Sample records for control system algorithms

  1. Control algorithms and applications of the wavefront sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  2. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

    DOE PAGES

    Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik; ...

    2017-07-25

    Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

  3. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik

    Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

  4. Boiler-turbine control system design using a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.; Lee, K.Y.

    1995-12-01

    This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.

  5. Learning control system design based on 2-D theory - An application to parallel link manipulator

    NASA Technical Reports Server (NTRS)

    Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.

    1990-01-01

    An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.

  6. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  7. Adaptive control in the presence of unmodeled dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.

    1982-01-01

    Stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances were investigated. The class of adaptive algorithms considered are those commonly referred to as model reference adaptive control algorithms, self-tuning controllers, and dead beat adaptive controllers, developed for both continuous-time systems and discrete-time systems. A unified analytical approach was developed to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. It is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.

  8. The research of automatic speed control algorithm based on Green CBTC

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Xiong, Hui; Wang, Xiaoliang; Wu, Youyou; Zhang, Chuanqi

    2017-06-01

    Automatic speed control algorithm is one of the core technologies of train operation control system. It’s a typical multi-objective optimization control algorithm, which achieve the train speed control for timing, comfort, energy-saving and precise parking. At present, the train speed automatic control technology is widely used in metro and inter-city railways. It has been found that the automatic speed control technology can effectively reduce the driver’s intensity, and improve the operation quality. However, the current used algorithm is poor at energy-saving, even not as good as manual driving. In order to solve the problem of energy-saving, this paper proposes an automatic speed control algorithm based on Green CBTC system. Based on the Green CBTC system, the algorithm can adjust the operation status of the train to improve the efficient using rate of regenerative braking feedback energy while ensuring the timing, comfort and precise parking targets. Due to the reason, the energy-using of Green CBTC system is lower than traditional CBTC system. The simulation results show that the algorithm based on Green CBTC system can effectively reduce the energy-using due to the improvement of the using rate of regenerative braking feedback energy.

  9. Research on intelligent algorithm of electro - hydraulic servo control system

    NASA Astrophysics Data System (ADS)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  10. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    NASA Astrophysics Data System (ADS)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  11. Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System

    NASA Astrophysics Data System (ADS)

    Meng, X. Z.; Feng, H. B.

    2017-10-01

    This paper combined the advantages of each maximum power point tracking (MPPT) algorithm, put forward a kind of algorithm with higher speed and higher precision, based on this algorithm designed a maximum power point tracking controller with ARM. The controller, communication technology and PC software formed a control system. Results of the simulation and experiment showed that the process of maximum power tracking was effective, and the system was stable.

  12. Robust Control Systems.

    DTIC Science & Technology

    1981-12-01

    time control system algorithms that will perform adequately (i.e., at least maintain closed-loop system stability) when ucertain parameters in the...system design models vary significantly. Such a control algorithm is said to have stability robustness-or more simply is said to be "robust". This...cas6s above, the performance is analyzed using a covariance analysis. The development of all the controllers and the performance analysis algorithms is

  13. Deadbeat Predictive Controllers

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1997-01-01

    Several new computational algorithms are presented to compute the deadbeat predictive control law. The first algorithm makes use of a multi-step-ahead output prediction to compute the control law without explicitly calculating the controllability matrix. The system identification must be performed first and then the predictive control law is designed. The second algorithm uses the input and output data directly to compute the feedback law. It combines the system identification and the predictive control law into one formulation. The third algorithm uses an observable-canonical form realization to design the predictive controller. The relationship between all three algorithms is established through the use of the state-space representation. All algorithms are applicable to multi-input, multi-output systems with disturbance inputs. In addition to the feedback terms, feed forward terms may also be added for disturbance inputs if they are measurable. Although the feedforward terms do not influence the stability of the closed-loop feedback law, they enhance the performance of the controlled system.

  14. Robust tuning of robot control systems

    NASA Technical Reports Server (NTRS)

    Minis, I.; Uebel, M.

    1992-01-01

    The computed torque control problem is examined for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators because of the dynamics introduced by the joint drive system. The proposed approach to computed torque control combines a computed torque algorithm with torque controller at each joint. Three such control schemes are proposed. The first scheme uses the joint torque control system currently implemented on the robot arm and a novel form of the computed torque algorithm. The other two use the standard computed torque algorithm and a novel model following torque control system based on model following techniques. Standard tasks and performance indices are used to evaluate the performance of the controllers. Both numerical simulations and experiments are used in evaluation. The study shows that all three proposed systems lead to improved tracking performance over a conventional PD controller.

  15. Fuzzy decoupling controller based on multimode control algorithm of PI-single neuron and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Xianxia; Wang, Jian; Qin, Tinggao

    2003-09-01

    Intelligent control algorithms are introduced into the control system of temperature and humidity. A multi-mode control algorithm of PI-Single Neuron is proposed for single loop control of temperature and humidity. In order to remove the coupling between temperature and humidity, a new decoupling method is presented, which is called fuzzy decoupling. The decoupling is achieved by using a fuzzy controller that dynamically modifies the static decoupling coefficient. Taking the control algorithm of PI-Single Neuron as the single loop control of temperature and humidity, the paper provides the simulated output response curves with no decoupling control, static decoupling control and fuzzy decoupling control. Those control algorithms are easily implemented in singlechip-based hardware systems.

  16. Investigation of energy management strategies for photovoltaic systems - A predictive control algorithm

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1983-01-01

    The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.

  17. A Robustly Stabilizing Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Ackmece, A. Behcet; Carson, John M., III

    2007-01-01

    A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.

  18. [Research on magnetic coupling centrifugal blood pump control based on a self-tuning fuzzy PI algorithm].

    PubMed

    Yang, Lei; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Wang, Wei; Zhang, Haibo; Han, Lu; Xu, Liang

    2014-10-01

    The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.

  19. Novel bio-inspired smart control for hazard mitigation of civil structures

    NASA Astrophysics Data System (ADS)

    Kim, Yeesock; Kim, Changwon; Langari, Reza

    2010-11-01

    In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.

  20. Flight Evaluation of an Aircraft with Side and Center Stick Controllers and Rate-Limited Ailerons

    NASA Technical Reports Server (NTRS)

    Deppe, P. R.; Chalk, C. R.; Shafer, M. F.

    1996-01-01

    As part of an ongoing government and industry effort to study the flying qualities of aircraft with rate-limited control surface actuators, two studies were previously flown to examine an algorithm developed to reduce the tendency for pilot-induced oscillation when rate limiting occurs. This algorithm, when working properly, greatly improved the performance of the aircraft in the first study. In the second study, however, the algorithm did not initially offer as much improvement. The differences between the two studies caused concern. The study detailed in this paper was performed to determine whether the performance of the algorithm was affected by the characteristics of the cockpit controllers. Time delay and flight control system noise were also briefly evaluated. An in-flight simulator, the Calspan Learjet 25, was programmed with a low roll actuator rate limit, and the algorithm was programmed into the flight control system. Side- and center-stick controllers, force and position command signals, a rate-limited feel system, a low-frequency feel system, and a feel system damper were evaluated. The flight program consisted of four flights and 38 evaluations of test configurations. Performance of the algorithm was determined to be unaffected by using side- or center-stick controllers or force or position command signals. The rate-limited feel system performed as well as the rate-limiting algorithm but was disliked by the pilots. The low-frequency feel system and the feel system damper were ineffective. Time delay and noise were determined to degrade the performance of the algorithm.

  1. Motor Control and Regulation for a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara; Lyons, Valerie

    2003-01-01

    This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.

  2. PID controller tuning using metaheuristic optimization algorithms for benchmark problems

    NASA Astrophysics Data System (ADS)

    Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.

    2017-11-01

    This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.

  3. Detecting Anomalies in Process Control Networks

    NASA Astrophysics Data System (ADS)

    Rrushi, Julian; Kang, Kyoung-Don

    This paper presents the estimation-inspection algorithm, a statistical algorithm for anomaly detection in process control networks. The algorithm determines if the payload of a network packet that is about to be processed by a control system is normal or abnormal based on the effect that the packet will have on a variable stored in control system memory. The estimation part of the algorithm uses logistic regression integrated with maximum likelihood estimation in an inductive machine learning process to estimate a series of statistical parameters; these parameters are used in conjunction with logistic regression formulas to form a probability mass function for each variable stored in control system memory. The inspection part of the algorithm uses the probability mass functions to estimate the normalcy probability of a specific value that a network packet writes to a variable. Experimental results demonstrate that the algorithm is very effective at detecting anomalies in process control networks.

  4. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  5. The architecture of adaptive neural network based on a fuzzy inference system for implementing intelligent control in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Gimazov, R.; Shidlovskiy, S.

    2018-05-01

    In this paper, we consider the architecture of the algorithm for extreme regulation in the photovoltaic system. An algorithm based on an adaptive neural network with fuzzy inference is proposed. The implementation of such an algorithm not only allows solving a number of problems in existing algorithms for extreme power regulation of photovoltaic systems, but also creates a reserve for the creation of a universal control system for a photovoltaic system.

  6. Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fijany, A.; Milman, M.; Redding, D.

    1994-12-31

    In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm,more » designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.« less

  7. Integrated Building Management System (IBMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anita Lewis

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment withoutmore » interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.« less

  8. An algorithm for control system design via parameter optimization. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sinha, P. K.

    1972-01-01

    An algorithm for design via parameter optimization has been developed for linear-time-invariant control systems based on the model reference adaptive control concept. A cost functional is defined to evaluate the system response relative to nominal, which involves in general the error between the system and nominal response, its derivatives and the control signals. A program for the practical implementation of this algorithm has been developed, with the computational scheme for the evaluation of the performance index based on Lyapunov's theorem for stability of linear invariant systems.

  9. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Ghaffari, Azad

    Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty in the IG dynamics. The simulation results verify the effectiveness of the proposed algorithm.

  10. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  11. Genetic algorithms for adaptive real-time control in space systems

    NASA Technical Reports Server (NTRS)

    Vanderzijp, J.; Choudry, A.

    1988-01-01

    Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.

  12. Space Launch System Implementation of Adaptive Augmenting Control

    NASA Technical Reports Server (NTRS)

    Wall, John H.; Orr, Jeb S.; VanZwieten, Tannen S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to provide stable and high-performance flight. On its development path to Preliminary Design Review (PDR), the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an Adaptive Augmenting Control (AAC) algorithm has been shown to extend the envelope of failures and flight anomalies the SLS control system can accommodate while maintaining a direct link to flight control stability criteria such as classical gain and phase margin. In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the full SLS digital 3-axis autopilot, including existing load-relief elements, and the necessary steps for integration with the production flight software prototype have been implemented. Several updates which have been made to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are also shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  13. Reliable numerical computation in an optimal output-feedback design

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.

  14. Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Freeman, L. M.; Meredith, D. L.

    1990-01-01

    The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.

  15. Power efficient control algorithm of electromechanical unbalance vibration exciter with induction motor

    NASA Astrophysics Data System (ADS)

    Topovskiy, V. V.; Simakov, G. M.

    2017-10-01

    A control algorithm of an electromechanical unbalance vibration exciter that provides a free rotational movement is offered in the paper. The unbalance vibration exciter control system realizing a free rotational movement has been synthesized. The structured modeling of the synthesized system has been carried out and its transients are presented. The advantages and disadvantages of the proposed control algorithm applied to the unbalance vibration exciter are shown.

  16. Adaptive mechanism-based congestion control for networked systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  17. An observer-based compensator for distributed delays in integrated control systems

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1989-01-01

    This paper presents an algorithm for compensation of delays that are distributed within a control loop. The observer-based algorithm is especially suitable for compensating network-induced delays that are likely to occur in integrated control systems of the future generation aircraft. The robustness of the algorithm relative to uncertainties in the plant model have been examined.

  18. Finite-time stabilization of chaotic gyros based on a homogeneous supertwisting-like algorithm

    NASA Astrophysics Data System (ADS)

    Khamsuwan, Pitcha; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    This paper presents a finite-time stabilization scheme for nonlinear chaotic gyros. The scheme utilizes a supertwisting-like continuous control algorithm for the systems of dimension more than one with a Lipschitz disturbance. The algorithm yields finite-time convergence similar to that produces by discontinuous sliding mode control algorithms. To design the controller, the nonlinearities in the gyro are treated as a disturbance in the system. Thanks to the dissipativeness of chaotic systems, the nonlinearities also possess the Lipschitz property. Numerical results are provided to illustrate the effectiveness of the scheme.

  19. Space Launch System Implementation of Adaptive Augmenting Control

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Wall, John H.; Orr, Jeb S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to robustly demonstrate stable and high performance flight. On its development path to preliminary design review (PDR), the stability of the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant dynamics. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an adaptive augmenting control (AAC) algorithm previously presented by Orr and VanZwieten, has been shown to extend the envelope of failures and flight anomalies for which the SLS control system can accommodate while maintaining a direct link to flight control stability criteria (e.g. gain & phase margin). In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the SLS digital 3-axis autopilot, including existing load-relief elements, and necessary steps for integration with the production flight software prototype have been implemented. Several updates to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  20. Integral backstepping sliding mode control for underactuated systems: swing-up and stabilization of the Cart-Pendulum System.

    PubMed

    Adhikary, Nabanita; Mahanta, Chitralekha

    2013-11-01

    In this paper an integral backstepping sliding mode controller is proposed for controlling underactuated systems. A feedback control law is designed based on backstepping algorithm and a sliding surface is introduced in the final stage of the algorithm. The backstepping algorithm makes the controller immune to matched and mismatched uncertainties and the sliding mode control provides robustness. The proposed controller ensures asymptotic stability. The effectiveness of the proposed controller is compared against a coupled sliding mode controller for swing-up and stabilization of the Cart-Pendulum System. Simulation results show that the proposed integral backstepping sliding mode controller is able to reject both matched and mismatched uncertainties with a chattering free control law, while utilizing less control effort than the sliding mode controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Alocomotino Control Algorithm for Robotic Linkage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohner, Jeffrey L.

    This dissertation describes the development of a control algorithm that transitions a robotic linkage system between stabilized states producing responsive locomotion. The developed algorithm is demonstrated using a simple robotic construction consisting of a few links with actuation and sensing at each joint. Numerical and experimental validation is presented.

  2. Development of model reference adaptive control theory for electric power plant control applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mabius, L.E.

    1982-09-15

    The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis.more » An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.« less

  3. The application of immune genetic algorithm in main steam temperature of PID control of BP network

    NASA Astrophysics Data System (ADS)

    Li, Han; Zhen-yu, Zhang

    In order to overcome the uncertainties, large delay, large inertia and nonlinear property of the main steam temperature controlled object in the power plant, a neural network intelligent PID control system based on immune genetic algorithm and BP neural network is designed. Using the immune genetic algorithm global search optimization ability and good convergence, optimize the weights of the neural network, meanwhile adjusting PID parameters using BP network. The simulation result shows that the system is superior to conventional PID control system in the control of quality and robustness.

  4. Intelligent automated control of life support systems using proportional representations.

    PubMed

    Wu, Annie S; Garibay, Ivan I

    2004-06-01

    Effective automatic control of Advanced Life Support Systems (ALSS) is a crucial component of space exploration. An ALSS is a coupled dynamical system which can be extremely sensitive and difficult to predict. As a result, such systems can be difficult to control using deliberative and deterministic methods. We investigate the performance of two machine learning algorithms, a genetic algorithm (GA) and a stochastic hill-climber (SH), on the problem of learning how to control an ALSS, and compare the impact of two different types of problem representations on the performance of both algorithms. We perform experiments on three ALSS optimization problems using five strategies with multiple variations of a proportional representation for a total of 120 experiments. Results indicate that although a proportional representation can effectively boost GA performance, it does not necessarily have the same effect on other algorithms such as SH. Results also support previous conclusions that multivector control strategies are an effective method for control of coupled dynamical systems.

  5. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  6. Intelligent neural network and fuzzy logic control of industrial and power systems

    NASA Astrophysics Data System (ADS)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.

  7. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    NASA Astrophysics Data System (ADS)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  8. Automated Cryocooler Monitor and Control System Software

    NASA Technical Reports Server (NTRS)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  9. Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.

    1997-01-01

    The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.

  10. A robust model predictive control algorithm for uncertain nonlinear systems that guarantees resolvability

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Carson, John M., III

    2006-01-01

    A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees resolvability. With resolvability, initial feasibility of the finite-horizon optimal control problem implies future feasibility in a receding-horizon framework. The control consists of two components; (i) feed-forward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives and derivatives in polytopes. An illustrative numerical example is also provided.

  11. Peak reduction for commercial buildings using energy storage

    NASA Astrophysics Data System (ADS)

    Chua, K. H.; Lim, Y. S.; Morris, S.

    2017-11-01

    Battery-based energy storage has emerged as a cost-effective solution for peak reduction due to the decrement of battery’s price. In this study, a battery-based energy storage system is developed and implemented to achieve an optimal peak reduction for commercial customers with the limited energy capacity of the energy storage. The energy storage system is formed by three bi-directional power converter rated at 5 kVA and a battery bank with capacity of 64 kWh. Three control algorithms, namely fixed-threshold, adaptive-threshold, and fuzzy-based control algorithms have been developed and implemented into the energy storage system in a campus building. The control algorithms are evaluated and compared under different load conditions. The overall experimental results show that the fuzzy-based controller is the most effective algorithm among the three controllers in peak reduction. The fuzzy-based control algorithm is capable of incorporating a priori qualitative knowledge and expertise about the load characteristic of the buildings as well as the useable energy without over-discharging the batteries.

  12. Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering

    NASA Astrophysics Data System (ADS)

    Koehler, Sarah Muraoka

    Industrial large-scale control problems present an interesting algorithmic design challenge. A number of controllers must cooperate in real-time on a network of embedded hardware with limited computing power in order to maximize system efficiency while respecting constraints and despite communication delays. Model predictive control (MPC) can automatically synthesize a centralized controller which optimizes an objective function subject to a system model, constraints, and predictions of disturbance. Unfortunately, the computations required by model predictive controllers for large-scale systems often limit its industrial implementation only to medium-scale slow processes. Distributed model predictive control (DMPC) enters the picture as a way to decentralize a large-scale model predictive control problem. The main idea of DMPC is to split the computations required by the MPC problem amongst distributed processors that can compute in parallel and communicate iteratively to find a solution. Some popularly proposed solutions are distributed optimization algorithms such as dual decomposition and the alternating direction method of multipliers (ADMM). However, these algorithms ignore two practical challenges: substantial communication delays present in control systems and also problem non-convexity. This thesis presents two novel and practically effective DMPC algorithms. The first DMPC algorithm is based on a primal-dual active-set method which achieves fast convergence, making it suitable for large-scale control applications which have a large communication delay across its communication network. In particular, this algorithm is suited for MPC problems with a quadratic cost, linear dynamics, forecasted demand, and box constraints. We measure the performance of this algorithm and show that it significantly outperforms both dual decomposition and ADMM in the presence of communication delay. The second DMPC algorithm is based on an inexact interior point method which is suited for nonlinear optimization problems. The parallel computation of the algorithm exploits iterative linear algebra methods for the main linear algebra computations in the algorithm. We show that the splitting of the algorithm is flexible and can thus be applied to various distributed platform configurations. The two proposed algorithms are applied to two main energy and transportation control problems. The first application is energy efficient building control. Buildings represent 40% of energy consumption in the United States. Thus, it is significant to improve the energy efficiency of buildings. The goal is to minimize energy consumption subject to the physics of the building (e.g. heat transfer laws), the constraints of the actuators as well as the desired operating constraints (thermal comfort of the occupants), and heat load on the system. In this thesis, we describe the control systems of forced air building systems in practice. We discuss the "Trim and Respond" algorithm which is a distributed control algorithm that is used in practice, and show that it performs similarly to a one-step explicit DMPC algorithm. Then, we apply the novel distributed primal-dual active-set method and provide extensive numerical results for the building MPC problem. The second main application is the control of ramp metering signals to optimize traffic flow through a freeway system. This application is particularly important since urban congestion has more than doubled in the past few decades. The ramp metering problem is to maximize freeway throughput subject to freeway dynamics (derived from mass conservation), actuation constraints, freeway capacity constraints, and predicted traffic demand. In this thesis, we develop a hybrid model predictive controller for ramp metering that is guaranteed to be persistently feasible and stable. This contrasts to previous work on MPC for ramp metering where such guarantees are absent. We apply a smoothing method to the hybrid model predictive controller and apply the inexact interior point method to this nonlinear non-convex ramp metering problem.

  13. Indirect learning control for nonlinear dynamical systems

    NASA Technical Reports Server (NTRS)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  14. Fuzzy logic applications to control engineering

    NASA Astrophysics Data System (ADS)

    Langari, Reza

    1993-12-01

    This paper presents the results of a project presently under way at Texas A&M which focuses on the use of fuzzy logic in integrated control of manufacturing systems. The specific problems investigated here include diagnosis of critical tool wear in machining of metals via a neuro-fuzzy algorithm, as well as compensation of friction in mechanical positioning systems via an adaptive fuzzy logic algorithm. The results indicate that fuzzy logic in conjunction with conventional algorithmic based approaches or neural nets can prove useful in dealing with the intricacies of control/monitoring of manufacturing systems and can potentially play an active role in multi-modal integrated control systems of the future.

  15. Adaptive controller for a strength testbed for aircraft structures

    NASA Astrophysics Data System (ADS)

    Laperdin, A. I.; Yurkevich, V. D.

    2017-07-01

    The problem of control system design for a strength testbed of aircraft structures is considered. A method for calculating the parameters of a proportional-integral controller (control algorithm) using the time-scale separation method for the testbed taking into account the dead time effect in the control loop is presented. An adaptive control algorithm structure is proposed which limits the amplitude of high-frequency oscillations in the control system with a change in the direction of motion of the rod of the hydraulic cylinders and provides the desired accuracy and quality of transients at all stages of structural loading history. The results of tests of the developed control system with the adaptive control algorithm on an experimental strength testbed for aircraft structures are given.

  16. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  17. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) is used to test and develop these algorithms. Modifications to this airplane include adding canards and changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals include demonstration of revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions and advancement of neural-network-based flight control technology for new aerospace system designs. This report presents an overview of the processes utilized to develop adaptive controller algorithms during a flight-test program, including a description of initial adaptive controller concepts and a discussion of modeling formulation and performance testing. Design finalization led to integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness; these are also discussed.

  18. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  19. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  20. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  1. Control of mechanical systems with rolling constraints: Application to dynamic control of mobile robots

    NASA Technical Reports Server (NTRS)

    Sarkar, Nilanjan; Yun, Xiaoping; Kumar, Vijay

    1994-01-01

    There are many examples of mechanical systems that require rolling contacts between two or more rigid bodies. Rolling contacts engender nonholonomic constraints in an otherwise holonomic system. In this article, we develop a unified approach to the control of mechanical systems subject to both holonomic and nonholonomic constraints. We first present a state space realization of a constrained system. We then discuss the input-output linearization and zero dynamics of the system. This approach is applied to the dynamic control of mobile robots. Two types of control algorithms for mobile robots are investigated: trajectory tracking and path following. In each case, a smooth nonlinear feedback is obtained to achieve asymptotic input-output stability and Lagrange stability of the overall system. Simulation results are presented to demonstrate the effectiveness of the control algorithms and to compare the performane of trajectory-tracking and path-following algorithms.

  2. Genetics-based control of a mimo boiler-turbine plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.M.; Lee, K.Y.

    1994-12-31

    A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.

  3. Minimal time change detection algorithm for reconfigurable control system and application to aerospace

    NASA Technical Reports Server (NTRS)

    Kim, Sungwan

    1994-01-01

    System parameters should be tracked on-line to build a reconfigurable control system even though there exists an abrupt change. For this purpose, a new performance index that we are studying is the speed of adaptation- how quickly does the system determine that a change has occurred? In this paper, a new, robust algorithm that is optimized to minimize the time delay in detecting a change for fixed false alarm probability is proposed. Simulation results for the aircraft lateral motion with a known or unknown change in control gain matrices, in the presence of doublet input, indicate that the algorithm works fairly well. One of its distinguishing properties is that detection delay of this algorithm is superior to that of Whiteness Test.

  4. Power System Decomposition for Practical Implementation of Bulk-Grid Voltage Control Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    Power system algorithms such as AC optimal power flow and coordinated volt/var control of the bulk power system are computationally intensive and become difficult to solve in operational time frames. The computational time required to run these algorithms increases exponentially as the size of the power system increases. The solution time for multiple subsystems is less than that for solving the entire system simultaneously, and the local nature of the voltage problem lends itself to such decomposition. This paper describes an algorithm that can be used to perform power system decomposition from the point of view of the voltage controlmore » problem. Our approach takes advantage of the dominant localized effect of voltage control and is based on clustering buses according to the electrical distances between them. One of the contributions of the paper is to use multidimensional scaling to compute n-dimensional Euclidean coordinates for each bus based on electrical distance to perform algorithms like K-means clustering. A simple coordinated reactive power control of photovoltaic inverters for voltage regulation is used to demonstrate the effectiveness of the proposed decomposition algorithm and its components. The proposed decomposition method is demonstrated on the IEEE 118-bus system.« less

  5. PSC algorithm description

    NASA Technical Reports Server (NTRS)

    Nobbs, Steven G.

    1995-01-01

    An overview of the performance seeking control (PSC) algorithm and details of the important components of the algorithm are given. The onboard propulsion system models, the linear programming optimization, and engine control interface are described. The PSC algorithm receives input from various computers on the aircraft including the digital flight computer, digital engine control, and electronic inlet control. The PSC algorithm contains compact models of the propulsion system including the inlet, engine, and nozzle. The models compute propulsion system parameters, such as inlet drag and fan stall margin, which are not directly measurable in flight. The compact models also compute sensitivities of the propulsion system parameters to change in control variables. The engine model consists of a linear steady state variable model (SSVM) and a nonlinear model. The SSVM is updated with efficiency factors calculated in the engine model update logic, or Kalman filter. The efficiency factors are used to adjust the SSVM to match the actual engine. The propulsion system models are mathematically integrated to form an overall propulsion system model. The propulsion system model is then optimized using a linear programming optimization scheme. The goal of the optimization is determined from the selected PSC mode of operation. The resulting trims are used to compute a new operating point about which the optimization process is repeated. This process is continued until an overall (global) optimum is reached before applying the trims to the controllers.

  6. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound.

    PubMed

    Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai

    2011-01-01

    In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.

  7. Small Body GN&C Research Report: A Robust Model Predictive Control Algorithm with Guaranteed Resolvability

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet A.; Carson, John M., III

    2005-01-01

    A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees the resolvability of the associated finite-horizon optimal control problem in a receding-horizon implementation. The control consists of two components; (i) feedforward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives, and derivatives in polytopes. An illustrative numerical example is also provided.

  8. The automatic control system and stand-by facilities of the TDMA-40 equipment

    NASA Astrophysics Data System (ADS)

    Gudenko, D. V.; Pankov, G. Kh.; Pauk, A. G.; Tsirlin, V. M.

    1980-10-01

    When a controlling station in a satellite communications system is out of order, a complex algorithm must be carried out for automatic operation of the stand-by equipment. A processor has been developed to perform this algorithm, as well as operations involving the stand-by facilities of the receiving-transmitting equipment of the station. The design principles and solutions to problems in developing the equipment for the monitoring and controlling systems are described. These systems are based on multistation access using time division multiplexing. Algorithms are presented for the operation of the synchronizing processor and the control processor of the equipment. The automatic control system and stand-by facilities make it possible to reduce the service personnel and to design an unattended station.

  9. DC Bus Regulation with a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.

    2003-01-01

    This paper describes the DC bus regulation control algorithm for the NASA flywheel energy storage system during charge, charge reduction and discharge modes of operation. The algorithm was experimentally verified with results given in a previous paper. This paper presents the necessary models for simulation with detailed block diagrams of the controller algorithm. It is shown that the flywheel system and the controller can be modeled in three levels of detail depending on the type of analysis required. The three models are explained and then compared using simulation results.

  10. Operational space trajectory tracking control of robot manipulators endowed with a primary controller of synthetic joint velocity.

    PubMed

    Moreno-Valenzuela, Javier; González-Hernández, Luis

    2011-01-01

    In this paper, a new control algorithm for operational space trajectory tracking control of robot arms is introduced. The new algorithm does not require velocity measurement and is based on (1) a primary controller which incorporates an algorithm to obtain synthesized velocity from joint position measurements and (2) a secondary controller which computes the desired joint acceleration and velocity required to achieve operational space motion control. The theory of singularly perturbed systems is crucial for the analysis of the closed-loop system trajectories. In addition, the practical viability of the proposed algorithm is explored through real-time experiments in a two degrees-of-freedom horizontal planar direct-drive arm. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Control of Complex Dynamic Systems by Neural Networks

    NASA Technical Reports Server (NTRS)

    Spall, James C.; Cristion, John A.

    1993-01-01

    This paper considers the use of neural networks (NN's) in controlling a nonlinear, stochastic system with unknown process equations. The NN is used to model the resulting unknown control law. The approach here is based on using the output error of the system to train the NN controller without the need to construct a separate model (NN or other type) for the unknown process dynamics. To implement such a direct adaptive control approach, it is required that connection weights in the NN be estimated while the system is being controlled. As a result of the feedback of the unknown process dynamics, however, it is not possible to determine the gradient of the loss function for use in standard (back-propagation-type) weight estimation algorithms. Therefore, this paper considers the use of a new stochastic approximation algorithm for this weight estimation, which is based on a 'simultaneous perturbation' gradient approximation that only requires the system output error. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic approximation algorithms based on finite-difference gradient approximations.

  12. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  13. Chaos control of Hastings-Powell model by combining chaotic motions.

    PubMed

    Danca, Marius-F; Chattopadhyay, Joydev

    2016-04-01

    In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings-Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can be approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: "losing + losing = winning." If "loosing" is replaced with "chaos" and, "winning" with "order" (as the opposite to "chaos"), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write "chaos + chaos = regular." Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.

  14. Chaos control of Hastings-Powell model by combining chaotic motions

    NASA Astrophysics Data System (ADS)

    Danca, Marius-F.; Chattopadhyay, Joydev

    2016-04-01

    In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings-Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can be approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: "losing + losing = winning." If "loosing" is replaced with "chaos" and, "winning" with "order" (as the opposite to "chaos"), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write "chaos + chaos = regular." Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.

  15. Real time test bed development for power system operation, control and cyber security

    NASA Astrophysics Data System (ADS)

    Reddi, Ram Mohan

    The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.

  16. Simultaneous vibration control and energy harvesting using actor-critic based reinforcement learning

    NASA Astrophysics Data System (ADS)

    Loong, Cheng Ning; Chang, C. C.; Dimitrakopoulos, Elias G.

    2018-03-01

    Mitigating excessive vibration of civil engineering structures using various types of devices has been a conspicuous research topic in the past few decades. Some devices, such as electromagnetic transducers, which have a capability of exerting control forces while simultaneously harvesting energy, have been proposed recently. These devices make possible a self-regenerative system that can semi-actively mitigate structural vibration without the need of external energy. Integrating mechanical, electrical components, and control algorithms, these devices open up a new research domain that needs to be addressed. In this study, the feasibility of using an actor-critic based reinforcement learning control algorithm for simultaneous vibration control and energy harvesting for a civil engineering structure is investigated. The actor-critic based reinforcement learning control algorithm is a real-time, model-free adaptive technique that can adjust the controller parameters based on observations and reward signals without knowing the system characteristics. It is suitable for the control of a partially known nonlinear system with uncertain parameters. The feasibility of implementing this algorithm on a building structure equipped with an electromagnetic damper will be investigated in this study. Issues related to the modelling of learning algorithm, initialization and convergence will be presented and discussed.

  17. Polyhedral Interpolation for Optimal Reaction Control System Jet Selection

    NASA Technical Reports Server (NTRS)

    Gefert, Leon P.; Wright, Theodore

    2014-01-01

    An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.

  18. A set-theoretic model reference adaptive control architecture for disturbance rejection and uncertainty suppression with strict performance guarantees

    NASA Astrophysics Data System (ADS)

    Arabi, Ehsan; Gruenwald, Benjamin C.; Yucelen, Tansel; Nguyen, Nhan T.

    2018-05-01

    Research in adaptive control algorithms for safety-critical applications is primarily motivated by the fact that these algorithms have the capability to suppress the effects of adverse conditions resulting from exogenous disturbances, imperfect dynamical system modelling, degraded modes of operation, and changes in system dynamics. Although government and industry agree on the potential of these algorithms in providing safety and reducing vehicle development costs, a major issue is the inability to achieve a-priori, user-defined performance guarantees with adaptive control algorithms. In this paper, a new model reference adaptive control architecture for uncertain dynamical systems is presented to address disturbance rejection and uncertainty suppression. The proposed framework is predicated on a set-theoretic adaptive controller construction using generalised restricted potential functions.The key feature of this framework allows the system error bound between the state of an uncertain dynamical system and the state of a reference model, which captures a desired closed-loop system performance, to be less than a-priori, user-defined worst-case performance bound, and hence, it has the capability to enforce strict performance guarantees. Examples are provided to demonstrate the efficacy of the proposed set-theoretic model reference adaptive control architecture.

  19. Delay compensation in integrated communication and control systems. I - Conceptual development and analysis

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    A procedure for compensating for the effects of distributed network-induced delays in integrated communication and control systems (ICCS) is proposed. The problem of analyzing systems with time-varying and possibly stochastic delays could be circumvented by use of a deterministic observer which is designed to perform under certain restrictive but realistic assumptions. The proposed delay-compensation algorithm is based on a deterministic state estimator and a linear state-variable-feedback control law. The deterministic observer can be replaced by a stochastic observer without any structural modifications of the delay compensation algorithm. However, if a feedforward-feedback control law is chosen instead of the state-variable feedback control law, the observer must be modified as a conventional nondelayed system would be. Under these circumstances, the delay compensation algorithm would be accordingly changed. The separation principle of the classical Luenberger observer holds true for the proposed delay compensator. The algorithm is suitable for ICCS in advanced aircraft, spacecraft, manufacturing automation, and chemical process applications.

  20. Approximation algorithms for planning and control

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; Dean, Thomas

    1989-01-01

    A control system operating in a complex environment will encounter a variety of different situations, with varying amounts of time available to respond to critical events. Ideally, such a control system will do the best possible with the time available. In other words, its responses should approximate those that would result from having unlimited time for computation, where the degree of the approximation depends on the amount of time it actually has. There exist approximation algorithms for a wide variety of problems. Unfortunately, the solution to any reasonably complex control problem will require solving several computationally intensive problems. Algorithms for successive approximation are a subclass of the class of anytime algorithms, algorithms that return answers for any amount of computation time, where the answers improve as more time is allotted. An architecture is described for allocating computation time to a set of anytime algorithms, based on expectations regarding the value of the answers they return. The architecture described is quite general, producing optimal schedules for a set of algorithms under widely varying conditions.

  1. Maximum wind energy extraction strategies using power electronic converters

    NASA Astrophysics Data System (ADS)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)

  2. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  3. Multirate sampled-data yaw-damper and modal suppression system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1990-01-01

    A multirate control law synthesized algorithm based on an infinite-time quadratic cost function, was developed along with a method for analyzing the robustness of multirate systems. A generalized multirate sampled-data control law structure (GMCLS) was introduced. A new infinite-time-based parameter optimization multirate sampled-data control law synthesis method and solution algorithm were developed. A singular-value-based method for determining gain and phase margins for multirate systems was also developed. The finite-time-based parameter optimization multirate sampled-data control law synthesis algorithm originally intended to be applied to the aircraft problem was instead demonstrated by application to a simpler problem involving the control of the tip position of a two-link robot arm. The GMCLS, the infinite-time-based parameter optimization multirate control law synthesis method and solution algorithm, and the singular-value based method for determining gain and phase margins were all demonstrated by application to the aircraft control problem originally proposed for this project.

  4. Real-time path planning and autonomous control for helicopter autorotation

    NASA Astrophysics Data System (ADS)

    Yomchinda, Thanan

    Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.

  5. Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming.

    PubMed

    Zhang, Huaguang; Song, Ruizhuo; Wei, Qinglai; Zhang, Tieyan

    2011-12-01

    In this paper, a novel heuristic dynamic programming (HDP) iteration algorithm is proposed to solve the optimal tracking control problem for a class of nonlinear discrete-time systems with time delays. The novel algorithm contains state updating, control policy iteration, and performance index iteration. To get the optimal states, the states are also updated. Furthermore, the "backward iteration" is applied to state updating. Two neural networks are used to approximate the performance index function and compute the optimal control policy for facilitating the implementation of HDP iteration algorithm. At last, we present two examples to demonstrate the effectiveness of the proposed HDP iteration algorithm.

  6. A controllable sensor management algorithm capable of learning

    NASA Astrophysics Data System (ADS)

    Osadciw, Lisa A.; Veeramacheneni, Kalyan K.

    2005-03-01

    Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.

  7. Discrete-Time Local Value Iteration Adaptive Dynamic Programming: Admissibility and Termination Analysis.

    PubMed

    Wei, Qinglai; Liu, Derong; Lin, Qiao

    In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.

  8. A framework for interval-valued information system

    NASA Astrophysics Data System (ADS)

    Yin, Yunfei; Gong, Guanghong; Han, Liang

    2012-09-01

    Interval-valued information system is used to transform the conventional dataset into the interval-valued form. To conduct the interval-valued data mining, we conduct two investigations: (1) construct the interval-valued information system, and (2) conduct the interval-valued knowledge discovery. In constructing the interval-valued information system, we first make the paired attributes in the database discovered, and then, make them stored in the neighbour locations in a common database and regard them as 'one' new field. In conducting the interval-valued knowledge discovery, we utilise some related priori knowledge and regard the priori knowledge as the control objectives; and design an approximate closed-loop control mining system. On the implemented experimental platform (prototype), we conduct the corresponding experiments and compare the proposed algorithms with several typical algorithms, such as the Apriori algorithm, the FP-growth algorithm and the CLOSE+ algorithm. The experimental results show that the interval-valued information system method is more effective than the conventional algorithms in discovering interval-valued patterns.

  9. Outdoor flocking of quadcopter drones with decentralized model predictive control.

    PubMed

    Yuan, Quan; Zhan, Jingyuan; Li, Xiang

    2017-11-01

    In this paper, we present a multi-drone system featured with a decentralized model predictive control (DMPC) flocking algorithm. The drones gather localized information from neighbors and update their velocities using the DMPC flocking algorithm. In the multi-drone system, data packages are transmitted through XBee ® wireless modules in broadcast mode, yielding such an anonymous and decentralized system where all the calculations and controls are completed on an onboard minicomputer of each drone. Each drone is a double-layered agent system with the coordination layer running multi-drone flocking algorithms and the flight control layer navigating the drone, and the final formation of the flock relies on both the communication range and the desired inter-drone distance. We give both numerical simulations and field tests with a flock of five drones, showing that the DMPC flocking algorithm performs well on the presented multi-drone system in both the convergence rate and the ability of tracking a desired path. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    NASA Astrophysics Data System (ADS)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach are less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.

  11. A new approach of optimal control for a class of continuous-time chaotic systems by an online ADP algorithm

    NASA Astrophysics Data System (ADS)

    Song, Rui-Zhuo; Xiao, Wen-Dong; Wei, Qing-Lai

    2014-05-01

    We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.

  12. A tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel independent brake from moderate driving to limit handling

    NASA Astrophysics Data System (ADS)

    Joa, Eunhyek; Park, Kwanwoo; Koh, Youngil; Yi, Kyongsu; Kim, Kilsoo

    2018-04-01

    This paper presents a tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel braking for enhanced performance from moderate driving to limit handling. The proposed algorithm adopted hierarchical structure: supervisor - desired motion tracking controller - optimisation-based control allocation. In the supervisor, by considering transient cornering characteristics, desired vehicle motion is calculated. In the desired motion tracking controller, in order to track desired vehicle motion, virtual control input is determined in the manner of sliding mode control. In the control allocation, virtual control input is allocated to minimise cost function. The cost function consists of two major parts. First part is a slip-based tyre friction utilisation quantification, which does not need a tyre force estimation. Second part is an allocation guideline, which guides optimally allocated inputs to predefined solution. The proposed algorithm has been investigated via simulation from moderate driving to limit handling scenario. Compared to Base and direct yaw moment control system, the proposed algorithm can effectively reduce tyre dissipation energy in the moderate driving situation. Moreover, the proposed algorithm enhances limit handling performance compared to Base and direct yaw moment control system. In addition to comparison with Base and direct yaw moment control, comparison the proposed algorithm with the control algorithm based on the known tyre force information has been conducted. The results show that the performance of the proposed algorithm is similar with that of the control algorithm with the known tyre force information.

  13. Enhancement of tracking performance in electro-optical system based on servo control algorithm

    NASA Astrophysics Data System (ADS)

    Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu

    2017-10-01

    Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.

  14. Graph theoretical stable allocation as a tool for reproduction of control by human operators

    NASA Astrophysics Data System (ADS)

    van Nooijen, Ronald; Ertsen, Maurits; Kolechkina, Alla

    2016-04-01

    During the design of central control algorithms for existing water resource systems under manual control it is important to consider the interaction with parts of the system that remain under manual control and to compare the proposed new system with the existing manual methods. In graph theory the "stable allocation" problem has good solution algorithms and allows for formulation of flow distribution problems in terms of priorities. As a test case for the use of this approach we used the algorithm to derive water allocation rules for the Gezira Scheme, an irrigation system located between the Blue and White Niles south of Khartoum. In 1925, Gezira started with 300,000 acres; currently it covers close to two million acres.

  15. Modelling and control algorithms of the cross conveyors line with multiengine variable speed drives

    NASA Astrophysics Data System (ADS)

    Cheremushkina, M. S.; Baburin, S. V.

    2017-02-01

    The paper deals with the actual problem of developing the control algorithm that meets the technical requirements of the mine belt conveyors, and enables energy and resource savings taking into account a random sort of traffic. The most effective method of solution of these tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. The authors designed the mathematical model of the system ‘variable speed multiengine drive - conveyor - control system of conveyors’ that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows one to reduce the dynamic overload in the belt to 15-20%.

  16. Study on the application of NASA energy management techniques for control of a terrestrial solar water heating system

    NASA Technical Reports Server (NTRS)

    Swanson, T. D.; Ollendorf, S.

    1979-01-01

    This paper addresses the potential for enhanced solar system performance through sophisticated control of the collector loop flow rate. Computer simulations utilizing the TRNSYS solar energy program were performed to study the relative effect on system performance of eight specific control algorithms. Six of these control algorithms are of the proportional type: two are concave exponentials, two are simple linear functions, and two are convex exponentials. These six functions are typical of what might be expected from future, more advanced, controllers. The other two algorithms are of the on/off type and are thus typical of existing control devices. Results of extensive computer simulations utilizing actual weather data indicate that proportional control does not significantly improve system performance. However, it is shown that thermal stratification in the liquid storage tank may significantly improve performance.

  17. A Flywheel Energy Storage System Demonstration for Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy

    2003-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented.

  18. An Error-Entropy Minimization Algorithm for Tracking Control of Nonlinear Stochastic Systems with Non-Gaussian Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Wang, Aiping; Guo, Lei

    This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.

  19. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation

    PubMed Central

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-01-01

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361

  20. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-12-19

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.

  1. Distributed Containment Control for Multiple Unknown Second-Order Nonlinear Systems With Application to Networked Lagrangian Systems.

    PubMed

    Mei, Jie; Ren, Wei; Li, Bing; Ma, Guangfu

    2015-09-01

    In this paper, we consider the distributed containment control problem for multiagent systems with unknown nonlinear dynamics. More specifically, we focus on multiple second-order nonlinear systems and networked Lagrangian systems. We first study the distributed containment control problem for multiple second-order nonlinear systems with multiple dynamic leaders in the presence of unknown nonlinearities and external disturbances under a general directed graph that characterizes the interaction among the leaders and the followers. A distributed adaptive control algorithm with an adaptive gain design based on the approximation capability of neural networks is proposed. We present a necessary and sufficient condition on the directed graph such that the containment error can be reduced as small as desired. As a byproduct, the leaderless consensus problem is solved with asymptotical convergence. Because relative velocity measurements between neighbors are generally more difficult to obtain than relative position measurements, we then propose a distributed containment control algorithm without using neighbors' velocity information. A two-step Lyapunov-based method is used to study the convergence of the closed-loop system. Next, we apply the ideas to deal with the containment control problem for networked unknown Lagrangian systems under a general directed graph. All the proposed algorithms are distributed and can be implemented using only local measurements in the absence of communication. Finally, simulation examples are provided to show the effectiveness of the proposed control algorithms.

  2. An observer-based compensator for distributed delays

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    This paper presents an algorithm for compensating delays that are distributed between the sensor(s), controller and actuator(s) within a control loop. This observer-based algorithm is specially suited to compensation of network-induced delays in integrated communication and control systems. The robustness of the algorithm relative to plant model uncertainties has been examined.

  3. An analysis of a candidate control algorithm for a ride quality augmentation system

    NASA Technical Reports Server (NTRS)

    Suikat, Reiner; Donaldson, Kent; Downing, David R.

    1987-01-01

    This paper presents a detailed analysis of a candidate algorithm for a ride quality augmentation system. The algorithm consists of a full-state feedback control law based on optimal control output weighting, estimators for angle of attack and sideslip, and a maneuvering algorithm. The control law is shown to perform well by both frequency and time domain analysis. The rms vertical acceleration is reduced by about 40 percent over the whole mission flight envelope. The estimators for the angle of attack and sideslip avoid the often inaccurate or costly direct measurement of those angles. The maneuvering algorithm will allow the augmented airplane to respond to pilot inputs. The design characteristics and performance are documented by the closed-loop eigenvalues; rms levels of vertical, lateral, and longitudinal acceleration; and representative time histories and frequency response.

  4. Control of a Wheeled Transport Robot with Two Steerable Wheels

    NASA Astrophysics Data System (ADS)

    Larin, V. B.

    2017-09-01

    The control of a system with one actuator failed is studied. The problem of control of a wheeled transport robot with two steerable wheels of which the rear one is stuck (its drive has failed) is solved. An algorithm for controlling the system in this situation is proposed. The effectiveness of the algorithm is demonstrated by way of an example.

  5. Chaos control of Hastings–Powell model by combining chaotic motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danca, Marius-F., E-mail: danca@rist.ro; Chattopadhyay, Joydev, E-mail: joydev@isical.ac.in

    2016-04-15

    In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings–Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can bemore » approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: “losing + losing = winning.” If “loosing” is replaced with “chaos” and, “winning” with “order” (as the opposite to “chaos”), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write “chaos + chaos = regular.” Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.« less

  6. Model Predictive Control Based Motion Drive Algorithm for a Driving Simulator

    NASA Astrophysics Data System (ADS)

    Rehmatullah, Faizan

    In this research, we develop a model predictive control based motion drive algorithm for the driving simulator at Toronto Rehabilitation Institute. Motion drive algorithms exploit the limitations of the human vestibular system to formulate a perception of motion within the constrained workspace of a simulator. In the absence of visual cues, the human perception system is unable to distinguish between acceleration and the force of gravity. The motion drive algorithm determines control inputs to displace the simulator platform, and by using the resulting inertial forces and angular rates, creates the perception of motion. By using model predictive control, we can optimize the use of simulator workspace for every maneuver while simulating the vehicle perception. With the ability to handle nonlinear constraints, the model predictive control allows us to incorporate workspace limitations.

  7. Distributed autonomous systems: resource management, planning, and control algorithms

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Nguyen, ThanhVu H.

    2005-05-01

    Distributed autonomous systems, i.e., systems that have separated distributed components, each of which, exhibit some degree of autonomy are increasingly providing solutions to naval and other DoD problems. Recently developed control, planning and resource allocation algorithms for two types of distributed autonomous systems will be discussed. The first distributed autonomous system (DAS) to be discussed consists of a collection of unmanned aerial vehicles (UAVs) that are under fuzzy logic control. The UAVs fly and conduct meteorological sampling in a coordinated fashion determined by their fuzzy logic controllers to determine the atmospheric index of refraction. Once in flight no human intervention is required. A fuzzy planning algorithm determines the optimal trajectory, sampling rate and pattern for the UAVs and an interferometer platform while taking into account risk, reliability, priority for sampling in certain regions, fuel limitations, mission cost, and related uncertainties. The real-time fuzzy control algorithm running on each UAV will give the UAV limited autonomy allowing it to change course immediately without consulting with any commander, request other UAVs to help it, alter its sampling pattern and rate when observing interesting phenomena, or to terminate the mission and return to base. The algorithms developed will be compared to a resource manager (RM) developed for another DAS problem related to electronic attack (EA). This RM is based on fuzzy logic and optimized by evolutionary algorithms. It allows a group of dissimilar platforms to use EA resources distributed throughout the group. For both DAS types significant theoretical and simulation results will be presented.

  8. Synthesis of an optoelectronic system for tracking (OEST) the information track of the optical record carrier based on the acceleration control principle

    NASA Astrophysics Data System (ADS)

    Zalogin, Stanislav M.; Zalogin, M. S.

    1997-02-01

    The problem for construction of control algorithm in OEST the information track of the optical record carrier the realization of which is based on the use of accelerations is considered. Such control algorithms render the designed system the properties of adaptability, feeble sensitivity to the system parameter change and the action of disturbing forces what gives known advantages to information carriers with such system under operation in hard climate conditions as well as at maladjustment, workpieces wear and change of friction in the system. In the paper are investigated dynamic characteristics of a closed OEST, it is shown, that the designed stable system with given quality indices is a high-precision one. The validated recommendations as to design of control algorithms parameters are confirmed by results of mathematical simulation of controlled processes. The proposed methods for OEST synthesis on the basis of the control acceleration principle can be recommended for the use at industrial production of optical information record carriers.

  9. Probabilistic DHP adaptive critic for nonlinear stochastic control systems.

    PubMed

    Herzallah, Randa

    2013-06-01

    Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing

    PubMed Central

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-01-01

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, feature extraction algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system. PMID:29462855

  11. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing.

    PubMed

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-02-15

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED light target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, direction location algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system.

  12. PSO Algorithm for an Optimal Power Controller in a Microgrid

    NASA Astrophysics Data System (ADS)

    Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.

    2017-07-01

    This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.

  13. Active Control of Wind Tunnel Noise

    NASA Technical Reports Server (NTRS)

    Hollis, Patrick (Principal Investigator)

    1991-01-01

    The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.

  14. Approximately adaptive neural cooperative control for nonlinear multiagent systems with performance guarantee

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Yang, Tianyu; Staskevich, Gennady; Abbe, Brian

    2017-04-01

    This paper studies the cooperative control problem for a class of multiagent dynamical systems with partially unknown nonlinear system dynamics. In particular, the control objective is to solve the state consensus problem for multiagent systems based on the minimisation of certain cost functions for individual agents. Under the assumption that there exist admissible cooperative controls for such class of multiagent systems, the formulated problem is solved through finding the optimal cooperative control using the approximate dynamic programming and reinforcement learning approach. With the aid of neural network parameterisation and online adaptive learning, our method renders a practically implementable approximately adaptive neural cooperative control for multiagent systems. Specifically, based on the Bellman's principle of optimality, the Hamilton-Jacobi-Bellman (HJB) equation for multiagent systems is first derived. We then propose an approximately adaptive policy iteration algorithm for multiagent cooperative control based on neural network approximation of the value functions. The convergence of the proposed algorithm is rigorously proved using the contraction mapping method. The simulation results are included to validate the effectiveness of the proposed algorithm.

  15. A comparison between IMSC, PI and MIMSC methods in controlling the vibration of flexible systems

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    A comparative study is presented between three active control algorithms which have proven to be successful in controlling the vibrations of large flexible systems. These algorithms are: the Independent Modal Space Control (IMSC), the Pseudo-inverse (PI), and the Modified Independent Modal Space Control (MIMSC). Emphasis is placed on demonstrating the effectiveness of the MIMSC method in controlling the vibration of large systems with small number of actuators by using an efficient time sharing strategy. Such a strategy favors the MIMSC over the IMSC method, which requires a large number of actuators to control equal number of modes, and also over the PI method which attempts to control large number of modes with smaller number of actuators through the use of an in-exact statistical realization of a modal controller. Numerical examples are presented to illustrate the main features of the three algorithms and the merits of the MIMSC method.

  16. An Ontology for Identifying Cyber Intrusion Induced Faults in Process Control Systems

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey; Graham, James; Guan, Jian

    This paper presents an ontological framework that permits formal representations of process control systems, including elements of the process being controlled and the control system itself. A fault diagnosis algorithm based on the ontological model is also presented. The algorithm can identify traditional process elements as well as control system elements (e.g., IP network and SCADA protocol) as fault sources. When these elements are identified as a likely fault source, the possibility exists that the process fault is induced by a cyber intrusion. A laboratory-scale distillation column is used to illustrate the model and the algorithm. Coupled with a well-defined statistical process model, this fault diagnosis approach provides cyber security enhanced fault diagnosis information to plant operators and can help identify that a cyber attack is underway before a major process failure is experienced.

  17. A new smooth robust control design for uncertain nonlinear systems with non-vanishing disturbances

    NASA Astrophysics Data System (ADS)

    Xian, Bin; Zhang, Yao

    2016-06-01

    In this paper, we consider the control problem for a general class of nonlinear system subjected to uncertain dynamics and non-varnishing disturbances. A smooth nonlinear control algorithm is presented to tackle these uncertainties and disturbances. The proposed control design employs the integral of a nonlinear sigmoid function to compensate the uncertain dynamics, and achieve a uniformly semi-global practical asymptotic stable tracking control of the system outputs. A novel Lyapunov-based stability analysis is employed to prove the convergence of the tracking errors and the stability of the closed-loop system. Numerical simulation results on a two-link robot manipulator are presented to illustrate the performance of the proposed control algorithm comparing with the layer-boundary sliding mode controller and the robust of integration of sign of error control design. Furthermore, real-time experiment results for the attitude control of a quadrotor helicopter are also included to confirm the effectiveness of the proposed algorithm.

  18. Continuous fractional-order Zero Phase Error Tracking Control.

    PubMed

    Liu, Lu; Tian, Siyuan; Xue, Dingyu; Zhang, Tao; Chen, YangQuan

    2018-04-01

    A continuous time fractional-order feedforward control algorithm for tracking desired time varying input signals is proposed in this paper. The presented controller cancels the phase shift caused by the zeros and poles of controlled closed-loop fractional-order system, so it is called Fractional-Order Zero Phase Tracking Controller (FZPETC). The controlled systems are divided into two categories i.e. with and without non-cancellable (non-minimum-phase) zeros which stand in unstable region or on stability boundary. Each kinds of systems has a targeted FZPETC design control strategy. The improved tracking performance has been evaluated successfully by applying the proposed controller to three different kinds of fractional-order controlled systems. Besides, a modified quasi-perfect tracking scheme is presented for those systems which may not have available future tracking trajectory information or have problem in high frequency disturbance rejection if the perfect tracking algorithm is applied. A simulation comparison and a hardware-in-the-loop thermal peltier platform are shown to validate the practicality of the proposed quasi-perfect control algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1987-01-01

    Expert systems that require access to data bases, complex simulations and real time instrumentation have both symbolic as well as algorithmic computing needs. These needs could both be met using a general computing workstation running both symbolic and algorithmic code, or separate, specialized computers networked together. The later approach was chosen to implement TEXSYS, the thermal expert system, developed to demonstrate the ability of an expert system to autonomously control the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. Integration options are explored and several possible solutions are presented.

  20. On the nature of control algorithms for free-floating space manipulators

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Evangelos; Dubowsky, Steven

    1991-01-01

    It is suggested that nearly any control algorithm that can be used for fixed-based manipulators also can be employed in the control of free-floating space manipulator systems, with the additional conditions of estimating or measuring a spacecraft's orientation and of avoiding dynamic singularities. This result is based on the structural similarities between the kinematic and dynamic equations for the same manipulator but with a fixed base. Barycenters are used to formulate the kinematic and dynamic equations of free-floating space manipulators. A control algorithm for a space manipulator system is designed to demonstrate the value of the analysis.

  1. Control of a High Speed Flywheel System for Energy Storage in Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy; Santiago, Walter

    2004-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented demonstrating the successful operation of the flywheel control up to the rated speed of 60,000 rpm.

  2. Anomaly Detection in Test Equipment via Sliding Mode Observers

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.; Drakunov, Sergey V.

    2012-01-01

    Nonlinear observers were originally developed based on the ideas of variable structure control, and for the purpose of detecting disturbances in complex systems. In this anomaly detection application, these observers were designed for estimating the distributed state of fluid flow in a pipe described by a class of advection equations. The observer algorithm uses collected data in a piping system to estimate the distributed system state (pressure and velocity along a pipe containing liquid gas propellant flow) using only boundary measurements. These estimates are then used to further estimate and localize possible anomalies such as leaks or foreign objects, and instrumentation metering problems such as incorrect flow meter orifice plate size. The observer algorithm has the following parts: a mathematical model of the fluid flow, observer control algorithm, and an anomaly identification algorithm. The main functional operation of the algorithm is in creating the sliding mode in the observer system implemented as software. Once the sliding mode starts in the system, the equivalent value of the discontinuous function in sliding mode can be obtained by filtering out the high-frequency chattering component. In control theory, "observers" are dynamic algorithms for the online estimation of the current state of a dynamic system by measurements of an output of the system. Classical linear observers can provide optimal estimates of a system state in case of uncertainty modeled by white noise. For nonlinear cases, the theory of nonlinear observers has been developed and its success is mainly due to the sliding mode approach. Using the mathematical theory of variable structure systems with sliding modes, the observer algorithm is designed in such a way that it steers the output of the model to the output of the system obtained via a variety of sensors, in spite of possible mismatches between the assumed model and actual system. The unique properties of sliding mode control allow not only control of the model internal states to the states of the real-life system, but also identification of the disturbance or anomaly that may occur.

  3. Control of equipment isolation system using wavelet-based hybrid sliding mode control

    NASA Astrophysics Data System (ADS)

    Huang, Shieh-Kung; Loh, Chin-Hsiung

    2017-04-01

    Critical non-structural equipment, including life-saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., is vulnerable to strong earthquakes, and on top of that, the failure of the vibration-sensitive equipment will cause severe economic loss. In order to protect vibration-sensitive equipment or machinery against strong earthquakes, various innovative control algorithms are developed to compensate the internal forces that to be applied. These new or improved control strategies, such as the control algorithms based on optimal control theory and sliding mode control (SMC), are also developed for structures engineering as a key element in smart structure technology. The optimal control theory, one of the most common methodologies in feedback control, finds control forces through achieving a certain optimal criterion by minimizing a cost function. For example, the linear-quadratic regulator (LQR) was the most popular control algorithm over the past three decades, and a number of modifications have been proposed to increase the efficiency of classical LQR algorithm. However, except to the advantage of simplicity and ease of implementation, LQR are susceptible to parameter uncertainty and modeling error due to complex nature of civil structures. Different from LQR control, a robust and easy to be implemented control algorithm, SMC has also been studied. SMC is a nonlinear control methodology that forces the structural system to slide along surfaces or boundaries; hence this control algorithm is naturally robust with respect to parametric uncertainties of a structure. Early attempts at protecting vibration-sensitive equipment were based on the use of existing control algorithms as described above. However, in recent years, researchers have tried to renew the existing control algorithms or developing a new control algorithm to adapt the complex nature of civil structures which include the control of both structures and non-structural components. The aim of this paper is to develop a hybrid control algorithm on the control of both structures and equipments simultaneously to overcome the limitations of classical feedback control through combining the advantage of classic LQR and SMC. To suppress vibrations with the frequency contents of strong earthquakes differing from the natural frequencies of civil structures, the hybrid control algorithms integrated with the wavelet-base vibration control algorithm is developed. The performance of classical, hybrid, and wavelet-based hybrid control algorithms as well as the responses of structure and non-structural components are evaluated and discussed through numerical simulation in this study.

  4. A homotopy algorithm for digital optimal projection control GASD-HADOC

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.

    1993-01-01

    The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.

  5. Advanced power system protection and incipient fault detection and protection of spaceborne power systems

    NASA Technical Reports Server (NTRS)

    Russell, B. Don

    1989-01-01

    This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.

  6. Adaptive Control Strategies for Flexible Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1996-01-01

    The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.

  7. EKF-Based Enhanced Performance Controller Design for Nonlinear Stochastic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    In this paper, a novel control algorithm is presented to enhance the performance of tracking property for a class of non-linear dynamic stochastic systems with unmeasurable variables. To minimize the entropy of tracking errors without changing the existing closed loop with PI controller, the enhanced performance loop is constructed based on the state estimation by extended Kalman Filter and the new controller is designed by full state feedback following this presented control algorithm. Besides, the conditions are obtained for the stability analysis in the mean square sense. In the end, the comparative simulation results are given to illustrate the effectivenessmore » of proposed control algorithm.« less

  8. A synergistic method for vibration suppression of an elevator mechatronic system

    NASA Astrophysics Data System (ADS)

    Knezevic, Bojan Z.; Blanusa, Branko; Marcetic, Darko P.

    2017-10-01

    Modern elevators are complex mechatronic systems which have to satisfy high performance in precision, safety and ride comfort. Each elevator mechatronic system (EMS) contains a mechanical subsystem which is characterized by its resonant frequency. In order to achieve high performance of the whole system, the control part of the EMS inevitably excites resonant circuits causing the occurrence of vibration. This paper proposes a synergistic solution based on the jerk control and the upgrade of the speed controller with a band-stop filter to restore lost ride comfort and speed control caused by vibration. The band-stop filter eliminates the resonant component from the speed controller spectra and jerk control provides operating of the speed controller in a linear mode as well as increased ride comfort. The original method for band-stop filter tuning based on Goertzel algorithm and Kiefer search algorithm is proposed in this paper. In order to generate the speed reference trajectory which can be defined by different shapes and amplitudes of jerk, a unique generalized model is proposed. The proposed algorithm is integrated in the power drive control algorithm and implemented on the digital signal processor. Through experimental verifications on a scale down prototype of the EMS it has been verified that only synergistic effect of controlling jerk and filtrating the reference torque can completely eliminate vibrations.

  9. Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade

    NASA Astrophysics Data System (ADS)

    Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman

    2016-09-01

    The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.

  10. Algorithm and data support of traffic congestion forecasting in the controlled transport

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.

    2015-06-01

    The topicality of problem of the traffic congestion forecasting in the logistic systems of product movement highways is considered. The concepts: the controlled territory, the highway occupancy by vehicles, the parking and the controlled territory are introduced. Technical realizabilityof organizing the necessary flow of information on the state of the transport system for its regulation has been marked. Sequence of practical implementation of the solution is given. An algorithm for predicting traffic congestion in the controlled transport system is suggested.

  11. Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.

    PubMed

    Wei, Qinglai; Liu, Derong; Lin, Hanquan

    2016-03-01

    In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.

  12. The study on the control strategy of micro grid considering the economy of energy storage operation

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Yiqun; Wang, Xin; Li, Bei; Zeng, Ming

    2017-08-01

    To optimize the running of micro grid to guarantee the supply and demand balance of electricity, and to promote the utilization of renewable energy. The control strategy of micro grid energy storage system is studied. Firstly, the mixed integer linear programming model is established based on the receding horizon control. Secondly, the modified cuckoo search algorithm is proposed to calculate the model. Finally, a case study is carried out to study the signal characteristic of micro grid and batteries under the optimal control strategy, and the convergence of the modified cuckoo search algorithm is compared with others to verify the validity of the proposed model and method. The results show that, different micro grid running targets can affect the control strategy of energy storage system, which further affect the signal characteristics of the micro grid. Meanwhile, the convergent speed, computing time and the economy of the modified cuckoo search algorithm are improved compared with the traditional cuckoo search algorithm and differential evolution algorithm.

  13. Large space structures control algorithm characterization

    NASA Technical Reports Server (NTRS)

    Fogel, E.

    1983-01-01

    Feedback control algorithms are developed for sensor/actuator pairs on large space systems. These algorithms have been sized in terms of (1) floating point operation (FLOP) demands; (2) storage for variables; and (3) input/output data flow. FLOP sizing (per control cycle) was done as a function of the number of control states and the number of sensor/actuator pairs. Storage for variables and I/O sizing was done for specific structure examples.

  14. Real-time dynamics simulation of the Cassini spacecraft using DARTS. Part 1: Functional capabilities and the spatial algebra algorithm

    NASA Technical Reports Server (NTRS)

    Jain, A.; Man, G. K.

    1993-01-01

    This paper describes the Dynamics Algorithms for Real-Time Simulation (DARTS) real-time hardware-in-the-loop dynamics simulator for the National Aeronautics and Space Administration's Cassini spacecraft. The spacecraft model consists of a central flexible body with a number of articulated rigid-body appendages. The demanding performance requirements from the spacecraft control system require the use of a high fidelity simulator for control system design and testing. The DARTS algorithm provides a new algorithmic and hardware approach to the solution of this hardware-in-the-loop simulation problem. It is based upon the efficient spatial algebra dynamics for flexible multibody systems. A parallel and vectorized version of this algorithm is implemented on a low-cost, multiprocessor computer to meet the simulation timing requirements.

  15. Data-Driven Based Asynchronous Motor Control for Printing Servo Systems

    NASA Astrophysics Data System (ADS)

    Bian, Min; Guo, Qingyun

    Modern digital printing equipment aims to the environmental-friendly industry with high dynamic performances and control precision and low vibration and abrasion. High performance motion control system of printing servo systems was required. Control system of asynchronous motor based on data acquisition was proposed. Iterative learning control (ILC) algorithm was studied. PID control was widely used in the motion control. However, it was sensitive to the disturbances and model parameters variation. The ILC applied the history error data and present control signals to approximate the control signal directly in order to fully track the expect trajectory without the system models and structures. The motor control algorithm based on the ILC and PID was constructed and simulation results were given. The results show that data-driven control method is effective dealing with bounded disturbances for the motion control of printing servo systems.

  16. Verification hybrid control of a wheeled mobile robot and manipulator

    NASA Astrophysics Data System (ADS)

    Muszynska, Magdalena; Burghardt, Andrzej; Kurc, Krzysztof; Szybicki, Dariusz

    2016-04-01

    In this article, innovative approaches to realization of the wheeled mobile robots and manipulator tracking are presented. Conceptions include application of the neural-fuzzy systems to compensation of the controlled system's nonlinearities in the tracking control task. Proposed control algorithms work on-line, contain structure, that adapt to the changeable work conditions of the controlled systems, and do not require the preliminary learning. The algorithm was verification on the real object which was a Scorbot - ER 4pc robotic manipulator and a Pioneer - 2DX mobile robot.

  17. Platform for real-time simulation of dynamic systems and hardware-in-the-loop for control algorithms.

    PubMed

    de Souza, Isaac D T; Silva, Sergio N; Teles, Rafael M; Fernandes, Marcelo A C

    2014-10-15

    The development of new embedded algorithms for automation and control of industrial equipment usually requires the use of real-time testing. However, the equipment required is often expensive, which means that such tests are often not viable. The objective of this work was therefore to develop an embedded platform for the distributed real-time simulation of dynamic systems. This platform, called the Real-Time Simulator for Dynamic Systems (RTSDS), could be applied in both industrial and academic environments. In industrial applications, the RTSDS could be used to optimize embedded control algorithms. In the academic sphere, it could be used to support research into new embedded solutions for automation and control and could also be used as a tool to assist in undergraduate and postgraduate teaching related to the development of projects concerning on-board control systems.

  18. Platform for Real-Time Simulation of Dynamic Systems and Hardware-in-the-Loop for Control Algorithms

    PubMed Central

    de Souza, Isaac D. T.; Silva, Sergio N.; Teles, Rafael M.; Fernandes, Marcelo A. C.

    2014-01-01

    The development of new embedded algorithms for automation and control of industrial equipment usually requires the use of real-time testing. However, the equipment required is often expensive, which means that such tests are often not viable. The objective of this work was therefore to develop an embedded platform for the distributed real-time simulation of dynamic systems. This platform, called the Real-Time Simulator for Dynamic Systems (RTSDS), could be applied in both industrial and academic environments. In industrial applications, the RTSDS could be used to optimize embedded control algorithms. In the academic sphere, it could be used to support research into new embedded solutions for automation and control and could also be used as a tool to assist in undergraduate and postgraduate teaching related to the development of projects concerning on-board control systems. PMID:25320906

  19. A novel N-input voting algorithm for X-by-wire fault-tolerant systems.

    PubMed

    Karimi, Abbas; Zarafshan, Faraneh; Al-Haddad, S A R; Ramli, Abdul Rahman

    2014-01-01

    Voting is an important operation in multichannel computation paradigm and realization of ultrareliable and real-time control systems that arbitrates among the results of N redundant variants. These systems include N-modular redundant (NMR) hardware systems and diversely designed software systems based on N-version programming (NVP). Depending on the characteristics of the application and the type of selected voter, the voting algorithms can be implemented for either hardware or software systems. In this paper, a novel voting algorithm is introduced for real-time fault-tolerant control systems, appropriate for applications in which N is large. Then, its behavior has been software implemented in different scenarios of error-injection on the system inputs. The results of analyzed evaluations through plots and statistical computations have demonstrated that this novel algorithm does not have the limitations of some popular voting algorithms such as median and weighted; moreover, it is able to significantly increase the reliability and availability of the system in the best case to 2489.7% and 626.74%, respectively, and in the worst case to 3.84% and 1.55%, respectively.

  20. A study of interactive control scheduling and economic assessment for robotic systems

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A class of interactive control systems is derived by generalizing interactive manipulator control systems. Tasks of interactive control systems can be represented as a network of a finite set of actions which have specific operational characteristics and specific resource requirements, and which are of limited duration. This has enabled the decomposition of the overall control algorithm simultaneously and asynchronously. The performance benefits of sensor referenced and computer-aided control of manipulators in a complex environment is evaluated. The first phase of the CURV arm control system software development and the basic features of the control algorithms and their software implementation are presented. An optimal solution for a production scheduling problem that will be easy to implement in practical situations is investigated.

  1. A vision-based end-point control for a two-link flexible manipulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Obergfell, Klaus

    1991-01-01

    The measurement and control of the end-effector position of a large two-link flexible manipulator are investigated. The system implementation is described and an initial algorithm for static end-point positioning is discussed. Most existing robots are controlled through independent joint controllers, while the end-effector position is estimated from the joint positions using a kinematic relation. End-point position feedback can be used to compensate for uncertainty and structural deflections. Such feedback is especially important for flexible robots. Computer vision is utilized to obtain end-point position measurements. A look-and-move control structure alleviates the disadvantages of the slow and variable computer vision sampling frequency. This control structure consists of an inner joint-based loop and an outer vision-based loop. A static positioning algorithm was implemented and experimentally verified. This algorithm utilizes the manipulator Jacobian to transform a tip position error to a joint error. The joint error is then used to give a new reference input to the joint controller. The convergence of the algorithm is demonstrated experimentally under payload variation. A Landmark Tracking System (Dickerson, et al 1990) is used for vision-based end-point measurements. This system was modified and tested. A real-time control system was implemented on a PC and interfaced with the vision system and the robot.

  2. Decoupled Modulation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shaobu; Huang, Renke; Huang, Zhenyu

    The objective of this research work is to develop decoupled modulation control methods for damping inter-area oscillations with low frequencies, so the damping control can be more effective and easier to design with less interference among different oscillation modes in the power system. A signal-decoupling algorithm was developed that can enable separation of multiple oscillation frequency contents and extraction of a “pure” oscillation frequency mode that are fed into Power System Stabilizers (PSSs) as the modulation input signals. As a result, instead of introducing interferences between different oscillation modes from the traditional approaches, the output of the new PSS modulationmore » control signal mainly affects only one oscillation mode of interest. The new decoupled modulation damping control algorithm has been successfully developed and tested on the standard IEEE 4-machine 2-area test system and a minniWECC system. The results are compared against traditional modulation controls, which demonstrates the validity and effectiveness of the newly-developed decoupled modulation damping control algorithm.« less

  3. Numerical algorithms for computations of feedback laws arising in control of flexible systems

    NASA Technical Reports Server (NTRS)

    Lasiecka, Irena

    1989-01-01

    Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.

  4. An analytical fuzzy-based approach to ?-gain optimal control of input-affine nonlinear systems using Newton-type algorithm

    NASA Astrophysics Data System (ADS)

    Milic, Vladimir; Kasac, Josip; Novakovic, Branko

    2015-10-01

    This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.

  5. Development of rehabilitation training support system for occupational therapy of upper limb motor function

    NASA Astrophysics Data System (ADS)

    Morita, Yoshifumi; Hirose, Akinori; Uno, Takashi; Uchid, Masaki; Ukai, Hiroyuki; Matsui, Nobuyuki

    2007-12-01

    In this paper we propose a new rehabilitation training support system for upper limbs. The proposed system enables therapists to quantitatively evaluate the therapeutic effect of upper limb motor function during training, to easily change the load of resistance of training and to easily develop a new training program suitable for the subjects. For this purpose we develop control algorithms of training programs in the 3D force display robot. The 3D force display robot has parallel link mechanism with three motors. The control algorithm simulating sanding training is developed for the 3D force display robot. Moreover the teaching/training function algorithm is developed. It enables the therapists to easily make training trajectory suitable for subject's condition. The effectiveness of the developed control algorithms is verified by experiments.

  6. Efficient Online Optimized Quantum Control for Adiabatic Quantum Computation

    NASA Astrophysics Data System (ADS)

    Quiroz, Gregory

    Adiabatic quantum computation (AQC) relies on controlled adiabatic evolution to implement a quantum algorithm. While control evolution can take many forms, properly designed time-optimal control has been shown to be particularly advantageous for AQC. Grover's search algorithm is one such example where analytically-derived time-optimal control leads to improved scaling of the minimum energy gap between the ground state and first excited state and thus, the well-known quadratic quantum speedup. Analytical extensions beyond Grover's search algorithm present a daunting task that requires potentially intractable calculations of energy gaps and a significant degree of model certainty. Here, an in situ quantum control protocol is developed for AQC. The approach is shown to yield controls that approach the analytically-derived time-optimal controls for Grover's search algorithm. In addition, the protocol's convergence rate as a function of iteration number is shown to be essentially independent of system size. Thus, the approach is potentially scalable to many-qubit systems.

  7. Sliding-mode control of single input multiple output DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  8. Sliding-mode control of single input multiple output DC-DC converter.

    PubMed

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  9. Network congestion control algorithm based on Actor-Critic reinforcement learning model

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2018-04-01

    Aiming at the network congestion control problem, a congestion control algorithm based on Actor-Critic reinforcement learning model is designed. Through the genetic algorithm in the congestion control strategy, the network congestion problems can be better found and prevented. According to Actor-Critic reinforcement learning, the simulation experiment of network congestion control algorithm is designed. The simulation experiments verify that the AQM controller can predict the dynamic characteristics of the network system. Moreover, the learning strategy is adopted to optimize the network performance, and the dropping probability of packets is adaptively adjusted so as to improve the network performance and avoid congestion. Based on the above finding, it is concluded that the network congestion control algorithm based on Actor-Critic reinforcement learning model can effectively avoid the occurrence of TCP network congestion.

  10. The study on servo-control system in the large aperture telescope

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Zhenchao, Zhang; Daxing, Wang

    2008-08-01

    Large astronomical telescope or extremely enormous astronomical telescope servo tracking technique will be one of crucial technology that must be solved in researching and manufacturing. To control technique feature of large astronomical telescope or extremely enormous astronomical telescope, this paper design a sort of large astronomical telescope servo tracking control system. This system composes a principal and subordinate distributed control system, host computer sends steering instruction and receive slave computer functional mode, slave computer accomplish control algorithm and execute real-time control. Large astronomical telescope servo control use direct drive machine, and adopt DSP technology to complete direct torque control algorithm, Such design can not only increase control system performance, but also greatly reduced volume and costs of control system, which has a significant occurrence. The system design scheme can be proved reasonably by calculating and simulating. This system can be applied to large astronomical telescope.

  11. Advanced Avionics Verification and Validation Phase II (AAV&V-II)

    DTIC Science & Technology

    1999-01-01

    Algorithm 2-8 2.7 The Weak Control Dependence Algorithm 2-8 2.8 The Indirect Dependence Algorithms 2-9 2.9 Improvements to the Pleiades Object...describes some modifications made to the Pleiades object management system to increase the speed of the analysis. 2.1 THE INTERPROCEDURAL CONTROL FLOW...slow as the edges in the graph increased. The time to insert edges was addressed by enhancements to the Pleiades object management system, which are

  12. Adaptive fuzzy system for 3-D vision

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda

    1993-01-01

    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.

  13. Experimental Simulation of Active Control With On-line System Identification on Sound Transmission Through an Elastic Plate

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An adaptive control algorithm with on-line system identification capability has been developed. One of the great advantages of this scheme is that an additional system identification mechanism such as an additional uncorrelated random signal generator as the source of system identification is not required. A time-varying plate-cavity system is used to demonstrate the control performance of this algorithm. The time-varying system consists of a stainless-steel plate which is bolted down on a rigid cavity opening where the cavity depth was changed with respect to time. For a given externally located harmonic sound excitation, the system identification and the control are simultaneously executed to minimize the transmitted sound in the cavity. The control performance of the algorithm is examined for two cases. First, all the water was drained, the external disturbance frequency is swept with 1 Hz/sec. The result shows an excellent frequency tracking capability with cavity internal sound suppression of 40 dB. For the second case, the water level is initially empty and then raised to 3/20 full in 60 seconds while the external sound excitation is fixed with a frequency. Hence, the cavity resonant frequency decreases and passes the external sound excitation frequency. The algorithm shows 40 dB transmitted noise suppression without compromising the system identification tracking capability.

  14. A computerized compensator design algorithm with launch vehicle applications

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.

    1976-01-01

    This short paper presents a computerized algorithm for the design of compensators for large launch vehicles. The algorithm is applicable to the design of compensators for linear, time-invariant, control systems with a plant possessing a single control input and multioutputs. The achievement of frequency response specifications is cast into a strict constraint mathematical programming format. An improved solution algorithm for solving this type of problem is given, along with the mathematical necessities for application to systems of the above type. A computer program, compensator improvement program (CIP), has been developed and applied to a pragmatic space-industry-related example.

  15. Modeling and control of distributed energy systems during transition between grid connected and standalone modes

    NASA Astrophysics Data System (ADS)

    Arafat, Md Nayeem

    Distributed generation systems (DGs) have been penetrating into our energy networks with the advancement in the renewable energy sources and energy storage elements. These systems can operate in synchronism with the utility grid referred to as the grid connected (GC) mode of operation, or work independently, referred to as the standalone (SA) mode of operation. There is a need to ensure continuous power flow during transition between GC and SA modes, referred to as the transition mode, in operating DGs. In this dissertation, efficient and effective transition control algorithms are developed for DGs operating either independently or collectively with other units. Three techniques are proposed in this dissertation to manage the proper transition operations. In the first technique, a new control algorithm is proposed for an independent DG which can operate in SA and GC modes. The proposed transition control algorithm ensures low total harmonic distortion (THD) and less voltage fluctuation during mode transitions compared to the other techniques. In the second technique, a transition control is suggested for a collective of DGs operating in a microgrid system architecture to improve the reliability of the system, reduce the cost, and provide better performance. In this technique, one of the DGs in a microgrid system, referred to as a dispatch unit , takes the additional responsibility of mode transitioning to ensure smooth transition and supply/demand balance in the microgrid. In the third technique, an alternative transition technique is proposed through hybridizing the current and droop controllers. The proposed hybrid transition control technique has higher reliability compared to the dispatch unit concept. During the GC mode, the proposed hybrid controller uses current control. During the SA mode, the hybrid controller uses droop control. During the transition mode, both of the controllers participate in formulating the inverter output voltage but with different weights or coefficients. Voltage source inverters interfacing the DGs as well as the proposed transition control algorithms have been modeled to analyze the stability of the algorithms in different configurations. The performances of the proposed algorithms are verified through simulation and experimental studies. It has been found that the proposed control techniques can provide smooth power flow to the local loads during the GC, SA and transition modes.

  16. Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.

    PubMed

    Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter

    2012-08-01

    An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Implementation of Maximum Power Point Tracking (MPPT) Solar Charge Controller using Arduino

    NASA Astrophysics Data System (ADS)

    Abdelilah, B.; Mouna, A.; KouiderM’Sirdi, N.; El Hossain, A.

    2018-05-01

    the platform Arduino with a number of sensors standard can be used as components of an electronic system for acquiring measures and controls. This paper presents the design of a low-cost and effective solar charge controller. This system includes several elements such as the solar panel converter DC/DC, battery, circuit MPPT using Microcontroller, sensors, and the MPPT algorithm. The MPPT (Maximum Power Point Tracker) algorithm has been implemented using an Arduino Nano with the preferred program. The voltage and current of the Panel are taken where the program implemented will work and using this algorithm that MPP will be reached. This paper provides details on the solar charge control device at the maximum power point. The results include the change of the duty cycle with the change in load and thus mean the variation of the buck converter output voltage and current controlled by the MPPT algorithm.

  18. Control optimization, stabilization and computer algorithms for aircraft applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research related to reliable aircraft design is summarized. Topics discussed include systems reliability optimization, failure detection algorithms, analysis of nonlinear filters, design of compensators incorporating time delays, digital compensator design, estimation for systems with echoes, low-order compensator design, descent-phase controller for 4-D navigation, infinite dimensional mathematical programming problems and optimal control problems with constraints, robust compensator design, numerical methods for the Lyapunov equations, and perturbation methods in linear filtering and control.

  19. Application of genetic algorithms to tuning fuzzy control systems

    NASA Technical Reports Server (NTRS)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  20. Resilient distributed control in the presence of misbehaving agents in networked control systems.

    PubMed

    Zeng, Wente; Chow, Mo-Yuen

    2014-11-01

    In this paper, we study the problem of reaching a consensus among all the agents in the networked control systems (NCS) in the presence of misbehaving agents. A reputation-based resilient distributed control algorithm is first proposed for the leader-follower consensus network. The proposed algorithm embeds a resilience mechanism that includes four phases (detection, mitigation, identification, and update), into the control process in a distributed manner. At each phase, every agent only uses local and one-hop neighbors' information to identify and isolate the misbehaving agents, and even compensate their effect on the system. We then extend the proposed algorithm to the leaderless consensus network by introducing and adding two recovery schemes (rollback and excitation recovery) into the current framework to guarantee the accurate convergence of the well-behaving agents in NCS. The effectiveness of the proposed method is demonstrated through case studies in multirobot formation control and wireless sensor networks.

  1. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    PubMed

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  2. Evaluation of FNS control systems: software development and sensor characterization.

    PubMed

    Riess, J; Abbas, J J

    1997-01-01

    Functional Neuromuscular Stimulation (FNS) systems activate paralyzed limbs by electrically stimulating motor neurons. These systems have been used to restore functions such as standing and stepping in people with thoracic level spinal cord injury. Research in our laboratory is directed at the design and evaluation of the control algorithms for generating posture and movement. This paper describes software developed for implementing FNS control systems and the characterization of a sensor system used to implement and evaluate controllers in the laboratory. In order to assess FNS control algorithms, we have developed a versatile software package using Lab VIEW (National Instruments, Corp). This package provides the ability to interface with sensor systems via serial port or A/D board, implement data processing and real-time control algorithms, and interface with neuromuscular stimulation devices. In our laboratory, we use the Flock of Birds (Ascension Technology Corp.) motion tracking sensor system to monitor limb segment position and orientation (6 degrees of freedom). Errors in the sensor system have been characterized and nonlinear polynomial models have been developed to account for these errors. With this compensation, the error in the distance measurement is reduced by 90 % so that the maximum error is less than 1 cm.

  3. Sliding mode fault tolerant control dealing with modeling uncertainties and actuator faults.

    PubMed

    Wang, Tao; Xie, Wenfang; Zhang, Youmin

    2012-05-01

    In this paper, two sliding mode control algorithms are developed for nonlinear systems with both modeling uncertainties and actuator faults. The first algorithm is developed under an assumption that the uncertainty bounds are known. Different design parameters are utilized to deal with modeling uncertainties and actuator faults, respectively. The second algorithm is an adaptive version of the first one, which is developed to accommodate uncertainties and faults without utilizing exact bounds information. The stability of the overall control systems is proved by using a Lyapunov function. The effectiveness of the developed algorithms have been verified on a nonlinear longitudinal model of Boeing 747-100/200. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid

    NASA Astrophysics Data System (ADS)

    Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.

    2012-10-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.

  5. A comparison of force control algorithms for robots in contact with flexible environments

    NASA Technical Reports Server (NTRS)

    Wilfinger, Lee S.

    1992-01-01

    In order to perform useful tasks, the robot end-effector must come into contact with its environment. For such tasks, force feedback is frequently used to control the interaction forces. Control of these forces is complicated by the fact that the flexibility of the environment affects the stability of the force control algorithm. Because of the wide variety of different materials present in everyday environments, it is necessary to gain an understanding of how environmental flexibility affects the stability of force control algorithms. This report presents the theory and experimental results of two force control algorithms: Position Accommodation Control and Direct Force Servoing. The implementation of each of these algorithms on a two-arm robotic test bed located in the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is discussed in detail. The behavior of each algorithm when contacting materials of different flexibility is experimentally determined. In addition, several robustness improvements to the Direct Force Servoing algorithm are suggested and experimentally verified. Finally, a qualitative comparison of the force control algorithms is provided, along with a description of a general tuning process for each control method.

  6. SAMSAN- MODERN NUMERICAL METHODS FOR CLASSICAL SAMPLED SYSTEM ANALYSIS

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    SAMSAN was developed to aid the control system analyst by providing a self consistent set of computer algorithms that support large order control system design and evaluation studies, with an emphasis placed on sampled system analysis. Control system analysts have access to a vast array of published algorithms to solve an equally large spectrum of controls related computational problems. The analyst usually spends considerable time and effort bringing these published algorithms to an integrated operational status and often finds them less general than desired. SAMSAN reduces the burden on the analyst by providing a set of algorithms that have been well tested and documented, and that can be readily integrated for solving control system problems. Algorithm selection for SAMSAN has been biased toward numerical accuracy for large order systems with computational speed and portability being considered important but not paramount. In addition to containing relevant subroutines from EISPAK for eigen-analysis and from LINPAK for the solution of linear systems and related problems, SAMSAN contains the following not so generally available capabilities: 1) Reduction of a real non-symmetric matrix to block diagonal form via a real similarity transformation matrix which is well conditioned with respect to inversion, 2) Solution of the generalized eigenvalue problem with balancing and grading, 3) Computation of all zeros of the determinant of a matrix of polynomials, 4) Matrix exponentiation and the evaluation of integrals involving the matrix exponential, with option to first block diagonalize, 5) Root locus and frequency response for single variable transfer functions in the S, Z, and W domains, 6) Several methods of computing zeros for linear systems, and 7) The ability to generate documentation "on demand". All matrix operations in the SAMSAN algorithms assume non-symmetric matrices with real double precision elements. There is no fixed size limit on any matrix in any SAMSAN algorithm; however, it is generally agreed by experienced users, and in the numerical error analysis literature, that computation with non-symmetric matrices of order greater than about 200 should be avoided or treated with extreme care. SAMSAN attempts to support the needs of application oriented analysis by providing: 1) a methodology with unlimited growth potential, 2) a methodology to insure that associated documentation is current and available "on demand", 3) a foundation of basic computational algorithms that most controls analysis procedures are based upon, 4) a set of check out and evaluation programs which demonstrate usage of the algorithms on a series of problems which are structured to expose the limits of each algorithm's applicability, and 5) capabilities which support both a priori and a posteriori error analysis for the computational algorithms provided. The SAMSAN algorithms are coded in FORTRAN 77 for batch or interactive execution and have been implemented on a DEC VAX computer under VMS 4.7. An effort was made to assure that the FORTRAN source code was portable and thus SAMSAN may be adaptable to other machine environments. The documentation is included on the distribution tape or can be purchased separately at the price below. SAMSAN version 2.0 was developed in 1982 and updated to version 3.0 in 1988.

  7. Advanced detection, isolation and accommodation of sensor failures: Real-time evaluation

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Delaat, John C.; Bruton, William M.

    1987-01-01

    The objective of the Advanced Detection, Isolation, and Accommodation (ADIA) Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines by using analytical redundacy to detect sensor failures. The results of a real time hybrid computer evaluation of the ADIA algorithm are presented. Minimum detectable levels of sensor failures for an F100 engine control system are determined. Also included are details about the microprocessor implementation of the algorithm as well as a description of the algorithm itself.

  8. On the estimation algorithm used in adaptive performance optimization of turbofan engines

    NASA Technical Reports Server (NTRS)

    Espana, Martin D.; Gilyard, Glenn B.

    1993-01-01

    The performance seeking control algorithm is designed to continuously optimize the performance of propulsion systems. The performance seeking control algorithm uses a nominal model of the propulsion system and estimates, in flight, the engine deviation parameters characterizing the engine deviations with respect to nominal conditions. In practice, because of measurement biases and/or model uncertainties, the estimated engine deviation parameters may not reflect the engine's actual off-nominal condition. This factor has a necessary impact on the overall performance seeking control scheme exacerbated by the open-loop character of the algorithm. The effects produced by unknown measurement biases over the estimation algorithm are evaluated. This evaluation allows for identification of the most critical measurements for application of the performance seeking control algorithm to an F100 engine. An equivalence relation between the biases and engine deviation parameters stems from an observability study; therefore, it is undecided whether the estimated engine deviation parameters represent the actual engine deviation or whether they simply reflect the measurement biases. A new algorithm, based on the engine's (steady-state) optimization model, is proposed and tested with flight data. When compared with previous Kalman filter schemes, based on local engine dynamic models, the new algorithm is easier to design and tune and it reduces the computational burden of the onboard computer.

  9. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    NASA Technical Reports Server (NTRS)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  10. Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories

    NASA Technical Reports Server (NTRS)

    Burchett, Bradley T.

    2003-01-01

    The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.

  11. Minimum Control Requirements for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Boulange, Richard; Jones, Harry; Jones, Harry

    2002-01-01

    Advanced control technologies are not necessary for the safe, reliable and continuous operation of Advanced Life Support (ALS) systems. ALS systems can and are adequately controlled by simple, reliable, low-level methodologies and algorithms. The automation provided by advanced control technologies is claimed to decrease system mass and necessary crew time by reducing buffer size and minimizing crew involvement. In truth, these approaches increase control system complexity without clearly demonstrating an increase in reliability across the ALS system. Unless these systems are as reliable as the hardware they control, there is no savings to be had. A baseline ALS system is presented with the minimal control system required for its continuous safe reliable operation. This baseline control system uses simple algorithms and scheduling methodologies and relies on human intervention only in the event of failure of the redundant backup equipment. This ALS system architecture is designed for reliable operation, with minimal components and minimal control system complexity. The fundamental design precept followed is "If it isn't there, it can't fail".

  12. Experimental research of flow servo-valve

    NASA Astrophysics Data System (ADS)

    Takosoglu, Jakub

    Positional control of pneumatic drives is particularly important in pneumatic systems. Some methods of positioning pneumatic cylinders for changeover and tracking control are known. Choking method is the most development-oriented and has the greatest potential. An optimal and effective method, particularly when applied to pneumatic drives, has been searched for a long time. Sophisticated control systems with algorithms utilizing artificial intelligence methods are designed therefor. In order to design the control algorithm, knowledge about real parameters of servo-valves used in control systems of electro-pneumatic servo-drives is required. The paper presents the experimental research of flow servo-valve.

  13. Computational complexities and storage requirements of some Riccati equation solvers

    NASA Technical Reports Server (NTRS)

    Utku, Senol; Garba, John A.; Ramesh, A. V.

    1989-01-01

    The linear optimal control problem of an nth-order time-invariant dynamic system with a quadratic performance functional is usually solved by the Hamilton-Jacobi approach. This leads to the solution of the differential matrix Riccati equation with a terminal condition. The bulk of the computation for the optimal control problem is related to the solution of this equation. There are various algorithms in the literature for solving the matrix Riccati equation. However, computational complexities and storage requirements as a function of numbers of state variables, control variables, and sensors are not available for all these algorithms. In this work, the computational complexities and storage requirements for some of these algorithms are given. These expressions show the immensity of the computational requirements of the algorithms in solving the Riccati equation for large-order systems such as the control of highly flexible space structures. The expressions are also needed to compute the speedup and efficiency of any implementation of these algorithms on concurrent machines.

  14. Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms

    PubMed Central

    Hu, Haigen; Xu, Lihong; Wei, Ruihua; Zhu, Bingkun

    2011-01-01

    This paper investigates the issue of tuning the Proportional Integral and Derivative (PID) controller parameters for a greenhouse climate control system using an Evolutionary Algorithm (EA) based on multiple performance measures such as good static-dynamic performance specifications and the smooth process of control. A model of nonlinear thermodynamic laws between numerous system variables affecting the greenhouse climate is formulated. The proposed tuning scheme is tested for greenhouse climate control by minimizing the integrated time square error (ITSE) and the control increment or rate in a simulation experiment. The results show that by tuning the gain parameters the controllers can achieve good control performance through step responses such as small overshoot, fast settling time, and less rise time and steady state error. Besides, it can be applied to tuning the system with different properties, such as strong interactions among variables, nonlinearities and conflicting performance criteria. The results implicate that it is a quite effective and promising tuning method using multi-objective optimization algorithms in the complex greenhouse production. PMID:22163927

  15. Development of adaptive control applied to chaotic systems

    NASA Astrophysics Data System (ADS)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  16. Solution of nonlinear multivariable constrained systems using a gradient projection digital algorithm that is insensitive to the initial state

    NASA Technical Reports Server (NTRS)

    Hargrove, A.

    1982-01-01

    Optimal digital control of nonlinear multivariable constrained systems was studied. The optimal controller in the form of an algorithm was improved and refined by reducing running time and storage requirements. A particularly difficult system of nine nonlinear state variable equations was chosen as a test problem for analyzing and improving the controller. Lengthy analysis, modeling, computing and optimization were accomplished. A remote interactive teletype terminal was installed. Analysis requiring computer usage of short duration was accomplished using Tuskegee's VAX 11/750 system.

  17. Control design for robust stability in linear regulators: Application to aerospace flight control

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  18. Development of a combined feed forward-feedback system for an electron Linac

    NASA Astrophysics Data System (ADS)

    Meier, E.; Biedron, S. G.; LeBlanc, G.; Morgan, M. J.; Wu, J.

    2009-10-01

    This paper describes the results of an advanced control algorithm for the stabilization of electron beam energy in a Linac. The approach combines a conventional Proportional-Integral (PI) controller with a neural network (NNET) feed forward algorithm; it utilizes the robustness of PI control and the ability of a feed forward system in order to exert control over a wider range of frequencies. The NNET is trained to recognize jitter occurring in the phase and voltage of one of the klystrons, based on a record of these parameters, and predicts future energy deviations. A systematic approach is developed to determine the optimal NNET parameters that are then applied to the Australian Synchrotron Linac. The system's capability to fully cancel multi-frequency jitter is demonstrated. The NNET system is then augmented with the PI algorithm, and further jitter attenuation is achieved when the NNET is not operating optimally.

  19. Adaptive Identification and Control of Flow-Induced Cavity Oscillations

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cattafesta, L. N.; Ha, C.

    2002-01-01

    Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.

  20. Design of the smart home system based on the optimal routing algorithm and ZigBee network.

    PubMed

    Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng

    2017-01-01

    To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.

  1. Design of the smart home system based on the optimal routing algorithm and ZigBee network

    PubMed Central

    Xie, Xiaoxia

    2017-01-01

    To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system. PMID:29131868

  2. [System design of small intellectualized ultrasound hyperthermia instrument in the LabVIEW environment].

    PubMed

    Jiang, Feng; Bai, Jingfeng; Chen, Yazhu

    2005-08-01

    Small-scale intellectualized medical instrument has attracted great attention in the field of biomedical engineering, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) provides a convenient environment for this application due to its inherent advantages. The principle and system structure of the hyperthermia instrument are presented. Type T thermocouples are employed as thermotransducers, whose amplifier consists of two stages, providing built-in ice point compensation and thus improving work stability over temperature. Control signals produced by specially designed circuit drive the programmable counter/timer 8254 chip to generate PWM (Pulse width modulation) wave, which is used as ultrasound radiation energy control signal. Subroutine design topics such as inner-tissue real time feedback temperature control algorithm, water temperature control in the ultrasound applicator are also described. In the cancer tissue temperature control subroutine, the authors exert new improvments to PID (Proportional Integral Differential) algorithm according to the specific demands of the system and achieve strict temperature control to the target tissue region. The system design and PID algorithm improvement have experimentally proved to be reliable and excellent, meeting the requirements of the hyperthermia system.

  3. Multi-agent based control of large-scale complex systems employing distributed dynamic inference engine

    NASA Astrophysics Data System (ADS)

    Zhang, Daili

    Increasing societal demand for automation has led to considerable efforts to control large-scale complex systems, especially in the area of autonomous intelligent control methods. The control system of a large-scale complex system needs to satisfy four system level requirements: robustness, flexibility, reusability, and scalability. Corresponding to the four system level requirements, there arise four major challenges. First, it is difficult to get accurate and complete information. Second, the system may be physically highly distributed. Third, the system evolves very quickly. Fourth, emergent global behaviors of the system can be caused by small disturbances at the component level. The Multi-Agent Based Control (MABC) method as an implementation of distributed intelligent control has been the focus of research since the 1970s, in an effort to solve the above-mentioned problems in controlling large-scale complex systems. However, to the author's best knowledge, all MABC systems for large-scale complex systems with significant uncertainties are problem-specific and thus difficult to extend to other domains or larger systems. This situation is partly due to the control architecture of multiple agents being determined by agent to agent coupling and interaction mechanisms. Therefore, the research objective of this dissertation is to develop a comprehensive, generalized framework for the control system design of general large-scale complex systems with significant uncertainties, with the focus on distributed control architecture design and distributed inference engine design. A Hybrid Multi-Agent Based Control (HyMABC) architecture is proposed by combining hierarchical control architecture and module control architecture with logical replication rings. First, it decomposes a complex system hierarchically; second, it combines the components in the same level as a module, and then designs common interfaces for all of the components in the same module; third, replications are made for critical agents and are organized into logical rings. This architecture maintains clear guidelines for complexity decomposition and also increases the robustness of the whole system. Multiple Sectioned Dynamic Bayesian Networks (MSDBNs) as a distributed dynamic probabilistic inference engine, can be embedded into the control architecture to handle uncertainties of general large-scale complex systems. MSDBNs decomposes a large knowledge-based system into many agents. Each agent holds its partial perspective of a large problem domain by representing its knowledge as a Dynamic Bayesian Network (DBN). Each agent accesses local evidence from its corresponding local sensors and communicates with other agents through finite message passing. If the distributed agents can be organized into a tree structure, satisfying the running intersection property and d-sep set requirements, globally consistent inferences are achievable in a distributed way. By using different frequencies for local DBN agent belief updating and global system belief updating, it balances the communication cost with the global consistency of inferences. In this dissertation, a fully factorized Boyen-Koller (BK) approximation algorithm is used for local DBN agent belief updating, and the static Junction Forest Linkage Tree (JFLT) algorithm is used for global system belief updating. MSDBNs assume a static structure and a stable communication network for the whole system. However, for a real system, sub-Bayesian networks as nodes could be lost, and the communication network could be shut down due to partial damage in the system. Therefore, on-line and automatic MSDBNs structure formation is necessary for making robust state estimations and increasing survivability of the whole system. A Distributed Spanning Tree Optimization (DSTO) algorithm, a Distributed D-Sep Set Satisfaction (DDSSS) algorithm, and a Distributed Running Intersection Satisfaction (DRIS) algorithm are proposed in this dissertation. Combining these three distributed algorithms and a Distributed Belief Propagation (DBP) algorithm in MSDBNs makes state estimations robust to partial damage in the whole system. Combining the distributed control architecture design and the distributed inference engine design leads to a process of control system design for a general large-scale complex system. As applications of the proposed methodology, the control system design of a simplified ship chilled water system and a notional ship chilled water system have been demonstrated step by step. Simulation results not only show that the proposed methodology gives a clear guideline for control system design for general large-scale complex systems with dynamic and uncertain environment, but also indicate that the combination of MSDBNs and HyMABC can provide excellent performance for controlling general large-scale complex systems.

  4. Control system design for flexible structures using data models

    NASA Technical Reports Server (NTRS)

    Irwin, R. Dennis; Frazier, W. Garth; Mitchell, Jerrel R.; Medina, Enrique A.; Bukley, Angelia P.

    1993-01-01

    The dynamics and control of flexible aerospace structures exercises many of the engineering disciplines. In recent years there has been considerable research in the developing and tailoring of control system design techniques for these structures. This problem involves designing a control system for a multi-input, multi-output (MIMO) system that satisfies various performance criteria, such as vibration suppression, disturbance and noise rejection, attitude control and slewing control. Considerable progress has been made and demonstrated in control system design techniques for these structures. The key to designing control systems for these structures that meet stringent performance requirements is an accurate model. It has become apparent that theoretically and finite-element generated models do not provide the needed accuracy; almost all successful demonstrations of control system design techniques have involved using test results for fine-tuning a model or for extracting a model using system ID techniques. This paper describes past and ongoing efforts at Ohio University and NASA MSFC to design controllers using 'data models.' The basic philosophy of this approach is to start with a stabilizing controller and frequency response data that describes the plant; then, iteratively vary the free parameters of the controller so that performance measures become closer to satisfying design specifications. The frequency response data can be either experimentally derived or analytically derived. One 'design-with-data' algorithm presented in this paper is called the Compensator Improvement Program (CIP). The current CIP designs controllers for MIMO systems so that classical gain, phase, and attenuation margins are achieved. The center-piece of the CIP algorithm is the constraint improvement technique which is used to calculate a parameter change vector that guarantees an improvement in all unsatisfied, feasible performance metrics from iteration to iteration. The paper also presents a recently demonstrated CIP-type algorithm, called the Model and Data Oriented Computer-Aided Design System (MADCADS), developed for achieving H(sub infinity) type design specifications using data models. Control system design for the NASA/MSFC Single Structure Control Facility are demonstrated for both CIP and MADCADS. Advantages of design-with-data algorithms over techniques that require analytical plant models are also presented.

  5. Basic Research in Digital Stochastic Model Algorithmic Control.

    DTIC Science & Technology

    1980-11-01

    IDCOM Description 115 8.2 Basic Control Computation 117 8.3 Gradient Algorithm 119 8.4 Simulation Model 119 8.5 Model Modifications 123 8.6 Summary 124...constraints, and 3) control traJectorv comouta- tion. 2.1.1 Internal Model of the System The multivariable system to be controlled is represented by a...more flexible and adaptive, since the model , criteria, and sampling rates can be adjusted on-line. This flexibility comes from the use of the impulse

  6. Robust Control Algorithm for a Two Cart System and an Inverted Pendulum

    NASA Technical Reports Server (NTRS)

    Wilson, Chris L.; Capo-Lugo, Pedro

    2011-01-01

    The Rectilinear Control System can be used to simulate a launch vehicle during liftoff. Several control schemes have been developed that can control different dynamic models of the rectilinear plant. A robust control algorithm was developed that can control a pendulum to maintain an inverted position. A fluid slosh tank will be attached to the pendulum in order to test robustness in the presence of unknown slosh characteristics. The rectilinear plant consists of a DC motor and three carts mounted in series. Each cart s weight can be adjusted with brass masses and the carts can be coupled with springs. The pendulum is mounted on the first cart and an adjustable air damper can be attached to the third cart if desired. Each cart and the pendulum have a quadrature encoder to determine position. Full state feedback was implemented in order to develop the control algorithm along with a state estimator to determine the velocity states of the system. A MATLAB program was used to convert the state space matrices from continuous time to discrete time. This program also used a desired phase margin and damping ratio to determine the feedback gain matrix that would be used in the LabVIEW program. This experiment will allow engineers to gain a better understanding of liquid propellant slosh dynamics, therefore enabling them to develop more robust control algorithms for launch vehicle systems

  7. Integrated identification, modeling and control with applications

    NASA Astrophysics Data System (ADS)

    Shi, Guojun

    This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing controller such that the active control energy is minimized. A weighted q-Markov COVER method is introduced for identification with measurement noise. The result is use to develop an iterative closed loop identification/control design algorithm. The effectiveness of the algorithm is illustrated by experimental results.

  8. Accelerated optimization and automated discovery with covariance matrix adaptation for experimental quantum control

    NASA Astrophysics Data System (ADS)

    Roslund, Jonathan; Shir, Ofer M.; Bäck, Thomas; Rabitz, Herschel

    2009-10-01

    Optimization of quantum systems by closed-loop adaptive pulse shaping offers a rich domain for the development and application of specialized evolutionary algorithms. Derandomized evolution strategies (DESs) are presented here as a robust class of optimizers for experimental quantum control. The combination of stochastic and quasi-local search embodied by these algorithms is especially amenable to the inherent topology of quantum control landscapes. Implementation of DES in the laboratory results in efficiency gains of up to ˜9 times that of the standard genetic algorithm, and thus is a promising tool for optimization of unstable or fragile systems. The statistical learning upon which these algorithms are predicated also provide the means for obtaining a control problem’s Hessian matrix with no additional experimental overhead. The forced optimal covariance adaptive learning (FOCAL) method is introduced to enable retrieval of the Hessian matrix, which can reveal information about the landscape’s local structure and dynamic mechanism. Exploitation of such algorithms in quantum control experiments should enhance their efficiency and provide additional fundamental insights.

  9. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  10. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    NASA Astrophysics Data System (ADS)

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-03-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.

  11. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    PubMed Central

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-01-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587

  12. Suboptimal Scheduling in Switched Systems With Continuous-Time Dynamics: A Least Squares Approach.

    PubMed

    Sardarmehni, Tohid; Heydari, Ali

    2018-06-01

    Two approximate solutions for optimal control of switched systems with autonomous subsystems and continuous-time dynamics are presented. The first solution formulates a policy iteration (PI) algorithm for the switched systems with recursive least squares. To reduce the computational burden imposed by the PI algorithm, a second solution, called single loop PI, is presented. Online and concurrent training algorithms are discussed for implementing each solution. At last, effectiveness of the presented algorithms is evaluated through numerical simulations.

  13. Vega roll and attitude control system algorithms trade-off study

    NASA Astrophysics Data System (ADS)

    Paulino, N.; Cuciniello, G.; Cruciani, I.; Corraro, F.; Spallotta, D.; Nebula, F.

    2013-12-01

    This paper describes the trade-off study for the selection of the most suitable algorithms for the Roll and Attitude Control System (RACS) within the FPS-A program, aimed at developing the new Flight Program Software of VEGA Launcher. Two algorithms were analyzed: Switching Lines (SL) and Quaternion Feedback Regulation. Using a development simulation tool that models two critical flight phases (Long Coasting Phase (LCP) and Payload Release (PLR) Phase), both algorithms were assessed with Monte Carlo batch simulations for both of the phases. The statistical outcomes of the results demonstrate a 100 percent success rate for Quaternion Feedback Regulation, and support the choice of this method.

  14. An implicit adaptation algorithm for a linear model reference control system

    NASA Technical Reports Server (NTRS)

    Mabius, L.; Kaufman, H.

    1975-01-01

    This paper presents a stable implicit adaptation algorithm for model reference control. The constraints for stability are found using Lyapunov's second method and do not depend on perfect model following between the system and the reference model. Methods are proposed for satisfying these constraints without estimating the parameters on which the constraints depend.

  15. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  16. Distributed Optimization of Multi-Agent Systems: Framework, Local Optimizer, and Applications

    NASA Astrophysics Data System (ADS)

    Zu, Yue

    Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total travel time on test highway network.

  17. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.; Valavani, L.; Athans, M.; Stein, G.

    1985-01-01

    This paper examines the robustness properties of existing adaptive control algorithms to unmodeled plant high-frequency dynamics and unmeasurable output disturbances. It is demonstrated that there exist two infinite-gain operators in the nonlinear dynamic system which determines the time-evolution of output and parameter errors. The pragmatic implications of the existence of such infinite-gain operators is that: (1) sinusoidal reference inputs at specific frequencies and/or (2) sinusoidal output disturbances at any frequency (including dc), can cause the loop gain to increase without bound, thereby exciting the unmodeled high-frequency dynamics, and yielding an unstable control system. Hence, it is concluded that existing adaptive control algorithms as they are presented in the literature referenced in this paper, cannot be used with confidence in practical designs where the plant contains unmodeled dynamics because instability is likely to result. Further understanding is required to ascertain how the currently implemented adaptive systems differ from the theoretical systems studied here and how further theoretical development can improve the robustness of adaptive controllers.

  18. Motion planning in velocity affine mechanical systems

    NASA Astrophysics Data System (ADS)

    Jakubiak, Janusz; Tchoń, Krzysztof; Magiera, Władysław

    2010-09-01

    We address the motion planning problem in specific mechanical systems whose linear and angular velocities depend affinely on control. The configuration space of these systems encompasses the rotation group, and the motion planning involves the system orientation. Derivation of the motion planning algorithm for velocity affine systems has been inspired by the continuation method. Performance of this algorithm is illustrated with examples of the kinematics of a serial nonholonomic manipulator, the plate-ball kinematics and the attitude control of a rigid body.

  19. Development and Implementation of a Hardware In-the-Loop Test Bed for Unmanned Aerial Vehicle Control Algorithms

    NASA Technical Reports Server (NTRS)

    Nyangweso, Emmanuel; Bole, Brian

    2014-01-01

    Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.

  20. Observability-Based Guidance and Sensor Placement

    NASA Astrophysics Data System (ADS)

    Hinson, Brian T.

    Control system performance is highly dependent on the quality of sensor information available. In a growing number of applications, however, the control task must be accomplished with limited sensing capabilities. This thesis addresses these types of problems from a control-theoretic point-of-view, leveraging system nonlinearities to improve sensing performance. Using measures of observability as an information quality metric, guidance trajectories and sensor distributions are designed to improve the quality of sensor information. An observability-based sensor placement algorithm is developed to compute optimal sensor configurations for a general nonlinear system. The algorithm utilizes a simulation of the nonlinear system as the source of input data, and convex optimization provides a scalable solution method. The sensor placement algorithm is applied to a study of gyroscopic sensing in insect wings. The sensor placement algorithm reveals information-rich areas on flexible insect wings, and a comparison to biological data suggests that insect wings are capable of acting as gyroscopic sensors. An observability-based guidance framework is developed for robotic navigation with limited inertial sensing. Guidance trajectories and algorithms are developed for range-only and bearing-only navigation that improve navigation accuracy. Simulations and experiments with an underwater vehicle demonstrate that the observability measure allows tuning of the navigation uncertainty.

  1. Feedback error learning control of magnetic satellites using type-2 fuzzy neural networks with elliptic membership functions.

    PubMed

    Khanesar, Mojtaba Ahmadieh; Kayacan, Erdal; Reyhanoglu, Mahmut; Kaynak, Okyay

    2015-04-01

    A novel type-2 fuzzy membership function (MF) in the form of an ellipse has recently been proposed in literature, the parameters of which that represent uncertainties are de-coupled from its parameters that determine the center and the support. This property has enabled the proposers to make an analytical comparison of the noise rejection capabilities of type-1 fuzzy logic systems with its type-2 counterparts. In this paper, a sliding mode control theory-based learning algorithm is proposed for an interval type-2 fuzzy logic system which benefits from elliptic type-2 fuzzy MFs. The learning is based on the feedback error learning method and not only the stability of the learning is proved but also the stability of the overall system is shown by adding an additional component to the control scheme to ensure robustness. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulations results show that the proposed control algorithm gives better performance results in terms of a smaller steady state error and a faster transient response as compared to conventional control algorithms.

  2. Evaluation of Variable Refrigerant Flow Systems Performance and the Enhanced Control Algorithm on Oak Ridge National Laboratory s Flexible Research Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Piljae; Munk, Jeffrey D; Gehl, Anthony C

    2015-06-01

    A research project “Evaluation of Variable Refrigerant Flow (VRF) Systems Performance and the Enhanced Control Algorithm on Oak Ridge National Laboratory’s (ORNL’s) Flexible Research Platform” was performed to (1) install and validate the performance of Samsung VRF systems compared with the baseline rooftop unit (RTU) variable-air-volume (VAV) system and (2) evaluate the enhanced control algorithm for the VRF system on the two-story flexible research platform (FRP) in Oak Ridge, Tennessee. Based on the VRF system designed by Samsung and ORNL, the system was installed from February 18 through April 15, 2014. The final commissioning and system optimization were completed onmore » June 2, 2014, and the initial test for system operation was started the following day, June 3, 2014. In addition, the enhanced control algorithm was implemented and updated on June 18. After a series of additional commissioning actions, the energy performance data from the RTU and the VRF system were monitored from July 7, 2014, through February 28, 2015. Data monitoring and analysis were performed for the cooling season and heating season separately, and the calibrated simulation model was developed and used to estimate the energy performance of the RTU and VRF systems. This final report includes discussion of the design and installation of the VRF system, the data monitoring and analysis plan, the cooling season and heating season data analysis, and the building energy modeling study« less

  3. Training Recurrent Neural Networks With the Levenberg-Marquardt Algorithm for Optimal Control of a Grid-Connected Converter.

    PubMed

    Fu, Xingang; Li, Shuhui; Fairbank, Michael; Wunsch, Donald C; Alonso, Eduardo

    2015-09-01

    This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications.

  4. Data-driven process decomposition and robust online distributed modelling for large-scale processes

    NASA Astrophysics Data System (ADS)

    Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou

    2018-02-01

    With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.

  5. Distributed model predictive control for constrained nonlinear systems with decoupled local dynamics.

    PubMed

    Zhao, Meng; Ding, Baocang

    2015-03-01

    This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Decentralized Feedback Controllers for Robust Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walking.

    PubMed

    Hamed, Kaveh Akbari; Gregg, Robert D

    2017-07-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and [Formula: see text] robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.

  7. Decentralized Feedback Controllers for Robust Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walking

    PubMed Central

    Hamed, Kaveh Akbari; Gregg, Robert D.

    2016-01-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and H2 robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:28959117

  8. Time-varying delays compensation algorithm for powertrain active damping of an electrified vehicle equipped with an axle motor during regenerative braking

    NASA Astrophysics Data System (ADS)

    Zhang, Junzhi; Li, Yutong; Lv, Chen; Gou, Jinfang; Yuan, Ye

    2017-03-01

    The flexibility of the electrified powertrain system elicits a negative effect upon the cooperative control performance between regenerative and hydraulic braking and the active damping control performance. Meanwhile, the connections among sensors, controllers, and actuators are realized via network communication, i.e., controller area network (CAN), that introduces time-varying delays and deteriorates the control performances of the closed-loop control systems. As such, the goal of this paper is to develop a control algorithm to cope with all these challenges. To this end, the models of the stochastic network induced time-varying delays, based on a real in-vehicle network topology and on a flexible electrified powertrain, were firstly built. In order to further enhance the control performances of active damping and cooperative control of regenerative and hydraulic braking, the time-varying delays compensation algorithm for the electrified powertrain active damping during regenerative braking was developed based on a predictive scheme. The augmented system is constructed and the H∞ performance is analyzed. Based on this analysis, the control gains are derived by solving a nonlinear minimization problem. The simulations and hardware-in-loop (HIL) tests were carried out to validate the effectiveness of the developed algorithm. The test results show that the active damping and cooperative control performances are enhanced significantly.

  9. Optimal and Autonomous Control Using Reinforcement Learning: A Survey.

    PubMed

    Kiumarsi, Bahare; Vamvoudakis, Kyriakos G; Modares, Hamidreza; Lewis, Frank L

    2018-06-01

    This paper reviews the current state of the art on reinforcement learning (RL)-based feedback control solutions to optimal regulation and tracking of single and multiagent systems. Existing RL solutions to both optimal and control problems, as well as graphical games, will be reviewed. RL methods learn the solution to optimal control and game problems online and using measured data along the system trajectories. We discuss Q-learning and the integral RL algorithm as core algorithms for discrete-time (DT) and continuous-time (CT) systems, respectively. Moreover, we discuss a new direction of off-policy RL for both CT and DT systems. Finally, we review several applications.

  10. Novel probabilistic and distributed algorithms for guidance, control, and nonlinear estimation of large-scale multi-agent systems

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Saptarshi

    Multi-agent systems are widely used for constructing a desired formation shape, exploring an area, surveillance, coverage, and other cooperative tasks. This dissertation introduces novel algorithms in the three main areas of shape formation, distributed estimation, and attitude control of large-scale multi-agent systems. In the first part of this dissertation, we address the problem of shape formation for thousands to millions of agents. Here, we present two novel algorithms for guiding a large-scale swarm of robotic systems into a desired formation shape in a distributed and scalable manner. These probabilistic swarm guidance algorithms adopt an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled using tunable Markov chains. In the first algorithm - Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) - each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain that is constructed in real-time using feedback from the current swarm distribution. This PSG-IMC algorithm minimizes the expected cost of the transitions required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. In the second algorithm - Probabilistic Swarm Guidance using Optimal Transport (PSG-OT) - each agent determines its bin transition probabilities by solving an optimal transport problem, which is recast as a linear program. In the presence of perfect feedback of the current swarm distribution, this algorithm minimizes the given cost function, guarantees faster convergence, reduces the number of transitions for achieving the desired formation, and is robust to disturbances or damages to the formation. We demonstrate the effectiveness of these two proposed swarm guidance algorithms using results from numerical simulations and closed-loop hardware experiments on multiple quadrotors. In the second part of this dissertation, we present two novel discrete-time algorithms for distributed estimation, which track a single target using a network of heterogeneous sensing agents. The Distributed Bayesian Filtering (DBF) algorithm, the sensing agents combine their normalized likelihood functions using the logarithmic opinion pool and the discrete-time dynamic average consensus algorithm. Each agent's estimated likelihood function converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. Using a new proof technique, the convergence, stability, and robustness properties of the DBF algorithm are rigorously characterized. The explicit bounds on the time step of the robust DBF algorithm are shown to depend on the time-scale of the target dynamics. Furthermore, the DBF algorithm for linear-Gaussian models can be cast into a modified form of the Kalman information filter. In the Bayesian Consensus Filtering (BCF) algorithm, the agents combine their estimated posterior pdfs multiple times within each time step using the logarithmic opinion pool scheme. Thus, each agent's consensual pdf minimizes the sum of Kullback-Leibler divergences with the local posterior pdfs. The performance and robust properties of these algorithms are validated using numerical simulations. In the third part of this dissertation, we present an attitude control strategy and a new nonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid or a boulder. If the captured object is larger or comparable in size to the spacecraft and has significant modeling uncertainties, conventional nonlinear control laws that use exact feed-forward cancellation are not suitable because they exhibit a large resultant disturbance torque. The proposed nonlinear tracking control law guarantees global exponential convergence of tracking errors with finite-gain Lp stability in the presence of modeling uncertainties and disturbances, and reduces the resultant disturbance torque. Further, this control law permits the use of any attitude representation and its integral control formulation eliminates any constant disturbance. Under small uncertainties, the best strategy for stabilizing the combined system is to track a fuel-optimal reference trajectory using this nonlinear control law, because it consumes the least amount of fuel. In the presence of large uncertainties, the most effective strategy is to track the derivative plus proportional-derivative based reference trajectory, because it reduces the resultant disturbance torque. The effectiveness of the proposed attitude control law is demonstrated by using results of numerical simulation based on an Asteroid Redirect Mission concept. The new algorithms proposed in this dissertation will facilitate the development of versatile autonomous multi-agent systems that are capable of performing a variety of complex tasks in a robust and scalable manner.

  11. Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES)

    PubMed Central

    Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander

    2017-01-01

    Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection. PMID:28273101

  12. An Envelope Based Feedback Control System for Earthquake Early Warning: Reality Check Algorithm

    NASA Astrophysics Data System (ADS)

    Heaton, T. H.; Karakus, G.; Beck, J. L.

    2016-12-01

    Earthquake early warning systems are, in general, designed to be open loop control systems in such a way that the output, i.e., the warning messages, only depend on the input, i.e., recorded ground motions, up to the moment when the message is issued in real-time. We propose an algorithm, which is called Reality Check Algorithm (RCA), which would assess the accuracy of issued warning messages, and then feed the outcome of the assessment back into the system. Then, the system would modify its messages if necessary. That is, we are proposing to convert earthquake early warning systems into feedback control systems by integrating them with RCA. RCA works by continuously monitoring and comparing the observed ground motions' envelopes to the predicted envelopes of Virtual Seismologist (Cua 2005). Accuracy of magnitude and location (both spatial and temporal) estimations of the system are assessed separately by probabilistic classification models, which are trained by a Sparse Bayesian Learning technique called Automatic Relevance Determination prior.

  13. An Overview of the Automated Dispatch Controller Algorithms in the System Advisor Model (SAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiOrio, Nicholas A

    2017-11-22

    Three automatic dispatch modes have been added to the battery model within the System Adviser Model. These controllers have been developed to perform peak shaving in an automated fashion, providing users with a way to see the benefit of reduced demand charges without manually programming a complicated dispatch control. A flexible input option allows more advanced interaction with the automated controller. This document will describe the algorithms in detail and present brief results on its use and limitations.

  14. Dynamic Harmony Search with Polynomial Mutation Algorithm for Valve-Point Economic Load Dispatch

    PubMed Central

    Karthikeyan, M.; Sree Ranga Raja, T.

    2015-01-01

    Economic load dispatch (ELD) problem is an important issue in the operation and control of modern control system. The ELD problem is complex and nonlinear with equality and inequality constraints which makes it hard to be efficiently solved. This paper presents a new modification of harmony search (HS) algorithm named as dynamic harmony search with polynomial mutation (DHSPM) algorithm to solve ORPD problem. In DHSPM algorithm the key parameters of HS algorithm like harmony memory considering rate (HMCR) and pitch adjusting rate (PAR) are changed dynamically and there is no need to predefine these parameters. Additionally polynomial mutation is inserted in the updating step of HS algorithm to favor exploration and exploitation of the search space. The DHSPM algorithm is tested with three power system cases consisting of 3, 13, and 40 thermal units. The computational results show that the DHSPM algorithm is more effective in finding better solutions than other computational intelligence based methods. PMID:26491710

  15. Dynamic Harmony Search with Polynomial Mutation Algorithm for Valve-Point Economic Load Dispatch.

    PubMed

    Karthikeyan, M; Raja, T Sree Ranga

    2015-01-01

    Economic load dispatch (ELD) problem is an important issue in the operation and control of modern control system. The ELD problem is complex and nonlinear with equality and inequality constraints which makes it hard to be efficiently solved. This paper presents a new modification of harmony search (HS) algorithm named as dynamic harmony search with polynomial mutation (DHSPM) algorithm to solve ORPD problem. In DHSPM algorithm the key parameters of HS algorithm like harmony memory considering rate (HMCR) and pitch adjusting rate (PAR) are changed dynamically and there is no need to predefine these parameters. Additionally polynomial mutation is inserted in the updating step of HS algorithm to favor exploration and exploitation of the search space. The DHSPM algorithm is tested with three power system cases consisting of 3, 13, and 40 thermal units. The computational results show that the DHSPM algorithm is more effective in finding better solutions than other computational intelligence based methods.

  16. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  17. Model-based approach for cyber-physical attack detection in water distribution systems.

    PubMed

    Housh, Mashor; Ohar, Ziv

    2018-08-01

    Modern Water Distribution Systems (WDSs) are often controlled by Supervisory Control and Data Acquisition (SCADA) systems and Programmable Logic Controllers (PLCs) which manage their operation and maintain a reliable water supply. As such, and with the cyber layer becoming a central component of WDS operations, these systems are at a greater risk of being subjected to cyberattacks. This paper offers a model-based methodology based on a detailed hydraulic understanding of WDSs combined with an anomaly detection algorithm for the identification of complex cyberattacks that cannot be fully identified by hydraulically based rules alone. The results show that the proposed algorithm is capable of achieving the best-known performance when tested on the data published in the BATtle of the Attack Detection ALgorithms (BATADAL) competition (http://www.batadal.net). Copyright © 2018. Published by Elsevier Ltd.

  18. Single neural adaptive controller and neural network identifier based on PSO algorithm for spherical actuators with 3D magnet array

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Zhang, Lu; Zhu, Bo; Zhang, Jingying; Jiao, Zongxia

    2017-10-01

    Permanent magnet spherical actuator (PMSA) is a multi-variable featured and inter-axis coupled nonlinear system, which unavoidably compromises its motion control implementation. Uncertainties such as external load and friction torque of ball bearing and manufacturing errors also influence motion performance significantly. Therefore, the objective of this paper is to propose a controller based on a single neural adaptive (SNA) algorithm and a neural network (NN) identifier optimized with a particle swarm optimization (PSO) algorithm to improve the motion stability of PMSA with three-dimensional magnet arrays. The dynamic model and computed torque model are formulated for the spherical actuator, and a dynamic decoupling control algorithm is developed. By utilizing the global-optimization property of the PSO algorithm, the NN identifier is trained to avoid locally optimal solution and achieve high-precision compensations to uncertainties. The employment of the SNA controller helps to reduce the effect of compensation errors and convert the system to a stable one, even if there is difference between the compensations and uncertainties due to external disturbances. A simulation model is established, and experiments are conducted on the research prototype to validate the proposed control algorithm. The amplitude of the parameter perturbation is set to 5%, 10%, and 15%, respectively. The strong robustness of the proposed hybrid algorithm is validated by the abundant simulation data. It shows that the proposed algorithm can effectively compensate the influence of uncertainties and eliminate the effect of inter-axis couplings of the spherical actuator.

  19. Design and implementation of robust controllers for a gait trainer.

    PubMed

    Wang, F C; Yu, C H; Chou, T Y

    2009-08-01

    This paper applies robust algorithms to control an active gait trainer for children with walking disabilities. Compared with traditional rehabilitation procedures, in which two or three trainers are required to assist the patient, a motor-driven mechanism was constructed to improve the efficiency of the procedures. First, a six-bar mechanism was designed and constructed to mimic the trajectory of children's ankles in walking. Second, system identification techniques were applied to obtain system transfer functions at different operating points by experiments. Third, robust control algorithms were used to design Hinfinity robust controllers for the system. Finally, the designed controllers were implemented to verify experimentally the system performance. From the results, the proposed robust control strategies are shown to be effective.

  20. Adaptive rehabilitation gaming system: on-line individualization of stroke rehabilitation.

    PubMed

    Nirme, Jens; Duff, Armin; Verschure, Paul F M J

    2011-01-01

    The effects of stroke differ considerably in degree and symptoms for different patients. It has been shown that specific, individualized and varied therapy favors recovery. The Rehabilitation Gaming System (RGS) is a Virtual Reality (VR) based rehabilitation system designed following these principles. We have developed two algorithms to control the level of task difficulty that a user of the RGS is exposed to, as well as providing controlled variation in the therapy. In this paper, we compare the two algorithms by running numerical simulations and a study with healthy subjects. We show that both algorithms allow for individualization of the challenge level of the task. Further, the results reveal that the algorithm that iteratively learns a user model for each subject also allows a high variation of the task.

  1. The Type-2 Fuzzy Logic Controller-Based Maximum Power Point Tracking Algorithm and the Quadratic Boost Converter for Pv System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi

    2018-05-01

    An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.

  2. Predicting Loss-of-Control Boundaries Toward a Piloting Aid

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.

  3. Adaptive neural network backstepping control for a class of uncertain fractional-order chaotic systems with unknown backlash-like hysteresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yimin; Lv, Hui, E-mail: lvhui207@gmail.com

    In this paper, we consider the control problem of a class of uncertain fractional-order chaotic systems preceded by unknown backlash-like hysteresis nonlinearities based on backstepping control algorithm. We model the hysteresis by using a differential equation. Based on the fractional Lyapunov stability criterion and the backstepping algorithm procedures, an adaptive neural network controller is driven. No knowledge of the upper bound of the disturbance and system uncertainty is required in our controller, and the asymptotical convergence of the tracking error can be guaranteed. Finally, we give two simulation examples to confirm our theoretical results.

  4. Reinforcement learning techniques for controlling resources in power networks

    NASA Astrophysics Data System (ADS)

    Kowli, Anupama Sunil

    As power grids transition towards increased reliance on renewable generation, energy storage and demand response resources, an effective control architecture is required to harness the full functionalities of these resources. There is a critical need for control techniques that recognize the unique characteristics of the different resources and exploit the flexibility afforded by them to provide ancillary services to the grid. The work presented in this dissertation addresses these needs. Specifically, new algorithms are proposed, which allow control synthesis in settings wherein the precise distribution of the uncertainty and its temporal statistics are not known. These algorithms are based on recent developments in Markov decision theory, approximate dynamic programming and reinforcement learning. They impose minimal assumptions on the system model and allow the control to be "learned" based on the actual dynamics of the system. Furthermore, they can accommodate complex constraints such as capacity and ramping limits on generation resources, state-of-charge constraints on storage resources, comfort-related limitations on demand response resources and power flow limits on transmission lines. Numerical studies demonstrating applications of these algorithms to practical control problems in power systems are discussed. Results demonstrate how the proposed control algorithms can be used to improve the performance and reduce the computational complexity of the economic dispatch mechanism in a power network. We argue that the proposed algorithms are eminently suitable to develop operational decision-making tools for large power grids with many resources and many sources of uncertainty.

  5. LMI-Based Generation of Feedback Laws for a Robust Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Carson, John M., III

    2007-01-01

    This technical note provides a mathematical proof of Corollary 1 from the paper 'A Nonlinear Model Predictive Control Algorithm with Proven Robustness and Resolvability' that appeared in the 2006 Proceedings of the American Control Conference. The proof was omitted for brevity in the publication. The paper was based on algorithms developed for the FY2005 R&TD (Research and Technology Development) project for Small-body Guidance, Navigation, and Control [2].The framework established by the Corollary is for a robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems that guarantees the resolvability of the associated nite-horizon optimal control problem in a receding-horizon implementation. Additional details of the framework are available in the publication.

  6. Development of an algorithm for controlling a multilevel three-phase converter

    NASA Astrophysics Data System (ADS)

    Taissariyeva, Kyrmyzy; Ilipbaeva, Lyazzat

    2017-08-01

    This work is devoted to the development of an algorithm for controlling transistors in a three-phase multilevel conversion system. The developed algorithm allows to organize a correct operation and describes the state of transistors at each moment of time when constructing a computer model of a three-phase multilevel converter. The developed algorithm of operation of transistors provides in-phase of a three-phase converter and obtaining a sinusoidal voltage curve at the converter output.

  7. A method for obtaining reduced-order control laws for high-order systems using optimization techniques

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Newsom, J. R.; Abel, I.

    1981-01-01

    A method of synthesizing reduced-order optimal feedback control laws for a high-order system is developed. A nonlinear programming algorithm is employed to search for the control law design variables that minimize a performance index defined by a weighted sum of mean-square steady-state responses and control inputs. An analogy with the linear quadractic Gaussian solution is utilized to select a set of design variables and their initial values. To improve the stability margins of the system, an input-noise adjustment procedure is used in the design algorithm. The method is applied to the synthesis of an active flutter-suppression control law for a wind tunnel model of an aeroelastic wing. The reduced-order controller is compared with the corresponding full-order controller and found to provide nearly optimal performance. The performance of the present method appeared to be superior to that of two other control law order-reduction methods. It is concluded that by using the present algorithm, nearly optimal low-order control laws with good stability margins can be synthesized.

  8. Design and analysis of tilt integral derivative controller with filter for load frequency control of multi-area interconnected power systems.

    PubMed

    Kumar Sahu, Rabindra; Panda, Sidhartha; Biswal, Ashutosh; Chandra Sekhar, G T

    2016-03-01

    In this paper, a novel Tilt Integral Derivative controller with Filter (TIDF) is proposed for Load Frequency Control (LFC) of multi-area power systems. Initially, a two-area power system is considered and the parameters of the TIDF controller are optimized using Differential Evolution (DE) algorithm employing an Integral of Time multiplied Absolute Error (ITAE) criterion. The superiority of the proposed approach is demonstrated by comparing the results with some recently published heuristic approaches such as Firefly Algorithm (FA), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) optimized PID controllers for the same interconnected power system. Investigations reveal that proposed TIDF controllers provide better dynamic response compared to PID controller in terms of minimum undershoots and settling times of frequency as well as tie-line power deviations following a disturbance. The proposed approach is also extended to two widely used three area test systems considering nonlinearities such as Generation Rate Constraint (GRC) and Governor Dead Band (GDB). To improve the performance of the system, a Thyristor Controlled Series Compensator (TCSC) is also considered and the performance of TIDF controller in presence of TCSC is investigated. It is observed that system performance improves with the inclusion of TCSC. Finally, sensitivity analysis is carried out to test the robustness of the proposed controller by varying the system parameters, operating condition and load pattern. It is observed that the proposed controllers are robust and perform satisfactorily with variations in operating condition, system parameters and load pattern. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) was used for these algorithms. This airplane has been modified by the addition of canards and by changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals included demonstration of revolutionary control approaches that can efficiently optimize aircraft performance for both normal and failure conditions, and to advance neural-network-based flight control technology for new aerospace systems designs. Before the NF-15B IFCS airplane was certified for flight test, however, certain processes needed to be completed. This paper presents an overview of these processes, including a description of the initial adaptive controller concepts followed by a discussion of modeling formulation and performance testing. Upon design finalization, the next steps are: integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness.

  10. Distributed finite-time containment control for double-integrator multiagent systems.

    PubMed

    Wang, Xiangyu; Li, Shihua; Shi, Peng

    2014-09-01

    In this paper, the distributed finite-time containment control problem for double-integrator multiagent systems with multiple leaders and external disturbances is discussed. In the presence of multiple dynamic leaders, by utilizing the homogeneous control technique, a distributed finite-time observer is developed for the followers to estimate the weighted average of the leaders' velocities at first. Then, based on the estimates and the generalized adding a power integrator approach, distributed finite-time containment control algorithms are designed to guarantee that the states of the followers converge to the dynamic convex hull spanned by those of the leaders in finite time. Moreover, as a special case of multiple dynamic leaders with zero velocities, the proposed containment control algorithms also work for the case of multiple stationary leaders without using the distributed observer. Simulations demonstrate the effectiveness of the proposed control algorithms.

  11. Statistical process control using optimized neural networks: a case study.

    PubMed

    Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid

    2014-09-01

    The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  12. An Improved Vision-based Algorithm for Unmanned Aerial Vehicles Autonomous Landing

    NASA Astrophysics Data System (ADS)

    Zhao, Yunji; Pei, Hailong

    In vision-based autonomous landing system of UAV, the efficiency of target detecting and tracking will directly affect the control system. The improved algorithm of SURF(Speed Up Robust Features) will resolve the problem which is the inefficiency of the SURF algorithm in the autonomous landing system. The improved algorithm is composed of three steps: first, detect the region of the target using the Camshift; second, detect the feature points in the region of the above acquired using the SURF algorithm; third, do the matching between the template target and the region of target in frame. The results of experiment and theoretical analysis testify the efficiency of the algorithm.

  13. Robust PD Sway Control of a Lifted Load for a Crane Using a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kawada, Kazuo; Sogo, Hiroyuki; Yamamoto, Toru; Mada, Yasuhiro

    PID control schemes still continue to be widely used for most industrial control systems. This is mainly because PID controllers have simple control structures, and are simple to maintain and tune. However, it is difficult to find a set of suitable control parameters in the case of time-varying and/or nonlinear systems. For such a problem, the robust controller has been proposed.Although it is important to choose the suitable nominal model in designing the robust controller, it is not usually easy.In this paper, a new robust PD controller design scheme is proposed, which utilizes a genetic algorithm.

  14. Broadband Noise Control Using Predictive Techniques

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Juang, Jer-Nan

    1997-01-01

    Predictive controllers have found applications in a wide range of industrial processes. Two types of such controllers are generalized predictive control and deadbeat control. Recently, deadbeat control has been augmented to include an extended horizon. This modification, named deadbeat predictive control, retains the advantage of guaranteed stability and offers a novel way of control weighting. This paper presents an application of both predictive control techniques to vibration suppression of plate modes. Several system identification routines are presented. Both algorithms are outlined and shown to be useful in the suppression of plate vibrations. Experimental results are given and the algorithms are shown to be applicable to non- minimal phase systems.

  15. Advanced CHP Control Algorithms: Scope Specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, Srinivas; Brambley, Michael R.

    2006-04-28

    The primary objective of this multiyear project is to develop algorithms for combined heat and power systems to ensure optimal performance, increase reliability, and lead to the goal of clean, efficient, reliable and affordable next generation energy systems.

  16. Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Jason Wright

    Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrainedmore » computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.« less

  17. A Novel Approach to Implement Takagi-Sugeno Fuzzy Models.

    PubMed

    Chang, Chia-Wen; Tao, Chin-Wang

    2017-09-01

    This paper proposes new algorithms based on the fuzzy c-regressing model algorithm for Takagi-Sugeno (T-S) fuzzy modeling of the complex nonlinear systems. A fuzzy c-regression state model (FCRSM) algorithm is a T-S fuzzy model in which the functional antecedent and the state-space-model-type consequent are considered with the available input-output data. The antecedent and consequent forms of the proposed FCRSM consists mainly of two advantages: one is that the FCRSM has low computation load due to only one input variable is considered in the antecedent part; another is that the unknown system can be modeled to not only the polynomial form but also the state-space form. Moreover, the FCRSM can be extended to FCRSM-ND and FCRSM-Free algorithms. An algorithm FCRSM-ND is presented to find the T-S fuzzy state-space model of the nonlinear system when the input-output data cannot be precollected and an assumed effective controller is available. In the practical applications, the mathematical model of controller may be hard to be obtained. In this case, an online tuning algorithm, FCRSM-FREE, is designed such that the parameters of a T-S fuzzy controller and the T-S fuzzy state model of an unknown system can be online tuned simultaneously. Four numerical simulations are given to demonstrate the effectiveness of the proposed approach.

  18. Data-driven gradient algorithm for high-precision quantum control

    NASA Astrophysics Data System (ADS)

    Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel

    2018-04-01

    In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.

  19. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

    NASA Technical Reports Server (NTRS)

    Shehadeh, Hana; Lea, Robert N.

    1992-01-01

    Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

  20. Sensitivity analysis of dynamic biological systems with time-delays.

    PubMed

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2010-10-15

    Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.

  1. Cavity control as a new quantum algorithms implementation treatment

    NASA Astrophysics Data System (ADS)

    AbuGhanem, M.; Homid, A. H.; Abdel-Aty, M.

    2018-02-01

    Based on recent experiments [ Nature 449, 438 (2007) and Nature Physics 6, 777 (2010)], a new approach for realizing quantum gates for the design of quantum algorithms was developed. Accordingly, the operation times of such gates while functioning in algorithm applications depend on the number of photons present in their resonant cavities. Multi-qubit algorithms can be realized in systems in which the photon number is increased slightly over the qubit number. In addition, the time required for operation is considerably less than the dephasing and relaxation times of the systems. The contextual use of the photon number as a main control in the realization of any algorithm was demonstrated. The results indicate the possibility of a full integration into the realization of multi-qubit multiphoton states and its application in algorithm designs. Furthermore, this approach will lead to a successful implementation of these designs in future experiments.

  2. Design and experiment of vehicular charger AC/DC system based on predictive control algorithm

    NASA Astrophysics Data System (ADS)

    He, Guangbi; Quan, Shuhai; Lu, Yuzhang

    2018-06-01

    For the car charging stage rectifier uncontrollable system, this paper proposes a predictive control algorithm of DC/DC converter based on the prediction model, established by the state space average method and its prediction model, obtained by the optimal mathematical description of mathematical calculation, to analysis prediction algorithm by Simulink simulation. The design of the structure of the car charging, at the request of the rated output power and output voltage adjustable control circuit, the first stage is the three-phase uncontrolled rectifier DC voltage Ud through the filter capacitor, after by using double-phase interleaved buck-boost circuit with wide range output voltage required value, analyzing its working principle and the the parameters for the design and selection of components. The analysis of current ripple shows that the double staggered parallel connection has the advantages of reducing the output current ripple and reducing the loss. The simulation experiment of the whole charging circuit is carried out by software, and the result is in line with the design requirements of the system. Finally combining the soft with hardware circuit to achieve charging of the system according to the requirements, experimental platform proved the feasibility and effectiveness of the proposed predictive control algorithm based on the car charging of the system, which is consistent with the simulation results.

  3. Study on improved Ip-iq APF control algorithm and its application in micro grid

    NASA Astrophysics Data System (ADS)

    Xie, Xifeng; Shi, Hua; Deng, Haiyingv

    2018-01-01

    In order to enhance the tracking velocity and accuracy of harmonic detection by ip-iq algorithm, a novel ip-iq control algorithm based on the Instantaneous reactive power theory is presented, the improved algorithm adds the lead correction link to adjust the zero point of the detection system, the Fuzzy Self-Tuning Adaptive PI control is introduced to dynamically adjust the DC-link Voltage, which meets the requirement of the harmonic compensation of the micro grid. Simulation and experimental results verify the proposed method is feasible and effective in micro grid.

  4. Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles. A Survey

    DOE PAGES

    Malikopoulos, Andreas

    2014-03-31

    The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

  5. Model reference adaptive control of robots

    NASA Technical Reports Server (NTRS)

    Steinvorth, Rodrigo

    1991-01-01

    This project presents the results of controlling two types of robots using new Command Generator Tracker (CGT) based Direct Model Reference Adaptive Control (MRAC) algorithms. Two mathematical models were used to represent a single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were then controlled in simulation using different MRAC algorithms. Special attention was given to the performance of the algorithms in the presence of sudden changes in the robot load. Previously used CGT based MRAC algorithms had several problems. The original algorithm that was developed guaranteed asymptotic stability only for almost strictly positive real (ASPR) plants. This condition is very restrictive, since most systems do not satisfy this assumption. Further developments to the algorithm led to an expansion of the number of plants that could be controlled, however, a steady state error was introduced in the response. These problems led to the introduction of some modifications to the algorithms so that they would be able to control a wider class of plants and at the same time would asymptotically track the reference model. This project presents the development of two algorithms that achieve the desired results and simulates the control of the two robots mentioned before. The results of the simulations are satisfactory and show that the problems stated above have been corrected in the new algorithms. In addition, the responses obtained show that the adaptively controlled processes are resistant to sudden changes in the load.

  6. The design of digital-adaptive controllers for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Broussard, J. R.; Berry, P. W.

    1976-01-01

    Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.

  7. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for advanced life support.

  8. Delay compensation in integrated communication and control systems. II - Implementation and verification

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    The implementation and verification of the delay-compensation algorithm are addressed. The delay compensator has been experimentally verified at an IEEE 802.4 network testbed for velocity control of a DC servomotor. The performance of the delay-compensation algorithm was also examined by combined discrete-event and continuous-time simulation of the flight control system of an advanced aircraft that uses the SAE (Society of Automotive Engineers) linear token passing bus for data communications.

  9. Control system estimation and design for aerospace vehicles with time delay

    NASA Technical Reports Server (NTRS)

    Allgaier, G. R.; Williams, T. L.

    1972-01-01

    The problems of estimation and control of discrete, linear, time-varying systems are considered. Previous solutions to these problems involved either approximate techniques, open-loop control solutions, or results which required excessive computation. The estimation problem is solved by two different methods, both of which yield the identical algorithm for determining the optimal filter. The partitioned results achieve a substantial reduction in computation time and storage requirements over the expanded solution, however. The results reduce to the Kalman filter when no delays are present in the system. The control problem is also solved by two different methods, both of which yield identical algorithms for determining the optimal control gains. The stochastic control is shown to be identical to the deterministic control, thus extending the separation principle to time delay systems. The results obtained reduce to the familiar optimal control solution when no time delays are present in the system.

  10. Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System

    NASA Astrophysics Data System (ADS)

    Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang

    2018-03-01

    Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.

  11. Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System

    NASA Astrophysics Data System (ADS)

    Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang

    2017-12-01

    Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.

  12. A digital prediction algorithm for a single-phase boost PFC

    NASA Astrophysics Data System (ADS)

    Qing, Wang; Ning, Chen; Weifeng, Sun; Shengli, Lu; Longxing, Shi

    2012-12-01

    A novel digital control algorithm for digital control power factor correction is presented, which is called the prediction algorithm and has a feature of a higher PF (power factor) with lower total harmonic distortion, and a faster dynamic response with the change of the input voltage or load current. For a certain system, based on the current system state parameters, the prediction algorithm can estimate the track of the output voltage and the inductor current at the next switching cycle and get a set of optimized control sequences to perfectly track the trajectory of input voltage. The proposed prediction algorithm is verified at different conditions, and computer simulation and experimental results under multi-situations confirm the effectiveness of the prediction algorithm. Under the circumstances that the input voltage is in the range of 90-265 V and the load current in the range of 20%-100%, the PF value is larger than 0.998. The startup and the recovery times respectively are about 0.1 s and 0.02 s without overshoot. The experimental results also verify the validity of the proposed method.

  13. An improved immune algorithm for optimizing the pulse width modulation control sequence of inverters

    NASA Astrophysics Data System (ADS)

    Sheng, L.; Qian, S. Q.; Ye, Y. Q.; Wu, Y. H.

    2017-09-01

    In this article, an improved immune algorithm (IIA), based on the fundamental principles of the biological immune system, is proposed for optimizing the pulse width modulation (PWM) control sequence of a single-phase full-bridge inverter. The IIA takes advantage of the receptor editing and adaptive mutation mechanisms of the immune system to develop two operations that enhance the population diversity and convergence of the proposed algorithm. To verify the effectiveness and examine the performance of the IIA, 17 cases are considered, including fixed and disturbed resistances. Simulation results show that the IIA is able to obtain an effective PWM control sequence. Furthermore, when compared with existing immune algorithms (IAs), genetic algorithms (GAs), a non-traditional GA, simplified simulated annealing, and a generalized Hopfield neural network method, the IIA can achieve small total harmonic distortion (THD) and large magnitude. Meanwhile, a non-parametric test indicates that the IIA is significantly better than most comparison algorithms. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/0305215X.2016.1250894.

  14. Design of a microprocessor-based Control, Interface and Monitoring (CIM unit for turbine engine controls research

    NASA Technical Reports Server (NTRS)

    Delaat, J. C.; Soeder, J. F.

    1983-01-01

    High speed minicomputers were used in the past to implement advanced digital control algorithms for turbine engines. These minicomputers are typically large and expensive. It is desirable for a number of reasons to use microprocessor-based systems for future controls research. They are relatively compact, inexpensive, and are representative of the hardware that would be used for actual engine-mounted controls. The Control, Interface, and Monitoring Unit (CIM) contains a microprocessor-based controls computer, necessary interface hardware and a system to monitor while it is running an engine. It is presently being used to evaluate an advanced turbofan engine control algorithm.

  15. Industrial Control System Process-Oriented Intrusion Detection (iPoid) Algorithm

    DTIC Science & Technology

    2016-08-01

    inspection rules using an intrusion-detection system (IDS) sensor, a simulated Programmable Logic Controller (PLC), and a Modbus client operating...operating system PLC Programmable Logic Controller SCADA supervisory control and data acquisition SIGHUP signal hangup SPAN Switched Port Analyzer

  16. Identification of the focal plane wavefront control system using E-M algorithm

    NASA Astrophysics Data System (ADS)

    Sun, He; Kasdin, N. Jeremy; Vanderbei, Robert

    2017-09-01

    In a typical focal plane wavefront control (FPWC) system, such as the adaptive optics system of NASA's WFIRST mission, the efficient controllers and estimators in use are usually model-based. As a result, the modeling accuracy of the system influences the ultimate performance of the control and estimation. Currently, a linear state space model is used and calculated based on lab measurements using Fourier optics. Although the physical model is clearly defined, it is usually biased due to incorrect distance measurements, imperfect diagnoses of the optical aberrations, and our lack of knowledge of the deformable mirrors (actuator gains and influence functions). In this paper, we present a new approach for measuring/estimating the linear state space model of a FPWC system using the expectation-maximization (E-M) algorithm. Simulation and lab results in the Princeton's High Contrast Imaging Lab (HCIL) show that the E-M algorithm can well handle both the amplitude and phase errors and accurately recover the system. Using the recovered state space model, the controller creates dark holes with faster speed. The final accuracy of the model depends on the amount of data used for learning.

  17. Vibration suppression in flexible structures via the sliding-mode control approach

    NASA Technical Reports Server (NTRS)

    Drakunov, S.; Oezguener, Uemit

    1994-01-01

    Sliding mode control became very popular recently because it makes the closed loop system highly insensitive to external disturbances and parameter variations. Sliding algorithms for flexible structures have been used previously, but these were based on finite-dimensional models. An extension of this approach for differential-difference systems is obtained. That makes if possible to apply sliding-mode control algorithms to the variety of nondispersive flexible structures which can be described as differential-difference systems. The main idea of using this technique for dispersive structures is to reduce the order of the controlled part of the system by applying an integral transformation. We can say that transformation 'absorbs' the dispersive properties of the flexible structure as the controlled part becomes dispersive.

  18. Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system

    NASA Astrophysics Data System (ADS)

    Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping

    2017-12-01

    This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.

  19. Gradient Optimization for Analytic conTrols - GOAT

    NASA Astrophysics Data System (ADS)

    Assémat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    Quantum optimal control becomes a necessary step in a number of studies in the quantum realm. Recent experimental advances showed that superconducting qubits can be controlled with an impressive accuracy. However, most of the standard optimal control algorithms are not designed to manage such high accuracy. To tackle this issue, a novel quantum optimal control algorithm have been introduced: the Gradient Optimization for Analytic conTrols (GOAT). It avoids the piecewise constant approximation of the control pulse used by standard algorithms. This allows an efficient implementation of very high accuracy optimization. It also includes a novel method to compute the gradient that provides many advantages, e.g. the absence of backpropagation or the natural route to optimize the robustness of the control pulses. This talk will present the GOAT algorithm and a few applications to transmons systems.

  20. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    PubMed

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed to define brain network connectivity and neural network dynamics that vary at the individual patient level and vary over time.

  1. Adaptive control of nonlinear system using online error minimum neural networks.

    PubMed

    Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei

    2016-11-01

    In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Active impulsive noise control using maximum correntropy with adaptive kernel size

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zhao, Haiquan

    2017-03-01

    The active noise control (ANC) based on the principle of superposition is an attractive method to attenuate the noise signals. However, the impulsive noise in the ANC systems will degrade the performance of the controller. In this paper, a filtered-x recursive maximum correntropy (FxRMC) algorithm is proposed based on the maximum correntropy criterion (MCC) to reduce the effect of outliers. The proposed FxRMC algorithm does not requires any priori information of the noise characteristics and outperforms the filtered-x least mean square (FxLMS) algorithm for impulsive noise. Meanwhile, in order to adjust the kernel size of FxRMC algorithm online, a recursive approach is proposed through taking into account the past estimates of error signals over a sliding window. Simulation and experimental results in the context of active impulsive noise control demonstrate that the proposed algorithms achieve much better performance than the existing algorithms in various noise environments.

  3. Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System

    NASA Astrophysics Data System (ADS)

    Bendjeghaba, Omar

    2014-01-01

    This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.

  4. Design and implementation of EP-based PID controller for chaos synchronization of Rikitake circuit systems.

    PubMed

    Hou, Yi-You

    2017-09-01

    This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.

  5. Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs.

    PubMed

    Krepkovich, Eileen T; Perreault, Eric J

    2008-01-01

    This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.

  6. Petri nets SM-cover-based on heuristic coloring algorithm

    NASA Astrophysics Data System (ADS)

    Tkacz, Jacek; Doligalski, Michał

    2015-09-01

    In the paper, coloring heuristic algorithm of interpreted Petri nets is presented. Coloring is used to determine the State Machines (SM) subnets. The present algorithm reduces the Petri net in order to reduce the computational complexity and finds one of its possible State Machines cover. The proposed algorithm uses elements of interpretation of Petri nets. The obtained result may not be the best, but it is sufficient for use in rapid prototyping of logic controllers. Found SM-cover will be also used in the development of algorithms for decomposition, and modular synthesis and implementation of parallel logic controllers. Correctness developed heuristic algorithm was verified using Gentzen formal reasoning system.

  7. Guidance and Control Algorithms for the Mars Entry, Descent and Landing Systems Analysis

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; CwyerCianciolo, Alicia M.; Powell, Richard W.; Shidner, Jeremy D.; Garcia-Llama, Eduardo

    2010-01-01

    The purpose of the Mars Entry, Descent and Landing Systems Analysis (EDL-SA) study was to identify feasible technologies that will enable human exploration of Mars, specifically to deliver large payloads to the Martian surface. This paper focuses on the methods used to guide and control two of the contending technologies, a mid- lift-to-drag (L/D) rigid aeroshell and a hypersonic inflatable aerodynamic decelerator (HIAD), through the entry portion of the trajectory. The Program to Optimize Simulated Trajectories II (POST2) is used to simulate and analyze the trajectories of the contending technologies and guidance and control algorithms. Three guidance algorithms are discussed in this paper: EDL theoretical guidance, Numerical Predictor-Corrector (NPC) guidance and Analytical Predictor-Corrector (APC) guidance. EDL-SA also considered two forms of control: bank angle control, similar to that used by Apollo and the Space Shuttle, and a center-of-gravity (CG) offset control. This paper presents the performance comparison of these guidance algorithms and summarizes the results as they impact the technology recommendations for future study.

  8. Control strategy of grid-connected photovoltaic generation system based on GMPPT method

    NASA Astrophysics Data System (ADS)

    Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen

    2018-02-01

    There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.

  9. Redundant and fault-tolerant algorithms for real-time measurement and control systems for weapon equipment.

    PubMed

    Li, Dan; Hu, Xiaoguang

    2017-03-01

    Because of the high availability requirements from weapon equipment, an in-depth study has been conducted on the real-time fault-tolerance of the widely applied Compact PCI (CPCI) bus measurement and control system. A redundancy design method that uses heartbeat detection to connect the primary and alternate devices has been developed. To address the low successful execution rate and relatively large waste of time slices in the primary version of the task software, an improved algorithm for real-time fault-tolerant scheduling is proposed based on the Basic Checking available time Elimination idle time (BCE) algorithm, applying a single-neuron self-adaptive proportion sum differential (PSD) controller. The experimental validation results indicate that this system has excellent redundancy and fault-tolerance, and the newly developed method can effectively improve the system availability. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  11. On the Impact of Localization and Density Control Algorithms in Target Tracking Applications for Wireless Sensor Networks

    PubMed Central

    Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.

    2012-01-01

    Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329

  12. Appendix F. Developmental enforcement algorithm definition document : predictive braking enforcement algorithm definition document.

    DOT National Transportation Integrated Search

    2012-05-01

    The purpose of this document is to fully define and describe the logic flow and mathematical equations for a predictive braking enforcement algorithm intended for implementation in a Positive Train Control (PTC) system.

  13. Flight Validation of a Metrics Driven L(sub 1) Adaptive Control

    NASA Technical Reports Server (NTRS)

    Dobrokhodov, Vladimir; Kitsios, Ioannis; Kaminer, Isaac; Jones, Kevin D.; Xargay, Enric; Hovakimyan, Naira; Cao, Chengyu; Lizarraga, Mariano I.; Gregory, Irene M.

    2008-01-01

    The paper addresses initial steps involved in the development and flight implementation of new metrics driven L1 adaptive flight control system. The work concentrates on (i) definition of appropriate control driven metrics that account for the control surface failures; (ii) tailoring recently developed L1 adaptive controller to the design of adaptive flight control systems that explicitly address these metrics in the presence of control surface failures and dynamic changes under adverse flight conditions; (iii) development of a flight control system for implementation of the resulting algorithms onboard of small UAV; and (iv) conducting a comprehensive flight test program that demonstrates performance of the developed adaptive control algorithms in the presence of failures. As the initial milestone the paper concentrates on the adaptive flight system setup and initial efforts addressing the ability of a commercial off-the-shelf AP with and without adaptive augmentation to recover from control surface failures.

  14. Anytime synthetic projection: Maximizing the probability of goal satisfaction

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John L.

    1990-01-01

    A projection algorithm is presented for incremental control rule synthesis. The algorithm synthesizes an initial set of goal achieving control rules using a combination of situation probability and estimated remaining work as a search heuristic. This set of control rules has a certain probability of satisfying the given goal. The probability is incrementally increased by synthesizing additional control rules to handle 'error' situations the execution system is likely to encounter when following the initial control rules. By using situation probabilities, the algorithm achieves a computationally effective balance between the limited robustness of triangle tables and the absolute robustness of universal plans.

  15. Evaluating the utility of syndromic surveillance algorithms for screening to detect potentially clonal hospital infection outbreaks

    PubMed Central

    Talbot, Thomas R; Schaffner, William; Bloch, Karen C; Daniels, Titus L; Miller, Randolph A

    2011-01-01

    Objective The authors evaluated algorithms commonly used in syndromic surveillance for use as screening tools to detect potentially clonal outbreaks for review by infection control practitioners. Design Study phase 1 applied four aberrancy detection algorithms (CUSUM, EWMA, space-time scan statistic, and WSARE) to retrospective microbiologic culture data, producing a list of past candidate outbreak clusters. In phase 2, four infectious disease physicians categorized the phase 1 algorithm-identified clusters to ascertain algorithm performance. In phase 3, project members combined the algorithms to create a unified screening system and conducted a retrospective pilot evaluation. Measurements The study calculated recall and precision for each algorithm, and created precision-recall curves for various methods of combining the algorithms into a unified screening tool. Results Individual algorithm recall and precision ranged from 0.21 to 0.31 and from 0.053 to 0.29, respectively. Few candidate outbreak clusters were identified by more than one algorithm. The best method of combining the algorithms yielded an area under the precision-recall curve of 0.553. The phase 3 combined system detected all infection control-confirmed outbreaks during the retrospective evaluation period. Limitations Lack of phase 2 reviewers' agreement indicates that subjective expert review was an imperfect gold standard. Less conservative filtering of culture results and alternate parameter selection for each algorithm might have improved algorithm performance. Conclusion Hospital outbreak detection presents different challenges than traditional syndromic surveillance. Nevertheless, algorithms developed for syndromic surveillance have potential to form the basis of a combined system that might perform clinically useful hospital outbreak screening. PMID:21606134

  16. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    hierarchical control architecture that enables a hybrid control approach, where centralized control systems will be complemented by distributed control algorithms for solar inverters and autonomous control of ), involves developing a novel control scheme that provides system-wide monitoring and control using a small

  17. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John

    2006-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  18. Immunity-Based Optimal Estimation Approach for a New Real Time Group Elevator Dynamic Control Application for Energy and Time Saving

    PubMed Central

    Baygin, Mehmet; Karakose, Mehmet

    2013-01-01

    Nowadays, the increasing use of group elevator control systems owing to increasing building heights makes the development of high-performance algorithms necessary in terms of time and energy saving. Although there are many studies in the literature about this topic, they are still not effective enough because they are not able to evaluate all features of system. In this paper, a new approach of immune system-based optimal estimate is studied for dynamic control of group elevator systems. The method is mainly based on estimation of optimal way by optimizing all calls with genetic, immune system and DNA computing algorithms, and it is evaluated with a fuzzy system. The system has a dynamic feature in terms of the situation of calls and the option of the most appropriate algorithm, and it also adaptively works in terms of parameters such as the number of floors and cabins. This new approach which provides both time and energy saving was carried out in real time. The experimental results comparatively demonstrate the effects of method. With dynamic and adaptive control approach in this study carried out, a significant progress on group elevator control systems has been achieved in terms of time and energy efficiency according to traditional methods. PMID:23935433

  19. Performance Evaluation of Multichannel Adaptive Algorithms for Local Active Noise Control

    NASA Astrophysics Data System (ADS)

    DE DIEGO, M.; GONZALEZ, A.

    2001-07-01

    This paper deals with the development of a multichannel active noise control (ANC) system inside an enclosed space. The purpose is to design a real practical system which works well in local ANC applications. Moreover, the algorithm implemented in the adaptive controller should be robust, of low computational complexity and it should manage to generate a uniform useful-size zone of quite in order to allow the head motion of a person seated on a seat inside a car. Experiments were carried out under semi-anechoic and listening room conditions to verify the successful implementation of the multichannel system. The developed prototype consists of an array of up to four microphones used as error sensors mounted on the headrest of a seat place inside the enclosure. One loudspeaker was used as single primary source and two secondary sources were placed facing the seat. The aim of this multichannel system is to reduce the sound pressure levels in an area around the error sensors, following a local control strategy. When using this technique, the cancellation points are not only the error sensor positions but an area around them, which is measured by using a monitoring microphone. Different multichannel adaptive algorithms for ANC have been analyzed and their performance verified. Multiple error algorithms are used in order to cancel out different types of primary noise (engine noise and random noise) with several configurations (up to four channels system). As an alternative to the multiple error LMS algorithm (multichannel version of the filtered-X LMS algorithm, MELMS), the least maximum mean squares (LMMS) and the scanning error-LMS algorithm have been developed in this work in order to reduce computational complexity and achieve a more uniform residual field. The ANC algorithms were programmed on a digital signal processing board equipped with a TMS320C40 floating point DSP processor. Measurements concerning real-time experiments on local noise reduction in two environments and at frequencies below 230 Hz are presented. Better noise levels attenuation is obtained in the semianechoic chamber due to the simplicity of the acoustic field. The size of the zone of quiet makes the system useful at relatively low frequencies and it is large enough to cover a listener's head movements. The spatial extent of the zones of quiet is generally observed to increase as the error sensors are moved away from the secondary source, they are put closer together or its number increases. In summary, different algorithms' performance and the viability of the multichannel system for local active noise control in real listening conditions are evaluated and some guidelines for designing such systems are then proposed.

  20. Development of the L-1011 four-dimensional flight management system

    NASA Technical Reports Server (NTRS)

    Lee, H. P.; Leffler, M. F.

    1984-01-01

    The development of 4-D guidance and control algorithms for the L-1011 Flight Management System is described. Four-D Flight Management is a concept by which an aircraft's flight is optimized along the 3-D path within the constraints of today's ATC environment, while its arrival time is controlled to fit into the air traffic flow without incurring or causing delays. The methods developed herein were designed to be compatible with the time-based en route metering techniques that were recently developed by the Dallas/Fort Worth and Denver Air Route Traffic Control Centers. The ensuing development of the 4-D guidance algorithms, the necessary control laws and the operational procedures are discussed. Results of computer simulation evaluation of the guidance algorithms and control laws are presented, along with a description of the software development procedures utilized.

  1. Cost-effective solutions to maintaining smart grid reliability

    NASA Astrophysics Data System (ADS)

    Qin, Qiu

    As the aging power systems are increasingly working closer to the capacity and thermal limits, maintaining an sufficient reliability has been of great concern to the government agency, utility companies and users. This dissertation focuses on improving the reliability of transmission and distribution systems. Based on the wide area measurements, multiple model algorithms are developed to diagnose transmission line three-phase short to ground faults in the presence of protection misoperations. The multiple model algorithms utilize the electric network dynamics to provide prompt and reliable diagnosis outcomes. Computational complexity of the diagnosis algorithm is reduced by using a two-step heuristic. The multiple model algorithm is incorporated into a hybrid simulation framework, which consist of both continuous state simulation and discrete event simulation, to study the operation of transmission systems. With hybrid simulation, line switching strategy for enhancing the tolerance to protection misoperations is studied based on the concept of security index, which involves the faulted mode probability and stability coverage. Local measurements are used to track the generator state and faulty mode probabilities are calculated in the multiple model algorithms. FACTS devices are considered as controllers for the transmission system. The placement of FACTS devices into power systems is investigated with a criterion of maintaining a prescribed level of control reconfigurability. Control reconfigurability measures the small signal combined controllability and observability of a power system with an additional requirement on fault tolerance. For the distribution systems, a hierarchical framework, including a high level recloser allocation scheme and a low level recloser placement scheme, is presented. The impacts of recloser placement on the reliability indices is analyzed. Evaluation of reliability indices in the placement process is carried out via discrete event simulation. The reliability requirements are described with probabilities and evaluated from the empirical distributions of reliability indices.

  2. The effects of automated artifact removal algorithms on electroencephalography-based Alzheimer's disease diagnosis

    PubMed Central

    Cassani, Raymundo; Falk, Tiago H.; Fraga, Francisco J.; Kanda, Paulo A. M.; Anghinah, Renato

    2014-01-01

    Over the last decade, electroencephalography (EEG) has emerged as a reliable tool for the diagnosis of cortical disorders such as Alzheimer's disease (AD). EEG signals, however, are susceptible to several artifacts, such as ocular, muscular, movement, and environmental. To overcome this limitation, existing diagnostic systems commonly depend on experienced clinicians to manually select artifact-free epochs from the collected multi-channel EEG data. Manual selection, however, is a tedious and time-consuming process, rendering the diagnostic system “semi-automated.” Notwithstanding, a number of EEG artifact removal algorithms have been proposed in the literature. The (dis)advantages of using such algorithms in automated AD diagnostic systems, however, have not been documented; this paper aims to fill this gap. Here, we investigate the effects of three state-of-the-art automated artifact removal (AAR) algorithms (both alone and in combination with each other) on AD diagnostic systems based on four different classes of EEG features, namely, spectral, amplitude modulation rate of change, coherence, and phase. The three AAR algorithms tested are statistical artifact rejection (SAR), blind source separation based on second order blind identification and canonical correlation analysis (BSS-SOBI-CCA), and wavelet enhanced independent component analysis (wICA). Experimental results based on 20-channel resting-awake EEG data collected from 59 participants (20 patients with mild AD, 15 with moderate-to-severe AD, and 24 age-matched healthy controls) showed the wICA algorithm alone outperforming other enhancement algorithm combinations across three tasks: diagnosis (control vs. mild vs. moderate), early detection (control vs. mild), and disease progression (mild vs. moderate), thus opening the doors for fully-automated systems that can assist clinicians with early detection of AD, as well as disease severity progression assessment. PMID:24723886

  3. A model predictive speed tracking control approach for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  4. Identification and stochastic control of helicopter dynamic modes

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.; Bar-Shalom, Y.

    1983-01-01

    A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.

  5. Electron beam energy and bunch length feed forward control studies using an artificial neural network at the Linac coherent light source

    NASA Astrophysics Data System (ADS)

    Meier, E.; Biedron, S. G.; LeBlanc, G.; Morgan, M. J.; Wu, J.

    2009-11-01

    This paper describes the results of an advanced control algorithm for the stabilization of electron beam energy in a Linac. The approach combines a conventional Proportional-Integral (PI) controller with a neural network (NNET) feed forward algorithm; it utilizes the robustness of PI control and the ability of a feed forward system in order to exert control over a wider range of frequencies. The NNET is trained to recognize jitter occurring in the phase and voltage of one of the klystrons, based on a record of these parameters, and predicts future energy deviations. A systematic approach is developed to determine the optimal NNET parameters that are then applied to the Australian Synchrotron Linac. The system's capability to fully cancel multi-frequency jitter is demonstrated. The NNET system is then augmented with the PI algorithm, and further jitter attenuation is achieved when the NNET is not operating optimally.

  6. Adaptive/learning control of large space structures - System identification techniques. [for multi-configuration flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Thau, F. E.; Montgomery, R. C.

    1980-01-01

    Techniques developed for the control of aircraft under changing operating conditions are used to develop a learning control system structure for a multi-configuration, flexible space vehicle. A configuration identification subsystem that is to be used with a learning algorithm and a memory and control process subsystem is developed. Adaptive gain adjustments can be achieved by this learning approach without prestoring of large blocks of parameter data and without dither signal inputs which will be suppressed during operations for which they are not compatible. The Space Shuttle Solar Electric Propulsion (SEP) experiment is used as a sample problem for the testing of adaptive/learning control system algorithms.

  7. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1982-01-01

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  8. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Astrophysics Data System (ADS)

    Cull, R. C.; Eltimsahy, A. H.

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  9. Multiscale stochastic simulations of chemical reactions with regulated scale separation

    NASA Astrophysics Data System (ADS)

    Koumoutsakos, Petros; Feigelman, Justin

    2013-07-01

    We present a coupling of multiscale frameworks with accelerated stochastic simulation algorithms for systems of chemical reactions with disparate propensities. The algorithms regulate the propensities of the fast and slow reactions of the system, using alternating micro and macro sub-steps simulated with accelerated algorithms such as τ and R-leaping. The proposed algorithms are shown to provide significant speedups in simulations of stiff systems of chemical reactions with a trade-off in accuracy as controlled by a regulating parameter. More importantly, the error of the methods exhibits a cutoff phenomenon that allows for optimal parameter choices. Numerical experiments demonstrate that hybrid algorithms involving accelerated stochastic simulations can be, in certain cases, more accurate while faster, than their corresponding stochastic simulation algorithm counterparts.

  10. Fuzzy logic applications to expert systems and control

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.

  11. Diffusion control for a tempered anomalous diffusion system using fractional-order PI controllers.

    PubMed

    Juan Chen; Zhuang, Bo; Chen, YangQuan; Cui, Baotong

    2017-05-09

    This paper is concerned with diffusion control problem of a tempered anomalous diffusion system based on fractional-order PI controllers. The contribution of this paper is to introduce fractional-order PI controllers into the tempered anomalous diffusion system for mobile actuators motion and spraying control. For the proposed control force, convergence analysis of the system described by mobile actuator dynamical equations is presented based on Lyapunov stability arguments. Moreover, a new Centroidal Voronoi Tessellation (CVT) algorithm based on fractional-order PI controllers, henceforth called FOPI-based CVT algorithm, is provided together with a modified simulation platform called Fractional-Order Diffusion Mobile Actuator-Sensor 2-Dimension Fractional-Order Proportional Integral (FO-Diff-MAS2D-FOPI). Finally, extensive numerical simulations for the tempered anomalous diffusion process are presented to verify the effectiveness of our proposed fractional-order PI controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. An approach to design controllers for MIMO fractional-order plants based on parameter optimization algorithm.

    PubMed

    Xue, Dingyü; Li, Tingxue

    2017-04-27

    The parameter optimization method for multivariable systems is extended to the controller design problems for multiple input multiple output (MIMO) square fractional-order plants. The algorithm can be applied to search for the optimal parameters of integer-order controllers for fractional-order plants with or without time delays. Two examples are given to present the controller design procedures for MIMO fractional-order systems. Simulation studies show that the integer-order controllers designed are robust to plant gain variations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  14. Self-tuning control of attitude and momentum management for the Space Station

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.

    1992-01-01

    This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.

  15. Fast and stable algorithms for computing the principal square root of a complex matrix

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Lian, Sui R.; Mcinnis, Bayliss C.

    1987-01-01

    This note presents recursive algorithms that are rapidly convergent and more stable for finding the principal square root of a complex matrix. Also, the developed algorithms are utilized to derive the fast and stable matrix sign algorithms which are useful in developing applications to control system problems.

  16. Algorithm design, user interface, and optimization procedure for a fuzzy logic ramp metering algorithm : a training manual for freeway operations engineers

    DOT National Transportation Integrated Search

    2000-02-01

    This training manual describes the fuzzy logic ramp metering algorithm in detail, as implemented system-wide in the greater Seattle area. The method of defining the inputs to the controller and optimizing the performance of the algorithm is explained...

  17. Investigation of practical applications of H infinity control theory to the design of control systems for large space structures

    NASA Technical Reports Server (NTRS)

    Irwin, R. Dennis

    1988-01-01

    The applicability of H infinity control theory to the problems of large space structures (LSS) control was investigated. A complete evaluation to any technique as a candidate for large space structure control involves analytical evaluation, algorithmic evaluation, evaluation via simulation studies, and experimental evaluation. The results of analytical and algorithmic evaluations are documented. The analytical evaluation involves the determination of the appropriateness of the underlying assumptions inherent in the H infinity theory, the determination of the capability of the H infinity theory to achieve the design goals likely to be imposed on an LSS control design, and the identification of any LSS specific simplifications or complications of the theory. The resuls of the analytical evaluation are presented in the form of a tutorial on the subject of H infinity control theory with the LSS control designer in mind. The algorthmic evaluation of H infinity for LSS control pertains to the identification of general, high level algorithms for effecting the application of H infinity to LSS control problems, the identification of specific, numerically reliable algorithms necessary for a computer implementation of the general algorithms, the recommendation of a flexible software system for implementing the H infinity design steps, and ultimately the actual development of the necessary computer codes. Finally, the state of the art in H infinity applications is summarized with a brief outline of the most promising areas of current research.

  18. Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.

    PubMed

    Wei, Qinglai; Li, Benkai; Song, Ruizhuo

    2018-04-01

    In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.

  19. Enhanced Performance Controller Design for Stochastic Systems by Adding Extra State Estimation onto the Existing Closed Loop Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    To enhance the performance of the tracking property , this paper presents a novel control algorithm for a class of linear dynamic stochastic systems with unmeasurable states, where the performance enhancement loop is established based on Kalman filter. Without changing the existing closed loop with the PI controller, the compensative controller is designed to minimize the variances of the tracking errors using the estimated states and the propagation of state variances. Moreover, the stability of the closed-loop systems has been analyzed in the mean-square sense. A simulated example is included to show the effectiveness of the presented control algorithm, wheremore » encouraging results have been obtained.« less

  20. A problem of optimal control and observation for distributed homogeneous multi-agent system

    NASA Astrophysics Data System (ADS)

    Kruglikov, Sergey V.

    2017-12-01

    The paper considers the implementation of a algorithm for controlling a distributed complex of several mobile multi-robots. The concept of a unified information space of the controlling system is applied. The presented information and mathematical models of participants and obstacles, as real agents, and goals and scenarios, as virtual agents, create the base forming the algorithmic and software background for computer decision support system. The controlling scheme assumes the indirect management of the robotic team on the basis of optimal control and observation problem predicting intellectual behavior in a dynamic, hostile environment. A basic content problem is a compound cargo transportation by a group of participants in the case of a distributed control scheme in the terrain with multiple obstacles.

  1. Verification of Energy Reduction Effect through Control Optimization of Supply Air Temperature in VRF-OAP System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Je; Yoon, Hyun; Im, Piljae

    This paper developed an algorithm that controls the supply air temperature in the variable refrigerant flow (VRF), outdoor air processing unit (OAP) system, according to indoor and outdoor temperature and humidity, and verified the effects after applying the algorithm to real buildings. The VRF-OAP system refers to a heating, ventilation, and air conditioning (HVAC) system to complement a ventilation function, which is not provided in the VRF system. It is a system that supplies air indoors by heat treatment of outdoor air through the OAP, as a number of indoor units and OAPs are connected to the outdoor unit inmore » the VRF system simultaneously. This paper conducted experiments with regard to changes in efficiency and the cooling capabilities of each unit and system according to supply air temperature in the OAP using a multicalorimeter. Based on these results, an algorithm that controlled the temperature of the supply air in the OAP was developed considering indoor and outdoor temperatures and humidity. The algorithm was applied in the test building to verify the effects of energy reduction and the effects on indoor temperature and humidity. Loads were then changed by adjusting the number of conditioned rooms to verify the effect of the algorithm according to various load conditions. In the field test results, the energy reduction effect was approximately 15–17% at a 100% load, and 4–20% at a 75% load. However, no significant effects were shown at a 50% load. The indoor temperature and humidity reached a comfortable level.« less

  2. Verification of Energy Reduction Effect through Control Optimization of Supply Air Temperature in VRF-OAP System

    DOE PAGES

    Lee, Je; Yoon, Hyun; Im, Piljae; ...

    2017-12-27

    This paper developed an algorithm that controls the supply air temperature in the variable refrigerant flow (VRF), outdoor air processing unit (OAP) system, according to indoor and outdoor temperature and humidity, and verified the effects after applying the algorithm to real buildings. The VRF-OAP system refers to a heating, ventilation, and air conditioning (HVAC) system to complement a ventilation function, which is not provided in the VRF system. It is a system that supplies air indoors by heat treatment of outdoor air through the OAP, as a number of indoor units and OAPs are connected to the outdoor unit inmore » the VRF system simultaneously. This paper conducted experiments with regard to changes in efficiency and the cooling capabilities of each unit and system according to supply air temperature in the OAP using a multicalorimeter. Based on these results, an algorithm that controlled the temperature of the supply air in the OAP was developed considering indoor and outdoor temperatures and humidity. The algorithm was applied in the test building to verify the effects of energy reduction and the effects on indoor temperature and humidity. Loads were then changed by adjusting the number of conditioned rooms to verify the effect of the algorithm according to various load conditions. In the field test results, the energy reduction effect was approximately 15–17% at a 100% load, and 4–20% at a 75% load. However, no significant effects were shown at a 50% load. The indoor temperature and humidity reached a comfortable level.« less

  3. Applying Computer Models to Realize Closed-Loop Neonatal Oxygen Therapy.

    PubMed

    Morozoff, Edmund; Smyth, John A; Saif, Mehrdad

    2017-01-01

    Within the context of automating neonatal oxygen therapy, this article describes the transformation of an idea verified by a computer model into a device actuated by a computer model. Computer modeling of an entire neonatal oxygen therapy system can facilitate the development of closed-loop control algorithms by providing a verification platform and speeding up algorithm development. In this article, we present a method of mathematically modeling the system's components: the oxygen transport within the patient, the oxygen blender, the controller, and the pulse oximeter. Furthermore, within the constraints of engineering a product, an idealized model of the neonatal oxygen transport component may be integrated effectively into the control algorithm of a device, referred to as the adaptive model. Manual and closed-loop oxygen therapy performance were defined in this article by 3 criteria in the following order of importance: percent duration of SpO2 spent in normoxemia (target SpO2 ± 2.5%), hypoxemia (less than normoxemia), and hyperoxemia (more than normoxemia); number of 60-second periods <85% SpO2 and >95% SpO2; and number of manual adjustments. Results from a clinical evaluation that compared the performance of 3 closed-loop control algorithms (state machine, proportional-integral-differential, and adaptive model) with manual oxygen therapy on 7 low-birth-weight ventilated preterm babies, are presented. Compared with manual therapy, all closed-loop control algorithms significantly increased the patients' duration in normoxemia and reduced hyperoxemia (P < 0.05). The number of manual adjustments was also significantly reduced by all of the closed-loop control algorithms (P < 0.05). Although the performance of the 3 control algorithms was equivalent, it is suggested that the adaptive model, with its ease of use, may have the best utility.

  4. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  5. Robust and real-time rotor control with magnetic bearings

    NASA Technical Reports Server (NTRS)

    Sinha, A.; Wang, K. W.; Mease, K. L.

    1991-01-01

    This paper deals with the sliding mode control of a rigid rotor via radial magnetic bearings. The digital control algorithm and the results from numerical simulations are presented for an experimental rig. The experimental system which has been set up to digitally implement and validate the sliding mode control algorithm is described. Two methods for the development of control softwares are presented. Experimental results for individual rotor axis are discussed.

  6. Mathematical analysis and coordinated current allocation control in battery power module systems

    NASA Astrophysics Data System (ADS)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  7. Analysis and simulation tools for solar array power systems

    NASA Astrophysics Data System (ADS)

    Pongratananukul, Nattorn

    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.

  8. Design and implementation of multichannel global active structural acoustic control for a device casing

    NASA Astrophysics Data System (ADS)

    Mazur, Krzysztof; Wrona, Stanislaw; Pawelczyk, Marek

    2018-01-01

    The paper presents the idea and discussion on implementation of multichannel global active noise control systems. As a test plant an active casing is used. It has been developed by the authors to reduce device noise directly at the source by controlling vibration of its casing. To provide global acoustic effect in the whole environment, where the device operates, it requires a number of secondary sources and sensors for each casing wall, thus making the whole active control structure complicated, i.e. with a large number of interacting channels. The paper discloses all details concerning hardware setup and efficient implementation of control algorithms for the multichannel case. A new formulation is presented to introduce the distributed version of the Switched-error Filtered-reference Least Mean Squares (FXLMS) algorithm together with adaptation rate enhancement. The convergence rate of the proposed algorithm is compared with original Multiple-error FXLMS. A number of hints followed from many years of authors' experience on microprocessor control systems design and signal processing algorithms optimization are presented. They can be used for various active control and signal processing applications, both for academic research and commercialization.

  9. Spatial operator approach to flexible multibody system dynamics and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1991-01-01

    The inverse and forward dynamics problems for flexible multibody systems were solved using the techniques of spatially recursive Kalman filtering and smoothing. These algorithms are easily developed using a set of identities associated with mass matrix factorization and inversion. These identities are easily derived using the spatial operator algebra developed by the author. Current work is aimed at computational experiments with the described algorithms and at modelling for control design of limber manipulator systems. It is also aimed at handling and manipulation of flexible objects.

  10. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays

    PubMed Central

    Salt, Julián; Guinaldo, María; Chacón, Jesús

    2018-01-01

    In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n-input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant. PMID:29747441

  11. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays.

    PubMed

    Aranda-Escolástico, Ernesto; Salt, Julián; Guinaldo, María; Chacón, Jesús; Dormido, Sebastián

    2018-05-09

    In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n -input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant.

  12. A generalized leaky FxLMS algorithm for tuning the waterbed effect of feedback active noise control systems

    NASA Astrophysics Data System (ADS)

    Wu, Lifu; Qiu, Xiaojun; Guo, Yecai

    2018-06-01

    To tune the noise amplification in the feedback system caused by the waterbed effect effectively, an adaptive algorithm is proposed in this paper by replacing the scalar leaky factor of the leaky FxLMS algorithm with a real symmetric Toeplitz matrix. The elements in the matrix are calculated explicitly according to the noise amplification constraints, which are defined based on a simple but efficient method. Simulations in an ANC headphone application demonstrate that the proposed algorithm can adjust the frequency band of noise amplification more effectively than the FxLMS algorithm and the leaky FxLMS algorithm.

  13. Refinement and evaluation of helicopter real-time self-adaptive active vibration controller algorithms

    NASA Technical Reports Server (NTRS)

    Davis, M. W.

    1984-01-01

    A Real-Time Self-Adaptive (RTSA) active vibration controller was used as the framework in developing a computer program for a generic controller that can be used to alleviate helicopter vibration. Based upon on-line identification of system parameters, the generic controller minimizes vibration in the fuselage by closed-loop implementation of higher harmonic control in the main rotor system. The new generic controller incorporates a set of improved algorithms that gives the capability to readily define many different configurations by selecting one of three different controller types (deterministic, cautious, and dual), one of two linear system models (local and global), and one or more of several methods of applying limits on control inputs (external and/or internal limits on higher harmonic pitch amplitude and rate). A helicopter rotor simulation analysis was used to evaluate the algorithms associated with the alternative controller types as applied to the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test Apparatus (RTA) which represents the fuselage. After proper tuning all three controllers provide more effective vibration reduction and converge more quickly and smoothly with smaller control inputs than the initial RTSA controller (deterministic with external pitch-rate limiting). It is demonstrated that internal limiting of the control inputs a significantly improves the overall performance of the deterministic controller.

  14. Research on fast algorithm of small UAV navigation in non-linear matrix reductionism method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Fang, Jiancheng; Sheng, Wei; Cao, Juanjuan

    2008-10-01

    The low Reynolds numbers of small UAV will result in unfavorable aerodynamic conditions to support controlled flight. And as operated near ground, the small UAV will be affected seriously by low-frequency interference caused by atmospheric disturbance. Therefore, the GNC system needs high frequency of attitude estimation and control to realize the steady of the UAV. In company with the dimensional of small UAV dwindling away, its GNC system is more and more taken embedded designing technology to reach the purpose of compactness, light weight and low power consumption. At the same time, the operational capability of GNC system also gets limit in a certain extent. Therefore, a kind of high speed navigation algorithm design becomes the imminence demand of GNC system. Aiming at such requirement, a kind of non-linearity matrix reduction approach is adopted in this paper to create a new high speed navigation algorithm which holds the radius of meridian circle and prime vertical circle as constant and linearizes the position matrix calculation formulae of navigation equation. Compared with normal navigation algorithm, this high speed navigation algorithm decreases 17.3% operand. Within small UAV"s mission radius (20km), the accuracy of position error is less than 0.13m. The results of semi-physical experiments and small UAV's auto pilot testing proved that this algorithm can realize high frequency attitude estimation and control. It will avoid low-frequency interference caused by atmospheric disturbance properly.

  15. Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.

    2009-01-01

    The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.

  16. Application of IFT and SPSA to servo system control.

    PubMed

    Rădac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M; Preitl, Stefan

    2011-12-01

    This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.

  17. Robust distributed model predictive control of linear systems with structured time-varying uncertainties

    NASA Astrophysics Data System (ADS)

    Zhang, Langwen; Xie, Wei; Wang, Jingcheng

    2017-11-01

    In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.

  18. Experimental Control of Thermocapillary Convection in a Liquid Bridge

    NASA Technical Reports Server (NTRS)

    Petrov, Valery; Schatz, Michael F.; Muehlner, Kurt A.; VanHook, Stephen J.; McCormick, W. D.; Swift, Jack B.; Swinney, Harry L.

    1996-01-01

    We demonstrate the stabilization of an isolated unstable periodic orbit in a liquid bridge convection experiment. A model independent, nonlinear control algorithm uses temperature measurements near the liquid interface to compute control perturbations which are applied by a thermoelectric element. The algorithm employs a time series reconstruction of a nonlinear control surface in a high dimensional phase space to alter the system dynamics.

  19. Preliminary input to the space shuttle reaction control subsystem failure detection and identification software requirements (uncontrolled)

    NASA Technical Reports Server (NTRS)

    Bergmann, E.

    1976-01-01

    The current baseline method and software implementation of the space shuttle reaction control subsystem failure detection and identification (RCS FDI) system is presented. This algorithm is recommended for conclusion in the redundancy management (RM) module of the space shuttle guidance, navigation, and control system. Supporting software is presented, and recommended for inclusion in the system management (SM) and display and control (D&C) systems. RCS FDI uses data from sensors in the jets, in the manifold isolation valves, and in the RCS fuel and oxidizer storage tanks. A list of jet failures and fuel imbalance warnings is generated for use by the jet selection algorithm of the on-orbit and entry flight control systems, and to inform the crew and ground controllers of RCS failure status. Manifold isolation valve close commands are generated in the event of failed on or leaking jets to prevent loss of large quantities of RCS fuel.

  20. Decoupling PI Controller Design for a Normal Conducting RF Cavity Using a Recursive LEVENBERG-MARQUARDT Algorithm

    NASA Astrophysics Data System (ADS)

    Kwon, Sung-il; Lynch, M.; Prokop, M.

    2005-02-01

    This paper addresses the system identification and the decoupling PI controller design for a normal conducting RF cavity. Based on the open-loop measurement data of an SNS DTL cavity, the open-loop system's bandwidths and loop time delays are estimated by using batched least square. With the identified system, a PI controller is designed in such a way that it suppresses the time varying klystron droop and decouples the In-phase and Quadrature of the cavity field. The Levenberg-Marquardt algorithm is applied for nonlinear least squares to obtain the optimal PI controller parameters. The tuned PI controller gains are downloaded to the low-level RF system by using channel access. The experiment of the closed-loop system is performed and the performance is investigated. The proposed tuning method is running automatically in real time interface between a host computer with controller hardware through ActiveX Channel Access.

  1. Longitudinal driver model and collision warning and avoidance algorithms based on human driving databases

    NASA Astrophysics Data System (ADS)

    Lee, Kangwon

    Intelligent vehicle systems, such as Adaptive Cruise Control (ACC) or Collision Warning/Collision Avoidance (CW/CA), are currently under development, and several companies have already offered ACC on selected models. Control or decision-making algorithms of these systems are commonly evaluated under extensive computer simulations and well-defined scenarios on test tracks. However, they have rarely been validated with large quantities of naturalistic human driving data. This dissertation utilized two University of Michigan Transportation Research Institute databases (Intelligent Cruise Control Field Operational Test and System for Assessment of Vehicle Motion Environment) in the development and evaluation of longitudinal driver models and CW/CA algorithms. First, to examine how drivers normally follow other vehicles, the vehicle motion data from the databases were processed using a Kalman smoother. The processed data was then used to fit and evaluate existing longitudinal driver models (e.g., the linear follow-the-leader model, the Newell's special model, the nonlinear follow-the-leader model, the linear optimal control model, the Gipps model and the optimal velocity model). A modified version of the Gipps model was proposed and found to be accurate in both microscopic (vehicle) and macroscopic (traffic) senses. Second, to examine emergency braking behavior and to evaluate CW/CA algorithms, the concepts of signal detection theory and a performance index suitable for unbalanced situations (few threatening data points vs. many safe data points) are introduced. Selected existing CW/CA algorithms were found to have a performance index (geometric mean of true-positive rate and precision) not exceeding 20%. To optimize the parameters of the CW/CA algorithms, a new numerical optimization scheme was developed to replace the original data points with their representative statistics. A new CW/CA algorithm was proposed, which was found to score higher than 55% in the performance index. This dissertation provides a model of how drivers follow lead-vehicles that is much more accurate than other models in the literature. Furthermore, the data-based approach was used to confirm that a CW/CA algorithm utilizing lead-vehicle braking was substantially more effective than existing algorithms, leading to collision warning systems that are much more likely to contribute to driver safety.

  2. Symbolic LTL Compilation for Model Checking: Extended Abstract

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Vardi, Moshe Y.

    2007-01-01

    In Linear Temporal Logic (LTL) model checking, we check LTL formulas representing desired behaviors against a formal model of the system designed to exhibit these behaviors. To accomplish this task, the LTL formulas must be translated into automata [21]. We focus on LTL compilation by investigating LTL satisfiability checking via a reduction to model checking. Having shown that symbolic LTL compilation algorithms are superior to explicit automata construction algorithms for this task [16], we concentrate here on seeking a better symbolic algorithm.We present experimental data comparing algorithmic variations such as normal forms, encoding methods, and variable ordering and examine their effects on performance metrics including processing time and scalability. Safety critical systems, such as air traffic control, life support systems, hazardous environment controls, and automotive control systems, pervade our daily lives, yet testing and simulation alone cannot adequately verify their reliability [3]. Model checking is a promising approach to formal verification for safety critical systems which involves creating a formal mathematical model of the system and translating desired safety properties into a formal specification for this model. The complement of the specification is then checked against the system model. When the model does not satisfy the specification, model-checking tools accompany this negative answer with a counterexample, which points to an inconsistency between the system and the desired behaviors and aids debugging efforts.

  3. Bio-inspired online variable recruitment control of fluidic artificial muscles

    NASA Astrophysics Data System (ADS)

    Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew

    2016-12-01

    This paper details the creation of a hybrid variable recruitment control scheme for fluidic artificial muscle (FAM) actuators with an emphasis on maximizing system efficiency and switching control performance. Variable recruitment is the process of altering a system’s active number of actuators, allowing operation in distinct force regimes. Previously, FAM variable recruitment was only quantified with offline, manual valve switching; this study addresses the creation and characterization of novel, on-line FAM switching control algorithms. The bio-inspired algorithms are implemented in conjunction with a PID and model-based controller, and applied to a simulated plant model. Variable recruitment transition effects and chatter rejection are explored via a sensitivity analysis, allowing a system designer to weigh tradeoffs in actuator modeling, algorithm choice, and necessary hardware. Variable recruitment is further developed through simulation of a robotic arm tracking a variety of spline position inputs, requiring several levels of actuator recruitment. Switching controller performance is quantified and compared with baseline systems lacking variable recruitment. The work extends current variable recruitment knowledge by creating novel online variable recruitment control schemes, and exploring how online actuator recruitment affects system efficiency and control performance. Key topics associated with implementing a variable recruitment scheme, including the effects of modeling inaccuracies, hardware considerations, and switching transition concerns are also addressed.

  4. Implementation and control of a 3 degree-of-freedom, force-reflecting manual controller

    NASA Astrophysics Data System (ADS)

    Kim, Whee-Kuk; Bevill, Pat; Tesar, Delbert

    1991-02-01

    Most available manual controllers which are used in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size heavy weight high cost low magnitude of reflecting-force lack of smoothness insufficient transparency and simplified architectures. A compact smooth lightweight portable universal manual controller could provide a markedly improved level of transparency and be able to drive a broad spectrum of slave manipulators. This implies that a single stand-off position could be used for a diverse population of remote systems and that a standard environment for training of operators would result in reduced costs and higher reliability. In the implementation presented in this paper a parallel 3 degree-of-freedom (DOF) spherical structure (for compactness and reduced weight) is combined with high gear-ratio reducers using a force control algorithm to produce a " power steering" effect for enhanced smoothness and transparency. The force control algorithm has the further benefit of minimizing the effect of the system friction and non-linear inertia forces. The fundamental analytical description for the spherical force-reflecting manual controller such as forward position analysis reflecting-force transformation and applied force control algorithm are presented. Also a brief description of the system integration its actual implementation and preliminary test results are presented in the paper.

  5. Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control.

    DTIC Science & Technology

    1983-08-15

    obtainable from real data, rather than relying on a stock database. Often, computer vision and image processing algorithms become subconsciously tuned to...two coils on the same mount structure. Since it was not possible to reprogram the binary system, we turned to the POPEYE system for both its grey

  6. Multi-Objectives Optimization of Ventilation Controllers for Passive Cooling in Residential Buildings

    PubMed Central

    Grygierek, Krzysztof; Ferdyn-Grygierek, Joanna

    2018-01-01

    An inappropriate indoor climate, mostly indoor temperature, may cause occupants’ discomfort. There are a great number of air conditioning systems that make it possible to maintain the required thermal comfort. Their installation, however, involves high investment costs and high energy demand. The study analyses the possibilities of limiting too high a temperature in residential buildings using passive cooling by means of ventilation with ambient cool air. A fuzzy logic controller whose aim is to control mechanical ventilation has been proposed and optimized. In order to optimize the controller, the modified Multiobjective Evolutionary Algorithm, based on the Strength Pareto Evolutionary Algorithm, has been adopted. The optimization algorithm has been implemented in MATLAB®, which is coupled by MLE+ with EnergyPlus for performing dynamic co-simulation between the programs. The example of a single detached building shows that the occupants’ thermal comfort in a transitional climate may improve significantly owing to mechanical ventilation controlled by the suggested fuzzy logic controller. When the system is connected to the traditional cooling system, it may further bring about a decrease in cooling demand. PMID:29642525

  7. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1988-01-01

    Expert systems that require access to data bases, complex simulations and real time instrumentation have both symbolic and algorithmic needs. Both of these needs could be met using a general purpose workstation running both symbolic and algorithmic codes, or separate, specialized computers networked together. The later approach was chosen to implement TEXSYS, the thermal expert system, developed by the NASA Ames Research Center in conjunction with the Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. The integration options and several possible solutions are presented.

  8. A Turbine Based Combined Cycle Engine Inlet Model and Mode Transition Simulation Based on HiTECC Tool

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Stueber, Thomas

    2012-01-01

    An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10-foot by 10-foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.

  9. A Turbine Based Combined Cycle Engine Inlet Model and Mode Transition Simulation Based on HiTECC Tool

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2012-01-01

    An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10- by 10-Foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.

  10. Adaptive control of artificial pancreas systems - a review.

    PubMed

    Turksoy, Kamuran; Cinar, Ali

    2014-01-01

    Artificial pancreas (AP) systems offer an important improvement in regulating blood glucose concentration for patients with type 1 diabetes, compared to current approaches. AP consists of sensors, control algorithms and an insulin pump. Different AP control algorithms such as proportional-integral-derivative, model-predictive control, adaptive control, and fuzzy logic control have been investigated in simulation and clinical studies in the past three decades. The variability over time and complexity of the dynamics of blood glucose concentration, unsteady disturbances such as meals, time-varying delays on measurements and insulin infusion, and noisy data from sensors create a challenging system to AP. Adaptive control is a powerful control technique that can deal with such challenges. In this paper, a review of adaptive control techniques for blood glucose regulation with an AP system is presented. The investigations and advances in technology produced impressive results, but there is still a need for a reliable AP system that is both commercially viable and appealing to patients with type 1 diabetes.

  11. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.

  12. SPS flexible system control assessment analysis

    NASA Technical Reports Server (NTRS)

    Balas, M. J.

    1981-01-01

    Active control of the Satellite Power System (SPS0, a large mechanically flexible aerospace structure is addressed. The control algorithm is the principle component in the feedback link from sensors to actuators. An analysis of the interaction of the SPS structure and its active control system is presented.

  13. An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication

    NASA Astrophysics Data System (ADS)

    Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao

    2014-05-01

    For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.

  14. Serious injury prediction algorithm based on large-scale data and under-triage control.

    PubMed

    Nishimoto, Tetsuya; Mukaigawa, Kosuke; Tominaga, Shigeru; Lubbe, Nils; Kiuchi, Toru; Motomura, Tomokazu; Matsumoto, Hisashi

    2017-01-01

    The present study was undertaken to construct an algorithm for an advanced automatic collision notification system based on national traffic accident data compiled by Japanese police. While US research into the development of a serious-injury prediction algorithm is based on a logistic regression algorithm using the National Automotive Sampling System/Crashworthiness Data System, the present injury prediction algorithm was based on comprehensive police data covering all accidents that occurred across Japan. The particular focus of this research is to improve the rescue of injured vehicle occupants in traffic accidents, and the present algorithm assumes the use of an onboard event data recorder data from which risk factors such as pseudo delta-V, vehicle impact location, seatbelt wearing or non-wearing, involvement in a single impact or multiple impact crash and the occupant's age can be derived. As a result, a simple and handy algorithm suited for onboard vehicle installation was constructed from a sample of half of the available police data. The other half of the police data was applied to the validation testing of this new algorithm using receiver operating characteristic analysis. An additional validation was conducted using in-depth investigation of accident injuries in collaboration with prospective host emergency care institutes. The validated algorithm, named the TOYOTA-Nihon University algorithm, proved to be as useful as the US URGENCY and other existing algorithms. Furthermore, an under-triage control analysis found that the present algorithm could achieve an under-triage rate of less than 10% by setting a threshold of 8.3%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics

    PubMed Central

    Zou, Weiyao; Burns, Stephen A.

    2012-01-01

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462

  16. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics.

    PubMed

    Zou, Weiyao; Burns, Stephen A

    2012-03-20

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. © 2012 Optical Society of America

  17. Stall Recovery Guidance Algorithms Based on Constrained Control Approaches

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana

    2016-01-01

    Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.

  18. Model-on-Demand Predictive Control for Nonlinear Hybrid Systems With Application to Adaptive Behavioral Interventions

    PubMed Central

    Nandola, Naresh N.; Rivera, Daniel E.

    2011-01-01

    This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087

  19. Tcl as a Software Environment for a TCS

    NASA Astrophysics Data System (ADS)

    Terrett, David L.

    2002-12-01

    This paper describes how the Tcl scripting language and C API has been used as the software environment for a telescope pointing kernel so that new pointing algorithms and software architectures can be developed and tested without needing a real-time operating system or real-time software environment. It has enabled development to continue outside the framework of a specific telescope project while continuing to build a system that is sufficiently complete to be capable of controlling real hardware but expending minimum effort on replacing the services that would normally by provided by a real-time software environment. Tcl is used as a scripting language for configuring the system at startup and then as the command interface for controlling the running system; the Tcl C language API is used to provided a system independent interface to file and socket I/O and other operating system services. The pointing algorithms themselves are implemented as a set of C++ objects calling C library functions that implement the algorithms described in [2]. Although originally designed as a test and development environment, the system, running as a soft real-time process on Linux, has been used to test the SOAR mount control system and will be used as the pointing kernel of the SOAR telescope control system

  20. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  1. Direct adaptive fuzzy control of a translating piezoelectric flexible manipulator driven by a pneumatic rodless cylinder

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-cheng; Wang, Bin; Zhang, Xian-min; Han, Jian-da

    2013-04-01

    This study presents a novel translating piezoelectric flexible manipulator driven by a rodless cylinder. Simultaneous positioning control and vibration suppression of the flexible manipulator is accomplished by using a hybrid driving scheme composed of the pneumatic cylinder and a piezoelectric actuator. Pulse code modulation (PCM) method is utilized for the cylinder. First, the system dynamics model is derived, and its standard multiple input multiple output (MIMO) state-space representation is provided. Second, a composite proportional derivative (PD) control algorithms and a direct adaptive fuzzy control method are designed for the MIMO system. Also, a time delay compensation algorithm, bandstop and low-pass filters are utilized, under consideration of the control hysteresis and the caused high-frequency modal vibration due to the long stroke of the cylinder, gas compression and nonlinear factors of the pneumatic system. The convergence of the closed loop system is analyzed. Finally, experimental apparatus is constructed and experiments are conducted. The effectiveness of the designed controllers and the hybrid driving scheme is verified through simulation and experimental comparison studies. The numerical simulation and experimental results demonstrate that the proposed system scheme of employing the pneumatic drive and piezoelectric actuator can suppress the vibration and achieve the desired positioning location simultaneously. Furthermore, the adopted adaptive fuzzy control algorithms can significantly enhance the control performance.

  2. Active control for stabilization of neoclassical tearing modesa)

    NASA Astrophysics Data System (ADS)

    Humphreys, D. A.; Ferron, J. R.; La Haye, R. J.; Luce, T. C.; Petty, C. C.; Prater, R.; Welander, A. S.

    2006-05-01

    This work describes active control algorithms used by DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] to stabilize and maintain suppression of 3/2 or 2/1 neoclassical tearing modes (NTMs) by application of electron cyclotron current drive (ECCD) at the rational q surface. The DIII-D NTM control system can determine the correct q-surface/ECCD alignment and stabilize existing modes within 100-500ms of activation, or prevent mode growth with preemptive application of ECCD, in both cases enabling stable operation at normalized beta values above 3.5. Because NTMs can limit performance or cause plasma-terminating disruptions in tokamaks, their stabilization is essential to the high performance operation of ITER [R. Aymar et al., ITER Joint Central Team, ITER Home Teams, Nucl. Fusion 41, 1301 (2001)]. The DIII-D NTM control system has demonstrated many elements of an eventual ITER solution, including general algorithms for robust detection of q-surface/ECCD alignment and for real-time maintenance of alignment following the disappearance of the mode. This latter capability, unique to DIII-D, is based on real-time reconstruction of q-surface geometry by a Grad-Shafranov solver using external magnetics and internal motional Stark effect measurements. Alignment is achieved by varying either the plasma major radius (and the rational q surface) or the toroidal field (and the deposition location). The requirement to achieve and maintain q-surface/ECCD alignment with accuracy on the order of 1cm is routinely met by the DIII-D Plasma Control System and these algorithms. We discuss the integrated plasma control design process used for developing these and other general control algorithms, which includes physics-based modeling and testing of the algorithm implementation against simulations of actuator and plasma responses. This systematic design/test method and modeling environment enabled successful mode suppression by the NTM control system upon first-time use in an experimental discharge.

  3. A reductionist approach to the analysis of learning in brain-computer interfaces.

    PubMed

    Danziger, Zachary

    2014-04-01

    The complexity and scale of brain-computer interface (BCI) studies limit our ability to investigate how humans learn to use BCI systems. It also limits our capacity to develop adaptive algorithms needed to assist users with their control. Adaptive algorithm development is forced offline and typically uses static data sets. But this is a poor substitute for the online, dynamic environment where algorithms are ultimately deployed and interact with an adapting user. This work evaluates a paradigm that simulates the control problem faced by human subjects when controlling a BCI, but which avoids the many complications associated with full-scale BCI studies. Biological learners can be studied in a reductionist way as they solve BCI-like control problems, and machine learning algorithms can be developed and tested in closed loop with the subjects before being translated to full BCIs. The method is to map 19 joint angles of the hand (representing neural signals) to the position of a 2D cursor which must be piloted to displayed targets (a typical BCI task). An investigation is presented on how closely the joint angle method emulates BCI systems; a novel learning algorithm is evaluated, and a performance difference between genders is discussed.

  4. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1987-01-01

    Traditional expert systems, such as diagnostic and training systems, interact with users only through a keyboard and screen, and are usually symbolic in nature. Expert systems that require access to data bases, complex simulations and real-time instrumentation have both symbolic as well as algorithmic computing needs. These needs could both be met using a general purpose workstation running both symbolic and algorithmic code, or separate, specialized computers networked together. The latter approach was chosen to implement TEXSYS, the thermal expert system, developed by NASA Ames Research Center in conjunction with Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. This paper will explore the integration options, and present several possible solutions.

  5. Photoelectric radar servo control system based on ARM+FPGA

    NASA Astrophysics Data System (ADS)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun

    2016-01-01

    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a large number of experiments verify the reliability of embedded servo control system's functions, the stability of the program and the stability of the hardware circuit. Meanwhile, the system can also achieve the satisfactory of user experience, to achieve a multi-mode motion, real-time motion status monitoring, online system parameter changes and other convenient features.

  6. Modeling in the State Flow Environment to Support Launch Vehicle Verification Testing for Mission and Fault Management Algorithms in the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.

    2016-01-01

    Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GN&C), Thrust Vector Control (TVC), liquid engines, and the astronaut crew office. Since the algorithms are realized using model-based engineering (MBE) methods from a hybrid of the Unified Modeling Language (UML) and Systems Modeling Language (SysML), SFE methods are a natural fit to provide an in depth analysis of the interactive behavior of these algorithms with the SLS LV subsystem models. For this, the M&FM algorithms and the SLS LV subsystem models are modeled using constructs provided by Matlab which also enables modeling of the accompanying interfaces providing greater flexibility for integrated testing and analysis, which helps forecast expected behavior in forward VMET integrated testing activities. In VMET, the M&FM algorithms are prototyped and implemented using the same C++ programming language and similar state machine architectural concepts used by the FSW group. Due to the interactive complexity of the algorithms, VMET testing thus far has verified all the individual M&FM subsystem algorithms with select subsystem vendor models but is steadily progressing to assessing the interactive behavior of these algorithms with LV subsystems, as represented by subsystem models. The novel SFE applications has proven to be useful for quick look analysis into early integrated system behavior and assessment of the M&FM algorithms with the modeled LV subsystems. This early MBE analysis generates vital insight into the integrated system behaviors, algorithm sensitivities, design issues, and has aided in the debugging of the M&FM algorithms well before full testing can begin in more expensive, higher fidelity but more arduous environments such as VMET, FSW testing, and the Systems Integration Lab7 (SIL). SFE has exhibited both expected and unexpected behaviors in nominal and off nominal test cases prior to full VMET testing. In many findings, these behavioral characteristics were used to correct the M&FM algorithms, enable better test coverage, and develop more effective test cases for each of the LV subsystems. This has improved the fidelity of testing and planning for the next generation of M&FM algorithms as the SLS program evolves from non-crewed to crewed flight, impacting subsystem configurations and the M&FM algorithms that control them. SFE analysis has improved robustness and reliability of the M&FM algorithms by revealing implementation errors and documentation inconsistencies. It is also improving planning efficiency for future VMET testing of the M&FM algorithms hosted in the LV flight computers, further reducing risk for the SLS launch infrastructure, the SLS LV, and most importantly the crew.

  7. Software-Implemented Fault Tolerance in Communications Systems

    NASA Technical Reports Server (NTRS)

    Gantenbein, Rex E.

    1994-01-01

    Software-implemented fault tolerance (SIFT) is used in many computer-based command, control, and communications (C(3)) systems to provide the nearly continuous availability that they require. In the communications subsystem of Space Station Alpha, SIFT algorithms are used to detect and recover from failures in the data and command link between the Station and its ground support. The paper presents a review of these algorithms and discusses how such techniques can be applied to similar systems found in applications such as manufacturing control, military communications, and programmable devices such as pacemakers. With support from the Tracking and Communication Division of NASA's Johnson Space Center, researchers at the University of Wyoming are developing a testbed for evaluating the effectiveness of these algorithms prior to their deployment. This testbed will be capable of simulating a variety of C(3) system failures and recording the response of the Space Station SIFT algorithms to these failures. The design of this testbed and the applicability of the approach in other environments is described.

  8. Automated Conflict Resolution For Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2005-01-01

    The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.

  9. Neural Network based Control of SG based Standalone Generating System with Energy Storage for Power Quality Enhancement

    NASA Astrophysics Data System (ADS)

    Nayar, Priya; Singh, Bhim; Mishra, Sukumar

    2017-08-01

    An artificial intelligence based control algorithm is used in solving power quality problems of a diesel engine driven synchronous generator with automatic voltage regulator and governor based standalone system. A voltage source converter integrated with a battery energy storage system is employed to mitigate the power quality problems. An adaptive neural network based signed regressor control algorithm is used for the estimation of the fundamental component of load currents for control of a standalone system with load leveling as an integral feature. The developed model of the system performs accurately under varying load conditions and provides good dynamic response to the step changes in loads. The real time performance is achieved using MATLAB along with simulink/simpower system toolboxes and results adhere to an IEEE-519 standard for power quality enhancement.

  10. A satellite digital controller or 'play that PID tune again, Sam'. [Position, Integral, Derivative feedback control algorithm for design strategy

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.

    1976-01-01

    The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.

  11. Intergration of system identification and robust controller designs for flexible structures in space

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Lew, Jiann-Shiun

    1990-01-01

    An approach is developed using experimental data to identify a reduced-order model and its model error for a robust controller design. There are three steps involved in the approach. First, an approximately balanced model is identified using the Eigensystem Realization Algorithm, which is an identification algorithm. Second, the model error is calculated and described in frequency domain in terms of the H(infinity) norm. Third, a pole placement technique in combination with a H(infinity) control method is applied to design a controller for the considered system. A set experimental data from an existing setup, namely the Mini-Mast system, is used to illustrate and verify the approach.

  12. Congestion control and routing over satellite networks

    NASA Astrophysics Data System (ADS)

    Cao, Jinhua

    Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE) method and then develop a novel on-demand routing system named Cross Entropy Accelerated Ant Routing System (CEAARS) for regular constellation LEO satellite networks. By implementing simulations on an Iridium-like satellite network, we compare the proposed CEAARS algorithm with the two approaches to adaptive routing protocols on the Internet: distance-vector (DV) and link-state (LS), as well as with the original Cross Entropy Ant Routing System (CEARS). DV algorithms are based on distributed Bellman Ford algorithm, and LS algorithms are implementation of Dijkstras single source shortest path. The results show that CEAARS not only remarkably improves the convergence speed of achieving optimal or suboptimal paths, but also reduces the number of overhead ants (management packets).

  13. Decentralized hierarchical partitioning of centralized integrated controllers. [for flight propulsion in STOVLs

    NASA Technical Reports Server (NTRS)

    Schmidt, Phillip; Garg, Sanjay

    1991-01-01

    A framework for a decentralized hierarchical controller partitioning structure is developed. This structure allows for the design of separate airframe and propulsion controllers which, when assembled, will meet the overall design criterion for the integrated airframe/propulsion system. An algorithm based on parameter optimization of the state-space representation for the subsystem controllers is described. The algorithm is currently being applied to an integrated flight propulsion control design example.

  14. Solution to automatic generation control problem using firefly algorithm optimized I(λ)D(µ) controller.

    PubMed

    Debbarma, Sanjoy; Saikia, Lalit Chandra; Sinha, Nidul

    2014-03-01

    Present work focused on automatic generation control (AGC) of a three unequal area thermal systems considering reheat turbines and appropriate generation rate constraints (GRC). A fractional order (FO) controller named as I(λ)D(µ) controller based on crone approximation is proposed for the first time as an appropriate technique to solve the multi-area AGC problem in power systems. A recently developed metaheuristic algorithm known as firefly algorithm (FA) is used for the simultaneous optimization of the gains and other parameters such as order of integrator (λ) and differentiator (μ) of I(λ)D(µ) controller and governor speed regulation parameters (R). The dynamic responses corresponding to optimized I(λ)D(µ) controller gains, λ, μ, and R are compared with that of classical integer order (IO) controllers such as I, PI and PID controllers. Simulation results show that the proposed I(λ)D(µ) controller provides more improved dynamic responses and outperforms the IO based classical controllers. Further, sensitivity analysis confirms the robustness of the so optimized I(λ)D(µ) controller to wide changes in system loading conditions and size and position of SLP. Proposed controller is also found to have performed well as compared to IO based controllers when SLP takes place simultaneously in any two areas or all the areas. Robustness of the proposed I(λ)D(µ) controller is also tested against system parameter variations. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Novel algorithm implementations in DARC: the Durham AO real-time controller

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Bitenc, Urban; Jenkins, David

    2016-07-01

    The Durham AO Real-time Controller has been used on-sky with the CANARY AO demonstrator instrument since 2010, and is also used to provide control for several AO test-benches, including DRAGON. Over this period, many new real-time algorithms have been developed, implemented and demonstrated, leading to performance improvements for CANARY. Additionally, the computational performance of this real-time system has continued to improve. Here, we provide details about recent updates and changes made to DARC, and the relevance of these updates, including new algorithms, to forthcoming AO systems. We present the computational performance of DARC when used on different hardware platforms, including hardware accelerators, and determine the relevance and potential for ELT scale systems. Recent updates to DARC have included algorithms to handle elongated laser guide star images, including correlation wavefront sensing, with options to automatically update references during AO loop operation. Additionally, sub-aperture masking options have been developed to increase signal to noise ratio when operating with non-symmetrical wavefront sensor images. The development of end-user tools has progressed with new options for configuration and control of the system. New wavefront sensor camera models and DM models have been integrated with the system, increasing the number of possible hardware configurations available, and a fully open-source AO system is now a reality, including drivers necessary for commercial cameras and DMs. The computational performance of DARC makes it suitable for ELT scale systems when implemented on suitable hardware. We present tests made on different hardware platforms, along with the strategies taken to optimise DARC for these systems.

  16. Optimal and robust control of transition

    NASA Technical Reports Server (NTRS)

    Bewley, T. R.; Agarwal, R.

    1996-01-01

    Optimal and robust control theories are used to determine feedback control rules that effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. Control algorithms are considered that depend both on full flowfield information and on estimates of that flowfield based on wall skin-friction measurements only. The development of these control algorithms accounts for modeling errors and measurement noise in a rigorous fashion; these disturbances are considered in both a structured (Gaussian) and unstructured ('worst case') sense. The performance of these algorithms is analyzed in terms of the eigenmodes of the resulting controlled systems, and the sensitivity of individual eigenmodes to both control and observation is quantified.

  17. A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi; Eyimaya, Süleyman Emre

    2018-03-01

    From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.

  18. Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Bergmann, E.; Weiler, P.

    1983-01-01

    An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft.

  19. Air traffic surveillance and control using hybrid estimation and protocol-based conflict resolution

    NASA Astrophysics Data System (ADS)

    Hwang, Inseok

    The continued growth of air travel and recent advances in new technologies for navigation, surveillance, and communication have led to proposals by the Federal Aviation Administration (FAA) to provide reliable and efficient tools to aid Air Traffic Control (ATC) in performing their tasks. In this dissertation, we address four problems frequently encountered in air traffic surveillance and control; multiple target tracking and identity management, conflict detection, conflict resolution, and safety verification. We develop a set of algorithms and tools to aid ATC; These algorithms have the provable properties of safety, computational efficiency, and convergence. Firstly, we develop a multiple-maneuvering-target tracking and identity management algorithm which can keep track of maneuvering aircraft in noisy environments and of their identities. Secondly, we propose a hybrid probabilistic conflict detection algorithm between multiple aircraft which uses flight mode estimates as well as aircraft current state estimates. Our algorithm is based on hybrid models of aircraft, which incorporate both continuous dynamics and discrete mode switching. Thirdly, we develop an algorithm for multiple (greater than two) aircraft conflict avoidance that is based on a closed-form analytic solution and thus provides guarantees of safety. Finally, we consider the problem of safety verification of control laws for safety critical systems, with application to air traffic control systems. We approach safety verification through reachability analysis, which is a computationally expensive problem. We develop an over-approximate method for reachable set computation using polytopic approximation methods and dynamic optimization. These algorithms may be used either in a fully autonomous way, or as supporting tools to increase controllers' situational awareness and to reduce their work load.

  20. An on-line equivalent system identification scheme for adaptive control. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1984-01-01

    A prime obstacle to the widespread use of adaptive control is the degradation of performance and possible instability resulting from the presence of unmodeled dynamics. The approach taken is to explicitly include the unstructured model uncertainty in the output error identification algorithm. The order of the compensator is successively increased by including identified modes. During this model building stage, heuristic rules are used to test for convergence prior to designing compensators. Additionally, the recursive identification algorithm as extended to multi-input, multi-output systems. Enhancements were also made to reduce the computational burden of an algorithm for obtaining minimal state space realizations from the inexact, multivariate transfer functions which result from the identification process. A number of potential adaptive control applications for this approach are illustrated using computer simulations. Results indicated that when speed of adaptation and plant stability are not critical, the proposed schemes converge to enhance system performance.

  1. Modeling and advanced sliding mode controls of crawler cranes considering wire rope elasticity and complicated operations

    NASA Astrophysics Data System (ADS)

    Tuan, Le Anh; Lee, Soon-Geul

    2018-03-01

    In this study, a new mathematical model of crawler cranes is developed for heavy working conditions, with payload-lifting and boom-hoisting motions simultaneously activated. The system model is built with full consideration of wind disturbances, geometrical nonlinearities, and cable elasticities of cargo lifting and boom luffing. On the basis of this dynamic model, three versions of sliding mode control are analyzed and designed to control five system outputs with only two inputs. When used in complicated operations, the effectiveness of the controllers is analyzed using analytical investigation and numerical simulation. Results indicate the effectiveness of the control algorithms and the proposed dynamic model. The control algorithms asymptotically stabilize the system with finite-time convergences, remaining robust amid disturbances and parametric uncertainties.

  2. A novel symbiotic organisms search algorithm for congestion management in deregulated environment

    NASA Astrophysics Data System (ADS)

    Verma, Sumit; Saha, Subhodip; Mukherjee, V.

    2017-01-01

    In today's competitive electricity market, managing transmission congestion in deregulated power system has created challenges for independent system operators to operate the transmission lines reliably within the limits. This paper proposes a new meta-heuristic algorithm, called as symbiotic organisms search (SOS) algorithm, for congestion management (CM) problem in pool based electricity market by real power rescheduling of generators. Inspired by interactions among organisms in ecosystem, SOS algorithm is a recent population based algorithm which does not require any algorithm specific control parameters unlike other algorithms. Various security constraints such as load bus voltage and line loading are taken into account while dealing with the CM problem. In this paper, the proposed SOS algorithm is applied on modified IEEE 30- and 57-bus test power system for the solution of CM problem. The results, thus, obtained are compared to those reported in the recent state-of-the-art literature. The efficacy of the proposed SOS algorithm for obtaining the higher quality solution is also established.

  3. A novel symbiotic organisms search algorithm for congestion management in deregulated environment

    NASA Astrophysics Data System (ADS)

    Verma, Sumit; Saha, Subhodip; Mukherjee, V.

    2017-01-01

    In today's competitive electricity market, managing transmission congestion in deregulated power system has created challenges for independent system operators to operate the transmission lines reliably within the limits. This paper proposes a new meta-heuristic algorithm, called as symbiotic organisms search (SOS) algorithm, for congestion management (CM) problem in pool-based electricity market by real power rescheduling of generators. Inspired by interactions among organisms in ecosystem, SOS algorithm is a recent population-based algorithm which does not require any algorithm specific control parameters unlike other algorithms. Various security constraints such as load bus voltage and line loading are taken into account while dealing with the CM problem. In this paper, the proposed SOS algorithm is applied on modified IEEE 30- and 57-bus test power system for the solution of CM problem. The results, thus, obtained are compared to those reported in the recent state-of-the-art literature. The efficacy of the proposed SOS algorithm for obtaining the higher quality solution is also established.

  4. Learning-based traffic signal control algorithms with neighborhood information sharing: An application for sustainable mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Zhu, Feng; Ukkusuri, Satish V.

    Here, this research applies R-Markov Average Reward Technique based reinforcement learning (RL) algorithm, namely RMART, for vehicular signal control problem leveraging information sharing among signal controllers in connected vehicle environment. We implemented the algorithm in a network of 18 signalized intersections and compare the performance of RMART with fixed, adaptive, and variants of the RL schemes. Results show significant improvement in system performance for RMART algorithm with information sharing over both traditional fixed signal timing plans and real time adaptive control schemes. Additionally, the comparison with reinforcement learning algorithms including Q learning and SARSA indicate that RMART performs better atmore » higher congestion levels. Further, a multi-reward structure is proposed that dynamically adjusts the reward function with varying congestion states at the intersection. Finally, the results from test networks show significant reduction in emissions (CO, CO 2, NO x, VOC, PM 10) when RL algorithms are implemented compared to fixed signal timings and adaptive schemes.« less

  5. Vehicle active steering control research based on two-DOF robust internal model control

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-07-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  6. Topology Control in Aerial Multi-Beam Directional Networks

    DTIC Science & Technology

    2017-04-24

    underlying challenges to topology control in multi -beam direction networks. Two topology control algorithms are developed: a centralized algorithm...main beam, the gain is negligible. Thus, for topology control in a multi -beam system, two nodes that are being simultaneously transmitted to or...the network. As the network size is larger than the communication range, even the original network will require some multi -hop traffic. The second two

  7. A variable-gain output feedback control design methodology

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Moerder, Daniel D.; Broussard, John R.; Taylor, Deborah B.

    1989-01-01

    A digital control system design technique is developed in which the control system gain matrix varies with the plant operating point parameters. The design technique is obtained by formulating the problem as an optimal stochastic output feedback control law with variable gains. This approach provides a control theory framework within which the operating range of a control law can be significantly extended. Furthermore, the approach avoids the major shortcomings of the conventional gain-scheduling techniques. The optimal variable gain output feedback control problem is solved by embedding the Multi-Configuration Control (MCC) problem, previously solved at ICS. An algorithm to compute the optimal variable gain output feedback control gain matrices is developed. The algorithm is a modified version of the MCC algorithm improved so as to handle the large dimensionality which arises particularly in variable-gain control problems. The design methodology developed is applied to a reconfigurable aircraft control problem. A variable-gain output feedback control problem was formulated to design a flight control law for an AFTI F-16 aircraft which can automatically reconfigure its control strategy to accommodate failures in the horizontal tail control surface. Simulations of the closed-loop reconfigurable system show that the approach produces a control design which can accommodate such failures with relative ease. The technique can be applied to many other problems including sensor failure accommodation, mode switching control laws and super agility.

  8. An Environmental for Hardware-in-the-Loop Formation Navigation and Control

    NASA Technical Reports Server (NTRS)

    Burns, Rich; Naasz, Bo; Gaylor, Dave; Higinbotham, John

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the inclusion of GPS receiver hardware in the simulation loop. Support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented.

  9. Nonlinear Decoupling Control With ANFIS-Based Unmodeled Dynamics Compensation for a Class of Complex Industrial Processes.

    PubMed

    Zhang, Yajun; Chai, Tianyou; Wang, Hong; Wang, Dianhui; Chen, Xinkai

    2018-06-01

    Complex industrial processes are multivariable and generally exhibit strong coupling among their control loops with heavy nonlinear nature. These make it very difficult to obtain an accurate model. As a result, the conventional and data-driven control methods are difficult to apply. Using a twin-tank level control system as an example, a novel multivariable decoupling control algorithm with adaptive neural-fuzzy inference system (ANFIS)-based unmodeled dynamics (UD) compensation is proposed in this paper for a class of complex industrial processes. At first, a nonlinear multivariable decoupling controller with UD compensation is introduced. Different from the existing methods, the decomposition estimation algorithm using ANFIS is employed to estimate the UD, and the desired estimating and decoupling control effects are achieved. Second, the proposed method does not require the complicated switching mechanism which has been commonly used in the literature. This significantly simplifies the obtained decoupling algorithm and its realization. Third, based on some new lemmas and theorems, the conditions on the stability and convergence of the closed-loop system are analyzed to show the uniform boundedness of all the variables. This is then followed by the summary on experimental tests on a heavily coupled nonlinear twin-tank system that demonstrates the effectiveness and the practicability of the proposed method.

  10. Fast instantaneous center of rotation estimation algorithm for a skied-steered robot

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2015-05-01

    Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.

  11. Optimal Control of Hybrid Systems in Air Traffic Applications

    NASA Astrophysics Data System (ADS)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient implementation of the proposed algorithms.

  12. Robust consensus algorithm for multi-agent systems with exogenous disturbances under convergence conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Yulian; Liu, Jianchang; Tan, Shubin; Ming, Pingsong

    2014-09-01

    In this paper, a robust consensus algorithm is developed and sufficient conditions for convergence to consensus are proposed for a multi-agent system (MAS) with exogenous disturbances subject to partial information. By utilizing H∞ robust control, differential game theory and a design-based approach, the consensus problem of the MAS with exogenous bounded interference is resolved and the disturbances are restrained, simultaneously. Attention is focused on designing an H∞ robust controller (the robust consensus algorithm) based on minimisation of our proposed rational and individual cost functions according to goals of the MAS. Furthermore, sufficient conditions for convergence of the robust consensus algorithm are given. An example is employed to demonstrate that our results are effective and more capable to restrain exogenous disturbances than the existing literature.

  13. Implementation of a partitioned algorithm for simulation of large CSI problems

    NASA Technical Reports Server (NTRS)

    Alvin, Kenneth F.; Park, K. C.

    1991-01-01

    The implementation of a partitioned numerical algorithm for determining the dynamic response of coupled structure/controller/estimator finite-dimensional systems is reviewed. The partitioned approach leads to a set of coupled first and second-order linear differential equations which are numerically integrated with extrapolation and implicit step methods. The present software implementation, ACSIS, utilizes parallel processing techniques at various levels to optimize performance on a shared-memory concurrent/vector processing system. A general procedure for the design of controller and filter gains is also implemented, which utilizes the vibration characteristics of the structure to be solved. Also presented are: example problems; a user's guide to the software; the procedures and algorithm scripts; a stability analysis for the algorithm; and the source code for the parallel implementation.

  14. Control algorithm implementation for a redundant degree of freedom manipulator

    NASA Technical Reports Server (NTRS)

    Cohan, Steve

    1991-01-01

    This project's purpose is to develop and implement control algorithms for a kinematically redundant robotic manipulator. The manipulator is being developed concurrently by Odetics Inc., under internal research and development funding. This SBIR contract supports algorithm conception, development, and simulation, as well as software implementation and integration with the manipulator hardware. The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator being developed for space and commercial applications. It has seven fully active degrees of freedom, is electrically powered, and is fully operational in 1 G. The manipulator consists of five self-contained modules. These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly/disassembly for reconfiguration, transport, or servicing. Each joint incorporates a unique drive train design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. The sensing system is also designed to be single fault tolerant. Although the initial prototype is not space qualified, the design is well-suited to meeting space qualification requirements. The control algorithm design approach is to develop a hierarchical system with well defined access and interfaces at each level. The high level endpoint/configuration control algorithm transforms manipulator endpoint position/orientation commands to joint angle commands, providing task space motion. At the same time, the kinematic redundancy is resolved by controlling the configuration (pose) of the manipulator, using several different optimizing criteria. The center level of the hierarchy servos the joints to their commanded trajectories using both linear feedback and model-based nonlinear control techniques. The lowest control level uses sensed joint torque to close torque servo loops, with the goal of improving the manipulator dynamic behavior. The control algorithms are subjected to a dynamic simulation before implementation.

  15. Finite time control for MIMO nonlinear system based on higher-order sliding mode.

    PubMed

    Liu, Xiangjie; Han, Yaozhen

    2014-11-01

    Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Computationally efficient algorithm for high sampling-frequency operation of active noise control

    NASA Astrophysics Data System (ADS)

    Rout, Nirmal Kumar; Das, Debi Prasad; Panda, Ganapati

    2015-05-01

    In high sampling-frequency operation of active noise control (ANC) system the length of the secondary path estimate and the ANC filter are very long. This increases the computational complexity of the conventional filtered-x least mean square (FXLMS) algorithm. To reduce the computational complexity of long order ANC system using FXLMS algorithm, frequency domain block ANC algorithms have been proposed in past. These full block frequency domain ANC algorithms are associated with some disadvantages such as large block delay, quantization error due to computation of large size transforms and implementation difficulties in existing low-end DSP hardware. To overcome these shortcomings, the partitioned block ANC algorithm is newly proposed where the long length filters in ANC are divided into a number of equal partitions and suitably assembled to perform the FXLMS algorithm in the frequency domain. The complexity of this proposed frequency domain partitioned block FXLMS (FPBFXLMS) algorithm is quite reduced compared to the conventional FXLMS algorithm. It is further reduced by merging one fast Fourier transform (FFT)-inverse fast Fourier transform (IFFT) combination to derive the reduced structure FPBFXLMS (RFPBFXLMS) algorithm. Computational complexity analysis for different orders of filter and partition size are presented. Systematic computer simulations are carried out for both the proposed partitioned block ANC algorithms to show its accuracy compared to the time domain FXLMS algorithm.

  17. The Design of Power System Stability Controller Based on the PCH Theory and Improved Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Zhijian; Yin, Donghui; Yan, Jun

    2017-05-01

    Low frequency oscillation is still frequently happened in the power system and it affects the safety and stability of power system directly. With the continuously expending of the interconnection scale of power grid, the risk of low frequency oscillation becomes more and more noticeable. Firstly, the basic theory of port-controlled Hamilton (PCH) and its application is analyzed. Secondly, based on the PCH theory and the dynamic model of system, from the viewpoint of energy, the nonlinear stability controller of power system is designed. By the improved genetic algorithm, the parameters of the PCH model are optimized. Finally, a simulation model with PCH is built to vary the effectiveness of the method proposed in this paper.

  18. A Semisupervised Support Vector Machines Algorithm for BCI Systems

    PubMed Central

    Qin, Jianzhao; Li, Yuanqing; Sun, Wei

    2007-01-01

    As an emerging technology, brain-computer interfaces (BCIs) bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM) algorithm for brain-computer interface (BCI) systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP) is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm. PMID:18368141

  19. Analysis of Bioactive Amino Acids from Fish Hydrolysates with a New Bioinformatic Intelligent System Approach.

    PubMed

    Elaziz, Mohamed Abd; Hemdan, Ahmed Monem; Hassanien, AboulElla; Oliva, Diego; Xiong, Shengwu

    2017-09-07

    The current economics of the fish protein industry demand rapid, accurate and expressive prediction algorithms at every step of protein production especially with the challenge of global climate change. This help to predict and analyze functional and nutritional quality then consequently control food allergies in hyper allergic patients. As, it is quite expensive and time-consuming to know these concentrations by the lab experimental tests, especially to conduct large-scale projects. Therefore, this paper introduced a new intelligent algorithm using adaptive neuro-fuzzy inference system based on whale optimization algorithm. This algorithm is used to predict the concentration levels of bioactive amino acids in fish protein hydrolysates at different times during the year. The whale optimization algorithm is used to determine the optimal parameters in adaptive neuro-fuzzy inference system. The results of proposed algorithm are compared with others and it is indicated the higher performance of the proposed algorithm.

  20. Adaptive fuzzy-neural-network control for maglev transportation system.

    PubMed

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  1. Model predictive control design for polytopic uncertain systems by synthesising multi-step prediction scenarios

    NASA Astrophysics Data System (ADS)

    Lu, Jianbo; Xi, Yugeng; Li, Dewei; Xu, Yuli; Gan, Zhongxue

    2018-01-01

    A common objective of model predictive control (MPC) design is the large initial feasible region, low online computational burden as well as satisfactory control performance of the resulting algorithm. It is well known that interpolation-based MPC can achieve a favourable trade-off among these different aspects. However, the existing results are usually based on fixed prediction scenarios, which inevitably limits the performance of the obtained algorithms. So by replacing the fixed prediction scenarios with the time-varying multi-step prediction scenarios, this paper provides a new insight into improvement of the existing MPC designs. The adopted control law is a combination of predetermined multi-step feedback control laws, based on which two MPC algorithms with guaranteed recursive feasibility and asymptotic stability are presented. The efficacy of the proposed algorithms is illustrated by a numerical example.

  2. ADS-B and multilateration sensor fusion algorithm for air traffic control

    NASA Astrophysics Data System (ADS)

    Liang, Mengchen

    Air traffic is expected to increase rapidly in the next decade. But, the current Air Traffic Control (ATC) system does not meet the demand of the future safety and efficiency. The Next Generation Air Transportation System (NextGen) is a transformation program for the ATC system in the United States. The latest estimates by Federal Aviation Administration (FAA) show that by 2018 NextGen will reduce total delays in flight by 35 percent and provide 23 billion dollars in cumulative benefits. A satellite-based technology called the Automatic Dependent Surveillance-Broadcast (ADS-B) system is one of the most important elements in NextGen. FAA expects that ADS-B systems will be available in the National Airspace System (NAS) by 2020. However, an alternative surveillance system is needed due to vulnerabilities that exist in ADS-B systems. Multilateration has a high accuracy performance and is believed to be an ideal back-up strategy for ADS-B systems. Thus, in this study, we develop the ADS-B and multilateration sensor fusion algorithm for aircraft tracking applications in ATC. The algorithm contains a fault detection function for ADS-B information monitoring by using Trajectory Change Points reports from ADS-B and numerical vectors from a hybrid estimation algorithm. We consider two types of faults in the ADS-B measurement model to show that the algorithm is able to deal with the bad data from ADS-B systems and automatically select good data from multilateration systems. We apply fuzzy logic concepts and generate time variant parameters during the fusion process. The parameters play a role of weights for combining data from different sensors. The algorithm performance is validated through two aircraft tracking examples.

  3. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  4. Cavity parameters identification for TESLA control system development

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan

    2005-08-01

    Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.

  5. Detecting Solenoid Valve Deterioration in In-Use Electronic Diesel Fuel Injection Control Systems

    PubMed Central

    Tsai, Hsun-Heng; Tseng, Chyuan-Yow

    2010-01-01

    The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves. PMID:22163597

  6. Detecting solenoid valve deterioration in in-use electronic diesel fuel injection control systems.

    PubMed

    Tsai, Hsun-Heng; Tseng, Chyuan-Yow

    2010-01-01

    The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves.

  7. Robust control with structured perturbations

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1988-01-01

    Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.

  8. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1987-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  9. Enhanced pid vs model predictive control applied to bldc motor

    NASA Astrophysics Data System (ADS)

    Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.

    2018-01-01

    BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.

  10. Reactor transient control in support of PFR/TREAT TUCOP experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrows, D.R.; Larsen, G.R.; Harrison, L.J.

    1984-01-01

    Unique energy deposition and experiment control requirements posed bythe PFR/TREAT series of transient undercooling/overpower (TUCOP) experiments resulted in equally unique TREAT reactor operations. New reactor control computer algorithms were written and used with the TREAT reactor control computer system to perform such functions as early power burst generation (based on test train flow conditions), burst generation produced by a step insertion of reactivity following a controlled power ramp, and shutdown (SCRAM) initiators based on both test train conditions and energy deposition. Specialized hardware was constructed to simulate test train inputs to the control computer system so that computer algorithms couldmore » be tested in real time without irradiating the experiment.« less

  11. Photovoltaic pumping system - Comparative study analysis between direct and indirect coupling mode

    NASA Astrophysics Data System (ADS)

    Harrag, Abdelghani; Titraoui, Abdessalem; Bahri, Hamza; Messalti, Sabir

    2017-02-01

    In this paper, P&O algorithm is used in order to improve the performance of photovoltaic water pumping system in both dynamic and static response. The efficiency of the proposed algorithm has been studied successfully using a DC motor-pump powered using controller by thirty six PV modules via DC-DC boost converter derived by a P&O MPPT algorithm. Comparative study results between the direct and indirect modes coupling confirm that the proposed algorithm can effectively improve simultaneously: accuracy, rapidity, ripple and overshoot.

  12. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers

    NASA Astrophysics Data System (ADS)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun

    2018-03-01

    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  13. Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.

    2005-01-01

    A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.

  14. A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cotting, M. Christopher; Cox, Timothy H.

    2005-01-01

    A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.

  15. Integration of a Decentralized Linear-Quadratic-Gaussian Control into GSFC's Universal 3-D Autonomous Formation Flying Algorithm

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Carpenter, J. Russell

    1999-01-01

    A decentralized control is investigated for applicability to the autonomous formation flying control algorithm developed by GSFC for the New Millenium Program Earth Observer-1 (EO-1) mission. This decentralized framework has the following characteristics: The approach is non-hierarchical, and coordination by a central supervisor is not required; Detected failures degrade the system performance gracefully; Each node in the decentralized network processes only its own measurement data, in parallel with the other nodes; Although the total computational burden over the entire network is greater than it would be for a single, centralized controller, fewer computations are required locally at each node; Requirements for data transmission between nodes are limited to only the dimension of the control vector, at the cost of maintaining a local additional data vector. The data vector compresses all past measurement history from all the nodes into a single vector of the dimension of the state; and The approach is optimal with respect to standard cost functions. The current approach is valid for linear time-invariant systems only. Similar to the GSFC formation flying algorithm, the extension to linear LQG time-varying systems requires that each node propagate its filter covariance forward (navigation) and controller Riccati matrix backward (guidance) at each time step. Extension of the GSFC algorithm to non-linear systems can also be accomplished via linearization about a reference trajectory in the standard fashion, or linearization about the current state estimate as with the extended Kalman filter. To investigate the feasibility of the decentralized integration with the GSFC algorithm, an existing centralized LQG design for a single spacecraft orbit control problem is adapted to the decentralized framework while using the GSFC algorithm's state transition matrices and framework. The existing GSFC design uses both reference trajectories of each spacecraft in formation and by appropriate choice of coordinates and simplified measurement modeling is formulated as a linear time-invariant system. Results for improvements to the GSFC algorithm and a multiple satellite formation will be addressed. The goal of this investigation is to progressively relax the assumptions that result in linear time-invariance, ultimately to the point of linearization of the non-linear dynamics about the current state estimate as in the extended Kalman filter. An assessment will then be made about the feasibility of the decentralized approach to the realistic formation flying application of the EO-1/Landsat 7 formation flying experiment.

  16. Continuous higher-order sliding mode control with time-varying gain for a class of uncertain nonlinear systems.

    PubMed

    Han, Yaozhen; Liu, Xiangjie

    2016-05-01

    This paper presents a continuous higher-order sliding mode (HOSM) control scheme with time-varying gain for a class of uncertain nonlinear systems. The proposed controller is derived from the concept of geometric homogeneity and super-twisting algorithm, and includes two parts, the first part of which achieves smooth finite time stabilization of pure integrator chains. The second part conquers the twice differentiable uncertainty and realizes system robustness by employing super-twisting algorithm. Particularly, time-varying switching control gain is constructed to reduce the switching control action magnitude to the minimum possible value while keeping the property of finite time convergence. Examples concerning the perturbed triple integrator chains and excitation control for single-machine infinite bus power system are simulated respectively to demonstrate the effectiveness and applicability of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Outpatient safety assessment of an in-home predictive low-glucose suspend system with type 1 diabetes subjects at elevated risk of nocturnal hypoglycemia.

    PubMed

    Buckingham, Bruce A; Cameron, Fraser; Calhoun, Peter; Maahs, David M; Wilson, Darrell M; Chase, H Peter; Bequette, B Wayne; Lum, John; Sibayan, Judy; Beck, Roy W; Kollman, Craig

    2013-08-01

    Nocturnal hypoglycemia is a common problem with type 1 diabetes. In the home setting, we conducted a pilot study to evaluate the safety of a system consisting of an insulin pump and continuous glucose monitor communicating wirelessly with a bedside computer running an algorithm that temporarily suspends insulin delivery when hypoglycemia is predicted. After the run-in phase, a 21-night randomized trial was conducted in which each night was randomly assigned 2:1 to have either the predictive low-glucose suspend (PLGS) system active (intervention night) or inactive (control night). Three predictive algorithm versions were studied sequentially during the study for a total of 252 intervention and 123 control nights. The trial included 19 participants 18-56 years old with type 1 diabetes (hemoglobin A1c level of 6.0-7.7%) who were current users of the MiniMed Paradigm® REAL-Time Revel™ System and Sof-sensor® glucose sensor (Medtronic Diabetes, Northridge, CA). With the final algorithm, pump suspension occurred on 53% of 77 intervention nights. Mean morning glucose level was 144±48 mg/dL on the 77 intervention nights versus 133±57 mg/dL on the 37 control nights, with morning blood ketones >0.6 mmol/L following one intervention night. Overnight hypoglycemia was lower on intervention than control nights, with at least one value ≤70 mg/dL occurring on 16% versus 30% of nights, respectively, with the final algorithm. This study demonstrated that the PLGS system in the home setting is safe and feasible. The preliminary efficacy data appear promising with the final algorithm reducing nocturnal hypoglycemia by almost 50%.

  18. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].

    PubMed

    Wang, Lulu; Hu, Xin; Hu, Jie; Fang, Youfang; He, Rongrong; Yu, Hongliu

    2016-12-01

    In order to help the patients with upper-limb disfunction go on rehabilitation training,this paper proposed an upper-limb exoskeleton rehabilitation robot with four degrees of freedom(DOF),and realized two control schemes,i.e.,voice control and electromyography control.The hardware and software design of the voice control system was completed based on RSC-4128 chips,which realized the speech recognition technology of a specific person.Besides,this study adapted self-made surface eletromyogram(sEMG)signal extraction electrodes to collect sEMG signals and realized pattern recognition by conducting sEMG signals processing,extracting time domain features and fixed threshold algorithm.In addition,the pulse-width modulation(PWM)algorithm was used to realize the speed adjustment of the system.Voice control and electromyography control experiments were then carried out,and the results showed that the mean recognition rate of the voice control and electromyography control reached 93.1%and 90.9%,respectively.The results proved the feasibility of the control system.This study is expected to lay a theoretical foundation for the further improvement of the control system of the upper-limb rehabilitation robot.

  19. Monitoring endemic livestock diseases using laboratory diagnostic data: A simulation study to evaluate the performance of univariate process monitoring control algorithms.

    PubMed

    Lopes Antunes, Ana Carolina; Dórea, Fernanda; Halasa, Tariq; Toft, Nils

    2016-05-01

    Surveillance systems are critical for accurate, timely monitoring and effective disease control. In this study, we investigated the performance of univariate process monitoring control algorithms in detecting changes in seroprevalence for endemic diseases. We also assessed the effect of sample size (number of sentinel herds tested in the surveillance system) on the performance of the algorithms. Three univariate process monitoring control algorithms were compared: Shewart p Chart(1) (PSHEW), Cumulative Sum(2) (CUSUM) and Exponentially Weighted Moving Average(3) (EWMA). Increases in seroprevalence were simulated from 0.10 to 0.15 and 0.20 over 4, 8, 24, 52 and 104 weeks. Each epidemic scenario was run with 2000 iterations. The cumulative sensitivity(4) (CumSe) and timeliness were used to evaluate the algorithms' performance with a 1% false alarm rate. Using these performance evaluation criteria, it was possible to assess the accuracy and timeliness of the surveillance system working in real-time. The results showed that EWMA and PSHEW had higher CumSe (when compared with the CUSUM) from week 1 until the end of the period for all simulated scenarios. Changes in seroprevalence from 0.10 to 0.20 were more easily detected (higher CumSe) than changes from 0.10 to 0.15 for all three algorithms. Similar results were found with EWMA and PSHEW, based on the median time to detection. Changes in the seroprevalence were detected later with CUSUM, compared to EWMA and PSHEW for the different scenarios. Increasing the sample size 10 fold halved the time to detection (CumSe=1), whereas increasing the sample size 100 fold reduced the time to detection by a factor of 6. This study investigated the performance of three univariate process monitoring control algorithms in monitoring endemic diseases. It was shown that automated systems based on these detection methods identified changes in seroprevalence at different times. Increasing the number of tested herds would lead to faster detection. However, the practical implications of increasing the sample size (such as the costs associated with the disease) should also be taken into account. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Robot tracking system improvements and visual calibration of orbiter position for radiator inspection

    NASA Technical Reports Server (NTRS)

    Tonkay, Gregory

    1990-01-01

    The following separate topics are addressed: (1) improving a robotic tracking system; and (2) providing insights into orbiter position calibration for radiator inspection. The objective of the tracking system project was to provide the capability to track moving targets more accurately by adjusting parameters in the control system and implementing a predictive algorithm. A computer model was developed to emulate the tracking system. Using this model as a test bed, a self-tuning algorithm was developed to tune the system gains. The model yielded important findings concerning factors that affect the gains. The self-tuning algorithms will provide the concepts to write a program to automatically tune the gains in the real system. The section concerning orbiter position calibration provides a comparison to previous work that had been performed for plant growth. It provided the conceptualized routines required to visually determine the orbiter position and orientation. Furthermore, it identified the types of information which are required to flow between the robot controller and the vision system.

  1. About development of automation control systems

    NASA Astrophysics Data System (ADS)

    Myshlyaev, L. P.; Wenger, K. G.; Ivushkin, K. A.; Makarov, V. N.

    2018-05-01

    The shortcomings of approaches to the development of modern control automation systems and ways of their improvement are given: the correct formation of objects for study and optimization; a joint synthesis of control objects and control systems, an increase in the structural diversity of the elements of control systems. Diagrams of control systems with purposefully variable structure of their elements are presented. Structures of control algorithms for an object with a purposefully variable structure are given.

  2. Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors.

    PubMed

    Belkacem, Abdelkader Nasreddine; Saetia, Supat; Zintus-art, Kalanyu; Shin, Duk; Kambara, Hiroyuki; Yoshimura, Natsue; Berrached, Nasreddine; Koike, Yasuharu

    2015-01-01

    EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control.

  3. Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors

    PubMed Central

    Saetia, Supat; Zintus-art, Kalanyu; Shin, Duk; Kambara, Hiroyuki; Yoshimura, Natsue; Berrached, Nasreddine; Koike, Yasuharu

    2015-01-01

    EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control. PMID:26690500

  4. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.

    PubMed

    Kovatchev, Boris P; Breton, Marc; Man, Chiara Dalla; Cobelli, Claudio

    2009-01-01

    Arguably, a minimally invasive system using subcutaneous (s.c.) continuous glucose monitoring (CGM) and s.c. insulin delivery via insulin pump would be a most feasible step to closed-loop control in type 1 diabetes mellitus (T1DM). Consequently, diabetes technology is focusing on developing an artificial pancreas using control algorithms to link CGM with s.c. insulin delivery. The future development of the artificial pancreas will be greatly accelerated by employing mathematical modeling and computer simulation. Realistic computer simulation is capable of providing invaluable information about the safety and the limitations of closed-loop control algorithms, guiding clinical studies, and out-ruling ineffective control scenarios in a cost-effective manner. Thus computer simulation testing of closed-loop control algorithms is regarded as a prerequisite to clinical trials of the artificial pancreas. In this paper, we present a system for in silico testing of control algorithms that has three principal components: (1) a large cohort of n=300 simulated "subjects" (n=100 adults, 100 adolescents, and 100 children) based on real individuals' data and spanning the observed variability of key metabolic parameters in the general population of people with T1DM; (2) a simulator of CGM sensor errors representative of Freestyle Navigator™, Guardian RT, or Dexcom™ STS™, 7-day sensor; and (3) a simulator of discrete s.c. insulin delivery via OmniPod Insulin Management System or Deltec Cozmo(®) insulin pump. The system has been shown to represent adequate glucose fluctuations in T1DM observed during meal challenges, and has been accepted by the Food and Drug Administration as a substitute to animal trials in the preclinical testing of closed-loop control strategies. © Diabetes Technology Society

  5. A feedback control for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Cliff, Eugene M.

    1991-01-01

    A robust feedback algorithm is presented for a near-minimum-fuel ascent of a two-stage launch vehicle operating in the equatorial plane. The development of the algorithm is based on the ideas of neighboring optimal control and can be derived into three phases. In phase 1, the formalism of optimal control is employed to calculate fuel-optimal ascent trajectories for a simple point-mass model. In phase 2, these trajectories are used to numerically calculate gain functions of time for the control(s), the total flight time, and possibly, for other variables of interest. In phase 3, these gains are used to determine feedback expressions for the controls associated with a more realistic model of a launch vehicle. With the Advanced Launch System in mind, all calculations are performed on a two-stage vehicle with fixed thrust history, but this restriction is by no means important for the approach taken. Performance and robustness of the algorithm is found to be excellent.

  6. Resource Balancing Control Allocation

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Bodson, Marc

    2010-01-01

    Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the control effort. The paper discusses the alternative choice of using the l1 norm for minimization of the tracking error and a normalized l(infinity) norm, or sup norm, for minimization of the control effort. The algorithm computes the norm of the actuator deflections scaled by the actuator limits. Minimization of the control effort then translates into the minimization of the maximum actuator deflection as a percentage of its range of motion. The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are investigated through examples. In particular, the min-max criterion results in a type of resource balancing, where the resources are the control surfaces and the algorithm balances these resources to achieve the desired command. A study of the sensitivity of the algorithms to the data is presented, which shows that the normalized l(infinity) algorithm has the lowest sensitivity, although high sensitivities are observed whenever the limits of performance are reached.

  7. Tunnel Ventilation Control Using Reinforcement Learning Methodology

    NASA Astrophysics Data System (ADS)

    Chu, Baeksuk; Kim, Dongnam; Hong, Daehie; Park, Jooyoung; Chung, Jin Taek; Kim, Tae-Hyung

    The main purpose of tunnel ventilation system is to maintain CO pollutant concentration and VI (visibility index) under an adequate level to provide drivers with comfortable and safe driving environment. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement learning (RL) method. RL is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. In the process of constructing the reward of the tunnel ventilation system, two objectives listed above are included, that is, maintaining an adequate level of pollutants and minimizing power consumption. RL algorithm based on actor-critic architecture and gradient-following algorithm is adopted to the tunnel ventilation system. The simulations results performed with real data collected from existing tunnel ventilation system and real experimental verification are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  8. Adaptive control for eye-gaze input system

    NASA Astrophysics Data System (ADS)

    Zhao, Qijie; Tu, Dawei; Yin, Hairong

    2004-01-01

    The characteristics of the vision-based human-computer interaction system have been analyzed, and the practical application and its limited factors at present time have also been mentioned. The information process methods have been put forward. In order to make the communication flexible and spontaneous, the algorithms to adaptive control of user"s head movement has been designed, and the events-based methods and object-oriented computer language is used to develop the system software, by experiment testing, we found that under given condition, these methods and algorithms can meet the need of the HCI.

  9. Design of a Synthetic Aperture Array to Support Experiments in Active Control of Scattering

    DTIC Science & Technology

    1990-06-01

    becomes necessary to validate the theory and test the control system algorithms . While experiments in open water would be most like the anticipated...mathematical development of the beamforming algorithms used as well as an estimate of their applicability to the specifics of beamforming in a reverberant...Chebyshev array have been proposed. The method used in ARRAY, a nested product algorithm , proposed by Bresler [21] is recommended by Pozar [19] and

  10. Sensor Fusion, Prognostics, Diagnostics and Failure Mode Control for Complex Aerospace Systems

    DTIC Science & Technology

    2010-10-01

    algorithm   and   to   then   tune   the   candidates   individually   using   known   metaheuristics .  As  will  be...parallel. The result of this arrangement is that the processing is a form that is analogous to standard parallel genetic algorithms , and as such...search algorithm then uses the hybrid of fitness data to rank the results. The ETRAS controller is developed using pre-selection, showing that a

  11. Intelligent power management in a vehicular system with multiple power sources

    NASA Astrophysics Data System (ADS)

    Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul

    This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.

  12. Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2001-01-01

    NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.

  13. Network control processor for a TDMA system

    NASA Astrophysics Data System (ADS)

    Suryadevara, Omkarmurthy; Debettencourt, Thomas J.; Shulman, R. B.

    Two unique aspects of designing a network control processor (NCP) to monitor and control a demand-assigned, time-division multiple-access (TDMA) network are described. The first involves the implementation of redundancy by synchronizing the databases of two geographically remote NCPs. The two sets of databases are kept in synchronization by collecting data on both systems, transferring databases, sending incremental updates, and the parallel updating of databases. A periodic audit compares the checksums of the databases to ensure synchronization. The second aspect involves the use of a tracking algorithm to dynamically reallocate TDMA frame space. This algorithm detects and tracks current and long-term load changes in the network. When some portions of the network are overloaded while others have excess capacity, the algorithm automatically calculates and implements a new burst time plan.

  14. Development of an above-knee prosthesis equipped with a microcomputer-controlled knee joint: first test results.

    PubMed

    Aeyels, B; Peeraer, L; Vander Sloten, J; Van der Perre, G

    1992-05-01

    The shortcomings of conventional above-knee prostheses are due to their lack of adaptive control. Implementation of a microcomputer controlling the knee joint in a passive way has been suggested to enhance the patient's gait comfort, safety and cosmesis. This approach was used in the design of a new prosthetic system for the above-knee amputee, and tested on one patient. The knee joint of a conventional, modular prosthesis was replaced by a knee joint mechanism, equipped with a controllable brake on the knee joint axis. Sensors and a microcomputer were added, keeping the system self-contained. The modularity of the design permits the use of an alternative, external, PC-based control unit, emulating the self-contained one, and offering extended data monitoring and storage facilities. For both units an operating environment was written, including sensor/actuator interfacing and the implementation of a real-time interrupt, executing the control algorithm. A double finite state approach was used in the design of the control algorithm. On a higher level, the mode identification algorithm reveals the patient's intent. Within a specific mode (lower level), the relevant mode control algorithm looks for the current phase within the gait cycle. Within a particular phase, a specific simple control action with the brake replaces normal knee muscle activity. Tests were carried out with one prosthetic patient using a basic control algorithm for level walking, allowing controlled knee flexion during stance phase. The technical feasibility of such a concept is illustrated by the test results, even though only flexion during early stance phase was controlled during the trials.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. GPUbased, Microsecond Latency, HectoChannel MIMO Feedback Control of Magnetically Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Rath, Nikolaus

    Feedback control has become a crucial tool in the research on magnetic confinement of plasmas for achieving controlled nuclear fusion. This thesis presents a novel plasma feedback control system that, for the first time, employs a Graphics Processing Unit (GPU) for microsecond-latency, real-time control computations. This novel application area for GPU computing is opened up by a new system architecture that is optimized for low-latency computations on less than kilobyte sized data samples as they occur in typical plasma control algorithms. In contrast to traditional GPU computing approaches that target complex, high-throughput computations with massive amounts of data, the architecture presented in this thesis uses the GPU as the primary processing unit rather than as an auxiliary of the CPU, and data is transferred from A-D/D-A converters directly into GPU memory using peer-to-peer PCI Express transfers. The described design has been implemented in a new, GPU-based control system for the High-Beta Tokamak - Extended Pulse (HBT-EP) device. The system is built from commodity hardware and uses an NVIDIA GeForce GPU and D-TACQ A-D/D-A converters providing a total of 96 input and 64 output channels. The system is able to run with sampling periods down to 4 μs and latencies down to 8 μs. The GPU provides a total processing power of 1.5 x 1012 floating point operations per second. To illustrate the performance and versatility of both the general architecture and concrete implementation, a new control algorithm has been developed. The algorithm is designed for the control of multiple rotating magnetic perturbations in situations where the plasma equilibrium is not known exactly and features an adaptive system model: instead of requiring the rotation frequencies and growth rates embedded in the system model to be set a priori, the adaptive algorithm derives these parameters from the evolution of the perturbation amplitudes themselves. This results in non-linear control computations with high computational demands, but is handled easily by the GPU based system. Both digital processing latency and an arbitrary multi-pole response of amplifiers and control coils is fully taken into account for the generation of control signals. To separate sensor signals into perturbed and equilibrium components without knowledge of the equilibrium fields, a new separation method based on biorthogonal decomposition is introduced and used to derive a filter that performs the separation in real-time. The control algorithm has been implemented and tested on the new, GPU-based feedback control system of the HBT-EP tokamak. In this instance, the algorithm was set up to control four rotating n = 1 perturbations at different poloidal angles. The perturbations were treated as coupled in frequency but independent in amplitude and phase, so that the system effectively controls a helical n = 1 perturbation with unknown poloidal spectrum. Depending on the plasma's edge safety factor and rotation frequency, the control system is shown to be able to suppress the amplitude of the dominant 8 kHz mode by up to 60% or amplify the saturated amplitude by a factor of up to two. Intermediate feedback phases combine suppression and amplification with a speed up or slow down of the mode rotation frequency. Increasing feedback gain results in the excitation of an additional, slowly rotating 1.4 kHz mode without further effects on the 8 kHz mode. The feedback performance is found to exceed previous results obtained with an FPGA- and Kalman-filter based control system without requiring any tuning of system model parameters. Experimental results are compared with simulations based on a combination of the Boozer surface current model and the Fitzpatrick-Aydemir model. Within the subset of phenomena that can be represented by the model as well as determined experimentally, qualitative agreement is found.

  16. On Optimizing H. 264/AVC Rate Control by Improving R-D Model and Incorporating HVS Characteristics

    NASA Astrophysics Data System (ADS)

    Zhu, Zhongjie; Wang, Yuer; Bai, Yongqiang; Jiang, Gangyi

    2010-12-01

    The state-of-the-art JVT-G012 rate control algorithm of H.264 is improved from two aspects. First, the quadratic rate-distortion (R-D) model is modified based on both empirical observations and theoretical analysis. Second, based on the existing physiological and psychological research findings of human vision, the rate control algorithm is optimized by incorporating the main characteristics of the human visual system (HVS) such as contrast sensitivity, multichannel theory, and masking effect. Experiments are conducted, and experimental results show that the improved algorithm can simultaneously enhance the overall subjective visual quality and improve the rate control precision effectively.

  17. A Real Time Controller For Applications In Smart Structures

    NASA Astrophysics Data System (ADS)

    Ahrens, Christian P.; Claus, Richard O.

    1990-02-01

    Research in smart structures, especially the area of vibration suppression, has warranted the investigation of advanced computing environments. Real time PC computing power has limited development of high order control algorithms. This paper presents a simple Real Time Embedded Control System (RTECS) in an application of Intelligent Structure Monitoring by way of modal domain sensing for vibration control. It is compared to a PC AT based system for overall functionality and speed. The system employs a novel Reduced Instruction Set Computer (RISC) microcontroller capable of 15 million instructions per second (MIPS) continuous performance and burst rates of 40 MIPS. Advanced Complimentary Metal Oxide Semiconductor (CMOS) circuits are integrated on a single 100 mm by 160 mm printed circuit board requiring only 1 Watt of power. An operating system written in Forth provides high speed operation and short development cycles. The system allows for implementation of Input/Output (I/O) intensive algorithms and provides capability for advanced system development.

  18. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 2: Protocol specification

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (2 of 4) contains the specification, structured flow charts, and code listing for the protocol. The purpose of an autonomous power system on a spacecraft is to relieve humans from having to continuously monitor and control the generation, storage, and distribution of power in the craft. This implies that algorithms will have been developed to monitor and control the power system. The power system will contain computers on which the algorithms run. There should be one control computer system that makes the high level decisions and sends commands to and receive data from the other distributed computers. This will require a communications network and an efficient protocol by which the computers will communicate. One of the major requirements on the protocol is that it be real time because of the need to control the power elements.

  19. Adaptive Fault Detection on Liquid Propulsion Systems with Virtual Sensors: Algorithms and Architectures

    NASA Technical Reports Server (NTRS)

    Matthews, Bryan L.; Srivastava, Ashok N.

    2010-01-01

    Prior to the launch of STS-119 NASA had completed a study of an issue in the flow control valve (FCV) in the Main Propulsion System of the Space Shuttle using an adaptive learning method known as Virtual Sensors. Virtual Sensors are a class of algorithms that estimate the value of a time series given other potentially nonlinearly correlated sensor readings. In the case presented here, the Virtual Sensors algorithm is based on an ensemble learning approach and takes sensor readings and control signals as input to estimate the pressure in a subsystem of the Main Propulsion System. Our results indicate that this method can detect faults in the FCV at the time when they occur. We use the standard deviation of the predictions of the ensemble as a measure of uncertainty in the estimate. This uncertainty estimate was crucial to understanding the nature and magnitude of transient characteristics during startup of the engine. This paper overviews the Virtual Sensors algorithm and discusses results on a comprehensive set of Shuttle missions and also discusses the architecture necessary for deploying such algorithms in a real-time, closed-loop system or a human-in-the-loop monitoring system. These results were presented at a Flight Readiness Review of the Space Shuttle in early 2009.

  20. Development of a Control Optimization System for Real Time Monitoring of Managed Aquifer Recharge and Recovery Systems Using Intelligent Sensors

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Drumheller, Z. W.; Lee, J. H.; Illangasekare, T. H.; Regnery, J.; Kitanidis, P. K.

    2015-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. Scientists and engineers have begun to revisit the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. This research seeks to develop and validate a general simulation-based control optimization algorithm that relies on real-time data collected though embedded sensors that can be used to ease the operational challenges of MAR facilities. Experiments to validate the control algorithm were conducted at the laboratory scale in a two-dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. The synthetic aquifer used well characterized technical sands and the electrical conductivity signal of an inorganic conservative tracer as a surrogate measure for water quality. The synthetic aquifer was outfitted with an array of sensors and an autonomous pumping system. Experimental results verified the feasibility of the approach and suggested that the system can improve the operation of MAR facilities. The dynamic parameter inversion reduced the average error between the simulated and observed pressures between 12.5 and 71.4%. The control optimization algorithm ran smoothly and generated optimal control decisions. Overall, results suggest that with some improvements to the inversion and interpolation algorithms, which can be further advanced through testing with laboratory experiments using sensors, the concept can successfully improve the operation of MAR facilities.

  1. Controllers, observers, and applications thereof

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Zhou, Wankun (Inventor); Miklosovic, Robert (Inventor); Radke, Aaron (Inventor); Zheng, Qing (Inventor)

    2011-01-01

    Controller scaling and parameterization are described. Techniques that can be improved by employing the scaling and parameterization include, but are not limited to, controller design, tuning and optimization. The scaling and parameterization methods described here apply to transfer function based controllers, including PID controllers. The parameterization methods also apply to state feedback and state observer based controllers, as well as linear active disturbance rejection (ADRC) controllers. Parameterization simplifies the use of ADRC. A discrete extended state observer (DESO) and a generalized extended state observer (GESO) are described. They improve the performance of the ESO and therefore ADRC. A tracking control algorithm is also described that improves the performance of the ADRC controller. A general algorithm is described for applying ADRC to multi-input multi-output systems. Several specific applications of the control systems and processes are disclosed.

  2. Novel Straight and Circular Road Driving Control of Electric Power Assisted Wheelchair Based on Fuzzy Algorithm

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Tadakuma, Susumu

    This paper describes a novel straight and circular road driving control scheme for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel driving control scheme based on fuzzy algorithm to realize the stable and reliable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity of the wheelchair and the human input torque proportion of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  3. Operationality Improvement Control of Electric Power Assisted Wheelchair by Fuzzy Algorithm Considering Posture Angle

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu

    This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  4. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    NASA Astrophysics Data System (ADS)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-06-01

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.

  5. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability.

    PubMed

    Kirby, Jacqueline C; Speltz, Peter; Rasmussen, Luke V; Basford, Melissa; Gottesman, Omri; Peissig, Peggy L; Pacheco, Jennifer A; Tromp, Gerard; Pathak, Jyotishman; Carrell, David S; Ellis, Stephen B; Lingren, Todd; Thompson, Will K; Savova, Guergana; Haines, Jonathan; Roden, Dan M; Harris, Paul A; Denny, Joshua C

    2016-11-01

    Health care generated data have become an important source for clinical and genomic research. Often, investigators create and iteratively refine phenotype algorithms to achieve high positive predictive values (PPVs) or sensitivity, thereby identifying valid cases and controls. These algorithms achieve the greatest utility when validated and shared by multiple health care systems.Materials and Methods We report the current status and impact of the Phenotype KnowledgeBase (PheKB, http://phekb.org), an online environment supporting the workflow of building, sharing, and validating electronic phenotype algorithms. We analyze the most frequent components used in algorithms and their performance at authoring institutions and secondary implementation sites. As of June 2015, PheKB contained 30 finalized phenotype algorithms and 62 algorithms in development spanning a range of traits and diseases. Phenotypes have had over 3500 unique views in a 6-month period and have been reused by other institutions. International Classification of Disease codes were the most frequently used component, followed by medications and natural language processing. Among algorithms with published performance data, the median PPV was nearly identical when evaluated at the authoring institutions (n = 44; case 96.0%, control 100%) compared to implementation sites (n = 40; case 97.5%, control 100%). These results demonstrate that a broad range of algorithms to mine electronic health record data from different health systems can be developed with high PPV, and algorithms developed at one site are generally transportable to others. By providing a central repository, PheKB enables improved development, transportability, and validity of algorithms for research-grade phenotypes using health care generated data. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability

    PubMed Central

    Kirby, Jacqueline C; Speltz, Peter; Rasmussen, Luke V; Basford, Melissa; Gottesman, Omri; Peissig, Peggy L; Pacheco, Jennifer A; Tromp, Gerard; Pathak, Jyotishman; Carrell, David S; Ellis, Stephen B; Lingren, Todd; Thompson, Will K; Savova, Guergana; Haines, Jonathan; Roden, Dan M; Harris, Paul A

    2016-01-01

    Objective Health care generated data have become an important source for clinical and genomic research. Often, investigators create and iteratively refine phenotype algorithms to achieve high positive predictive values (PPVs) or sensitivity, thereby identifying valid cases and controls. These algorithms achieve the greatest utility when validated and shared by multiple health care systems. Materials and Methods We report the current status and impact of the Phenotype KnowledgeBase (PheKB, http://phekb.org), an online environment supporting the workflow of building, sharing, and validating electronic phenotype algorithms. We analyze the most frequent components used in algorithms and their performance at authoring institutions and secondary implementation sites. Results As of June 2015, PheKB contained 30 finalized phenotype algorithms and 62 algorithms in development spanning a range of traits and diseases. Phenotypes have had over 3500 unique views in a 6-month period and have been reused by other institutions. International Classification of Disease codes were the most frequently used component, followed by medications and natural language processing. Among algorithms with published performance data, the median PPV was nearly identical when evaluated at the authoring institutions (n = 44; case 96.0%, control 100%) compared to implementation sites (n = 40; case 97.5%, control 100%). Discussion These results demonstrate that a broad range of algorithms to mine electronic health record data from different health systems can be developed with high PPV, and algorithms developed at one site are generally transportable to others. Conclusion By providing a central repository, PheKB enables improved development, transportability, and validity of algorithms for research-grade phenotypes using health care generated data. PMID:27026615

  7. Evolutionary game based control for biological systems with applications in drug delivery.

    PubMed

    Li, Xiaobo; Lenaghan, Scott C; Zhang, Mingjun

    2013-06-07

    Control engineering and analysis of biological systems have become increasingly important for systems and synthetic biology. Unfortunately, no widely accepted control framework is currently available for these systems, especially at the cell and molecular levels. This is partially due to the lack of appropriate mathematical models to describe the unique dynamics of biological systems, and the lack of implementation techniques, such as ultra-fast and ultra-small devices and corresponding control algorithms. This paper proposes a control framework for biological systems subject to dynamics that exhibit adaptive behavior under evolutionary pressures. The control framework was formulated based on evolutionary game based modeling, which integrates both the internal dynamics and the population dynamics. In the proposed control framework, the adaptive behavior was characterized as an internal dynamic, and the external environment was regarded as an external control input. The proposed open-interface control framework can be integrated with additional control algorithms for control of biological systems. To demonstrate the effectiveness of the proposed framework, an optimal control strategy was developed and validated for drug delivery using the pathogen Giardia lamblia as a test case. In principle, the proposed control framework can be applied to any biological system exhibiting adaptive behavior under evolutionary pressures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Results of using the NSTX-U Plasma Control System for scenario development

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Battaglia, D. J.; Gates, D. A.; Gerhardt, S.; Menard, J.; Mueller, D.; Myers, C. E.; Ferron, J.; Sabbagh, S.; NSTX-U Team

    2016-10-01

    To best use the new capabilities of NSTX-U (e.g., higher toroidal field and additional, more distributed heating and current drive sources) and to achieve the operational goals of the program, major upgrades to the Plasma Control System have been made. These include improvements to vertical control, real-time equilibrium reconstruction, and plasma boundary shape control and the addition of flexible algorithms for beam modulation and gas injection to control the upgraded actuators in real-time, enabling their use in algorithms for stored energy and profile control. Control system commissioning activities have so far focused on vertical position and shape control. The upgraded controllers have been used to explore the vertical stability limits in inner wall limited and diverted discharges, and control of X-point and strike point locations has been demonstrated and is routinely used. A method for controlling the mid-plane inner gap, a challenge for STs, has also been added to improve reproducible control of diverted discharges. A supervisory shutdown handling algorithm has also been commissioned to ramp the plasma down and safely turn off actuators after an event such as loss of vertical control. Use of the upgrades has contributed to achieving 1MA, 0.65T scenarios with greater than 1s pulse length. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.

  9. Gait Planning and Stability Control of a Quadruped Robot

    PubMed Central

    Li, Junmin; Wang, Jinge; Yang, Simon X.; Zhou, Kedong; Tang, Huijuan

    2016-01-01

    In order to realize smooth gait planning and stability control of a quadruped robot, a new controller algorithm based on CPG-ZMP (central pattern generator-zero moment point) is put forward in this paper. To generate smooth gait and shorten the adjusting time of the model oscillation system, a new CPG model controller and its gait switching strategy based on Wilson-Cowan model are presented in the paper. The control signals of knee-hip joints are obtained by the improved multi-DOF reduced order control theory. To realize stability control, the adaptive speed adjustment and gait switch are completed by the real-time computing of ZMP. Experiment results show that the quadruped robot's gaits are efficiently generated and the gait switch is smooth in the CPG control algorithm. Meanwhile, the stability of robot's movement is improved greatly with the CPG-ZMP algorithm. The algorithm in this paper has good practicability, which lays a foundation for the production of the robot prototype. PMID:27143959

  10. Gait Planning and Stability Control of a Quadruped Robot.

    PubMed

    Li, Junmin; Wang, Jinge; Yang, Simon X; Zhou, Kedong; Tang, Huijuan

    2016-01-01

    In order to realize smooth gait planning and stability control of a quadruped robot, a new controller algorithm based on CPG-ZMP (central pattern generator-zero moment point) is put forward in this paper. To generate smooth gait and shorten the adjusting time of the model oscillation system, a new CPG model controller and its gait switching strategy based on Wilson-Cowan model are presented in the paper. The control signals of knee-hip joints are obtained by the improved multi-DOF reduced order control theory. To realize stability control, the adaptive speed adjustment and gait switch are completed by the real-time computing of ZMP. Experiment results show that the quadruped robot's gaits are efficiently generated and the gait switch is smooth in the CPG control algorithm. Meanwhile, the stability of robot's movement is improved greatly with the CPG-ZMP algorithm. The algorithm in this paper has good practicability, which lays a foundation for the production of the robot prototype.

  11. MCMAC-cVT: a novel on-line associative memory based CVT transmission control system.

    PubMed

    Ang, K K; Quek, C; Wahab, A

    2002-03-01

    This paper describes a novel application of an associative memory called the Modified Cerebellar Articulation Controller (MCMAC) (Int. J. Artif. Intell. Engng, 10 (1996) 135) in a continuous variable transmission (CVT) control system. It allows the on-line tuning of the associative memory and produces an effective gain-schedule for the automatic selection of the CVT gear ratio. Various control algorithms are investigated to control the CVT gear ratio to maintain the engine speed within a narrow range of efficient operating speed independently of the vehicle velocity. Extensive simulation results are presented to evaluate the control performance of a direct digital PID control algorithm with auto-tuning (Trans. ASME, 64 (1942)) and anti-windup mechanism. In particular, these results are contrasted against the control performance produced using the MCMAC (Int. J. Artif. Intell. Engng, 10 (1996) 135) with momentum, neighborhood learning and Averaged Trapezoidal Output (MCMAC-ATO) as the neural control algorithm for controlling the CVT. Simulation results are presented that show the reduced control fluctuations and improved learning capability of the MCMAC-ATO without incurring greater memory requirement. In particular, MCMAC-ATO is able to learn and control the CVT simultaneously while still maintaining acceptable control performance.

  12. Application of Static Var Compensator (SVC) With PI Controller for Grid Integration of Wind Farm Using Harmony Search

    NASA Astrophysics Data System (ADS)

    Keshta, H. E.; Ali, A. A.; Saied, E. M.; Bendary, F. M.

    2016-10-01

    Large-scale integration of wind turbine generators (WTGs) may have significant impacts on power system operation with respect to system frequency and bus voltages. This paper studies the effect of Static Var Compensator (SVC) connected to wind energy conversion system (WECS) on voltage profile and the power generated from the induction generator (IG) in wind farm. Also paper presents, a dynamic reactive power compensation using Static Var Compensator (SVC) at the a point of interconnection of wind farm while static compensation (Fixed Capacitor Bank) is unable to prevent voltage collapse. Moreover, this paper shows that using advanced optimization techniques based on artificial intelligence (AI) such as Harmony Search Algorithm (HS) and Self-Adaptive Global Harmony Search Algorithm (SGHS) instead of a Conventional Control Method to tune the parameters of PI controller for SVC and pitch angle. Also paper illustrates that the performance of the system with controllers based on AI is improved under different operating conditions. MATLAB/Simulink based simulation is utilized to demonstrate the application of SVC in wind farm integration. It is also carried out to investigate the enhancement in performance of the WECS achieved with a PI Controller tuned by Harmony Search Algorithm as compared to a Conventional Control Method.

  13. Development of a Low-Lift Chiller Controller and Simplified Precooling Control Algorithm - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayeski, N.; Armstrong, Peter; Alvira, M.

    2011-11-30

    KGS Buildings LLC (KGS) and Pacific Northwest National Laboratory (PNNL) have developed a simplified control algorithm and prototype low-lift chiller controller suitable for model-predictive control in a demonstration project of low-lift cooling. Low-lift cooling is a highly efficient cooling strategy conceived to enable low or net-zero energy buildings. A low-lift cooling system consists of a high efficiency low-lift chiller, radiant cooling, thermal storage, and model-predictive control to pre-cool thermal storage overnight on an optimal cooling rate trajectory. We call the properly integrated and controlled combination of these elements a low-lift cooling system (LLCS). This document is the final report formore » that project.« less

  14. A Nonlinear Digital Control Solution for a DC/DC Power Converter

    NASA Technical Reports Server (NTRS)

    Zhu, Minshao

    2002-01-01

    A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.

  15. Portable Health Algorithms Test System

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.

    2010-01-01

    A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.

  16. Testing for a slope-based decoupling algorithm in a woofer-tweeter adaptive optics system.

    PubMed

    Cheng, Tao; Liu, WenJin; Yang, KangJian; He, Xin; Yang, Ping; Xu, Bing

    2018-05-01

    It is well known that using two or more deformable mirrors (DMs) can improve the compensation ability of an adaptive optics (AO) system. However, to keep the stability of an AO system, the correlation between the multiple DMs must be suppressed during the correction. In this paper, we proposed a slope-based decoupling algorithm to simultaneous control the multiple DMs. In order to examine the validity and practicality of this algorithm, a typical woofer-tweeter (W-T) AO system was set up. For the W-T system, a theory model was simulated and the results indicated in theory that the algorithm we presented can selectively make woofer and tweeter correct different spatial frequency aberration and suppress the cross coupling between the dual DMs. At the same time, the experimental results for the W-T AO system were consistent with the results of the simulation, which demonstrated in practice that this algorithm is practical for the AO system with dual DMs.

  17. Guidance, navigation, and control subsystem equipment selection algorithm using expert system methods

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    1991-01-01

    Enhanced engineering tools can be obtained through the integration of expert system methodologies and existing design software. The application of these methodologies to the spacecraft design and cost model (SDCM) software provides an improved technique for the selection of hardware for unmanned spacecraft subsystem design. The knowledge engineering system (KES) expert system development tool was used to implement a smarter equipment section algorithm than that which is currently achievable through the use of a standard data base system. The guidance, navigation, and control subsystems of the SDCM software was chosen as the initial subsystem for implementation. The portions of the SDCM code which compute the selection criteria and constraints remain intact, and the expert system equipment selection algorithm is embedded within this existing code. The architecture of this new methodology is described and its implementation is reported. The project background and a brief overview of the expert system is described, and once the details of the design are characterized, an example of its implementation is demonstrated.

  18. Sensor failure detection for jet engines

    NASA Technical Reports Server (NTRS)

    Beattie, E. C.; Laprad, R. F.; Akhter, M. M.; Rock, S. M.

    1983-01-01

    Revisions to the advanced sensor failure detection, isolation, and accommodation (DIA) algorithm, developed under the sensor failure detection system program were studied to eliminate the steady state errors due to estimation filter biases. Three algorithm revisions were formulated and one revision for detailed evaluation was chosen. The selected version modifies the DIA algorithm to feedback the actual sensor outputs to the integral portion of the control for the nofailure case. In case of a failure, the estimates of the failed sensor output is fed back to the integral portion. The estimator outputs are fed back to the linear regulator portion of the control all the time. The revised algorithm is evaluated and compared to the baseline algorithm developed previously.

  19. Synthesis of the adaptive continuous system for the multi-axle wheeled vehicle body oscillation damping

    NASA Astrophysics Data System (ADS)

    Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.

    2018-02-01

    In order to meet the growing mobility requirements for the wheeled vehicles on all types of terrain the engineers have to develop a large number of specialized control algorithms for the multi-axle wheeled vehicle (MWV) suspension improving such qualities as ride comfort, handling and stability. The authors have developed an adaptive algorithm of the dynamic damping of the MVW body oscillations. The algorithm provides high ride comfort and high mobility of the vehicle. The article discloses a method for synthesis of an adaptive dynamic continuous algorithm of the MVW body oscillation damping and provides simulation results proving high efficiency of the developed control algorithm.

  20. Parameter Estimation for a Hybrid Adaptive Flight Controller

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Nguyen, Nhan T.; Kaneshige, John; Krishnakumar, Kalmanje

    2009-01-01

    This paper expands on the hybrid control architecture developed at the NASA Ames Research Center by addressing issues related to indirect adaptation using the recursive least squares (RLS) algorithm. Specifically, the hybrid control architecture is an adaptive flight controller that features both direct and indirect adaptation techniques. This paper will focus almost exclusively on the modifications necessary to achieve quality indirect adaptive control. Additionally this paper will present results that, using a full non -linear aircraft model, demonstrate the effectiveness of the hybrid control architecture given drastic changes in an aircraft s dynamics. Throughout the development of this topic, a thorough discussion of the RLS algorithm as a system identification technique will be provided along with results from seven well-known modifications to the popular RLS algorithm.

  1. Closed Loop, DM Diversity-based, Wavefront Correction Algorithm for High Contrast Imaging Systems

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Belikov, Ruslan; Shaklan, Stuart; Kasdin, Jeremy

    2007-01-01

    High contrast imaging from space relies on coronagraphs to limit diffraction and a wavefront control systems to compensate for imperfections in both the telescope optics and the coronagraph. The extreme contrast required (up to 10(exp -10) for terrestrial planets) puts severe requirements on the wavefront control system, as the achievable contrast is limited by the quality of the wavefront. This paper presents a general closed loop correction algorithm for high contrast imaging coronagraphs by minimizing the energy in a predefined region in the image where terrestrial planets could be found. The estimation part of the algorithm reconstructs the complex field in the image plane using phase diversity caused by the deformable mirror. This method has been shown to achieve faster and better correction than classical speckle nulling.

  2. Design and Implementation of Hybrid CORDIC Algorithm Based on Phase Rotation Estimation for NCO

    PubMed Central

    Zhang, Chaozhu; Han, Jinan; Li, Ke

    2014-01-01

    The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation. PMID:25110750

  3. The symbolic computation and automatic analysis of trajectories

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1991-01-01

    Research was generally done on computation of trajectories of dynamical systems, especially control systems. Algorithms were further developed for rewriting expressions involving differential operators. The differential operators involved arise in the local analysis of nonlinear control systems. An initial design was completed of the system architecture for software to analyze nonlinear control systems using data base computing.

  4. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Harmon, Frederick G.

    2005-11-01

    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid-electric propulsion system. The CMAC neural network approximates the hyper-plane generated from the instantaneous optimization algorithm and produces torque commands for the internal combustion engine and electric motor. The CMAC neural network controller saves on the required memory as compared to a large look-up table by two orders of magnitude. The CMAC controller also prevents the need to compute a hyper-plane or complex logic every time step.

  5. Open-closed-loop iterative learning control for a class of nonlinear systems with random data dropouts

    NASA Astrophysics Data System (ADS)

    Cheng, X. Y.; Wang, H. B.; Jia, Y. L.; Dong, YH

    2018-05-01

    In this paper, an open-closed-loop iterative learning control (ILC) algorithm is constructed for a class of nonlinear systems subjecting to random data dropouts. The ILC algorithm is implemented by a networked control system (NCS), where only the off-line data is transmitted by network while the real-time data is delivered in the point-to-point way. Thus, there are two controllers rather than one in the control system, which makes better use of the saved and current information and thereby improves the performance achieved by open-loop control alone. During the transfer of off-line data between the nonlinear plant and the remote controller data dropout occurs randomly and the data dropout rate is modeled as a binary Bernoulli random variable. Both measurement and control data dropouts are taken into consideration simultaneously. The convergence criterion is derived based on rigorous analysis. Finally, the simulation results verify the effectiveness of the proposed method.

  6. Insulin Patch Pumps: Their Development and Future in Closed-Loop Systems

    PubMed Central

    Bohannon, Nancy J.V.

    2010-01-01

    Abstract Steady progress is being made toward the development of a so-called “artificial pancreas,” which may ultimately be a fully automated, closed-loop, glucose control system comprising a continuous glucose monitor, an insulin pump, and a controller. The controller will use individualized algorithms to direct delivery of insulin without user input. A major factor propelling artificial pancreas development is the substantial incidence of—and attendant patient, parental, and physician concerns about—hypoglycemia and extreme hyperglycemia associated with current means of insulin delivery for type 1 diabetes mellitus (T1DM). A successful fully automated artificial pancreas would likely reduce the frequency of and anxiety about hypoglycemia and marked hyperglycemia. Patch-pump systems (“patch pumps”) are likely to be used increasingly in the control of T1DM and may be incorporated into the artificial pancreas systems of tomorrow. Patch pumps are free of tubing, small, lightweight, and unobtrusive. This article describes features of patch pumps that have been approved for U.S. marketing or are under development. Included in the review is an introduction to control algorithms driving insulin delivery, particularly the two major types: proportional integrative derivative and model predictive control. The use of advanced algorithms in the clinical development of closed-loop systems is reviewed along with projected next steps in artificial pancreas development. PMID:20515308

  7. Ramp - Metering Algorithms Evaluated within Simplified Conditions

    NASA Astrophysics Data System (ADS)

    Janota, Aleš; Holečko, Peter; Gregor, Michal; Hruboš, Marián

    2017-12-01

    Freeway networks reach their limits, since it is usually impossible to increase traffic volumes by indefinitely extending transport infrastructure through adding new traffic lanes. One of the possible solutions is to use advanced intelligent transport systems, particularly ramp metering systems. The paper shows how two particular algorithms of local and traffic-responsive control (Zone, ALINEA) can be adapted to simplified conditions corresponding to Slovak freeways. Both control strategies are modelled and simulated using PTV Vissim software, including the module VisVAP. Presented results demonstrate the properties of both control strategies, which are compared mutually as well as with the initial situation in which no control strategy is applied

  8. Vision-based guidance for an automated roving vehicle

    NASA Technical Reports Server (NTRS)

    Griffin, M. D.; Cunningham, R. T.; Eskenazi, R.

    1978-01-01

    A controller designed to guide an automated vehicle to a specified target without external intervention is described. The intended application is to the requirements of planetary exploration, where substantial autonomy is required because of the prohibitive time lags associated with closed-loop ground control. The guidance algorithm consists of a set of piecewise-linear control laws for velocity and steering commands, and is executable in real time with fixed-point arithmetic. The use of a previously-reported object tracking algorithm for the vision system to provide position feedback data is described. Test results of the control system on a breadboard rover at the Jet Propulsion Laboratory are included.

  9. Active control of impulsive noise with symmetric α-stable distribution based on an improved step-size normalized adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yali; Zhang, Qizhi; Yin, Yixin

    2015-05-01

    In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.

  10. Parallel Optimization of Polynomials for Large-scale Problems in Stability and Control

    NASA Astrophysics Data System (ADS)

    Kamyar, Reza

    In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems --- in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) --- whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers --- machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers. We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to efficiently utilize hundreds and potentially thousands of processors, and analyze systems with 100+ dimensional state-space. Furthermore, we extend our algorithms to analyze robust stability over more complicated geometries such as hypercubes and arbitrary convex polytopes. Our algorithms can be readily extended to address a wide variety of problems in control such as Hinfinity synthesis for systems with parametric uncertainty and computing control Lyapunov functions.

  11. Inflight redesign of the IUE attitude control system

    NASA Technical Reports Server (NTRS)

    Femiano, M. D.

    1986-01-01

    The one- and two-gyro system designs of the International Ultraviolet Explorer (IUE) attitude control system (ACS) are examined. The inertial reference assembly that provides the primary attitude reference for IUE consists of six rate sensors which are single-axis rate integrating gyros. The gyros operate in a pulse rebalanced mode that produces an output pulse for 0.01 arcsec of motion about the input axis. The functions of the fine error sensor, fine sun sensor (FSS), the IUE reaction wheels, the onboard computer, and the hold/slew algorithm are described. The use of the hold/slew algorithm to compute the control voltage for the ACS based on the Kalman filter is studied. A two-gyro system was incorporated into IUE following gyro failure. The procedures for establishing attitude control with the two-gyro design based on the FSS is analyzed. The performance of the two-gyro system is evaluated; it is observed that the pitch and yaw gyro control is 0.24 arcsec and the control is sufficient to permit extended periods of observation.

  12. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  13. Real-time automated failure analysis for on-orbit operations

    NASA Technical Reports Server (NTRS)

    Kirby, Sarah; Lauritsen, Janet; Pack, Ginger; Ha, Anhhoang; Jowers, Steven; Mcnenny, Robert; Truong, The; Dell, James

    1993-01-01

    A system which is to provide real-time failure analysis support to controllers at the NASA Johnson Space Center Control Center Complex (CCC) for both Space Station and Space Shuttle on-orbit operations is described. The system employs monitored systems' models of failure behavior and model evaluation algorithms which are domain-independent. These failure models are viewed as a stepping stone to more robust algorithms operating over models of intended function. The described system is designed to meet two sets of requirements. It must provide a useful failure analysis capability enhancement to the mission controller. It must satisfy CCC operational environment constraints such as cost, computer resource requirements, verification, and validation. The underlying technology and how it may be used to support operations is also discussed.

  14. Compensation of distributed delays in integrated communication and control systems

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Luck, Rogelio

    1991-01-01

    The concept, analysis, implementation, and verification of a method for compensating delays that are distributed between the sensors, controller, and actuators within a control loop are discussed. With the objective of mitigating the detrimental effects of these network induced delays, a predictor-controller algorithm was formulated and analyzed. Robustness of the delay compensation algorithm was investigated relative to parametric uncertainties in plant modeling. The delay compensator was experimentally verified on an IEEE 802.4 network testbed for velocity control of a DC servomotor.

  15. Note: Wide-operating-range control for thermoelectric coolers.

    PubMed

    Peronio, P; Labanca, I; Ghioni, M; Rech, I

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  16. Note: Wide-operating-range control for thermoelectric coolers

    NASA Astrophysics Data System (ADS)

    Peronio, P.; Labanca, I.; Ghioni, M.; Rech, I.

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  17. Positive position control of robotic manipulators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Gumusel, L.

    1989-01-01

    The present, simple and accurate position-control algorithm, which is applicable to fast-moving and lightly damped robot arms, is based on the positive position feedback (PPF) strategy and relies solely on position sensors to monitor joint angles of robotic arms to furnish stable position control. The optimized tuned filters, in the form of a set of difference equations, manipulate position signals for robotic system performance. Attention is given to comparisons between this PPF-algorithm controller's experimentally ascertained performance characteristics and those of a conventional proportional controller.

  18. Jerk-level synchronous repetitive motion scheme with gradient-type and zeroing-type dynamics algorithms applied to dual-arm redundant robot system control

    NASA Astrophysics Data System (ADS)

    Chen, Dechao; Zhang, Yunong

    2017-10-01

    Dual-arm redundant robot systems are usually required to handle primary tasks, repetitively and synchronously in practical applications. In this paper, a jerk-level synchronous repetitive motion scheme is proposed to remedy the joint-angle drift phenomenon and achieve the synchronous control of a dual-arm redundant robot system. The proposed scheme is novelly resolved at jerk level, which makes the joint variables, i.e. joint angles, joint velocities and joint accelerations, smooth and bounded. In addition, two types of dynamics algorithms, i.e. gradient-type (G-type) and zeroing-type (Z-type) dynamics algorithms, for the design of repetitive motion variable vectors, are presented in detail with the corresponding circuit schematics. Subsequently, the proposed scheme is reformulated as two dynamical quadratic programs (DQPs) and further integrated into a unified DQP (UDQP) for the synchronous control of a dual-arm robot system. The optimal solution of the UDQP is found by the piecewise-linear projection equation neural network. Moreover, simulations and comparisons based on a six-degrees-of-freedom planar dual-arm redundant robot system substantiate the operation effectiveness and tracking accuracy of the robot system with the proposed scheme for repetitive motion and synchronous control.

  19. Simulation of the Predictive Control Algorithm for Container Crane Operation using Matlab Fuzzy Logic Tool Box

    NASA Technical Reports Server (NTRS)

    Richardson, Albert O.

    1997-01-01

    This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.

  20. Applying Workspace Limitations in a Velocity-Controlled Robotic Mechanism

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Platt, Robert J., Jr. (Inventor)

    2014-01-01

    A robotic system includes a robotic mechanism responsive to velocity control signals, and a permissible workspace defined by a convex-polygon boundary. A host machine determines a position of a reference point on the mechanism with respect to the boundary, and includes an algorithm for enforcing the boundary by automatically shaping the velocity control signals as a function of the position, thereby providing smooth and unperturbed operation of the mechanism along the edges and corners of the boundary. The algorithm is suited for application with higher speeds and/or external forces. A host machine includes an algorithm for enforcing the boundary by shaping the velocity control signals as a function of the reference point position, and a hardware module for executing the algorithm. A method for enforcing the convex-polygon boundary is also provided that shapes a velocity control signal via a host machine as a function of the reference point position.

  1. Extremum Seeking Control of Smart Inverters for VAR Compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Daniel; Negrete-Pincetic, Matias; Stewart, Emma

    2015-09-04

    Reactive power compensation is used by utilities to ensure customer voltages are within pre-defined tolerances and reduce system resistive losses. While much attention has been paid to model-based control algorithms for reactive power support and Volt Var Optimization (VVO), these strategies typically require relatively large communications capabilities and accurate models. In this work, a non-model-based control strategy for smart inverters is considered for VAR compensation. An Extremum Seeking control algorithm is applied to modulate the reactive power output of inverters based on real power information from the feeder substation, without an explicit feeder model. Simulation results using utility demand informationmore » confirm the ability of the control algorithm to inject VARs to minimize feeder head real power consumption. In addition, we show that the algorithm is capable of improving feeder voltage profiles and reducing reactive power supplied by the distribution substation.« less

  2. Direct model reference adaptive control of robotic arms

    NASA Technical Reports Server (NTRS)

    Kaufman, Howard; Swift, David C.; Cummings, Steven T.; Shankey, Jeffrey R.

    1993-01-01

    The results of controlling A PUMA 560 Robotic Manipulator and the NASA shuttle Remote Manipulator System (RMS) using a Command Generator Tracker (CGT) based Model Reference Adaptive Controller (DMRAC) are presented. Initially, the DMRAC algorithm was run in simulation using a detailed dynamic model of the PUMA 560. The algorithm was tuned on the simulation and then used to control the manipulator using minimum jerk trajectories as the desired reference inputs. The ability to track a trajectory in the presence of load changes was also investigated in the simulation. Satisfactory performance was achieved in both simulation and on the actual robot. The obtained responses showed that the algorithm was robust in the presence of sudden load changes. Because these results indicate that the DMRAC algorithm can indeed be successfully applied to the control of robotic manipulators, additional testing was performed to validate the applicability of DMRAC to simulated dynamics of the shuttle RMS.

  3. Decentralized Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Robotic Walking.

    PubMed

    Hamed, Kaveh Akbari; Gregg, Robert D

    2016-07-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.

  4. Decentralized Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Robotic Walking*

    PubMed Central

    Hamed, Kaveh Akbari; Gregg, Robert D.

    2016-01-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059

  5. A Generalized Method for Automatic Downhand and Wirefeed Control of a Welding Robot and Positioner

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken; Cook, George E.

    1988-01-01

    A generalized method for controlling a six degree-of-freedom (DOF) robot and a two DOF positioner used for arc welding operations is described. The welding path is defined in the part reference frame, and robot/positioner joint angles of the equivalent eight DOF serial linkage are determined via an iterative solution. Three algorithms are presented: the first solution controls motion of the eight DOF mechanism such that proper torch motion is achieved while minimizing the sum-of-squares of joint displacements; the second algorithm adds two constraint equations to achieve torch control while maintaining part orientation so that welding occurs in the downhand position; and the third algorithm adds the ability to control the proper orientation of a wire feed mechanism used in gas tungsten arc (GTA) welding operations. A verification of these algorithms is given using ROBOSIM, a NASA developed computer graphic simulation software package design for robot systems development.

  6. Optimized design of embedded DSP system hardware supporting complex algorithms

    NASA Astrophysics Data System (ADS)

    Li, Yanhua; Wang, Xiangjun; Zhou, Xinling

    2003-09-01

    The paper presents an optimized design method for a flexible and economical embedded DSP system that can implement complex processing algorithms as biometric recognition, real-time image processing, etc. It consists of a floating-point DSP, 512 Kbytes data RAM, 1 Mbytes FLASH program memory, a CPLD for achieving flexible logic control of input channel and a RS-485 transceiver for local network communication. Because of employing a high performance-price ratio DSP TMS320C6712 and a large FLASH in the design, this system permits loading and performing complex algorithms with little algorithm optimization and code reduction. The CPLD provides flexible logic control for the whole DSP board, especially in input channel, and allows convenient interface between different sensors and DSP system. The transceiver circuit can transfer data between DSP and host computer. In the paper, some key technologies are also introduced which make the whole system work efficiently. Because of the characters referred above, the hardware is a perfect flat for multi-channel data collection, image processing, and other signal processing with high performance and adaptability. The application section of this paper presents how this hardware is adapted for the biometric identification system with high identification precision. The result reveals that this hardware is easy to interface with a CMOS imager and is capable of carrying out complex biometric identification algorithms, which require real-time process.

  7. Optimal Real-time Dispatch for Integrated Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firestone, Ryan Michael

    This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem.more » The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and (4) most of the trade-off between least-cost and least-carbon IES is determined during the system design stage; for the IES system considered, there is little difference between least-cost control and least-carbon control.« less

  8. Genetic reinforcement learning through symbiotic evolution for fuzzy controller design.

    PubMed

    Juang, C F; Lin, J Y; Lin, C T

    2000-01-01

    An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.

  9. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  10. Combined Optimal Control System for excavator electric drive

    NASA Astrophysics Data System (ADS)

    Kurochkin, N. S.; Kochetkov, V. P.; Platonova, E. V.; Glushkin, E. Y.; Dulesov, A. S.

    2018-03-01

    The article presents a synthesis of the combined optimal control algorithms of the AC drive rotation mechanism of the excavator. Synthesis of algorithms consists in the regulation of external coordinates - based on the theory of optimal systems and correction of the internal coordinates electric drive using the method "technical optimum". The research shows the advantage of optimal combined control systems for the electric rotary drive over classical systems of subordinate regulation. The paper presents a method for selecting the optimality criterion of coefficients to find the intersection of the range of permissible values of the coordinates of the control object. There is possibility of system settings by choosing the optimality criterion coefficients, which allows one to select the required characteristics of the drive: the dynamic moment (M) and the time of the transient process (tpp). Due to the use of combined optimal control systems, it was possible to significantly reduce the maximum value of the dynamic moment (M) and at the same time - reduce the transient time (tpp).

  11. Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Li, Junmin

    2017-07-01

    In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.

  12. Anticipatory control: A software retrofit for current plant controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parthasarathy, S.; Parlos, A.G.; Atiya, A.F.

    1993-01-01

    The design and simulated testing of an artificial neural network (ANN)-based self-adapting controller for complex process systems are presented in this paper. The proposed controller employs concepts based on anticipatory systems, which have been widely used in the petroleum and chemical industries, and they are slowly finding their way into the power industry. In particular, model predictive control (MPC) is used for the systematic adaptation of the controller parameters to achieve desirable plant performance over the entire operating envelope. The versatile anticipatory control algorithm developed in this study is projected to enhance plant performance and lend robustness to drifts inmore » plant parameters and to modeling uncertainties. This novel technique of integrating recurrent ANNs with a conventional controller structure appears capable of controlling complex, nonlinear, and nonminimum phase process systems. The direct, on-line adaptive control algorithm presented in this paper considers the plant response over a finite time horizon, diminishing the need for manual control or process interruption for controller gain tuning.« less

  13. A real time, FEM based optimal control algorithm and its implementation using parallel processing hardware (transistors) in a microprocessor environment

    NASA Technical Reports Server (NTRS)

    Patten, William Neff

    1989-01-01

    There is an evident need to discover a means of establishing reliable, implementable controls for systems that are plagued by nonlinear and, or uncertain, model dynamics. The development of a generic controller design tool for tough-to-control systems is reported. The method utilizes a moving grid, time infinite element based solution of the necessary conditions that describe an optimal controller for a system. The technique produces a discrete feedback controller. Real time laboratory experiments are now being conducted to demonstrate the viability of the method. The algorithm that results is being implemented in a microprocessor environment. Critical computational tasks are accomplished using a low cost, on-board, multiprocessor (INMOS T800 Transputers) and parallel processing. Progress to date validates the methodology presented. Applications of the technique to the control of highly flexible robotic appendages are suggested.

  14. Control of joint motion simulators for biomechanical research

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.

    1992-01-01

    The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.

  15. Model-free iterative control of repetitive dynamics for high-speed scanning in atomic force microscopy.

    PubMed

    Li, Yang; Bechhoefer, John

    2009-01-01

    We introduce an algorithm for calculating, offline or in real time and with no explicit system characterization, the feedforward input required for repetitive motions of a system. The algorithm is based on the secant method of numerical analysis and gives accurate motion at frequencies limited only by the signal-to-noise ratio and the actuator power and range. We illustrate the secant-solver algorithm on a stage used for atomic force microscopy.

  16. Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model

    NASA Astrophysics Data System (ADS)

    Markowich, Peter A.; Titi, Edriss S.; Trabelsi, Saber

    2016-04-01

    In this paper we introduce and analyze an algorithm for continuous data assimilation for a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model of porous media. This model is believed to be accurate when the flow velocity is too large for Darcy’s law to be valid, and additionally the porosity is not too small. The algorithm is inspired by ideas developed for designing finite-parameters feedback control for dissipative systems. It aims to obtain improved estimates of the state of the physical system by incorporating deterministic or noisy measurements and observations. Specifically, the algorithm involves a feedback control that nudges the large scales of the approximate solution toward those of the reference solution associated with the spatial measurements. In the first part of the paper, we present a few results of existence and uniqueness of weak and strong solutions of the 3D BFeD system. The second part is devoted to the convergence analysis of the data assimilation algorithm.

  17. Hybrid feedforward and feedback controller design for nuclear steam generators over wide range operation using genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Y.; Edwards, R.M.; Lee, K.Y.

    1997-03-01

    In this paper, a simplified model with a lower order is first developed for a nuclear steam generator system and verified against some realistic environments. Based on this simplified model, a hybrid multi-input and multi-out (MIMO) control system, consisting of feedforward control (FFC) and feedback control (FBC), is designed for wide range conditions by using the genetic algorithm (GA) technique. The FFC control, obtained by the GA optimization method, injects an a priori command input into the system to achieve an optimal performance for the designed system, while the GA-based FBC control provides the necessary compensation for any disturbances ormore » uncertainties in a real steam generator. The FBC control is an optimal design of a PI-based control system which would be more acceptable for industrial practices and power plant control system upgrades. The designed hybrid MIMO FFC/FBC control system is first applied to the simplified model and then to a more complicated model with a higher order which is used as a substitute of the real system to test the efficacy of the designed control system. Results from computer simulations show that the designed GA-based hybrid MIMO FFC/FBC control can achieve good responses and robust performances. Hence, it can be considered as a viable alternative to the current control system upgrade.« less

  18. Determination of power system component parameters using nonlinear dead beat estimation method

    NASA Astrophysics Data System (ADS)

    Kolluru, Lakshmi

    Power systems are considered the most complex man-made wonders in existence today. In order to effectively supply the ever increasing demands of the consumers, power systems are required to remain stable at all times. Stability and monitoring of these complex systems are achieved by strategically placed computerized control centers. State and parameter estimation is an integral part of these facilities, as they deal with identifying the unknown states and/or parameters of the systems. Advancements in measurement technologies and the introduction of phasor measurement units (PMU) provide detailed and dynamic information of all measurements. Accurate availability of dynamic measurements provides engineers the opportunity to expand and explore various possibilities in power system dynamic analysis/control. This thesis discusses the development of a parameter determination algorithm for nonlinear power systems, using dynamic data obtained from local measurements. The proposed algorithm was developed by observing the dead beat estimator used in state space estimation of linear systems. The dead beat estimator is considered to be very effective as it is capable of obtaining the required results in a fixed number of steps. The number of steps required is related to the order of the system and the number of parameters to be estimated. The proposed algorithm uses the idea of dead beat estimator and nonlinear finite difference methods to create an algorithm which is user friendly and can determine the parameters fairly accurately and effectively. The proposed algorithm is based on a deterministic approach, which uses dynamic data and mathematical models of power system components to determine the unknown parameters. The effectiveness of the algorithm is tested by implementing it to identify the unknown parameters of a synchronous machine. MATLAB environment is used to create three test cases for dynamic analysis of the system with assumed known parameters. Faults are introduced in the virtual test systems and the dynamic data obtained in each case is analyzed and recorded. Ideally, actual measurements are to be provided to the algorithm. As the measurements are not readily available the data obtained from simulations is fed into the determination algorithm as inputs. The obtained results are then compared to the original (or assumed) values of the parameters. The results obtained suggest that the algorithm is able to determine the parameters of a synchronous machine when crisp data is available.

  19. Flocking algorithm for autonomous flying robots.

    PubMed

    Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás

    2014-06-01

    Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks.

  20. Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and elastic properties of electric powertrain

    NASA Astrophysics Data System (ADS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong

    2014-11-01

    Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.

  1. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.

    2014-01-01

    This paper summarizes the Adaptive Augmenting Control (AAC) flight characterization experiments performed using an F/A-18 (TN 853). AAC was designed and developed specifically for launch vehicles, and is currently part of the baseline autopilot design for NASA's Space Launch System (SLS). The scope covered here includes a brief overview of the algorithm (covered in more detail elsewhere), motivation and benefits of flight testing, top-level SLS flight test objectives, applicability of the F/A-18 as a platform for testing a launch vehicle control design, test cases designed to fully vet the AAC algorithm, flight test results, and conclusions regarding the functionality of AAC. The AAC algorithm developed at Marshall Space Flight Center is a forward loop gain multiplicative adaptive algorithm that modifies the total attitude control system gain in response to sensed model errors or undesirable parasitic mode resonances. The AAC algorithm provides the capability to improve or decrease performance by balancing attitude tracking with the mitigation of parasitic dynamics, such as control-structure interaction or servo-actuator limit cycles. In the case of the latter, if unmodeled or mismodeled parasitic dynamics are present that would otherwise result in a closed-loop instability or near instability, the adaptive controller decreases the total loop gain to reduce the interaction between these dynamics and the controller. This is in contrast to traditional adaptive control logic, which focuses on improving performance by increasing gain. The computationally simple AAC attitude control algorithm has stability properties that are reconcilable in the context of classical frequency-domain criteria (i.e., gain and phase margin). The algorithm assumes that the baseline attitude control design is well-tuned for a nominal trajectory and is designed to adapt only when necessary. Furthermore, the adaptation is attracted to the nominal design and adapts only on an as-needed basis (see Figure 1). The MSFC algorithm design was formulated during the Constellation Program and reached a high maturity level during SLS through simulation-based development and internal and external analytical review. The AAC algorithm design has three summary-level objectives: (1) "Do no harm;" return to baseline control design when not needed, (2) Increase performance; respond to error in ability of vehicle to track command, and (3) Regain stability; respond to undesirable control-structure interaction or other parasitic dynamics. AAC has been successfully implemented as part of the Space Launch System baseline design, including extensive testing in high-fidelity 6-DOF simulations the details of which are described in [1]. The Dryden Flight Research Center's F/A-18 Full-Scale Advanced Systems Testbed (FAST) platform is used to conduct an algorithm flight characterization experiment intended to fully vet the aforementioned design objectives. FAST was specifically designed with this type of test program in mind. The onboard flight control system has full-authority experiment control of ten aerodynamic effectors and two throttles. It has production and research sensor inputs and pilot engage/disengage and real-time configuration of up to eight different experiments on a single flight. It has failure detection and automatic reversion to fail-safe mode. The F/A-18 aircraft has an experiment envelope cleared for full-authority control and maneuvering and exhibits characteristics for robust recovery from unusual attitudes and configurations aided by the presence of a qualified test pilot. The F/A-18 aircraft has relatively high mass and inertia with exceptional performance; the F/A-18 also has a large thrust-to-weight ratio, owing to its military heritage. This enables the simulation of a portion of the ascent trajectory with a high degree of dynamic similarity to a launch vehicle, and the research flight control system can simulate unstable longitudinal dynamics. Parasitic dynamics such as slosh and bending modes, as well as atmospheric disturbances, are being produced by the airframe via modification of bending filters and the use of secondary control surfaces, including leading and trailing edge flaps, symmetric ailerons, and symmetric rudders. The platform also has the ability to inject signals in flight to simulate structural mode resonances or other challenging dynamics. This platform also offers more test maneuvers and longer maneuver times than a single rocket or missile test, which provides ample opportunity to fully and repeatedly exercise all aspects of the algorithm. Prior to testing on an F/A-18, AAC was the only component of the SLS autopilot design that had not been flight tested. The testing described in this paper raises the Technology Readiness Level (TRL) early in the SLS Program and is able to demonstrate its capabilities and robustness in a flight environment.

  2. Incorporation of quality updates for JPSS CGS Products

    NASA Astrophysics Data System (ADS)

    Cochran, S.; Grant, K. D.; Ibrahim, W.; Brueske, K. F.; Smit, P.

    2016-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. This paper will discuss both the theoretical basis and the actual practices used to date to identify, test and incorporate algorithm updates into the CGS processing baseline. To provide a basis for this support, Raytheon developed a theoretical analysis framework, and the application of derived engineering processes, for the maintenance of consistency and integrity of remote sensing operational algorithm outputs. The framework is an abstraction of the operationalization of the science-grade algorithm (Sci2Ops) process used throughout the JPSS program. By combining software and systems engineering controls, manufacturing disciplines to detect and reduce defects, and a standard process to control analysis, an environment to maintain operational algorithm maturity is achieved. Results of the use of this approach to implement algorithm changes into operations will also be detailed.

  3. Methods and Tools for Product Quality Maintenance in JPSS CGS

    NASA Astrophysics Data System (ADS)

    Cochran, S.; Smit, P.; Grant, K. D.; Jamilkowski, M. L.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. This paper will discuss both the theoretical basis and the actual practices used to date to identify, test and incorporate algorithm updates into the CGS processing baseline. To provide a basis for this support, Raytheon developed a theoretical analysis framework, and the application of derived engineering processes, for the maintenance of consistency and integrity of remote sensing operational algorithm outputs. The framework is an abstraction of the operationalization of the science-grade algorithm (Sci2Ops) process used throughout the JPSS program. By combining software and systems engineering controls, manufacturing disciplines to detect and reduce defects, and a standard process to control analysis, an environment to maintain operational algorithm maturity is achieved. Results of the use of this approach to implement algorithm changes into operations will also be detailed.

  4. Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control

    NASA Astrophysics Data System (ADS)

    Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming

    2018-01-01

    In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.

  5. Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Michaeli, Linor; Bahabad, Alon

    2018-05-01

    We employ a genetic algorithm to control a pulse-shaping system pumping a nonlinear photonic crystal with ultrashort pulses. With this system, we are able to modify the spectrum of the generated supercontinuum (SC) radiation to yield narrow Gaussian-like features around pre-selected wavelengths over the whole SC spectrum.

  6. Distributed Database Control and Allocation. Volume 1. Frameworks for Understanding Concurrency Control and Recovery Algorithms.

    DTIC Science & Technology

    1983-10-01

    an Aborti , It forwards the operation directly to the recovery system. When the recovery system acknowledges that the operation has been processed, the...list... AbortI . rite Ti Into the abort list. Then undo all of Ti’s writes by reedina their bet ore-images from the audit trail and writin. them back...Into the stable database. [Ack) Then, delete Ti from the active list. Restart. Process Aborti for each Ti on the active list. Ack) In this algorithm

  7. Design of intelligent vehicle control system based on single chip microcomputer

    NASA Astrophysics Data System (ADS)

    Zhang, Congwei

    2018-06-01

    The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.

  8. Algorithm for solving of two-level hierarchical minimax program control problem of final state the regional socio-economic system in the presence of risks

    NASA Astrophysics Data System (ADS)

    Shorikov, A. F.

    2017-10-01

    In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks. For this problem we propose a mathematical model in the form of two-level hierarchical minimax program control problem of the final state of this process with incomplete information. For solving of its problem we constructed the common algorithm that has a form of a recurrent procedure of solving a linear programming and a finite optimization problems.

  9. Chaos control in delayed phase space constructed by the Takens embedding theory

    NASA Astrophysics Data System (ADS)

    Hajiloo, R.; Salarieh, H.; Alasty, A.

    2018-01-01

    In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.

  10. Power system security enhancement through direct non-disruptive load control

    NASA Astrophysics Data System (ADS)

    Ramanathan, Badri Narayanan

    The transition to a competitive market structure raises significant concerns regarding reliability of the power grid. A need to build tools for security assessment that produce operating limit boundaries for both static and dynamic contingencies is recognized. Besides, an increase in overall uncertainty in operating conditions makes corrective actions at times ineffective leaving the system vulnerable to instability. The tools that are in place for stability enhancement are mostly corrective and suffer from lack of robustness to operating condition changes. They often pose serious coordination challenges. With deregulation, there have also been ownership and responsibility issues associated with stability controls. However, the changing utility business model and the developments in enabling technologies such as two-way communication, metering, and control open up several new possibilities for power system security enhancement. This research proposes preventive modulation of selected loads through direct control for power system security enhancement. Two main contributions of this research are the following: development of an analysis framework and two conceptually different analysis approaches for load modulation to enhance oscillatory stability, and the development and study of algorithms for real-time modulation of thermostatic loads. The underlying analysis framework is based on the Structured Singular Value (SSV or mu) theory. Based on the above framework, two fundamentally different approaches towards analysis of the amount of load modulation for desired stability performance have been developed. Both the approaches have been tested on two different test systems: CIGRE Nordic test system and an equivalent of the Western Electric Coordinating Council test system. This research also develops algorithms for real-time modulation of thermostatic loads that use the results of the analysis. In line with some recent load management programs executed by utilities, two different algorithms based on dynamic programming are proposed for air-conditioner loads, while a decision-tree based algorithm is proposed for water-heater loads. An optimization framework has been developed employing the above algorithms. Monte Carlo simulations have been performed using this framework with the objective of studying the impact of different parameters and constraints on the effectiveness as well as the effect of control. The conclusions drawn from this research strongly advocate direct load control for stability enhancement from the perspectives of robustness and coordination, as well as economic viability and the developments towards availability of the institutional framework for load participation in providing system reliability services.

  11. A Novel Control Strategy for Autonomous Operation of Isolated Microgrid with Prioritized Loads

    NASA Astrophysics Data System (ADS)

    Kumar, R. Hari; Ushakumari, S.

    2018-05-01

    Maintenance of power balance between generation and demand is one of the most critical requirements for the stable operation of a power system network. To mitigate the power imbalance during the occurrence of any disturbance in the system, fast acting algorithms are inevitable. This paper proposes a novel algorithm for load shedding and network reconfiguration in an isolated microgrid with prioritized loads and multiple islands, which will help to quickly restore the system in the event of a fault. The performance of the proposed algorithm is enhanced using genetic algorithm and its effectiveness is illustrated with simulation results on modified Consortium for Electric Reliability Technology Solutions (CERTS) microgrid.

  12. Experimental quantum computing to solve systems of linear equations.

    PubMed

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  13. Resonator reset in circuit QED by optimal control for large open quantum systems

    NASA Astrophysics Data System (ADS)

    Boutin, Samuel; Andersen, Christian Kraglund; Venkatraman, Jayameenakshi; Ferris, Andrew J.; Blais, Alexandre

    2017-10-01

    We study an implementation of the open GRAPE (gradient ascent pulse engineering) algorithm well suited for large open quantum systems. While typical implementations of optimal control algorithms for open quantum systems rely on explicit matrix exponential calculations, our implementation avoids these operations, leading to a polynomial speedup of the open GRAPE algorithm in cases of interest. This speedup, as well as the reduced memory requirements of our implementation, are illustrated by comparison to a standard implementation of open GRAPE. As a practical example, we apply this open-system optimization method to active reset of a readout resonator in circuit QED. In this problem, the shape of a microwave pulse is optimized such as to empty the cavity from measurement photons as fast as possible. Using our open GRAPE implementation, we obtain pulse shapes, leading to a reset time over 4 times faster than passive reset.

  14. An Energy-Efficient Underground Localization System Based on Heterogeneous Wireless Networks

    PubMed Central

    Yuan, Yazhou; Chen, Cailian; Guan, Xinping; Yang, Qiuling

    2015-01-01

    A precision positioning system with energy efficiency is of great necessity for guaranteeing personnel safety in underground mines. The location information of the miners' should be transmitted to the control center timely and reliably; therefore, a heterogeneous network with the backbone based on high speed Industrial Ethernet is deployed. Since the mobile wireless nodes are working in an irregular tunnel, a specific wireless propagation model cannot fit all situations. In this paper, an underground localization system is designed to enable the adaptation to kinds of harsh tunnel environments, but also to reduce the energy consumption and thus prolong the lifetime of the network. Three key techniques are developed and implemented to improve the system performance, including a step counting algorithm with accelerometers, a power control algorithm and an adaptive packets scheduling scheme. The simulation study and experimental results show the effectiveness of the proposed algorithms and the implementation. PMID:26016918

  15. An Environment for Hardware-in-the-Loop Formation Navigation and Control Simulation

    NASA Technical Reports Server (NTRS)

    Burns, Rich

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Testbed (FFTB) at NASA's Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the injection of GPS receiver hardware into the simulation loop, and support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described in detail. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described in detail. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented and results are analyzed.

  16. A technique for pole-zero placement for dual-input control systems. [computer simulation of CH-47 helicopter longitudinal dynamics

    NASA Technical Reports Server (NTRS)

    Reid, G. F.

    1976-01-01

    A technique is presented for determining state variable feedback gains that will place both the poles and zeros of a selected transfer function of a dual-input control system at pre-determined locations in the s-plane. Leverrier's algorithm is used to determine the numerator and denominator coefficients of the closed-loop transfer function as functions of the feedback gains. The values of gain that match these coefficients to those of a pre-selected model are found by solving two systems of linear simultaneous equations. The algorithm has been used in a computer simulation of the CH-47 helicopter to control longitudinal dynamics.

  17. Compensator improvement for multivariable control systems

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.; Gresham, L. L.

    1977-01-01

    A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples.

  18. A hierarchical framework for air traffic control

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik

    Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation in NextGen will affect the overall performance of air traffic control. The dissertation also provides solutions to several key estimation problems that support corresponding control tasks. Throughout the development of these estimation algorithms, aircraft motion is modeled using hybrid systems, which encapsulate both the discrete flight mode of an aircraft and the evolution of continuous states such as position and velocity. The target-tracking problem is posed as one of hybrid state estimation, and two new algorithms are developed to exploit structure specific to aircraft motion, especially near airports. First, discrete mode evolution is modeled using state-dependent transitions, in which the likelihood of changing flight modes is dependent on aircraft state. Second, an estimator is designed for systems with limited mode changes, including arrival aircraft. Improved target tracking facilitates increased safety in collision avoidance and trajectory design problems. A multiple-target tracking and identity management algorithm is developed to improve situational awareness for controllers about multiple maneuvering targets in a congested region. Finally, tracking algorithms are extended to predict aircraft landing times; estimated time of arrival prediction is one example of important decision support information for air traffic control.

  19. Design and FPGA Implementation of a Universal Chaotic Signal Generator Based on the Verilog HDL Fixed-Point Algorithm and State Machine Control

    NASA Astrophysics Data System (ADS)

    Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng

    In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.

  20. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    PubMed

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

Top