew of 7 astronauts back to earth in case of an emergency. As prototype of such a vehicle, the X-38, is being developed and built by NASA with European participation. The X-38 is a lifting body with a hyper- sonic lift to drag ratio of about 0.9. In comparison to the Space Shuttle Orbiter, the X-38 has less aerodynamic manoeuvring capability and less actuators. Within the German technology programme TETRA (TEchnologies for future space TRAnsportation systems) contributing to the X-38 program, guidance and control algorithms have been developed and applied to the X-38 reentry mission. The adaptive guidance concept conceived combines an on-board closed-loop predictive guidance algorithm with flight load control that temporarily overrides the attitude commands of the predictive component if the corre- sponding load constraints are violated. The predictive guidance scheme combines an optimization step and a sequence of constraint restoration cycles. In order to satisfy on-board computation limitations the complete scheme is performed only during the exo-atmospheric flight coast phase. During the controlled atmospheric flight segment the task is reduced to a repeatedly solved targeting problem based on the initial optimal solution, thus omitting in-flight constraints. To keep the flight loads - especially the heat flux, which is in fact a major concern of the X-38 reentry flight - below their maximum admissible values, a flight path controller based on quadratic minimization techniques may override the predictive guidance command for a flight along the con- straint boundary. The attitude control algorithms developed are based on dynamic inversion. This methodology enables the designer to straightforwardly devise a controller structure from the system dynamics. The main ad- vantage of this approach with regard to reentry control design lies in the fact that inversion renders a scheduled controller. Throughout the reentry, varying sets of actuators are available for control. Depending on which set is available, different inversion schemes are applied. With at least three controls effectors, decoupled control of the attitude angles can be achieved via a successive inversion which exploits the time-scale separation inherent in the attitude dynamics. However, during a flight phase where control needs to be achieved with only two body flaps, internal dynamics must be taken into account. To this end, a redefinition of the controlled variables is carried out so that the internal dynamics are stabilized while satisfactory tracking performance is achieved. The objectives of the present paper are to discuss the guidance and control approach taken, and asses the per- formance of the concepts by numerical flight simulations. For this purpose results obtained by means of a nu- merical flight simulator (CREDITS), that accurately models the characteristics of the X-38 vehicle, are presented to demonstrate the performance and effectiveness of the guidance and control design. Sensitivities to non- nominal flight conditions have been evaluated by Monte-Carlo analyses comprising motion simulations in both three and six degree of freedom. The results show that the mission requirements are met.
A Chaos MIMO-OFDM Scheme for Mobile Communication with Physical-Layer Security
NASA Astrophysics Data System (ADS)
Okamoto, Eiji
Chaos communications enable a physical-layer security, which can enhance the transmission security in combining with upper-layer encryption techniques, or can omit the upper-layer secure protocol and enlarges the transmission efficiency. However, the chaos communication usually degrades the error rate performance compared to unencrypted digital modulations. To achieve both physical-layer security and channel coding gain, we have proposed a chaos multiple-input multiple-output (MIMO) scheme in which a rate-one chaos convolution is applied to MIMO multiplexing. However, in the conventional study only flat fading is considered. To apply this scheme to practical mobile environments, i.e., multipath fading channels, we propose a chaos MIMO-orthogonal frequency division multi-plexing (OFDM) scheme and show its effectiveness through computer simulations.
Medical image enhancement using resolution synthesis
NASA Astrophysics Data System (ADS)
Wong, Tak-Shing; Bouman, Charles A.; Thibault, Jean-Baptiste; Sauer, Ken D.
2011-03-01
We introduce a post-processing approach to improve the quality of CT reconstructed images. The scheme is adapted from the resolution-synthesis (RS)1 interpolation algorithm. In this approach, we consider the input image, scanned at a particular dose level, as a degraded version of a high quality image scanned at a high dose level. Image enhancement is achieved by predicting the high quality image by classification based linear regression. To improve the robustness of our scheme, we also apply the minimum description length principle to determine the optimal number of predictors to use in the scheme, and the ridge regression to regularize the design of the predictors. Experimental results show that our scheme is effective in reducing the noise in images reconstructed from filtered back projection without significant loss of image details. Alternatively, our scheme can also be applied to reduce dose while maintaining image quality at an acceptable level.
NASA Astrophysics Data System (ADS)
Zhong, Chongquan; Lin, Yaoyao
2017-11-01
In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Davoodi, M.; Meskin, N.; Khorasani, K.
2018-03-01
The problem of simultaneous fault detection, isolation and tracking (SFDIT) control design for linear systems subject to both bounded energy and bounded peak disturbances is considered in this work. A dynamic observer is proposed and implemented by using the H∞/H-/L1 formulation of the SFDIT problem. A single dynamic observer module is designed that generates the residuals as well as the control signals. The objective of the SFDIT module is to ensure that simultaneously the effects of disturbances and control signals on the residual signals are minimised (in order to accomplish the fault detection goal) subject to the constraint that the transfer matrix from the faults to the residuals is equal to a pre-assigned diagonal transfer matrix (in order to accomplish the fault isolation goal), while the effects of disturbances, reference inputs and faults on the specified control outputs are minimised (in order to accomplish the fault-tolerant and tracking control goals). A set of linear matrix inequality (LMI) feasibility conditions are derived to ensure solvability of the problem. In order to illustrate and demonstrate the effectiveness of our proposed design methodology, the developed and proposed schemes are applied to an autonomous unmanned underwater vehicle (AUV).
NASA Astrophysics Data System (ADS)
Ison, Mark; Artemiadis, Panagiotis
2014-10-01
Myoelectric control is filled with potential to significantly change human-robot interaction due to the ability to non-invasively measure human motion intent. However, current control schemes have struggled to achieve the robust performance that is necessary for use in commercial applications. As demands in myoelectric control trend toward simultaneous multifunctional control, multi-muscle coordinations, or synergies, play larger roles in the success of the control scheme. Detecting and refining patterns in muscle activations robust to the high variance and transient changes associated with surface electromyography is essential for efficient, user-friendly control. This article reviews the role of muscle synergies in myoelectric control schemes by dissecting each component of the scheme with respect to associated challenges for achieving robust simultaneous control of myoelectric interfaces. Electromyography recording details, signal feature extraction, pattern recognition and motor learning based control schemes are considered, and future directions are proposed as steps toward fulfilling the potential of myoelectric control in clinically and commercially viable applications.
A cascaded coding scheme for error control
NASA Technical Reports Server (NTRS)
Shu, L.; Kasami, T.
1985-01-01
A cascade coding scheme for error control is investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are evaluated. They seem to be quite suitable for satellite down-link error control.
A cascaded coding scheme for error control
NASA Technical Reports Server (NTRS)
Kasami, T.; Lin, S.
1985-01-01
A cascaded coding scheme for error control was investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are studied which seem to be quite suitable for satellite down-link error control.
Neuromorphic learning of continuous-valued mappings from noise-corrupted data
NASA Technical Reports Server (NTRS)
Troudet, T.; Merrill, W.
1991-01-01
The effect of noise on the learning performance of the backpropagation algorithm is analyzed. A selective sampling of the training set is proposed to maximize the learning of control laws by backpropagation, when the data have been corrupted by noise. The training scheme is applied to the nonlinear control of a cart-pole system in the presence of noise. The neural computation provides the neurocontroller with good noise-filtering properties. In the presence of plant noise, the neurocontroller is found to be more stable than the teacher. A novel perspective on the application of neural network technology to control engineering is presented.
A Novel Phase Sensitive Quantum Well Nanostructure Scheme for Controlling Optical Bistability
NASA Astrophysics Data System (ADS)
Raheli, Ali
2018-04-01
A novel four-level lambda-type quantum well (QW) nanostructure is proposed based on phase sensitive optical bistability (OB) and multistability (OM) with a closed-loop configuration. The influence of controlling parameters of the system on OB and OM is investigated. In particular, it is found that the OB behavior is strongly sensitive to the relative phase of applied fields. It is also shown that under certain parametric conditions, the OB can be switched to OM or vice versa. The controllability of OB/OM in such a QW nanostructure may bring some new possibilities for technological applications in solid-state quantum information science and optoelectronics.
Approximations of thermoelastic and viscoelastic control systems
NASA Technical Reports Server (NTRS)
Burns, J. A.; Liu, Z. Y.; Miller, R. E.
1990-01-01
Well-posed models and computational algorithms are developed and analyzed for control of a class of partial differential equations that describe the motions of thermo-viscoelastic structures. An abstract (state space) framework and a general well-posedness result are presented that can be applied to a large class of thermo-elastic and thermo-viscoelastic models. This state space framework is used in the development of a computational scheme to be used in the solution of a linear quadratic regulator (LQR) control problem. A detailed convergence proof is provided for the viscoelastic model and several numerical results are presented to illustrate the theory and to analyze problems for which the theory is incomplete.
Unified Approach To Control Of Motions Of Mobile Robots
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1995-01-01
Improved computationally efficient scheme developed for on-line coordinated control of both manipulation and mobility of robots that include manipulator arms mounted on mobile bases. Present scheme similar to one described in "Coordinated Control of Mobile Robotic Manipulators" (NPO-19109). Both schemes based on configuration-control formalism. Present one incorporates explicit distinction between holonomic and nonholonomic constraints. Several other prior articles in NASA Tech Briefs discussed aspects of configuration-control formalism. These include "Increasing the Dexterity of Redundant Robots" (NPO-17801), "Redundant Robot Can Avoid Obstacles" (NPO-17852), "Configuration-Control Scheme Copes with Singularities" (NPO-18556), "More Uses for Configuration Control of Robots" (NPO-18607/NPO-18608).
Secure Dynamic access control scheme of PHR in cloud computing.
Chen, Tzer-Shyong; Liu, Chia-Hui; Chen, Tzer-Long; Chen, Chin-Sheng; Bau, Jian-Guo; Lin, Tzu-Ching
2012-12-01
With the development of information technology and medical technology, medical information has been developed from traditional paper records into electronic medical records, which have now been widely applied. The new-style medical information exchange system "personal health records (PHR)" is gradually developed. PHR is a kind of health records maintained and recorded by individuals. An ideal personal health record could integrate personal medical information from different sources and provide complete and correct personal health and medical summary through the Internet or portable media under the requirements of security and privacy. A lot of personal health records are being utilized. The patient-centered PHR information exchange system allows the public autonomously maintain and manage personal health records. Such management is convenient for storing, accessing, and sharing personal medical records. With the emergence of Cloud computing, PHR service has been transferred to storing data into Cloud servers that the resources could be flexibly utilized and the operation cost can be reduced. Nevertheless, patients would face privacy problem when storing PHR data into Cloud. Besides, it requires a secure protection scheme to encrypt the medical records of each patient for storing PHR into Cloud server. In the encryption process, it would be a challenge to achieve accurately accessing to medical records and corresponding to flexibility and efficiency. A new PHR access control scheme under Cloud computing environments is proposed in this study. With Lagrange interpolation polynomial to establish a secure and effective PHR information access scheme, it allows to accurately access to PHR with security and is suitable for enormous multi-users. Moreover, this scheme also dynamically supports multi-users in Cloud computing environments with personal privacy and offers legal authorities to access to PHR. From security and effectiveness analyses, the proposed PHR access scheme in Cloud computing environments is proven flexible and secure and could effectively correspond to real-time appending and deleting user access authorization and appending and revising PHR records.
Azbel-Jackson, Lena; Heffernan, Claire; Gunn, George; Brownlie, Joe
2018-01-01
The article describes the influence of a disease control scheme (the Norfolk-Suffolk Bovine Viral Diarrhoea Disease (BVD) Eradication scheme) on farmers' bio-security attitudes and behaviours. In 2010, a survey of 100 cattle farmers (53 scheme members vs. 47 out of scheme farmers) was undertaken among cattle farmers residing in Norfolk and Suffolk counties in the UK. A cross-sectional independent measures design was employed. The main analytical tool was content analysis. The following variables at the farmer-level were explored: the specific BVD control measures adopted, livestock disease priorities, motivation for scheme membership, wider knowledge acquisition, biosecurity behaviours employed and training course attendance. The findings suggest that participation in the BVD scheme improved farmers' perception of the scheme benefits and participation in training courses. However, no association was found between the taking part in the BVD scheme and livestock disease priorities or motivation for scheme participation, or knowledge about BVD bio-security measures employed. Equally importantly, scheme membership did appear to influence the importance accorded specific bio-security measures. Yet such ranking did not appear to reflect the actual behaviours undertaken. As such, disease control efforts alone while necessary, are insufficient. Rather, to enhance farmer bio-security behaviours significant effort must be made to address underlying attitudes to the specific disease threat involved.
Azbel-Jackson, Lena; Heffernan, Claire; Gunn, George; Brownlie, Joe
2018-01-01
The article describes the influence of a disease control scheme (the Norfolk-Suffolk Bovine Viral Diarrhoea Disease (BVD) Eradication scheme) on farmers' bio-security attitudes and behaviours. In 2010, a survey of 100 cattle farmers (53 scheme members vs. 47 out of scheme farmers) was undertaken among cattle farmers residing in Norfolk and Suffolk counties in the UK. A cross-sectional independent measures design was employed. The main analytical tool was content analysis. The following variables at the farmer-level were explored: the specific BVD control measures adopted, livestock disease priorities, motivation for scheme membership, wider knowledge acquisition, biosecurity behaviours employed and training course attendance. The findings suggest that participation in the BVD scheme improved farmers' perception of the scheme benefits and participation in training courses. However, no association was found between the taking part in the BVD scheme and livestock disease priorities or motivation for scheme participation, or knowledge about BVD bio-security measures employed. Equally importantly, scheme membership did appear to influence the importance accorded specific bio-security measures. Yet such ranking did not appear to reflect the actual behaviours undertaken. As such, disease control efforts alone while necessary, are insufficient. Rather, to enhance farmer bio-security behaviours significant effort must be made to address underlying attitudes to the specific disease threat involved. PMID:29432435
NASA Astrophysics Data System (ADS)
Zhang, Zhan-Jun
2006-03-01
I present a scheme which allows an arbitrary 2-qubit quantum state teleportation between two remote parties with control of many agents in a network. Comparisons between the present scheme and the existing scheme proposed recently [F.G. Deng, et al., Phys. Rev. A 72 (2005) 022338] are made. It seems that the present scheme is much simpler and more economic. Then I generalize the scheme to teleport an arbitrary n-qubit quantum state between two remote parties with control of agents in a network.
Complete analog control of the carrier-envelope-phase of a high-power laser amplifier.
Feng, C; Hergott, J-F; Paul, P-M; Chen, X; Tcherbakoff, O; Comte, M; Gobert, O; Reduzzi, M; Calegari, F; Manzoni, C; Nisoli, M; Sansone, G
2013-10-21
In this work we demonstrate the development of a complete analog feedback loop for the control of the carrier-envelope phase (CEP) of a high-average power (20 W) laser operating at 10 kHz repetition rate. The proposed method combines a detection scheme working on a single-shot basis at the full-repetition-rate of the laser system with a fast actuator based either on an acousto-optic or on an electro-optic crystal. The feedback loop is used to correct the CEP fluctuations introduced by the amplification process demonstrating a CEP residual noise of 320 mrad measured on a single-shot basis. The comparison with a feedback loop operating at a lower sampling rate indicates an improvement up to 45% in the residual noise. The measurement of the CEP drift for different integration times clearly evidences the importance of the single-shot characterization of the residual CEP drift. The demonstrated scheme could be efficiently applied for systems approaching the 100 kHz repetition rate regime.
Electro-optic resonant phase modulator
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung (Inventor); Hemmati, Hamid (Inventor); Robinson, Deborah L. (Inventor)
1992-01-01
An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 megabits per sec. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 nano-sec. and to limit the required switching voltage to within 10 V. This cavity locking scheme can be applied by using only the random data sequence, and without the need of dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, the resonant cavity modulator has the potential of accommodating higher throughput power. Mode matching into the bulk device is easier and typically can be achieved with higher efficiency. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.
NASA Astrophysics Data System (ADS)
Li, Guolong; Xiao, Xiao; Li, Yong; Wang, Xiaoguang
2018-02-01
We propose a multimode optomechanical system to realize tunable optical nonreciprocity that has the prospect of making an optical diode for information technology. The proposed model consists of two subsystems, each of which contains two optical cavities, injected with a classical field and a quantum signal via a 50:50 beam splitter, and a mechanical oscillator, coupled to both cavities via optomechanical coupling. Meanwhile two cavities and an oscillator in a subsystem are respectively coupled to their corresponding cavities and an oscillator in the other subsystem. Our scheme yields nonreciprocal effects at different frequencies with opposite directions, but each effective linear optomechanical coupling can be controlled by an independent classical one-frequency pump. With this setup one is able to apply quantum states with large fluctuations, which extends the scope of applicable quantum states, and exploit the independence of paths. Moreover, the optimal frequencies for nonreciprocal effects can be controlled by adjusting the relevant parameters. We also exhibit the path switching of two directions, from a mechanical input to two optical output channels, via tuning the signal frequency. In experiment, the considered scheme can be tuned to reach small damping rates of the oscillators relative to those of the cavities, which is more practical and requires less power than in previous schemes.
A comparison of two multi-variable integrator windup protection schemes
NASA Technical Reports Server (NTRS)
Mattern, Duane
1993-01-01
Two methods are examined for limit and integrator wind-up protection for multi-input, multi-output linear controllers subject to actuator constraints. The methods begin with an existing linear controller that satisfies the specifications for the nominal, small perturbation, linear model of the plant. The controllers are formulated to include an additional contribution to the state derivative calculations. The first method to be examined is the multi-variable version of the single-input, single-output, high gain, Conventional Anti-Windup (CAW) scheme. Except for the actuator limits, the CAW scheme is linear. The second scheme to be examined, denoted the Modified Anti-Windup (MAW) scheme, uses a scalar to modify the magnitude of the controller output vector while maintaining the vector direction. The calculation of the scalar modifier is a nonlinear function of the controller outputs and the actuator limits. In both cases the constrained actuator is tracked. These two integrator windup protection methods are demonstrated on a turbofan engine control system with five measurements, four control variables, and four actuators. The closed-loop responses of the two schemes are compared and contrasted during limit operation. The issue of maintaining the direction of the controller output vector using the Modified Anti-Windup scheme is discussed and the advantages and disadvantages of both of the IWP methods are presented.
Third-order 2N-storage Runge-Kutta schemes with error control
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Kennedy, Christopher A.
1994-01-01
A family of four-stage third-order explicit Runge-Kutta schemes is derived that requires only two storage locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.
Transonic small disturbances equation applied to the solution of two-dimensional nonsteady flows
NASA Technical Reports Server (NTRS)
Couston, M.; Angelini, J. J.; Mulak, P.
1980-01-01
Transonic nonsteady flows are of large practical interest. Aeroelastic instability prediction, control figured vehicle techniques or rotary wings in forward flight are some examples justifying the effort undertaken to improve knowledge of these problems is described. The numerical solution of these problems under the potential flow hypothesis is described. The use of an alternating direction implicit scheme allows the efficient resolution of the two dimensional transonic small perturbations equation.
Coastal Acoustic Tomography Data Constraints Applied to a Coastal Ocean Circulation Model
1994-04-01
Postgraduate School Monterey, CA 93943-5100 Abstract A direct insertion scheme for assimilating coastal acoustic tomo- graphic ( CAT ) vertical...days of this control run were taken to represent "actuality." A series of assimilation experiments was carried out in which CAT temperature slices...synthesized from different CAT configurations based on the "true ocean" were inserted into the n.odel at various time steps to examine the convergence of
A silicon technology for millimeter-wave monolithic circuits
NASA Astrophysics Data System (ADS)
Stabile, P. J.; Rosen, A.
1984-12-01
A silicon millimeter-wave integrated-circuit (SIMMWIC) technology that includes high-energy ion implantation and pulsed-laser annealing, secondary ion mass spectrometry (SIMS) profile diagnostics, and novel wafer thinning has been developed. This technology has been applied to a SIMMWIC single-pole single-throw (SPST) switch and to IMPATT and p-i-n diode fabrication schemes. Thus, the SIMMWIC technology is a proven base for monolithic millimeter-wave sources and control circuit applications.
Switching LPV Control for High Performance Tactical Aircraft
NASA Technical Reports Server (NTRS)
Lu, Bei; Wu, Fen; Kim, SungWan
2004-01-01
This paper examines a switching Linear Parameter-Varying (LPV) control approach to determine if it is practical to use for flight control designs within a wide angle of attack region. The approach is based on multiple parameter-dependent Lyapunov functions. The full parameter space is partitioned into overlapping subspaces and a family of LPV controllers are designed, each suitable for a specific parameter subspace. The hysteresis switching logic is used to accomplish the transition among different parameter subspaces. The proposed switching LPV control scheme is applied to an F-16 aircraft model with different actuator dynamics in low and high angle of attack regions. The nonlinear simulation results show that the aircraft performs well when switching among different angle of attack regions.
A full potential inverse method based on a density linearization scheme for wing design
NASA Technical Reports Server (NTRS)
Shankar, V.
1982-01-01
A mixed analysis inverse procedure based on the full potential equation in conservation form was developed to recontour a given base wing to produce density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FL030 finite volume analysis code was modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study.
Transfer of a wave packet in double-well potential
NASA Astrophysics Data System (ADS)
Yang, Hai-Feng; Hu, Yao-Hua; Tan, Yong-Gang
2018-04-01
Energy potentials with double-well structures are typical in atoms and molecules systems. A manipulation scheme using Half Cycles Pulses (HCPs) is proposed to transfer a Gaussian wave packet between the two wells. On the basis of quantum mechanical simulations, the time evolution and the energy distribution of the wave packet are evaluated. The effect of time parameters, amplitude, and number of HCPs on spatial and energy distribution of the final state and transfer efficiency are investigated. After a carefully tailored HCPs sequence is applied to the initial wave packet localized in one well, the final state is a wave packet localized in the other well and populated at the lower energy levels with narrower distribution. The present scheme could be used to control molecular reactions and to prepare atoms with large dipole moments.
Protocol for fermionic positive-operator-valued measures
NASA Astrophysics Data System (ADS)
Arvidsson-Shukur, D. R. M.; Lepage, H. V.; Owen, E. T.; Ferrus, T.; Barnes, C. H. W.
2017-11-01
In this paper we present a protocol for the implementation of a positive-operator-valued measure (POVM) on massive fermionic qubits. We present methods for implementing nondispersive qubit transport, spin rotations, and spin polarizing beam-splitter operations. Our scheme attains linear opticslike control of the spatial extent of the qubits by considering ground-state electrons trapped in the minima of surface acoustic waves in semiconductor heterostructures. Furthermore, we numerically simulate a high-fidelity POVM that carries out Procrustean entanglement distillation in the framework of our scheme, using experimentally realistic potentials. Our protocol can be applied not only to pure ensembles with particle pairs of known identical entanglement, but also to realistic ensembles of particle pairs with a distribution of entanglement entropies. This paper provides an experimentally realizable design for future quantum technologies.
Data quality enhancement and knowledge discovery from relevant signals in acoustic emission
NASA Astrophysics Data System (ADS)
Mejia, Felipe; Shyu, Mei-Ling; Nanni, Antonio
2015-10-01
The increasing popularity of structural health monitoring has brought with it a growing need for automated data management and data analysis tools. Of great importance are filters that can systematically detect unwanted signals in acoustic emission datasets. This study presents a semi-supervised data mining scheme that detects data belonging to unfamiliar distributions. This type of outlier detection scheme is useful detecting the presence of new acoustic emission sources, given a training dataset of unwanted signals. In addition to classifying new observations (herein referred to as "outliers") within a dataset, the scheme generates a decision tree that classifies sub-clusters within the outlier context set. The obtained tree can be interpreted as a series of characterization rules for newly-observed data, and they can potentially describe the basic structure of different modes within the outlier distribution. The data mining scheme is first validated on a synthetic dataset, and an attempt is made to confirm the algorithms' ability to discriminate outlier acoustic emission sources from a controlled pencil-lead-break experiment. Finally, the scheme is applied to data from two fatigue crack-growth steel specimens, where it is shown that extracted rules can adequately describe crack-growth related acoustic emission sources while filtering out background "noise." Results show promising performance in filter generation, thereby allowing analysts to extract, characterize, and focus only on meaningful signals.
A shock-capturing SPH scheme based on adaptive kernel estimation
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; López, Hender; Donoso, Arnaldo; Sira, Eloy; Klapp, Jaime
2006-02-01
Here we report a method that converts standard smoothed particle hydrodynamics (SPH) into a working shock-capturing scheme without relying on solutions to the Riemann problem. Unlike existing adaptive SPH simulations, the present scheme is based on an adaptive kernel estimation of the density, which combines intrinsic features of both the kernel and nearest neighbor approaches in a way that the amount of smoothing required in low-density regions is effectively controlled. Symmetrized SPH representations of the gas dynamic equations along with the usual kernel summation for the density are used to guarantee variational consistency. Implementation of the adaptive kernel estimation involves a very simple procedure and allows for a unique scheme that handles strong shocks and rarefactions the same way. Since it represents a general improvement of the integral interpolation on scattered data, it is also applicable to other fluid-dynamic models. When the method is applied to supersonic compressible flows with sharp discontinuities, as in the classical one-dimensional shock-tube problem and its variants, the accuracy of the results is comparable, and in most cases superior, to that obtained from high quality Godunov-type methods and SPH formulations based on Riemann solutions. The extension of the method to two- and three-space dimensions is straightforward. In particular, for the two-dimensional cylindrical Noh's shock implosion and Sedov point explosion problems the present scheme produces much better results than those obtained with conventional SPH codes.
Quantum Secure Conditional Direct Communication via EPR Pairs
NASA Astrophysics Data System (ADS)
Gao, Ting; Yan, Fengli; Wang, Zhixi
Two schemes for quantum secure conditional direct communication are proposed, where a set of EPR pairs of maximally entangled particles in Bell states, initially made by the supervisor Charlie, but shared by the sender Alice and the receiver Bob, functions as quantum information channels for faithful transmission. After insuring the security of the quantum channel and obtaining the permission of Charlie (i.e., Charlie is trustworthy and cooperative, which means the "conditional" in the two schemes), Alice and Bob begin their private communication under the control of Charlie. In the first scheme, Alice transmits secret message to Bob in a deterministic manner with the help of Charlie by means of Alice's local unitary transformations, both Alice and Bob's local measurements, and both of Alice and Charlie's public classical communication. In the second scheme, the secure communication between Alice and Bob can be achieved via public classical communication of Charlie and Alice, and the local measurements of both Alice and Bob. The common feature of these protocols is that the communications between two communication parties Alice and Bob depend on the agreement of the third side Charlie. Moreover, transmitting one bit secret message, the sender Alice only needs to apply a local operation on her one qubit and send one bit classical information. We also show that the two schemes are completely secure if quantum channels are perfect.
NASA Technical Reports Server (NTRS)
Koch, Steven E.; Mcqueen, Jeffery T.
1987-01-01
A survey of various one- and two-way interactive nested grid techniques used in hydrostatic numerical weather prediction models is presented and the advantages and disadvantages of each method are discussed. The techniques for specifying the lateral boundary conditions for each nested grid scheme are described in detail. Averaging and interpolation techniques used when applying the coarse mesh grid (CMG) and fine mesh grid (FMG) interface conditions during two-way nesting are discussed separately. The survey shows that errors are commonly generated at the boundary between the CMG and FMG due to boundary formulation or specification discrepancies. Methods used to control this noise include application of smoothers, enhanced diffusion, or damping-type time integration schemes to model variables. The results from this survey provide the information needed to decide which one-way and two-way nested grid schemes merit future testing with the Mesoscale Atmospheric Simulation System (MASS) model. An analytically specified baroclinic wave will be used to conduct systematic tests of the chosen schemes since this will allow for objective determination of the interfacial noise in the kind of meteorological setting for which MASS is designed. Sample diagnostic plots from initial tests using the analytic wave are presented to illustrate how the model-generated noise is ascertained. These plots will be used to compare the accuracy of the various nesting schemes when incorporated into the MASS model.
Real time control for NASA robotic gripper
NASA Technical Reports Server (NTRS)
Salter, Carole A.; Baras, John S.
1990-01-01
The ability to easily manipulate objects in a zero gravity environment will pay a key role in future space activities. Emphasis will be placed on robotic manipulation. This will serve to increase astronaut safety and utility in addition to several other benefits. The aim is to develop control laws for the zero gravity robotic end effectors. A hybrid force/position controller will be used. Sensory data available to the controller are obtained from an array of strain gauges and a linear potentiometer. Applying well known optimal control theoretical principles, the control which minimizes the transition time between positions is obtained. A robust force control scheme is developed which allows the desired holding force to be achieved smoothly without oscillation. In addition, an algorithm is found to determine contact force and contact location.
A multilevel control system for the large space telescope. [numerical analysis/optimal control
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Sundareshan, S. K.; Vukcevic, M. B.
1975-01-01
A multilevel scheme was proposed for control of Large Space Telescope (LST) modeled by a three-axis-six-order nonlinear equation. Local controllers were used on the subsystem level to stabilize motions corresponding to the three axes. Global controllers were applied to reduce (and sometimes nullify) the interactions among the subsystems. A multilevel optimization method was developed whereby local quadratic optimizations were performed on the subsystem level, and global control was again used to reduce (nullify) the effect of interactions. The multilevel stabilization and optimization methods are presented as general tools for design and then used in the design of the LST Control System. The methods are entirely computerized, so that they can accommodate higher order LST models with both conceptual and numerical advantages over standard straightforward design techniques.
Dual-stage periodic event-triggered output-feedback control for linear systems.
Ruan, Zhen; Chen, Wu-Hua; Lu, Xiaomei
2018-05-01
This paper proposes an event-triggered control framework, called dual-stage periodic event-triggered control (DSPETC), which unifies periodic event-triggered control (PETC) and switching event-triggered control (SETC). Specifically, two period parameters h 1 and h 2 are introduced to characterize the new event-triggering rule, where h 1 denotes the sampling period, while h 2 denotes the monitoring period. By choosing some specified values of h 2 , the proposed control scheme can reduce to PETC or SETC scheme. In the DSPETC framework, the controlled system is represented as a switched system model and its stability is analyzed via a switching-time-dependent Lyapunov functional. Both the cases with/without network-induced delays are investigated. Simulation and experimental results show that the DSPETC scheme is superior to the PETC scheme and the SETC scheme. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
A slotted access control protocol for metropolitan WDM ring networks
NASA Astrophysics Data System (ADS)
Baziana, P. A.; Pountourakis, I. E.
2009-03-01
In this study we focus on the serious scalability problems that many access protocols for WDM ring networks introduce due to the use of a dedicated wavelength per access node for either transmission or reception. We propose an efficient slotted MAC protocol suitable for WDM ring metropolitan area networks. The proposed network architecture employs a separate wavelength for control information exchange prior to the data packet transmission. Each access node is equipped with a pair of tunable transceivers for data communication and a pair of fixed tuned transceivers for control information exchange. Also, each access node includes a set of fixed delay lines for synchronization reasons; to keep the data packets, while the control information is processed. An efficient access algorithm is applied to avoid both the data wavelengths and the receiver collisions. In our protocol, each access node is capable of transmitting and receiving over any of the data wavelengths, facing the scalability issues. Two different slot reuse schemes are assumed: the source and the destination stripping schemes. For both schemes, performance measures evaluation is provided via an analytic model. The analytical results are validated by a discrete event simulation model that uses Poisson traffic sources. Simulation results show that the proposed protocol manages efficient bandwidth utilization, especially under high load. Also, comparative simulation results prove that our protocol achieves significant performance improvement as compared with other WDMA protocols which restrict transmission over a dedicated data wavelength. Finally, performance measures evaluation is explored for diverse numbers of buffer size, access nodes and data wavelengths.
Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion
NASA Astrophysics Data System (ADS)
Lv, Yu; Ihme, Matthias
2014-08-01
This paper presents the development of a discontinuous Galerkin (DG) method for application to chemically reacting flows in subsonic and supersonic regimes under the consideration of variable thermo-viscous-diffusive transport properties, detailed and stiff reaction chemistry, and shock capturing. A hybrid-flux formulation is developed for treatment of the convective fluxes, combining a conservative Riemann-solver and an extended double-flux scheme. A computationally efficient splitting scheme is proposed, in which advection and diffusion operators are solved in the weak form, and the chemically stiff substep is advanced in the strong form using a time-implicit scheme. The discretization of the viscous-diffusive transport terms follows the second form of Bassi and Rebay, and the WENO-based limiter due to Zhong and Shu is extended to multicomponent systems. Boundary conditions are developed for subsonic and supersonic flow conditions, and the algorithm is coupled to thermochemical libraries to account for detailed reaction chemistry and complex transport. The resulting DG method is applied to a series of test cases of increasing physico-chemical complexity. Beginning with one- and two-dimensional multispecies advection and shock-fluid interaction problems, computational efficiency, convergence, and conservation properties are demonstrated. This study is followed by considering a series of detonation and supersonic combustion problems to investigate the convergence-rate and the shock-capturing capability in the presence of one- and multistep reaction chemistry. The DG algorithm is then applied to diffusion-controlled deflagration problems. By examining convergence properties for polynomial order and spatial resolution, and comparing these with second-order finite-volume solutions, it is shown that optimal convergence is achieved and that polynomial refinement provides advantages in better resolving the localized flame structure and complex flow-field features associated with multidimensional and hydrodynamic/thermo-diffusive instabilities in deflagration and detonation systems. Comparisons with standard third- and fifth-order WENO schemes are presented to illustrate the benefit of the DG scheme for application to detonation and multispecies flow/shock-interaction problems.
Some implementational issues of convection schemes for finite volume formulations
NASA Technical Reports Server (NTRS)
Thakur, Siddharth; Shyy, Wei
1993-01-01
Two higher-order upwind schemes - second-order upwind and QUICK - are examined in terms of their interpretation, implementation as well as performance for a recirculating flow in a lid-driven cavity, in the context of a control volume formulation using the SIMPLE algorithm. The present formulation of these schemes is based on a unified framework wherein the first-order upwind scheme is chosen as the basis, with the remaining terms being assigned to the source term. The performance of these schemes is contrasted with the first-order upwind and second-order central difference schemes. Also addressed in this study is the issue of boundary treatment associated with these higher-order upwind schemes. Two different boundary treatments - one that uses a two-point scheme consistently within a given control volume at the boundary, and the other that maintains consistency of flux across the interior face between the adjacent control volumes - are formulated and evaluated.
Some implementational issues of convection schemes for finite-volume formulations
NASA Technical Reports Server (NTRS)
Thakur, Siddharth; Shyy, Wei
1993-01-01
Two higher-order upwind schemes - second-order upwind and QUICK - are examined in terms of their interpretation, implementations, as well as performance for a recirculating flow in a lid-driven cavity, in the context of a control-volume formulation using the SIMPLE algorithm. The present formulation of these schemes is based on a unified framework wherein the first-order upwind scheme is chosen as the basis, with the remaining terms being assigned to the source term. The performance of these schemes is contrasted with the first-order upwind and second-order central difference schemes. Also addressed in this study is the issue of boundary treatment associated with these higher-order upwind schemes. Two different boundary treatments - one that uses a two-point scheme consistently within a given control volume at the boundary, and the other that maintains consistency of flux across the interior face between the adjacent control volumes - are formulated and evaluated.
A self-consistent density based embedding scheme applied to the adsorption of CO on Pd(111)
NASA Astrophysics Data System (ADS)
Lahav, D.; Klüner, T.
2007-06-01
We derive a variant of a density based embedded cluster approach as an improvement to a recently proposed embedding theory for metallic substrates (Govind et al 1999 J. Chem. Phys. 110 7677; Klüner et al 2001 Phys. Rev. Lett. 86 5954). In this scheme, a local region in space is represented by a small cluster which is treated by accurate quantum chemical methodology. The interaction of the cluster with the infinite solid is taken into account by an effective one-electron embedding operator representing the surrounding region. We propose a self-consistent embedding scheme which resolves intrinsic problems of the former theory, in particular a violation of strict density conservation. The proposed scheme is applied to the well-known benchmark system CO/Pd(111).
Case studies in configuration control for redundant robots
NASA Technical Reports Server (NTRS)
Seraji, H.; Lee, T.; Colbaugh, R.; Glass, K.
1989-01-01
A simple approach to configuration control of redundant robots is presented. The redundancy is utilized to control the robot configuration directly in task space, where the task will be performed. A number of task-related kinematic functions are defined and combined with the end-effector coordinates to form a set of configuration variables. An adaptive control scheme is then utilized to ensure that the configuration variables track the desired reference trajectories as closely as possible. Simulation results are presented to illustrate the control scheme. The scheme has also been implemented for direct online control of a PUMA industrial robot, and experimental results are presented. The simulation and experimental results validate the configuration control scheme for performing various realistic tasks.
A robust control scheme for flexible arms with friction in the joints
NASA Technical Reports Server (NTRS)
Rattan, Kuldip S.; Feliu, Vicente; Brown, H. Benjamin, Jr.
1988-01-01
A general control scheme to control flexible arms with friction in the joints is proposed in this paper. This scheme presents the advantage of being robust in the sense that it minimizes the effects of the Coulomb friction existing in the motor and the effects of changes in the dynamic friction coefficient. A justification of the robustness properties of the scheme is given in terms of the sensitivity analysis.
Implementation of a Cross-Layer Sensing Medium-Access Control Scheme.
Su, Yishan; Fu, Xiaomei; Han, Guangyao; Xu, Naishen; Jin, Zhigang
2017-04-10
In this paper, compressed sensing (CS) theory is utilized in a medium-access control (MAC) scheme for wireless sensor networks (WSNs). We propose a new, cross-layer compressed sensing medium-access control (CL CS-MAC) scheme, combining the physical layer and data link layer, where the wireless transmission in physical layer is considered as a compress process of requested packets in a data link layer according to compressed sensing (CS) theory. We first introduced using compressive complex requests to identify the exact active sensor nodes, which makes the scheme more efficient. Moreover, because the reconstruction process is executed in a complex field of a physical layer, where no bit and frame synchronizations are needed, the asynchronous and random requests scheme can be implemented without synchronization payload. We set up a testbed based on software-defined radio (SDR) to implement the proposed CL CS-MAC scheme practically and to demonstrate the validation. For large-scale WSNs, the simulation results show that the proposed CL CS-MAC scheme provides higher throughput and robustness than the carrier sense multiple access (CSMA) and compressed sensing medium-access control (CS-MAC) schemes.
Multivariable control theory applied to hierarchial attitude control for planetary spacecraft
NASA Technical Reports Server (NTRS)
Boland, J. S., III; Russell, D. W.
1972-01-01
Multivariable control theory is applied to the design of a hierarchial attitude control system for the CARD space vehicle. The system selected uses reaction control jets (RCJ) and control moment gyros (CMG). The RCJ system uses linear signal mixing and a no-fire region similar to that used on the Skylab program; the y-axis and z-axis systems which are coupled use a sum and difference feedback scheme. The CMG system uses the optimum steering law and the same feedback signals as the RCJ system. When both systems are active the design is such that the torques from each system are never in opposition. A state-space analysis was made of the CMG system to determine the general structure of the input matrices (steering law) and feedback matrices that will decouple the axes. It is shown that the optimum steering law and proportional-plus-rate feedback are special cases. A derivation of the disturbing torques on the space vehicle due to the motion of the on-board television camera is presented. A procedure for computing an upper bound on these torques (given the system parameters) is included.
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Long, Gui Lu
2015-03-01
We propose two compact, economic, and scalable schemes for implementing optical controlled-phase-flip and controlled-controlled-phase-flip gates by using the input-output process of a single-sided cavity strongly coupled to a single nitrogen-vacancy-center defect in diamond. Additional photonic qubits, necessary for procedures based on the parity-check measurement or controlled-path and merging gates, are not employed in our schemes. In the controlled-path gate, the paths of the target photon are conditionally controlled by the control photon, and these two paths can be merged back into one by using a merging gate. Only one half-wave plate is employed in our scheme for the controlled-phase-flip gate. Compared with the conventional synthesis procedures for constructing a controlled-controlled-phase-flip gate, the cost of which is two controlled-path gates and two merging gates, or six controlled-not gates, our scheme is more compact and simpler. Our schemes could be performed with a high fidelity and high efficiency with current achievable experimental techniques.
A continually online-trained neural network controller for brushless DC motor drives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubaai, A.; Kotaru, R.; Kankam, M.D.
2000-04-01
In this paper, a high-performance controller with simultaneous online identification and control is designed for brushless dc motor drives. The dynamics of the motor/load are modeled online, and controlled using two different neural network based identification and control schemes, as the system is in operation. In the first scheme, an attempt is made to control the rotor angular speed, utilizing a single three-hidden-layer network. The second scheme attempts to control the stator currents, using a predetermined control law as a function of the estimated states. This schemes incorporates three multilayered feedforward neural networks that are online trained, using the Levenburg-Marquadtmore » training algorithm. The control of the direct and quadrature components of the stator current successfully tracked a wide variety of trajectories after relatively short online training periods. The control strategy adapts to the uncertainties of the motor/load dynamics and, in addition, learns their inherent nonlinearities. Simulation results illustrated that a neurocontroller used in conjunction with adaptive control schemes can result in a flexible control device which may be utilized in a wide range of environments.« less
NASA Astrophysics Data System (ADS)
Katsumata, Hisatoshi; Konishi, Keiji; Hara, Naoyuki
2018-04-01
The present paper proposes a scheme for controlling wave segments in excitable media. This scheme consists of two phases: in the first phase, a simple mathematical model for wave segments is derived using only the time series data of input and output signals for the media; in the second phase, the model derived in the first phase is used in an advanced control technique. We demonstrate with numerical simulations of the Oregonator model that this scheme performs better than a conventional control scheme.
Comparing multilayer brain networks between groups: Introducing graph metrics and recommendations.
Mandke, Kanad; Meier, Jil; Brookes, Matthew J; O'Dea, Reuben D; Van Mieghem, Piet; Stam, Cornelis J; Hillebrand, Arjan; Tewarie, Prejaas
2018-02-01
There is an increasing awareness of the advantages of multi-modal neuroimaging. Networks obtained from different modalities are usually treated in isolation, which is however contradictory to accumulating evidence that these networks show non-trivial interdependencies. Even networks obtained from a single modality, such as frequency-band specific functional networks measured from magnetoencephalography (MEG) are often treated independently. Here, we discuss how a multilayer network framework allows for integration of multiple networks into a single network description and how graph metrics can be applied to quantify multilayer network organisation for group comparison. We analyse how well-known biases for single layer networks, such as effects of group differences in link density and/or average connectivity, influence multilayer networks, and we compare four schemes that aim to correct for such biases: the minimum spanning tree (MST), effective graph resistance cost minimisation, efficiency cost optimisation (ECO) and a normalisation scheme based on singular value decomposition (SVD). These schemes can be applied to the layers independently or to the multilayer network as a whole. For correction applied to whole multilayer networks, only the SVD showed sufficient bias correction. For correction applied to individual layers, three schemes (ECO, MST, SVD) could correct for biases. By using generative models as well as empirical MEG and functional magnetic resonance imaging (fMRI) data, we further demonstrated that all schemes were sensitive to identify network topology when the original networks were perturbed. In conclusion, uncorrected multilayer network analysis leads to biases. These biases may differ between centres and studies and could consequently lead to unreproducible results in a similar manner as for single layer networks. We therefore recommend using correction schemes prior to multilayer network analysis for group comparisons. Copyright © 2017 Elsevier Inc. All rights reserved.
Observation and control of coherent torsional dynamics in a quinquethiophene molecule.
Cirmi, Giovanni; Brida, Daniele; Gambetta, Alessio; Piacenza, Manuel; Della Sala, Fabio; Favaretto, Laura; Cerullo, Giulio; Lanzani, Guglielmo
2010-07-28
By applying femtosecond pump-probe spectroscopy to a substituted quinquethiophene molecule in solution, we observe in the time domain the coherent torsional dynamics that drives planarization of the excited state. Our interpretation is based on numerical modeling of the ground and excited state potential energy surfaces and simulation of wavepacket dynamics, which reveals two symmetric excited state deactivation pathways per oscillation period. We use the acquired knowledge on torsional dynamics to coherently control the excited state population with a pump-dump scheme, exploiting the non-stationary Franck-Condon overlap between ground and excited states.
Design & control of a 3D stroke rehabilitation platform.
Cai, Z; Tong, D; Meadmore, K L; Freeman, C T; Hughes, A M; Rogers, E; Burridge, J H
2011-01-01
An upper limb stroke rehabilitation system is developed which combines electrical stimulation with mechanical arm support, to assist patients performing 3D reaching tasks in a virtual reality environment. The Stimulation Assistance through Iterative Learning (SAIL) platform applies electrical stimulation to two muscles in the arm using model-based control schemes which learn from previous trials of the task. This results in accurate movement which maximises the therapeutic effect of treatment. The principal components of the system are described and experimental results confirm its efficacy for clinical use in upper limb stroke rehabilitation. © 2011 IEEE
Cell fate reprogramming by control of intracellular network dynamics
NASA Astrophysics Data System (ADS)
Zanudo, Jorge G. T.; Albert, Reka
Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.
Wang, Chengqi; Zhang, Xiao; Zheng, Zhiming
2016-01-01
With the security requirements of networks, biometrics authenticated schemes which are applied in the multi-server environment come to be more crucial and widely deployed. In this paper, we propose a novel biometric-based multi-server authentication and key agreement scheme which is based on the cryptanalysis of Mishra et al.'s scheme. The informal and formal security analysis of our scheme are given, which demonstrate that our scheme satisfies the desirable security requirements. The presented scheme provides a variety of significant functionalities, in which some features are not considered in the most of existing authentication schemes, such as, user revocation or re-registration and biometric information protection. Compared with several related schemes, our scheme has more secure properties and lower computation cost. It is obviously more appropriate for practical applications in the remote distributed networks.
Distributed plug-and-play optimal generator and load control for power system frequency regulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Changhong; Mallada, Enrique; Low, Steven H.
A distributed control scheme, which can be implemented on generators and controllable loads in a plug-and-play manner, is proposed for power system frequency regulation. The proposed scheme is based on local measurements, local computation, and neighborhood information exchanges over a communication network with an arbitrary (but connected) topology. In the event of a sudden change in generation or load, the proposed scheme can restore the nominal frequency and the reference inter-area power flows, while minimizing the total cost of control for participating generators and loads. Power network stability under the proposed control is proved with a relatively realistic model whichmore » includes nonlinear power flow and a generic (potentially nonlinear or high-order) turbine-governor model, and further with first- and second-order turbine-governor models as special cases. Finally, in simulations, the proposed control scheme shows a comparable performance to the existing automatic generation control (AGC) when implemented only on the generator side, and demonstrates better dynamic characteristics than AGC when each scheme is implemented on both generators and controllable loads. Simulation results also show robustness of the proposed scheme to communication link failure.« less
Distributed plug-and-play optimal generator and load control for power system frequency regulation
Zhao, Changhong; Mallada, Enrique; Low, Steven H.; ...
2018-03-14
A distributed control scheme, which can be implemented on generators and controllable loads in a plug-and-play manner, is proposed for power system frequency regulation. The proposed scheme is based on local measurements, local computation, and neighborhood information exchanges over a communication network with an arbitrary (but connected) topology. In the event of a sudden change in generation or load, the proposed scheme can restore the nominal frequency and the reference inter-area power flows, while minimizing the total cost of control for participating generators and loads. Power network stability under the proposed control is proved with a relatively realistic model whichmore » includes nonlinear power flow and a generic (potentially nonlinear or high-order) turbine-governor model, and further with first- and second-order turbine-governor models as special cases. Finally, in simulations, the proposed control scheme shows a comparable performance to the existing automatic generation control (AGC) when implemented only on the generator side, and demonstrates better dynamic characteristics than AGC when each scheme is implemented on both generators and controllable loads. Simulation results also show robustness of the proposed scheme to communication link failure.« less
Jiang, Qicheng; Jiang, Zhen; Xin, Zhang; Cherry, Nicola
2016-09-15
Although many studies have investigated the relationship between the introduction of the New Cooperative Medical Scheme (NCMS) in rural China in 2003 and increased use of medical services, the effect on health status, objectively measured, is seldom reported. In Anhui Province a chronic disease scheme (CDS) for reimbursing part of the cost of outpatient care is designed to improve management of those with chronic conditions, including diabetes. A follow-up study was designed in which patients with diabetes aged 40-70 years who had recently (in 2010) been granted a chronic disease card were individually matched on age, sex and village with a patient with diabetes not yet in the scheme. Each subject gave a fingertip sample of blood to give the concentration of glycosylated hemoglobin (HbA1c), a measure indicating blood glucose control during the previous 3 months. This measure was made on recruitment and at 12 month follow-up: information on use of health services, quality of life and financial burden was also collected at the two contacts. Of 602 pairs initially recruited, 528 pairs were contacted at follow-up and are the subject of this report. To distinguish between outcomes associated with application and those of membership of the scheme, the primary analysis was of 256 pairs in which one had been a member of the CDS throughout and the other never applied. No difference between pairs on HbA1c was found either at recruitment or follow-up but those in the CDS reported more hospital visits, more tests and more use of high level hospitals. However they had poorer scores on quality of life scales (SF-12, EQ-5D) and were more likely to report that the financial costs were very burdensome. Those recently applying for the scheme, or being accepted since recruitment, had lower HbA1c scores. On-going membership of the CDS was associated with increased use of services but this did not appear to result in better management of blood glucose or improved quality of life. Those who had recently joined the scheme had signs of improvement, suggesting a need for active follow-up to maintain and reinforce early gains.
An adaptive Cartesian control scheme for manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
A adaptive control scheme for direct control of manipulator end-effectors to achieve trajectory tracking in Cartesian space is developed. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for online implementation with high sampling rates.
Addressing Common Cloud-Radiation Errors from 4-hour to 4-week Model Prediction
NASA Astrophysics Data System (ADS)
Benjamin, S.; Sun, S.; Grell, G. A.; Green, B.; Olson, J.; Kenyon, J.; James, E.; Smirnova, T. G.; Brown, J. M.
2017-12-01
Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales, with some progress to be reported in this presentation. The Grell-Freitas scheme (2014, Atmos. Chem. Phys.) and MYNN boundary-layer EDMF scheme (Olson / Benjamin et al. 2016 Mon. Wea. Rev.) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh (RAP) model/assimilation systems over the United States and North America, with targeting toward improvement to boundary-layer evolution and cloud-radiation representation in all seasons. This representation is critical for both warm-season severe convective storm forecasting and for winter-storm prediction of snow and mixed precipitation. At the same time the Grell-Freitas scheme has been applied also as an option for subseasonal forecasting toward improved US week 3-4 prediction with the FIM-HYCOM coupled model (Green et al 2017, MWR). Cloud/radiation evaluation using CERES satellite-based estimates have been applied to both 12-h RAP (13km) and also during Weeks 1-4 from 32-day FIM-HYCOM (60km) forecasts. Initial results reveal that improved cloud representation is needed for both resolutions and now is guiding further refinement for cloud representation including with the Grell-Freitas scheme and with the updated MYNN-EDMF scheme (both now also in global testing as well as with the 3km HRRR and 13km RAP models).
An adaptive actuator failure compensation scheme for two linked 2WD mobile robots
NASA Astrophysics Data System (ADS)
Ma, Yajie; Al-Dujaili, Ayad; Cocquempot, Vincent; El Badaoui El Najjar, Maan
2017-01-01
This paper develops a new adaptive compensation control scheme for two linked mobile robots with actuator failurs. A configuration with two linked two-wheel drive (2WD) mobile robots is proposed, and the modelling of its kinematics and dynamics are given. An adaptive failure compensation scheme is developed to compensate actuator failures, consisting of a kinematic controller and a multi-design integration based dynamic controller. The kinematic controller is a virtual one, and based on which, multiple adaptive dynamic control signals are designed which covers all possible failure cases. By combing these dynamic control signals, the dynamic controller is designed, which ensures system stability and asymptotic tracking properties. Simulation results verify the effectiveness of the proposed adaptive failure compensation scheme.
Realization of the revival of silenced echo (ROSE) quantum memory scheme in orthogonal geometry
NASA Astrophysics Data System (ADS)
Minnegaliev, M. M.; Gerasimov, K. I.; Urmancheev, R. V.; Moiseev, S. A.; Chanelière, T.; Louchet-Chauvet, A.
2018-02-01
We demonstrated quantum memory scheme on revival of silenced echo in orthogonal geometry in Tm3+: Y3Al5O12 crystal. The retrieval efficiency of ˜14% was demonstrated with the 36 µs storage time. In this scheme for the first time we also implemented a suppression of the revived echo signal by applying an external electric field and the echo signal has been recovered on demand if we then applied a second electric pulse with opposite polarity. This technique opens the possibilities for realizing addressing in multi-qubit quantum memory in Tm3+: Y3Al5O12 crystal.
Experiences with Probabilistic Analysis Applied to Controlled Systems
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Giesy, Daniel P.
2004-01-01
This paper presents a semi-analytic method for computing frequency dependent means, variances, and failure probabilities for arbitrarily large-order closed-loop dynamical systems possessing a single uncertain parameter or with multiple highly correlated uncertain parameters. The approach will be shown to not suffer from the same computational challenges associated with computing failure probabilities using conventional FORM/SORM techniques. The approach is demonstrated by computing the probabilistic frequency domain performance of an optimal feed-forward disturbance rejection scheme.
Furniture and Timber Training Board, Fourth Year's Scheme; Training Grants Scheme, 1969-70.
ERIC Educational Resources Information Center
British Furniture and Timber Training Board, Wembly (England).
This booklet explains what training grants are offered by the Furniture and Timber Training Board of Great Britain, indicates how to claim them, and outlines the Board's training philosophy. Foldouts present conditions which apply in whole or in part to the Training Grants Scheme, followed by guidelines for completing forms. The main section…
Multi-scale Eulerian model within the new National Environmental Modeling System
NASA Astrophysics Data System (ADS)
Janjic, Zavisa; Janjic, Tijana; Vasic, Ratko
2010-05-01
The unified Non-hydrostatic Multi-scale Model on the Arakawa B grid (NMMB) is being developed at NCEP within the National Environmental Modeling System (NEMS). The finite-volume horizontal differencing employed in the model preserves important properties of differential operators and conserves a variety of basic and derived dynamical and quadratic quantities. Among these, conservation of energy and enstrophy improves the accuracy of nonlinear dynamics of the model. Within further model development, advection schemes of fourth order of formal accuracy have been developed. It is argued that higher order advection schemes should not be used in the thermodynamic equation in order to preserve consistency with the second order scheme used for computation of the pressure gradient force. Thus, the fourth order scheme is applied only to momentum advection. Three sophisticated second order schemes were considered for upgrade. Two of them, proposed in Janjic(1984), conserve energy and enstrophy, but with enstrophy calculated differently. One of them conserves enstrophy as computed by the most accurate second order Laplacian operating on stream function. The other scheme conserves enstrophy as computed from the B grid velocity. The third scheme (Arakawa 1972) is arithmetic mean of the former two. It does not conserve enstrophy strictly, but it conserves other quadratic quantities that control the nonlinear energy cascade. Linearization of all three schemes leads to the same second order linear advection scheme. The second order term of the truncation error of the linear advection scheme has a special form so that it can be eliminated by simply preconditioning the advected quantity. Tests with linear advection of a cone confirm the advantage of the fourth order scheme. However, if a localized, large amplitude and high wave-number pattern is present in initial conditions, the clear advantage of the fourth order scheme disappears. In real data runs, problems with noisy data may appear due to mountains. Thus, accuracy and formal accuracy may not be synonymous. The nonlinear fourth order schemes are quadratic conservative and reduce to the Arakawa Jacobian in case of non-divergent flow. In case of general flow the conservation properties of the new momentum advection schemes impose stricter constraint on the nonlinear cascade than the original second order schemes. However, for non-divergent flow, the conservation properties of the fourth order schemes cannot be proven in the same way as those of the original second order schemes. Therefore, nonlinear tests were carried out in order to check how well the fourth order schemes control the nonlinear energy cascade. In the tests nonlinear shallow water equations are solved in a rotating rectangular domain (Janjic, 1984). The domain is covered with only 17 x 17 grid points. A diagnostic quantity is used to monitor qualitative changes in the spectrum over 116 days of simulated time. All schemes maintained meaningful solutions throughout the test. Among the second order schemes, the best result was obtained with the scheme that conserved enstrophy as computed by the second order Laplacian of the stream function. It was closely followed by the Arakawa (1972) scheme, while the remaining scheme was distant third. The fourth order schemes ranked in the same order, and were competitive throughout the experiments with their second order counterparts in preventing accumulation of energy at small scales. Finally, the impact was examined of the fourth order momentum advection on global medium range forecasts. The 500 mb anomaly correlation coefficient is used as a measure of success of the forecasts. Arakawa, A., 1972: Design of the UCLA general circulation model. Tech. Report No. 7, Department of Meteorology, University of California, Los Angeles, 116 pp. Janjic, Z. I., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Monthly Weather Review, 112, 1234-1245.
Heffernan, Claire; Azbel-Jackson, Lena; Brownlie, Joe; Gunn, George
2016-01-01
The eradication of BVD in the UK is technically possible but appears to be socially untenable. The following study explored farmer attitudes to BVD control schemes in relation to advice networks and information sharing, shared aims and goals, motivation and benefits of membership, notions of BVD as a priority disease and attitudes toward regulation. Two concepts from the organisational management literature framed the study: citizenship behaviour where actions of individuals support the collective good (but are not explicitly recognised as such) and peer to peer monitoring (where individuals evaluate other's behaviour). Farmers from two BVD control schemes in the UK participated in the study: Orkney Livestock Association BVD Eradication Scheme and Norfolk and Suffolk Cattle Breeders Association BVD Eradication Scheme. In total 162 farmers participated in the research (109 in-scheme and 53 out of scheme). The findings revealed that group helping and information sharing among scheme members was low with a positive BVD status subject to social censure. Peer monitoring in the form of gossip with regard to the animal health status of other farms was high. Interestingly, farmers across both schemes supported greater regulation with regard to animal health, largely due to the mistrust of fellow farmers following voluntary disease control measures. While group cohesiveness varied across the two schemes, without continued financial inducements, longer-term sustainability is questionable.
NASA Technical Reports Server (NTRS)
Weinan, E.; Shu, Chi-Wang
1994-01-01
High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth-order central differences through fast Fourier transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large scale features, such as the total circulation around the roll-up region, are adequately resolved.
NASA Technical Reports Server (NTRS)
Weinan, E.; Shu, Chi-Wang
1992-01-01
High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth order central differences through Fast Fourier Transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large-scale features, such as the total circulation around the roll-up region, are adequately resolved.
Additive schemes for certain operator-differential equations
NASA Astrophysics Data System (ADS)
Vabishchevich, P. N.
2010-12-01
Unconditionally stable finite difference schemes for the time approximation of first-order operator-differential systems with self-adjoint operators are constructed. Such systems arise in many applied problems, for example, in connection with nonstationary problems for the system of Stokes (Navier-Stokes) equations. Stability conditions in the corresponding Hilbert spaces for two-level weighted operator-difference schemes are obtained. Additive (splitting) schemes are proposed that involve the solution of simple problems at each time step. The results are used to construct splitting schemes with respect to spatial variables for nonstationary Navier-Stokes equations for incompressible fluid. The capabilities of additive schemes are illustrated using a two-dimensional model problem as an example.
A comparative study of advanced shock-capturing schemes applied to Burgers' equation
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Przekwas, A. J.
1992-01-01
A systematic evaluation is conducted of all extant numerical schemes for nonlinear scalar transport problems, and several advanced shock-capturing schemes are used to solve the nonlinear Burgers' equation in order to characterize their ability to resolve the sharp discontinuity, expansion zone, and propagation and collision features of shocks. For discontinuous functions, the Warming-Beam scheme generates preshock wiggles, while the Lax-Wendroff scheme generates postshock ones. Such limiters as the MUSCL or the superbee are more compressive than minimod or monotonic limiters. The performance of such TVD schemes as the upwind, the symmetric, and the Roe-Sweby, resemble each other.
Development of Mycoplasma synoviae (MS) core genome multilocus sequence typing (cgMLST) scheme.
Ghanem, Mostafa; El-Gazzar, Mohamed
2018-05-01
Mycoplasma synoviae (MS) is a poultry pathogen with reported increased prevalence and virulence in recent years. MS strain identification is essential for prevention, control efforts and epidemiological outbreak investigations. Multiple multilocus based sequence typing schemes have been developed for MS, yet the resolution of these schemes could be limited for outbreak investigation. The cost of whole genome sequencing became close to that of sequencing the seven MLST targets; however, there is no standardized method for typing MS strains based on whole genome sequences. In this paper, we propose a core genome multilocus sequence typing (cgMLST) scheme as a standardized and reproducible method for typing MS based whole genome sequences. A diverse set of 25 MS whole genome sequences were used to identify 302 core genome genes as cgMLST targets (35.5% of MS genome) and 44 whole genome sequences of MS isolates from six countries in four continents were used for typing applying this scheme. cgMLST based phylogenetic trees displayed a high degree of agreement with core genome SNP based analysis and available epidemiological information. cgMLST allowed evaluation of two conventional MLST schemes of MS. The high discriminatory power of cgMLST allowed differentiation between samples of the same conventional MLST type. cgMLST represents a standardized, accurate, highly discriminatory, and reproducible method for differentiation between MS isolates. Like conventional MLST, it provides stable and expandable nomenclature, allowing for comparing and sharing the typing results between different laboratories worldwide. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
A constrained-gradient method to control divergence errors in numerical MHD
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2016-10-01
In numerical magnetohydrodynamics (MHD), a major challenge is maintaining nabla \\cdot {B}=0. Constrained transport (CT) schemes achieve this but have been restricted to specific methods. For more general (meshless, moving-mesh, ALE) methods, `divergence-cleaning' schemes reduce the nabla \\cdot {B} errors; however they can still be significant and can lead to systematic errors which converge away slowly. We propose a new constrained gradient (CG) scheme which augments these with a projection step, and can be applied to any numerical scheme with a reconstruction. This iteratively approximates the least-squares minimizing, globally divergence-free reconstruction of the fluid. Unlike `locally divergence free' methods, this actually minimizes the numerically unstable nabla \\cdot {B} terms, without affecting the convergence order of the method. We implement this in the mesh-free code GIZMO and compare various test problems. Compared to cleaning schemes, our CG method reduces the maximum nabla \\cdot {B} errors by ˜1-3 orders of magnitude (˜2-5 dex below typical errors if no nabla \\cdot {B} cleaning is used). By preventing large nabla \\cdot {B} at discontinuities, this eliminates systematic errors at jumps. Our CG results are comparable to CT methods; for practical purposes, the nabla \\cdot {B} errors are eliminated. The cost is modest, ˜30 per cent of the hydro algorithm, and the CG correction can be implemented in a range of numerical MHD methods. While for many problems, we find Dedner-type cleaning schemes are sufficient for good results, we identify a range of problems where using only Powell or `8-wave' cleaning can produce order-of-magnitude errors.
Frequency control of a spin-torque oscillator using magnetostrictive anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Min Gyu Albert; Lee, Seok-Hee, E-mail: bgpark@kaist.ac.kr, E-mail: shlee@kaist.edu; Baek, Seung-heon Chris
2016-01-11
We report the working principle of a spin-torque oscillator, of which the frequency is efficiently controlled by manipulating the magnetostrictive anisotropy. To justify the scheme, we simulate a conventional magnetic-tunnel junction-based oscillator which is fabricated on a piezoelectric material. By applying mechanical stress to a free layer using a piezoelectric material, the oscillation frequency can be controlled to ensure a broad tuning range without a significant reduction of the dynamic resistance variation. Such controllability, which appears in the absence of an external magnetic field, will not only enable the integration of spin-torque oscillators and conventional complimentary metal-oxide semiconductor technology butmore » will also broaden the applicability of spin-torque oscillators.« less
Adaptive robust fault-tolerant control for linear MIMO systems with unmatched uncertainties
NASA Astrophysics Data System (ADS)
Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui
2017-10-01
In this paper, two novel fault-tolerant control design approaches are proposed for linear MIMO systems with actuator additive faults, multiplicative faults and unmatched uncertainties. For time-varying multiplicative and additive faults, new adaptive laws and additive compensation functions are proposed. A set of conditions is developed such that the unmatched uncertainties are compensated by actuators in control. On the other hand, for unmatched uncertainties with their projection in unmatched space being not zero, based on a (vector) relative degree condition, additive functions are designed to compensate for the uncertainties from output channels in the presence of actuator faults. The developed fault-tolerant control schemes are applied to two aircraft systems to demonstrate the efficiency of the proposed approaches.
H∞ control problem of linear periodic piecewise time-delay systems
NASA Astrophysics Data System (ADS)
Xie, Xiaochen; Lam, James; Li, Panshuo
2018-04-01
This paper investigates the H∞ control problem based on exponential stability and weighted L2-gain analyses for a class of continuous-time linear periodic piecewise systems with time delay. A periodic piecewise Lyapunov-Krasovskii functional is developed by integrating a discontinuous time-varying matrix function with two global terms. By applying the improved constraints to the stability and L2-gain analyses, sufficient delay-dependent exponential stability and weighted L2-gain criteria are proposed for the periodic piecewise time-delay system. Based on these analyses, an H∞ control scheme is designed under the considerations of periodic state feedback control input and iterative optimisation. Finally, numerical examples are presented to illustrate the effectiveness of our proposed conditions.
Neural adaptive control for vibration suppression in composite fin-tip of aircraft.
Suresh, S; Kannan, N; Sundararajan, N; Saratchandran, P
2008-06-01
In this paper, we present a neural adaptive control scheme for active vibration suppression of a composite aircraft fin tip. The mathematical model of a composite aircraft fin tip is derived using the finite element approach. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes very accurately. Piezo-electric actuators and sensors are placed at optimal locations such that the vibration suppression is a maximum. Model-reference direct adaptive neural network control scheme is proposed to force the vibration level within the minimum acceptable limit. In this scheme, Gaussian neural network with linear filters is used to approximate the inverse dynamics of the system and the parameters of the neural controller are estimated using Lyapunov based update law. In order to reduce the computational burden, which is critical for real-time applications, the number of hidden neurons is also estimated in the proposed scheme. The global asymptotic stability of the overall system is ensured using the principles of Lyapunov approach. Simulation studies are carried-out using sinusoidal force functions of varying frequency. Experimental results show that the proposed neural adaptive control scheme is capable of providing significant vibration suppression in the multiple bending modes of interest. The performance of the proposed scheme is better than the H(infinity) control scheme.
Adaptive control of a Stewart platform-based manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.; Zhou, Zhen-Lei; Campbell, Charles E., Jr.
1993-01-01
A joint-space adaptive control scheme for controlling noncompliant motion of a Stewart platform-based manipulator (SPBM) was implemented in the Hardware Real-Time Emulator at Goddard Space Flight Center. The six-degrees of freedom SPBM uses two platforms and six linear actuators driven by dc motors. The adaptive control scheme is based on proportional-derivative controllers whose gains are adjusted by an adaptation law based on model reference adaptive control and Liapunov direct method. It is concluded that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.
Wang, Chengqi; Zhang, Xiao; Zheng, Zhiming
2016-01-01
With the security requirements of networks, biometrics authenticated schemes which are applied in the multi-server environment come to be more crucial and widely deployed. In this paper, we propose a novel biometric-based multi-server authentication and key agreement scheme which is based on the cryptanalysis of Mishra et al.’s scheme. The informal and formal security analysis of our scheme are given, which demonstrate that our scheme satisfies the desirable security requirements. The presented scheme provides a variety of significant functionalities, in which some features are not considered in the most of existing authentication schemes, such as, user revocation or re-registration and biometric information protection. Compared with several related schemes, our scheme has more secure properties and lower computation cost. It is obviously more appropriate for practical applications in the remote distributed networks. PMID:26866606
Universal block diagram based modeling and simulation schemes for fractional-order control systems.
Bai, Lu; Xue, Dingyü
2017-05-08
Universal block diagram based schemes are proposed for modeling and simulating the fractional-order control systems in this paper. A fractional operator block in Simulink is designed to evaluate the fractional-order derivative and integral. Based on the block, the fractional-order control systems with zero initial conditions can be modeled conveniently. For modeling the system with nonzero initial conditions, the auxiliary signal is constructed in the compensation scheme. Since the compensation scheme is very complicated, therefore the integrator chain scheme is further proposed to simplify the modeling procedures. The accuracy and effectiveness of the schemes are assessed in the examples, the computation results testify the block diagram scheme is efficient for all Caputo fractional-order ordinary differential equations (FODEs) of any complexity, including the implicit Caputo FODEs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Decentralized digital adaptive control of robot motion
NASA Technical Reports Server (NTRS)
Tarokh, M.
1990-01-01
A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.
2017-01-09
2017 Distribution A – Approved for public release; Distribution Unlimited. PA Clearance 17030 Introduction • Filtering schemes offer a less...dissipative alternative to the standard artificial dissipation operators when applied to high- order spatial/temporal schemes • Limiting Fact: Filters impart...systems require a preconditioned dual-time framework to be solved efficiently • Limiting Fact: Filtering cannot be applied only at the physical- time
NASA Astrophysics Data System (ADS)
Poplawski, Blazej; Mikułowski, Grzegorz; Mróz, Arkadiusz; Jankowski, Łukasz
2018-02-01
This paper proposes, tests numerically and verifies experimentally a decentralized control algorithm with local feedback for semi-active mitigation of free vibrations in frame structures. The algorithm aims at transferring the vibration energy of low-order, lightly-damped structural modes into high-frequency modes of vibration, where it is quickly damped by natural mechanisms of material damping. Such an approach to mitigation of vibrations, known as the prestress-accumulation release (PAR) strategy, has been earlier applied only in global control schemes to the fundamental vibration mode of a cantilever beam. In contrast, the decentralization and local feedback allows the approach proposed here to be applied to more complex frame structures and vibration patterns, where the global control ceases to be intuitively obvious. The actuators (truss-frame nodes with controllable ability to transmit moments) are essentially unblockable hinges that become unblocked only for very short time periods in order to trigger local modal transfer of energy. The paper proposes a computationally simple model of the controllable nodes, specifies the control performance measure, yields basic characteristics of the optimum control, proposes the control algorithm and then tests it in numerical and experimental examples.
Optimal control of large space structures via generalized inverse matrix
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Fang, Xiaowen
1987-01-01
Independent Modal Space Control (IMSC) is a control scheme that decouples the space structure into n independent second-order subsystems according to n controlled modes and controls each mode independently. It is well-known that the IMSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modeling of large space structures. A control scheme is proposed that allows one to use a reduced number of actuators to control all modeled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal IMSC. Computer simulation of the proposed control scheme on a simply supported beam is given.
An RFID solution for enhancing inpatient medication safety with real-time verifiable grouping-proof.
Chen, Yu-Yi; Tsai, Meng-Lin
2014-01-01
The occurrence of a medication error can threaten patient safety. The medication administration process is complex and cumbersome, and nursing staffs are prone to error when they are tired. Proper Information Technology (IT) can assist the nurse in correct medication administration. We review a recent proposal regarding a leading-edge solution to enhance inpatient medication safety by using RFID technology. The proof mechanism is the kernel concept in their design and worth studying to develop a well-designed grouping-proof scheme. Other RFID grouping-proof protocols could be similarly applied in administering physician orders. We improve on the weaknesses of previous works and develop a reading-order independent RFID grouping-proof scheme in this paper. In our scheme, tags are queried and verified under the direct control of the authorized reader without connecting to the back-end database server. Immediate verification in our design makes this application more portable and efficient and critical security issues have been analyzed by the threat model. Our scheme is suitable for the safe drug administration scenario and the drug package scenario in a hospital environment to enhance inpatient medication safety. It automatically checks for correct drug unit-dose and appropriate inpatient treatments. Copyright © 2013. Published by Elsevier Ireland Ltd.
Optimal scan strategy for mega-pixel and kilo-gray-level OLED-on-silicon microdisplay.
Ji, Yuan; Ran, Feng; Ji, Weigui; Xu, Meihua; Chen, Zhangjing; Jiang, Yuxi; Shen, Weixin
2012-06-10
The digital pixel driving scheme makes the organic light-emitting diode (OLED) microdisplays more immune to the pixel luminance variations and simplifies the circuit architecture and design flow compared to the analog pixel driving scheme. Additionally, it is easily applied in full digital systems. However, the data bottleneck becomes a notable problem as the number of pixels and gray levels grow dramatically. This paper will discuss the digital driving ability to achieve kilogray-levels for megapixel displays. The optimal scan strategy is proposed for creating ultra high gray levels and increasing light efficiency and contrast ratio. Two correction schemes are discussed to improve the gray level linearity. A 1280×1024×3 OLED-on-silicon microdisplay, with 4096 gray levels, is designed based on the optimal scan strategy. The circuit driver is integrated in the silicon backplane chip in the 0.35 μm 3.3 V-6 V dual voltage one polysilicon layer, four metal layers (1P4M) complementary metal-oxide semiconductor (CMOS) process with custom top metal. The design aspects of the optimal scan controller are also discussed. The test results show the gray level linearity of the correction schemes for the optimal scan strategy is acceptable by the human eye.
NASA Astrophysics Data System (ADS)
Cai, Jiaxiang; Liang, Hua; Zhang, Chun
2018-06-01
Based on the multi-symplectic Hamiltonian formula of the generalized Rosenau-type equation, a multi-symplectic scheme and an energy-preserving scheme are proposed. To improve the accuracy of the solution, we apply the composition technique to the obtained schemes to develop high-order schemes which are also multi-symplectic and energy-preserving respectively. Discrete fast Fourier transform makes a significant improvement to the computational efficiency of schemes. Numerical results verify that all the proposed schemes have satisfactory performance in providing accurate solution and preserving the discrete mass and energy invariants. Numerical results also show that although each basic time step is divided into several composition steps, the computational efficiency of the composition schemes is much higher than that of the non-composite schemes.
NASA Astrophysics Data System (ADS)
Siswantyo, Sepha; Susanti, Bety Hayat
2016-02-01
Preneel-Govaerts-Vandewalle (PGV) schemes consist of 64 possible single-block-length schemes that can be used to build a hash function based on block ciphers. For those 64 schemes, Preneel claimed that 4 schemes are secure. In this paper, we apply length extension attack on those 4 secure PGV schemes which use RC5 algorithm in its basic construction to test their collision resistance property. The attack result shows that the collision occurred on those 4 secure PGV schemes. Based on the analysis, we indicate that Feistel structure and data dependent rotation operation in RC5 algorithm, XOR operations on the scheme, along with selection of additional message block value also give impact on the collision to occur.
Saleem, M Rehan; Ashraf, Waqas; Zia, Saqib; Ali, Ishtiaq; Qamar, Shamsul
2018-01-01
This paper is concerned with the derivation of a well-balanced kinetic scheme to approximate a shallow flow model incorporating non-flat bottom topography and horizontal temperature gradients. The considered model equations, also called as Ripa system, are the non-homogeneous shallow water equations considering temperature gradients and non-uniform bottom topography. Due to the presence of temperature gradient terms, the steady state at rest is of primary interest from the physical point of view. However, capturing of this steady state is a challenging task for the applied numerical methods. The proposed well-balanced kinetic flux vector splitting (KFVS) scheme is non-oscillatory and second order accurate. The second order accuracy of the scheme is obtained by considering a MUSCL-type initial reconstruction and Runge-Kutta time stepping method. The scheme is applied to solve the model equations in one and two space dimensions. Several numerical case studies are carried out to validate the proposed numerical algorithm. The numerical results obtained are compared with those of staggered central NT scheme. The results obtained are also in good agreement with the recently published results in the literature, verifying the potential, efficiency, accuracy and robustness of the suggested numerical scheme.
2018-01-01
This paper is concerned with the derivation of a well-balanced kinetic scheme to approximate a shallow flow model incorporating non-flat bottom topography and horizontal temperature gradients. The considered model equations, also called as Ripa system, are the non-homogeneous shallow water equations considering temperature gradients and non-uniform bottom topography. Due to the presence of temperature gradient terms, the steady state at rest is of primary interest from the physical point of view. However, capturing of this steady state is a challenging task for the applied numerical methods. The proposed well-balanced kinetic flux vector splitting (KFVS) scheme is non-oscillatory and second order accurate. The second order accuracy of the scheme is obtained by considering a MUSCL-type initial reconstruction and Runge-Kutta time stepping method. The scheme is applied to solve the model equations in one and two space dimensions. Several numerical case studies are carried out to validate the proposed numerical algorithm. The numerical results obtained are compared with those of staggered central NT scheme. The results obtained are also in good agreement with the recently published results in the literature, verifying the potential, efficiency, accuracy and robustness of the suggested numerical scheme. PMID:29851978
Effect of superconducting solenoid model cores on spanwise iron magnet roll control
NASA Technical Reports Server (NTRS)
Britcher, C. P.
1985-01-01
Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.
A high-resolution and intelligent dead pixel detection scheme for an electrowetting display screen
NASA Astrophysics Data System (ADS)
Luo, ZhiJie; Luo, JianKun; Zhao, WenWen; Cao, Yang; Lin, WeiJie; Zhou, GuoFu
2018-02-01
Electrowetting display technology is realized by tuning the surface energy of a hydrophobic surface by applying a voltage based on electrowetting mechanism. With the rapid development of the electrowetting industry, how to analyze efficiently the quality of an electrowetting display screen has a very important significance. There are two kinds of dead pixels on the electrowetting display screen. One is that the oil of pixel cannot completely cover the display area. The other is that indium tin oxide semiconductor wire connecting pixel and foil was burned. In this paper, we propose a high-resolution and intelligent dead pixel detection scheme for an electrowetting display screen. First, we built an aperture ratio-capacitance model based on the electrical characteristics of electrowetting display. A field-programmable gate array is used as the integrated logic hub of the system for a highly reliable and efficient control of the circuit. Dead pixels can be detected and displayed on a PC-based 2D graphical interface in real time. The proposed dead pixel detection scheme reported in this work has promise in automating electrowetting display experiments.
Limperos, Anthony M; Schmierbach, Michael G; Kegerise, Andrew D; Dardis, Frank E
2011-06-01
Many studies have investigated how different technological features impact the experience of playing video games, yet few have focused on how control schemes may affect the play experience. This research employed a between-subjects design to explore the relationship between the type of console played (Nintendo Wii, Playstation 2) and feelings of flow and enjoyment during the game-play experience. Results indicated that participants reported greater feelings of control and enjoyment with a traditional control scheme (Playstation 2) than with the more technologically advanced control scheme (Nintendo Wii). Further mediation analysis showed that enjoyment was driven by the sense of control that participants experienced and not simply by whether they won the game. Theoretical and practical implications are discussed.
A fuzzy call admission control scheme in wireless networks
NASA Astrophysics Data System (ADS)
Ma, Yufeng; Gong, Shenguang; Hu, Xiulin; Zhang, Yunyu
2007-11-01
Scarcity of the spectrum resource and mobility of users make quality of service (QoS) provision a critical issue in wireless networks. This paper presents a fuzzy call admission control scheme to meet the requirement of the QoS. A performance measure is formed as a weighted linear function of new call and handoff call blocking probabilities. Simulation compares the proposed fuzzy scheme with an adaptive channel reservation scheme. Simulation results show that fuzzy scheme has a better robust performance in terms of average blocking criterion.
Mofid, Omid; Mobayen, Saleh
2018-01-01
Adaptive control methods are developed for stability and tracking control of flight systems in the presence of parametric uncertainties. This paper offers a design technique of adaptive sliding mode control (ASMC) for finite-time stabilization of unmanned aerial vehicle (UAV) systems with parametric uncertainties. Applying the Lyapunov stability concept and finite-time convergence idea, the recommended control method guarantees that the states of the quad-rotor UAV are converged to the origin with a finite-time convergence rate. Furthermore, an adaptive-tuning scheme is advised to guesstimate the unknown parameters of the quad-rotor UAV at any moment. Finally, simulation results are presented to exhibit the helpfulness of the offered technique compared to the previous methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A novel robust speed controller scheme for PMBLDC motor.
Thirusakthimurugan, P; Dananjayan, P
2007-10-01
The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations.
Efficient parallelization of analytic bond-order potentials for large-scale atomistic simulations
NASA Astrophysics Data System (ADS)
Teijeiro, C.; Hammerschmidt, T.; Drautz, R.; Sutmann, G.
2016-07-01
Analytic bond-order potentials (BOPs) provide a way to compute atomistic properties with controllable accuracy. For large-scale computations of heterogeneous compounds at the atomistic level, both the computational efficiency and memory demand of BOP implementations have to be optimized. Since the evaluation of BOPs is a local operation within a finite environment, the parallelization concepts known from short-range interacting particle simulations can be applied to improve the performance of these simulations. In this work, several efficient parallelization methods for BOPs that use three-dimensional domain decomposition schemes are described. The schemes are implemented into the bond-order potential code BOPfox, and their performance is measured in a series of benchmarks. Systems of up to several millions of atoms are simulated on a high performance computing system, and parallel scaling is demonstrated for up to thousands of processors.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Kasami, T.; Fujiwara, T.; Lin, S.
1986-01-01
In this paper, a concatenated coding scheme for error control in data communications is presented and analyzed. In this scheme, the inner code is used for both error correction and detection; however, the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error (or decoding error) of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughput efficiency of the proposed error control scheme incorporated with a selective-repeat ARQ retransmission strategy is also analyzed. Three specific examples are presented. One of the examples is proposed for error control in the NASA Telecommand System.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.
An adaptive control scheme for a flexible manipulator
NASA Technical Reports Server (NTRS)
Yang, T. C.; Yang, J. C. S.; Kudva, P.
1987-01-01
The problem of controlling a single link flexible manipulator is considered. A self-tuning adaptive control scheme is proposed which consists of a least squares on-line parameter identification of an equivalent linear model followed by a tuning of the gains of a pole placement controller using the parameter estimates. Since the initial parameter values for this model are assumed unknown, the use of arbitrarily chosen initial parameter estimates in the adaptive controller would result in undesirable transient effects. Hence, the initial stage control is carried out with a PID controller. Once the identified parameters have converged, control is transferred to the adaptive controller. Naturally, the relevant issues in this scheme are tests for parameter convergence and minimization of overshoots during control switch-over. To demonstrate the effectiveness of the proposed scheme, simulation results are presented with an analytical nonlinear dynamic model of a single link flexible manipulator.
Modeling, simulation and control of pulsed DE-GMA welding process for joining of aluminum to steel
NASA Astrophysics Data System (ADS)
Zhang, Gang; Shi, Yu; Li, Jie; Huang, Jiankang; Fan, Ding
2014-09-01
Joining of aluminum to steel has attracted significant attention from the welding research community, automotive and rail transportation industries. Many current welding methods have been developed and applied, however, they can not precisely control the heat input to work-piece, they are high costs, low efficiency and consist lots of complex welding devices, and the generated intermetallic compound layer in weld bead interface is thicker. A novel pulsed double electrode gas metal arc welding(Pulsed DE-GMAW) method is developed. To achieve a stable welding process for joining of aluminum to steel, a mathematical model of coupled arc is established, and a new control scheme that uses the average feedback arc voltage of main loop to adjust the wire feed speed to control coupled arc length is proposed and developed. Then, the impulse control simulation of coupled arc length, wire feed speed and wire extension is conducted to demonstrate the mathematical model and predict the stability of welding process by changing the distance of contact tip to work-piece(CTWD). To prove the proposed PSO based PID control scheme's feasibility, the rapid prototyping experimental system is setup and the bead-on-plate control experiments are conducted to join aluminum to steel. The impulse control simulation shows that the established model can accurately represent the variation of coupled arc length, wire feed speed and the average main arc voltage when the welding process is disturbed, and the developed controller has a faster response and adjustment, only runs about 0.1 s. The captured electric signals show the main arc voltage gradually closes to the supposed arc voltage by adjusting the wire feed speed in 0.8 s. The obtained typical current waveform demonstrates that the main current can be reduced by controlling the bypass current under maintaining a relative large total current. The control experiment proves the accuracy of proposed model and feasibility of new control scheme further. The beautiful and smooth weld beads are also obtained by this method. Pulsed DE-GMAW can thus be considered as an alternative method for low cost, high efficiency joining of aluminum to steel.
Kamesh, Reddi; Rani, Kalipatnapu Yamuna
2017-12-01
In this paper, a novel formulation for nonlinear model predictive control (MPC) has been proposed incorporating the extended Kalman filter (EKF) control concept using a purely data-driven artificial neural network (ANN) model based on measurements for supervisory control. The proposed scheme consists of two modules focusing on online parameter estimation based on past measurements and control estimation over control horizon based on minimizing the deviation of model output predictions from set points along the prediction horizon. An industrial case study for temperature control of a multiproduct semibatch polymerization reactor posed as a challenge problem has been considered as a test bed to apply the proposed ANN-EKFMPC strategy at supervisory level as a cascade control configuration along with proportional integral controller [ANN-EKFMPC with PI (ANN-EKFMPC-PI)]. The proposed approach is formulated incorporating all aspects of MPC including move suppression factor for control effort minimization and constraint-handling capability including terminal constraints. The nominal stability analysis and offset-free tracking capabilities of the proposed controller are proved. Its performance is evaluated by comparison with a standard MPC-based cascade control approach using the same adaptive ANN model. The ANN-EKFMPC-PI control configuration has shown better controller performance in terms of temperature tracking, smoother input profiles, as well as constraint-handling ability compared with the ANN-MPC with PI approach for two products in summer and winter. The proposed scheme is found to be versatile although it is based on a purely data-driven model with online parameter estimation.
The study on servo-control system in the large aperture telescope
NASA Astrophysics Data System (ADS)
Hu, Wei; Zhenchao, Zhang; Daxing, Wang
2008-08-01
Large astronomical telescope or extremely enormous astronomical telescope servo tracking technique will be one of crucial technology that must be solved in researching and manufacturing. To control technique feature of large astronomical telescope or extremely enormous astronomical telescope, this paper design a sort of large astronomical telescope servo tracking control system. This system composes a principal and subordinate distributed control system, host computer sends steering instruction and receive slave computer functional mode, slave computer accomplish control algorithm and execute real-time control. Large astronomical telescope servo control use direct drive machine, and adopt DSP technology to complete direct torque control algorithm, Such design can not only increase control system performance, but also greatly reduced volume and costs of control system, which has a significant occurrence. The system design scheme can be proved reasonably by calculating and simulating. This system can be applied to large astronomical telescope.
Fujita, Masahiko
2013-06-01
A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.
A High-Resolution Capability for Large-Eddy Simulation of Jet Flows
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2011-01-01
A large-eddy simulation (LES) code that utilizes high-resolution numerical schemes is described and applied to a compressible jet flow. The code is written in a general manner such that the accuracy/resolution of the simulation can be selected by the user. Time discretization is performed using a family of low-dispersion Runge-Kutta schemes, selectable from first- to fourth-order. Spatial discretization is performed using central differencing schemes. Both standard schemes, second- to twelfth-order (3 to 13 point stencils) and Dispersion Relation Preserving schemes from 7 to 13 point stencils are available. The code is written in Fortran 90 and uses hybrid MPI/OpenMP parallelization. The code is applied to the simulation of a Mach 0.9 jet flow. Four-stage third-order Runge-Kutta time stepping and the 13 point DRP spatial discretization scheme of Bogey and Bailly are used. The high resolution numerics used allows for the use of relatively sparse grids. Three levels of grid resolution are examined, 3.5, 6.5, and 9.2 million points. Mean flow, first-order turbulent statistics and turbulent spectra are reported. Good agreement with experimental data for mean flow and first-order turbulent statistics is shown.
A new scheme of force reflecting control
NASA Technical Reports Server (NTRS)
Kim, Won S.
1992-01-01
A new scheme of force reflecting control has been developed that incorporates position-error-based force reflection and robot compliance control. The operator is provided with a kinesthetic force feedback which is proportional to the position error between the operator-commanded and the actual position of the robot arm. Robot compliance control, which increases the effective compliance of the robot, is implemented by low pass filtering the outputs of the force/torque sensor mounted on the base of robot hand and using these signals to alter the operator's position command. This position-error-based force reflection scheme combined with shared compliance control has been implemented successfully to the Advanced Teleoperation system consisting of dissimilar master-slave arms. Stability measurements have demonstrated unprecedentedly high force reflection gains of up to 2 or 3, even though the slave arm is much stiffer than operator's hand holding the force reflecting hand controller. Peg-in-hole experiments were performed with eight different operating modes to evaluate the new force-reflecting control scheme. Best task performance resulted with this new control scheme.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
2005-01-01
As part of the continuous development of the space-time conservation element and solution element (CE-SE) method, recently a set of so call ed "Courant number insensitive schemes" has been proposed. The key advantage of these new schemes is that the numerical dissipation associa ted with them generally does not increase as the Courant number decre ases. As such, they can be applied to problems with large Courant number disparities (such as what commonly occurs in Navier-Stokes problem s) without incurring excessive numerical dissipation.
Fourth order scheme for wavelet based solution of Black-Scholes equation
NASA Astrophysics Data System (ADS)
Finěk, Václav
2017-12-01
The present paper is devoted to the numerical solution of the Black-Scholes equation for pricing European options. We apply the Crank-Nicolson scheme with Richardson extrapolation for time discretization and Hermite cubic spline wavelets with four vanishing moments for space discretization. This scheme is the fourth order accurate both in time and in space. Computational results indicate that the Crank-Nicolson scheme with Richardson extrapolation significantly decreases the amount of computational work. We also numerically show that optimal convergence rate for the used scheme is obtained without using startup procedure despite the data irregularities in the model.
An efficient numerical scheme for the study of equal width equation
NASA Astrophysics Data System (ADS)
Ghafoor, Abdul; Haq, Sirajul
2018-06-01
In this work a new numerical scheme is proposed in which Haar wavelet method is coupled with finite difference scheme for the solution of a nonlinear partial differential equation. The scheme transforms the partial differential equation to a system of algebraic equations which can be solved easily. The technique is applied to equal width equation in order to study the behaviour of one, two, three solitary waves, undular bore and soliton collision. For efficiency and accuracy of the scheme, L2 and L∞ norms and invariants are computed. The results obtained are compared with already existing results in literature.
Digital Noise Reduction: An Overview
Bentler, Ruth; Chiou, Li-Kuei
2006-01-01
Digital noise reduction schemes are being used in most hearing aids currently marketed. Unlike the earlier analog schemes, these manufacturer-specific algorithms are developed to acoustically analyze the incoming signal and alter the gain/output characteristics according to their predetermined rules. Although most are modulation-based schemes (ie, differentiating speech from noise based on temporal characteristics), spectral subtraction techniques are being applied as well. The purpose of this article is to overview these schemes in terms of their differences and similarities. PMID:16959731
Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M. A.
2014-01-01
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods. PMID:24883374
Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A
2014-01-01
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
A Multigrid NLS-4DVar Data Assimilation Scheme with Advanced Research WRF (ARW)
NASA Astrophysics Data System (ADS)
Zhang, H.; Tian, X.
2017-12-01
The motions of the atmosphere have multiscale properties in space and/or time, and the background error covariance matrix (Β) should thus contain error information at different correlation scales. To obtain an optimal analysis, the multigrid three-dimensional variational data assimilation scheme is used widely when sequentially correcting errors from large to small scales. However, introduction of the multigrid technique into four-dimensional variational data assimilation is not easy, due to its strong dependence on the adjoint model, which has extremely high computational costs in data coding, maintenance, and updating. In this study, the multigrid technique was introduced into the nonlinear least-squares four-dimensional variational assimilation (NLS-4DVar) method, which is an advanced four-dimensional ensemble-variational method that can be applied without invoking the adjoint models. The multigrid NLS-4DVar (MG-NLS-4DVar) scheme uses the number of grid points to control the scale, with doubling of this number when moving from a coarse to a finer grid. Furthermore, the MG-NLS-4DVar scheme not only retains the advantages of NLS-4DVar, but also sufficiently corrects multiscale errors to achieve a highly accurate analysis. The effectiveness and efficiency of the proposed MG-NLS-4DVar scheme were evaluated by several groups of observing system simulation experiments using the Advanced Research Weather Research and Forecasting Model. MG-NLS-4DVar outperformed NLS-4DVar, with a lower computational cost.
NASA Technical Reports Server (NTRS)
Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.
2004-01-01
This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.
Schemes for Hybrid Bidirectional Controlled Quantum Communication via Multi-qubit Entangled States
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang
2018-02-01
We present two schemes for hybrid bidirectional controlled quantum communication (HBCQC) via six- and nine-qubit entangled states as the quantum channel, respectively. In these schemes, two distant parties, Alice and Bob are not only senders but also receivers, and Alice wants to teleport an unknown single-qubit state to Bob, at the same time, Bob wishes to help Alice remotely prepares an arbitrary single- and two- qubit state, respectively. It is shown that, only if the two senders and the controller collaborate with each other, the HBCQC can be completed successfully. We demonstrate, in our both schemes, the total success probability of the HBCQC can reach 1, that is, the schemes are deterministic.
Discrete Element Modelling of Floating Debris
NASA Astrophysics Data System (ADS)
Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed
2016-04-01
Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical schemes. The results show that the tool is able to adequately replicate water depth and depth-averaged velocity of a dam-break wave, as well as velocity and displacement of floating cylindrical elements, thus validating its shock capturing capabilities and the coupling technique applied for this simple test case. Future development of the tool will incorporate a 2D hydrodynamic scheme and a 3D discrete element scheme in order to model the more complex processes associated with debris transport.
Performance characteristics of an adaptive controller based on least-mean-square filters
NASA Technical Reports Server (NTRS)
Mehta, Rajiv S.; Merhav, Shmuel J.
1986-01-01
A closed loop, adaptive control scheme that uses a least mean square filter as the controller model is presented, along with simulation results that demonstrate the excellent robustness of this scheme. It is shown that the scheme adapts very well to unknown plants, even those that are marginally stable, responds appropriately to changes in plant parameters, and is not unduly affected by additive noise. A heuristic argument for the conditions necessary for convergence is presented. Potential applications and extensions of the scheme are also discussed.
An Orbit And Dispersion Correction Scheme for the PEP II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; Donald, M.; Shoaee, H.
2011-09-01
To achieve optimum luminosity in a storage ring it is vital to control the residual vertical dispersion. In the original PEP storage ring, a scheme to control the residual dispersion function was implemented using the ring orbit as the controlling element. The 'best' orbit not necessarily giving the lowest vertical dispersion. A similar scheme has been implemented in both the on-line control code and in the simulation code LEGO. The method involves finding the response matrices (sensitivity of orbit/dispersion at each Beam-Position-Monitor (BPM) to each orbit corrector) and solving in a least squares sense for minimum orbit, dispersion function ormore » both. The optimum solution is usually a subset of the full least squares solution. A scheme of simultaneously correcting the orbits and dispersion has been implemented in the simulation code and on-line control system for PEP-II. The scheme is based on the eigenvector decomposition method. An important ingredient of the scheme is to choose the optimum eigenvectors that minimize the orbit, dispersion and corrector strength. Simulations indicate this to be a very effective way to control the vertical residual dispersion.« less
Scheme, Erik J; Englehart, Kevin B
2013-07-01
When controlling a powered upper limb prosthesis it is important not only to know how to move the device, but also when not to move. A novel approach to pattern recognition control, using a selective multiclass one-versus-one classification scheme has been shown to be capable of rejecting unintended motions. This method was shown to outperform other popular classification schemes when presented with muscle contractions that did not correspond to desired actions. In this work, a 3-D Fitts' Law test is proposed as a suitable alternative to using virtual limb environments for evaluating real-time myoelectric control performance. The test is used to compare the selective approach to a state-of-the-art linear discriminant analysis classification based scheme. The framework is shown to obey Fitts' Law for both control schemes, producing linear regression fittings with high coefficients of determination (R(2) > 0.936). Additional performance metrics focused on quality of control are discussed and incorporated in the evaluation. Using this framework the selective classification based scheme is shown to produce significantly higher efficiency and completion rates, and significantly lower overshoot and stopping distances, with no significant difference in throughput.
User oriented ERTS-1 images. [vegetation identification in Canada through image enhancement
NASA Technical Reports Server (NTRS)
Shlien, S.; Goodenough, D.
1974-01-01
Photographic reproduction of ERTS-1 images are capable of displaying only a portion of the total information available from the multispectral scanner. Methods are being developed to generate ERTS-1 images oriented towards special users such as agriculturists, foresters, and hydrologists by applying image enhancement techniques and interactive statistical classification schemes. Spatial boundaries and linear features can be emphasized and delineated using simple filters. Linear and nonlinear transformations can be applied to the spectral data to emphasize certain ground information. An automatic classification scheme was developed to identify particular ground cover classes such as fallow, grain, rape seed or various vegetation covers. The scheme applies the maximum likelihood decision rule to the spectral information and classifies the ERTS-1 image on a pixel by pixel basis. Preliminary results indicate that the classifier has limited success in distinguishing crops, but is well adapted for identifying different types of vegetation.
Adaptive control of robotic manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.
Connection anonymity analysis in coded-WDM PONs
NASA Astrophysics Data System (ADS)
Sue, Chuan-Ching
2008-04-01
A coded wavelength division multiplexing passive optical network (WDM PON) is presented for fiber to the home (FTTH) systems to protect against eavesdropping. The proposed scheme applies spectral amplitude coding (SAC) with a unipolar maximal-length sequence (M-sequence) code matrix to generate a specific signature address (coding) and to retrieve its matching address codeword (decoding) by exploiting the cyclic properties inherent in array waveguide grating (AWG) routers. In addition to ensuring the confidentiality of user data, the proposed coded-WDM scheme is also a suitable candidate for the physical layer with connection anonymity. Under the assumption that the eavesdropper applies a photo-detection strategy, it is shown that the coded WDM PON outperforms the conventional TDM PON and WDM PON schemes in terms of a higher degree of connection anonymity. Additionally, the proposed scheme allows the system operator to partition the optical network units (ONUs) into appropriate groups so as to achieve a better degree of anonymity.
An implict LU scheme for the Euler equations applied to arbitrary cascades. [new method of factoring
NASA Technical Reports Server (NTRS)
Buratynski, E. K.; Caughey, D. A.
1984-01-01
An implicit scheme for solving the Euler equations is derived and demonstrated. The alternating-direction implicit (ADI) technique is modified, using two implicit-operator factors corresponding to lower-block-diagonal (L) or upper-block-diagonal (U) algebraic systems which can be easily inverted. The resulting LU scheme is implemented in finite-volume mode and applied to 2D subsonic and transonic cascade flows with differing degrees of geometric complexity. The results are presented graphically and found to be in good agreement with those of other numerical and analytical approaches. The LU method is also 2.0-3.4 times faster than ADI, suggesting its value in calculating 3D problems.
Molluscicide for the control of schistosomiasis in irrigation schemes: a study in Southern Rhodesia.
Shiff, C J; Clarke, V de V; Evans, A C; Barnish, G
1973-01-01
The development of large areas of irrigation farming in the south-eastern lowveld of Southern Rhodesia has produced the risk of severe transmission of schistosomiasis over an extent of some 30 000 ha. Control measures instituted by the Ministry of Health were primarily directed against the large and widely distributed snail populations by using molluscicides. The chemical was applied to the irrigation water by drip-feed methods once every 6-8 months. The drains, however, were treated routinely by pairs of rangers searching for snails and applying chemical where they were found. The efficacy of control operations has been assessed by longitudinal studies in children free from infection to determine the incidence of infection. The results indicate that transmission of both Schistosoma haematobium and S. mansoni has been reduced to a level below that measured in areas of the country where irrigation is not practised. The total annual cost for this work was US$ 54 800-55 500.
Analysis on IGBT and Diode Failures in Distribution Electronic Power Transformers
NASA Astrophysics Data System (ADS)
Wang, Si-cong; Sang, Zi-xia; Yan, Jiong; Du, Zhi; Huang, Jia-qi; Chen, Zhu
2018-02-01
Fault characteristics of power electronic components are of great importance for a power electronic device, and are of extraordinary importance for those applied in power system. The topology structures and control method of Distribution Electronic Power Transformer (D-EPT) are introduced, and an exploration on fault types and fault characteristics for the IGBT and diode failures is presented. The analysis and simulation of different fault types for the fault characteristics lead to the D-EPT fault location scheme.
A cascaded coding scheme for error control and its performance analysis
NASA Technical Reports Server (NTRS)
Lin, S.
1986-01-01
A coding scheme for error control in data communication systems is investigated. The scheme is obtained by cascading two error correcting codes, called the inner and the outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon < 1/2. It is shown that, if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging from high rates to very low rates and Reed-Solomon codes are considered, and their probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates, say 0.1 to 0.01. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.
A user-driven treadmill control scheme for simulating overground locomotion.
Kim, Jonghyun; Stanley, Christopher J; Curatalo, Lindsey A; Park, Hyung-Soon
2012-01-01
Treadmill-based locomotor training should simulate overground walking as closely as possible for optimal skill transfer. The constant speed of a standard treadmill encourages automaticity rather than engagement and fails to simulate the variable speeds encountered during real-world walking. To address this limitation, this paper proposes a user-driven treadmill velocity control scheme that allows the user to experience natural fluctuations in walking velocity with minimal unwanted inertial force due to acceleration/deceleration of the treadmill belt. A smart estimation limiter in the scheme effectively attenuates the inertial force during velocity changes. The proposed scheme requires measurement of pelvic and swing foot motions, and is developed for a treadmill of typical belt length (1.5 m). The proposed scheme is quantitatively evaluated here with four healthy subjects by comparing it with the most advanced control scheme identified in the literature.
A cascaded coding scheme for error control and its performance analysis
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo
1986-01-01
A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.
Design for active and passive flutter suppression and gust alleviation. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Karpel, M.
1981-01-01
Analytical design techniques for active and passive control of aeroelastic systems are based on a rational approximation of the unsteady aerodynamic loads in the entire Laplace domain, which yields matrix equations of motion with constant coefficients. Some existing schemes are reviewed, the matrix Pade approximant is modified, and a technique which yields a minimal number of augmented states for a desired accuracy is presented. The state-space aeroelastic model is used to design an active control system for simultaneous flutter suppression and gust alleviation. The design target is for a continuous controller which transfers some measurements taken on the vehicle to a control command applied to a control surface. Structural modifications are formulated in a way which enables the treatment of passive flutter suppression system with the same procedures by which active control systems are designed.
Yu, Zhaoxu; Li, Shugang; Yu, Zhaosheng; Li, Fangfei
2018-04-01
This paper investigates the problem of output feedback adaptive stabilization for a class of nonstrict-feedback stochastic nonlinear systems with both unknown backlashlike hysteresis and unknown control directions. A new linear state transformation is applied to the original system, and then, control design for the new system becomes feasible. By combining the neural network's (NN's) parameterization, variable separation technique, and Nussbaum gain function method, an input-driven observer-based adaptive NN control scheme, which involves only one parameter to be updated, is developed for such systems. All closed-loop signals are bounded in probability and the error signals remain semiglobally bounded in the fourth moment (or mean square). Finally, the effectiveness and the applicability of the proposed control design are verified by two simulation examples.
A controlled ac Stark echo for quantum memories.
Ham, Byoung S
2017-08-09
A quantum memory protocol of controlled ac Stark echoes (CASE) based on a double rephasing photon echo scheme via controlled Rabi flopping is proposed. The double rephasing scheme of photon echoes inherently satisfies the no-population inversion requirement for quantum memories, but the resultant absorptive echo remains a fundamental problem. Herein, it is reported that the first echo in the double rephasing scheme can be dynamically controlled so that it does not affect the second echo, which is accomplished by using unbalanced ac Stark shifts. Then, the second echo is coherently controlled to be emissive via controlled coherence conversion. Finally a near perfect ultralong CASE is presented using a backward echo scheme. Compared with other methods such as dc Stark echoes, the present protocol is all-optical with advantages of wavelength-selective dynamic control of quantum processing for erasing, buffering, and channel multiplexing.
Quantum dual signature scheme based on coherent states with entanglement swapping
NASA Astrophysics Data System (ADS)
Liu, Jia-Li; Shi, Rong-Hua; Shi, Jin-Jing; Lv, Ge-Li; Guo, Ying
2016-08-01
A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).
NASA Astrophysics Data System (ADS)
Ibraheem, Omveer, Hasan, N.
2010-10-01
A new hybrid stochastic search technique is proposed to design of suboptimal AGC regulator for a two area interconnected non reheat thermal power system incorporating DC link in parallel with AC tie-line. In this technique, we are proposing the hybrid form of Genetic Algorithm (GA) and simulated annealing (SA) based regulator. GASA has been successfully applied to constrained feedback control problems where other PI based techniques have often failed. The main idea in this scheme is to seek a feasible PI based suboptimal solution at each sampling time. The feasible solution decreases the cost function rather than minimizing the cost function.
A robotic workstation for stroke rehabilitation of the upper extremity using FES.
Freeman, C T; Hughes, A-M; Burridge, J H; Chappell, P H; Lewin, P L; Rogers, E
2009-04-01
An experimental test facility is developed for use by stroke patients in order to improve sensory-motor function of their upper limb. Subjects are seated at the workstation and their task is to repeatedly follow reaching trajectories that are projected onto a target above their arm. To do this they use voluntary control with the addition of electrical stimulation mediated by advanced control schemes applied to muscles in their impaired shoulder and arm. Full details of the design of the workstation and its periphery systems are given, together with a description of its use during the treatment of stroke patients.
Extrapolation techniques applied to matrix methods in neutron diffusion problems
NASA Technical Reports Server (NTRS)
Mccready, Robert R
1956-01-01
A general matrix method is developed for the solution of characteristic-value problems of the type arising in many physical applications. The scheme employed is essentially that of Gauss and Seidel with appropriate modifications needed to make it applicable to characteristic-value problems. An iterative procedure produces a sequence of estimates to the answer; and extrapolation techniques, based upon previous behavior of iterants, are utilized in speeding convergence. Theoretically sound limits are placed on the magnitude of the extrapolation that may be tolerated. This matrix method is applied to the problem of finding criticality and neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron-diffusion equations is treated. Results for this example are indicated.
Baygi, Mahdi Oloumi; Ghazi, Reza; Monfared, Mohammad
2014-07-01
Applying the min-projection strategy (MPS) to a three-phase grid-connected inverter to improve its transient performance is the main objective of this paper. For this purpose, the inverter is first modeled as a switched linear system. Then, the feasibility of the MPS technique is investigated and the stability criterion is derived. Hereafter, the fundamental equations of the MPS for the control of the inverter are obtained. The proposed scheme is simulated in PSCAD/EMTDC environment. The validity of the MPS approach is confirmed by comparing the obtained results with those of VOC method. The results demonstrate that the proposed method despite its simplicity provides an excellent transient performance, fully decoupled control of active and reactive powers, acceptable THD level and a reasonable switching frequency. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Inverse simulation system for evaluating handling qualities during rendezvous and docking
NASA Astrophysics Data System (ADS)
Zhou, Wanmeng; Wang, Hua; Thomson, Douglas; Tang, Guojin; Zhang, Fan
2017-08-01
The traditional method used for handling qualities assessment of manned space vehicles is too time-consuming to meet the requirements of an increasingly fast design process. In this study, a rendezvous and docking inverse simulation system to assess the handling qualities of spacecraft is proposed using a previously developed model-predictive-control architecture. By considering the fixed discrete force of the thrusters of the system, the inverse model is constructed using the least squares estimation method with a hyper-ellipsoidal restriction, the continuous control outputs of which are subsequently dispersed by pulse width modulation with sensitivity factors introduced. The inputs in every step are deemed constant parameters, and the method could be considered as a general method for solving nominal, redundant, and insufficient inverse problems. The rendezvous and docking inverse simulation is applied to a nine-degrees-of-freedom platform, and a novel handling qualities evaluation scheme is established according to the operation precision and astronauts' workload. Finally, different nominal trajectories are scored by the inverse simulation and an established evaluation scheme. The scores can offer theoretical guidance for astronaut training and more complex operation missions.
Numerical approach of collision avoidance and optimal control on robotic manipulators
NASA Technical Reports Server (NTRS)
Wang, Jyhshing Jack
1990-01-01
Collision-free optimal motion and trajectory planning for robotic manipulators are solved by a method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic manipulator are demonstrated to show the excellence of the optimization technique and obstacle avoidance scheme. The obstacle is put on the midway, or even further inward on purpose, of the previous no-obstacle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle avoidance cases than the one without obstacle. The obstacle avoidance scheme can deal with multiple obstacles in any ellipsoid forms by using artificial potential fields as penalty functions via distance functions. The method is promising in solving collision-free optimal control problems for robotics and can be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since this method generates optimum solution based on Pontryagin Extremum Principle, rather than based on assumptions, the results provide a benchmark against which any optimization techniques can be measured.
NASA Astrophysics Data System (ADS)
Clark, Nathan E.
2017-10-01
This paper explores from the view of the data recipient and user the complexities of creating a common licensing scheme for the access and use of satellite earth observation (EO) data in international disaster management (DM) activities. EO data contributions in major disaster events often involve numerous data providers with separate licensing mechanisms for controlling the access, uses, and distribution of data by the end users. A lack of standardization among the terminology, wording, and conditions within these licenses creates a complex legal environment for users, and often prevents them from using, sharing and combining datasets in an effective and timely manner. It also creates uncertainty among data providers as to the types of licensing controls that should be applied in disaster scenarios. This paper builds from an ongoing comparative analysis of the common and conflicting conditions among data licenses that must be addressed in order to facilitate easier access and use of EO data within the DM sector and offers recommendations towards the alignment of the structural and technical aspects of licenses among data providers.
Continuum limit of Bk from 2+1 flavor domain wall QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, A.; T. Izubuchi, et al.
2011-07-01
We determine the neutral kaon mixing matrix element B{sub K} in the continuum limit with 2+1 flavors of domain wall fermions, using the Iwasaki gauge action at two different lattice spacings. These lattice fermions have near exact chiral symmetry and therefore avoid artificial lattice operator mixing. We introduce a significant improvement to the conventional nonperturbative renormalization (NPR) method in which the bare matrix elements are renormalized nonperturbatively in the regularization invariant momentum scheme (RI-MOM) and are then converted into the MS{sup -} scheme using continuum perturbation theory. In addition to RI-MOM, we introduce and implement four nonexceptional intermediate momentum schemesmore » that suppress infrared nonperturbative uncertainties in the renormalization procedure. We compute the conversion factors relating the matrix elements in this family of regularization invariant symmetric momentum schemes (RI-SMOM) and MS{sup -} at one-loop order. Comparison of the results obtained using these different intermediate schemes allows for a more reliable estimate of the unknown higher-order contributions and hence for a correspondingly more robust estimate of the systematic error. We also apply a recently proposed approach in which twisted boundary conditions are used to control the Symanzik expansion for off-shell vertex functions leading to a better control of the renormalization in the continuum limit. We control chiral extrapolation errors by considering both the next-to-leading order SU(2) chiral effective theory, and an analytic mass expansion. We obtain B{sub K}{sup MS{sup -}} (3 GeV) = 0.529(5){sub stat}(15){sub {chi}}(2){sub FV}(11){sub NPR}. This corresponds to B{sup -}{sub K}{sup RGI{sup -}} = 0.749(7){sub stat}(21){sub {chi}}(3){sub FV}(15){sub NPR}. Adding all sources of error in quadrature, we obtain B{sup -}{sub K}{sup RGI{sup -}} = 0.749(27){sub combined}, with an overall combined error of 3.6%.« less
Suboptimal distributed control and estimation: application to a four coupled tanks system
NASA Astrophysics Data System (ADS)
Orihuela, Luis; Millán, Pablo; Vivas, Carlos; Rubio, Francisco R.
2016-06-01
The paper proposes an innovative estimation and control scheme that enables the distributed monitoring and control of large-scale processes. The proposed approach considers a discrete linear time-invariant process controlled by a network of agents that may both collect information about the evolution of the plant and apply control actions to drive its behaviour. The problem makes full sense when local observability/controllability is not assumed and the communication between agents can be exploited to reach system-wide goals. Additionally, to reduce agents bandwidth requirements and power consumption, an event-based communication policy is studied. The design procedure guarantees system stability, allowing the designer to trade-off performance, control effort and communication requirements. The obtained controllers and observers are implemented in a fully distributed fashion. To illustrate the performance of the proposed technique, experimental results on a quadruple-tank process are provided.
GA-based fuzzy reinforcement learning for control of a magnetic bearing system.
Lin, C T; Jou, C P
2000-01-01
This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.
Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model
NASA Astrophysics Data System (ADS)
Girotto, Manuela; De Lannoy, Gabriëlle J. M.; Reichle, Rolf H.; Rodell, Matthew
2016-05-01
Observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have a coarse resolution in time (monthly) and space (roughly 150,000 km2 at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This work proposes a variant of existing ensemble-based GRACE-TWS data assimilation schemes. The new algorithm differs in how the analysis increments are computed and applied. Existing schemes correlate the uncertainty in the modeled monthly TWS estimates with errors in the soil moisture profile state variables at a single instant in the month and then apply the increment either at the end of the month or gradually throughout the month. The proposed new scheme first computes increments for each day of the month and then applies the average of those increments at the beginning of the month. The new scheme therefore better reflects submonthly variations in TWS errors. The new and existing schemes are investigated here using gridded GRACE-TWS observations. The assimilation results are validated at the monthly time scale, using in situ measurements of groundwater depth and soil moisture across the U.S. The new assimilation scheme yields improved (although not in a statistically significant sense) skill metrics for groundwater compared to the open-loop (no assimilation) simulations and compared to the existing assimilation schemes. A smaller impact is seen for surface and root-zone soil moisture, which have a shorter memory and receive smaller increments from TWS assimilation than groundwater. These results motivate future efforts to combine GRACE-TWS observations with observations that are more sensitive to surface soil moisture, such as L-band brightness temperature observations from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP). Finally, we demonstrate that the scaling parameters that are applied to the GRACE observations prior to assimilation should be consistent with the land surface model that is used within the assimilation system.
Assimilation of Gridded Terrestrial Water Storage Observations from GRACE into a Land Surface Model
NASA Technical Reports Server (NTRS)
Girotto, Manuela; De Lannoy, Gabrielle J. M.; Reichle, Rolf H.; Rodell, Matthew
2016-01-01
Observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have a coarse resolution in time (monthly) and space (roughly 150,000 km(sup 2) at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This work proposes a variant of existing ensemble-based GRACE-TWS data assimilation schemes. The new algorithm differs in how the analysis increments are computed and applied. Existing schemes correlate the uncertainty in the modeled monthly TWS estimates with errors in the soil moisture profile state variables at a single instant in the month and then apply the increment either at the end of the month or gradually throughout the month. The proposed new scheme first computes increments for each day of the month and then applies the average of those increments at the beginning of the month. The new scheme therefore better reflects submonthly variations in TWS errors. The new and existing schemes are investigated here using gridded GRACE-TWS observations. The assimilation results are validated at the monthly time scale, using in situ measurements of groundwater depth and soil moisture across the U.S. The new assimilation scheme yields improved (although not in a statistically significant sense) skill metrics for groundwater compared to the open-loop (no assimilation) simulations and compared to the existing assimilation schemes. A smaller impact is seen for surface and root-zone soil moisture, which have a shorter memory and receive smaller increments from TWS assimilation than groundwater. These results motivate future efforts to combine GRACE-TWS observations with observations that are more sensitive to surface soil moisture, such as L-band brightness temperature observations from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP). Finally, we demonstrate that the scaling parameters that are applied to the GRACE observations prior to assimilation should be consistent with the land surface model that is used within the assimilation system.
Ratowsky, R P; Fleck, J A; Feit, M D
1992-01-01
The numerical scheme for solving the Helmholtz equation, based on the Lanczos orthogonalization scheme, is generalized so that it can be applied to media with space-dependent absorption or gain profiles.
Adaptive independent joint control of manipulators - Theory and experiment
NASA Technical Reports Server (NTRS)
Seraji, H.
1988-01-01
The author presents a simple decentralized adaptive control scheme for multijoint robot manipulators based on the independent joint control concept. The proposed control scheme for each joint consists of a PID (proportional integral and differential) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. The static and dynamic couplings that exist between the joint motions are compensated by the adaptive independent joint controllers while ensuring trajectory tracking. The proposed scheme is implemented on a MicroVAX II computer for motion control of the first three joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite strongly coupled, highly nonlinear joint dynamics. The results confirm that the proposed decentralized adaptive control of manipulators is feasible, in spite of strong interactions between joint motions. The control scheme presented is computationally very fast and is amenable to parallel processing implementation within a distributed computing architecture, where each joint is controlled independently by a simple algorithm on a dedicated microprocessor.
Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit
2013-11-01
The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.
Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
Segil, Jacob L; Controzzi, Marco; Weir, Richard F ff; Cipriani, Christian
2014-01-01
A myoelectric controller should provide an intuitive and effective human-machine interface that deciphers user intent in real-time and is robust enough to operate in daily life. Many myoelectric control architectures have been developed, including pattern recognition systems, finite state machines, and more recently, postural control schemes. Here, we present a comparative study of two types of finite state machines and a postural control scheme using both virtual and physical assessment procedures with seven nondisabled subjects. The Southampton Hand Assessment Procedure (SHAP) was used in order to compare the effectiveness of the controllers during activities of daily living using a multigrasp artificial hand. Also, a virtual hand posture matching task was used to compare the controllers when reproducing six target postures. The performance when using the postural control scheme was significantly better (p < 0.05) than the finite state machines during the physical assessment when comparing within-subject averages using the SHAP percent difference metric. The virtual assessment results described significantly greater completion rates (97% and 99%) for the finite state machines, but the movement time tended to be faster (2.7 s) for the postural control scheme. Our results substantiate that postural control schemes rival other state-of-the-art myoelectric controllers.
Phung, Dung; Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Chu, Cordia
2016-10-01
To develop a prediction score scheme useful for prevention practitioners and authorities to implement dengue preparedness and controls in the Mekong Delta region (MDR). We applied a spatial scan statistic to identify high-risk dengue clusters in the MDR and used generalised linear-distributed lag models to examine climate-dengue associations using dengue case records and meteorological data from 2003 to 2013. The significant predictors were collapsed into categorical scales, and the β-coefficients of predictors were converted to prediction scores. The score scheme was validated for predicting dengue outbreaks using ROC analysis. The north-eastern MDR was identified as the high-risk cluster. A 1 °C increase in temperature at lag 1-4 and 5-8 weeks increased the dengue risk 11% (95% CI, 9-13) and 7% (95% CI, 6-8), respectively. A 1% rise in humidity increased dengue risk 0.9% (95% CI, 0.2-1.4) at lag 1-4 and 0.8% (95% CI, 0.2-1.4) at lag 5-8 weeks. Similarly, a 1-mm increase in rainfall increased dengue risk 0.1% (95% CI, 0.05-0.16) at lag 1-4 and 0.11% (95% CI, 0.07-0.16) at lag 5-8 weeks. The predicted scores performed with high accuracy in diagnosing the dengue outbreaks (96.3%). This study demonstrates the potential usefulness of a dengue prediction score scheme derived from complex statistical models for high-risk dengue clusters. We recommend a further study to examine the possibility of incorporating such a score scheme into the dengue early warning system in similar climate settings. © 2016 John Wiley & Sons Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... has not been controlled through the Kimberley Process Certification Scheme (KPCS). Under Section 3(2) of the Act, ``controlled through the Kimberley Process Certification Scheme'' means an importation... Kimberley Process Certification Scheme. Angola--Ministry of Geology and Mines. Armenia--Ministry of Trade...
Guidance trajectories for aeroassisted orbital transfer
NASA Technical Reports Server (NTRS)
Miele, A.
1990-01-01
Research on aerobraking guidance schemes is presented. The intent is to produce aerobraking guidance trajectories exhibiting many of the desirable characteristics of optimal aerobraking trajectories. Both one-control schemes and two-control schemes are studied. The research is in the interest of aeroassisted flight experiment vehicles (AFE) and aeroassisted orbital transfer (AOT) vehicles.
NASA Astrophysics Data System (ADS)
Canestrelli, Alberto; Toro, Eleuterio F.
2012-10-01
Recently, the FORCE centred scheme for conservative hyperbolic multi-dimensional systems has been introduced in [34] and has been applied to Euler and relativistic MHD equations, solved on unstructured meshes. In this work we propose a modification of the FORCE scheme, named FORCE-Contact, that provides improved resolution of contact and shear waves. This paper presents the technique in full detail as applied to the two-dimensional homogeneous shallow water equations. The improvements due to the new method are particularly evident when an additional equation is solved for a tracer, since the modified scheme exactly resolves isolated and steady contact discontinuities. The improvement is considerable also for slowly moving contact discontinuities, for shear waves and for steady states in meandering channels. For these types of flow fields, the numerical results provided by the new FORCE-Contact scheme are comparable with, and sometimes better than, the results obtained from upwind schemes, such as Roes scheme for example. In a companion paper, a similar approach to restoring the missing contact wave and preserving well-balanced properties for non-conservative one- and two-layer shallow water equations is introduced. However, the procedure is general and it is in principle applicable to other multidimensional hyperbolic systems in conservative and non-conservative form, such as the Euler equations for compressible gas dynamics.
A discrete-time adaptive control scheme for robot manipulators
NASA Technical Reports Server (NTRS)
Tarokh, M.
1990-01-01
A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. The scheme utilizes feedback, feedforward, and auxiliary signals, obtained from joint angle measurement through simple expressions. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation. Simulations and experimental results are given to demonstrate the performance of the scheme.
Gain-scheduling multivariable LPV control of an irrigation canal system.
Bolea, Yolanda; Puig, Vicenç
2016-07-01
The purpose of this paper is to present a multivariable linear parameter varying (LPV) controller with a gain scheduling Smith Predictor (SP) scheme applicable to open-flow canal systems. This LPV controller based on SP is designed taking into account the uncertainty in the estimation of delay and the variation of plant parameters according to the operating point. This new methodology can be applied to a class of delay systems that can be represented by a set of models that can be factorized into a rational multivariable model in series with left/right diagonal (multiple) delays, such as, the case of irrigation canals. A multiple pool canal system is used to test and validate the proposed control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme
NASA Astrophysics Data System (ADS)
Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi
2015-10-01
This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.
A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings
NASA Technical Reports Server (NTRS)
Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.
1996-01-01
A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.
Sequential sampling: a novel method in farm animal welfare assessment.
Heath, C A E; Main, D C J; Mullan, S; Haskell, M J; Browne, W J
2016-02-01
Lameness in dairy cows is an important welfare issue. As part of a welfare assessment, herd level lameness prevalence can be estimated from scoring a sample of animals, where higher levels of accuracy are associated with larger sample sizes. As the financial cost is related to the number of cows sampled, smaller samples are preferred. Sequential sampling schemes have been used for informing decision making in clinical trials. Sequential sampling involves taking samples in stages, where sampling can stop early depending on the estimated lameness prevalence. When welfare assessment is used for a pass/fail decision, a similar approach could be applied to reduce the overall sample size. The sampling schemes proposed here apply the principles of sequential sampling within a diagnostic testing framework. This study develops three sequential sampling schemes of increasing complexity to classify 80 fully assessed UK dairy farms, each with known lameness prevalence. Using the Welfare Quality herd-size-based sampling scheme, the first 'basic' scheme involves two sampling events. At the first sampling event half the Welfare Quality sample size is drawn, and then depending on the outcome, sampling either stops or is continued and the same number of animals is sampled again. In the second 'cautious' scheme, an adaptation is made to ensure that correctly classifying a farm as 'bad' is done with greater certainty. The third scheme is the only scheme to go beyond lameness as a binary measure and investigates the potential for increasing accuracy by incorporating the number of severely lame cows into the decision. The three schemes are evaluated with respect to accuracy and average sample size by running 100 000 simulations for each scheme, and a comparison is made with the fixed size Welfare Quality herd-size-based sampling scheme. All three schemes performed almost as well as the fixed size scheme but with much smaller average sample sizes. For the third scheme, an overall association between lameness prevalence and the proportion of lame cows that were severely lame on a farm was found. However, as this association was found to not be consistent across all farms, the sampling scheme did not prove to be as useful as expected. The preferred scheme was therefore the 'cautious' scheme for which a sampling protocol has also been developed.
High-precision control of LSRM based X-Y table for industrial applications.
Pan, J F; Cheung, Norbert C; Zou, Yu
2013-01-01
The design of an X-Y table applying direct-drive linear switched reluctance motor (LSRM) principle is proposed in this paper. The proposed X-Y table has the characteristics of low cost, simple and stable mechanical structure. After the design procedure is introduced, an adaptive position control method based on online parameter identification and pole-placement regulation scheme is developed for the X-Y table. Experimental results prove the feasibility and its priority over a traditional PID controller with better dynamic response, static performance and robustness to disturbances. It is expected that the novel two-dimensional direct-drive system find its applications in high-precision manufacture area. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Petruzzo, Charles; Guzman, Jose
2004-01-01
This paper considers the preliminary development of a general optimization procedure for tetrahedron formation control. The maneuvers are assumed to be impulsive and a multi-stage optimization method is employed. The stages include (1) targeting to a fixed tetrahedron location and orientation, and (2) rotating and translating the tetrahedron. The number of impulsive maneuvers can also be varied. As the impulse locations and times change, new arcs are computed using a differential corrections scheme that varies the impulse magnitudes and directions. The result is a continuous trajectory with velocity discontinuities. The velocity discontinuities are then used to formulate the cost function. Direct optimization techniques are employed. The procedure is applied to the NASA Goddard Magnetospheric Multi-Scale (MMS) mission to compute preliminary formation control fuel requirements.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
The approximation of optimal discrete-time linear quadratic Gaussian (LQG) compensators for distributed parameter control systems with boundary input and unbounded measurement is considered. The approach applies to a wide range of problems that can be formulated in a state space on which both the discrete-time input and output operators are continuous. Approximating compensators are obtained via application of the LQG theory and associated approximation results for infinite dimensional discrete-time control systems with bounded input and output. Numerical results for spline and modal based approximation schemes used to compute optimal compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise measurement of temperature are presented and discussed.
Output feedback control for a class of nonlinear systems with actuator degradation and sensor noise.
Ai, Weiqing; Lu, Zhenli; Li, Bin; Fei, Shumin
2016-11-01
This paper investigates the output feedback control problem of a class of nonlinear systems with sensor noise and actuator degradation. Firstly, by using the descriptor observer approach, the origin system is transformed into a descriptor system. On the basis of the descriptor system, a novel Proportional Derivative (PD) observer is developed to asymptotically estimate sensor noise and system state simultaneously. Then, by designing an adaptive law to estimate the effectiveness of actuator, an adaptive observer-based controller is constructed to ensure that system state can be regulated to the origin asymptotically. Finally, the design scheme is applied to address a flexible joint robot link problem. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Ultrashort polarization-tailored bichromatic fields from a CEP-stable white light supercontinuum.
Kerbstadt, Stefanie; Timmer, Daniel; Englert, Lars; Bayer, Tim; Wollenhaupt, Matthias
2017-05-29
We apply ultrafast polarization shaping to an ultrabroadband carrier envelope phase (CEP) stable white light supercontinuum to generate polarization-tailored bichromatic laser fields of low-order frequency ratio. The generation of orthogonal linearly and counter-rotating circularly polarized bichromatic fields is achieved by introducing a composite polarizer in the Fourier plane of a 4 f polarization shaper. The resulting Lissajous- and propeller-type polarization profiles are characterized experimentally by cross-correlation trajectories. The scheme provides full control over all bichromatic parameters and allows for individual spectral phase modulation of both colors. Shaper-based CEP control and the generation of tailored bichromatic fields is demonstrated. These bichromatic CEP-stable polarization-shaped ultrashort laser pulses provide a versatile class of waveforms for coherent control experiments.
Zhang, Huaguang; Qu, Qiuxia; Xiao, Geyang; Cui, Yang
2018-06-01
Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.
Learning and tuning fuzzy logic controllers through reinforcements.
Berenji, H R; Khedkar, P
1992-01-01
A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Advanced rotorcraft control using parameter optimization
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-01-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-06-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
Prokudin, Alexei; Sun, Peng; Yuan, Feng
2015-10-01
Following an earlier derivation by Catani-de Florian-Grazzini (2000) on the scheme dependence in the Collins-Soper- Sterman (CSS) resummation formalism in hard scattering processes, we investigate the scheme dependence of the Transverse Momentum Distributions (TMDs) and their applications. By adopting a universal C-coefficient function associated with the integrated parton distributions, the difference between various TMD schemes can be attributed to a perturbative calculable function depending on the hard momentum scale. Thus, we further apply several TMD schemes to the Drell-Yan process of lepton pair production in hadronic collisions, and find that the constrained non-perturbative form factors in different schemes are remarkablymore » consistent with each other and with that of the standard CSS formalism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokudin, Alexei; Sun, Peng; Yuan, Feng
Following an earlier derivation by Catani-de Florian-Grazzini (2000) on the scheme dependence in the Collins-Soper- Sterman (CSS) resummation formalism in hard scattering processes, we investigate the scheme dependence of the Transverse Momentum Distributions (TMDs) and their applications. By adopting a universal C-coefficient function associated with the integrated parton distributions, the difference between various TMD schemes can be attributed to a perturbative calculable function depending on the hard momentum scale. Thus, we further apply several TMD schemes to the Drell-Yan process of lepton pair production in hadronic collisions, and find that the constrained non-perturbative form factors in different schemes are remarkablymore » consistent with each other and with that of the standard CSS formalism.« less
NASA Astrophysics Data System (ADS)
Prokudin, Alexei; Sun, Peng; Yuan, Feng
2015-11-01
Following an earlier derivation by Catani, de Florian and Grazzini (2000) on the scheme dependence in the Collins-Soper-Sterman (CSS) resummation formalism in hard scattering processes, we investigate the scheme dependence of the Transverse Momentum Distributions (TMDs) and their applications. By adopting a universal C-coefficient function associated with the integrated parton distributions, the difference between various TMD schemes can be attributed to a perturbative calculable function depending on the hard momentum scale. We further apply several TMD schemes to the Drell-Yan process of lepton pair production in hadronic collisions, and find that the constrained non-perturbative form factors in different schemes are consistent with each other and with that of the standard CSS formalism.
Reliable gain-scheduled control of discrete-time systems and its application to CSTR model
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Selvi, S.; Mathiyalagan, K.; Shi, Y.
2016-10-01
This paper is focused on reliable gain-scheduled controller design for a class of discrete-time systems with randomly occurring nonlinearities and actuator fault. Further, the nonlinearity in the system model is assumed to occur randomly according to a Bernoulli distribution with measurable time-varying probability in real time. The main purpose of this paper is to design a gain-scheduled controller by implementing a probability-dependent Lyapunov function and linear matrix inequality (LMI) approach such that the closed-loop discrete-time system is stochastically stable for all admissible randomly occurring nonlinearities. The existence conditions for the reliable controller is formulated in terms of LMI constraints. Finally, the proposed reliable gain-scheduled control scheme is applied on continuously stirred tank reactor model to demonstrate the effectiveness and applicability of the proposed design technique.
On the control of the chaotic attractors of the 2-d Navier-Stokes equations.
Smaoui, Nejib; Zribi, Mohamed
2017-03-01
The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, R e . Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.
On the control of the chaotic attractors of the 2-d Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Smaoui, Nejib; Zribi, Mohamed
2017-03-01
The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, Re. Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Sellappan, R.
1977-01-01
The problem of optimal control with a minimum time criterion as applied to a single boom system for achieving two axis control is discussed. The special case where the initial conditions are such that the system can be driven to the equilibrium state with only a single switching maneuver in the bang-bang optimal sequence is analyzed. The system responses are presented. Application of the linear regulator problem for the optimal control of the telescoping system is extended to consider the effects of measurement and plant noises. The noise uncertainties are included with an application of the estimator - Kalman filter problem. Different schemes for measuring the components of the angular velocity are considered. Analytical results are obtained for special cases, and numerical results are presented for the general case.
Patriarca, M; Menditto, A; Morisi, G
1995-01-01
National external quality assessment schemes (EQAS) for the determination of trace elements in blood (Al, Cd, Cu, Pb, Zn) have been promoted in Italy since 1983. They were organized by a working group of the Istituto Superiore di Sanità and known as "METOS (Metalli Tossici, toxic metals) project". The organization of the schemes included the preparation of suitable control materials by the promoting centre and the elaboration of valuable strategies of sample distribution, treatment of data and evaluation of results, that could be applied even to a small number of participants. The procedures used and the results obtained in ten years of activity of the METOS project are reported. Within the framework of the programme some information has been obtained, confirming the validity of the procedures used for sample preparation, sample distribution and evaluation of laboratories performance.
A Generalized Formulation of Demand Response under Market Environments
NASA Astrophysics Data System (ADS)
Nguyen, Minh Y.; Nguyen, Duc M.
2015-06-01
This paper presents a generalized formulation of Demand Response (DR) under deregulated electricity markets. The problem is scheduling and controls the consumption of electrical loads according to the market price to minimize the energy cost over a day. Taking into account the modeling of customers' comfort (i.e., preference), the formulation can be applied to various types of loads including what was traditionally classified as critical loads (e.g., air conditioning, lights). The proposed DR scheme is based on Dynamic Programming (DP) framework and solved by DP backward algorithm in which the stochastic optimization is used to treat the uncertainty, if any occurred in the problem. The proposed formulation is examined with the DR problem of different loads, including Heat Ventilation and Air Conditioning (HVAC), Electric Vehicles (EVs) and a newly DR on the water supply systems of commercial buildings. The result of simulation shows significant saving can be achieved in comparison with their traditional (On/Off) scheme.
NASA Astrophysics Data System (ADS)
Balas, Mark
1991-11-01
Assembly and operation of large space structures (LSS) in orbit will require robot-assisted docking and berthing of partially-assembled structures. These operations require new solutions to the problems of controls. This is true because of large transient and persistent disturbances, controller-structure interaction with unmodeled modes, poorly known structure parameters, slow actuator/sensor dynamical behavior, and excitation of nonlinear structure vibrations during control and assembly. For on-orbit assembly, controllers must start with finite element models of LSS and adapt on line to the best operating points, without compromising stability. This is not easy to do, since there are often unmodeled dynamic interactions between the controller and the structure. The indirect adaptive controllers are based on parameter estimation. Due to the large number of modes in LSS, this approach leads to very high-order control schemes with consequent poor stability and performance. In contrast, direct model reference adaptive controllers operate to force the LSS to track the desirable behavior of a chosen model. These schemes produce simple control algorithms which are easy to implement on line. One problem with their use for LSS has been that the model must be the same dimension as the LSS - i.e., quite large. A control theory based on the command generator tracker (CGT) ideas of Sobel, Mabins, Kaufman and Wen, Balas to obtain very low-order models based on adaptive algorithms was developed. Closed-loop stability for both finite element models and distributed parameter models of LSS was proved. In addition, successful numerical simulations on several LSS databases were obtained. An adaptive controller based on our theory was also implemented on a flexible robotic manipulator at Martin Marietta Astronautics. Computation schemes for controller-structure interaction with unmodeled modes, the residual mode filters or RMF, were developed. The RMF theory was modified to compensate slow actuator/sensor dynamics. These new ideas are being applied to LSS simulations to demonstrate the ease with which one can incorporate slow actuator/sensor effects into our design. It was also shown that residual mode filter compensation can be modified for small nonlinearities to produce exponentially stable closed-loop control.
NASA Technical Reports Server (NTRS)
Balas, Mark
1991-01-01
Assembly and operation of large space structures (LSS) in orbit will require robot-assisted docking and berthing of partially-assembled structures. These operations require new solutions to the problems of controls. This is true because of large transient and persistent disturbances, controller-structure interaction with unmodeled modes, poorly known structure parameters, slow actuator/sensor dynamical behavior, and excitation of nonlinear structure vibrations during control and assembly. For on-orbit assembly, controllers must start with finite element models of LSS and adapt on line to the best operating points, without compromising stability. This is not easy to do, since there are often unmodeled dynamic interactions between the controller and the structure. The indirect adaptive controllers are based on parameter estimation. Due to the large number of modes in LSS, this approach leads to very high-order control schemes with consequent poor stability and performance. In contrast, direct model reference adaptive controllers operate to force the LSS to track the desirable behavior of a chosen model. These schemes produce simple control algorithms which are easy to implement on line. One problem with their use for LSS has been that the model must be the same dimension as the LSS - i.e., quite large. A control theory based on the command generator tracker (CGT) ideas of Sobel, Mabins, Kaufman and Wen, Balas to obtain very low-order models based on adaptive algorithms was developed. Closed-loop stability for both finite element models and distributed parameter models of LSS was proved. In addition, successful numerical simulations on several LSS databases were obtained. An adaptive controller based on our theory was also implemented on a flexible robotic manipulator at Martin Marietta Astronautics. Computation schemes for controller-structure interaction with unmodeled modes, the residual mode filters or RMF, were developed. The RMF theory was modified to compensate slow actuator/sensor dynamics. These new ideas are being applied to LSS simulations to demonstrate the ease with which one can incorporate slow actuator/sensor effects into our design. It was also shown that residual mode filter compensation can be modified for small nonlinearities to produce exponentially stable closed-loop control. A theory for disturbance accommodating controllers based on reduced order models of structures was developed, and stability results for these controllers in closed-loop with large-scale finite element models of structures were obtained.
Almost periodic solutions to difference equations
NASA Technical Reports Server (NTRS)
Bayliss, A.
1975-01-01
The theory of Massera and Schaeffer relating the existence of unique almost periodic solutions of an inhomogeneous linear equation to an exponential dichotomy for the homogeneous equation was completely extended to discretizations by a strongly stable difference scheme. In addition it is shown that the almost periodic sequence solution will converge to the differential equation solution. The preceding theory was applied to a class of exponentially stable partial differential equations to which one can apply the Hille-Yoshida theorem. It is possible to prove the existence of unique almost periodic solutions of the inhomogeneous equation (which can be approximated by almost periodic sequences) which are the solutions to appropriate discretizations. Two methods of discretizations are discussed: the strongly stable scheme and the Lax-Wendroff scheme.
A classification scheme for edge-localized modes based on their probability distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabbir, A., E-mail: aqsa.shabbir@ugent.be; Max Planck Institute for Plasma Physics, D-85748 Garching; Hornung, G.
We present here an automated classification scheme which is particularly well suited to scenarios where the parameters have significant uncertainties or are stochastic quantities. To this end, the parameters are modeled with probability distributions in a metric space and classification is conducted using the notion of nearest neighbors. The presented framework is then applied to the classification of type I and type III edge-localized modes (ELMs) from a set of carbon-wall plasmas at JET. This provides a fast, standardized classification of ELM types which is expected to significantly reduce the effort of ELM experts in identifying ELM types. Further, themore » classification scheme is general and can be applied to various other plasma phenomena as well.« less
Nimpagaritse, Manassé; Korachais, Catherine; Roberfroid, Dominique; Kolsteren, Patrick; Zine Eddine El Idrissi, Moulay Driss; Meessen, Bruno
2016-06-14
Malnutrition is a huge problem in Burundi. In order to improve the provision of services at hospital, health centre and community levels, the Ministry of Health is piloting the introduction of malnutrition prevention and care indicators within its performance based financing (PBF) scheme. Paying for units of services and for qualitative indicators is expected to enhance provision and quality of these nutrition services, as PBF has done, in Burundi and elsewhere, for several other services. This paper presents the protocol for the impact evaluation of the PBF scheme applied to malnutrition. The research design consists in a mixed methods model adopting a sequential explanatory design. The quantitative component is a cluster-randomized controlled evaluation design: among the 90 health centres selected for the study, half receive payment related to their results in malnutrition activities, while the other half get a budget allocation. Qualitative research will be carried out both during the intervention period and at the end of the quantitative evaluation. Data are collected from 1) baseline and follow-up surveys of 90 health centres and 6,480 households with children aged 6 to 23 months, 2) logbooks filled in weekly in health centres, and 3) in-depth interviews and focus group discussions. The evaluation aims to provide the best estimate of the impact of the project on malnutrition outcomes in the community as well as outputs at the health centre level (malnutrition care outputs) and to describe quantitatively and qualitatively the changes that took place (or did not take place) within health centres as a result of the program. Although PBF schemes are blooming in low in-come countries, there is still a need for evidence, especially on the impact of revising the list of remunerated indicators. It is expected that this impact evaluation will be helpful for the national policy dialogue in Burundi, but it will also provide key evidence for countries with an existing PBF scheme and confronted with malnutrition problems on the appropriateness to extend the strategy to nutrition services. ClinicalTrials.gov PRS Identifier: NCT02721160; registered March 2016.
A cache-aided multiprocessor rollback recovery scheme
NASA Technical Reports Server (NTRS)
Wu, Kun-Lung; Fuchs, W. Kent
1989-01-01
This paper demonstrates how previous uniprocessor cache-aided recovery schemes can be applied to multiprocessor architectures, for recovering from transient processor failures, utilizing private caches and a global shared memory. As with cache-aided uniprocessor recovery, the multiprocessor cache-aided recovery scheme of this paper can be easily integrated into standard bus-based snoopy cache coherence protocols. A consistent shared memory state is maintained without the necessity of global check-pointing.
NASA Astrophysics Data System (ADS)
Wang, Xingwei; Zheng, Bin; Li, Shibo; Mulvihill, John J.; Chen, Xiaodong; Liu, Hong
2010-07-01
Karyotyping is an important process to classify chromosomes into standard classes and the results are routinely used by the clinicians to diagnose cancers and genetic diseases. However, visual karyotyping using microscopic images is time-consuming and tedious, which reduces the diagnostic efficiency and accuracy. Although many efforts have been made to develop computerized schemes for automated karyotyping, no schemes can get be performed without substantial human intervention. Instead of developing a method to classify all chromosome classes, we develop an automatic scheme to detect abnormal metaphase cells by identifying a specific class of chromosomes (class 22) and prescreen for suspicious chronic myeloid leukemia (CML). The scheme includes three steps: (1) iteratively segment randomly distributed individual chromosomes, (2) process segmented chromosomes and compute image features to identify the candidates, and (3) apply an adaptive matching template to identify chromosomes of class 22. An image data set of 451 metaphase cells extracted from bone marrow specimens of 30 positive and 30 negative cases for CML is selected to test the scheme's performance. The overall case-based classification accuracy is 93.3% (100% sensitivity and 86.7% specificity). The results demonstrate the feasibility of applying an automated scheme to detect or prescreen the suspicious cancer cases.
Multichannel feedforward control schemes with coupling compensation for active sound profiling
NASA Astrophysics Data System (ADS)
Mosquera-Sánchez, Jaime A.; Desmet, Wim; de Oliveira, Leopoldo P. R.
2017-05-01
Active sound profiling includes a number of control techniques that enables the equalization, rather than the mere reduction, of acoustic noise. Challenges may rise when trying to achieve distinct targeted sound profiles simultaneously at multiple locations, e.g., within a vehicle cabin. This paper introduces distributed multichannel control schemes for independently tailoring structural borne sound reaching a number of locations within a cavity. The proposed techniques address the cross interactions amongst feedforward active sound profiling units, which compensate for interferences of the primary sound at each location of interest by exchanging run-time data amongst the control units, while attaining the desired control targets. Computational complexity, convergence, and stability of the proposed multichannel schemes are examined in light of the physical system at which they are implemented. The tuning performance of the proposed algorithms is benchmarked with the centralized and pure-decentralized control schemes through computer simulations on a simplified numerical model, which has also been subjected to plant magnitude variations. Provided that the representation of the plant is accurate enough, the proposed multichannel control schemes have been shown as the only ones that properly deliver targeted active sound profiling tasks at each error sensor location. Experimental results in a 1:3-scaled vehicle mock-up further demonstrate that the proposed schemes are able to attain reductions of more than 60 dB upon periodic disturbances at a number of positions, while resolving cross-channel interferences. Moreover, when the sensor/actuator placement is found as defective at a given frequency, the inclusion of a regularization parameter in the cost function is seen to not hinder the proper operation of the proposed compensation schemes, at the time that it assures their stability, at the expense of losing control performance.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., unless the rough diamond has been controlled through the Kimberley Process Certification Scheme. (b) The... States of any rough diamond not controlled through the Kimberley Process Certification Scheme do not... Process Certification Scheme and thus is not permitted, except in the following circumstance. The...
NASA Astrophysics Data System (ADS)
Zhang, KeJia; Zhang, Long; Song, TingTing; Yang, YingHui
2016-06-01
In this paper, we propose certain different design ideas on a novel topic in quantum cryptography — quantum operation sharing (QOS). Following these unique ideas, three QOS schemes, the "HIEC" (The scheme whose messages are hidden in the entanglement correlation), "HIAO" (The scheme whose messages are hidden with the assistant operations) and "HIMB" (The scheme whose messages are hidden in the selected measurement basis), have been presented to share the single-qubit operations determinately on target states in a remote node. These schemes only require Bell states as quantum resources. Therefore, they can be directly applied in quantum networks, since Bell states are considered the basic quantum channels in quantum networks. Furthermore, after analyse on the security and resource consumptions, the task of QOS can be achieved securely and effectively in these schemes.
Voltage Drop Compensation Method for Active Matrix Organic Light Emitting Diode Displays
NASA Astrophysics Data System (ADS)
Choi, Sang-moo; Ryu, Do-hyung; Kim, Keum-nam; Choi, Jae-beom; Kim, Byung-hee; Berkeley, Brian
2011-03-01
In this paper, the conventional voltage drop compensation methods are reviewed and the novel design and driving scheme, the advanced power de-coupled (aPDC) driving method, is proposed to effectively compensate the voltage IR drop of active matrix light emitting diode (AMOLED) displays. The advanced PDC driving scheme can be applied to general AMOLED pixel circuits that have been developed with only minor modification or without requiring modification in pixel circuit. A 14-in. AMOLED panel with the aPDC driving scheme was fabricated. Long range uniformity (LRU) of the 14-in. AMOLED panel was improved from 43% without the aPDC driving scheme, to over 87% at the same brightness by using the scheme and the layout complexity of the panel with new design scheme is less than that of the panel with the conventional design scheme.
Statistical process control based chart for information systems security
NASA Astrophysics Data System (ADS)
Khan, Mansoor S.; Cui, Lirong
2015-07-01
Intrusion detection systems have a highly significant role in securing computer networks and information systems. To assure the reliability and quality of computer networks and information systems, it is highly desirable to develop techniques that detect intrusions into information systems. We put forward the concept of statistical process control (SPC) in computer networks and information systems intrusions. In this article we propose exponentially weighted moving average (EWMA) type quality monitoring scheme. Our proposed scheme has only one parameter which differentiates it from the past versions. We construct the control limits for the proposed scheme and investigate their effectiveness. We provide an industrial example for the sake of clarity for practitioner. We give comparison of the proposed scheme with EWMA schemes and p chart; finally we provide some recommendations for the future work.
NASA Astrophysics Data System (ADS)
Chirico, G. B.; Medina, H.; Romano, N.
2014-07-01
This paper examines the potential of different algorithms, based on the Kalman filtering approach, for assimilating near-surface observations into a one-dimensional Richards equation governing soil water flow in soil. Our specific objectives are: (i) to compare the efficiency of different Kalman filter algorithms in retrieving matric pressure head profiles when they are implemented with different numerical schemes of the Richards equation; (ii) to evaluate the performance of these algorithms when nonlinearities arise from the nonlinearity of the observation equation, i.e. when surface soil water content observations are assimilated to retrieve matric pressure head values. The study is based on a synthetic simulation of an evaporation process from a homogeneous soil column. Our first objective is achieved by implementing a Standard Kalman Filter (SKF) algorithm with both an explicit finite difference scheme (EX) and a Crank-Nicolson (CN) linear finite difference scheme of the Richards equation. The Unscented (UKF) and Ensemble Kalman Filters (EnKF) are applied to handle the nonlinearity of a backward Euler finite difference scheme. To accomplish the second objective, an analogous framework is applied, with the exception of replacing SKF with the Extended Kalman Filter (EKF) in combination with a CN numerical scheme, so as to handle the nonlinearity of the observation equation. While the EX scheme is computationally too inefficient to be implemented in an operational assimilation scheme, the retrieval algorithm implemented with a CN scheme is found to be computationally more feasible and accurate than those implemented with the backward Euler scheme, at least for the examined one-dimensional problem. The UKF appears to be as feasible as the EnKF when one has to handle nonlinear numerical schemes or additional nonlinearities arising from the observation equation, at least for systems of small dimensionality as the one examined in this study.
Extracting Baseline Electricity Usage Using Gradient Tree Boosting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taehoon; Lee, Dongeun; Choi, Jaesik
To understand how specific interventions affect a process observed over time, we need to control for the other factors that influence outcomes. Such a model that captures all factors other than the one of interest is generally known as a baseline. In our study of how different pricing schemes affect residential electricity consumption, the baseline would need to capture the impact of outdoor temperature along with many other factors. In this work, we examine a number of different data mining techniques and demonstrate Gradient Tree Boosting (GTB) to be an effective method to build the baseline. We train GTB onmore » data prior to the introduction of new pricing schemes, and apply the known temperature following the introduction of new pricing schemes to predict electricity usage with the expected temperature correction. Our experiments and analyses show that the baseline models generated by GTB capture the core characteristics over the two years with the new pricing schemes. In contrast to the majority of regression based techniques which fail to capture the lag between the peak of daily temperature and the peak of electricity usage, the GTB generated baselines are able to correctly capture the delay between the temperature peak and the electricity peak. Furthermore, subtracting this temperature-adjusted baseline from the observed electricity usage, we find that the resulting values are more amenable to interpretation, which demonstrates that the temperature-adjusted baseline is indeed effective.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noda, Akira; Iwashita, Yoshihisa; Souda, Hikaru
A phase rotation scheme of laser-produced ions from a solid target by the application of a synchronized RF electric voltage with a pulsed laser has been experimentally investigated with the use of a 100 TW laser, J-KAREN at JAEA, KPSI. Up to now, energy peaks of up to around 2.0 MeV have been created with a FWHM of 2.6% with good reproducibility using a two-gap resonator of a quarter wave length with the same frequency as the source laser (approx80 MHz). It is also found that the position of the peak can be well controlled by adjusting the relative phasemore » between the RF electric field and the laser, which is very promising for real applications of such laser-produced protons. In order to also apply such a phase rotation system for higher energy protons (<200 MeV), a scheme to use a small linear accelerator (LINAC) with multi-gaps is proposed as a phase rotator. With multi-gap structure, alternating focusing between longitudinal and transverse degrees of freedoms can be realized. From the point of compactness and realizing a small focused spot, however, a scheme combining separate quadrupole magnets just before and after the RF cavity excited with the Wideroee mode, might be more effective. The scheme presented here will realize laser-produced ions (protons) with good reproducibility by combining with RF technology.« less
Kumar, Navneet; Raj Chelliah, Thanga; Srivastava, S P
2015-07-01
Model Based Control (MBC) is one of the energy optimal controllers used in vector-controlled Induction Motor (IM) for controlling the excitation of motor in accordance with torque and speed. MBC offers energy conservation especially at part-load operation, but it creates ripples in torque and speed during load transition, leading to poor dynamic performance of the drive. This study investigates the opportunity for improving dynamic performance of a three-phase IM operating with MBC and proposes three control schemes: (i) MBC with a low pass filter (ii) torque producing current (iqs) injection in the output of speed controller (iii) Variable Structure Speed Controller (VSSC). The pre and post operation of MBC during load transition is also analyzed. The dynamic performance of a 1-hp, three-phase squirrel-cage IM with mine-hoist load diagram is tested. Test results are provided for the conventional field-oriented (constant flux) control and MBC (adjustable excitation) with proposed schemes. The effectiveness of proposed schemes is also illustrated for parametric variations. The test results and subsequent analysis confer that the motor dynamics improves significantly with all three proposed schemes in terms of overshoot/undershoot peak amplitude of torque and DC link power in addition to energy saving during load transitions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Application Of Multi-grid Method On China Seas' Temperature Forecast
NASA Astrophysics Data System (ADS)
Li, W.; Xie, Y.; He, Z.; Liu, K.; Han, G.; Ma, J.; Li, D.
2006-12-01
Correlation scales have been used in traditional scheme of 3-dimensional variational (3D-Var) data assimilation to estimate the background error covariance for the numerical forecast and reanalysis of atmosphere and ocean for decades. However there are still some drawbacks of this scheme. First, the correlation scales are difficult to be determined accurately. Second, the positive definition of the first-guess error covariance matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. (2005) indicated that a traditional 3D-Var only corrects some certain wavelength errors and its accuracy depends on the accuracy of the first-guess covariance. And in general, short wavelength error can not be well corrected until long one is corrected and then inaccurate first-guess covariance may mistakenly take long wave error as short wave ones and result in erroneous analysis. For the purpose of quickly minimizing the errors of long and short waves successively, a new 3D-Var data assimilation scheme, called multi-grid data assimilation scheme, is proposed in this paper. By assimilating the shipboard SST and temperature profiles data into a numerical model of China Seas, we applied this scheme in two-month data assimilation and forecast experiment which ended in a favorable result. Comparing with the traditional scheme of 3D-Var, the new scheme has higher forecast accuracy and a lower forecast Root-Mean-Square (RMS) error. Furthermore, this scheme was applied to assimilate the SST of shipboard, AVHRR Pathfinder Version 5.0 SST and temperature profiles at the same time, and a ten-month forecast experiment on sea temperature of China Seas was carried out, in which a successful forecast result was obtained. Particularly, the new scheme is demonstrated a great numerical efficiency in these analyses.
Consensus-based distributed cooperative learning from closed-loop neural control systems.
Chen, Weisheng; Hua, Shaoyong; Zhang, Huaguang
2015-02-01
In this paper, the neural tracking problem is addressed for a group of uncertain nonlinear systems where the system structures are identical but the reference signals are different. This paper focuses on studying the learning capability of neural networks (NNs) during the control process. First, we propose a novel control scheme called distributed cooperative learning (DCL) control scheme, by establishing the communication topology among adaptive laws of NN weights to share their learned knowledge online. It is further proved that if the communication topology is undirected and connected, all estimated weights of NNs can converge to small neighborhoods around their optimal values over a domain consisting of the union of all state orbits. Second, as a corollary it is shown that the conclusion on the deterministic learning still holds in the decentralized adaptive neural control scheme where, however, the estimated weights of NNs just converge to small neighborhoods of the optimal values along their own state orbits. Thus, the learned controllers obtained by DCL scheme have the better generalization capability than ones obtained by decentralized learning method. A simulation example is provided to verify the effectiveness and advantages of the control schemes proposed in this paper.
NASA Astrophysics Data System (ADS)
Tan, Xiaoqing; Zhang, Xiaoqian
2016-05-01
We propose two controlled quantum secure communication schemes by entanglement distillation or generalized measurement. The sender Alice, the receiver Bob and the controllers David and Cliff take part in the whole schemes. The supervisors David and Cliff can control the information transmitted from Alice to Bob by adjusting the local measurement angles θ _4 and θ _3. Bob can verify his secret information by classical one-way function after communication. The average amount of information is analyzed and compared for these two methods by MATLAB. The generalized measurement is a better scheme. Our schemes are secure against some well-known attacks because classical encryption and decoy states are used to ensure the security of the classical channel and the quantum channel.
Predictive Control of Networked Multiagent Systems via Cloud Computing.
Liu, Guo-Ping
2017-01-18
This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.
NASA Astrophysics Data System (ADS)
Bauer, Werner; Behrens, Jörn
2017-04-01
We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger absolute error values, it shows similar convergence rates as the other split schemes, but does not provide a satisfactory approximation of the dispersion relation as short waves are propagated much to fast. Despite this, the finding of this new scheme illustrates the potential of our discretization framework as a toolbox to find and to study new FE schemes based on new combinations of FE spaces. [1] Bauer, W. [2016], A new hierarchically-structured n-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7(1), 31-101.
Reliable numerical computation in an optimal output-feedback design
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.
Methods for control of tick vectors of Lyme Borreliosis
Jaenson, T.G.T.; Fish, D.; Ginsberg, H.S.; Gray, J.S.; Mather, T.N.; Piesman, J.
1991-01-01
During the IVth International Conference on Lyme Borreliosis in Stockholm, 1990, a workshop on control of Lyme disease vectors briefly reviewed: basic ecological principles for tick control; biocontrol of ticks; chemical control, including the use of repellents and use of permethrin-treated rodent nest material; tick control by habitat modification; and reduction of tick host availability. It was concluded that, although much research work remains, Lyme borreliosis is to a large extent a preventable infection. Avoidance of heavily tick-infested areas, personal protection using proper clothing, and prompt removal of attached ticks remain the most effective protective measures. Many other prophylactic measures are available and could be efficiently integrated into schemes to reduce the abundance of vectors. However, since the ecology of the infection varies greatly between different localities it may be necessary to apply different combinations of control methods in different endemic regions.
Flatness-based control and Kalman filtering for a continuous-time macroeconomic model
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.
2017-11-01
The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.
A hybrid deep learning approach to predict malignancy of breast lesions using mammograms
NASA Astrophysics Data System (ADS)
Wang, Yunzhi; Heidari, Morteza; Mirniaharikandehei, Seyedehnafiseh; Gong, Jing; Qian, Wei; Qiu, Yuchen; Zheng, Bin
2018-03-01
Applying deep learning technology to medical imaging informatics field has been recently attracting extensive research interest. However, the limited medical image dataset size often reduces performance and robustness of the deep learning based computer-aided detection and/or diagnosis (CAD) schemes. In attempt to address this technical challenge, this study aims to develop and evaluate a new hybrid deep learning based CAD approach to predict likelihood of a breast lesion detected on mammogram being malignant. In this approach, a deep Convolutional Neural Network (CNN) was firstly pre-trained using the ImageNet dataset and serve as a feature extractor. A pseudo-color Region of Interest (ROI) method was used to generate ROIs with RGB channels from the mammographic images as the input to the pre-trained deep network. The transferred CNN features from different layers of the CNN were then obtained and a linear support vector machine (SVM) was trained for the prediction task. By applying to a dataset involving 301 suspicious breast lesions and using a leave-one-case-out validation method, the areas under the ROC curves (AUC) = 0.762 and 0.792 using the traditional CAD scheme and the proposed deep learning based CAD scheme, respectively. An ensemble classifier that combines the classification scores generated by the two schemes yielded an improved AUC value of 0.813. The study results demonstrated feasibility and potentially improved performance of applying a new hybrid deep learning approach to develop CAD scheme using a relatively small dataset of medical images.
Robyn, Paul Jacob; Sauerborn, Rainer; Bärnighausen, Till
2013-01-01
Objectives Community-based health insurance (CBI) is a common mechanism to generate financial resources for health care in developing countries. We review for the first time provider payment methods used in CBI in developing countries and their impact on CBI performance. Methods We conducted a systematic review of the literature on provider payment methods used by CBI in developing countries published up to January 2010. Results Information on provider payment was available for a total of 32 CBI schemes in 34 reviewed publications: 17 schemes in South Asia, 10 in sub-Saharan Africa, 4 in East Asia and 1 in Latin America. Various types of provider payment were applied by the CBI schemes: 17 used fee-for-service, 12 used salaries, 9 applied a coverage ceiling, 7 used capitation and 6 applied a co-insurance. The evidence suggests that provider payment impacts CBI performance through provider participation and support for CBI, population enrolment and patient satisfaction with CBI, quantity and quality of services provided and provider and patient retention. Lack of provider participation in designing and choosing a CBI payment method can lead to reduced provider support for the scheme. Conclusion CBI schemes in developing countries have used a wide range of provider payment methods. The existing evidence suggests that payment methods are a key determinant of CBI performance and sustainability, but the strength of this evidence is limited since it is largely based on observational studies rather than on trials or on quasi-experimental research. According to the evidence, provider payment can affect provider participation, satisfaction and retention in CBI; the quantity and quality of services provided to CBI patients; patient demand of CBI services; and population enrollment, risk pooling and financial sustainability of CBI. CBI schemes should carefully consider how their current payment methods influence their performance, how changes in the methods could improve performance, and how such effects could be assessed with scientific rigour to increase the strength of evidence on this topic. PMID:22522770
Robyn, Paul Jacob; Sauerborn, Rainer; Bärnighausen, Till
2013-03-01
Community-based health insurance (CBI) is a common mechanism to generate financial resources for health care in developing countries. We review for the first time provider payment methods used in CBI in developing countries and their impact on CBI performance. We conducted a systematic review of the literature on provider payment methods used by CBI in developing countries published up to January 2010. Information on provider payment was available for a total of 32 CBI schemes in 34 reviewed publications: 17 schemes in South Asia, 10 in sub-Saharan Africa, 4 in East Asia and 1 in Latin America. Various types of provider payment were applied by the CBI schemes: 17 used fee-for-service, 12 used salaries, 9 applied a coverage ceiling, 7 used capitation and 6 applied a co-insurance. The evidence suggests that provider payment impacts CBI performance through provider participation and support for CBI, population enrolment and patient satisfaction with CBI, quantity and quality of services provided and provider and patient retention. Lack of provider participation in designing and choosing a CBI payment method can lead to reduced provider support for the scheme. CBI schemes in developing countries have used a wide range of provider payment methods. The existing evidence suggests that payment methods are a key determinant of CBI performance and sustainability, but the strength of this evidence is limited since it is largely based on observational studies rather than on trials or on quasi-experimental research. According to the evidence, provider payment can affect provider participation, satisfaction and retention in CBI; the quantity and quality of services provided to CBI patients; patient demand of CBI services; and population enrollment, risk pooling and financial sustainability of CBI. CBI schemes should carefully consider how their current payment methods influence their performance, how changes in the methods could improve performance, and how such effects could be assessed with scientific rigour to increase the strength of evidence on this topic.
[Clinical research of analgesic for labor with acupoint injection and electroacupuncture].
Liu, Xiaohui; Wu, Lingling; Yi, Wei
2015-11-01
To explore a safe and effective scheme of analgesic for labor. Eighty-four primiparas without contraindication of vaginal delivery were divided into an observation group and a control group, 42 cases in each one. In the observation group, the acupoint injection was given at Zusanli (ST 36) combined with electroacupuncture (EA) at Hegu (LI 4) and Sanyinjiao (SP 6) till the cervical opening at the end of first stage labor. In the control group, the routine respiratory instruction was applied. In 5 min, 10 min and 60 min of acupuncture (the same time points in the control group) as well as at the end of the first and second stage labor, the analgesic effect was assessed for the primiparas of the two groups. The labor stages, adverse reactions, postpartum hemorrhage, postpartum urine retention, newborn asphyxia rate and usage rate of oxytocin were compared between the two groups. In the observation group, in 5 min, 10 min and 60 min of acupuncture as well as at the end of the first and second stages, the visual analogue scale (VAS) was lower apparently as compared with the control group at the corresponding time points (all P < 0.05). The differences in the time limit in the active period, the second and third stages were not significant between the two groups (all P > 0.05). The incidence of adverse reactions and the usage rate of oxytocin were lower than those in the control group [2.4% (1/42) vs 31.0% (13/42); 2.4% (1/42) vs 23.8% (10/42), both P < 0.05]. The differences in postpartum hemorrhage, postpartum urine retention and newborn asphyxia rate were not significant between the two groups (all P > 0.05). The combination of acupoint injection and EA is the effective analgesic scheme for labor. This scheme effectively alleviates labor pain and has no maternal and child complications.
A decentralized approach to reducing the social costs of cascading failures
NASA Astrophysics Data System (ADS)
Hines, Paul
Large cascading failures in electrical power networks come with enormous social costs. These can be direct financial costs, such as the loss of refrigerated foods in grocery stores, or more indirect social costs, such as the traffic congestion that results from the failure of traffic signals. While engineers and policy makers have made numerous technical and organizational changes to reduce the frequency and impact of large cascading failures, the existing data, as described in Chapter 2 of this work, indicate that the overall frequency and impact of large electrical blackouts in the United States are not decreasing. Motivated by the cascading failure problem, this thesis describes a new method for Distributed Model Predictive Control and a power systems application. The central goal of the method, when applied to power systems, is to reduce the social costs of cascading failures by making small, targeted reductions in load and generation and changes to generator voltage set points. Unlike some existing schemes that operate from centrally located control centers, the method is operated by software agents located at substations distributed throughout the power network. The resulting multi-agent control system is a new approach to decentralized control, combining Distributed Model Predictive Control and Reciprocal Altruism. Experimental results indicate that this scheme can in fact decrease the average size, and thus social costs, of cascading failures. Over 100 randomly generated disturbances to a model of the IEEE 300 bus test network, the method resulted in nearly an order of magnitude decrease in average event size (measured in cost) relative to cascading failure simulations without remedial control actions. Additionally, the communication requirements for the method are measured, and found to be within the bandwidth capabilities of current communications technology (on the order of 100kB/second). Experiments on several resistor networks with varying structures, including a random graph, a scale-free network and a power grid indicate that the effectiveness of decentralized control schemes, like the method proposed here, is a function of the structure of the network that is to be controlled.
NASA Astrophysics Data System (ADS)
Takano, Naoki; Tachikawa, Hiroto; Miyano, Takaya; Nishiyabu, Kazuaki
Aiming at the practical use of polyethylene glycol (PEG) microneedles for transdermal drug delivery system (DDS), a testing apparatus for their insertion into cultured human skin has been developed. To simulate the variety of conditions of human skin, biaxial tension can be applied to the cultured human skin. An adopted testing scheme to apply and control the biaxial tension is similar to the deep-draw forming technique. An attention was also paid to the short-time setup of small, thin and wet cultured skin. One dimensional array with four needles was inserted and influence of tension was discussed. It was found that tension, deflection of skin during insertion and original curvature of skin are the important parameters for microneedles array design.
Selective Coupling Enhances Harmonic Generation of Whispering-Gallery Modes
NASA Astrophysics Data System (ADS)
Trainor, Luke S.; Sedlmeir, Florian; Peuntinger, Christian; Schwefel, Harald G. L.
2018-02-01
We demonstrate second-harmonic generation (SHG) in an x -cut congruent lithium niobate (LN) whispering-gallery mode (WGM) resonator. First, we show theoretically that independent control of the coupling of the pump and signal modes is optimal for high conversion rates. A coupling scheme based on our earlier work [F. Sedlmeir et al., Phys. Rev. Applied 7, 024029 (2017), 10.1103/PhysRevApplied.7.024029] is then implemented experimentally to verify this improvement. Thereby, we are able to improve on the efficiency of SHG by more than an order of magnitude by selectively outcoupling using a LN prism, utilizing the birefringence of it and the resonator in kind. This method is also applicable to other nonlinear processes in WGM resonators.
Adaptive threshold control for auto-rate fallback algorithm in IEEE 802.11 multi-rate WLANs
NASA Astrophysics Data System (ADS)
Wu, Qilin; Lu, Yang; Zhu, Xiaolin; Ge, Fangzhen
2012-03-01
The IEEE 802.11 standard supports multiple rates for data transmission in the physical layer. Nowadays, to improve network performance, a rate adaptation scheme called auto-rate fallback (ARF) is widely adopted in practice. However, ARF scheme suffers performance degradation in multiple contending nodes environments. In this article, we propose a novel rate adaptation scheme called ARF with adaptive threshold control. In multiple contending nodes environment, the proposed scheme can effectively mitigate the frame collision effect on rate adaptation decision by adaptively adjusting rate-up and rate-down threshold according to the current collision level. Simulation results show that the proposed scheme can achieve significantly higher throughput than the other existing rate adaptation schemes. Furthermore, the simulation results also demonstrate that the proposed scheme can effectively respond to the varying channel condition.
a Thtee-Dimensional Variational Assimilation Scheme for Satellite Aod
NASA Astrophysics Data System (ADS)
Liang, Y.; Zang, Z.; You, W.
2018-04-01
A three-dimensional variational data assimilation scheme is designed for satellite AOD based on the IMPROVE (Interagency Monitoring of Protected Visual Environments) equation. The observation operator that simulates AOD from the control variables is established by the IMPROVE equation. All of the 16 control variables in the assimilation scheme are the mass concentrations of aerosol species from the Model for Simulation Aerosol Interactions and Chemistry scheme, so as to take advantage of this scheme in providing comprehensive analyses of species concentrations and size distributions as well as be calculating efficiently. The assimilation scheme can save computational resources as the IMPROVE equation is a quadratic equation. A single-point observation experiment shows that the information from the single-point AOD is effectively spread horizontally and vertically.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wang, Pengfei
2012-06-01
The current schemes of detecting the status of passengers in airplanes cannot satisfy the more strict regulations recently released by the United States Transportation Security Administration. In basis of investigation on the current seat occupancy sensors for vehicles, in this paper we present a novel scheme of seat occupancy sensors based on Fiber Bragg Grating technology to improve the in-flight security of airplanes. This seat occupancy sensor system can be used to detect the status of passengers and to trigger the airbags to control the inflation of air bags, which have been installed in the airplanes of some major airlines under the new law. This scheme utilizes our previous research results of Weight-In- Motion sensor system based on optical fiber Bragg grating. In contrast to the current seat occupancy sensors for vehicles, this new seat occupancy sensor has so many merits that it is very suitable to be applied in aerospace industry or high speed railway system. Moreover, combined with existing Fiber Bragg Grating strain or temperature sensor systems built in airplanes, this proposed method can construct a complete airline passenger management system.
A new performance index for the repetitive motion of mobile manipulators.
Xiao, Lin; Zhang, Yunong
2014-02-01
A mobile manipulator is a robotic device composed of a mobile platform and a stationary manipulator fixed to the platform. To achieve the repetitive motion control of mobile manipulators, the mobile platform and the manipulator have to realize the repetitive motion simultaneously. To do so, a novel quadratic performance index is, for the first time, designed and presented in this paper, of which the effectiveness is analyzed by following a neural dynamics method. Then, a repetitive motion scheme is proposed by combining the criterion, physical constraints, and integrated kinematical equations of mobile manipulators, which is further reformulated as a quadratic programming (QP) subject to equality and bound constraints. In addition, two important Bridge theorems are established to prove that such a QP can be converted equivalently into a linear variational inequality, and then equivalently into a piecewise-linear projection equation (PLPE). A real-time numerical algorithm based on PLPE is thus developed and applied for the online solution of the resultant QP. Two tracking-path tasks demonstrate the effectiveness and accuracy of the repetitive motion scheme. In addition, comparisons between the nonrepetitive and repetitive motion further validate the superiority and novelty of the proposed scheme.
A semi-Lagrangian advection scheme for radioactive tracers in a regional spectral model
NASA Astrophysics Data System (ADS)
Chang, E.-C.; Yoshimura, K.
2015-06-01
In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.
Lu, Chi-Jie; Chang, Chi-Chang
2014-01-01
Sales forecasting plays an important role in operating a business since it can be used to determine the required inventory level to meet consumer demand and avoid the problem of under/overstocking. Improving the accuracy of sales forecasting has become an important issue of operating a business. This study proposes a hybrid sales forecasting scheme by combining independent component analysis (ICA) with K-means clustering and support vector regression (SVR). The proposed scheme first uses the ICA to extract hidden information from the observed sales data. The extracted features are then applied to K-means algorithm for clustering the sales data into several disjoined clusters. Finally, the SVR forecasting models are applied to each group to generate final forecasting results. Experimental results from information technology (IT) product agent sales data reveal that the proposed sales forecasting scheme outperforms the three comparison models and hence provides an efficient alternative for sales forecasting.
2014-01-01
Sales forecasting plays an important role in operating a business since it can be used to determine the required inventory level to meet consumer demand and avoid the problem of under/overstocking. Improving the accuracy of sales forecasting has become an important issue of operating a business. This study proposes a hybrid sales forecasting scheme by combining independent component analysis (ICA) with K-means clustering and support vector regression (SVR). The proposed scheme first uses the ICA to extract hidden information from the observed sales data. The extracted features are then applied to K-means algorithm for clustering the sales data into several disjoined clusters. Finally, the SVR forecasting models are applied to each group to generate final forecasting results. Experimental results from information technology (IT) product agent sales data reveal that the proposed sales forecasting scheme outperforms the three comparison models and hence provides an efficient alternative for sales forecasting. PMID:25045738
Analysis and design of digital output interface devices for gas turbine electronic controls
NASA Technical Reports Server (NTRS)
Newirth, D. M.; Koenig, E. W.
1976-01-01
A trade study was performed on twenty-one digital output interface schemes for gas turbine electronic controls to select the most promising scheme based on criteria of reliability, performance, cost, and sampling requirements. The most promising scheme, a digital effector with optical feedback of the fuel metering valve position, was designed.
New User Support in the University Network with DACS Scheme
ERIC Educational Resources Information Center
Odagiri, Kazuya; Yaegashi, Rihito; Tadauchi, Masaharu; Ishii, Naohiro
2007-01-01
Purpose: The purpose of this paper is to propose and examine the new user support in university network. Design/methodology/approach: The new user support is realized by use of DACS (Destination Addressing Control System) Scheme which manages a whole network system through communication control on a client computer. This DACS Scheme has been…
Laser diode side-pumped Nd:YVO4 microchip laser with film-etched microcavity mirrors.
Li, Jiyang; Niu, Yanxiong; Chen, Sanbin; Tan, Yidong
2017-10-01
Microchip lasers are applied as the light sources on various occasions with the end-pumping scheme. However, the vibration, the temperature drift, or the mechanical deformation of the pumping light in laser diodes in the end-pumping scheme will lead to instability in the microchip laser output, which causes errors and malfunctioning in the optic systems. In this paper, the side-pumping scheme is applied for improving the disturbance-resisting ability of the microchip laser. The transverse mode and the frequency purity of the laser output are tested. To ensure unicity in the frequency of the laser output, numerical simulations based on Fresnel-Kirchhoff diffraction theory are conducted on the parameters of the microchip laser cavity. Film-etching technique is applied to restrain the area of the film and form the microcavity mirrors. The laser output with microcavity mirrors is ensured to be in single frequency and with good beam quality, which is significant in the applications of microchip lasers as the light sources in optical systems.
Cryptanalysis of Chatterjee-Sarkar Hierarchical Identity-Based Encryption Scheme at PKC 06
NASA Astrophysics Data System (ADS)
Park, Jong Hwan; Lee, Dong Hoon
In 2006, Chatterjee and Sarkar proposed a hierarchical identity-based encryption (HIBE) scheme which can support an unbounded number of identity levels. This property is particularly useful in providing forward secrecy by embedding time components within hierarchical identities. In this paper we show that their scheme does not provide the claimed property. Our analysis shows that if the number of identity levels becomes larger than the value of a fixed public parameter, an unintended receiver can reconstruct a new valid ciphertext and decrypt the ciphertext using his or her own private key. The analysis is similarly applied to a multi-receiver identity-based encryption scheme presented as an application of Chatterjee and Sarkar's HIBE scheme.
Multigrid schemes for viscous hypersonic flows
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Radespiel, R.
1993-01-01
Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving two different hypersonic flow problems. Some new multigrid schemes, based on semicoarsening strategies, are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 x 10(exp 6).
Expert Assessment of Stigmergy: A Report for the Department of National Defence
2005-10-01
pheromone table may be reduced by implementing a clustering scheme. Termite can take advantage of the wireless broadcast medium, since it is possible for...comparing it with any other routing scheme. The Termite scheme [RW] differs from the source routing [ITT] by applying pheromone trails or random walks...rather than uniform or probabilistic ones. Random walk ants differ from uniform ants since they follow pheromone trails, if any. Termite [RW] also
Modeling regulated water utility investment incentives
NASA Astrophysics Data System (ADS)
Padula, S.; Harou, J. J.
2014-12-01
This work attempts to model the infrastructure investment choices of privatized water utilities subject to rate of return and price cap regulation. The goal is to understand how regulation influences water companies' investment decisions such as their desire to engage in transfers with neighbouring companies. We formulate a profit maximization capacity expansion model that finds the schedule of new supply, demand management and transfer schemes that maintain the annual supply-demand balance and maximize a companies' profit under the 2010-15 price control process in England. Regulatory incentives for costs savings are also represented in the model. These include: the CIS scheme for the capital expenditure (capex) and incentive allowance schemes for the operating expenditure (opex) . The profit-maximizing investment program (what to build, when and what size) is compared with the least cost program (social optimum). We apply this formulation to several water companies in South East England to model performance and sensitivity to water network particulars. Results show that if companies' are able to outperform the regulatory assumption on the cost of capital, a capital bias can be generated, due to the fact that the capital expenditure, contrarily to opex, can be remunerated through the companies' regulatory capital value (RCV). The occurrence of the 'capital bias' or its entity depends on the extent to which a company can finance its investments at a rate below the allowed cost of capital. The bias can be reduced by the regulatory penalties for underperformances on the capital expenditure (CIS scheme); Sensitivity analysis can be applied by varying the CIS penalty to see how and to which extent this impacts the capital bias effect. We show how regulatory changes could potentially be devised to partially remove the 'capital bias' effect. Solutions potentially include allowing for incentives on total expenditure rather than separately for capex and opex and allowing both opex and capex to be remunerated through a return on the company's regulatory capital value.
Analysis of 3D poroelastodynamics using BEM based on modified time-step scheme
NASA Astrophysics Data System (ADS)
Igumnov, L. A.; Petrov, A. N.; Vorobtsov, I. V.
2017-10-01
The development of 3d boundary elements modeling of dynamic partially saturated poroelastic media using a stepping scheme is presented in this paper. Boundary Element Method (BEM) in Laplace domain and the time-stepping scheme for numerical inversion of the Laplace transform are used to solve the boundary value problem. The modified stepping scheme with a varied integration step for quadrature coefficients calculation using the symmetry of the integrand function and integral formulas of Strongly Oscillating Functions was applied. The problem with force acting on a poroelastic prismatic console end was solved using the developed method. A comparison of the results obtained by the traditional stepping scheme with the solutions obtained by this modified scheme shows that the computational efficiency is better with usage of combined formulas.
Control Of A Serpentine Robot For Inspection Tasks
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Colbaugh, Richard D.; Glass, Kristin L.
1996-01-01
Efficient, robust kinematic control scheme developed to control serpentine robot designed to inspect complex structure. Takes full advantage of multiple redundant degrees of freedom of robot to provide considerable dexterity for maneuvering through workspace cluttered with stationary obstacles at initially unknown positions. Control scheme produces slithering motion.
A new family of high-order compact upwind difference schemes with good spectral resolution
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Yao, Zhaohui; He, Feng; Shen, M. Y.
2007-12-01
This paper presents a new family of high-order compact upwind difference schemes. Unknowns included in the proposed schemes are not only the values of the function but also those of its first and higher derivatives. Derivative terms in the schemes appear only on the upwind side of the stencil. One can calculate all the first derivatives exactly as one solves explicit schemes when the boundary conditions of the problem are non-periodic. When the proposed schemes are applied to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inversions are required. Resolution optimization is used to enhance the spectral representation of the first derivative, and this produces a scheme with the highest spectral accuracy among all known compact schemes. For non-periodic boundary conditions, boundary schemes constructed in virtue of the assistant scheme make the schemes not only possess stability for any selective length scale on every point in the computational domain but also satisfy the principle of optimal resolution. Also, an improved shock-capturing method is developed. Finally, both the effectiveness of the new hybrid method and the accuracy of the proposed schemes are verified by executing four benchmark test cases.
A taxonomy for mechanical ventilation: 10 fundamental maxims.
Chatburn, Robert L; El-Khatib, Mohamad; Mireles-Cabodevila, Eduardo
2014-11-01
The American Association for Respiratory Care has declared a benchmark for competency in mechanical ventilation that includes the ability to "apply to practice all ventilation modes currently available on all invasive and noninvasive mechanical ventilators." This level of competency presupposes the ability to identify, classify, compare, and contrast all modes of ventilation. Unfortunately, current educational paradigms do not supply the tools to achieve such goals. To fill this gap, we expand and refine a previously described taxonomy for classifying modes of ventilation and explain how it can be understood in terms of 10 fundamental constructs of ventilator technology: (1) defining a breath, (2) defining an assisted breath, (3) specifying the means of assisting breaths based on control variables specified by the equation of motion, (4) classifying breaths in terms of how inspiration is started and stopped, (5) identifying ventilator-initiated versus patient-initiated start and stop events, (6) defining spontaneous and mandatory breaths, (7) defining breath sequences (8), combining control variables and breath sequences into ventilatory patterns, (9) describing targeting schemes, and (10) constructing a formal taxonomy for modes of ventilation composed of control variable, breath sequence, and targeting schemes. Having established the theoretical basis of the taxonomy, we demonstrate a step-by-step procedure to classify any mode on any mechanical ventilator. Copyright © 2014 by Daedalus Enterprises.
Cyber and physical equipment digital control system in Industry 4.0 item designing company
NASA Astrophysics Data System (ADS)
Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.
2018-05-01
The problem of organization of digital control of the item designing company equipped with cyber and physical systems is being studied. A scheme of cyber and physical systems and personnel interaction in the Industry 4.0 smart factory company is presented. A scheme of assembly units transportation in the Industry 4.0 smart factory company is provided. A scheme of digital control system in the Industry 4.0 smart factory company is given.
Active Control of Power Exhaust in Strongly Heated ASDEX Upgrade Plasmas
NASA Astrophysics Data System (ADS)
Dux, Ralph; Kallenbach, Arne; Bernert, Matthias; Eich, Thomas; Fuchs, Christoph; Giannone, Louis; Herrmann, Albrecht; Schweinzer, Josef; Treutterer, Wolfgang
2012-10-01
Due to the absence of carbon as an intrinsic low-Z radiator, and tight limits for the acceptable power load on the divertor target, ITER will rely on impurity seeding for radiative power dissipation and for generation of partial detachment. The injection of more than one radiating species is required to optimise the power removal in the main plasma and in the divertor region, i.e. a low-Z species for radiation in the divertor and a medium-Z species for radiation in the outer core plasma. In ASDEX Upgrade, a set of robust sensors, which is suitable to feedback control the radiated power in the main chamber and the divertor as well as the electron temperature at the target, has been developed. Different feedback schemes were applied in H-mode discharges with a maximum heating power of up to 23,W, i.e. at ITER values of P/R (power per major radius) to control all combinations of power flux into the divertor region, power flux onto the target or electron temperature at the target through injection of nitrogen as the divertor radiator and argon as the main chamber radiator. Even at the highest heating powers the peak heat flux density at the target is kept at benign values. The control schemes and the plasma behaviour in these discharges will be discussed.
Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms
NASA Technical Reports Server (NTRS)
Lee, Jeh Won
1991-01-01
The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.
An exponential time-integrator scheme for steady and unsteady inviscid flows
NASA Astrophysics Data System (ADS)
Li, Shu-Jie; Luo, Li-Shi; Wang, Z. J.; Ju, Lili
2018-07-01
An exponential time-integrator scheme of second-order accuracy based on the predictor-corrector methodology, denoted PCEXP, is developed to solve multi-dimensional nonlinear partial differential equations pertaining to fluid dynamics. The effective and efficient implementation of PCEXP is realized by means of the Krylov method. The linear stability and truncation error are analyzed through a one-dimensional model equation. The proposed PCEXP scheme is applied to the Euler equations discretized with a discontinuous Galerkin method in both two and three dimensions. The effectiveness and efficiency of the PCEXP scheme are demonstrated for both steady and unsteady inviscid flows. The accuracy and efficiency of the PCEXP scheme are verified and validated through comparisons with the explicit third-order total variation diminishing Runge-Kutta scheme (TVDRK3), the implicit backward Euler (BE) and the implicit second-order backward difference formula (BDF2). For unsteady flows, the PCEXP scheme generates a temporal error much smaller than the BDF2 scheme does, while maintaining the expected acceleration at the same time. Moreover, the PCEXP scheme is also shown to achieve the computational efficiency comparable to the implicit schemes for steady flows.
NASA Astrophysics Data System (ADS)
Canestrelli, Alberto; Dumbser, Michael; Siviglia, Annunziato; Toro, Eleuterio F.
2010-03-01
In this paper, we study the numerical approximation of the two-dimensional morphodynamic model governed by the shallow water equations and bed-load transport following a coupled solution strategy. The resulting system of governing equations contains non-conservative products and it is solved simultaneously within each time step. The numerical solution is obtained using a new high-order accurate centered scheme of the finite volume type on unstructured meshes, which is an extension of the one-dimensional PRICE-C scheme recently proposed in Canestrelli et al. (2009) [5]. The resulting first-order accurate centered method is then extended to high order of accuracy in space via a high order WENO reconstruction technique and in time via a local continuous space-time Galerkin predictor method. The scheme is applied to the shallow water equations and the well-balanced properties of the method are investigated. Finally, we apply the new scheme to different test cases with both fixed and movable bed. An attractive future of the proposed method is that it is particularly suitable for engineering applications since it allows practitioners to adopt the most suitable sediment transport formula which better fits the field data.
On Multi-Dimensional Unstructured Mesh Adaption
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1999-01-01
Anisotropic unstructured mesh adaption is developed for a truly multi-dimensional upwind fluctuation splitting scheme, as applied to scalar advection-diffusion. The adaption is performed locally using edge swapping, point insertion/deletion, and nodal displacements. Comparisons are made versus the current state of the art for aggressive anisotropic unstructured adaption, which is based on a posteriori error estimates. Demonstration of both schemes to model problems, with features representative of compressible gas dynamics, show the present method to be superior to the a posteriori adaption for linear advection. The performance of the two methods is more similar when applied to nonlinear advection, with a difference in the treatment of shocks. The a posteriori adaption can excessively cluster points to a shock, while the present multi-dimensional scheme tends to merely align with a shock, using fewer nodes. As a consequence of this alignment tendency, an implementation of eigenvalue limiting for the suppression of expansion shocks is developed for the multi-dimensional distribution scheme. The differences in the treatment of shocks by the adaption schemes, along with the inherently low levels of artificial dissipation in the fluctuation splitting solver, suggest the present method is a strong candidate for applications to compressible gas dynamics.
Liu, Yan-Jun; Gao, Ying; Tong, Shaocheng; Chen, C L Philip
2016-01-01
In this paper, an effective adaptive control approach is constructed to stabilize a class of nonlinear discrete-time systems, which contain unknown functions, unknown dead-zone input, and unknown control direction. Different from linear dead zone, the dead zone, in this paper, is a kind of nonlinear dead zone. To overcome the noncausal problem, which leads to the control scheme infeasible, the systems can be transformed into a m -step-ahead predictor. Due to nonlinear dead-zone appearance, the transformed predictor still contains the nonaffine function. In addition, it is assumed that the gain function of dead-zone input and the control direction are unknown. These conditions bring about the difficulties and the complicacy in the controller design. Thus, the implicit function theorem is applied to deal with nonaffine dead-zone appearance, the problem caused by the unknown control direction can be resolved through applying the discrete Nussbaum gain, and the neural networks are used to approximate the unknown function. Based on the Lyapunov theory, all the signals of the resulting closed-loop system are proved to be semiglobal uniformly ultimately bounded. Moreover, the tracking error is proved to be regulated to a small neighborhood around zero. The feasibility of the proposed approach is demonstrated by a simulation example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
A rigid body model for the entire system which accounts for the load distribution scheme proposed in Part 1 as well as for the dynamics of the manipulators and the kinematic constraints is derived in the joint space. A technique is presented for expressing the object dynamics in terms of the joint variables of both manipulators which leads to a positive definite and symmetric inertia matrix. The model is then transformed to obtain reduced order equations of motion and a separate set of equations which govern the behavior of the internal contact forces. The control architecture is applied to themore » model which results in the explicit decoupling of the position and internal contact force-controlled degrees of freedom (DOF).« less
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.
A New Scheme for Probabilistic Teleportation and Its Potential Applications
NASA Astrophysics Data System (ADS)
Wei, Jia-Hua; Dai, Hong-Yi; Zhang, Ming
2013-12-01
We propose a novel scheme to probabilistically teleport an unknown two-level quantum state when the information of the partially entangled state is only available for the sender. This is in contrast with the fact that the receiver must know the non-maximally entangled state in previous typical schemes for the teleportation. Additionally, we illustrate two potential applications of the novel scheme for probabilistic teleportation from a sender to a receiver with the help of an assistant, who plays distinct roles under different communication conditions, and our results show that the novel proposal could enlarge the applied range of probabilistic teleportation.
One-third selection scheme for addressing a ferroelectric matrix arrangement
NASA Technical Reports Server (NTRS)
Tannas, Jr., Lawrence E. (Inventor)
1979-01-01
An improved scheme for selectively addressing a matrix arrangement comprised of ferroelectrics having x and y orthogonally disposed intersecting lines. A one-third selection scheme is utilized that includes normalized selection signals having amplitudes: V.sub.x =0; V.sub.x =2/3; V.sub.y =1/3; and V.sub.y =1, which signals can be applied to the intersection of an x and y-line. The instant selection scheme minimizes both hysteresis creep and the cross-coupling voltage between x and y-lines to prevent undesirable hysteresis switching of the ferroelectric matrix arrangement.
Arbitrated Quantum Signature with Hamiltonian Algorithm Based on Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Shi, Ronghua; Ding, Wanting; Shi, Jinjing
2018-03-01
A novel arbitrated quantum signature (AQS) scheme is proposed motivated by the Hamiltonian algorithm (HA) and blind quantum computation (BQC). The generation and verification of signature algorithm is designed based on HA, which enables the scheme to rely less on computational complexity. It is unnecessary to recover original messages when verifying signatures since the blind quantum computation is applied, which can improve the simplicity and operability of our scheme. It is proved that the scheme can be deployed securely, and the extended AQS has some extensive applications in E-payment system, E-government, E-business, etc.
Multiparty Quantum Blind Signature Scheme Based on Graph States
NASA Astrophysics Data System (ADS)
Jian-Wu, Liang; Xiao-Shu, Liu; Jin-Jing, Shi; Ying, Guo
2018-05-01
A multiparty quantum blind signature scheme is proposed based on the principle of graph state, in which the unitary operations of graph state particles can be applied to generate the quantum blind signature and achieve verification. Different from the classical blind signature based on the mathematical difficulty, the scheme could guarantee not only the anonymity but also the unconditionally security. The analysis shows that the length of the signature generated in our scheme does not become longer as the number of signers increases, and it is easy to increase or decrease the number of signers.
Arbitrated Quantum Signature with Hamiltonian Algorithm Based on Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Shi, Ronghua; Ding, Wanting; Shi, Jinjing
2018-07-01
A novel arbitrated quantum signature (AQS) scheme is proposed motivated by the Hamiltonian algorithm (HA) and blind quantum computation (BQC). The generation and verification of signature algorithm is designed based on HA, which enables the scheme to rely less on computational complexity. It is unnecessary to recover original messages when verifying signatures since the blind quantum computation is applied, which can improve the simplicity and operability of our scheme. It is proved that the scheme can be deployed securely, and the extended AQS has some extensive applications in E-payment system, E-government, E-business, etc.
NASA Astrophysics Data System (ADS)
Kim, Do-Bin; Kwon, Dae Woong; Kim, Seunghyun; Lee, Sang-Ho; Park, Byung-Gook
2018-02-01
To obtain high channel boosting potential and reduce a program disturbance in channel stacked NAND flash memory with layer selection by multilevel (LSM) operation, a new program scheme using boosted common source line (CSL) is proposed. The proposed scheme can be achieved by applying proper bias to each layer through its own CSL. Technology computer-aided design (TCAD) simulations are performed to verify the validity of the new method in LSM. Through TCAD simulation, it is revealed that the program disturbance characteristics is effectively improved by the proposed scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn
2014-01-01
The numerical simulation of Magnetohydrodynamics (MHD) flows with complex boundaries has been a topic of great interest in the development of a fusion reactor blanket for the difficulty to accurately simulate the Hartmann layers and side layers along arbitrary geometries. An adaptive version of a consistent and conservative scheme has been developed for simulating the MHD flows. Besides, the present study forms the first attempt to apply the cut-cell approach for irregular wall-bounded MHD flows, which is more flexible and conveniently implemented under adaptive mesh refinement (AMR) technique. It employs a Volume-of-Fluid (VOF) approach to represent the fluid–conducting wall interfacemore » that makes it possible to solve the fluid–solid coupling magnetic problems, emphasizing at how electric field solver is implemented when conductivity is discontinuous in cut-cell. For the irregular cut-cells, the conservative interpolation technique is applied to calculate the Lorentz force at cell-center. On the other hand, it will be shown how consistent and conservative scheme is implemented on fine/coarse mesh boundaries when using AMR technique. Then, the applied numerical schemes are validated by five test simulations and excellent agreement was obtained for all the cases considered, simultaneously showed good consistency and conservative properties.« less
Niu, Jie; Yang, Qianqian; Wang, Xiaoyun; Song, Rong
2017-01-01
Robot-aided rehabilitation has become an important technology to restore and reinforce motor functions of patients with extremity impairment, whereas it can be extremely challenging to achieve satisfactory tracking performance due to uncertainties and disturbances during rehabilitation training. In this paper, a wire-driven rehabilitation robot that can work over a three-dimensional space is designed for upper-limb rehabilitation, and sliding mode control with nonlinear disturbance observer is designed for the robot to deal with the problem of unpredictable disturbances during robot-assisted training. Then, simulation and experiments of trajectory tracking are carried out to evaluate the performance of the system, the position errors, and the output forces of the designed control scheme are compared with those of the traditional sliding mode control (SMC) scheme. The results show that the designed control scheme can effectively reduce the tracking errors and chattering of the output forces as compared with the traditional SMC scheme, which indicates that the nonlinear disturbance observer can reduce the effect of unpredictable disturbances. The designed control scheme for the wire-driven rehabilitation robot has potential to assist patients with stroke in performing repetitive rehabilitation training.
ECG compression using non-recursive wavelet transform with quality control
NASA Astrophysics Data System (ADS)
Liu, Je-Hung; Hung, King-Chu; Wu, Tsung-Ching
2016-09-01
While wavelet-based electrocardiogram (ECG) data compression using scalar quantisation (SQ) yields excellent compression performance, a wavelet's SQ scheme, however, must select a set of multilevel quantisers for each quantisation process. As a result of the properties of multiple-to-one mapping, however, this scheme is not conducive for reconstruction error control. In order to address this problem, this paper presents a single-variable control SQ scheme able to guarantee the reconstruction quality of wavelet-based ECG data compression. Based on the reversible round-off non-recursive discrete periodised wavelet transform (RRO-NRDPWT), the SQ scheme is derived with a three-stage design process that first uses genetic algorithm (GA) for high compression ratio (CR), followed by a quadratic curve fitting for linear distortion control, and the third uses a fuzzy decision-making for minimising data dependency effect and selecting the optimal SQ. The two databases, Physikalisch-Technische Bundesanstalt (PTB) and Massachusetts Institute of Technology (MIT) arrhythmia, are used to evaluate quality control performance. Experimental results show that the design method guarantees a high compression performance SQ scheme with statistically linear distortion. This property can be independent of training data and can facilitate rapid error control.
Advanced Health Management of a Brushless Direct Current Motor/Controller
NASA Technical Reports Server (NTRS)
Pickett, R. D.
2003-01-01
This effort demonstrates that health management can be taken to the component level for electromechanical systems. The same techniques can be applied to take any health management system to the component level, based on the practicality of the implementation for that particular system. This effort allows various logic schemes to be implemented for the identification and management of failures. By taking health management to the component level, integrated vehicle health management systems can be enhanced by protecting box-level avionics from being shut down in order to isolate a failed computer.
Passive synchronization for Markov jump genetic oscillator networks with time-varying delays.
Lu, Li; He, Bing; Man, Chuntao; Wang, Shun
2015-04-01
In this paper, the synchronization problem of coupled Markov jump genetic oscillator networks with time-varying delays and external disturbances is investigated. By introducing the drive-response concept, a novel mode-dependent control scheme is proposed, which guarantees that the synchronization can be achieved. By applying the Lyapunov-Krasovskii functional method and stochastic analysis, sufficient conditions are established based on passivity theory in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of our theoretical results. Copyright © 2015 Elsevier Inc. All rights reserved.
Yang, Yana; Hua, Changchun; Guan, Xinping
2016-03-01
Due to the cognitive limitations of the human operator and lack of complete information about the remote environment, the work performance of such teleoperation systems cannot be guaranteed in most cases. However, some practical tasks conducted by the teleoperation system require high performances, such as tele-surgery needs satisfactory high speed and more precision control results to guarantee patient' health status. To obtain some satisfactory performances, the error constrained control is employed by applying the barrier Lyapunov function (BLF). With the constrained synchronization errors, some high performances, such as, high convergence speed, small overshoot, and an arbitrarily predefined small residual constrained synchronization error can be achieved simultaneously. Nevertheless, like many classical control schemes only the asymptotic/exponential convergence, i.e., the synchronization errors converge to zero as time goes infinity can be achieved with the error constrained control. It is clear that finite time convergence is more desirable. To obtain a finite-time synchronization performance, the terminal sliding mode (TSM)-based finite time control method is developed for teleoperation system with position error constrained in this paper. First, a new nonsingular fast terminal sliding mode (NFTSM) surface with new transformed synchronization errors is proposed. Second, adaptive neural network system is applied for dealing with the system uncertainties and the external disturbances. Third, the BLF is applied to prove the stability and the nonviolation of the synchronization errors constraints. Finally, some comparisons are conducted in simulation and experiment results are also presented to show the effectiveness of the proposed method.
An overview on real-time control schemes for wheeled mobile robot
NASA Astrophysics Data System (ADS)
Radzak, M. S. A.; Ali, M. A. H.; Sha’amri, S.; Azwan, A. R.
2018-04-01
The purpose of this paper is to review real-time control motion algorithms for wheeled mobile robot (WMR) when navigating in environment such as road. Its need a good controller to avoid collision with any disturbance and maintain a track error at zero level. The controllers are used with other aiding sensors to measure the WMR’s velocities, posture, and interference to estimate the required torque to be applied on the wheels of mobile robot. Four main categories for wheeled mobile robot control systems have been found in literature which are namely: Kinematic based controller, Dynamic based controllers, artificial intelligence based control system, and Active Force control. A MATLAB/Simulink software is the main software to simulate and implement the control system. The real-time toolbox in MATLAB/SIMULINK are used to receive/send data from sensors/to actuator with presence of disturbances, however others software such C, C++ and visual basic are rare to be used.
Globally linearized control on diabatic continuous stirred tank reactor: a case study.
Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal
2005-07-01
This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.
Boundary control for a flexible manipulator based on infinite dimensional disturbance observer
NASA Astrophysics Data System (ADS)
Jiang, Tingting; Liu, Jinkun; He, Wei
2015-07-01
This paper focuses on disturbance observer and boundary control design for the flexible manipulator in presence of both boundary disturbance and spatially distributed disturbance. Taking the infinite-dimensionality of the flexural dynamics into account, this study proposes a partial differential equation (PDE) model. Since the spatially distributed disturbance is infinite dimensional, it cannot be compensated by the typical disturbance observer, which is designed by finite dimensional approach. To estimate the spatially distributed disturbance, we propose a novel infinite dimensional disturbance observer (IDDO). Applying the IDDO as a feedforward compensator, a boundary control scheme is designed to regulate the joint position and eliminate the elastic vibration simultaneously. Theoretical analysis validates the stability of both the proposed disturbance observer and the boundary controller. The performance of the closed-loop system is demonstrated by numerical simulations.
Self-adaptive robot training of stroke survivors for continuous tracking movements.
Vergaro, Elena; Casadio, Maura; Squeri, Valentina; Giannoni, Psiche; Morasso, Pietro; Sanguineti, Vittorio
2010-03-15
Although robot therapy is progressively becoming an accepted method of treatment for stroke survivors, few studies have investigated how to adapt the robot/subject interaction forces in an automatic way. The paper is a feasibility study of a novel self-adaptive robot controller to be applied with continuous tracking movements. The haptic robot Braccio di Ferro is used, in relation with a tracking task. The proposed control architecture is based on three main modules: 1) a force field generator that combines a non linear attractive field and a viscous field; 2) a performance evaluation module; 3) an adaptive controller. The first module operates in a continuous time fashion; the other two modules operate in an intermittent way and are triggered at the end of the current block of trials. The controller progressively decreases the gain of the force field, within a session, but operates in a non monotonic way between sessions: it remembers the minimum gain achieved in a session and propagates it to the next one, which starts with a block whose gain is greater than the previous one. The initial assistance gains are chosen according to a minimal assistance strategy. The scheme can also be applied with closed eyes in order to enhance the role of proprioception in learning and control. The preliminary results with a small group of patients (10 chronic hemiplegic subjects) show that the scheme is robust and promotes a statistically significant improvement in performance indicators as well as a recalibration of the visual and proprioceptive channels. The results confirm that the minimally assistive, self-adaptive strategy is well tolerated by severely impaired subjects and is beneficial also for less severe patients. The experiments provide detailed information about the stability and robustness of the adaptive controller of robot assistance that could be quite relevant for the design of future large scale controlled clinical trials. Moreover, the study suggests that including continuous movement in the repertoire of training is acceptable also by rather severely impaired subjects and confirms the stabilizing effect of alternating vision/no vision trials already found in previous studies.
NASA Astrophysics Data System (ADS)
Kumar, Vivek; Raghurama Rao, S. V.
2008-04-01
Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.
NASA Astrophysics Data System (ADS)
Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.
2010-03-01
Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species with practical computer time.
NASA Astrophysics Data System (ADS)
Li, Changgang; Sun, Yanli; Yu, Yawei
2017-05-01
Under frequency load shedding (UFLS) is an important measure to tackle with frequency drop caused by load-generation imbalance. In existing schemes, loads are shed by relays in a discontinuous way, which is the major reason leading to under-shedding and over-shedding problems. With the application of power electronics technology, some loads can be controlled continuously, and it is possible to improve the UFSL with continuous loads. This paper proposes an UFLS scheme by shedding loads continuously. The load shedding amount is proportional to frequency deviation before frequency reaches its minimum during transient process. The feasibility of the proposed scheme is analysed with analytical system frequency response model. The impacts of governor droop, system inertia, and frequency threshold on the performance of the proposed UFLS scheme are discussed. Cases are demonstrated to validate the proposed scheme by comparing it with conventional UFLS schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usman, Yasir; Kim, Jinho; Muljadi, Eduard
Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less
Lee, Jungwook; Chung, Kwangsue
2011-01-01
Wireless sensor networks collect data from several nodes dispersed at remote sites. Sensor nodes can be installed in harsh environments such as deserts, cities, and indoors, where the link quality changes considerably over time. Particularly, changes in transmission power may be caused by temperature, humidity, and other factors. In order to compensate for link quality changes, existing schemes detect the link quality changes between nodes and control transmission power through a series of feedback processes, but these approaches can cause heavy overhead with the additional control packets needed. In this paper, the change of the link quality according to temperature is examined through empirical experimentation. A new power control scheme combining both temperature-aware link quality compensation and a closed-loop feedback process to adapt to link quality changes is proposed. We prove that the proposed scheme effectively adapts the transmission power to the changing link quality with less control overhead and energy consumption.
NASA Astrophysics Data System (ADS)
Wang, Li; Li, Chuanghong
2018-02-01
As a sustainable form of ecological structure, green building is widespread concerned and advocated in society increasingly nowadays. In the survey and design phase of preliminary project construction, carrying out the evaluation and selection of green building design scheme, which is in accordance with the scientific and reasonable evaluation index system, can improve the ecological benefits of green building projects largely and effectively. Based on the new Green Building Evaluation Standard which came into effect on January 1, 2015, the evaluation index system of green building design scheme is constructed taking into account the evaluation contents related to the green building design scheme. We organized experts who are experienced in construction scheme optimization to mark and determine the weight of each evaluation index through the AHP method. The correlation degree was calculated between each evaluation scheme and ideal scheme by using multilevel gray relational analysis model and then the optimal scheme was determined. The feasibility and practicability of the evaluation method are verified by introducing examples.
Li, Congcong; Zhang, Xi; Wang, Haiping; Li, Dongfeng
2018-01-11
Vehicular sensor networks have been widely applied in intelligent traffic systems in recent years. Because of the specificity of vehicular sensor networks, they require an enhanced, secure and efficient authentication scheme. Existing authentication protocols are vulnerable to some problems, such as a high computational overhead with certificate distribution and revocation, strong reliance on tamper-proof devices, limited scalability when building many secure channels, and an inability to detect hardware tampering attacks. In this paper, an improved authentication scheme using certificateless public key cryptography is proposed to address these problems. A security analysis of our scheme shows that our protocol provides an enhanced secure anonymous authentication, which is resilient against major security threats. Furthermore, the proposed scheme reduces the incidence of node compromise and replication attacks. The scheme also provides a malicious-node detection and warning mechanism, which can quickly identify compromised static nodes and immediately alert the administrative department. With performance evaluations, the scheme can obtain better trade-offs between security and efficiency than the well-known available schemes.