Sample records for control system coupled

  1. Systems, methods, and products for graphically illustrating and controlling a droplet actuator

    NASA Technical Reports Server (NTRS)

    Brafford, Keith R. (Inventor); Pamula, Vamsee K. (Inventor); Paik, Philip Y. (Inventor); Pollack, Michael G. (Inventor); Sturmer, Ryan A. (Inventor); Smith, Gregory F. (Inventor)

    2010-01-01

    Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator. According to yet another embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, a display device displaying a user interface electronically coupled to the controller, and software for executing a protocol loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller.

  2. Coupled dynamic systems and Le Chatelier's principle in noise control

    NASA Astrophysics Data System (ADS)

    Maidanik, G.; Becker, K. J.

    2004-05-01

    Investigation of coupling an externally driven dynamic system-a master dynamic system-to a passive one-an adjunct dynamic system-reveals that the response of the adjunct dynamic system affects the precoupled response of the master dynamic system. The responses, in the two dynamic systems when coupled, are estimated by the stored energies (Es) and (E0), respectively. Since the adjunct dynamic system, prior to coupling, was with zero (0) stored energy, E0s=0, the precoupled stored energy (E00) in the master dynamic system is expected to be reduced to (E0) when coupling is instituted; i.e., one expects E0

  3. Secure videoconferencing equipment switching system and method

    DOEpatents

    Dirks, David H; Gomes, Diane; Stewart, Corbin J; Fischer, Robert A

    2013-04-30

    Examples of systems described herein include videoconferencing systems having audio/visual components coupled to a codec. The codec may be configured by a control system. Communication networks having different security levels may be alternately coupled to the codec following appropriate configuration by the control system. The control system may also be coupled to the communication networks.

  4. Control system and method for a hybrid electric vehicle

    DOEpatents

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  5. On a stochastic control method for weakly coupled linear systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kwong, R. H.

    1972-01-01

    The stochastic control of two weakly coupled linear systems with different controllers is considered. Each controller only makes measurements about his own system; no information about the other system is assumed to be available. Based on the noisy measurements, the controllers are to generate independently suitable control policies which minimize a quadratic cost functional. To account for the effects of weak coupling directly, an approximate model, which involves replacing the influence of one system on the other by a white noise process is proposed. Simple suboptimal control problem for calculating the covariances of these noises is solved using the matrix minimum principle. The overall system performance based on this scheme is analyzed as a function of the degree of intersystem coupling.

  6. Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime

    NASA Astrophysics Data System (ADS)

    Zhu, Gui-Lei; Lü, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying

    2018-03-01

    Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science.

  7. Weld Nugget Temperature Control in Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  8. Triply redundant integrated navigation and asset visibility system

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2011-11-29

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  9. Triply redundant integrated navigation and asset visibility system

    DOEpatents

    Smith, Stephen F.; Moore, James A.

    2013-01-22

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  10. Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice.

    PubMed

    Lee, Bumsu; Liu, Wenjing; Naylor, Carl H; Park, Joohee; Malek, Stephanie C; Berger, Jacob S; Johnson, A T Charlie; Agarwal, Ritesh

    2017-07-12

    Active control of light-matter interactions in semiconductors is critical for realizing next generation optoelectronic devices with real-time control of the system's optical properties and hence functionalities via external fields. The ability to dynamically manipulate optical interactions by applied fields in active materials coupled to cavities with fixed geometrical parameters opens up possibilities of controlling the lifetimes, oscillator strengths, effective mass, and relaxation properties of a coupled exciton-photon (or plasmon) system. Here, we demonstrate electrical control of exciton-plasmon coupling strengths between strong and weak coupling limits in a two-dimensional semiconductor integrated with plasmonic nanoresonators assembled in a field-effect transistor device by electrostatic doping. As a result, the energy-momentum dispersions of such an exciton-plasmon coupled system can be altered dynamically with applied electric field by modulating the excitonic properties of monolayer MoS 2 arising from many-body effects. In addition, evidence of enhanced coupling between charged excitons (trions) and plasmons was also observed upon increased carrier injection, which can be utilized for fabricating Fermionic polaritonic and magnetoplasmonic devices. The ability to dynamically control the optical properties of a coupled exciton-plasmonic system with electric fields demonstrates the versatility of the coupled system and offers a new platform for the design of optoelectronic devices with precisely tailored responses.

  11. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  12. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    PubMed

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities

    NASA Astrophysics Data System (ADS)

    Stevanović Hedrih, K.

    2008-02-01

    This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of "an open a spiral form" of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task

  14. Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library

    DOE PAGES

    Zuo, Wangda; Wetter, Michael; Tian, Wei; ...

    2015-07-13

    Here, this paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation ofmore » the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Lastly, further research and development needs were also discussed.« less

  15. Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Wangda; Wetter, Michael; Tian, Wei

    Here, this paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation ofmore » the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Lastly, further research and development needs were also discussed.« less

  16. Using the Model Coupling Toolkit to couple earth system models

    USGS Publications Warehouse

    Warner, J.C.; Perlin, N.; Skyllingstad, E.D.

    2008-01-01

    Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.

  17. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    PubMed

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  19. Adaptive Fractional-order Control for Synchronization of Two Coupled Neurons in the External Electrical Stimulation

    PubMed Central

    Mehdiabadi, M. R. Rahmani; Rouhani, E.; Mashhadi, S. K. Mousavi; Jalali, A. A.

    2014-01-01

    This paper addresses synchronizing two coupled chaotic FitzHugh–Nagumo (FHN) neurons with weakly gap junction under external electrical stimulation (EES). To transmit information among coupled neurons, by generalization of the integer-order FHN equations of the coupled system into the fractional-order in frequency domain using Crone approach, the behavior of each coupled neuron relies on its past behavior and the memorized system can be a better fit for the neuron response. An adaptive fractional-order controller based on the Lyaponuv stability theory was designed to synchronize two neurons electrically coupled with gap junction in EES. The proposed controller is also robust to the inevitable random noise such as disturbances of ionic channels. The simulation results demonstrate the effectiveness of the control scheme. PMID:25337373

  20. Entertainment and Pacification System For Car Seat

    NASA Technical Reports Server (NTRS)

    Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)

    2006-01-01

    An entertainment and pacification system for use with a child car seat has speakers mounted in the child car seat with a plurality of audio sources and an anti-noise audio system coupled to the child car seat. A controllable switching system provides for, at any given time, the selective activation of i) one of the audio sources such that the audio signal generated thereby is coupled to one or more of the speakers, and ii) the anti-noise audio system such that an ambient-noise-canceling audio signal generated thereby is coupled to one or more of the speakers. The controllable switching system can receive commands generated at one of first controls located at the child car seat and second controls located remotely with respect to the child car seat with commands generated by the second controls overriding commands generated by the first controls.

  1. Analysis of airframe/engine interactions - An integrated control perspective

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.; Garg, Sanjay

    1990-01-01

    Techniques for the analysis of the dynamic interactions between airframe/engine dynamical systems are presented. Critical coupling terms are developed that determine the significance of these interactions with regard to the closed loop stability and performance of the feedback systems. A conceptual model is first used to indicate the potential sources of the coupling, how the coupling manifests itself, and how the magnitudes of these critical coupling terms are used to quantify the effects of the airframe/engine interactions. A case study is also presented involving an unstable airframe with thrust vectoring for attitude control. It is shown for this system with classical, decentralized control laws that there is little airframe/engine interaction, and the stability and performance with those control laws is not affected. Implications of parameter uncertainty in the coupling dynamics is also discussed, and effects of these parameter variations are also demonstrated to be small for this vehicle configuration.

  2. Sliding mode control for a two-joint coupling nonlinear system based on extended state observer.

    PubMed

    Zhao, Ling; Cheng, Haiyan; Wang, Tao

    2018-02-01

    A two-joint coupling nonlinear system driven by pneumatic artificial muscles is introduced in this paper. A sliding mode controller with extended state observer is proposed to cope with nonlinearities and disturbances for the two-joint coupling nonlinear system. In addition, convergence of the extended state observer is presented and stability analysis of the closed-loop system is also demonstrated with the sliding mode controller. Lastly, some experiments are carried out to show the reality effectiveness of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  4. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2015-05-19

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  5. Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems

    PubMed Central

    Du, Han; Zhang, Xingwang; Chen, Guoqiang; Deng, Jie; Chau, Fook Siong; Zhou, Guangya

    2016-01-01

    Photonic molecules have a range of promising applications including quantum information processing, where precise control of coupling strength is critical. Here, by laterally shifting the center-to-center offset of coupled photonic crystal nanobeam cavities, we demonstrate a method to precisely and dynamically control the coupling strength of photonic molecules through integrated nanoelectromechanical systems with a precision of a few GHz over a range of several THz without modifying the nature of their constituent resonators. Furthermore, the coupling strength can be tuned continuously from negative (strong coupling regime) to zero (weak coupling regime) and further to positive (strong coupling regime) and vice versa. Our work opens a door to the optimization of the coupling strength of photonic molecules in situ for the study of cavity quantum electrodynamics and the development of efficient quantum information devices. PMID:27097883

  6. Output Feedback Stabilization for a Class of Multi-Variable Bilinear Stochastic Systems with Stochastic Coupling Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qichun; Zhou, Jinglin; Wang, Hong

    In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.

  7. Quantum Phase Transitions in Cavity Coupled Dot systems

    NASA Astrophysics Data System (ADS)

    Kasisomayajula, Vijay; Russo, Onofrio

    2011-03-01

    We investigate a Quantum Dot System, in which the transconductance, in part, is due to spin coupling, with each dot subjected to a biasing voltage. When this system is housed in a QED cavity, the cavity dot coupling alters the spin coupling of the coupled dots significantly via the Purcell Effect. In this paper we show the extent to which one can control the various coupling parameters: the inter dot coupling, the individual dots coupling with the cavity and the coupled dots coupling with the cavity as a single entity. We show that the dots coupled to each other and to the cavity, the spin transport can be controlled selectively. We derive the conditions for such control explicitly. Further, we discuss the Quantum phase transition effects due to the charge and spin transport through the dots. The electron transport through the dots, electron-electron spin interaction and the electron-photon interaction are treated using the Non-equilibrium Green's Function Formalism. http://publish.aps.org/search/field/author/Trif_Mircea (Trif Mircea), http://publish.aps.org/search/field/author/Golovach_Vitaly_N (Vitaly N. Golovach), and http://publish.aps.org/search/field/author/Loss_Daniel (Daniel Loss), Phys. Rev. B 75, 085307 (2007)

  8. Controlling nonlinear optical response in an open four-level molecular system using quantum control of spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Jamshidi-Ghaleh, Kazem; Ebrahimi-hamed, Zahra; Sahrai, Mostafa

    2017-10-01

    This paper investigates the behavior of linear and nonlinear optical susceptibility of an open four-level molecular system, under two-step excitation based on electromagnetically induced transparency (EIT). The system was irradiated with a weak probe field and strong coupling field. It is shown that the use of a strong coupling field in the triplet states of an alkali-metal dimer can change the spin-orbit interaction (SOI). The optical response of the system can then be modified in a controllable way. The electromagnetically induced transparency transforms into electromagnetically induced absorption (EIA) in the presence of a coupling field. Changing the sign of the dispersion, this region is associated with switching subluminal and superluminal propagation. Furthermore, for the proper value of the coupling field, the controllable parameters, enhanced Kerr nonlinearity with reduced linear absorption, can be obtained under a weak probe field. With this approach, SOI can be controlled by changing only one of the controllable parameters, using triplet-triplet strong coupling with different spin state. Therefore, the desired region of the spectra can be obtained, in contrast to the other four-level system, in which at least two strong fields are used to change optical properties. This mechanism can be suitable in molecular systems or semiconductors to be used in optical bistability and fast all-optical switching devices.

  9. 49 CFR 236.509 - Two or more locomotives coupled.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.509 Two or more locomotives coupled. The automatic train stop, train control or cab signal apparatus shall be arranged so that when two or...

  10. 49 CFR 236.509 - Two or more locomotives coupled.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.509 Two or more locomotives coupled. The automatic train stop, train control or cab signal apparatus shall be arranged so that when two or...

  11. Collaborative simulation method with spatiotemporal synchronization process control

    NASA Astrophysics Data System (ADS)

    Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian

    2016-10-01

    When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.

  12. Synchronization control in multiplex networks of nonlinear multi-agent systems

    NASA Astrophysics Data System (ADS)

    He, Wangli; Xu, Zhiwei; Du, Wenli; Chen, Guanrong; Kubota, Naoyuki; Qian, Feng

    2017-12-01

    This paper is concerned with synchronization control of a multiplex network, in which two different kinds of relationships among agents coexist. Hybrid coupling, including continuous linear coupling and impulsive coupling, is proposed to model the coexisting distinguishable interactions. First, by adding impulsive controllers on a small portion of agents, local synchronization is analyzed by linearizing the error system at the desired trajectory. Then, global synchronization is studied based on the Lyapunov stability theory, where a time-varying coupling strength is involved. To further deal with the time-varying coupling strength, an adaptive updating law is introduced and a corresponding sufficient condition is obtained to ensure synchronization of the multiplex network towards the desired trajectory. Networks of Chua's circuits and other chaotic systems with double layers of interactions are simulated to verify the proposed method.

  13. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    NASA Astrophysics Data System (ADS)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  14. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    PubMed

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  15. Systems and methods for deactivating a matrix converter

    DOEpatents

    Ransom, Ray M.

    2013-04-02

    Systems and methods are provided for deactivating a matrix conversion module. An electrical system comprises an alternating current (AC) interface, a matrix conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the matrix conversion module, and a control module. The control module is coupled to the matrix conversion module, and in response to a shutdown condition, the control module is configured to operate the matrix conversion module to deactivate the first conversion module when a magnitude of a current through the inductive element is less than a threshold value.

  16. System and method for controlling microgrid

    DOEpatents

    Bose, Sumit [Niskayuna, NY; Achilles, Alfredo Sebastian [Bavaria, DE; Liu, Yan [Ballston Lake, NY; Ahmed, Emad Ezzat [Munich, DE; Garces, Luis Jose [Niskayuna, NY

    2011-07-19

    A system for controlling a microgrid includes microgrid assets and a tieline for coupling the microgrid to a bulk grid; and a tieline controller coupled to the tieline. At least one of the microgrid assets comprises a different type of asset than another one of the microgrid assets. The tieline controller is configured for providing tieline control signals to adjust active and reactive power in respective microgrid assets in response to commands from the bulk grid operating entity, microgrid system conditions, bulk grid conditions, or combinations thereof.

  17. Process control monitoring systems, industrial plants, and process control monitoring methods

    DOEpatents

    Skorpik, James R [Kennewick, WA; Gosselin, Stephen R [Richland, WA; Harris, Joe C [Kennewick, WA

    2010-09-07

    A system comprises a valve; a plurality of RFID sensor assemblies coupled to the valve to monitor a plurality of parameters associated with the valve; a control tag configured to wirelessly communicate with the respective tags that are coupled to the valve, the control tag being further configured to communicate with an RF reader; and an RF reader configured to selectively communicate with the control tag, the reader including an RF receiver. Other systems and methods are also provided.

  18. Carrier phase synchronization system for improved amplitude modulation and television broadcast reception

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2011-02-01

    Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.

  19. Method and apparatus for controlling pitch and flap angles of a wind turbine

    DOEpatents

    Deering, Kenneth J [Seattle, WA; Wohlwend, Keith P [Issaquah, WA

    2009-05-12

    A wind turbine with improved response to wind conditions is provided. Blade flap angle motion is accompanied by a change in pitch angle by an amount defining a pitch/flap coupling ratio. The coupling ratio is non-constant as a function of a flap angle and is preferably a substantially continuous, non-linear function of flap angle. The non-constant coupling ratio can be provided by mechanical systems such as a series of linkages or by configuring electronic or other control systems and/or angle sensors. A link with a movable proximal end advantageously is part of the mechanical system. The system can provide relatively large coupling ratios and relatively large rates of coupling ratio changes especially for near-feather pitches and low flap angles.

  20. Renormalization of Collective Modes in Large-Scale Neural Dynamics

    NASA Astrophysics Data System (ADS)

    Moirogiannis, Dimitrios; Piro, Oreste; Magnasco, Marcelo O.

    2017-05-01

    The bulk of studies of coupled oscillators use, as is appropriate in Physics, a global coupling constant controlling all individual interactions. However, because as the coupling is increased, the number of relevant degrees of freedom also increases, this setting conflates the strength of the coupling with the effective dimensionality of the resulting dynamics. We propose a coupling more appropriate to neural circuitry, where synaptic strengths are under biological, activity-dependent control and where the coupling strength and the dimensionality can be controlled separately. Here we study a set of N→ ∞ strongly- and nonsymmetrically-coupled, dissipative, powered, rotational dynamical systems, and derive the equations of motion of the reduced system for dimensions 2 and 4. Our setting highlights the statistical structure of the eigenvectors of the connectivity matrix as the fundamental determinant of collective behavior, inheriting from this structure symmetries and singularities absent from the original microscopic dynamics.

  1. Multicoordination Control Strategy Performance in Hybrid Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezzini, Paolo; Bryden, Kenneth M.; Tucker, David

    This paper evaluates a state-space methodology of a multi-input multi-output (MIMO) control strategy using a 2 × 2 tightly coupled scenario applied to a physical gas turbine fuel cell hybrid power system. A centralized MIMO controller was preferred compared to a decentralized control approach because previous simulation studies showed that the coupling effect identified during the simultaneous control of the turbine speed and cathode airflow was better minimized. The MIMO controller was developed using a state-space dynamic model of the system that was derived using first-order transfer functions empirically obtained through experimental tests. The controller performance was evaluated in termsmore » of disturbance rejection through perturbations in the gas turbine operation, and setpoint tracking maneuver through turbine speed and cathode airflow steps. The experimental results illustrate that a multicoordination control strategy was able to mitigate the coupling of each actuator to each output during the simultaneous control of the system, and improved the overall system performance during transient conditions. On the other hand, the controller showed different performance during validation in simulation environment compared to validation in the physical facility, which will require a better dynamic modeling of the system for the implementation of future multivariable control strategies.« less

  2. Multicoordination Control Strategy Performance in Hybrid Power Systems

    DOE PAGES

    Pezzini, Paolo; Bryden, Kenneth M.; Tucker, David

    2018-04-11

    This paper evaluates a state-space methodology of a multi-input multi-output (MIMO) control strategy using a 2 × 2 tightly coupled scenario applied to a physical gas turbine fuel cell hybrid power system. A centralized MIMO controller was preferred compared to a decentralized control approach because previous simulation studies showed that the coupling effect identified during the simultaneous control of the turbine speed and cathode airflow was better minimized. The MIMO controller was developed using a state-space dynamic model of the system that was derived using first-order transfer functions empirically obtained through experimental tests. The controller performance was evaluated in termsmore » of disturbance rejection through perturbations in the gas turbine operation, and setpoint tracking maneuver through turbine speed and cathode airflow steps. The experimental results illustrate that a multicoordination control strategy was able to mitigate the coupling of each actuator to each output during the simultaneous control of the system, and improved the overall system performance during transient conditions. On the other hand, the controller showed different performance during validation in simulation environment compared to validation in the physical facility, which will require a better dynamic modeling of the system for the implementation of future multivariable control strategies.« less

  3. Diesel engine torsional vibration control coupling with speed control system

    NASA Astrophysics Data System (ADS)

    Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen

    2017-09-01

    The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.

  4. Quantum controlled-Z gate for weakly interacting qubits

    NASA Astrophysics Data System (ADS)

    Mičuda, Michal; Stárek, Robert; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Ježek, Miroslav; Filip, Radim; Fiurášek, Jaromír

    2015-08-01

    We propose and experimentally demonstrate a scheme for the implementation of a maximally entangling quantum controlled-Z gate between two weakly interacting systems. We conditionally enhance the interqubit coupling by quantum interference. Both before and after the interqubit interaction, one of the qubits is coherently coupled to an auxiliary quantum system, and finally it is projected back onto qubit subspace. We experimentally verify the practical feasibility of this technique by using a linear optical setup with weak interferometric coupling between single-photon qubits. Our procedure is universally applicable to a wide range of physical platforms including hybrid systems such as atomic clouds or optomechanical oscillators coupled to light.

  5. Optimal Control Strategy Design Based on Dynamic Programming for a Dual-Motor Coupling-Propulsion System

    PubMed Central

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch. PMID:25540814

  6. Optimal control strategy design based on dynamic programming for a dual-motor coupling-propulsion system.

    PubMed

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch.

  7. Control-system techniques for improved departure/spin resistance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, L. T.; Gilbert, W. P.; Ogburn, M. E.

    1980-01-01

    Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability.

  8. Systems and methods for commutating inductor current using a matrix converter

    DOEpatents

    Ransom, Ray M; Kajouke, Lateef A; Perisic, Milun

    2012-10-16

    Systems and methods are provided for delivering current using a matrix converter in a vehicle. An electrical system comprises an AC interface, a first conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the first conversion module, and a control module coupled to the first conversion module. The control module is configured to operate the first conversion module in a bidirectional operating mode to commutate current bidirectionally. When a magnitude of the current through the inductive element is greater than a first threshold value, the control module operates the conversion module in a unidirectional operating mode, wherein current is commutated unidirectionally.

  9. Stability analysis of coupled torsional vibration and pressure in oilwell drillstring system

    NASA Astrophysics Data System (ADS)

    Toumi, S.; Beji, L.; Mlayeh, R.; Abichou, A.

    2018-01-01

    To address security issues in oilwell drillstring system, the drilling operation handling which is in generally not autonomous but ensured by an operator may be drill bit destructive or fatal for the machine. To control of stick-slip phenomenon, the drillstring control at the right speed taking only the drillstring vibration is not sufficient as the mud dynamics and the pressure change around the drill pipes cannot be neglected. A coupled torsional vibration and pressure model is presented, and the well-posedness problem is addressed. As a Partial Differential Equation-Ordinary Differential Equation (PDE-ODE) coupled system, and in order to maintain a non destructive downhole pressure, we investigate the control stability with and without the damping term in the wave PDE. In terms of, the torsional variable, the downhole pressure, and the annulus pressure, the coupled system equilibrium is shown to be exponentially stable.

  10. Development of a Rotor-Body Coupled Analysis for an Active Mount Aeroelastic Rotor Testbed. Degree awarded by George Washington Univ., May 1996

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.

    1998-01-01

    At the Langley Research Center an active mount rotorcraft testbed is being developed for use in the Langley Transonic Dynamics Tunnel. This testbed, the second generation version of the Aeroelastic Rotor Experimental System (ARES-II), can impose rotor hub motions and measure the response so that rotor-body coupling phenomena may be investigated. An analytical method for coupling an aeroelastically scaled model rotor system to the ARES-II is developed in the current study. Models of the testbed and the rotor system are developed in independent analyses, and an impedance-matching approach is used to couple the rotor system to the testbed. The development of the analytical models and the coupling method is examined, and individual and coupled results are presented for the testbed and rotor system. Coupled results are presented with and without applied hub motion, and system loads and displacements are examined. The results show that a closed-loop control system is necessary to achieve desired hub motions, that proper modeling requires including the loads at the rotor hub and rotor control system, and that the strain-gauge balance placed in the rotating system of the ARES-II provided the best loads results.

  11. Development of an analysis for the determination of coupled helicopter rotor/control system dynamic response. Part 2: Program listing

    NASA Technical Reports Server (NTRS)

    Sutton, L. R.

    1975-01-01

    A theoretical analysis is developed for a coupled helicopter rotor system to allow determination of the loads and dynamic response behavior of helicopter rotor systems in both steady-state forward flight and maneuvers. The effects of an anisotropically supported swashplate or gyroscope control system and a deformed free wake on the rotor system dynamic response behavior are included.

  12. Magnetic-field-mediated coupling and control in hybrid atomic-nanomechanical systems

    NASA Astrophysics Data System (ADS)

    Tretiakov, A.; LeBlanc, L. J.

    2016-10-01

    Magnetically coupled hybrid quantum systems enable robust quantum state control through Landau-Zener transitions. Here, we show that an ultracold atomic sample magnetically coupled to a nanomechanical resonator can be used to cool the resonator's mechanical motion, to measure the mechanical temperature, and to enable entanglement of more than one of these mesoscopic objects. We calculate the expected coupling for both permanent-magnet and current-conducting nanostring resonators and describe how this hybridization is attainable using recently developed fabrication techniques, including SiN nanostrings and atom chips.

  13. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems.

    PubMed

    Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng

    2017-03-10

    The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases.

  14. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems

    PubMed Central

    Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng

    2017-01-01

    The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases. PMID:28281654

  15. [Agricultural eco-economic system coupling in Zhifanggou watershed in hilly-gully region of Loess Plateau].

    PubMed

    Wang, Ji-Jun

    2009-11-01

    Agricultural eco-economic system coupling is an organic unit formed by the inherent interaction between agricultural ecosystem and economic system, and regulated and controlled by mankind moderate interference. Its status can be expressed by the circular chain-net structure of agricultural resources and agricultural industry. The agricultural eco-economic system in Zhifanggou watershed has gone through the process of system coupling, system conflict, system coupling, and partial conflict in high leverage, which is caused by the farmers' requirement and the state's macro-policy, economic means, and administrative means. To cope with the problems of agricultural eco-economics system coupling in Zhifanggou watershed, the optimal coupling model should be established, with tree-grass resources and related industries as the core.

  16. Carrier-frequency synchronization system for improved amplitude modulation and television broadcast reception

    DOEpatents

    Smith, Stephen F.; Moore, James A.

    2003-05-13

    Systems and methods are described for carrier-frequency synchronization for improved AM and TV broadcast reception. A method includes synchronizing a carrier frequency of a broadcast signal with a remote reference frequency. An apparatus includes a reference signal receiver; a phase comparator coupled to the reference signal receiver; a voltage controlled oscillator coupled to the phase comparator; and a radio frequency output coupled to the voltage controlled oscillator.

  17. Role of IAC in large space systems thermal analysis

    NASA Technical Reports Server (NTRS)

    Jones, G. K.; Skladany, J. T.; Young, J. P.

    1982-01-01

    Computer analysis programs to evaluate critical coupling effects that can significantly influence spacecraft system performance are described. These coupling effects arise from the varied parameters of the spacecraft systems, environments, and forcing functions associated with disciplines such as thermal, structures, and controls. Adverse effects can be expected to significantly impact system design aspects such as structural integrity, controllability, and mission performance. One such needed design analysis capability is a software system that can integrate individual discipline computer codes into a highly user-oriented/interactive-graphics-based analysis capability. The integrated analysis capability (IAC) system can be viewed as: a core framework system which serves as an integrating base whereby users can readily add desired analysis modules and as a self-contained interdisciplinary system analysis capability having a specific set of fully integrated multidisciplinary analysis programs that deal with the coupling of thermal, structures, controls, antenna radiation performance, and instrument optical performance disciplines.

  18. Optimal state transfer of a single dissipative two-level system

    NASA Astrophysics Data System (ADS)

    Jirari, Hamza; Wu, Ning

    2016-04-01

    Optimal state transfer of a single two-level system (TLS) coupled to an Ohmic boson bath via off-diagonal TLS-bath coupling is studied by using optimal control theory. In the weak system-bath coupling regime where the time-dependent Bloch-Redfield formalism is applicable, we obtain the Bloch equation to probe the evolution of the dissipative TLS in the presence of a time-dependent external control field. By using the automatic differentiation technique to compute the gradient for the cost functional, we calculate the optimal transfer integral profile that can achieve an ideal transfer within a dimer system in the Fenna-Matthews-Olson (FMO) model. The robustness of the control profile against temperature variation is also analyzed.

  19. Thermal baths as quantum resources: more friends than foes?

    NASA Astrophysics Data System (ADS)

    Kurizki, Gershon; Shahmoon, Ephraim; Zwick, Analia

    2015-12-01

    In this article we argue that thermal reservoirs (baths) are potentially useful resources in processes involving atoms interacting with quantized electromagnetic fields and their applications to quantum technologies. One may try to suppress the bath effects by means of dynamical control, but such control does not always yield the desired results. We wish instead to take advantage of bath effects, that do not obliterate ‘quantumness’ in the system-bath compound. To this end, three possible approaches have been pursued by us. (i) Control of a quantum system faster than the correlation time of the bath to which it couples: such control allows us to reveal quasi-reversible/coherent dynamical phenomena of quantum open systems, manifest by the quantum Zeno or anti-Zeno effects (QZE or AZE, respectively). Dynamical control methods based on the QZE are aimed not only at protecting the quantumness of the system, but also diagnosing the bath spectra or transferring quantum information via noisy media. By contrast, AZE-based control is useful for fast cooling of thermalized quantum systems. (ii) Engineering the coupling of quantum systems to selected bath modes: this approach, based on field-atom coupling control in cavities, waveguides and photonic band structures, allows one to drastically enhance the strength and range of atom-atom coupling through the mediation of the selected bath modes. More dramatically, it allows us to achieve bath-induced entanglement that may appear paradoxical if one takes the conventional view that coupling to baths destroys quantumness. (iii) Engineering baths with appropriate non-flat spectra: this approach is a prerequisite for the construction of the simplest and most efficient quantum heat machines (engines and refrigerators). We may thus conclude that often thermal baths are ‘more friends than foes’ in quantum technologies.

  20. Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion

    PubMed Central

    Rieffel, John A.; Valero-Cuevas, Francisco J.; Lipson, Hod

    2010-01-01

    Traditional engineering approaches strive to avoid, or actively suppress, nonlinear dynamic coupling among components. Biological systems, in contrast, are often rife with these dynamics. Could there be, in some cases, a benefit to high degrees of dynamical coupling? Here we present a distributed robotic control scheme inspired by the biological phenomenon of tensegrity-based mechanotransduction. This emergence of morphology-as-information-conduit or ‘morphological communication’, enabled by time-sensitive spiking neural networks, presents a new paradigm for the decentralized control of large, coupled, modular systems. These results significantly bolster, both in magnitude and in form, the idea of morphological computation in robotic control. Furthermore, they lend further credence to ideas of embodied anatomical computation in biological systems, on scales ranging from cellular structures up to the tendinous networks of the human hand. PMID:19776146

  1. Passive thermo-optic feedback for robust athermal photonic systems

    DOEpatents

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  2. The application of charge-coupled device processors in automatic-control systems

    NASA Technical Reports Server (NTRS)

    Mcvey, E. S.; Parrish, E. A., Jr.

    1977-01-01

    The application of charge-coupled device (CCD) processors to automatic-control systems is suggested. CCD processors are a new form of semiconductor component with the unique ability to process sampled signals on an analog basis. Specific implementations of controllers are suggested for linear time-invariant, time-varying, and nonlinear systems. Typical processing time should be only a few microseconds. This form of technology may become competitive with microprocessors and minicomputers in addition to supplementing them.

  3. On controlling networks of limit-cycle oscillators

    NASA Astrophysics Data System (ADS)

    Skardal, Per Sebastian; Arenas, Alex

    2016-09-01

    The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear science community. Coupled oscillator networks represent a particularly important family of nonlinear systems, with applications ranging from the power grid to cardiac excitation. Here, we study the control of network-coupled limit cycle oscillators, extending the previous work that focused on phase oscillators. Based on stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus, by applying control to as few oscillators as possible. We develop two types of controls. The first type directs oscillators towards larger amplitudes, while the second does not. We present numerical examples of both control types and comment on the potential failures of the method.

  4. System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.

    1997-01-01

    We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.

  5. Indirect decentralized learning control

    NASA Technical Reports Server (NTRS)

    Longman, Richard W.; Lee, Soo C.; Phan, M.

    1992-01-01

    The new field of learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented a theory of indirect learning control based on use of indirect adaptive control concepts employing simultaneous identification and control. This paper develops improved indirect learning control algorithms, and studies the use of such controllers in decentralized systems. The original motivation of the learning control field was learning in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. The basic result of the paper is to show that stability of the indirect learning controllers for all subsystems when the coupling between subsystems is turned off, assures convergence to zero tracking error of the decentralized indirect learning control of the coupled system, provided that the sample time in the digital learning controller is sufficiently short.

  6. Controllability of impulse controlled systems of heat equations coupled by constant matrices

    NASA Astrophysics Data System (ADS)

    Qin, Shulin; Wang, Gengsheng

    2017-11-01

    This paper studies the approximate and null controllability for impulse controlled systems of heat equations coupled by a pair (A , B) of constant matrices. We present a necessary and sufficient condition for the approximate controllability, which is exactly Kalman's controllability rank condition of (A , B). We prove that when such a system is approximately controllable, the approximate controllability over an interval [ 0 , T ] can be realized by adding controls at arbitrary q (A , B) different control instants 0 <τ1 <τ2 < ⋯ <τ q (A , B) < T, provided that τ q (A , B) -τ1

  7. Controlled Quantum Operations of a Semiconductor Three-Qubit System

    NASA Astrophysics Data System (ADS)

    Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2018-02-01

    In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.

  8. Control of coupled oscillator networks with application to microgrid technologies.

    PubMed

    Skardal, Per Sebastian; Arenas, Alex

    2015-08-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.

  9. Control of coupled oscillator networks with application to microgrid technologies

    PubMed Central

    Skardal, Per Sebastian; Arenas, Alex

    2015-01-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions—a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself. PMID:26601231

  10. Control of coupled oscillator networks with application to microgrid technologies

    NASA Astrophysics Data System (ADS)

    Arenas, Alex

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable syn- chronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.

  11. Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system.

    PubMed

    Zhang, Fan; Ren, Juanjuan; Duan, Xueke; Zhao, Chen; Gong, Qihuang; Gu, Ying

    2018-06-13

    Scalable integrated quantum information networks calls for controllable entanglement modulation at subwavelength scale. To reduce laser disturbance among adjacent nanostructures, here we theoretically demonstrate two-qubit entanglement modulated by an evanescent field of a dielectric nanowire in an emitter-AgNP coupled system. This coupled system is considered as a nano-cavity system embedded in an evanescent vacuum. Through varying the amplitude of evanescent field, the concurrence of steady-state entanglement can be modified from 0 to 0.75. Because the interaction between emitters and the nanowire is much weaker than that inside the coupled system, the range of modulation for two-qubit entanglement is insensitive to their distance. The evanescent field controlled entangled state engineering provides the possibility to avoid optical crosstalk for on-chip steady-state entanglement. © 2018 IOP Publishing Ltd.

  12. System Simulation of Nuclear Power Plant by Coupling RELAP5 and Matlab/Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng Lin; Dong Hou; Zhihong Xu

    2006-07-01

    Since RELAP5 code has general and advanced features in thermal-hydraulic computation, it has been widely used in transient and accident safety analysis, experiment planning analysis, and system simulation, etc. So we wish to design, analyze, verify a new Instrumentation And Control (I and C) system of Nuclear Power Plant (NPP) based on the best-estimated code, and even develop our engineering simulator. But because of limited function of simulating control and protection system in RELAP5, it is necessary to expand the function for high efficient, accurate, flexible design and simulation of I and C system. Matlab/Simulink, a scientific computation software, justmore » can compensate the limitation, which is a powerful tool in research and simulation of plant process control. The software is selected as I and C part to be coupled with RELAP5 code to realize system simulation of NPPs. There are two key techniques to be solved. One is the dynamic data exchange, by which Matlab/Simulink receives plant parameters and returns control results. Database is used to communicate the two codes. Accordingly, Dynamic Link Library (DLL) is applied to link database in RELAP5, while DLL and S-Function is applied in Matlab/Simulink. The other problem is synchronization between the two codes for ensuring consistency in global simulation time. Because Matlab/Simulink always computes faster than RELAP5, the simulation time is sent by RELAP5 and received by Matlab/Simulink. A time control subroutine is added into the simulation procedure of Matlab/Simulink to control its simulation advancement. Through these ways, Matlab/Simulink is dynamically coupled with RELAP5. Thus, in Matlab/Simulink, we can freely design control and protection logic of NPPs and test it with best-estimated plant model feedback. A test will be shown to illuminate that results of coupling calculation are nearly the same with one of single RELAP5 with control logic. In practice, a real Pressurized Water Reactor (PWR) is modeled by RELAP5 code, and its main control and protection system is duplicated by Matlab/Simulink. Some steady states and transients are calculated under control of these I and C systems, and the results are compared with the plant test curves. The application showed that it can do exact system simulation of NPPs by coupling RELAP5 and Matlab/Simulink. This paper will mainly focus on the coupling method, plant thermal-hydraulic model, main control logics, test and application results. (authors)« less

  13. Communication devices for network-hopping communications and methods of network-hopping communications

    DOEpatents

    Buttles, John W

    2013-04-23

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  14. Vehicle systems: coupled and interactive dynamics analysis

    NASA Astrophysics Data System (ADS)

    Vantsevich, Vladimir V.

    2014-11-01

    This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.

  15. Development of a helicopter rotor/propulsion system dynamics analysis

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Hull, R.

    1982-01-01

    A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.

  16. A hybrid system of a membrane oscillator coupled to ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kampschulte, Tobias

    2015-05-01

    The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.

  17. Control of slow-to-fast light and single-to-double optomechanically induced transparency in a compound resonator system: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Ziauddin; Rahman, Mujeeb ur; Ahmad, Iftikhar; Qamar, Sajid

    2017-10-01

    The transmission characteristics of probe light field is investigated theoretically in a compound system of two coupled resonators. The proposed system consisted of two high-Q Fabry-Perot resonators in which one of the resonators is optomechanical. Optomechanically induced transparency (OMIT), having relatively large window, is noticed via strong coupling between the two resonators. We investigate tunable switching from single to double OMIT by increasing amplitude of the pump field. We notice that, control of slow and fast light can be obtained via the coupling strength between the two resonators.

  18. Control of Oscillation Patterns in a Symmetric Coupled Biological Oscillator System

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Tanaka, Reiko; Yamamoto, Takatoki; Fujii, Teruo

    2003-08-01

    A chain of three-oscillator system was constructed with living biological oscillators of phasmodial slime mold, Physarum polycehalum and the oscillation patterns were analyzed by the symmetric Hopf bifurcation theory using group theory. Multi-stability of oscillation patterns was observed, even when the coupling strength was fixed. This suggests that the coupling strength is not an effective parameter to obtain a desired oscillation pattern among the multiple patterns. Here we propose a method to control oscillation patterns using resonance to external stimulus and demonstrate pattern switching induced by frequency resonance given to only one of oscillators in the system.

  19. 76 FR 9265 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... for transport category airplanes. These design features include an electronic flight control system... Design Features The GVI has an electronic flight control system and no direct coupling from the cockpit...: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY...

  20. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  1. A solid-state controllable power supply for a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Tripp, John S.

    1991-01-01

    The NASA Langley 6-inch Magnetic Suspension and Balance System (6-in. MSBS) requires an independently controlled bidirectional dc power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance-coupled thyratron-controlled rectifiers as well as ac to dc motor-generator converters, is obsolete, inefficient, and unreliable. A replacement six-phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full-load efficiency is 80 percent compared with 25 percent for the resistance-coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20-kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  2. Quantum Photonic in Hybrid Cavity Systems with Strong Matter-Light Couplings

    DTIC Science & Technology

    2015-08-24

    properties. [Ref 1, 6] 2. Confinement and coupling of microcavity polaritons were readily implemented by design of the photonic crystal in the new...cavity structure, allowing flexible device design and integration of the polariton system. Zero-dimensional polariton systems were created by reducing...the area of the photonic crystal, coupling between multiple zero-dimensional polariton systems was controlled by design of the boundaries of the

  3. Optimal control of coupled parabolic-hyperbolic non-autonomous PDEs: infinite-dimensional state-space approach

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2018-04-01

    This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.

  4. Non-Markovianity in the optimal control of an open quantum system described by hierarchical equations of motion

    NASA Astrophysics Data System (ADS)

    Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.

    2018-04-01

    Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.

  5. System identification of closed-loop cardiovascular control mechanisms: diabetic autonomic neuropathy

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Mathias, J. M.; Mullen, T. J.; Cohen, R. J.; Freeman, R.

    1999-01-01

    We applied cardiovascular system identification (CSI) to characterize closed-loop cardiovascular regulation in patients with diabetic autonomic neuropathy (DAN). The CSI method quantitatively analyzes beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize four physiological coupling mechanisms, two of which are autonomically mediated (the heart rate baroreflex and the coupling of respiration, measured in terms of ILV, to heart rate) and two of which are mechanically mediated (the coupling of ventricular contraction to the generation of the ABP wavelet and the coupling of respiration to ABP). We studied 37 control and 60 diabetic subjects who were classified as having minimal, moderate, or severe DAN on the basis of standard autonomic tests. The autonomically mediated couplings progressively decreased with increasing severity of DAN, whereas the mechanically mediated couplings were essentially unchanged. CSI identified differences between the minimal DAN and control groups, which were indistinguishable based on the standard autonomic tests. CSI may provide a powerful tool for assessing DAN.

  6. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOEpatents

    Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  7. Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng

    2018-01-01

    We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.

  8. 49 CFR 229.13 - Control of locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... coupled in remote or multiple control, the propulsion system, the sanders, and the power brake system of each locomotive shall respond to control from the cab of the controlling locomotive. If a dynamic brake or regenerative brake system is in use, that portion of the system in use shall respond to control...

  9. Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2006-01-01

    This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.

  10. Coupled dynamics analysis of wind energy systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1977-01-01

    A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.

  11. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically Coupled Configuration

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Briggs, Maxwell H.; Hervol, David S.

    2011-01-01

    A pair of 1-kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12-kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measureable difference in performance from the baseline data collected when the engines were separate, and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  12. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically-Coupled Configuration

    NASA Astrophysics Data System (ADS)

    Geng, S. M.; Briggs, M. H.; Hervol, D. S.

    A pair of 1kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12 kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measurable difference in performance from the baseline data collected when the engines were separate and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  13. A High-Authority/Low-Authority Control Strategy for Coupled Aircraft-Style Bays

    NASA Technical Reports Server (NTRS)

    Schiller, N. H.; Fuller, C. R.; Cabell, R. H.

    2006-01-01

    This paper presents a numerical investigation of an active structural acoustic control strategy for coupled aircraft-style bays. While structural coupling can destabilize or limit the performance of some model-based decentralized control systems, fullycoupled centralized control strategies are impractical for typical aircraft containing several hundred bays. An alternative is to use classical rate feedback with matched, collocated transducer pairs to achieve active damping. Unfortunately, due to the conservative nature of this strategy, stability is guaranteed at the expense of achievable noise reduction. Therefore, this paper describes the development of a combined control strategy using robust active damping in addition to a high-authority controller based on linear quadratic Gaussian (LQG) theory. The combined control system is evaluated on a tensioned, two-bay model using piezoceramic actuators and ideal point velocity sensors. Transducer placement on the two-bay structure is discussed, and the advantages of a combined control strategy are presented.

  14. Amplitude death induced by mixed attractive and repulsive coupling in the relay system

    NASA Astrophysics Data System (ADS)

    Zhao, Nannan; Sun, Zhongkui; Xu, Wei

    2018-01-01

    The amplitude death (AD) phenomenon is found in the relay system in the presence of the mixed couplings composed of attractive coupling and repulsive coupling. The generation mechanism of AD is revealed and shows that the middle oscillator achieving AD is a prerequisite to further suppress oscillation of the outermost oscillators for the paradigmatic Stuart-Landau and Rössler models. Moreover, regarding the Stuart-Landau relay system as a small motif of star network, we also observe that the mixed couplings can facilitate AD state of the whole network system. Particularly, the threshold of coupling strength is invariable with the change of network size. Our findings may shed a new insight to explore the effects of hybrid coupling on complex systems, also provide a new strategy to control dynamic behaviors in engineering science and neuroscience fields.

  15. Internal null controllability of a linear Schrödinger-KdV system on a bounded interval

    NASA Astrophysics Data System (ADS)

    Araruna, Fágner D.; Cerpa, Eduardo; Mercado, Alberto; Santos, Maurício C.

    2016-01-01

    The control of a linear dispersive system coupling a Schrödinger and a linear Korteweg-de Vries equation is studied in this paper. The system can be viewed as three coupled real-valued equations by taking real and imaginary parts in the Schrödinger equation. The internal null controllability is proven by using either one complex-valued control on the Schrödinger equation or two real-valued controls, one on each equation. Notice that the single Schrödinger equation is not known to be controllable with a real-valued control. The standard duality method is used to reduce the controllability property to an observability inequality, which is obtained by means of a Carleman estimates approach.

  16. Automatic quadrature control and measuring system. [using optical coupling circuitry

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F. (Inventor)

    1974-01-01

    A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.

  17. Hamiltonian quantum simulation with bounded-strength controls

    NASA Astrophysics Data System (ADS)

    Bookatz, Adam D.; Wocjan, Pawel; Viola, Lorenza

    2014-04-01

    We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed.

  18. Output Feedback-Based Boundary Control of Uncertain Coupled Semilinear Parabolic PDE Using Neurodynamic Programming.

    PubMed

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2018-04-01

    In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen F; Moore, James A

    Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.

  20. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  1. Autonomous self-configuration of artificial neural networks for data classification or system control

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang

    2009-05-01

    Artificial neural networks (ANNs) are powerful methods for the classification of multi-dimensional data as well as for the control of dynamic systems. In general terms, ANNs consist of neurons that are, e.g., arranged in layers and interconnected by real-valued or binary neural couplings or weights. ANNs try mimicking the processing taking place in biological brains. The classification and generalization capabilities of ANNs are given by the interconnection architecture and the coupling strengths. To perform a certain classification or control task with a particular ANN architecture (i.e., number of neurons, number of layers, etc.), the inter-neuron couplings and their accordant coupling strengths must be determined (1) either by a priori design (i.e., manually) or (2) using training algorithms such as error back-propagation. The more complex the classification or control task, the less obvious it is how to determine an a priori design of an ANN, and, as a consequence, the architecture choice becomes somewhat arbitrary. Furthermore, rather than being able to determine for a given architecture directly the corresponding coupling strengths necessary to perform the classification or control task, these have to be obtained/learned through training of the ANN on test data. We report on the use of a Stochastic Optimization Framework (SOF; Fink, SPIE 2008) for the autonomous self-configuration of Artificial Neural Networks (i.e., the determination of number of hidden layers, number of neurons per hidden layer, interconnections between neurons, and respective coupling strengths) for performing classification or control tasks. This may provide an approach towards cognizant and self-adapting computing architectures and systems.

  2. Dynamic acousto-optic control of a strongly coupled photonic molecule

    PubMed Central

    Kapfinger, Stephan; Reichert, Thorsten; Lichtmannecker, Stefan; Müller, Kai; Finley, Jonathan J.; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J.

    2015-01-01

    Strongly confined photonic modes can couple to quantum emitters and mechanical excitations. To harness the full potential in quantum photonic circuits, interactions between different constituents have to be precisely and dynamically controlled. Here, a prototypical coupled element, a photonic molecule defined in a photonic crystal membrane, is controlled by a radio frequency surface acoustic wave. The sound wave is tailored to deliberately switch on and off the bond of the photonic molecule on sub-nanosecond timescales. In time-resolved experiments, the acousto-optically controllable coupling is directly observed as clear anticrossings between the two nanophotonic modes. The coupling strength is determined directly from the experimental data. Both the time dependence of the tuning and the inter-cavity coupling strength are found to be in excellent agreement with numerical calculations. The demonstrated mechanical technique can be directly applied for dynamic quantum gate operations in state-of-the-art-coupled nanophotonic, quantum cavity electrodynamic and optomechanical systems. PMID:26436203

  3. Preliminary control/structure interaction study of coupled Space Station Freedom/Assembly Work Platform/orbiter

    NASA Technical Reports Server (NTRS)

    Singh, Sudeep K.; Lindenmoyer, Alan J.

    1989-01-01

    Results are presented from a preliminary control/structure interaction study of the Space Station, the Assembly Work Platform, and the STS orbiter dynamics coupled with the orbiter and station control systems. The first three Space Station assembly flight configurations and their finite element representations are illustrated. These configurations are compared in terms of control authority in each axis and propellant usage. The control systems design parameters during assembly are computed. Although the rigid body response was acceptable with the orbiter Primary Reaction Control System, the flexible body response showed large structural deflections and loads. It was found that severe control/structure interaction occurred if the stiffness of the Assembly Work Platform was equal to that of the station truss. Also, the response of the orbiter Vernier Reaction Control System to small changes in inertia properties is examined.

  4. Coupling of fingertip somatosensory information to head and body sway

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Schoner, G.; Dijkstra, T.; Ribeiro, P.; Lackner, J. R.

    1997-01-01

    Light touch contact of a fingertip with a stationary surface can provide orientation information that enhances control of upright stance. Slight changes in contact force at the fingertip provide sensory cues about the direction of body sway, allowing attenuation of sway. In the present study, we asked to which extent somatosensory cues are part of the postural control system, that is, which sensory signal supports this coupling? We investigated postural control not only when the contact surface was stationary, but also when it was moving rhythmically (from 0.1 to 0.5 Hz). In doing so, we brought somatosensory cues from the hand into conflict with other parts of the postural control system. Our focus was the temporal relationship between body sway and the contact surface. Postural sway was highly coherent with contact surface motion. Head and body sway assumed the frequency of the moving contact surface at all test frequencies. To account for these results, a simple model was formulated by approximating the postural control system as a second-order linear dynamical system. The influence of the touch stimulus was captured as the difference between the velocity of the contact surface and the velocity of body sway, multiplied by a coupling constant. Comparison of empirical results (relative phase, coherence, and gain) with model predictions supports the hypothesis of coupling between body sway and touch cues through the velocity of the somatosensory stimulus at the fingertip. One subject, who perceived movement of the touch surface, demonstrated weaker coupling than other subjects, suggesting that cognitive mechanisms introduce flexibility into the postural control scheme.

  5. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    PubMed

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  6. Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission

    PubMed Central

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  7. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control.

    PubMed

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen

    2017-10-01

    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  8. Feedback coupling in dynamical systems

    NASA Astrophysics Data System (ADS)

    Trimper, Steffen; Zabrocki, Knud

    2003-05-01

    Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.

  9. Numerical analysis for trajectory controllability of a coupled multi-order fractional delay differential system via the shifted Jacobi method

    NASA Astrophysics Data System (ADS)

    Priya, B. Ganesh; Muthukumar, P.

    2018-02-01

    This paper deals with the trajectory controllability for a class of multi-order fractional linear systems subject to a constant delay in state vector. The solution for the coupled fractional delay differential equation is established by the Mittag-Leffler function. The necessary and sufficient condition for the trajectory controllability is formulated and proved by the generalized Gronwall's inequality. The approximate trajectory for the proposed system is obtained through the shifted Jacobi operational matrix method. The numerical simulation of the approximate solution shows the theoretical results. Finally, some remarks and comments on the existing results of constrained controllability for the fractional dynamical system are also presented.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen F; Moore, James A

    Systems and methods are described for carrier-frequency synchronization for improved AM and TV broadcast reception. A method includes synchronizing a carrier frequency of a broadcast signal with a remote reference frequency. An apparatus includes a reference signal receiver; a phase comparator coupled to the reference signal receiver; a voltage controlled oscillator coupled to the phase comparator; and a radio frequency output coupled to the voltage controlled oscillator.

  11. Exploiting Non-Markovianity for Quantum Control.

    PubMed

    Reich, Daniel M; Katz, Nadav; Koch, Christiane P

    2015-07-22

    Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.

  12. Automation tools for demonstration of goal directed and self-repairing flight control systems

    NASA Technical Reports Server (NTRS)

    Agarwal, A. K.

    1988-01-01

    The coupling of expert systems and control design and analysis techniques are documented to provide a realizable self repairing flight control system. Key features of such a flight control system are identified and a limited set of rules for a simple aircraft model are presented.

  13. Integrated analysis of large space systems

    NASA Technical Reports Server (NTRS)

    Young, J. P.

    1980-01-01

    Based on the belief that actual flight hardware development of large space systems will necessitate a formalized method of integrating the various engineering discipline analyses, an efficient highly user oriented software system capable of performing interdisciplinary design analyses with tolerable solution turnaround time is planned Specific analysis capability goals were set forth with initial emphasis given to sequential and quasi-static thermal/structural analysis and fully coupled structural/control system analysis. Subsequently, the IAC would be expanded to include a fully coupled thermal/structural/control system, electromagnetic radiation, and optical performance analyses.

  14. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    DOEpatents

    Welchko, Brian A [Torrance, CA

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  15. Adaptive Control of Synchronization in Delay-Coupled Heterogeneous Networks of FitzHugh-Nagumo Nodes

    NASA Astrophysics Data System (ADS)

    Plotnikov, S. A.; Lehnert, J.; Fradkov, A. L.; Schöll, E.

    We study synchronization in delay-coupled neural networks of heterogeneous nodes. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. We show that an adaptive tuning of the overall coupling strength can be used to counteract the effect of the heterogeneity. Our adaptive controller is demonstrated on ring networks of FitzHugh-Nagumo systems which are paradigmatic for excitable dynamics but can also — depending on the system parameters — exhibit self-sustained periodic firing. We show that the adaptively tuned time-delayed coupling enables synchronization even if parameter heterogeneities are so large that excitable nodes coexist with oscillatory ones.

  16. Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control

    NASA Technical Reports Server (NTRS)

    Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.

    2015-01-01

    The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.

  17. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  18. Fast-responding short circuit protection system with self-reset for use in circuit supplied by DC power

    NASA Technical Reports Server (NTRS)

    Burns, Bradley M. (Inventor); Blalock, Norman N. (Inventor)

    2011-01-01

    A short circuit protection system includes an inductor, a switch, a voltage sensing circuit, and a controller. The switch and inductor are electrically coupled to be in series with one another. A voltage sensing circuit is coupled across the switch and the inductor. A controller, coupled to the voltage sensing circuit and the switch, opens the switch when a voltage at the output terminal of the inductor transitions from above a threshold voltage to below the threshold voltage. The controller closes the switch when the voltage at the output terminal of the inductor transitions from below the threshold voltage to above the threshold voltage.

  19. [Research on magnetic coupling centrifugal blood pump control based on a self-tuning fuzzy PI algorithm].

    PubMed

    Yang, Lei; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Wang, Wei; Zhang, Haibo; Han, Lu; Xu, Liang

    2014-10-01

    The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.

  20. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.

    PubMed

    Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit

    2013-11-01

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2017-10-01

    This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.

  2. Multidisciplinary optimization of a controlled space structure using 150 design variables

    NASA Technical Reports Server (NTRS)

    James, Benjamin B.

    1993-01-01

    A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.

  3. Adaptive output feedback NN control of a class of discrete-time MIMO nonlinear systems with unknown control directions.

    PubMed

    Li, Yanan; Yang, Chenguang; Ge, Shuzhi Sam; Lee, Tong Heng

    2011-04-01

    In this paper, adaptive neural network (NN) control is investigated for a class of block triangular multiinput-multioutput nonlinear discrete-time systems with each subsystem in pure-feedback form with unknown control directions. These systems are of couplings in every equation of each subsystem, and different subsystems may have different orders. To avoid the noncausal problem in the control design, the system is transformed into a predictor form by rigorous derivation. By exploring the properties of the block triangular form, implicit controls are developed for each subsystem such that the couplings of inputs and states among subsystems have been completely decoupled. The radial basis function NN is employed to approximate the unknown control. Each subsystem achieves a semiglobal uniformly ultimately bounded stability with the proposed control, and simulation results are presented to demonstrate its efficiency.

  4. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    DOEpatents

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  5. Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    NASA Astrophysics Data System (ADS)

    Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.

    2018-03-01

    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.

  6. An RFID-Based Manufacturing Control Framework for Loosely Coupled Distributed Manufacturing System Supporting Mass Customization

    NASA Astrophysics Data System (ADS)

    Chen, Ruey-Shun; Tsai, Yung-Shun; Tu, Arthur

    In this study we propose a manufacturing control framework based on radio-frequency identification (RFID) technology and a distributed information system to construct a mass-customization production process in a loosely coupled shop-floor control environment. On the basis of this framework, we developed RFID middleware and an integrated information system for tracking and controlling the manufacturing process flow. A bicycle manufacturer was used to demonstrate the prototype system. The findings of this study were that the proposed framework can improve the visibility and traceability of the manufacturing process as well as enhance process quality control and real-time production pedigree access. Using this framework, an enterprise can easily integrate an RFID-based system into its manufacturing environment to facilitate mass customization and a just-in-time production model.

  7. Multilevel adaptive control of nonlinear interconnected systems.

    PubMed

    Motallebzadeh, Farzaneh; Ozgoli, Sadjaad; Momeni, Hamid Reza

    2015-01-01

    This paper presents an adaptive backstepping-based multilevel approach for the first time to control nonlinear interconnected systems with unknown parameters. The system consists of a nonlinear controller at the first level to neutralize the interaction terms, and some adaptive controllers at the second level, in which the gains are optimally tuned using genetic algorithm. The presented scheme can be used in systems with strong couplings where completely ignoring the interactions leads to problems in performance or stability. In order to test the suitability of the method, two case studies are provided: the uncertain double and triple coupled inverted pendulums connected by springs with unknown parameters. The simulation results show that the method is capable of controlling the system effectively, in both regulation and tracking tasks. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. A disturbance observer-based adaptive control approach for flexure beam nano manipulators.

    PubMed

    Zhang, Yangming; Yan, Peng; Zhang, Zhen

    2016-01-01

    This paper presents a systematic modeling and control methodology for a two-dimensional flexure beam-based servo stage supporting micro/nano manipulations. Compared with conventional mechatronic systems, such systems have major control challenges including cross-axis coupling, dynamical uncertainties, as well as input saturations, which may have adverse effects on system performance unless effectively eliminated. A novel disturbance observer-based adaptive backstepping-like control approach is developed for high precision servo manipulation purposes, which effectively accommodates model uncertainties and coupling dynamics. An auxiliary system is also introduced, on top of the proposed control scheme, to compensate the input saturations. The proposed control architecture is deployed on a customized-designed nano manipulating system featured with a flexure beam structure and voice coil actuators (VCA). Real time experiments on various manipulating tasks, such as trajectory/contour tracking, demonstrate precision errors of less than 1%. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. The UKC2 regional coupled environmental prediction system

    NASA Astrophysics Data System (ADS)

    Lewis, Huw W.; Castillo Sanchez, Juan Manuel; Graham, Jennifer; Saulter, Andrew; Bornemann, Jorge; Arnold, Alex; Fallmann, Joachim; Harris, Chris; Pearson, David; Ramsdale, Steven; Martínez-de la Torre, Alberto; Bricheno, Lucy; Blyth, Eleanor; Bell, Victoria A.; Davies, Helen; Marthews, Toby R.; O'Neill, Clare; Rumbold, Heather; O'Dea, Enda; Brereton, Ashley; Guihou, Karen; Hines, Adrian; Butenschon, Momme; Dadson, Simon J.; Palmer, Tamzin; Holt, Jason; Reynard, Nick; Best, Martin; Edwards, John; Siddorn, John

    2018-01-01

    It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, require a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere-land-ocean-wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-western European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for six contrasting case studies of 5-day duration is presented. Results demonstrate that performance can be achieved with the UKC2 system that is at least comparable to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and mean wave period highlight the potential benefits of coupling between environmental model components. Results also illustrate that the coupling itself is not sufficient to address all known model issues. Priorities for future development of the UK Environmental Prediction framework and component systems are discussed.

  10. Voltage-controlled interlayer coupling in perpendicularly magnetized magnetic tunnel junctions

    DOE PAGES

    Newhouse-Illige, Ty; Liu, Yaohua; Xu, M.; ...

    2017-05-16

    Magnetic interlayer coupling is one of the central phenomena in spintronics. It has been predicted that the sign of interlayer coupling can be manipulated by electric fields, instead of electric currents, thereby offering a promising low energy magnetization switching mechanism. Here we present the experimental demonstration of voltage-controlled interlayer coupling in a new perpendicular magnetic tunnel junction system with a GdO x tunnel barrier, where a large perpendicular magnetic anisotropy and a sizable tunnelling magnetoresistance have been achieved at room temperature. Owing to the interfacial nature of the magnetism, the ability to move oxygen vacancies within the barrier, and amore » large proximity-induced magnetization of GdO x, both the magnitude and the sign of the interlayer coupling in these junctions can be directly controlled by voltage. Lastly, these results pave a new path towards achieving energy-efficient magnetization switching by controlling interlayer coupling.« less

  11. Voltage-controlled interlayer coupling in perpendicularly magnetized magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newhouse-Illige, Ty; Liu, Yaohua; Xu, M.

    Magnetic interlayer coupling is one of the central phenomena in spintronics. It has been predicted that the sign of interlayer coupling can be manipulated by electric fields, instead of electric currents, thereby offering a promising low energy magnetization switching mechanism. Here we present the experimental demonstration of voltage-controlled interlayer coupling in a new perpendicular magnetic tunnel junction system with a GdO x tunnel barrier, where a large perpendicular magnetic anisotropy and a sizable tunnelling magnetoresistance have been achieved at room temperature. Owing to the interfacial nature of the magnetism, the ability to move oxygen vacancies within the barrier, and amore » large proximity-induced magnetization of GdO x, both the magnitude and the sign of the interlayer coupling in these junctions can be directly controlled by voltage. Lastly, these results pave a new path towards achieving energy-efficient magnetization switching by controlling interlayer coupling.« less

  12. Extrinsic polarization-controlled optical anisotropy in plasmon-black phosphorus coupled system

    NASA Astrophysics Data System (ADS)

    Liu, Zizhuo; Wells, Spencer A.; Butun, Serkan; Palacios, Edgar; Hersam, Mark C.; Aydin, Koray

    2018-07-01

    Two-dimensional black phosphorus (BP) has drawn extensive research interest due to its promising anisotropic photonic and electronic properties. Here, we study anisotropic optical absorption and photoresponse of exfoliated BP flakes at visible frequencies. We enhance this intrinsic optical anisotropy in BP flakes by coupling plasmonic rectangular nanopatch arrays that support localized surface plasmon resonances. In particular, by combining extrinsic anisotropic plasmonic nanostructures lithographically aligned with intrinsically anisotropic BP flakes, we demonstrate for the first time a combined anisotropic plasmonic-semiconductor coupling that provides significant control over the polarization-dependent optical properties of the plasmon-BP hybrid material system, enhancing polarization-sensitive responses to a larger degree. This hybrid material system not only unveils the plasmon-enhanced mechanisms in BP, but also provides novel controllable functionalities in optoelectronic device applications involving polarization-sensitive optical and electrical responses.

  13. Extrinsic polarization-controlled optical anisotropy in plasmon-black phosphorus coupled system.

    PubMed

    Liu, Zizhuo; Wells, Spencer A; Butun, Serkan; Palacios, Edgar; Hersam, Mark C; Aydin, Koray

    2018-07-13

    Two-dimensional black phosphorus (BP) has drawn extensive research interest due to its promising anisotropic photonic and electronic properties. Here, we study anisotropic optical absorption and photoresponse of exfoliated BP flakes at visible frequencies. We enhance this intrinsic optical anisotropy in BP flakes by coupling plasmonic rectangular nanopatch arrays that support localized surface plasmon resonances. In particular, by combining extrinsic anisotropic plasmonic nanostructures lithographically aligned with intrinsically anisotropic BP flakes, we demonstrate for the first time a combined anisotropic plasmonic-semiconductor coupling that provides significant control over the polarization-dependent optical properties of the plasmon-BP hybrid material system, enhancing polarization-sensitive responses to a larger degree. This hybrid material system not only unveils the plasmon-enhanced mechanisms in BP, but also provides novel controllable functionalities in optoelectronic device applications involving polarization-sensitive optical and electrical responses.

  14. Network based management for multiplexed electric vehicle charging

    DOEpatents

    Gadh, Rajit; Chung, Ching Yen; Qui, Li

    2017-04-11

    A system for multiplexing charging of electric vehicles, comprising a server coupled to a plurality of charging control modules over a network. Each of said charging modules being connected to a voltage source such that each charging control module is configured to regulate distribution of voltage from the voltage source to an electric vehicle coupled to the charging control module. Data collection and control software is provided on the server for identifying a plurality of electric vehicles coupled to the plurality of charging control modules and selectively distributing charging of the plurality of charging control modules to multiplex distribution of voltage to the plurality of electric vehicles.

  15. Adaptive neural control of MIMO nonlinear systems with a block-triangular pure-feedback control structure.

    PubMed

    Chen, Zhenfeng; Ge, Shuzhi Sam; Zhang, Yun; Li, Yanan

    2014-11-01

    This paper presents adaptive neural tracking control for a class of uncertain multiinput-multioutput (MIMO) nonlinear systems in block-triangular form. All subsystems within these MIMO nonlinear systems are of completely nonaffine pure-feedback form and allowed to have different orders. To deal with the nonaffine appearance of the control variables, the mean value theorem is employed to transform the systems into a block-triangular strict-feedback form with control coefficients being couplings among various inputs and outputs. A systematic procedure is proposed for the design of a new singularity-free adaptive neural tracking control strategy. Such a design procedure can remove the couplings among subsystems and hence avoids the possible circular control construction problem. As a consequence, all the signals in the closed-loop system are guaranteed to be semiglobally uniformly ultimately bounded. Moreover, the outputs of the systems are ensured to converge to a small neighborhood of the desired trajectories. Simulation studies verify the theoretical findings revealed in this paper.

  16. Modeling of Structural-Acoustic Interaction Using Coupled FE/BE Method and Control of Interior Acoustic Pressure Using Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shi, Yacheng

    1997-01-01

    A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.

  17. Modular telerobot control system for accident response

    NASA Astrophysics Data System (ADS)

    Anderson, Richard J. M.; Shirey, David L.

    1999-08-01

    The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera-frame teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements seven different behavior modes. This paper describes the integration of SMART into the ARMMS system.

  18. Head-coupled remote stereoscopic camera system for telepresence applications

    NASA Astrophysics Data System (ADS)

    Bolas, Mark T.; Fisher, Scott S.

    1990-09-01

    The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.

  19. Digital frequency offset-locked He–Ne laser system with high beat frequency stability, narrow optical linewidth and optical fibre output

    NASA Astrophysics Data System (ADS)

    Sternkopf, Christian; Manske, Eberhard

    2018-06-01

    We report on the enhancement of a previously-presented heterodyne laser source on the basis of two phase-locked loop (PLL) frequency coupled internal-mirror He–Ne lasers. Our new system consists of two digitally controlled He–Ne lasers with slightly different wavelengths, and offers high-frequency stability and very narrow optical linewidth. The digitally controlled system has been realized by using a FPGA controller and transconductance amplifiers. The light of both lasers was coupled into separate fibres for heterodyne interferometer applications. To enhance the laser performance we observed the sensitivity of both laser tubes to electromagnetic noise from various laser power supplies and frequency control systems. Furthermore, we describe how the linewidth of a frequency-controlled He–Ne laser can be reduced during precise frequency stabilisation. The digitally controlled laser source reaches a standard beat frequency deviation of less than 20 Hz (with 1 s gate time) and a spectral full width at half maximum (FWHM) of the beat signal less than 3 kHz. The laser source has enough optical output power to serve a fibre-coupled multi axis heterodyne interferometer. The system can be adjusted to output beat frequencies in the range of 0.1 MHz–20 MHz.

  20. Quantum coherence and entanglement control for atom-cavity systems

    NASA Astrophysics Data System (ADS)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have consistently solved the control dynamics of open quantum systems using this stochastic QSD approach. By implementing the QSD equation, our numerical results have revealed that how the control efficacy depends on the designed time points and shapes of the applied control pulses, and the environment memory time scale.

  1. Learning robotic eye-arm-hand coordination from human demonstration: a coupled dynamical systems approach.

    PubMed

    Lukic, Luka; Santos-Victor, José; Billard, Aude

    2014-04-01

    We investigate the role of obstacle avoidance in visually guided reaching and grasping movements. We report on a human study in which subjects performed prehensile motion with obstacle avoidance where the position of the obstacle was systematically varied across trials. These experiments suggest that reaching with obstacle avoidance is organized in a sequential manner, where the obstacle acts as an intermediary target. Furthermore, we demonstrate that the notion of workspace travelled by the hand is embedded explicitly in a forward planning scheme, which is actively involved in detecting obstacles on the way when performing reaching. We find that the gaze proactively coordinates the pattern of eye-arm motion during obstacle avoidance. This study provides also a quantitative assessment of the coupling between the eye-arm-hand motion. We show that the coupling follows regular phase dependencies and is unaltered during obstacle avoidance. These observations provide a basis for the design of a computational model. Our controller extends the coupled dynamical systems framework and provides fast and synchronous control of the eyes, the arm and the hand within a single and compact framework, mimicking similar control system found in humans. We validate our model for visuomotor control of a humanoid robot.

  2. Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, Rick; Wendt, Fabian; Musial, Walter

    The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, themore » turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.« less

  3. A Sliding Mode Controller Using Nonlinear Sliding Surface Improved With Fuzzy Logic: Application to the Coupled Tanks System

    NASA Astrophysics Data System (ADS)

    Boubakir, A.; Boudjema, F.; Boubakir, C.

    2008-06-01

    This paper proposes an approach of hybrid control that is based on the concept of combining fuzzy logic and the methodology of sliding mode control (SMC). In the present works, a first-order nonlinear sliding surface is presented, on which the developed control law is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in sliding mode control, a fixed boundary layer around the switch surface is used. Within the boundary layer, since the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to driving the system states into the boundary layer. Experimental studies carried out on a coupled Tanks system indicate that the proposed fuzzy sliding mode control (FSMC) is a good candidate for control applications.

  4. Linear decentralized learning control

    NASA Technical Reports Server (NTRS)

    Lee, Soo C.; Longman, Richard W.; Phan, Minh

    1992-01-01

    The new field of learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this task. The simplest forms of learning control are based on the same concept as integral control, but operating in the domain of the repetitions of the task. This paper studies the use of such controllers in a decentralized system, such as a robot with the controller for each link acting independently. The basic result of the paper is to show that stability of the learning controllers for all subsystems when the coupling between subsystems is turned off, assures stability of the decentralized learning in the coupled system, provided that the sample time in the digital learning controller is sufficiently short.

  5. Time Delay Effect in a Living Coupled Oscillator System with the Plasmodium of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Fujii, Teruo; Endo, Isao

    2000-08-01

    A living coupled oscillator system was constructed by a cell patterning method with a plasmodial slime mold, in which parameters such as coupling strength and distance between the oscillators can be systematically controlled. Rich oscillation phenomena between the two-coupled oscillators, namely, desynchronizing and antiphase/in-phase synchronization were observed according to these parameters. Both experimental and theoretical approaches showed that these phenomena are closely related to the time delay effect in interactions between the oscillators.

  6. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    DOEpatents

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  7. Heat recovery system employing a temperature controlled variable speed fan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, W.T.

    1986-05-20

    A heat recovery system is described for use in recovering heat from an industrial process producing a heated fluid comprising: a source of inlet air; a housing coupled to the source and including a heat exchanger; means for passing the heated fluid through the heat exchanger; the housing including means for moving a variable volume of air adjustable over a continuous range from the source through the heat exchanger; air discharge means communicating with the housing for discharging air which has passed through the heat exchanger; a control system including first temperature sensing means for sensing the discharge temperature ofmore » the discharge air moving through the discharge means and a control circuit coupled to the first temperature sensing means and to the moving means for varying the volume of air moved in response to the sensed discharge temperature to control the temperature of discharge air passing through the discharge means at a first predetermined value; and the control system including second temperature sensing means for sensing the temperature of the source of inlet air and valve means coupled to and controlled by the control circuit to cause liquid to bypass the heat exchanger when the inlet air temperature rises above a second predetermined value.« less

  8. L1 Adaptive Control Augmentation System with Application to the X-29 Lateral/Directional Dynamics: A Multi-Input Multi-Output Approach

    NASA Technical Reports Server (NTRS)

    Griffin, Brian Joseph; Burken, John J.; Xargay, Enric

    2010-01-01

    This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.

  9. Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling.

    PubMed

    Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad

    2014-11-01

    This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Coupled qubits as a quantum heat switch

    NASA Astrophysics Data System (ADS)

    Karimi, B.; Pekola, J. P.; Campisi, M.; Fazio, R.

    2017-12-01

    We present a quantum heat switch based on coupled superconducting qubits, connected to two LC resonators that are terminated by resistors providing two heat baths. To describe the system, we use a standard second order master equation with respect to coupling to the baths. We find that this system can act as an efficient heat switch controlled by the applied magnetic flux. The flux influences the energy level separations of the system, and under some conditions, the finite coupling of the qubits enhances the transmitted power between the two baths, by an order of magnitude under realistic conditions. At the same time, the bandwidth at maximum power of the switch formed of the coupled qubits is narrowed.

  11. Attitude and Configuration Control of Flexible Multi-Body Spacecraft

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Ki; Cochran, John E., Jr.

    2002-06-01

    Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems addressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

  12. Coupling control based on Adiabatic elimination for densely integrated nano-photonics

    NASA Astrophysics Data System (ADS)

    Mrejen, Michael; Suchowski, Haim; Hatakeyama, Taiki; Wu, Chihhui; Feng, Liang; O'Brien, Kevin; Wang, Yuan; Zhang, Xiang

    2015-03-01

    The ever growing need for energy-efficient and fast communications is driving the development of highly integrated photonic circuits where controlling light at the nanoscale becomes the most critical aspect of information transfer. Here we develop a unique scheme of adiabatic elimination (AE) modulation to actively control the coupling among waveguides for densely integrated photonics. Analogous to atomic systems, AE is achieved by applying a decomposition on a three waveguide coupler, where the two outer waveguides serve as an effective two-mode system with an effective coupling of Veff = [(V*13 + V*23V*12/Δβ12) (V13-V23V12/Δβ23) ]1/2,and the middle waveguide is the equivalent to the intermediate level `dark state'. We experimentally demonstrate the first all optical AE modulation and its ability to control the coupling between the two waveguides by manipulating the mode index of the decoupled middle one. In addition, we show that the strong modes interactions allowed at the nano-scale offer a unique configuration of zero-coupling between all the waveguides, a phenomena that paves the way for ultra-high density photonic integrated circuits where small footprint is of crucial importance.

  13. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance.

    PubMed

    Wang, Minlin; Ren, Xuemei; Chen, Qiang

    2018-01-01

    The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Pilot-in-the-Loop Analysis of Propulsive-Only Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Chou, Hwei-Lan; Biezad, Daniel J.

    1996-01-01

    Longitudinal control system architectures are presented which directly couple flight stick motions to throttle commands for a multi-engine aircraft. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of Quantitative Feedback Theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control. These characteristics will be tested in a simulator study involving failed flight controls for a multi-engine aircraft.

  15. Electron-Nuclear Quantum Information Processing

    DTIC Science & Technology

    2008-11-13

    quantum information processing that exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin...exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin system, addressing only a...sample of irradiated malonic acid. (a) Papers published in peer-reviewed journals (N/A for none) Universal control of nuclear spins via anisotropic

  16. Dichroic beamsplitter for high energy laser diagnostics

    DOEpatents

    LaFortune, Kai N [Livermore, CA; Hurd, Randall [Tracy, CA; Fochs, Scott N [Livermore, CA; Rotter, Mark D [San Ramon, CA; Hackel, Lloyd [Livermore, CA

    2011-08-30

    Wavefront control techniques are provided for the alignment and performance optimization of optical devices. A Shack-Hartmann wavefront sensor can be used to measure the wavefront distortion and a control system generates feedback error signal to optics inside the device to correct the wavefront. The system can be calibrated with a low-average-power probe laser. An optical element is provided to couple the optical device to a diagnostic/control package in a way that optimizes both the output power of the optical device and the coupling of the probe light into the diagnostics.

  17. An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator

    NASA Astrophysics Data System (ADS)

    Asano, Motoki; Ohta, Ryuichi; Yamamoto, Takashi; Okamoto, Hajime; Yamaguchi, Hiroshi

    2018-05-01

    Evanescent coupling between a high-Q silica optical microbottle and a GaAs electromechanical resonator is demonstrated. This coupling offers an opto-electro-mechanical system which possesses both cavity-enhanced optical sensitivity and electrical controllability of the mechanical motion. Cooling and heating of the mechanical mode are demonstrated based on optomechanical detection via the radiation pressure and electromechanical feedback via the piezoelectric effect. This evanescent approach allows for individual design of optical, mechanical, and electrical systems, which could lead to highly sensitive and functionalized opto-electro-mechanical systems.

  18. Direct-coupled microcomputer-based building emulator for building energy management and control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, H.N.

    1999-07-01

    In this paper, the development and implementation of a direct-coupled building emulator for a building energy management and control system (EMCS) is presented. The building emulator consists of a microcomputer and a computer model of an air-conditioning system implemented in a modular dynamic simulation software package for direct-coupling to an EMCS, without using analog-to-digital and digital-to-analog converters. The building emulator can be used to simulate in real time the behavior of the air-conditioning system under a given operating environment and subject to a given usage pattern. Software modules for data communication, graphical display, dynamic data exchange, and synchronization of simulationmore » outputs with real time have been developed to achieve direct digital data transfer between the building emulator and a commercial EMCS. Based on the tests conducted, the validity of the building emulator has been established and the proportional-plus-integral control function of the EMCS assessed.« less

  19. Adaptive tracking control of leader-following linear multi-agent systems with external disturbances

    NASA Astrophysics Data System (ADS)

    Lin, Hanquan; Wei, Qinglai; Liu, Derong; Ma, Hongwen

    2016-10-01

    In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method.

  20. Coalescence and Interaction of Solitons in the Coupled Korteweg-de Vries System

    NASA Astrophysics Data System (ADS)

    Chung, Wai Choi; Chow, Kwok Wing

    2017-11-01

    There are many physical systems which are governed by the classical Korteweg-de Vries equation. One of the prominent examples is the shallow water wave in fluid dynamics. In recent years, a coupled Korteweg-de Vries system has been proposed to describe fluids in a two-layer flow, and coherent structures in terms of solitons are found. We studied the coupled Korteweg-de Vries system by means of the Hirota bilinear method. Soliton and breather solutions are constructed. Localized pulses which result from the coupling of waves can be formed. The structure of the localized pulses becomes asymmetric as the control parameter varies. The coalescence and interaction of solitons in the coupled Korteweg-de Vries system will be discussed. Partial financial support has been provided by the Research Grants Council contract HKU 17200815.

  1. A comparison of two software architectural styles for space-based control systems

    NASA Technical Reports Server (NTRS)

    Dvorak, D.

    2003-01-01

    In the hardware/software design of control systems it is almost an article of faith to decompose a system into loosely coupled subsystems, with state variables encapsulated inside device and subsystem objects.

  2. Increasing the stability of the articulated lorry at braking by locking the fifth wheel coupling

    NASA Astrophysics Data System (ADS)

    Skotnikov, G. I.; Jileykin, M. M.; Komissarov, A. I.

    2018-02-01

    The jackknifing of the articulated lorry is determined by the loss of stability with respect to the vertical axis of the fifth wheel coupling, which can be caused by the failure of the brake system, the displacement of the center of mass of the semitrailer or tractor from the longitudinal axis of the vehicle, the road parameters (longitudinal and transverse slopes), the difference in the friction coefficients under the sides of the articulated lorry. In this regard, the issue of creating devices that prevent the jackknifing, and their control systems is important. A method is proposed for maintaining the stability of the movement of articulated lorry when braking both on a straight line and in a turn by blocking the relative rotation of the tractor and the trailer. Blocking occurs due to the creation of a stabilizing moment in the direction opposite to the angular rate of folding. To test the developed algorithm for locking the fifth wheel coupling, a mathematical model of the spatial motion of the articulated lorry was developed, including the models of interaction of an elastic tire with a rigid terrain, suspension systems, transmission, steering, fifth-wheel coupling. The efficiency and effectiveness of the coupling locking control system is proved by comparing the results of the simulation of a straight-line braking and braking in turn. It is shown that the application of the control system significantly increases the stability of the road train.

  3. Wireless power using magnetic resonance coupling for neural sensing applications

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.

    2012-04-01

    Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.

  4. Spin and charge controlled by antisymmetric spin-orbit coupling in a triangular-triple-quantum-dot Kondo system

    NASA Astrophysics Data System (ADS)

    Koga, M.; Matsumoto, M.; Kusunose, H.

    2018-05-01

    We study a local antisymmetric spin-orbit (ASO) coupling effect on a triangular-triple-quantum-dot (TTQD) system as a theoretical proposal for a new application of the Kondo physics to nanoscale devices. The electric polarization induced by the Kondo effect is strongly correlated with the spin configurations and molecular orbital degrees of freedom in the TTQD. In particular, an abrupt sign reversal of the emergent electric polarization is associated with a quantum critical point in a magnetic field, which can also be controlled by the ASO coupling that changes the mixing weight of different orbital components in the TTQD ground state.

  5. Coupling effect and control strategies of the maglev dual-stage inertially stabilization system based on frequency-domain analysis.

    PubMed

    Lin, Zhuchong; Liu, Kun; Zhang, Li; Zeng, Delin

    2016-09-01

    Maglev dual-stage inertially stabilization (MDIS) system is a newly proposed system which combines a conventional two-axis gimbal assembly and a 5-DOF (degree of freedom) magnetic bearing with vernier tilting capacity to perform dual-stage stabilization for the LOS of the suspended optical instrument. Compared with traditional dual-stage system, maglev dual-stage system exhibits different characteristics due to the negative position stiffness of the magnetic forces, which introduces additional coupling in the dual stage control system. In this paper, the coupling effect on the system performance is addressed based on frequency-domain analysis, including disturbance rejection, fine stage saturation and coarse stage structural resonance suppression. The difference between various control strategies is also discussed, including pile-up(PU), stabilize-follow (SF) and stabilize-compensate (SC). A number of principles for the design of a maglev dual stage system are proposed. A general process is also suggested, which leads to a cost-effective design striking a balance between high performance and complexity. At last, a simulation example is presented to illustrate the arguments in the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor

    PubMed Central

    Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni

    2018-01-01

    In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities. PMID:29342178

  7. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor.

    PubMed

    Ma, Jun; Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni

    2018-01-01

    In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities.

  8. Robust adaptive relative position and attitude control for spacecraft autonomous proximity.

    PubMed

    Sun, Liang; Huo, Wei; Jiao, Zongxia

    2016-07-01

    This paper provides new results of the dynamical modeling and controller designing for autonomous close proximity phase during rendezvous and docking in the presence of kinematic couplings and model uncertainties. A globally defined relative motion mechanical model for close proximity operations is introduced firstly. Then, in spite of the kinematic couplings and thrust misalignment between relative rotation and relative translation, robust adaptive relative position and relative attitude controllers are designed successively. Finally, stability of the overall system is proved that the relative position and relative attitude are uniformly ultimately bounded, and the size of the ultimate bound can be regulated small enough by control system parameters. Performance of the controlled overall system is demonstrated via a representative numerical example. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. B-Plant Canyon Ventilation Control System Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms.

  10. Intelligent automated control of life support systems using proportional representations.

    PubMed

    Wu, Annie S; Garibay, Ivan I

    2004-06-01

    Effective automatic control of Advanced Life Support Systems (ALSS) is a crucial component of space exploration. An ALSS is a coupled dynamical system which can be extremely sensitive and difficult to predict. As a result, such systems can be difficult to control using deliberative and deterministic methods. We investigate the performance of two machine learning algorithms, a genetic algorithm (GA) and a stochastic hill-climber (SH), on the problem of learning how to control an ALSS, and compare the impact of two different types of problem representations on the performance of both algorithms. We perform experiments on three ALSS optimization problems using five strategies with multiple variations of a proportional representation for a total of 120 experiments. Results indicate that although a proportional representation can effectively boost GA performance, it does not necessarily have the same effect on other algorithms such as SH. Results also support previous conclusions that multivector control strategies are an effective method for control of coupled dynamical systems.

  11. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control.

    PubMed

    Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan

    2015-09-01

    A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. System for controlling child safety seat environment

    NASA Technical Reports Server (NTRS)

    Elrod, Susan V. (Inventor); Dabney, Richard W. (Inventor)

    2008-01-01

    A system is provided to control the environment experienced by a child in a child safety seat. Each of a plurality of thermoelectric elements is individually controllable to be one of heated and cooled relative to an ambient temperature. A first portion of the thermoelectric elements are positioned on the child safety seat such that a child sitting therein is positioned thereover. A ventilator coupled to the child safety seat moves air past a second portion of the thermoelectric elements and filters the air moved therepast. One or more jets coupled to the ventilator receive the filtered air. Each jet is coupled to the child safety seat and can be positioned to direct the heated/cooled filtered air to the vicinity of the head of the child sitting in the child safety seat.

  13. Design of multi-energy Helds coupling testing system of vertical axis wind power system

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.

    2016-08-01

    The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).

  14. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

    PubMed

    Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan

    2017-03-01

    Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Integrated Control Using the SOFFT Control Structure

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  16. Architecture and inherent robustness of a bacterial cell-cycle control system.

    PubMed

    Shen, Xiling; Collier, Justine; Dill, David; Shapiro, Lucy; Horowitz, Mark; McAdams, Harley H

    2008-08-12

    A closed-loop control system drives progression of the coupled stalked and swarmer cell cycles of the bacterium Caulobacter crescentus in a near-mechanical step-like fashion. The cell-cycle control has a cyclical genetic circuit composed of four regulatory proteins with tight coupling to processive chromosome replication and cell division subsystems. We report a hybrid simulation of the coupled cell-cycle control system, including asymmetric cell division and responses to external starvation signals, that replicates mRNA and protein concentration patterns and is consistent with observed mutant phenotypes. An asynchronous sequential digital circuit model equivalent to the validated simulation model was created. Formal model-checking analysis of the digital circuit showed that the cell-cycle control is robust to intrinsic stochastic variations in reaction rates and nutrient supply, and that it reliably stops and restarts to accommodate nutrient starvation. Model checking also showed that mechanisms involving methylation-state changes in regulatory promoter regions during DNA replication increase the robustness of the cell-cycle control. The hybrid cell-cycle simulation implementation is inherently extensible and provides a promising approach for development of whole-cell behavioral models that can replicate the observed functionality of the cell and its responses to changing environmental conditions.

  17. Apparatus for Controlling Low Power Voltages in Space Based Processing Systems

    NASA Technical Reports Server (NTRS)

    Petrick, David J. (Inventor)

    2017-01-01

    A low power voltage control circuit for use in space missions includes a switching device coupled between an input voltage and an output voltage. The switching device includes a control input coupled to an enable signal, wherein the control input is configured to selectively turn the output voltage on or off based at least in part on the enable signal. A current monitoring circuit is coupled to the output voltage and configured to produce a trip signal, wherein the trip signal is active when a load current flowing through the switching device is determined to exceed a predetermined threshold and is inactive otherwise. The power voltage control circuit is constructed of space qualified components.

  18. REACTOR CONTROL

    DOEpatents

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  19. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes.

    PubMed

    Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J; Thayne, Iain G; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai

    2018-05-25

    Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130  μeV. Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.

  20. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes

    NASA Astrophysics Data System (ADS)

    Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J.; Thayne, Iain G.; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai

    2018-05-01

    Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 μ eV . Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.

  1. Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy

    NASA Astrophysics Data System (ADS)

    Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei

    2018-02-01

    This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.

  2. Displacement and force coupling control design for automotive active front steering system

    NASA Astrophysics Data System (ADS)

    Zhao, Wanzhong; Zhang, Han; Li, Yijun

    2018-06-01

    A displacement and force coupling control design for active front steering (AFS) system of vehicle is proposed in this paper. In order to investigate the displacement and force characteristics of the AFS system of the vehicle, the models of AFS system, vehicle, tire as well as the driver model are introduced. Then, considering the nonlinear characteristics of the tire force and external disturbance, a robust yaw rate control method is designed by applying a steering motor to generate an active steering angle to adjust the yaw stability of the vehicle. Based on mixed H2/H∞ control, the system robustness and yaw rate tracking performance are enforced by H∞ norm constraint and the control effort is captured through H2 norm. In addition, based on the AFS system, a planetary gear set and an assist motor are both added to realize the road feeling control in this paper to dismiss the influence of extra steering angle through a compensating method. Evaluation of the overall system is accomplished by simulations and experiments under various driving condition. The simulation and experiment results show the proposed control system has excellent tracking performance and road feeling performance, which can improve the cornering stability and maneuverability of vehicle.

  3. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    NASA Astrophysics Data System (ADS)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-06-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  4. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    NASA Astrophysics Data System (ADS)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-02-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  5. An investigation of the effects of pitch-roll (de)-coupling on helicopter handling qualities

    NASA Technical Reports Server (NTRS)

    Ockier, C. J.; Pausder, H. J.; Blanken, C. L.

    1995-01-01

    An investigation of the effects of pitch-roll coupling on helicopter handling qualities was performed by the US Army and DLR, using a NASA ground-based and a DLR inflight simulator. Over 90 different coupling configurations were evaluated using a roll-axis tracking task. The results show that although the current ADS-33C coupling criterion discriminates against those types of coupling typical of conventionally controlled helicopters, it not always suited for the prediction of handling qualities of helicopters with modern control systems. Based on the observation that high frequency inputs during tracking are used to alleviate coupling, a frequency domain pitch-roll coupling criterion that uses the average coupling ratio between the bandwidth and neutral stability frequency is formulated. This criterion provides a more comprehensive coverage with respect to the different types of coupling and shows excellent consistency.

  6. A Realtime Active Feedback Control System For Coupled Nonlinear Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Tompkins, Nathan; Fraden, Seth

    2012-02-01

    We study the manipulation and control of oscillatory networks. As a model system we use an emulsion of Belousov-Zhabotinsky (BZ) oscillators packed on a hexagonal lattice. Each drop is observed and perturbed by a Programmable Illumination Microscope (PIM). The PIM allows us to track individual BZ oscillators, calculate the phase and order parameters of every drop, and selectively perturb specific drops with photo illumination, all in realtime. To date we have determined the native attractor patterns for drops in 1D arrays and 2D hexagonal packing as a function of coupling strength as well as determined methods to move the system from one attractor basin to another. Current work involves implementing these attractor control methods with our experimental system and future work will likely include implementing a model neural network for use with photo controllable BZ emulsions.

  7. Stability Properties and Cross Coupling Performance of the Control Allocation Scheme CAPIO

    NASA Technical Reports Server (NTRS)

    Yildiz, Yildiray; Kolmanovsky, Ilya V.

    2010-01-01

    This paper presents a stability analysis and an application of a recently developed Control Allocator for recovery from Pilot Induced Oscillations (CAPIO). When actuators are rate-saturated due to either aggressive pilot commands, high gain ight control systems or some anomaly in the system, the effective delay in the control loop may increase. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate Pilot induced Oscillations (PIO). CAPIO reduces the e ective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. We present a stability analysis of CAPIO for a scalar system. In addition, we present simulation results for aircraft with cross-coupling which demonstrates the potential of CAPIO serving as an effective PIO handler in adverse conditions.

  8. Electric field controlled spin interference in a system with Rashba spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciftja, Orion, E-mail: ogciftja@pvamu.edu

    There have been intense research efforts over the last years focused on understanding the Rashba spin-orbit coupling effect from the perspective of possible spintronics applications. An important component of this line of research is aimed at control and manipulation of electron’s spin degrees of freedom in semiconductor quantum dot devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system embedded in a host semiconducting material that lacks inversion-symmetry. This way, the Rashba spin-orbit coupling effect may potentially lead to fabrication of amore » new generation of spintronic devices where control of spin, thus magnetic properties, is achieved via an electric field and not a magnetic field. In this work we investigate theoretically the electron’s spin interference and accumulation process in a Rashba spin-orbit coupled system consisting of a pair of two-dimensional semiconductor quantum dots connected to each other via two conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow “leakage” of electrons from one dot to another. While going through the conducting channels, the electrons are spin-orbit coupled to a microscopically generated electric field applied perpendicular to the two-dimensional system. We show that interference of spin wave functions of electrons travelling through the two channels gives rise to interference/conductance patterns that lead to the observation of the geometric Berry’s phase. Achieving a predictable and measurable observation of Berry’s phase allows one to control the spin dynamics of the electrons. It is demonstrated that this system allows use of a microscopically generated electric field to control Berry’s phase, thus, enables one to tune the spin-dependent interference pattern and spintronic properties with no need for injection of spin-polarized electrons.« less

  9. Voltage control in pulsed system by predict-ahead control

    DOEpatents

    Payne, Anthony N.; Watson, James A.; Sampayan, Stephen E.

    1994-01-01

    A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load.

  10. Voltage control in pulsed system by predict-ahead control

    DOEpatents

    Payne, A.N.; Watson, J.A.; Sampayan, S.E.

    1994-09-13

    A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load. 4 figs.

  11. Alternate energy source usage for in situ heat treatment processes

    DOEpatents

    Stone, Jr., Francis Marion; Goodwin, Charles R [League City, TX; Richard, Jr., James

    2011-03-22

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for providing power to one or more subsurface heaters is described herein. The system may include an intermittent power source; a transformer coupled to the intermittent power source, and a tap controller coupled to the transformer. The transformer may be configured to transform power from the intermittent power source to power with appropriate operating parameters for the heaters. The tap controller may be configured to monitor and control the transformer so that a constant voltage is provided to the heaters from the transformer regardless of the load of the heaters and the power output provided by the intermittent power source.

  12. Mechanical perturbation control of cardiac alternans

    NASA Astrophysics Data System (ADS)

    Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan

    2018-05-01

    Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.

  13. Microcavities coupled to multilevel atoms

    NASA Astrophysics Data System (ADS)

    Schmid, Sandra Isabelle; Evers, Jörg

    2011-11-01

    A three-level atom in the Λ configuration coupled to a microcavity is studied. The two transitions of the atom are assumed to couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both in the strong-coupling and the bad-cavity limits. We find that, compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed-state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.

  14. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  15. Decoupling Coupled Constraints Through Utility Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, N; Marden, JR

    2014-08-01

    Several multiagent systems exemplify the need for establishing distributed control laws that ensure the resulting agents' collective behavior satisfies a given coupled constraint. This technical note focuses on the design of such control laws through a game-theoretic framework. In particular, this technical note provides two systematic methodologies for the design of local agent objective functions that guarantee all resulting Nash equilibria optimize the system level objective while also satisfying a given coupled constraint. Furthermore, the designed local agent objective functions fit into the framework of state based potential games. Consequently, one can appeal to existing results in game-theoretic learning tomore » derive a distributed process that guarantees the agents will reach such an equilibrium.« less

  16. Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes

    NASA Astrophysics Data System (ADS)

    Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.

    2007-06-01

    We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.

  17. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  18. Using a coupled inductor controlled by fuzzy logic to improve the efficiency of a Buck converter in a PV system

    NASA Astrophysics Data System (ADS)

    Abouchabana, Nabil; Haddadi, Mourad; Rabhi, Abdelhamid; El Hajjaji, Ahmed

    2017-11-01

    Photovoltaic generators (PVG) produce a variable power according to the solar radiation (G) and temperature (T). This variation affects the sizing of the components of DC / DC converters, powered by such PVG, and make it difficult. The effects may differ from one component to another. The main and critical one is presented by the inductor, the element that stores the energy during sampled periods. We propose in this work an auto-adaptation of these inductor values to maintain optimal performance of the power yield of these converters. Our idea is to replace the inductor by a coupled inductor where this adjustment is made by the addition of an adjustable electric field in the magnetic core. Low current intensities come from the PVG supply the second inductor of the coupled inductor through a circuit controlled by a fuzzy controller (FC). The whole system is modeled and simulated under MATLAB/SIMULINK for the control part of the system and under PSPICE for the power part of the system. The obtained results show good performances of the proposed converter over the standard one.

  19. A piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Won, C. C.

    1993-01-01

    This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.

  20. Controller design for a class of nonlinear MIMO coupled system using multiple models and second level adaptation.

    PubMed

    Pandey, Vinay Kumar; Kar, Indrani; Mahanta, Chitralekha

    2017-07-01

    In this paper, an adaptive control method using multiple models with second level adaptation is proposed for a class of nonlinear multi-input multi-output (MIMO) coupled systems. Multiple estimation models are used to tune the unknown parameters at the first level. The second level adaptation provides a single parameter vector for the controller. A feedback linearization technique is used to design a state feedback control. The efficacy of the designed controller is validated by conducting real time experiment on a laboratory setup of twin rotor MIMO system (TRMS). The TRMS setup is discussed in detail and the experiments were performed for regulation and tracking problem for pitch and yaw control using different reference signals. An Extended Kalman Filter (EKF) has been used to observe the unavailable states of the TRMS. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Design and implementation of a novel modal space active force control concept for spatial multi-DOF parallel robotic manipulators actuated by electrical actuators.

    PubMed

    Yang, Chifu; Zhao, Jinsong; Li, Liyi; Agrawal, Sunil K

    2018-01-01

    Robotic spine brace based on parallel-actuated robotic system is a new device for treatment and sensing of scoliosis, however, the strong dynamic coupling and anisotropy problem of parallel manipulators result in accuracy loss of rehabilitation force control, including big error in direction and value of force. A novel active force control strategy named modal space force control is proposed to solve these problems. Considering the electrical driven system and contact environment, the mathematical model of spatial parallel manipulator is built. The strong dynamic coupling problem in force field is described via experiments as well as the anisotropy problem of work space of parallel manipulators. The effects of dynamic coupling on control design and performances are discussed, and the influences of anisotropy on accuracy are also addressed. With mass/inertia matrix and stiffness matrix of parallel manipulators, a modal matrix can be calculated by using eigenvalue decomposition. Making use of the orthogonality of modal matrix with mass matrix of parallel manipulators, the strong coupled dynamic equations expressed in work space or joint space of parallel manipulator may be transformed into decoupled equations formulated in modal space. According to this property, each force control channel is independent of others in the modal space, thus we proposed modal space force control concept which means the force controller is designed in modal space. A modal space active force control is designed and implemented with only a simple PID controller employed as exampled control method to show the differences, uniqueness, and benefits of modal space force control. Simulation and experimental results show that the proposed modal space force control concept can effectively overcome the effects of the strong dynamic coupling and anisotropy problem in the physical space, and modal space force control is thus a very useful control framework, which is better than the current joint space control and work space control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Control of single-spin magnetic anisotropy by exchange coupling

    NASA Astrophysics Data System (ADS)

    Oberg, Jenny C.; Calvo, M. Reyes; Delgado, Fernando; Moro-Lagares, María; Serrate, David; Jacob, David; Fernández-Rossier, Joaquín; Hirjibehedin, Cyrus F.

    2014-01-01

    The properties of quantum systems interacting with their environment, commonly called open quantum systems, can be affected strongly by this interaction. Although this can lead to unwanted consequences, such as causing decoherence in qubits used for quantum computation, it can also be exploited as a probe of the environment. For example, magnetic resonance imaging is based on the dependence of the spin relaxation times of protons in water molecules in a host's tissue. Here we show that the excitation energy of a single spin, which is determined by magnetocrystalline anisotropy and controls its stability and suitability for use in magnetic data-storage devices, can be modified by varying the exchange coupling of the spin to a nearby conductive electrode. Using scanning tunnelling microscopy and spectroscopy, we observe variations up to a factor of two of the spin excitation energies of individual atoms as the strength of the spin's coupling to the surrounding electronic bath changes. These observations, combined with calculations, show that exchange coupling can strongly modify the magnetic anisotropy. This system is thus one of the few open quantum systems in which the energy levels, and not just the excited-state lifetimes, can be renormalized controllably. Furthermore, we demonstrate that the magnetocrystalline anisotropy, a property normally determined by the local structure around a spin, can be tuned electronically. These effects may play a significant role in the development of spintronic devices in which an individual magnetic atom or molecule is coupled to conducting leads.

  3. Fail-safe bidirectional valve driver

    NASA Technical Reports Server (NTRS)

    Fujimoto, H.

    1974-01-01

    Cross-coupled diodes are added to commonly used bidirectional valve driver circuit to protect circuit and power supply. Circuit may be used in systems requiring fail-safe bidirectional valve operation, particularly in chemical- and petroleum-processing control systems and computer-controlled hydraulic or pneumatic systems.

  4. Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide.

    PubMed

    Huo, Yijie; Sandhu, Sunil; Pan, Jun; Stuhrmann, Norbert; Povinelli, Michelle L; Kahn, Joseph M; Harris, James S; Fejer, Martin M; Fan, Shanhui

    2011-04-15

    We measure the group delay in an on-chip photonic-crystal device with two resonators side coupled to a waveguide. We demonstrate that such a group delay can be controlled by tuning either the propagation phase of the waveguide or the frequency of the resonators.

  5. Quantum thermodynamics: a nonequilibrium Green's function approach.

    PubMed

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  6. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  7. Implementation and characterization of a controllable dephasing channel based on coupling polarization and spatial degrees of freedom of light.

    PubMed

    Urrego, Daniel F; Álvarez, Juan-Rafael; Calderón-Losada, Omar; Svozilík, Jiří; Nuñez, Mayerlin; Valencia, Alejandra

    2018-04-30

    We present the experimental implementation and theoretical model of a controllable dephasing quantum channel using photonic systems. The channel is implemented by coupling the polarization and the spatial distribution of light that play, in the perspective of open quantum systems, the role of quantum system and environment, respectively. The capability of controlling our channel allows us to visualize its effects in a quantum system. Different from standard dephasing channels, our channel presents an exotic behavior in the sense that the evolution of a state, from a pure to a mixed state, shows an oscillatory behavior if tracked in the Bloch sphere. Additionally, we report the evolution of the purity and perform a quantum process tomography to obtain the χ matrix associated to our channel.

  8. Multiobjective synchronization of coupled systems

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Wang, Zidong; Wong, W. K.; Kurths, Jürgen; Fang, Jian-an

    2011-06-01

    In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.

  9. An Indirect Mixed-Sensitivity Approach to Microgravity Vibration Isolation: The Exploitation of Kinematic Coupling In Frequency-Weighting Design-Filter Selections

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Whorton, Mark S.

    2000-01-01

    Many space science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station have been appropriately modeled using relative position, relative velocity, and acceleration states. In theory, frequency design filters can be applied to these state-space models, in order to develop optimal H, or mixed-norm controllers with desired stability- and performance characteristics. In practice. however, the kinematic coupling among the various states can lead, through the associated frequency-weighting-filters, to conflicting demands on the Riccati design "machinery." The results can be numerically ill-conditioned regulator and estimator Riccati equations and/or reduced intuition in the design process. In addition, kinematic coupling can result in a redundancy in the demands imposed by the frequency weights. Failure properly to account for this type of coupling can lead to an unnecessary increase in controller dimensionality and, in turn, controller complexity. This paper suggests a rational approach to the assignment of frequency weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.

  10. An Indirect Mixed-Sensitivity Approach to Microgravity Vibration Isolation: The Exploitation of Kinematic Coupling In Frequency-weighting Design-Filter Selections

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Whorton, Mark S.

    2000-01-01

    Many space-science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station have been appropriately modeled using relative position relative velocity, and acceleration states. In theory, frequency-weighting design filters can be applied to these state-space models, in order to develop optimal H2 or mixed-norm controllers with desired stability and performance characteristics. In practice, however, the kinematic coupling among the various states can lead, through the associated frequency-weighting-filters, to conflicting demands on the Riccati design "machinery." The results can be numerically ill-conditioned regulator and estimator Riccati equations and/or reduced intuition in the design process. In addition, kinematic coupling can result in a redundancy in the demands imposed by the frequency weights. Failure properly to account for this type of coupling can lead to an unnecessary increase in controller dimensionality and, in turn, controller complexity. This paper suggests a rational approach to the assignment of frequency-weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.

  11. The effects of virtual reality game training on trunk to pelvis coupling in a child with cerebral palsy

    PubMed Central

    2013-01-01

    Background Good control of trunk and pelvic movements is necessary for well controlled leg movements required to perform activities of daily living. The nature of movement coupling between the trunk and pelvis varies and depends on the type of activity. Children with cerebral palsy often have reduced ability to modulate coupling between the trunk and pelvis but movement patterns of the pelvis can be improved by training. The aim of this study was to examine how pelvis to trunk coupling changed while playing a computer game driven by pelvic rotations. Methods One boy with cerebral palsy diplegia played the Goblin Post Office game on the CAREN virtual rehabilitation system for six weeks. He navigated a flying dragon in a virtual cave towards randomly appearing targets by rotating the pelvis around a vertical axis. Motion of the pelvis and trunk was captured in real-time by a Vicon 612 optoelectronic system tracking two clusters of three markers attached to the sacrum and thoracic spine. Results Convex hull areas calculated from angle-angle plots of pelvic and trunk rotations showed that coupling increased over game training (F1,11 = 7.482, p = 0.019). Reaching to targets far from the midline required tighter coupling than reaching near targets (F1,12 = 10.619, p = 0.007). Conclusions Increasing coupling appears to be an initial compensation mechanism using the better controlled trunk to drive rotation of the pelvis. Co-contractions causing increased coupling are expected to reduce over longer exposure to training. The control scheme of the training game can be set to facilitate de-coupling of pelvic movements from the trunk. Using large ranges of pelvic rotation required more coupling suggesting that training of selective pelvic movements is likely to be more effective close to a neutral pelvic posture. PMID:23391156

  12. The effects of virtual reality game training on trunk to pelvis coupling in a child with cerebral palsy.

    PubMed

    Barton, Gabor J; Hawken, Malcolm B; Foster, Richard J; Holmes, Gill; Butler, Penny B

    2013-02-07

    Good control of trunk and pelvic movements is necessary for well controlled leg movements required to perform activities of daily living. The nature of movement coupling between the trunk and pelvis varies and depends on the type of activity. Children with cerebral palsy often have reduced ability to modulate coupling between the trunk and pelvis but movement patterns of the pelvis can be improved by training. The aim of this study was to examine how pelvis to trunk coupling changed while playing a computer game driven by pelvic rotations. One boy with cerebral palsy diplegia played the Goblin Post Office game on the CAREN virtual rehabilitation system for six weeks. He navigated a flying dragon in a virtual cave towards randomly appearing targets by rotating the pelvis around a vertical axis. Motion of the pelvis and trunk was captured in real-time by a Vicon 612 optoelectronic system tracking two clusters of three markers attached to the sacrum and thoracic spine. Convex hull areas calculated from angle-angle plots of pelvic and trunk rotations showed that coupling increased over game training (F1,11 = 7.482, p = 0.019). Reaching to targets far from the midline required tighter coupling than reaching near targets (F1,12 = 10.619, p = 0.007). Increasing coupling appears to be an initial compensation mechanism using the better controlled trunk to drive rotation of the pelvis. Co-contractions causing increased coupling are expected to reduce over longer exposure to training. The control scheme of the training game can be set to facilitate de-coupling of pelvic movements from the trunk. Using large ranges of pelvic rotation required more coupling suggesting that training of selective pelvic movements is likely to be more effective close to a neutral pelvic posture.

  13. Pulsed interrupter and method of operation

    DOEpatents

    Drake, Joel Lawton; Kratz, Robert

    2015-06-09

    Some embodiments provide interrupter systems comprising: a first electrode; a second electrode; a piston movably located at a first position and electrically coupled with the first and second electrodes establishing a closed state, the piston comprises an electrical conductor that couples with the first and second electrodes providing a conductive path; an electromagnetic launcher configured to, when activated, induce a magnetic field pulse causing the piston to move away from the electrical coupling with the first and second electrodes establishing an open circuit between the first and second electrodes; and a piston control system comprising a piston arresting system configured to control a deceleration of the piston following the movement of the piston induced by the electromagnetic launcher such that the piston is not in electrical contact with at least one of the first electrode and the second electrode when in the open state.

  14. Initial Investigation of Reaction Control System Design on Spacecraft Handling Qualities for Earth Orbit Docking

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Jackson, E. Bruce; Goodrich, Kenneth H.; Ragsdale, W. Al; Neuhaus, Jason; Barnes, Jim

    2008-01-01

    A program of research, development, test, and evaluation is planned for the development of Spacecraft Handling Qualities guidelines. In this first experiment, the effects of Reaction Control System design characteristics and rotational control laws were evaluated during simulated proximity operations and docking. Also, the influence of piloting demands resulting from varying closure rates was assessed. The pilot-in-the-loop simulation results showed that significantly different spacecraft handling qualities result from the design of the Reaction Control System. In particular, cross-coupling between translational and rotational motions significantly affected handling qualities as reflected by Cooper-Harper pilot ratings and pilot workload, as reflected by Task-Load Index ratings. This influence is masked but only slightly by the rotational control system mode. While rotational control augmentation using Rate Command Attitude Hold can reduce the workload (principally, physical workload) created by cross-coupling, the handling qualities are not significantly improved. The attitude and rate deadbands of the RCAH introduced significant mental workload and control compensation to evaluate when deadband firings would occur, assess their impact on docking performance, and apply control inputs to mitigate that impact.

  15. Improving coherence with nested environments

    NASA Astrophysics Data System (ADS)

    Moreno, H. J.; Gorin, T.; Seligman, T. H.

    2015-09-01

    We have in mind a register of qubits for an quantum information system, and consider its decoherence in an idealized but typical situation. Spontaneous decay and other couplings to the far environment, considered as the world outside the quantum apparatus, will be neglected, while couplings to quantum states within the apparatus, i.e., to a near environment, are assumed to dominate. Thus the central system couples to the near environment, which in turn couples to a far environment. Considering that the dynamics in the near environment is not sufficiently well known or controllable, we shall use random matrix methods to obtain analytic results. We consider a simplified situation where the central system suffers weak dephasing from the near environment, which in turn is coupled randomly to the far environment. We find the anti-intuitive result that increasing the coupling between the near and far environment actually protects the central qubit.

  16. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    NASA Astrophysics Data System (ADS)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.

  17. Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system

    NASA Astrophysics Data System (ADS)

    Zhang, Zecen; Ng, Geok Ing; Hu, Ting; Qiu, Haodong; Guo, Xin; Wang, Wanjun; Rouifed, Mohamed Saïd; Liu, Chongyang; Wang, Hong

    2017-08-01

    A conversion between the electromagnetically induced transparency (EIT) transmission and Fano transmission is theoretically and experimentally demonstrated in an all-pass microring-Bragg grating (APMR-BG) coupled-resonator system. In this work, the coupling between the two resonators (the microring resonator and the Fabry-Perot resonator formed by two Bragg gratings) gives rise to the EIT and Fano transmissions. The resonant status strongly depends on the round-trip attenuation of the microring and the coupling strength. By tuning the coupling strength, the EIT and Fano transmissions can be controlled and converted. The device performance has been theoretically calculated and analyzed with a specially developed numerical model based on the transfer matrix method. The APMR-BG coupled-resonator systems with different gap widths were designed, fabricated, and characterized on a silicon-on-insulator (SOI) platform. The conversion of resonance was experimentally observed and verified. In addition, this on-chip system has the advantage of a small footprint, and the fabrication process is compatible with the planar waveguide fabrication process.

  18. Synchronization of coupled different chaotic FitzHugh-Nagumo neurons with unknown parameters under communication-direction-dependent coupling.

    PubMed

    Iqbal, Muhammad; Rehan, Muhammad; Khaliq, Abdul; Saeed-ur-Rehman; Hong, Keum-Shik

    2014-01-01

    This paper investigates the chaotic behavior and synchronization of two different coupled chaotic FitzHugh-Nagumo (FHN) neurons with unknown parameters under external electrical stimulation (EES). The coupled FHN neurons of different parameters admit unidirectional and bidirectional gap junctions in the medium between them. Dynamical properties, such as the increase in synchronization error as a consequence of the deviation of neuronal parameters for unlike neurons, the effect of difference in coupling strengths caused by the unidirectional gap junctions, and the impact of large time-delay due to separation of neurons, are studied in exploring the behavior of the coupled system. A novel integral-based nonlinear adaptive control scheme, to cope with the infeasibility of the recovery variable, for synchronization of two coupled delayed chaotic FHN neurons of different and unknown parameters under uncertain EES is derived. Further, to guarantee robust synchronization of different neurons against disturbances, the proposed control methodology is modified to achieve the uniformly ultimately bounded synchronization. The parametric estimation errors can be reduced by selecting suitable control parameters. The effectiveness of the proposed control scheme is illustrated via numerical simulations.

  19. PSO-tuned PID controller for coupled tank system via priority-based fitness scheme

    NASA Astrophysics Data System (ADS)

    Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal

    2015-05-01

    The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.

  20. Wind Turbine Modeling Overview for Control Engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, P. J.; Butterfield, S. B.

    2009-01-01

    Accurate modeling of wind turbine systems is of paramount importance for controls engineers seeking to reduce loads and optimize energy capture of operating turbines in the field. When designing control systems, engineers often employ a series of models developed in the different disciplines of wind energy. The limitations and coupling of each of these models is explained to highlight how these models might influence control system design.

  1. An air-coupled actuator array for active modal control of timpani

    NASA Astrophysics Data System (ADS)

    Rollow, Douglas; Sparrow, Victor W.; Swanson, David C.

    2005-09-01

    The timbral characteristics of kettledrums can be described by a modal formulation of the vibration of a thin, air-loaded membrane. Modification of the modal time history can be brought about with the use of a control system which has independent influence on each structural mode. By replacing the usual kettle with a shallow chamber and a planar array of piston sources, a modal controller is created when driving the sources in appropriate linear combinations. A theoretical formulation of active control of structural vibration by means of fluid-coupled actuators is expressed, and a Boundary Element simulation provides insight to the coupled modes, independence of control, and constraints due to the geometry of the chamber. Advantages and limitations of this type of control source to general problems in actively controlled musical instruments are explored.

  2. A synthetic biological quantum optical system

    DOE PAGES

    Lishchuk, Anna; Kodali, Goutham; Mancini, Joshua A.; ...

    2018-01-01

    Strong coupling between plasmon modes and chlorins in synthetic light-harvesting maquette proteins yields hybrid light–matter states (plexcitons) whose energies are controlled by design of protein structure, enabling the creation of new states not seen under weak coupling.

  3. Modular inverter system

    DOEpatents

    Ma, Mingyao; Hu, Haibing; Kutkut, Nasser; Batarseh, Issa; Shen, John; , Bkayrat, Raed

    2017-08-01

    A system connected to an AC power grid having an AC phase signal includes an inverter module including a first inverter coupled to a DC voltage, actuated based on the AC phase signal. The first inverter provides a first voltage signal having predetermined harmonic components. A second inverter includes second switch elements coupled to the DC voltage and actuated by a second set of control signals phase delayed with respect to the first control signals. A transformer module has first and second primary windings coupled to the first and second inverters. The transformer module further includes a secondary winding coupled to first primary winding, the second primary winding, and the AC power grid. The secondary winding is configured to provide a secondary output voltage to the AC power grid by combining the first voltage signal and the second voltage signal such that the predetermined harmonic components are substantially cancelled.

  4. Rate equation analysis and non-Hermiticity in coupled semiconductor laser arrays

    NASA Astrophysics Data System (ADS)

    Gao, Zihe; Johnson, Matthew T.; Choquette, Kent D.

    2018-05-01

    Optically coupled semiconductor laser arrays are described by coupled rate equations. The coupled mode equations and carrier densities are included in the analysis, which inherently incorporate the carrier-induced nonlinearities including gain saturation and amplitude-phase coupling. We solve the steady-state coupled rate equations and consider the cavity frequency detuning and the individual laser pump rates as the experimentally controlled variables. We show that the carrier-induced nonlinearities play a critical role in the mode control, and we identify gain contrast induced by cavity frequency detuning as a unique mechanism for mode control. Photon-mediated energy transfer between cavities is also discussed. Parity-time symmetry and exceptional points in this system are studied. Unbroken parity-time symmetry can be achieved by judiciously combining cavity detuning and unequal pump rates, while broken symmetry lies on the boundary of the optical locking region. Exceptional points are identified at the intersection between broken symmetry and unbroken parity-time symmetry.

  5. System for automatically switching transformer coupled lines

    NASA Technical Reports Server (NTRS)

    Dwinell, W. S. (Inventor)

    1979-01-01

    A system is presented for automatically controlling transformer coupled alternating current electric lines. The secondary winding of each transformer is provided with a center tap. A switching circuit is connected to the center taps of a pair of secondary windings and includes a switch controller. An impedance is connected between the center taps of the opposite pair of secondary windings. The switching circuit has continuity when the AC lines are continuous and discontinuity with any disconnect of the AC lines. Normally open switching means are provided in at least one AC line. The switch controller automatically opens the switching means when the AC lines become separated.

  6. Secure videoconferencing equipment switching system and method

    DOEpatents

    Hansen, Michael E [Livermore, CA

    2009-01-13

    A switching system and method are provided to facilitate use of videoconference facilities over a plurality of security levels. The system includes a switch coupled to a plurality of codecs and communication networks. Audio/Visual peripheral components are connected to the switch. The switch couples control and data signals between the Audio/Visual peripheral components and one but nor both of the plurality of codecs. The switch additionally couples communication networks of the appropriate security level to each of the codecs. In this manner, a videoconferencing facility is provided for use on both secure and non-secure networks.

  7. Self-Contained Avionics Sensing and Flight Control System for Small Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Ingham, John C. (Inventor); Shams, Qamar A. (Inventor); Logan, Michael J. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Melanie L. (Inventor); Kuhn, III, Theodore R. (Inventor); Babel, III, Walter C. (Inventor); Fox, legal representative, Christopher L. (Inventor); Adams, James K. (Inventor); Laughter, Sean A. (Inventor)

    2011-01-01

    A self-contained avionics sensing and flight control system is provided for an unmanned aerial vehicle (UAV). The system includes sensors for sensing flight control parameters and surveillance parameters, and a Global Positioning System (GPS) receiver. Flight control parameters and location signals are processed to generate flight control signals. A Field Programmable Gate Array (FPGA) is configured to provide a look-up table storing sets of values with each set being associated with a servo mechanism mounted on the UAV and with each value in each set indicating a unique duty cycle for the servo mechanism associated therewith. Each value in each set is further indexed to a bit position indicative of a unique percentage of a maximum duty cycle for the servo mechanism associated therewith. The FPGA is further configured to provide a plurality of pulse width modulation (PWM) generators coupled to the look-up table. Each PWM generator is associated with and adapted to be coupled to one of the servo mechanisms.

  8. Shunt regulation electric power system

    NASA Technical Reports Server (NTRS)

    Wright, W. H.; Bless, J. J. (Inventor)

    1971-01-01

    A regulated electric power system having load and return bus lines is described. A plurality of solar cells interconnected in a power supplying relationship and having a power shunt tap point electrically spaced from the bus lines is provided. A power dissipator is connected to the shunt tap point and provides for a controllable dissipation of excess energy supplied by the solar cells. A dissipation driver is coupled to the power dissipator and controls its conductance and dissipation and is also connected to the solar cells in a power taping relationship to derive operating power therefrom. An error signal generator is coupled to the load bus and to a reference signal generator to provide an error output signal which is representative of the difference between the electric parameters existing at the load bus and the reference signal generator. An error amplifier is coupled to the error signal generator and the dissipation driver to provide the driver with controlling signals.

  9. All-optical transistor based on Rydberg atom-assisted optomechanical system.

    PubMed

    Liu, Yi-Mou; Tian, Xue-Dong; Wang, Jing; Fan, Chu-Hui; Gao, Feng; Bao, Qian-Qian

    2018-04-30

    We study the optical response of a double optomechanical cavity system assisted by two Rydberg atoms. The target atom is only coupled with one side cavity by a single cavity mode, and gate one is outside the cavities. It has been realized that a long-range manipulation of optical properties of a hybrid system, by controlling the Rydberg atom decoupled with the optomechanical cavity. Switching on the coupling between atoms and cavity mode, the original spatial inversion symmetry of the double cavity structure has been broken. Combining the controllable optical non-reciprocity with the coherent perfect absorption/transmission/synthesis effect (CPA/CPT/CPS reported by [ X.-B.Yan Opt. Express 22, 4886 (2014)], we put forward the theoretical schemes of an all-optical transistor which contains functions such as a controllable diode, rectifier, and amplifier by controlling a single gate photon.

  10. Multidisciplinary optimization of controlled space structures with global sensitivity equations

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.

    1991-01-01

    A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.

  11. Global Sliding Mode Control for the Bank-to-Turn of Hypersonic Glide Vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yu, Y. F.; Yan, P. P.; Fan, Y. H.; Guo, X. W.

    2017-03-01

    The technology of Bank-to-Turn has been recognized as an attractive direction due to their significance for the control of hypersonic glide vehicle. Strong coupling existing among pitch, yaw and roll channel was a great challenge for banking to turn, and thus a novel global sliding mode controller was designed for hypersonic glider in this paper. Considering the coupling among channels as interference, we can use invariance principle of sliding mode motion to realize the decoupling control. The global sliding mode control system could eliminate the stage of reaching, which can lead to the realization of whole systematic process decoupling control. When the global sliding mode factor was designed, a minimum norm pole assignment method of the sliding mode matrix was introduced to improve the robustness of the system. The method of continuity of symbolic function was adopted to overcome the chatter, which furtherly modify the transient performance of the system. The simulation results show that this method has good performance of three channel decoupling control and guidance command tracking. And it can meet the requirements of the dynamic performance of the system.

  12. Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton.

    PubMed

    Bai, Lihui; Harder, Michael; Hyde, Paul; Zhang, Zhaohui; Hu, Can-Ming; Chen, Y P; Xiao, John Q

    2017-05-26

    Using electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusion length, instead depending on the interplay between the local and global properties of the coupled system, enabling systematic spin current control over large distance scales (several centimeters in this work). This flexibility opens the door to improved spin current generation and manipulation for cavity spintronic devices.

  13. Synchronization of oscillations in coupled multimode optoelectronic oscillators: bifurcation analysis

    NASA Astrophysics Data System (ADS)

    Balakin, M.; Gulyaev, A.; Kazaryan, A.; Yarovoy, O.

    2018-04-01

    We study influence of time delay in coupling on the dynamics of two coupled multimode optoelectronic oscillators. We reveal the structure of main synchronization region on the parameter plane and main bifurcations leading to synchronization and multistability formation. The dynamics of the system is studied in a wide range of values of control parameters.

  14. Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksiy O.

    2015-03-01

    Following the considerable progress in nanoribbon technology, we propose to model the nonlinear Frenkel-like excitations on a triangular-lattice ribbon by the integrable nonlinear ladder system with the background-controlled intersite resonant coupling. The system of interest arises as a proper reduction of first general semidiscrete integrable system from an infinite hierarchy. The most significant local conservation laws related to the first general integrable system are found explicitly in the framework of generalized recursive approach. The obtained general local densities are equally applicable to any general semidiscrete integrable system from the respective infinite hierarchy. Using the recovered second densities, the Hamiltonian formulation of integrable nonlinear ladder system with background-controlled intersite resonant coupling is presented. In doing so, the relevant Poisson structure turns out to be essentially nontrivial. The Darboux transformation scheme as applied to the first general semidiscrete system is developed and the key role of Bäcklund transformation in justification of its self-consistency is pointed out. The spectral properties of Darboux matrix allow to restore the whole Darboux matrix thus ensuring generation one more soliton as compared with a priori known seed solution of integrable nonlinear system. The power of Darboux-dressing method is explicitly demonstrated in generating the multicomponent one-soliton solution to the integrable nonlinear ladder system with background-controlled intersite resonant coupling.

  15. Dual-wavelength single-frequency laser emission in asymmetric coupled microdisks

    PubMed Central

    Wang, Haotian; Liu, Sheng; Chen, Lin; Shen, Deyuan; Wu, Xiang

    2016-01-01

    The gain and loss in a microcavity laser play an important role for the modulation of laser spectrum. We show that dual-wavelength single mode lasing can be achieved in an asymmetric coupled system consisted of two size-mismatched microdisks. The amount of eigenmodes in this coupled-microdisk system is reduced relying on the Vernier effect. Then a single mode is selected to lase by controlling the gain branching in the supermodes. The supermodes are formed by the coupling between different transverse whispering-gallery modes (WGMs). When the gain/loss status between the two mirodisks is changed through selectively pumping process, the modulated gain branching for various supermodes leads to the switchable single-frequency laser emission. The results obtained in this work will provide the further understand for the spectral modulation mechanism in the coupled microcavity laser system. PMID:27905506

  16. Robust Stability and Control of Multi-Body Ground Vehicles with Uncertain Dynamics and Failures

    DTIC Science & Technology

    2010-01-01

    and N. Zhang, 2008. “Robust stability control of vehicle rollover subject to actuator time delay”. Proc. IMechE Part I: J. of systems and control ...Dynamic Systems and Control Conference, Boston, MA, Sept 2010 R.K. Yedavalli,”Robust Stability of Linear Interval Parameter Matrix Family Problem...for control coupled output regulation for a class of systems is presented. In section 2.1.7, the control design algorithm developed in section

  17. Androgynous, Reconfigurable Closed Loop Feedback Controlled Low Impact Docking System With Load Sensing Electromagnetic Capture Ring

    NASA Technical Reports Server (NTRS)

    Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)

    2002-01-01

    The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.

  18. Multiscale spectral nanoscopy

    DOEpatents

    Yang, Haw; Welsher, Kevin

    2016-11-15

    A system and method for non-invasively tracking a particle in a sample is disclosed. The system includes a 2-photon or confocal laser scanning microscope (LSM) and a particle-holding device coupled to a stage with X-Y and Z position control. The system also includes a tracking module having a tracking excitation laser, X-Y and Z radiation-gathering components configured to detect deviations of the particle in an X-Y and Z directions. The system also includes a processor coupled to the X-Y and Z radiation gathering components, generate control signals configured to drive the stage X-Y and Z position controls to track the movement of the particle. The system may also include a synchronization module configured to generate LSM pixels stamped with stage position and a processing module configured to generate a 3D image showing the 3D trajectory of a particle using the LSM pixels stamped with stage position.

  19. Electronic pictures from charged-coupled devices

    NASA Technical Reports Server (NTRS)

    Mccann, D. H.; Turly, A. P.; White, M.

    1979-01-01

    Imaging system uses charge-coupled devices (CCD's) to generate TV-like pictures with high resolution, sensitivity, and signal-to-noise ratio. It combines detectors for five spectral bands as well as processing and control circuitry all on single silicon chip.

  20. Cardiorespiratory Coupling: Common Rhythms in Cardiac, Sympathetic, and Respiratory Activities

    PubMed Central

    Dick, Thomas E.; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Baekey, David M.; Galán, Roberto F.; Wehrwein, Erica; Morris, Kendall F.

    2014-01-01

    Cardiorespiratory coupling is an encompassing term describing more than the well-recognized influences of respiration on heart rate and blood pressure. Our data indicate that cardiorespiratory coupling reflects a reciprocal interaction between autonomic and respiratory control systems, and the cardiovascular system modulates the ventilatory pattern as well. For example, cardioventilatory coupling refers to the influence of heart beats and arterial pulse pressure on respiration and is the tendency for the next inspiration to start at a preferred latency after the last heart beat in expiration. Multiple complementary, well-described mechanisms mediate respiration’s influence on cardiovascular function, whereas mechanisms mediating the cardiovascular system’s influence on respiration may only be through the baroreceptors but are just being identified. Our review will describe a differential effect of conditioning rats with either chronic intermittent or sustained hypoxia on sympathetic nerve activity but also on ventilatory pattern variability. Both intermittent and sustained hypoxia increase sympathetic nerve activity after 2 weeks but affect sympatho-respiratory coupling differentially. Intermittent hypoxia enhances sympatho-respiratory coupling, which is associated with low variability in the ventilatory pattern. In contrast, after constant hypobaric hypoxia, 1-to-1 coupling between bursts of sympathetic and phrenic nerve activity is replaced by 2-to-3 coupling. This change in coupling pattern is associated with increased variability of the ventilatory pattern. After baro-denervating hypobaric hypoxic-conditioned rats, splanchnic sympathetic nerve activity becomes tonic (distinct bursts are absent) with decreases during phrenic nerve bursts and ventilatory pattern becomes regular. Thus, conditioning rats to either intermittent or sustained hypoxia accentuates the reciprocal nature of cardiorespiratory coupling. Finally, identifying a compelling physiologic purpose for cardiorespiratory coupling is the biggest barrier for recognizing its significance. Cardiorespiratory coupling has only a small effect on the efficiency of gas exchange; rather, we propose that cardiorespiratory control system may act as weakly coupled oscillator to maintain rhythms within a bounded variability. PMID:24746049

  1. Controlling chimeras

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Martens, Erik A.

    2015-03-01

    Coupled phase oscillators model a variety of dynamical phenomena in nature and technological applications. Non-local coupling gives rise to chimera states which are characterized by a distinct part of phase-synchronized oscillators while the remaining ones move incoherently. Here, we apply the idea of control to chimera states: using gradient dynamics to exploit drift of a chimera, it will attain any desired target position. Through control, chimera states become functionally relevant; for example, the controlled position of localized synchrony may encode information and perform computations. Since functional aspects are crucial in (neuro-)biology and technology, the localized synchronization of a chimera state becomes accessible to develop novel applications. Based on gradient dynamics, our control strategy applies to any suitable observable and can be generalized to arbitrary dimensions. Thus, the applicability of chimera control goes beyond chimera states in non-locally coupled systems.

  2. Cross-coupled control for all-terrain rovers.

    PubMed

    Reina, Giulio

    2013-01-08

    Mobile robots are increasingly being used in challenging outdoor environments for applications that include construction, mining, agriculture, military and planetary exploration. In order to accomplish the planned task, it is critical that the motion control system ensure accuracy and robustness. The achievement of high performance on rough terrain is tightly connected with the minimization of vehicle-terrain dynamics effects such as slipping and skidding. This paper presents a cross-coupled controller for a 4-wheel-drive/4-wheel-steer robot, which optimizes the wheel motors' control algorithm to reduce synchronization errors that would otherwise result in wheel slip with conventional controllers. Experimental results, obtained with an all-terrain rover operating on agricultural terrain, are presented to validate the system. It is shown that the proposed approach is effective in reducing slippage and vehicle posture errors.

  3. Metadisorder for designer light in random systems

    PubMed Central

    Yu, Sunkyu; Piao, Xianji; Hong, Jiho; Park, Namkyoo

    2016-01-01

    Disorder plays a critical role in signal transport by controlling the correlation of a system, as demonstrated in various complex networks. In wave physics, disordered potentials suppress wave transport, because of their localized eigenstates, from the interference between multiple scattering paths. Although the variation of localization with tunable disorder has been intensively studied as a bridge between ordered and disordered media, the general trend of disorder-enhanced localization has remained unchanged, and the existence of complete delocalization in highly disordered potentials has not been explored. We propose the concept of “metadisorder”: randomly coupled optical systems in which eigenstates can be engineered to achieve unusual localization. We demonstrate that one of the eigenstates in a randomly coupled system can always be arbitrarily molded, regardless of the degree of disorder, by adjusting the self-energy of each element. Ordered waves with the desired form are then achieved in randomly coupled systems, including plane waves and globally collective resonances. We also devise counterintuitive functionalities in disordered systems, such as “small-world–like” transport from non–Anderson-type localization, phase-conserving disorder, and phase-controlled beam steering. PMID:27757414

  4. Biomechanically Induced and Controller Coupled Oscillations Experienced on the F-16XL Aircraft During Rolling Maneuvers

    NASA Technical Reports Server (NTRS)

    Smith, John W.; Montgomery, Terry

    1996-01-01

    During rapid rolling maneuvers, the F-16 XL aircraft exhibits a 2.5 Hz lightly damped roll oscillation, perceived and described as 'roll ratcheting.' This phenomenon is common with fly-by-wire control systems, particularly when primary control is derived through a pedestal-mounted side-arm controller. Analytical studies have been conducted to model the nature of the integrated control characteristics. The analytical results complement the flight observations. A three-degree-of-freedom linearized set of aerodynamic matrices was assembled to simulate the aircraft plant. The lateral-directional control system was modeled as a linear system. A combination of two second-order transfer functions was derived to couple the lateral acceleration feed through effect of the operator's arm and controller to the roll stick force input. From the combined systems, open-loop frequency responses and a time history were derived, describing and predicting an analogous in-flight situation. This report describes the primary control, aircraft angular rate, and position time responses of the F-16 XL-2 aircraft during subsonic and high-dynamic-pressure rolling maneuvers. The analytical description of the pilot's arm and controller can be applied to other aircraft or simulations to assess roll ratcheting susceptibility.

  5. Feedbacks between Reservoir Operation and Floodplain Development

    NASA Astrophysics Data System (ADS)

    Wallington, K.; Cai, X.

    2017-12-01

    The increased connectedness of socioeconomic and natural systems warrants the study of them jointly as Coupled Natural-Human Systems (CNHS) (Liu et al., 2007). One such CNHS given significant attention in recent years has been the coupled sociological-hydrological system of floodplains. Di Baldassarre et al. (2015) developed a model coupling floodplain development and levee heightening, a flood control measure, which demonstrated the "levee effect" and "adaptation effect" seen in observations. Here, we adapt the concepts discussed by Di Baldassarre et al. (2015) and apply them to floodplains in which the primary flood control measure is reservoir storage, rather than levee construction, to study the role of feedbacks between reservoir operation and floodplain development. Specifically, we investigate the feedback between floodplain development and optimal management of trade-offs between flood water conservation and flood control. By coupling a socio-economic model based on that of Di Baldassarre et al. (2015) with a reservoir optimization model based on that discussed in Ding et al. (2017), we show that reservoir operation rules can co-evolve with floodplain development. Furthermore, we intend to demonstrate that the model results are consistent with real-world data for reservoir operating curves and floodplain development. This model will help explain why some reservoirs are currently operated for purposes which they were not originally intended and thus inform reservoir design and construction.

  6. Effect of Propellant Feed System Coupling and Hydraulic Parameters on Analysis of Chugging

    NASA Technical Reports Server (NTRS)

    Wood, Don J.; Dorsch, Robert G.

    1967-01-01

    A digital distributed parameter model was used to study the effects of propellant-feed- system coupling and various hydraulic parameters on the analytical prediction of chugging instabilities. Coupling between the combustion chamber and feed system was controlled by varying the compliance of the injector-dome region. The coupling with the feed system above the pump was varied by changing the amount of cavitation compliance at the pump inlet. The stability limits and chugging frequencies proved to be strongly dependent on the degree of feed-system coupling. The maximum stability condition occurred with intermediate coupling. Under conditions of a high degree of feed-system-combustor coupling, the stability limits and chugging frequencies were primarily dependent on the feed-system characteristics; the responses were characterized by beating patterns. For the system analyzed, the pump suction line had little effect on the stability limits or chugging frequencies. Beating, present under the condition of near zero injector -dome compliance, was eliminated when the suction line was decoupled by employing a sufficiently high value of pump-inlet compliance. Under conditions of maximum feed-system coupling, the magnitude and distribution of line losses in the discharge line had a significant effect on the stability limits but had negligible effect on the chugging frequency and beating characteristics. Also, the length of the discharge line greatly affected the stability limits, chugging frequency, and beating characteristics. The length of the suction line, however, had little effect on the stability limits and chugging frequency but did influence the beating pattern. A resistive-shunt device attached to the pump discharge line to suppress chugging was investigated. The analysis showed that the device was effective under conditions of high feed-system coupling.

  7. Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator.

    PubMed

    MacDonald, A J R; Popowich, G G; Hauer, B D; Kim, P H; Fredrick, A; Rojas, X; Doolin, P; Davis, J P

    2015-01-01

    We have developed a system for tapered fiber measurements of optomechanical resonators inside a dilution refrigerator, which is compatible with both on- and off-chip devices. Our apparatus features full three-dimensional control of the taper-resonator coupling conditions enabling critical coupling, with an overall fiber transmission efficiency of up to 70%. Notably, our design incorporates an optical microscope system consisting of a coherent bundle of 37,000 optical fibers for real-time imaging of the experiment at a resolution of ∼1 μm. We present cryogenic optical and optomechanical measurements of resonators coupled to tapered fibers at temperatures as low as 9 mK.

  8. Ares-I-X Stability and Control Flight Test: Analysis and Plans

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Derry, Stephen D.; Heim, Eugene H.; Hueschen, Richard M.; Bacon, Barton J.

    2008-01-01

    The flight test of the Ares I-X vehicle provides a unique opportunity to reduce risk of the design of the Ares I vehicle and test out design, math modeling, and analysis methods. One of the key features of the Ares I design is the significant static aerodynamic instability coupled with the relatively flexible vehicle - potentially resulting in a challenging controls problem to provide adequate flight path performance while also providing adequate structural mode damping and preventing adverse control coupling to the flexible structural modes. Another challenge is to obtain enough data from the single flight to be able to conduct analysis showing the effectiveness of the controls solutions and have data to inform design decisions for Ares I. This paper will outline the modeling approaches and control system design to conduct this flight test, and also the system identification techniques developed to extract key information such as control system performance (gain/phase margins, for example), structural dynamics responses, and aerodynamic model estimations.

  9. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis

    NASA Technical Reports Server (NTRS)

    Gang, D. R.; Costa, M. A.; Fujita, M.; Dinkova-Kostova, A. T.; Wang, H. B.; Burlat, V.; Martin, W.; Sarkanen, S.; Davin, L. B.; Lewis, N. G.

    1999-01-01

    BACKGROUND: Although the lignins and lignans, both monolignol-derived coupling products, account for nearly 30% of the organic carbon circulating in the biosphere, the biosynthetic mechanism of their formation has been poorly understood. The prevailing view has been that lignins and lignans are produced by random free-radical polymerization and coupling, respectively. This view is challenged, mechanistically, by the recent discovery of dirigent proteins that precisely determine both the regiochemical and stereoselective outcome of monolignol radical coupling. RESULTS: To understand further the regulation and control of monolignol coupling, leading to both lignan and lignin formation, we sought to clone the first genes encoding dirigent proteins from several species. The encoding genes, described here, have no sequence homology with any other protein of known function. When expressed in a heterologous system, the recombinant protein was able to confer strict regiochemical and stereochemical control on monolignol free-radical coupling. The expression in plants of dirigent proteins and proposed dirigent protein arrays in developing xylem and in other lignified tissues indicates roles for these proteins in both lignan formation and lignification. CONCLUSIONS: The first understanding of regiochemical and stereochemical control of monolignol coupling in lignan biosynthesis has been established via the participation of a new class of dirigent proteins. Immunological studies have also implicated the involvement of potential corresponding arrays of dirigent protein sites in controlling lignin biopolymer assembly.

  10. Local feedback control of light honeycomb panels.

    PubMed

    Hong, Chinsuk; Elliott, Stephen J

    2007-01-01

    This paper summarizes theoretical and experimental work on the feedback control of sound radiation from honeycomb panels using piezoceramic actuators. It is motivated by the problem of sound transmission in aircraft, specifically the active control of trim panels. Trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently mounted to the fuselage for the passive reduction of noise transmission. Local coupling of the closely spaced sensor and actuator was observed experimentally and modeled using a single degree of freedom system. The effect of the local coupling was to roll off the response between the actuator and sensor at high frequencies, so that a feedback control system can have high gain margins. Unfortunately, only relatively poor global performance is then achieved because of localization of reduction around the actuator. This localization prompts the investigation of a multichannel active control system. Globalized reduction was predicted using a model of 12-channel direct velocity feedback control. The multichannel system, however, does not appear to yield a significant improvement in the performance because of decreased gain margin.

  11. Initial Assessment of a Variable-Camber Continuous Trailing-Edge Flap System on a Rigid Wing for Drag Reduction in Subsonic Cruise

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Nguyen, Nhan; Totah, Joe; Trinh, Khanh; Ting, Eric

    2013-01-01

    In this paper, we describe an initial optimization study of a Variable-Camber Continuous Trailing-Edge Flap (VCCTEF) system. The VCCTEF provides a light-weight control system for aircraft with long flexible wings, providing efficient high-lift capability for takeoff and landing, and greater efficiency with reduced drag at cruising flight by considering the effects of aeroelastic wing deformations in the control law. The VCCTEF system is comprised of a large number of distributed and individually-actuatable control surfaces that are constrained in movement relative to neighboring surfaces, and are non-trivially coupled through structural aeroelastic dynamics. Minimzation of drag results in a constrained, coupled, non-linear optimization over a high-dimension search space. In this paper, we describe the modeling, analysis, and optimization of the VCCTEF system control inputs for minimum drag in cruise. The purpose of this initial study is to quantify the expected benefits of the system concept. The scope of this analysis is limited to consideration of a rigid wing without structural flexibility in a steady-state cruise condition at various fuel weights. For analysis, we developed an optimization engine that couples geometric synthesis with vortex-lattice analysis to automate the optimization procedure. In this paper, we present and describe the VCCTEF system concept, optimization approach and tools, run-time performance, and results of the optimization at 20%, 50%, and 80% fuel load. This initial limited-scope study finds the VCCTEF system can potentially gain nearly 10% reduction in cruise drag, provides greater drag savings at lower operating weight, and efficiency is negatively impacted by the severity of relative constraints between control surfaces.

  12. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.

    PubMed

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-04-01

    The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.

  13. Split-orientation-modulated plasmon coupling in disk/sector dimers

    NASA Astrophysics Data System (ADS)

    Zhu, Xupeng; Chen, Yiqin; Shi, Huimin; Zhang, Shi; Liu, Quanhui; Duan, Huigao

    2017-06-01

    The coupled asymmetric plasmonic nanostructures allow more compact nanophotonics integration and easier optical control in practical applications, such as directional scattering and near-field control. Here, we carried out a systematic and in-depth study on the plasmonic coupling of an asymmetric gold disk/sector dimer, and investigated the light-matter interaction in such an asymmetric coupled complex nanostructures. The results demonstrated that the positions and the intensity of plasmon resonance peak as well as the spatial distribution of electric fields around the surface in the coupled disk/sector dimer can be tuned by changing the azimuth angle of the gold sector. Based on Simpson-Peterson approximation, we proposed a model to understand the obtained plasmon properties of asymmetric coupled disk/sector dimers by introducing an offset parameter between the geometry center and dipole center of the sector. The experimental results agree well with the simulations. Our study provides an insight to tune the plasmon coupling behavior via adjusting the plasmon dipole center position in coupling systems.

  14. Accelerated Electron-Beam Formation with a High Capture Coefficient in a Parallel Coupled Accelerating Structure

    NASA Astrophysics Data System (ADS)

    Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.

    2018-01-01

    An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.

  15. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  16. Negative functional coupling between the right fronto-parietal and limbic resting state networks predicts increased self-control and later substance use onset in adolescence.

    PubMed

    Lee, Tae-Ho; Telzer, Eva H

    2016-08-01

    Recent developmental brain imaging studies have demonstrated that negatively coupled prefrontal-limbic circuitry implicates the maturation of brain development in adolescents. Using resting-state functional magnetic resonance imaging (rs-fMRI) and independent component analysis (ICA), the present study examined functional network coupling between prefrontal and limbic systems and links to self-control and substance use onset in adolescents. Results suggest that negative network coupling (anti-correlated temporal dynamics) between the right fronto-parietal and limbic resting state networks is associated with greater self-control and later substance use onset in adolescents. These findings increase our understanding of the developmental importance of prefrontal-limbic circuitry for adolescent substance use at the resting-state network level. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Sliding mode control of direct coupled interleaved boost converter for fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, W. Y.; Ding, Y. H.; Ke, X.; Ma, X.

    2017-12-01

    A three phase direct coupled interleaved boost converter (TP-DIBC) was recommended in this paper. This converter has a small unbalance current sharing among the branches of TP-DIBC. An adaptive control law sliding mode control (SMC) is designed for the TP-DIBC. The aim is to 1) reduce ripple output voltage, inductor current and regulate output voltage tightly 2) The total current carried by direct coupled interleaved boost converter (DIBC) must be equally shared between different parallel branches. The efficacy and robustness of the proposed TP-DIBC and adaptive SMC is confirmed via computer simulations using Matlab SimPower System Tools. The simulation result is in line with the expectation.

  18. Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.

    PubMed

    Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P

    2017-12-01

    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.

  19. Engineering the Eigenstates of Coupled Spin-1 /2 Atoms on a Surface

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; Lado, Jose L.; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J.; Lutz, Christopher P.

    2017-12-01

    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1 /2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1 /2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1 /2 atoms on surfaces.

  20. Quench monitoring and control system and method of operating same

    DOEpatents

    Ryan, David Thomas; Laskaris, Evangelos Trifon; Huang, Xianrui

    2006-05-30

    A rotating machine comprising a superconductive coil and a temperature sensor operable to provide a signal representative of superconductive coil temperature. The rotating machine may comprise a control system communicatively coupled to the temperature sensor. The control system may be operable to reduce electric current in the superconductive coil when a signal representative of a defined superconducting coil temperature is received from the temperature sensor.

  1. Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests

    DOE PAGES

    Hall, Matthew; Goupee, Andrew; Jonkman, Jason

    2017-08-24

    Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less

  2. Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Matthew; Goupee, Andrew; Jonkman, Jason

    Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less

  3. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems.

    PubMed

    Badalyan, S M; Shylau, A A; Jauho, A P

    2017-09-22

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q. Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.

  4. Deterministic radiative coupling of two semiconductor quantum dots to the optical mode of a photonic crystal nanocavity.

    PubMed

    Calic, M; Jarlov, C; Gallo, P; Dwir, B; Rudra, A; Kapon, E

    2017-06-22

    A system of two site-controlled semiconductor quantum dots (QDs) is deterministically integrated with a photonic crystal membrane nano-cavity. The two QDs are identified via their reproducible emission spectral features, and their coupling to the fundamental cavity mode is established by emission co-polarization and cavity feeding features. A theoretical model accounting for phonon interaction and pure dephasing reproduces the observed results and permits extraction of the light-matter coupling constant for this system. The demonstrated approach offers a platform for scaling up the integration of QD systems and nano-photonic elements for integrated quantum photonics applications.

  5. Optical solver for a system of ordinary differential equations based on an external feedback assisted microring resonator.

    PubMed

    Hou, Jie; Dong, Jianji; Zhang, Xinliang

    2017-06-15

    Systems of ordinary differential equations (SODEs) are crucial for describing the dynamic behaviors in various systems such as modern control systems which require observability and controllability. In this Letter, we propose and experimentally demonstrate an all-optical SODE solver based on the silicon-on-insulator platform. We use an add/drop microring resonator to construct two different ordinary differential equations (ODEs) and then introduce two external feedback waveguides to realize the coupling between these ODEs, thus forming the SODE solver. A temporal coupled mode theory is used to deduce the expression of the SODE. A system experiment is carried out for further demonstration. For the input 10 GHz NRZ-like pulses, the measured output waveforms of the SODE solver agree well with the calculated results.

  6. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for advanced life support.

  7. Orbital Express fluid transfer demonstration system

    NASA Astrophysics Data System (ADS)

    Rotenberger, Scott; SooHoo, David; Abraham, Gabriel

    2008-04-01

    Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging of receiving tank, purging of coupling and de-mate of the coupling.

  8. Maximizing entanglement in bosonic Josephson junctions using shortcuts to adiabaticity and optimal control

    NASA Astrophysics Data System (ADS)

    Stefanatos, Dionisis; Paspalakis, Emmanuel

    2018-05-01

    In this article we consider a bosonic Josephson junction, a model system composed by two coupled nonlinear quantum oscillators which can be implemented in various physical contexts, initially prepared in a product of weakly populated coherent states. We quantify the maximum achievable entanglement between the modes of the junction and then use shortcuts to adiabaticity, a method developed to speed up adiabatic quantum dynamics, as well as numerical optimization, to find time-dependent controls (the nonlinearity and the coupling of the junction) which bring the system to a maximally entangled state.

  9. Cross-Coupled Control for All-Terrain Rovers

    PubMed Central

    Reina, Giulio

    2013-01-01

    Mobile robots are increasingly being used in challenging outdoor environments for applications that include construction, mining, agriculture, military and planetary exploration. In order to accomplish the planned task, it is critical that the motion control system ensure accuracy and robustness. The achievement of high performance on rough terrain is tightly connected with the minimization of vehicle-terrain dynamics effects such as slipping and skidding. This paper presents a cross-coupled controller for a 4-wheel-drive/4-wheel-steer robot, which optimizes the wheel motors' control algorithm to reduce synchronization errors that would otherwise result in wheel slip with conventional controllers. Experimental results, obtained with an all-terrain rover operating on agricultural terrain, are presented to validate the system. It is shown that the proposed approach is effective in reducing slippage and vehicle posture errors. PMID:23299625

  10. High Accuracy Liquid Propellant Slosh Predictions Using an Integrated CFD and Controls Analysis Interface

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  11. Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  12. Magnetic control of dipolaritons in quantum dots.

    PubMed

    Rojas-Arias, J S; Rodríguez, B A; Vinck-Posada, H

    2016-12-21

    Dipolaritons are quasiparticles that arise in coupled quantum wells embedded in a microcavity, they are a superposition of a photon, a direct exciton and an indirect exciton. We propose the existence of dipolaritons in a system of two coupled quantum dots inside a microcavity in direct analogy with the quantum well case and find that, despite some similarities, dipolaritons in quantum dots have different properties and can lead to true dark polariton states. We use a finite system theory to study the effects of the magnetic field on the system, including the emission, and find that it can be used as a control parameter of the properties of excitons and dipolaritons, and the overall magnetic behaviour of the structure.

  13. Multifunctional voltage source inverter for renewable energy integration and power quality conditioning.

    PubMed

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity.

  14. A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2010-01-01

    A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.

  15. Multifunctional Voltage Source Inverter for Renewable Energy Integration and Power Quality Conditioning

    PubMed Central

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity. PMID:25177725

  16. RCS jet-flow field interaction effects on the aerodynamics of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.; Roberge, A. M.

    1973-01-01

    A study was conducted to determine the external effects caused by operation of the reaction control system during entry of the space shuttle orbiter. The effects of jet plume-external flow interactions were emphasized. Force data were obtained for the basic airframe characteristics plus induced effects when the reaction control system is operating. Resulting control amplification and/or coupling were derived and their effects on the aerodynamic stability and control of the orbiter and the reaction control system thrust were determined.

  17. Quantum optimal control with automatic differentiation using graphics processors

    NASA Astrophysics Data System (ADS)

    Leung, Nelson; Abdelhafez, Mohamed; Chakram, Srivatsan; Naik, Ravi; Groszkowski, Peter; Koch, Jens; Schuster, David

    We implement quantum optimal control based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them into the optimization process with ease. We will describe efficient techniques to optimally control weakly anharmonic systems that are commonly encountered in circuit QED, including coupled superconducting transmon qubits and multi-cavity circuit QED systems. These systems allow for a rich variety of control schemes that quantum optimal control is well suited to explore.

  18. Expectation-Based Control of Noise and Chaos

    NASA Technical Reports Server (NTRS)

    Zak, Michael

    2006-01-01

    A proposed approach to control of noise and chaos in dynamic systems would supplement conventional methods. The approach is based on fictitious forces composed of expectations governed by Fokker-Planck or Liouville equations that describe the evolution of the probability densities of the controlled parameters. These forces would be utilized as feedback control forces that would suppress the undesired diffusion of the controlled parameters. Examples of dynamic systems in which the approach is expected to prove beneficial include spacecraft, electronic systems, and coupled lasers.

  19. Six axis force feedback input device

    NASA Technical Reports Server (NTRS)

    Ohm, Timothy (Inventor)

    1998-01-01

    The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.

  20. Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design.

    PubMed

    Megam Ngouonkadi, Elie Bertrand; Fotsin, Hilaire Bertrand; Kabong Nono, Martial; Louodop Fotso, Patrick Herve

    2016-10-01

    In this paper, we report on the synchronization of a pacemaker neuronal ensemble constituted of an AB neuron electrically coupled to two PD neurons. By the virtue of this electrical coupling, they can fire synchronous bursts of action potential. An external master neuron is used to induce to the whole system the desired dynamics, via a nonlinear controller. Such controller is obtained by a combination of sliding mode and feedback control. The proposed controller is able to offset uncertainties in the synchronized systems. We show how noise affects the synchronization of the pacemaker neuronal ensemble, and briefly discuss its potential benefits in our synchronization scheme. An extended Hindmarsh-Rose neuronal model is used to represent a single cell dynamic of the network. Numerical simulations and Pspice implementation of the synchronization scheme are presented. We found that, the proposed controller reduces the stochastic resonance of the network when its gain increases.

  1. An investigation of the effects of pitch-roll (de)coupling on helicopter handling qualities

    NASA Technical Reports Server (NTRS)

    Blanken, C. L.; Pausder, H. J.; Ockier, C. J.

    1995-01-01

    An extensive investigation of the effects of pitch-roll coupling on helicopter handling qualities was performed by the U.S. Army and Deutsche Forschungsanstalt fur Luft- und Raumfahrt (DLR), using a NASA ground-based and a DLR in-flight simulator. Over 90 different coupling configurations were evaluated using a high gain roll-axis tracking task. The results show that although the current ADS-33C coupling criterion discriminates against those types of coupling typical of conventionally controlled helicopters, it is not always suited for the prediction of handling qualities of helicopters with modern control systems. Based on the observation that high frequency inputs during tracking are used to alleviate coupling, a frequency domain pitch-roll coupling criterion that uses the average coupling ratio between the bandwidth and neutral stability frequency is formulated. This criterion provides a more comprehensive coverage with respect to the different types of coupling, shows excellent consistency, and has the additional benefit that compliance testing data are obtained from the bandwidth/phase delay tests, so that no additional flight testing is needed.

  2. Head-mounted LED for optogenetic experiments of freely-behaving animal

    NASA Astrophysics Data System (ADS)

    Kwon, Ki Yong; Gnade, Andrew G.; Rush, Alexander D.; Patten, Craig D.

    2016-03-01

    Recent developments in optogenetics have demonstrated the ability to target specific types of neurons with sub-millisecond temporal precision via direct optical stimulation of genetically modified neurons in the brain. In most applications, the beam of a laser is coupled to an optical fiber, which guides and delivers the optical power to the region of interest. Light emitting diodes (LEDs) are an alternative light source for optogenetics and they provide many advantages over a laser based system including cost, size, illumination stability, and fast modulation. Their compact size and low power consumption make LEDs suitable light sources for a wireless optogenetic stimulation system. However, the coupling efficiency of an LED's output light into an optical fiber is lower than a laser due to its noncollimated output light. In typical chronic optogenetic experiment, the output of the light source is transmitted to the brain through a patch cable and a fiber stub implant, and this configuration requires two fiber-to-fiber couplings. Attenuation within the patch cable is potential source of optical power loss. In this study, we report and characterize a recently developed light delivery method for freely-behaving animal experiments. We have developed a head-mounted light source that maximizes the coupling efficiency of an LED light source by eliminating the need for a fiber optic cable. This miniaturized LED is designed to couple directly to the fiber stub implant. Depending on the desired optical power output, the head-mounted LED can be controlled by either a tethered (high power) or battery-powered wireless (moderate power) controller. In the tethered system, the LED is controlled through 40 gauge micro coaxial cable which is thinner, more flexible, and more durable than a fiber optic cable. The battery-powered wireless system uses either infrared or radio frequency transmission to achieve real-time control. Optical, electrical, mechanical, and thermal characteristics of the head-mounted LED were evaluated.

  3. Dynamical Models for Sloshing Dynamics of Helium 2 Under Low-G Conditions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1997-01-01

    Coupling of sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 with spacecraft dynamics are investigated in response to the realistic environmental disturbance forces and torques acting on the spacecraft during normal operation. This study investigates: (1) the rotating bubble of superfluid helium 2 reacting to combined environmental disturbances, including gravity gradient, aerodynamic, and magnetic forces and torques; (2) characteristics of slosh reaction forces and torques coupling with spacecraft dynamics; (3) the contribution of slosh dynamics to over-all spacecraft dynamics; and (4) activating of attitude and translation control system. The numerical computation of sloshing dynamics is based on the rotational frame, while the spacecraft dynamics is associated with non-rotational frame. Results show that the contributions of spacecraft dynamics are driven by the environmental disturbances coupling with slosh dynamics. Without considering the effects of environmental disturbances-driven slosh dynamics acting on spacecraft coupling with the spacecraft dynamics may lead to the wrong results for the development of spacecraft system guidance and attitude control techniques.

  4. Analyzing Dynamics of Cooperating Spacecraft

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen P.; Folta, David C.; Conway, Darrel J.

    2004-01-01

    A software library has been developed to enable high-fidelity computational simulation of the dynamics of multiple spacecraft distributed over a region of outer space and acting with a common purpose. All of the modeling capabilities afforded by this software are available independently in other, separate software systems, but have not previously been brought together in a single system. A user can choose among several dynamical models, many high-fidelity environment models, and several numerical-integration schemes. The user can select whether to use models that assume weak coupling between spacecraft, or strong coupling in the case of feedback control or tethering of spacecraft to each other. For weak coupling, spacecraft orbits are propagated independently, and are synchronized in time by controlling the step size of the integration. For strong coupling, the orbits are integrated simultaneously. Among the integration schemes that the user can choose are Runge-Kutta Verner, Prince-Dormand, Adams-Bashforth-Moulton, and Bulirsh- Stoer. Comparisons of performance are included for both the weak- and strongcoupling dynamical models for all of the numerical integrators.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanna, T.; Vijayajayanthi, M.; Lakshmanan, M.

    The bright soliton solutions of the mixed coupled nonlinear Schroedinger equations with two components (2-CNLS) with linear self- and cross-coupling terms have been obtained by identifying a transformation that transforms the corresponding equation to the integrable mixed 2-CNLS equations. The study on the collision dynamics of bright solitons shows that there exists periodic energy switching, due to the coupling terms. This periodic energy switching can be controlled by the new type of shape changing collisions of bright solitons arising in a mixed 2-CNLS system, characterized by intensity redistribution, amplitude dependent phase shift, and relative separation distance. We also point outmore » that this system exhibits large periodic intensity switching even with very small linear self-coupling strengths.« less

  6. Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Han; Zhang, Xingwang; Chau, Fook Siong

    2016-04-25

    We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the futuremore » nanooptoelectromechanical systems.« less

  7. Optimal control of first order distributed systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Johnson, T. L.

    1972-01-01

    The problem of characterizing optimal controls for a class of distributed-parameter systems is considered. The system dynamics are characterized mathematically by a finite number of coupled partial differential equations involving first-order time and space derivatives of the state variables, which are constrained at the boundary by a finite number of algebraic relations. Multiple control inputs, extending over the entire spatial region occupied by the system ("distributed controls') are to be designed so that the response of the system is optimal. A major example involving boundary control of an unstable low-density plasma is developed from physical laws.

  8. Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri

    1999-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.

  9. Handling Qualities of Model Reference Adaptive Controllers with Varying Complexity for Pitch-Roll Coupled Failures

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Hanson, Curt; Johnson, Marcus A.; Nguyen, Nhan

    2011-01-01

    Three model reference adaptive controllers (MRAC) with varying levels of complexity were evaluated on a high performance jet aircraft and compared along with a baseline nonlinear dynamic inversion controller. The handling qualities and performance of the controllers were examined during failure conditions that induce coupling between the pitch and roll axes. Results from flight tests showed with a roll to pitch input coupling failure, the handling qualities went from Level 2 with the baseline controller to Level 1 with the most complex MRAC tested. A failure scenario with the left stabilator frozen also showed improvement with the MRAC. Improvement in performance and handling qualities was generally seen as complexity was incrementally added; however, added complexity usually corresponds to increased verification and validation effort required for certification. The tradeoff between complexity and performance is thus important to a controls system designer when implementing an adaptive controller on an aircraft. This paper investigates this relation through flight testing of several controllers of vary complexity.

  10. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process.

    PubMed

    Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T

    2016-01-01

    The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.

  11. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process

    PubMed Central

    Mohamed, Amr E.; Dorrah, Hassen T.

    2016-01-01

    The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444

  12. A formation control strategy with coupling weights for the multi-robot system

    NASA Astrophysics Data System (ADS)

    Liang, Xudong; Wang, Siming; Li, Weijie

    2017-12-01

    The distributed formation problem of the multi-robot system with general linear dynamic characteristics and directed communication topology is discussed. In order to avoid that the multi-robot system can not maintain the desired formation in the complex communication environment, the distributed cooperative algorithm with coupling weights based on zipf distribution is designed. The asymptotic stability condition for the formation of the multi-robot system is given, and the theory of the graph and the Lyapunov theory are used to prove that the formation can converge to the desired geometry formation and the desired motion rules of the virtual leader under this condition. Nontrivial simulations are performed to validate the effectiveness of the distributed cooperative algorithm with coupling weights.

  13. A dynamic and ultrafast group delay tuning mechanism in two microcavities side-coupled with a waveguide system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Boyun; Wang, Tao, E-mail: wangtao@hust.edu.cn; Tang, Jian

    2014-10-07

    We theoretically propose a dynamic and ultrafast group delay tuning mechanism in two microcavities side-coupled to a waveguide system through external optical pump beams. The optical Kerr effect modulation method is applied to improve tuning rate with response time of subpicoseconds or even femtoseconds. The group delay of an all-optical analog to electromagnetically induced transparency effect can be controlled by tuning either the frequency of photonic crystal microcavities or the propagation phase of line waveguide. Group delay is controlled between 5.88 and 70.98 ps by dynamically tuning resonant frequencies of the microcavities. Alternatively, the group delay is controlled between 1.86more » and 12.08 ps by dynamically tuning the propagation phase of line waveguide. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Results show a new direction toward microstructure integration optical pulse trapping and all-optical dynamical storage of light devices in optical communication and quantum information processing.« less

  14. Decentralization, stabilization, and estimation of large-scale linear systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Vukcevic, M. B.

    1976-01-01

    In this short paper we consider three closely related aspects of large-scale systems: decentralization, stabilization, and estimation. A method is proposed to decompose a large linear system into a number of interconnected subsystems with decentralized (scalar) inputs or outputs. The procedure is preliminary to the hierarchic stabilization and estimation of linear systems and is performed on the subsystem level. A multilevel control scheme based upon the decomposition-aggregation method is developed for stabilization of input-decentralized linear systems Local linear feedback controllers are used to stabilize each decoupled subsystem, while global linear feedback controllers are utilized to minimize the coupling effect among the subsystems. Systems stabilized by the method have a tolerance to a wide class of nonlinearities in subsystem coupling and high reliability with respect to structural perturbations. The proposed output-decentralization and stabilization schemes can be used directly to construct asymptotic state estimators for large linear systems on the subsystem level. The problem of dimensionality is resolved by constructing a number of low-order estimators, thus avoiding a design of a single estimator for the overall system.

  15. Microelectromechanical (MEMS) manipulators for control of nanoparticle coupling interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Wiederrecht, Gary; Gosztola, David J.

    A nanopositioning system for producing a coupling interaction between a first nanoparticle and a second nanoparticle. A first MEMS positioning assembly includes an electrostatic comb drive actuator configured to selectively displace a first nanoparticle in a first dimension and an electrode configured to selectively displace the first nanoparticle in a second dimensions. Accordingly, the first nanoparticle may be selectively positioned in two dimensions to modulate the distance between the first nanoparticle and a second nanoparticle that may be coupled to a second MEMS positioning assembly. Modulating the distance between the first and second nanoparticles obtains a coupling interaction between themore » nanoparticles that alters at least one material property of the nanoparticles applicable to a variety of sensing and control applications.« less

  16. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan

    2013-09-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.

  17. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Tanmoy, E-mail: tbanerjee@phys.buruniv.ac.in; Paul, Bishwajit; Sarkar, B. C.

    2014-03-15

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strengthmore » the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.« less

  18. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system.

    PubMed

    Banerjee, Tanmoy; Paul, Bishwajit; Sarkar, B C

    2014-03-01

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  19. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanmoy; Paul, Bishwajit; Sarkar, B. C.

    2014-03-01

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  20. A loosely coupled framework for terminology controlled distributed EHR search for patient cohort identification in clinical research.

    PubMed

    Zhao, Lei; Lim Choi Keung, Sarah N; Taweel, Adel; Tyler, Edward; Ogunsina, Ire; Rossiter, James; Delaney, Brendan C; Peterson, Kevin A; Hobbs, F D Richard; Arvanitis, Theodoros N

    2012-01-01

    Heterogeneous data models and coding schemes for electronic health records present challenges for automated search across distributed data sources. This paper describes a loosely coupled software framework based on the terminology controlled approach to enable the interoperation between the search interface and heterogeneous data sources. Software components interoperate via common terminology service and abstract criteria model so as to promote component reuse and incremental system evolution.

  1. Duct having oscillatory side wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouse, Kenneth M.

    A pump system includes a particulate consolidator pump that has a pump outlet. A duct is coupled to the pump outlet. The duct has a wall that is coupled with an oscillator. The oscillator is operable to oscillate the wall at a controlled frequency. The controlled frequency is selected with respect to breaking static bridging of particulate in the duct due, at least in part, to consolidation of the particulate from a downstream check valve.

  2. miR-132 Couples the Circadian Clock to Daily Rhythms of Neuronal Plasticity and Cognition

    ERIC Educational Resources Information Center

    Aten, Sydney; Hansen, Katelin F.; Snider, Kaitlin; Wheaton, Kelin; Kalidindi, Anisha; Garcia, Ashley; Alzate-Correa, Diego; Hoyt, Kari R.; Obrietan, Karl

    2018-01-01

    The microRNA miR-132 serves as a key regulator of a wide range of plasticity-associated processes in the central nervous system. Interestingly, miR-132 expression has also been shown to be under the control of the circadian timing system. This finding, coupled with work showing that miR-132 is expressed in the hippocampus, where it influences…

  3. Controlling spin relaxation with a cavity

    DOE PAGES

    Bienfait, A.; Pla, J. J.; Kubo, Y.; ...

    2016-02-15

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photonmore » sources. In this paper, we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. Finally, they also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.« less

  4. Acquisition and cruise sensing for attitude control

    NASA Technical Reports Server (NTRS)

    Pace, G. D., Jr.; Schmidt, L. F.

    1977-01-01

    Modified wideangle analog cruise sun sensor coupled with changes in optic attitude correction capabilities, eliminate need of acquisition and sun gate sensors, making on-course navigation of spacecraft flying interplanetary missions less risky and costly. Operational characteristics potentially make system applicable to guidance and control of solar energy collection systems.

  5. Combining Charge Couple Devices and Rate Sensors for the Feedforward Control System of a Charge Coupled Device Tracking Loop.

    PubMed

    Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu

    2016-06-25

    A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.

  6. Movement decoupling control for two-axis fast steering mirror

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Qiao, Yongming; Lv, Tao

    2017-02-01

    Based on flexure hinge and piezoelectric actuator of two-axis fast steering mirror is a complex system with time varying, uncertain and strong coupling. It is extremely difficult to achieve high precision decoupling control with the traditional PID control method. The feedback error learning method was established an inverse hysteresis model which was based inner product dynamic neural network nonlinear and no-smooth for piezo-ceramic. In order to improve the actuator high precision, a method was proposed, which was based piezo-ceramic inverse model of two dynamic neural network adaptive control. The experiment result indicated that, compared with two neural network adaptive movement decoupling control algorithm, static relative error is reduced from 4.44% to 0.30% and coupling degree is reduced from 12.71% to 0.60%, while dynamic relative error is reduced from 13.92% to 2.85% and coupling degree is reduced from 2.63% to 1.17%.

  7. Gain stabilization control system of the upgraded magnetic proton recoil neutron spectrometer at JET.

    PubMed

    Sjöstrand, Henrik; Andersson Sundén, E; Conroy, S; Ericsson, G; Gatu Johnson, M; Giacomelli, L; Gorini, G; Hellesen, C; Hjalmarsson, A; Popovichev, S; Ronchi, E; Tardocchi, M; Weiszflog, M

    2009-06-01

    Burning plasma experiments such as ITER and DEMO require diagnostics capable of withstanding the harsh environment generated by the intense neutron flux and to maintain stable operating conditions for times longer than present day systems. For these reasons, advanced control and monitoring (CM) systems will be necessary for the reliable operation of diagnostics. This paper describes the CM system of the upgraded magnetic proton recoil neutron spectrometer installed at the Joint European Torus focusing in particular on a technique for the stabilization of the gain of the photomultipliers coupled to the neutron detectors. The results presented here show that this technique provides good results over long time scales. The technique is of general interest for all diagnostics that employ scintillators coupled to photomultiplier tubes.

  8. Controlling the angular radiation of single emitters using dielectric patch nanoantennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuanqing; Li, Qiang; Qiu, Min, E-mail: minqiu@zju.edu.cn

    2015-07-20

    Dielectric nanoantennas have generated much interest in recent years owing to their low loss and optically induced electric and magnetic resonances. In this paper, we investigate the coupling between a single emitter and dielectric patch nanoantennas. For the coupled system involving non-spherical structures, analytical Mie theory is no longer applicable. A semi-analytical model is proposed instead to interpret the coupling mechanism and the radiation characteristics of the system. Based on the presented model, we demonstrate that the angular emission of the single emitter can be not only enhanced but also rotated using the dielectric patch nanoantennas.

  9. Automated standardization technique for an inductively-coupled plasma emission spectrometer

    USGS Publications Warehouse

    Garbarino, John R.; Taylor, Howard E.

    1982-01-01

    The manifold assembly subsystem described permits real-time computer-controlled standardization and quality control of a commercial inductively-coupled plasma atomic emission spectrometer. The manifold assembly consists of a branch-structured glass manifold, a series of microcomputer-controlled solenoid valves, and a reservoir for each standard. Automated standardization involves selective actuation of each solenoid valve that permits a specific mixed standard solution to be pumped to the nebulizer of the spectrometer. Quality control is based on the evaluation of results obtained for a mixed standard containing 17 analytes, that is measured periodically with unknown samples. An inaccurate standard evaluation triggers restandardization of the instrument according to a predetermined protocol. Interaction of the computer-controlled manifold assembly hardware with the spectrometer system is outlined. Evaluation of the automated standardization system with respect to reliability, simplicity, flexibility, and efficiency is compared to the manual procedure. ?? 1982.

  10. Enhanced Control for Local Helicity Injection on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Pierren, C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.

    2017-10-01

    Local helicity injection (LHI) experiments on Pegasus rely upon programmable control of a 250 MVA modular power supply system that drives the electromagnets and helicity injection systems. Precise control of the central solenoid is critical to experimental campaigns that test the LHI Taylor relaxation limit and the coupling efficiency of LHI-produced plasmas to Ohmic current drive. Enhancement and expansion of the present control system is underway using field programmable gate array (FPGA) technology for digital logic and control, coupled to new 10 MHz optical-to-digital transceivers for semiconductor level device communication. The system accepts optical command signals from existing analog feedback controllers, transmits them to multiple devices in parallel H-bridges, and aggregates their status signals for fault detection. Present device-level multiplexing/de-multiplexing and protection logic is extended to include bridge-level protections with the FPGA. An input command filter protects against erroneous and/or spurious noise generated commands that could otherwise cause device failures. Fault registration and response times with the FPGA system are 25 ns. Initial system testing indicates an increased immunity to power supply induced noise, enabling plasma operations at higher working capacitor bank voltage. This can increase the applied helicity injection drive voltage, enable longer pulse lengths and improve Ohmic loop voltage control. Work supported by US DOE Grant DE-FG02-96ER54375.

  11. Electrical Coupling: Novel Mechanism for Sleep-Wake Control

    PubMed Central

    Garcia-Rill, Edgar; Heister, David S.; Ye, Meijun; Charlesworth, Amanda; Hayar, Abdallah

    2007-01-01

    Study Objectives: Recent evidence suggests that certain anesthetic agents decrease electrical coupling, whereas the stimulant modafinil appears to increase electrical coupling. We investigated the potential role of electrical coupling in 2 reticular activating system sites, the subcoeruleus nucleus and in the pedunculopontine nucleus, which has been implicated in the modulation of arousal via ascending cholinergic activation of intralaminar thalamus and descending activation of the subcoeruleus nucleus to generate some of the signs of rapid eye movement sleep. Design: We used 6- to 30-day-old rat pups to obtain brainstem slices to perform whole-cell patch-clamp recordings. Measurements and Results: Recordings from single cells revealed the presence of spikelets, manifestations of action potentials in coupled cells, and of dye coupling of neurons in the pedunculopontine nucleus. Recordings in pairs of pedunculopontine nucleus and subcoeruleus nucleus neurons revealed that some of these were electrically coupled with coupling coefficients of approximately 2%. After blockade of fast synaptic transmission, the cholinergic agonist carbachol was found to induce rhythmic activity in pedunculopontine nucleus and subcoeruleus nucleus neurons, an effect eliminated by the gap junction blockers carbenoxolone or mefloquine. The stimulant modafinil was found to decrease resistance in neurons in the pedunculopontine nucleus and subcoeruleus nucleus after fast synaptic blockade, indicating that the effect may be due to increased coupling. Conclusions: The finding of electrical coupling in specific reticular activating system cell groups supports the concept that this underlying process behind specific neurotransmitter interactions modulates ensemble activity across cell populations to promote changes in sleep-wake state. Citation: Garcia-Rill E; Heister DS; Ye M; Charlesworth A; Hayar A. Electrical coupling: novel mechanism for sleep-wake control. SLEEP 2007;30(11):1405-1414. PMID:18041475

  12. DOSE CONTROLLER FOR AGUACLARA WATER TREATMENT PLANTS

    EPA Science Inventory

    The expected results include a proven design for a gravity powered dose controller that works for calcium hypochlorite or aluminum sulfate solutions. The dose controller will be coupled with plant flow rate measuring systems that have compatible relationships between flow rate...

  13. Fast Electron Spectroscopy of Enhanced Plasmonic N anoantenna Resonances

    NASA Astrophysics Data System (ADS)

    Day, Jared K.

    Surface plasmons are elementary excitations of the collective and coherent oscillations of conductive band electrons coupled with photons at the surface of metals. Surface plasmons of metallic nanostructures can efficiently couple to light making them a new class of optical antennas that can confine and control light at nanometer scale dimensions. Nanoscale optical antennas can be used to enhance the energy transfer between nanoscale systems and freely-propagating radiation. Plasmonic nanoantennas have already been used to enhance single molecule detection, diagnosis and treat cancer, harvest solar energy, to create metamaterials with new optical properties and to enhance photo-chemical reactions. The applications for plasmonic nanoantennas are only limited by the fundamental understanding of their unique optical properties and the rational design of new coupled antenna systems. It is therefore necessary to interrogate and image the local electromagnetic response of nanoantenna systems to establish intuition between near-field coupling dynamics and far-field optical properties. This thesis focuses on the characterization and enhancement of the longitudinal multipolar plasmonic resonances of Au nanorod nanoantennas. To better understand these resonances fast electron spectroscopy is used to both visualize and probe the near- and far-field properties of multipolar resonances of individual nanorods and more complex nanorod systems through cathodoluminescence (CL). CL intensity maps show that coupled nanorod systems enhance and alter nanorod resonances away from ideal resonant behavior creating hybridized longitudinal modes that expand and relax at controllable locations along the nanorod. These measurements show that complex geometries can strengthen and alter the local density of optical states for nanoantenna designs with more functionality and better control of localized electromagnetic fields. Finally, the electron excitations are compared to plane wave optical stimulation both experimentally and through Finite Difference Time Domain simulations to begin to develop a qualitative picture of how the local density of optical states affects the far-field optical scattering properties of plasmonic nanoantennas.

  14. Observation of electromagnetically induced transparency and absorption in Yttrium Iron Garnet loaded split ring resonator

    NASA Astrophysics Data System (ADS)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-04-01

    In this paper, we propose a new method of controlling microwave transmission from Electromagnetically Induced Absorption (EIA) to Electromagnetically Induced Transparency (EIT). EIA describes the state where the system strongly absorbs microwaves, whereas EIT describes the state in which the system is transparent to microwaves. Control is achieved via coupling of the 3 GHz photon mode of a metamaterial Split Ring Resonator (SRR) to the spin wave magnon modes of a Yttrium Iron Garnet (YIG) bulk. The system is described by a 2-body interaction matrix with an additional fitting parameter τ which takes into account the fact that the microstrip feed line could excite the SRR as well as the YIG. The parameter τ reveals the effect of geometry and shielding on the coupling behaviour and gives rise to unique physics. In low τ (τ ⩽ 2) configurations, only EIT is reported. However, in high τ (τ ≈ 10) configurations, EIA is reported. Furthermore, we report that the system can be easily changed from a low τ to high τ configuration by shielding the SRR from the microstrip with a thin metal piece. Varying the τ parameter through shielding is thus proposed as a new method of controlling the microwave transmission at the coupling region.

  15. Ontology-based coupled optimisation design method using state-space analysis for the spindle box system of large ultra-precision optical grinding machine

    NASA Astrophysics Data System (ADS)

    Wang, Qianren; Chen, Xing; Yin, Yuehong; Lu, Jian

    2017-08-01

    With the increasing complexity of mechatronic products, traditional empirical or step-by-step design methods are facing great challenges with various factors and different stages having become inevitably coupled during the design process. Management of massive information or big data, as well as the efficient operation of information flow, is deeply involved in the process of coupled design. Designers have to address increased sophisticated situations when coupled optimisation is also engaged. Aiming at overcoming these difficulties involved in conducting the design of the spindle box system of ultra-precision optical grinding machine, this paper proposed a coupled optimisation design method based on state-space analysis, with the design knowledge represented by ontologies and their semantic networks. An electromechanical coupled model integrating mechanical structure, control system and driving system of the motor is established, mainly concerning the stiffness matrix of hydrostatic bearings, ball screw nut and rolling guide sliders. The effectiveness and precision of the method are validated by the simulation results of the natural frequency and deformation of the spindle box when applying an impact force to the grinding wheel.

  16. A frequency control method for regulating wireless power to implantable devices.

    PubMed

    Ping Si; Hu, A P; Malpas, S; Budgett, D

    2008-03-01

    This paper presents a method to regulate the power transferred over a wireless link by adjusting the resonant operating frequency of the primary converter. A significant advantage of this method is that effective power regulation is maintained under variations in load, coupling and circuit parameters. This is particularly important when the wireless supply is used to power implanted medical devices where substantial coupling variations between internal and external systems is expected. The operating frequency is changed dynamically by altering the effective tuning capacitance through soft switched phase control. A thorough analysis of the proposed system has been undertaken, and experimental results verify its functionality.

  17. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot.

    PubMed

    Alexandrov, Alexei V; Lippi, Vittorio; Mergner, Thomas; Frolov, Alexander A; Hettich, Georg; Husek, Dusan

    2017-01-01

    Control of a multi-body system in both robots and humans may face the problem of destabilizing dynamic coupling effects arising between linked body segments. The state of the art solutions in robotics are full state feedback controllers. For human hip-ankle coordination, a more parsimonious and theoretically stable alternative to the robotics solution has been suggested in terms of the Eigenmovement (EM) control. Eigenmovements are kinematic synergies designed to describe the multi DoF system, and its control, with a set of independent, and hence coupling-free , scalar equations. This paper investigates whether the EM alternative shows "real-world robustness" against noisy and inaccurate sensors, mechanical non-linearities such as dead zones, and human-like feedback time delays when controlling hip-ankle movements of a balancing humanoid robot. The EM concept and the EM controller are introduced, the robot's dynamics are identified using a biomechanical approach, and robot tests are performed in a human posture control laboratory. The tests show that the EM controller provides stable control of the robot with proactive ("voluntary") movements and reactive balancing of stance during support surface tilts and translations. Although a preliminary robot-human comparison reveals similarities and differences, we conclude (i) the Eigenmovement concept is a valid candidate when different concepts of human sensorimotor control are considered, and (ii) that human-inspired robot experiments may help to decide in future the choice among the candidates and to improve the design of humanoid robots and robotic rehabilitation devices.

  18. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot

    PubMed Central

    Alexandrov, Alexei V.; Lippi, Vittorio; Mergner, Thomas; Frolov, Alexander A.; Hettich, Georg; Husek, Dusan

    2017-01-01

    Control of a multi-body system in both robots and humans may face the problem of destabilizing dynamic coupling effects arising between linked body segments. The state of the art solutions in robotics are full state feedback controllers. For human hip-ankle coordination, a more parsimonious and theoretically stable alternative to the robotics solution has been suggested in terms of the Eigenmovement (EM) control. Eigenmovements are kinematic synergies designed to describe the multi DoF system, and its control, with a set of independent, and hence coupling-free, scalar equations. This paper investigates whether the EM alternative shows “real-world robustness” against noisy and inaccurate sensors, mechanical non-linearities such as dead zones, and human-like feedback time delays when controlling hip-ankle movements of a balancing humanoid robot. The EM concept and the EM controller are introduced, the robot's dynamics are identified using a biomechanical approach, and robot tests are performed in a human posture control laboratory. The tests show that the EM controller provides stable control of the robot with proactive (“voluntary”) movements and reactive balancing of stance during support surface tilts and translations. Although a preliminary robot-human comparison reveals similarities and differences, we conclude (i) the Eigenmovement concept is a valid candidate when different concepts of human sensorimotor control are considered, and (ii) that human-inspired robot experiments may help to decide in future the choice among the candidates and to improve the design of humanoid robots and robotic rehabilitation devices. PMID:28487646

  19. Controlling single-photon transport in an optical waveguide coupled to an optomechanical cavity with a Λ-type three-level atom

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Qing; Zhu, Zhong-Hua; Peng, Zhao-Hui; Jiang, Chun-Lei; Chai, Yi-Feng; Hai, Lian; Tan, Lei

    2018-06-01

    We theoretically study the single-photon transport along a one-dimensional optical waveguide coupled to an optomechanical cavity containing a Λ-type three-level atom. Our numerical results show that the transmission spectra of the incident photon can be well controlled by such a hybrid atom-optomechanical system. The effects of the optomechanical coupling strength, the classical laser beam applied to the atom, atom-cavity detuning, and atomic dissipation on the single-photon transport properties are analyzed. It is of particular interest that an analogous double electromagnetically induced transparency emerges in the single-photon transmission spectra.

  20. Generalized predictive control for a coupled four tank MIMO system using a continuous-discrete time observer.

    PubMed

    Gouta, Houssemeddine; Hadj Saïd, Salim; Barhoumi, Nabil; M'Sahli, Faouzi

    2017-03-01

    This paper deals with the problem of the observer based control design for a coupled four-tank liquid level system. For this MIMO system's dynamics, motivated by a desire to provide precise and sensorless liquid level control, a nonlinear predictive controller based on a continuous-discrete observer is presented. First, an analytical solution from the model predictive control (MPC) technique is developed for a particular class of nonlinear MIMO systems and its corresponding exponential stability is proven. Then, a high gain observer that runs in continuous-time with an output error correction time that is updated in a mixed continuous-discrete fashion is designed in order to estimate the liquid levels in the two upper tanks. The effectiveness of the designed control schemes are validated by two tests; The first one is maintaining a constant level in the first bottom tank while making the level in the second bottom tank to follow a sinusoidal reference signal. The second test is more difficult and it is made using two trapezoidal reference signals in order to see the decoupling performance of the system's outputs. Simulation and experimental results validate the objective of the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Reusable launch vehicle model uncertainties impact analysis

    NASA Astrophysics Data System (ADS)

    Chen, Jiaye; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng

    2018-03-01

    Reusable launch vehicle(RLV) has the typical characteristics of complex aerodynamic shape and propulsion system coupling, and the flight environment is highly complicated and intensely changeable. So its model has large uncertainty, which makes the nominal system quite different from the real system. Therefore, studying the influences caused by the uncertainties on the stability of the control system is of great significance for the controller design. In order to improve the performance of RLV, this paper proposes the approach of analyzing the influence of the model uncertainties. According to the typical RLV, the coupling dynamic and kinematics models are built. Then different factors that cause uncertainties during building the model are analyzed and summed up. After that, the model uncertainties are expressed according to the additive uncertainty model. Choosing the uncertainties matrix's maximum singular values as the boundary model, and selecting the uncertainties matrix's norm to show t how much the uncertainty factors influence is on the stability of the control system . The simulation results illustrate that the inertial factors have the largest influence on the stability of the system, and it is necessary and important to take the model uncertainties into consideration before the designing the controller of this kind of aircraft( like RLV, etc).

  2. Control law system for X-Wing aircraft

    NASA Technical Reports Server (NTRS)

    Lawrence, Thomas H. (Inventor); Gold, Phillip J. (Inventor)

    1990-01-01

    Control law system for the collective axis, as well as pitch and roll axes, of an X-Wing aircraft and for the pneumatic valving controlling circulation control blowing for the rotor. As to the collective axis, the system gives the pilot single-lever direct lift control and insures that maximum cyclic blowing control power is available in transition. Angle-of-attach de-coupling is provided in rotary wing flight, and mechanical collective is used to augment pneumatic roll control when appropriate. Automatic gain variations with airspeed and rotor speed are provided, so a unitary set of control laws works in all three X-Wing flight modes. As to pitch and roll axes, the system produces essentially the same aircraft response regardless of flight mode or condition. Undesirable cross-couplings are compensated for in a manner unnoticeable to the pilot without requiring pilot action, as flight mode or condition is changed. A hub moment feedback scheme is implemented, utilizing a P+I controller, significantly improving bandwidth. Limits protect aircraft structure from inadvertent damage. As to pneumatic valving, the system automatically provides the pressure required at each valve azimuth location, as dictated by collective, cyclic and higher harmonic blowing commands. Variations in the required control phase angle are automatically introduced, and variations in plenum pressure are compensated for. The required switching for leading, trailing and dual edge blowing is automated, using a simple table look-up procedure. Non-linearities due to valve characteristics of circulation control lift are linearized by map look-ups.

  3. QUANTUM INFORMATION. Coherent coupling between a ferromagnetic magnon and a superconducting qubit.

    PubMed

    Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Usami, Koji; Nakamura, Yasunobu

    2015-07-24

    Rigidity of an ordered phase in condensed matter results in collective excitation modes spatially extending to macroscopic dimensions. A magnon is a quantum of such collective excitation modes in ordered spin systems. Here, we demonstrate the coherent coupling between a single-magnon excitation in a millimeter-sized ferromagnetic sphere and a superconducting qubit, with the interaction mediated by the virtual photon excitation in a microwave cavity. We obtain the coupling strength far exceeding the damping rates, thus bringing the hybrid system into the strong coupling regime. Furthermore, we use a parametric drive to realize a tunable magnon-qubit coupling scheme. Our approach provides a versatile tool for quantum control and measurement of the magnon excitations and may lead to advances in quantum information processing. Copyright © 2015, American Association for the Advancement of Science.

  4. Further perspective on the theory of heteronuclear decoupling.

    PubMed

    Skinner, Thomas E

    2014-11-01

    An exact general theory of heteronuclear decoupling is presented for spin-1/2 IS systems. RF irradiation applied to the I spins both modifies and generates additional couplings between states of the system. The recently derived equivalence between the dynamics of any N-level quantum system and a system of classical coupled harmonic oscillators makes explicit the exact physical couplings between states. Decoupling is thus more properly viewed as a complex intercoupling. The sign of antiphase magnetization plays a fundamental role in decoupling. A one-to-one correspondence is demonstrated between ±2SyIz and the sense of the S-spin coupling evolution. Magnetization Sx is refocused to obtain the desired decoupled state when ∫2SyIzdt=0. The exact instantaneous coupling at any time during the decoupling sequence is readily obtained in terms of the system states, showing that the creation of two-spin coherence is crucial for reducing the effective scalar coupling, as required for refocusing to occur. Representative examples from new aperiodic sequences as well as standard cyclic, periodic composite-pulse and adiabatic decoupling sequences illustrate the decoupling mechanism. The more general aperiodic sequences, obtained using optimal control, realize the potential inherent in the theory for significantly improved decoupling. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Controllability of a multichannel system

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei A.; Wang, Jun Min

    2018-02-01

    We consider the system consisting of K coupled acoustic channels with the different sound velocities cj. Channels are interacting at any point via the pressure and its time derivatives. Using the moment approach and the theory of exponential families with vector coefficients we establish two controllability results: the system is exactly controllable if (i) the control uj in the jth channel acts longer than the double travel time of a wave from the start to the end of the j-th channel; (ii) all controls uj act more than or equal to the maximal double travel time.

  6. Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, P. Ben; Rosenberg, Danna; Stelmakh, Veronika

    We report on a systematic experimental study of heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single mode optical fibers. We define the correlated-mode coupling efficiency--an inherent source efficiency--and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting-nanowire single-photon-detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory andmore » we demonstrated a correlated-mode coupling efficiency of 97%±2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. We expect that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.« less

  7. Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs

    DOE PAGES

    Dixon, P. Ben; Rosenberg, Danna; Stelmakh, Veronika; ...

    2014-10-06

    We report on a systematic experimental study of heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single mode optical fibers. We define the correlated-mode coupling efficiency--an inherent source efficiency--and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting-nanowire single-photon-detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory andmore » we demonstrated a correlated-mode coupling efficiency of 97%±2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. We expect that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.« less

  8. Universal Sign Control of Coupling in Tight-Binding Lattices

    NASA Astrophysics Data System (ADS)

    Keil, Robert; Poli, Charles; Heinrich, Matthias; Arkinstall, Jake; Weihs, Gregor; Schomerus, Henning; Szameit, Alexander

    2016-05-01

    We present a method of locally inverting the sign of the coupling term in tight-binding systems, by means of inserting a judiciously designed ancillary site and eigenmode matching of the resulting vertex triplet. Our technique can be universally applied to all lattice configurations, as long as the individual sites can be detuned. We experimentally verify this method in laser-written photonic lattices and confirm both the magnitude and the sign of the coupling by interferometric measurements. Based on these findings, we demonstrate how such universal sign-flipped coupling links can be embedded into extended lattice structures to impose a Z2-gauge transformation. This opens a new avenue for investigations on topological effects arising from magnetic fields with aperiodic flux patterns or in disordered systems.

  9. Stagger angle dependence of inertial and elastic coupling in bladed disks

    NASA Technical Reports Server (NTRS)

    Crawley, E. F.; Mokadam, D. R.

    1984-01-01

    Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.

  10. Design, motivation, and on-sky tests of an efficient fiber coupling unit for 1-meter class telescopes

    NASA Astrophysics Data System (ADS)

    Bottom, Michael; Muirhead, Philip S.; Swift, Jonathan J.; Zhao, Ming; Gardner, Paul; Plavchan, Peter P.; Riddle, Reed L.; Herzig, Erich; Johnson, John A.; Wright, Jason T.; McCrady, Nate; Wittenmyer, Robert A.

    2014-08-01

    We present the science motivation, design, and on-sky test data of a high-throughput fiber coupling unit suitable for automated 1-meter class telescopes. The optical and mechanical design of the fiber coupling is detailed and we describe a flexible controller software designed specifically for this unit. The system performance is characterized with a set of numerical simulations, and we present on-sky results that validate the performance of the controller and the expected throughput of the fiber coupling. This unit was designed specifically for the MINERVA array, a robotic observatory consisting of multiple 0.7 m telescopes linked to a single high-resolution stabilized spectrograph for the purpose of exoplanet discovery using high-cadence radial velocimetry. However, this unit could easily be used for general astronomical purposes requiring fiber coupling or precise guiding.

  11. Coherent Optomechanical Switch for Motion Transduction Based on Dynamically Localized Mechanical Modes

    NASA Astrophysics Data System (ADS)

    Fu, Hao; Gong, Zhi-cheng; Yang, Li-ping; Mao, Tian-hua; Sun, Chang-pu; Yi, Su; Li, Yong; Cao, Geng-yu

    2018-05-01

    We present a coherent switch for motion transduction based on dynamically localized mechanical modes in an optomechanical system consisting of two coupled cantilevers. By placing one of the cantilevers inside a harmonically oscillating optical trap, the effective coupling strength between the degenerate cantilevers can be tuned experimentally. In particular, when the coupling is turned off, we show that mechanical motion becomes tightly bounded to the isolated cantilevers rather than propagating away as a result of destructive Landau-Zener-Stückelberg-like interference. The effect of dynamical localization is adopted to implement a coherent switch, through which the tunneling oscillation is turned on and off with well-preserved phase coherence. We provide a simple yet efficient approach for full control of the coupling between mechanical resonators, which is highly desirable for coherent control of transport phenomena in a coupled-mechanical-resonator array.

  12. Application of numerical optimization techniques to control system design for nonlinear dynamic models of aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Ge, Fuying

    1989-01-01

    Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.

  13. Parameter Sweep and Optimization of Loosely Coupled Simulations Using the DAKOTA Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elwasif, Wael R; Bernholdt, David E; Pannala, Sreekanth

    2012-01-01

    The increasing availability of large scale computing capabilities has accelerated the development of high-fidelity coupled simulations. Such simulations typically involve the integration of models that implement various aspects of the complex phenomena under investigation. Coupled simulations are playing an integral role in fields such as climate modeling, earth systems modeling, rocket simulations, computational chemistry, fusion research, and many other computational fields. Model coupling provides scientists with systematic ways to virtually explore the physical, mathematical, and computational aspects of the problem. Such exploration is rarely done using a single execution of a simulation, but rather by aggregating the results from manymore » simulation runs that, together, serve to bring to light novel knowledge about the system under investigation. Furthermore, it is often the case (particularly in engineering disciplines) that the study of the underlying system takes the form of an optimization regime, where the control parameter space is explored to optimize an objective functions that captures system realizability, cost, performance, or a combination thereof. Novel and flexible frameworks that facilitate the integration of the disparate models into a holistic simulation are used to perform this research, while making efficient use of the available computational resources. In this paper, we describe the integration of the DAKOTA optimization and parameter sweep toolkit with the Integrated Plasma Simulator (IPS), a component-based framework for loosely coupled simulations. The integration allows DAKOTA to exploit the internal task and resource management of the IPS to dynamically instantiate simulation instances within a single IPS instance, allowing for greater control over the trade-off between efficiency of resource utilization and time to completion. We present a case study showing the use of the combined DAKOTA-IPS system to aid in the design of a lithium ion battery (LIB) cell, by studying a coupled system involving the electrochemistry and ion transport at the lower length scales and thermal energy transport at the device scales. The DAKOTA-IPS system provides a flexible tool for use in optimization and parameter sweep studies involving loosely coupled simulations that is suitable for use in situations where changes to the constituent components in the coupled simulation are impractical due to intellectual property or code heritage issues.« less

  14. Gain selection method and model for coupled propulsion and airframe systems

    NASA Technical Reports Server (NTRS)

    Murphy, P. C.

    1982-01-01

    A longitudinal model is formulated for an advanced fighter from three subsystem models: the inlet, the engine, and the airframe. Notable interaction is found in the coupled system. A procedure, based on eigenvalue sensitivities, is presented which indicates the importance of the feedback gains to the optimal solution. This allows ineffectual gains to be eliminated; thus, hardware and expense may be saved in the realization of the physical controller.

  15. Control approaches for intelligent material systems -- What can we learn from nature?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertshaw, H.H.

    1994-12-31

    Three natural systems (human thermoregulation, enzyme-catalyzed biochemical reactions, and rivers) are examined with the intent of finding commonalties in control among these systems which may offer inspiration or guidance to the task of controlling the behavior of Intelligent Material Systems. It is observed that these natural systems act in ways not seen in technological control systems. The observations of a lack of (feedback) control, the predominance of regulation, the extremely local nature of the apparent goals, the storage of information in form (in structure), and non-numerical processing, produce a strong impression of coupled open-loop processes amidst seeming chaos almost passivelymore » producing what the author calls natural system control.« less

  16. Development of a coupled expert system for the spacecraft attitude control problem

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G.; Schaffer, J.; Hsieh, B.-J.; Padalkar, S.; Rodriguezmoscoso, J.; Vinz, F.; Fernandez, K.

    1987-01-01

    A majority of the current expert systems focus on the symbolic-oriented logic and inference mechanisms of artificial intelligence (AI). Common rule-based systems employ empirical associations and are not well suited to deal with problems often arising in engineering. Described is a prototype expert system which combines both symbolic and numeric computing. The expert system's configuration is presented and its application to a spacecraft attitude control problem is discussed.

  17. Generalized Distributed Consensus-based Algorithms for Uncertain Systems and Networks

    DTIC Science & Technology

    2010-01-01

    time linear systems with markovian jumping parameters and additive disturbances. SIAM Journal on Control and Optimization, 44(4):1165– 1191, 2005... time marko- vian jump linear systems , in the presence of delayed mode observations. Proceed- ings of the 2008 IEEE American Control Conference, pages...Markovian Jump Linear System state estimation . . . . 147 6 Conclusions 152 A Discrete- Time Coupled Matrix Equations 156 A.1 Properties of a special

  18. Reflection: A Socratic approach

    PubMed Central

    Van Seggelen – Damen, Inge C. M.; Van Hezewijk, René; Helsdingen, Anne S.; Wopereis, Iwan G. J. H.

    2017-01-01

    Reflection is a fuzzy concept. In this article we reveal the paradoxes involved in studying the nature of reflection. Whereas some scholars emphasize its discursive nature, we go further and underline its resemblance to the self-biased dialogue Socrates had with the slave in Plato’s Meno. The individual and internal nature of the reflection process creates difficulty for studying it validly and reliably. We focus on methodological issues and use Hans Linschoten’s view of coupled systems to identify, analyze, and interpret empirical research on reflection. We argue that researchers and research participants can take on roles in several possible system couplings. Depending on who controls the manipulation of the stimulus, who controls the measuring instrument, who interprets the measurement and the response, different types of research questions can be answered. We conclude that reflection may be validly studied by combining different couplings of experimenter, manipulation, stimulus, participant, measurement, and response. PMID:29249867

  19. Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation.

    PubMed

    Selvaraj, P; Sakthivel, R; Kwon, O M

    2018-06-07

    This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Active control of turbulent boundary layer-induced sound transmission through the cavity-backed double panels

    NASA Astrophysics Data System (ADS)

    Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.

    2018-05-01

    This paper presents a theoretical study of active control of turbulent boundary layer (TBL) induced sound transmission through the cavity-backed double panels. The aerodynamic model used is based on the Corcos wall pressure distribution. The structural-acoustic model encompasses a source panel (skin panel), coupled through an acoustic cavity to the radiating panel (trim panel). The radiating panel is backed by a larger acoustic enclosure (the back cavity). A feedback control unit is located inside the acoustic cavity between the two panels. It consists of a control force actuator and a sensor mounted at the actuator footprint on the radiating panel. The control actuator can react off the source panel. It is driven by an amplified velocity signal measured by the sensor. A fully coupled analytical structural-acoustic model is developed to study the effects of the active control on the sound transmission into the back cavity. The stability and performance of the active control system are firstly studied on a reduced order model. In the reduced order model only two fundamental modes of the fully coupled system are assumed. Secondly, a full order model is considered with a number of modes large enough to yield accurate simulation results up to 1000 Hz. It is shown that convincing reductions of the TBL-induced vibrations of the radiating panel and the sound pressure inside the back cavity can be expected. The reductions are more pronounced for a certain class of systems, which is characterised by the fundamental natural frequency of the skin panel larger than the fundamental natural frequency of the trim panel.

  1. Synchronization of Heterogeneous Oscillators by Noninvasive Time-Delayed Cross Coupling.

    PubMed

    Jüngling, Thomas; Fischer, Ingo; Schöll, Eckehard; Just, Wolfram

    2015-11-06

    We demonstrate that nonidentical systems, in particular, nonlinear oscillators with different time scales, can be synchronized if a mutual coupling via time-delayed control signals is implemented. Each oscillator settles on an unstable state, say a fixed point or an unstable periodic orbit, with a coupling force which vanishes in the long time limit. We present the underlying theoretical considerations and numerical simulations, and, moreover, demonstrate the concept experimentally in nonlinear electronic oscillators.

  2. Doubly fed induction machine

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  3. Nonlinear Decoupling Control With ANFIS-Based Unmodeled Dynamics Compensation for a Class of Complex Industrial Processes.

    PubMed

    Zhang, Yajun; Chai, Tianyou; Wang, Hong; Wang, Dianhui; Chen, Xinkai

    2018-06-01

    Complex industrial processes are multivariable and generally exhibit strong coupling among their control loops with heavy nonlinear nature. These make it very difficult to obtain an accurate model. As a result, the conventional and data-driven control methods are difficult to apply. Using a twin-tank level control system as an example, a novel multivariable decoupling control algorithm with adaptive neural-fuzzy inference system (ANFIS)-based unmodeled dynamics (UD) compensation is proposed in this paper for a class of complex industrial processes. At first, a nonlinear multivariable decoupling controller with UD compensation is introduced. Different from the existing methods, the decomposition estimation algorithm using ANFIS is employed to estimate the UD, and the desired estimating and decoupling control effects are achieved. Second, the proposed method does not require the complicated switching mechanism which has been commonly used in the literature. This significantly simplifies the obtained decoupling algorithm and its realization. Third, based on some new lemmas and theorems, the conditions on the stability and convergence of the closed-loop system are analyzed to show the uniform boundedness of all the variables. This is then followed by the summary on experimental tests on a heavily coupled nonlinear twin-tank system that demonstrates the effectiveness and the practicability of the proposed method.

  4. Regenerative flywheel energy storage system. Volume 3: Life cycle and cost-benefit analysis of a battery-flywheel electric car

    NASA Astrophysics Data System (ADS)

    1980-06-01

    Fabrication of the inductor motor, the flywheel, the power conditioner, and the system control is described. Test results of the system operating over the SAE j227a Schedule D driving cycle are given and are compared to the calculated value. The flywheel energy storage system consists of a solid rotor, synchronous, inductor-type, flywheel drive machine electrically coupled to a dc battery electric propulsion system through a load-commutated inverter. The motor/alernator unit is coupled mechanically to a small steel flywheel which provides a portion of the vehicle's accelerating energy and regenerates the vehicle's braking energy. Laboratory simulation of the electric vehicle propulsion system included a 108 volt, lead-acid battery bank and a separately excited dc propulsion motor coupled to a flywheel and generator which simulate the vehicle's inertia and losses.

  5. Sampled-data synchronisation of coupled harmonic oscillators with communication and input delays subject to controller failure

    NASA Astrophysics Data System (ADS)

    Zhao, Liyun; Zhou, Jin; Wu, Quanjun

    2016-01-01

    This paper considers the sampled-data synchronisation problems of coupled harmonic oscillators with communication and input delays subject to controller failure. A synchronisation protocol is proposed for such oscillator systems over directed network topology, and then some general algebraic criteria on exponential convergence for the proposed protocol are established. The main features of the present investigation include: (1) both the communication and input delays are simultaneously addressed, and the directed network topology is firstly considered and (2) the effects of time delays on synchronisation performance are theoretically and numerically investigated. It is shown that in the absence of communication delays, coupled harmonic oscillators can achieve synchronisation oscillatory motion. Whereas if communication delays are nonzero at infinite multiple sampled-data instants, its synchronisation (or consensus) state is zero. This conclusion can be used as an effective control strategy to stabilise coupled harmonic oscillators in practical applications. Furthermore, it is interesting to find that increasing either communication or input delays will enhance the synchronisation performance of coupled harmonic oscillators. Subsequently, numerical examples illustrate and visualise theoretical results.

  6. Fuel cell system modeling for solid oxide fuel cell/gas turbine hybrid power plants, Part I: Modeling and simulation framework

    NASA Astrophysics Data System (ADS)

    Leucht, Florian; Bessler, Wolfgang G.; Kallo, Josef; Friedrich, K. Andreas; Müller-Steinhagen, H.

    A sustainable future power supply requires high fuel-to-electricity conversion efficiencies even in small-scale power plants. A promising technology to reach this goal is a hybrid power plant in which a gas turbine (GT) is coupled with a solid oxide fuel cell (SOFC). This paper presents a dynamic model of a pressurized SOFC system consisting of the fuel cell stack with combustion zone and balance-of-plant components such as desulphurization, humidification, reformer, ejector and heat exchangers. The model includes thermal coupling between the different components. A number of control loops for fuel and air flows as well as power management are integrated in order to keep the system within the desired operation window. Models and controls are implemented in a MATLAB/SIMULINK environment. Different hybrid cycles proposed earlier are discussed and a preferred cycle is developed. Simulation results show the prospects of the developed modeling and control system.

  7. A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot.

    PubMed

    Li, Jin-Jin; Zhu, Ka-Di

    2010-05-21

    We have theoretically demonstrated the large enhancement of the optical Kerr effect in a scheme of a nanomechanical resonator coupled to a quantum dot and shown that this phenomenon can be used to realize a fast optical Kerr switch by turning the control field on or off. Due to the vibration of the nanoresonator, as we pump on the strong control beam, the optical spectrum shows that the magnitude of this optical Kerr effect is proportional to the intensity of the control field. In this case, a fast and tunable optical Kerr switch can be implemented easily by an intensity-adjustable laser. Based on this tunable optical Kerr switch, we also provide a detection method to measure the frequency of the nanomechanical resonator in this coupled system.

  8. Dynamic Modeling and Control of Nuclear Reactors Coupled to Closed-Loop Brayton Cycle Systems using SIMULINK{sup TM}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Steven A.; Sanchez, Travis

    2005-02-06

    The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK{sup TM} (Simulink, 2004). SIMULINK{sup TM} is a development environment packaged with MatLab{sup TM} (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion componentsmore » such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK{sup TM} models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK{sup TM} modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator)« less

  9. Fine Surface Control of Flexible Space Mirrors Using Adaptive Optics and Robust Control

    DTIC Science & Technology

    2009-03-01

    an AO system not only increases complexity but also lends itself to coupling between actuators. Whereas historically, control laws treated AO...adaptive optic in large ground based AO systems is treated as a static system with no dynamics. In the case of a deformable mirror, it is assumed... astigmatism , and so on. As with any series expansion, the more terms used, the more accurate the approximation will be. For this research, 21 Zernike

  10. Adaptive fixed-time control for cluster synchronisation of coupled complex networks with uncertain disturbances

    NASA Astrophysics Data System (ADS)

    Jiang, Shengqin; Lu, Xiaobo; Cai, Guoliang; Cai, Shuiming

    2017-12-01

    This paper focuses on the cluster synchronisation problem of coupled complex networks with uncertain disturbances under an adaptive fixed-time control strategy. To begin with, complex dynamical networks with community structure which are subject to uncertain disturbances are taken into account. Then, a novel adaptive control strategy combined with fixed-time techniques is proposed to guarantee the nodes in the communities to desired states in a settling time. In addition, the stability of complex error systems is theoretically proved based on Lyapunov stability theorem. At last, two examples are presented to verify the effectiveness of the proposed adaptive fixed-time control.

  11. Emissions-critical charge cooling using an organic rankine cycle

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  12. Control of entanglement dynamics in a system of three coupled quantum oscillators.

    PubMed

    Gonzalez-Henao, J C; Pugliese, E; Euzzor, S; Meucci, R; Roversi, J A; Arecchi, F T

    2017-08-30

    Dynamical control of entanglement and its connection with the classical concept of instability is an intriguing matter which deserves accurate investigation for its important role in information processing, cryptography and quantum computing. Here we consider a tripartite quantum system made of three coupled quantum parametric oscillators in equilibrium with a common heat bath. The introduced parametrization consists of a pulse train with adjustable amplitude and duty cycle representing a more general case for the perturbation. From the experimental observation of the instability in the classical system we are able to predict the parameter values for which the entangled states exist. A different amount of entanglement and different onset times emerge when comparing two and three quantum oscillators. The system and the parametrization considered here open new perspectives for manipulating quantum features at high temperatures.

  13. Wave mixing in coupled phononic crystals via a variable stiffness mechanism

    NASA Astrophysics Data System (ADS)

    Lee, Gil-Yong; Chong, Christopher; Kevrekidis, Panayotis G.; Yang, Jinkyu

    2016-10-01

    We investigate wave mixing effects in a phononic crystal that couples the wave dynamics of two channels - primary and control ones - via a variable stiffness mechanism. We demonstrate analytically and numerically that the wave transmission in the primary channel can be manipulated by the control channel's signal. We show that the application of control waves allows the selection of a specific mode through the primary channel. We also demonstrate that the mixing of two wave modes is possible whereby a modulation effect is observed. A detailed study of the design parameters is also carried out to optimize the switching capabilities of the proposed system. Finally, we verify that the system can fulfill both switching and amplification functionalities, potentially enabling the realization of an acoustic transistor.

  14. Preliminary control system design and analysis for the Space Station Furnace Facility thermal control system

    NASA Technical Reports Server (NTRS)

    Jackson, M. E.

    1995-01-01

    This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

  15. Improved control of the betatron coupling in the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Persson, T.; Tomás, R.

    2014-05-01

    The control of the betatron coupling is of importance for safe beam operation in the LHC. In this article we show recent advancements in methods and algorithms to measure and correct coupling. The benefit of using a more precise formula relating the resonance driving term f1001 to the ΔQmin is presented. The quality of the coupling measurements is increased, with about a factor 3, by selecting beam position monitor (BPM) pairs with phase advances close to π/2 and through data cleaning using singular value decomposition with an optimal number of singular values. These improvements are beneficial for the implemented automatic coupling correction, which is based on injection oscillations, presented in the article. Furthermore, a proposed coupling feedback for the LHC is presented. The system will rely on the measurements from BPMs equipped with a new type of high resolution electronics, diode orbit and oscillation, which will be operational when the LHC restarts in 2015. The feedback will combine the coupling measurements from the available BPMs in order to calculate the best correction.

  16. Breathers and solitons on two different backgrounds in a generalized coupled Hirota system with four wave mixing

    NASA Astrophysics Data System (ADS)

    Xu, Han-Xiang; Yang, Zhan-Ying; Zhao, Li-Chen; Duan, Liang; Yang, Wen-Li

    2018-07-01

    We study breathers and solitons on different backgrounds in optical fiber system, which is governed by generalized coupled Hirota equations with four wave mixing effect. On plane wave background, a transformation between different types of solitons is discovered. Then, on periodic wave background, we find breather-like nonlinear localized waves of which formation mechanism are related to the energy conversion between two components. The energy conversion results from four wave mixing. Furthermore, we prove that this energy conversion is controlled by amplitude and period of backgrounds. Finally, solitons on periodic wave background are also exhibited. These results would enrich our knowledge of nonlinear localized waves' excitation in coupled system with four wave mixing effect.

  17. Brillouin lasing in coupled silica toroid microcavities

    NASA Astrophysics Data System (ADS)

    Honda, Yoshihiro; Yoshiki, Wataru; Tetsumoto, Tomohiro; Fujii, Shun; Furusawa, Kentaro; Sekine, Norihiko; Tanabe, Takasumi

    2018-05-01

    We demonstrate stimulated Brillouin scattering lasing in a strongly coupled microcavity system. By coupling two silica toroid microcavities, we achieve large mode splitting of 11 GHz, whose frequency separation matches the Brillouin frequency shift of silica. The stimulated Brillouin scattering light is resonantly amplified by pumping at the higher frequency side of the supermode splitting resonance. Since the mode splitting is adjusted by changing the gap distance between the two cavities, our system does not require precise control of a mm-sized cavity diameter to match the free-spectral spacing with the Brillouin frequency shift. It also allows us to use a small cavity, and hence, our system has the potential to achieve the lasing threshold at a very low power.

  18. High Step-Up DC—DC Converter for AC Photovoltaic Module with MPPT Control

    NASA Astrophysics Data System (ADS)

    Sundar, Govindasamy; Karthick, Narashiman; Rama Reddy, Sasi

    2014-08-01

    This paper presents the high gain step-up BOOST converter which is essential to step up the low output voltage from PV panel to the high voltage according to the requirement of the application. In this paper a high gain BOOST converter with coupled inductor technique is proposed with the MPPT control. Without extreme duty ratios and the numerous turns-ratios of a coupled inductor this converter achieves a high step-up voltage-conversion ratio and the leakage energy of the coupled inductor is efficiently recycled to the load. MPPT control used to extract the maximum power from PV panel by controlling the Duty ratio of the converter. The PV panel, BOOST converter and the MPPT are modeled using Sim Power System blocks in MATLAB/SIMULINK environment. The prototype model of the proposed converter has been implemented with the maximum measured efficiency is up to 95.4% and full-load efficiency is 93.1%.

  19. BacNet and Analog/Digital Interfaces of the Building Controls Virtual Testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouidui, Thierry Stephane; Wetter, Michael; Li, Zhengwei

    2011-11-01

    This paper gives an overview of recent developments in the Building Controls Virtual Test Bed (BCVTB), a framework for co-simulation and hardware-in-the-loop. First, a general overview of the BCVTB is presented. Second, we describe the BACnet interface, a link which has been implemented to couple BACnet devices to the BCVTB. We present a case study where the interface was used to couple a whole building simulation program to a building control system to assess in real-time the performance of a real building. Third, we present the ADInterfaceMCC, an analog/digital interface that allows a USB-based analog/digital converter to be linked tomore » the BCVTB. In a case study, we show how the link was used to couple the analog/digital converter to a building simulation model for local loop control.« less

  20. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  1. The dynamics and control of large flexible space structures-V

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Reddy, A. S. S. R.; Diarra, C. M.; Kumar, V. K.

    1982-01-01

    A general survey of the progress made in the areas of mathematical modelling of the system dynamics, structural analysis, development of control algorithms, and simulation of environmental disturbances is presented. The use of graph theory techniques is employed to examine the effects of inherent damping associated with LSST systems on the number and locations of the required control actuators. A mathematical model of the forces and moments induced on a flexible orbiting beam due to solar radiation pressure is developed and typical steady state open loop responses obtained for the case when rotations and vibrations are limited to occur within the orbit plane. A preliminary controls analysis based on a truncated (13 mode) finite element model of the 122m. Hoop/Column antenna indicates that a minimum of six appropriately placed actuators is required for controllability. An algorithm to evaluate the coefficients which describe coupling between the rigid rotational and flexible modes and also intramodal coupling was developed and numerical evaluation based on the finite element model of Hoop/Column system is currently in progress.

  2. Method and infrastructure for cycle-reproducible simulation on large scale digital circuits on a coordinated set of field-programmable gate arrays (FPGAs)

    DOEpatents

    Asaad, Sameh W; Bellofatto, Ralph E; Brezzo, Bernard; Haymes, Charles L; Kapur, Mohit; Parker, Benjamin D; Roewer, Thomas; Tierno, Jose A

    2014-01-28

    A plurality of target field programmable gate arrays are interconnected in accordance with a connection topology and map portions of a target system. A control module is coupled to the plurality of target field programmable gate arrays. A balanced clock distribution network is configured to distribute a reference clock signal, and a balanced reset distribution network is coupled to the control module and configured to distribute a reset signal to the plurality of target field programmable gate arrays. The control module and the balanced reset distribution network are cooperatively configured to initiate and control a simulation of the target system with the plurality of target field programmable gate arrays. A plurality of local clock control state machines reside in the target field programmable gate arrays. The local clock state machines are configured to generate a set of synchronized free-running and stoppable clocks to maintain cycle-accurate and cycle-reproducible execution of the simulation of the target system. A method is also provided.

  3. BIODEGRADATION DURING CONTAMINANT TRANSPORT IN POROUS MEDIA: 1. MATHEMATICAL ANALYSIS OF CONTROLLING FACTORS. (R825415)

    EPA Science Inventory

    Abstract

    Interest in coupled biodegradation and transport of organic contaminants has expanded greatly in the past several years. In a system in which biodegradation is coupled with solute transport, the magnitude and rate of biodegradation is influenced not only by pr...

  4. Solid-state diffusion-controlled growth of the phases in the Au-Sn system

    NASA Astrophysics Data System (ADS)

    Baheti, Varun A.; Kashyap, Sanjay; Kumar, Praveen; Chattopadhyay, Kamanio; Paul, Aloke

    2018-01-01

    The solid state diffusion-controlled growth of the phases is studied for the Au-Sn system in the range of room temperature to 200 °C using bulk and electroplated diffusion couples. The number of product phases in the interdiffusion zone decreases with the decrease in annealing temperature. These phases grow with significantly high rates even at the room temperature. The growth rate of the AuSn4 phase is observed to be higher in the case of electroplated diffusion couple because of the relatively small grains and hence high contribution of the grain boundary diffusion when compared to the bulk diffusion couple. The diffraction pattern analysis indicates the same equilibrium crystal structure of the phases in these two types of diffusion couples. The analysis in the AuSn4 phase relating the estimated tracer diffusion coefficients with grain size, crystal structure, the homologous temperature of experiments and the concept of the sublattice diffusion mechanism in the intermetallic compounds indicate that Au diffuses mainly via the grain boundaries, whereas Sn diffuses via both the grain boundaries and the lattice.

  5. Directly tailoring photon-electron coupling for sensitive photoconductance

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Zhou, Wei; Huang, Jingguo; Wu, Jing; Gao, Yanqing; Qu, Yue; Chu, Junhao

    2016-03-01

    The coupling between photons and electrons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons by photons in engineered energy-band systems, control over their coupling is still widely lacking. Here we demonstrate an unprecedented ability to couple photon-electron interactions in real space, in which the incident electromagnetic wave directly tailors energy bands of solid to generate carriers for sensitive photoconductance. By spatially coherent manipulation of metal-wrapped material system through anti-symmetric electric field of the irradiated electromagnetic wave, electrons in the metals are injected and accumulated in the induced potential well (EIW) produced in the solid. Respective positive and negative electric conductances are easily observed in n-type and p-type semiconductors into which electrons flow down from the two metallic sides under light irradiation. The photoconductivity is further confirmed by sweeping the injected electrons out of the semiconductor before recombination applied by sufficiently strong electric fields. Our work opens up new perspectives for tailoring energy bands of solids and is especially relevant to develop high effective photon detection, spin injection, and energy harvesting in optoelectronics and electronics.

  6. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less

  7. Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying

    2018-03-01

    This paper addresses the problem of rigid-flexible coupling dynamic modeling and active control of a novel flexible parallel manipulator (PM) with multiple actuation modes. Firstly, based on the flexible multi-body dynamics theory, the rigid-flexible coupling dynamic model (RFDM) of system is developed by virtue of the augmented Lagrangian multipliers approach. For completeness, the mathematical models of permanent magnet synchronous motor (PMSM) and piezoelectric transducer (PZT) are further established and integrated with the RFDM of mechanical system to formulate the electromechanical coupling dynamic model (ECDM). To achieve the trajectory tracking and vibration suppression, a hierarchical compound control strategy is presented. Within this control strategy, the proportional-differential (PD) feedback controller is employed to realize the trajectory tracking of end-effector, while the strain and strain rate feedback (SSRF) controller is developed to restrain the vibration of the flexible links using PZT. Furthermore, the stability of the control algorithm is demonstrated based on the Lyapunov stability theory. Finally, two simulation case studies are performed to illustrate the effectiveness of the proposed approach. The results indicate that, under the redundant actuation mode, the hierarchical compound control strategy can guarantee the flexible PM achieves singularity-free motion and vibration attenuation within task workspace simultaneously. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and efficient controller design of other flexible PMs, especially the emerging ones with multiple actuation modes.

  8. Enhanced magnetoelectric coupling in a composite multiferroic system via interposing a thin film polymer

    NASA Astrophysics Data System (ADS)

    Xiao, Zhuyun; Mohanchandra, Kotekar P.; Lo Conte, Roberto; Ty Karaba, C.; Schneider, J. D.; Chavez, Andres; Tiwari, Sidhant; Sohn, Hyunmin; Nowakowski, Mark E.; Scholl, Andreas; Tolbert, Sarah H.; Bokor, Jeffrey; Carman, Gregory P.; Candler, Rob N.

    2018-05-01

    Enhancing the magnetoelectric coupling in a strain-mediated multiferroic composite structure plays a vital role in controlling magnetism by electric fields. An enhancement of magnetoelastic coupling between ferroelectric single crystal (011)-cut [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈ 0.30) and ferromagnetic polycrystalline Ni thin film through an interposed benzocyclobutene polymer thin film is reported. A nearly twofold increase in sensitivity of remanent magnetization in the Ni thin film to an applied electric field is observed. This observation suggests a viable method of improving the magnetoelectric response in these composite multiferroic systems.

  9. Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics

    DOE PAGES

    Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; ...

    2015-06-11

    We measure the quantum speed of the state evolution of the field in a weakly-driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment assisted speed-up is realized: the quantum speed of the state re-population in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).

  10. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin

    2009-01-01

    Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.

  11. Spin-1 models in the ultrastrong-coupling regime of circuit QED

    NASA Astrophysics Data System (ADS)

    Albarrán-Arriagada, F.; Lamata, L.; Solano, E.; Romero, G.; Retamal, J. C.

    2018-02-01

    We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded superconducting quantum interference device (SQUID). The anharmonic spectrum of the qubit-resonator system and the selection rules imposed by the global parity symmetry allow us to activate well controlled two-body quantum gates via ac pulses applied to the SQUID. We show that our proposal has the same simulation time for any number of spin-1 interacting particles. This scheme may be implemented within the state-of-the-art circuit QED in the ultrastrong coupling regime.

  12. Conceptual design of data acquisition and control system for two Rf driver based negative ion source for fusion R&D

    NASA Astrophysics Data System (ADS)

    Soni, Jigensh; Yadav, R. K.; Patel, A.; Gahlaut, A.; Mistry, H.; Parmar, K. G.; Mahesh, V.; Parmar, D.; Prajapati, B.; Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Pandya, K.; Chakraborty, A.

    2013-02-01

    Twin Source - An Inductively coupled two RF driver based 180 kW, 1 MHz negative ion source experimental setup is initiated at IPR, Gandhinagar, under Indian program, with the objective of understanding the physics and technology of multi-driver coupling. Twin Source [1] (TS) also provides an intermediate platform between operational ROBIN [2] [5] and eight RF drivers based Indian test facility -INTF [3]. A twin source experiment requires a central system to provide control, data acquisition and communication interface, referred as TS-CODAC, for which a software architecture similar to ITER CODAC core system has been decided for implementation. The Core System is a software suite for ITER plant system manufacturers to use as a template for the development of their interface with CODAC. The ITER approach, in terms of technology, has been adopted for the TS-CODAC so as to develop necessary expertise for developing and operating a control system based on the ITER guidelines as similar configuration needs to be implemented for the INTF. This cost effective approach will provide an opportunity to evaluate and learn ITER CODAC technology, documentation, information technology and control system processes, on an operational machine. Conceptual design of the TS-CODAC system has been completed. For complete control of the system, approximately 200 Nos. control signals and 152 acquisition signals are needed. In TS-CODAC, control loop time required is within the range of 5ms - 10 ms, therefore for the control system, PLC (Siemens S-7 400) has been chosen as suggested in the ITER slow controller catalog. For the data acquisition, the maximum sampling interval required is 100 micro second, and therefore National Instruments (NI) PXIe system and NI 6259 digitizer cards have been selected as suggested in the ITER fast controller catalog. This paper will present conceptual design of TS -CODAC system based on ITER CODAC Core software and applicable plant system integration processes.

  13. Coherent Two-Mode Dynamics of a Nanowire Force Sensor

    NASA Astrophysics Data System (ADS)

    Braakman, Floris R.; Rossi, Nicola; Tütüncüoglu, Gözde; Morral, Anna Fontcuberta i.; Poggio, Martino

    2018-05-01

    Classically coherent dynamics analogous to those of quantum two-level systems are studied in the setting of force sensing. We demonstrate quantitative control over the coupling between two orthogonal mechanical modes of a nanowire cantilever through measurement of avoided crossings as we deterministically position the nanowire inside an electric field. Furthermore, we demonstrate Rabi oscillations between the two mechanical modes in the strong-coupling regime. These results give prospects of implementing coherent two-mode control techniques for force-sensing signal enhancement.

  14. Reconfigurable Control with Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Williams-Hayes, Peggy; Kaneshige, John T.; Stachowiak, Susan J.

    2006-01-01

    Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.

  15. Adaptive Control Using Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Williams-Hayes, Peggy; Karneshige, J. T.; Stachowiak, Susan J.

    2006-01-01

    Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.

  16. Development of Chemical Process Design and Control for Sustainability

    EPA Science Inventory

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy....

  17. Enhanced methods for operating refueling station tube-trailers to reduce refueling cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Reddi, Krishna

    A method and apparatus are provided for operating a refueling station including source tube-trailers and at least one compressor to reduce refueling cost. The refueling station includes a gaseous fuel supply source including a plurality of tanks on a tube trailer coupled to a first control unit, and high pressure buffer storage having predefined capacity coupled to a second control unit and the first tanks by a pressure control valve and the first control unit, and at least one compressor. The refueling station is operated at different modes depending on a state of the refueling station at the beginning ofmore » each operational mode. The refueling system is assessed at the end of each operational mode to identify the state of the system and select a next mode of operation. The operational modes include consolidating hydrogen, or any gaseous fuel, within the tubes mounted on the trailer.« less

  18. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    NASA Technical Reports Server (NTRS)

    Bard, Steven (Inventor); Wu, Jiunn-Jeng (Inventor); Trimble, Curtis A. (Inventor)

    1992-01-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  19. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    NASA Astrophysics Data System (ADS)

    Bard, Steven; Wu, Jiunn-Jeng; Trimble, Curtis A.

    1992-06-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  20. Optimal design of tweezer control for chimera states

    NASA Astrophysics Data System (ADS)

    Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard

    2018-01-01

    Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.

  1. Vibration control in smart coupled beams subjected to pulse excitations

    NASA Astrophysics Data System (ADS)

    Pisarski, Dominik; Bajer, Czesław I.; Dyniewicz, Bartłomiej; Bajkowski, Jacek M.

    2016-10-01

    In this paper, a control method to stabilize the vibration of adjacent structures is presented. The control is realized by changes of the stiffness parameters of the structure's couplers. A pulse excitation applied to the coupled adjacent beams is imposed as the kinematic excitation. For such a representation, the designed control law provides the best rate of energy dissipation. By means of a stability analysis, the performance in different structural settings is studied. The efficiency of the proposed strategy is examined via numerical simulations. In terms of the assumed energy metric, the controlled structure outperforms its passively damped equivalent by over 50 percent. The functionality of the proposed control strategy should attract the attention of practising engineers who seek solutions to upgrade existing damping systems.

  2. A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid

    NASA Astrophysics Data System (ADS)

    Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.

    2012-10-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.

  3. REVIEWS OF TOPICAL PROBLEMS: Application of cybernetic methods in physics

    NASA Astrophysics Data System (ADS)

    Fradkov, Aleksandr L.

    2005-02-01

    Basic aspects of the subject and methodology for a new and rapidly developing area of research that has emerged at the intersection of physics and control theory (cybernetics) and emphasizes the application of cybernetic methods to the study of physical systems are reviewed. Speed-gradient and Hamiltonian solutions for energy control problems in conservative and dissipative systems are presented. Application examples such as the Kapitza pendulum, controlled overcoming of a potential barrier, and controlling coupled oscillators and molecular systems are presented. A speed-gradient approach to modeling the dynamics of physical systems is discussed.

  4. Discrete-time Markovian-jump linear quadratic optimal control

    NASA Technical Reports Server (NTRS)

    Chizeck, H. J.; Willsky, A. S.; Castanon, D.

    1986-01-01

    This paper is concerned with the optimal control of discrete-time linear systems that possess randomly jumping parameters described by finite-state Markov processes. For problems having quadratic costs and perfect observations, the optimal control laws and expected costs-to-go can be precomputed from a set of coupled Riccati-like matrix difference equations. Necessary and sufficient conditions are derived for the existence of optimal constant control laws which stabilize the controlled system as the time horizon becomes infinite, with finite optimal expected cost.

  5. Centrally managed unified shared virtual address space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkes, John

    Systems, apparatuses, and methods for managing a unified shared virtual address space. A host may execute system software and manage a plurality of nodes coupled to the host. The host may send work tasks to the nodes, and for each node, the host may externally manage the node's view of the system's virtual address space. Each node may have a central processing unit (CPU) style memory management unit (MMU) with an internal translation lookaside buffer (TLB). In one embodiment, the host may be coupled to a given node via an input/output memory management unit (IOMMU) interface, where the IOMMU frontendmore » interface shares the TLB with the given node's MMU. In another embodiment, the host may control the given node's view of virtual address space via memory-mapped control registers.« less

  6. Practices to identify and preclude adverse Aircraft-and-Rotorcraft-Pilot Couplings - A design perspective

    NASA Astrophysics Data System (ADS)

    Pavel, Marilena D.; Masarati, Pierangelo; Gennaretti, Massimo; Jump, Michael; Zaichik, Larisa; Dang-Vu, Binh; Lu, Linghai; Yilmaz, Deniz; Quaranta, Giuseppe; Ionita, Achim; Serafini, Jacopo

    2015-07-01

    Understanding, predicting and supressing the inadvertent aircraft oscillations caused by Aircraft/Rotorcraft Pilot Couplings (A/RPC) is a challenging problem for designers. These are potential instabilities that arise from the effort of controlling aircraft with high response actuation systems. The present paper reviews, updates and discusses desirable practices to be used during the design process for unmasking A/RPC phenomena. These practices are stemming from the European Commission project ARISTOTEL Aircraft and Rotorcraft Pilot Couplings - Tools and Techniques for Alleviation and Detection (2010-2013) and are mainly related to aerodynamic and structural modelling of the aircraft/rotorcraft, pilot modelling and A/RPC prediction criteria. The paper proposes new methodologies for precluding adverse A/RPCs events taking into account the aeroelasticity of the structure and pilot biodynamic interaction. It is demonstrated that high-frequency accelerations due to structural elasticity cause negative effects on pilot control, since they lead to involuntary body and limb-manipulator system displacements and interfere with pilot's deliberate control activity (biodynamic interaction) and, finally, worsen handling quality ratings.

  7. Molecular controlled of quantum nano systems

    NASA Astrophysics Data System (ADS)

    Paltiel, Yossi

    2014-03-01

    A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.

  8. Optical computer switching network

    NASA Technical Reports Server (NTRS)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  9. A cortically-inspired model for inverse kinematics computation of a humanoid finger with mechanically coupled joints.

    PubMed

    Gentili, Rodolphe J; Oh, Hyuk; Kregling, Alissa V; Reggia, James A

    2016-05-19

    The human hand's versatility allows for robust and flexible grasping. To obtain such efficiency, many robotic hands include human biomechanical features such as fingers having their two last joints mechanically coupled. Although such coupling enables human-like grasping, controlling the inverse kinematics of such mechanical systems is challenging. Here we propose a cortical model for fine motor control of a humanoid finger, having its two last joints coupled, that learns the inverse kinematics of the effector. This neural model functionally mimics the population vector coding as well as sensorimotor prediction processes of the brain's motor/premotor and parietal regions, respectively. After learning, this neural architecture could both overtly (actual execution) and covertly (mental execution or motor imagery) perform accurate, robust and flexible finger movements while reproducing the main human finger kinematic states. This work contributes to developing neuro-mimetic controllers for dexterous humanoid robotic/prosthetic upper-extremities, and has the potential to promote human-robot interactions.

  10. Brake blending strategy for a hybrid vehicle

    DOEpatents

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  11. Developing Flexible Networked Lighting Control Systems

    Science.gov Websites

    , Bluetooth, ZigBee and others are increasingly used for building control purposes. Low-cost computation : Bundling digital intelligence at the sensors and lights adds virtually no incremental cost. Coupled with cost. Research Goals and Objectives This project "Developing Flexible, Networked Lighting Control

  12. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.

    2017-09-01

    We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.

  13. Biochemical Frequency Control by Synchronisation of Coupled Repressilators: An In Silico Study of Modules for Circadian Clock Systems

    PubMed Central

    Hinze, Thomas; Schumann, Mathias; Bodenstein, Christian; Heiland, Ines; Schuster, Stefan

    2011-01-01

    Exploration of chronobiological systems emerges as a growing research field within bioinformatics focusing on various applications in medicine, agriculture, and material sciences. From a systems biological perspective, the question arises whether biological control systems for regulation of oscillatory signals and their technical counterparts utilise similar mechanisms. If so, modelling approaches and parameterisation adopted from building blocks can help to identify general components for frequency control in circadian clocks along with gaining insight into mechanisms of clock synchronisation to external stimuli like the daily rhythm of sunlight and darkness. Phase-locked loops could be an interesting candidate in this context. Both, biology and engineering, can benefit from a unified view resulting from systems modularisation. In a first experimental study, we analyse a model of coupled repressilators. We demonstrate its ability to synchronise clock signals in a monofrequential manner. Several oscillators initially deviate in phase difference and frequency with respect to explicit reaction and diffusion rates. Accordingly, the duration of the synchronisation process depends on dedicated reaction and diffusion parameters whose settings still lack to be sufficiently captured analytically. PMID:22046179

  14. Application of Nonlinear Systems Inverses to Automatic Flight Control Design: System Concepts and Flight Evaluations

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Cicolani, L.

    1981-01-01

    A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.

  15. Parametric control in coupled fermionic oscillators

    NASA Astrophysics Data System (ADS)

    Ghosh, Arnab

    2014-10-01

    A simple model of parametric coupling between two fermionic oscillators is considered. Statistical properties, in particular the mean and variance of quanta for a single mode, are described by means of a time-dependent reduced density operator for the system and the associated P function. The density operator for fermionic fields as introduced by Cahill and Glauber [K. E. Cahill and R. J. Glauber, Phys. Rev. A 59, 1538 (1999), 10.1103/PhysRevA.59.1538] thus can be shown to provide a quantum mechanical description of the fields closely resembling their bosonic counterpart. In doing so, special emphasis is given to population trapping, and quantum control over the states of the system.

  16. Evaluation of System Architectures for the Army Aviation Ground Power Unit

    DTIC Science & Technology

    2014-12-01

    this state of operation induces wear that reduces pump life. Variable capacity control methods using a constant displacement pump are drive speed...options for use with constant displacement pumps, the fluid or magnetic coupling devices are the most attractive. Variable frequency control cannot...compressor prior to the combustor. The cmTent system turbine exhaust temperature controls to 1250°F, much higher than the compressor exit

  17. Distributed Processing Tools Definition. Volume 1. Hardware and Software Technologies for Tightly-Coupled Distributed Systems.

    DTIC Science & Technology

    1983-06-01

    LOSARDO Project Engineer APPROVED: .MARMCINIhI, Colonel. USAF Chief, Coaud and Control Division FOR THE CCOaIDKR: Acting Chief, Plea Off ice * **711...WORK UNIT NUMBERS General Dynamics Corporation 62702F Data Systems Division P 0 Box 748, Fort Worth TX 76101 55811829 I1. CONTROLLING OFFICE NAME AND...Processing System for 29 the Operation/Direction Center(s) 4-3 Distribution of Processing Control 30 for the Operation/Direction Center(s) 4-4 Generalized

  18. Large space structure model reduction and control system design based upon actuator and sensor influence functions

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Lang, J. H.; Johnson, T. L.; Shih, S.; Staelin, D. H.

    1983-01-01

    A model reduction procedure based on aggregation with respect to sensor and actuator influences rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the aggregated and residual states are derived. These expressions lead to the development of control system design constraints which are sufficient to guarantee, to within the validity of the perturbations, that the residual states are not destabilized by control systems designed from the reduced model. A numerical example is provided to illustrate the application of the aggregation and control system design method.

  19. Evaluation of a Quartz Bourdon Pressure Gage of Wind Tunnel Mach Number Control System Application

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1986-01-01

    A theoretical and experimental study was undertaken to determine the feasibility of using the National Transonic Facility's high accuracy Mach number measurement system as part of a closed loop Mach number control system. The theoretical and experimental procedures described are applicable to the engineering design of pressure control systems. The results show that the dynamic response characteristics of the NTF Mach number gage (a Ruska DDR-6000 quartz absolute pressure gage) coupled to a typical length of pressure tubing were only marginally acceptable within a limited range of the facility's total pressure envelope and could not be used in the Mach number control system.

  20. Lateral control system design for VTOL landing on a DD963 in high sea states. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bodson, M.

    1982-01-01

    The problem of designing lateral control systems for the safe landing of VTOL aircraft on small ships is addressed. A ship model is derived. The issues of estimation and prediction of ship motions are discussed, using optimal linear linear estimation techniques. The roll motion is the most important of the lateral motions, and it is found that it can be predicted for up to 10 seconds in perfect conditions. The automatic landing of the VTOL aircraft is considered, and a lateral controller, defined as a ship motion tracker, is designed, using optimal control techniqes. The tradeoffs between the tracking errors and the control authority are obtained. The important couplings between the lateral motions and controls are demonstrated, and it is shown that the adverse couplings between the sway and the roll motion at the landing pad are significant constraints in the tracking of the lateral ship motions. The robustness of the control system, including the optimal estimator, is studied, using the singular values analysis. Through a robustification procedure, a robust control system is obtained, and the usefulness of the singular values to define stability margins that take into account general types of unstructured modelling errors is demonstrated. The minimal destabilizing perturbations indicated by the singular values analysis are interpreted and related to the multivariable Nyquist diagrams.

  1. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the arbitrarily-located ANC source plane. The actuator velocities can then be determined to generate the anti-phase mode. The resulting combined fan source/ANC pressure can then be calculated at any desired wall sensor position. The actuator velocities can be determined manually or using a simulation of a control system feedback loop. This will provide a very useful ANC system design and evaluation tool.

  2. Nonsmooth Finite-Time Synchronization of Switched Coupled Neural Networks.

    PubMed

    Liu, Xiaoyang; Cao, Jinde; Yu, Wenwu; Song, Qiang

    2016-10-01

    This paper is concerned with the finite-time synchronization (FTS) issue of switched coupled neural networks with discontinuous or continuous activations. Based on the framework of nonsmooth analysis, some discontinuous or continuous controllers are designed to force the coupled networks to synchronize to an isolated neural network. Some sufficient conditions are derived to ensure the FTS by utilizing the well-known finite-time stability theorem for nonlinear systems. Compared with the previous literatures, such synchronization objective will be realized when the activations and the controllers are both discontinuous. The obtained results in this paper include and extend the earlier works on the synchronization issue of coupled networks with Lipschitz continuous conditions. Moreover, an upper bound of the settling time for synchronization is estimated. Finally, numerical simulations are given to demonstrate the effectiveness of the theoretical results.

  3. Electron spin control and spin-libration coupling of a levitated nanodiamond

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang

    2017-04-01

    Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.

  4. Experiments study on attitude coupling control method for flexible spacecraft

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Li, Dongxu

    2018-06-01

    High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.

  5. The role of ocean-atmosphere interaction in Typhoon Sinlaku (2008) using a regional coupled data assimilation system

    NASA Astrophysics Data System (ADS)

    Wada, Akiyoshi; Kunii, Masaru

    2017-05-01

    For improving analyses of tropical cyclone (TC) and sea surface temperature (SST) and thereby TC simulations, a regional mesoscale strongly coupled atmosphere-ocean data assimilation system was developed with the local ensemble transform Kalman filter (LETKF) implemented with the Japan Meteorological Agency's nonhydrostatic model (NHM) coupled with a multilayer ocean model and the third-generation ocean wave model. The NHM-LETKF coupled data assimilation system was applied to Typhoon Sinlaku (2008) along with the original NHM-LETKF system to investigate the sensitivity of Sinlaku to SST assimilation with the Level 2 Pre-processed (L2P) standard product of satellite SST. SST calculated in the coupled-assimilation experiment with the coupled data assimilation system and the satellite SST (CPL) showed a better correlation with Optimally Interpolated SST than SST used in the control experiment with the original NHM-LETKF (CNTL) and SST calculated in the succession experiment with the coupled system without satellite SST (SUCC). The time series in the CPL experiment well captured the variation in the SST observed at the Kuroshio Extension Observation buoy site. In addition, TC-induced sea surface cooling was analyzed more realistically in the CPL experiment than that in the CNTL and SUCC experiments. However, the central pressure analyzed in each three experiments was overestimated compared with the Regional Specialized Meteorological Center Tokyo best-track central pressure, mainly due to the coarse horizontal resolution of 15 km. The 96 h TC simulations indicated that the CPL experiment provided more favorable initial and boundary conditions than the CNTL experiment to simulate TC tracks more accurately.

  6. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Xiaodan; Li, Yingcong; Zhao, Heng; Wen, Si-yuan; Wang, Sheng-qi; Huang, Jian; Huang, Kun-lun; Luo, Yun-bo

    2005-05-18

    To devise a rapid and reliable method for the detection and identification of genetically modified (GM) events, we developed a multiplex polymerase chain reaction (PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a single reaction. The system included probes for screening gene, species reference gene, specific gene, construct-specific gene, event-specific gene, and internal and negative control genes. 18S rRNA was combined with species reference genes as internal controls to assess the efficiency of all reactions and to eliminate false negatives. Two sets of the multiplex PCR system were used to amplify four and five targets, respectively. Eight different structure genes could be detected and identified simultaneously for Roundup Ready soybean in a single microarray. The microarray specificity was validated by its ability to discriminate two GM maizes Bt176 and Bt11. The advantages of this method are its high specificity and greatly reduced false-positives and -negatives. The multiplex PCR coupled with microarray technology presented here is a rapid and reliable tool for the simultaneous detection of GM organism ingredients.

  7. Sliding Mode Thermal Control System for Space Station Furnace Facility

    NASA Technical Reports Server (NTRS)

    Jackson Mark E.; Shtessel, Yuri B.

    1998-01-01

    The decoupled control of the nonlinear, multiinput-multioutput, and highly coupled space station furnace facility (SSFF) thermal control system is addressed. Sliding mode control theory, a subset of variable-structure control theory, is employed to increase the performance, robustness, and reliability of the SSFF's currently designed control system. This paper presents the nonlinear thermal control system description and develops the sliding mode controllers that cause the interconnected subsystems to operate in their local sliding modes, resulting in control system invariance to plant uncertainties and external and interaction disturbances. The desired decoupled flow-rate tracking is achieved by optimization of the local linear sliding mode equations. The controllers are implemented digitally and extensive simulation results are presented to show the flow-rate tracking robustness and invariance to plant uncertainties, nonlinearities, external disturbances, and variations of the system pressure supplied to the controlled subsystems.

  8. Application of a microcomputer-based system to control and monitor bacterial growth.

    PubMed

    Titus, J A; Luli, G W; Dekleva, M L; Strohl, W R

    1984-02-01

    A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO(2), and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations.

  9. Application of a Microcomputer-Based System to Control and Monitor Bacterial Growth

    PubMed Central

    Titus, Jeffrey A.; Luli, Gregory W.; Dekleva, Michael L.; Strohl, William R.

    1984-01-01

    A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO2, and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations. PMID:16346462

  10. Tunable optical nonreciprocity and a phonon-photon router in an optomechanical system with coupled mechanical and optical modes

    NASA Astrophysics Data System (ADS)

    Li, Guolong; Xiao, Xiao; Li, Yong; Wang, Xiaoguang

    2018-02-01

    We propose a multimode optomechanical system to realize tunable optical nonreciprocity that has the prospect of making an optical diode for information technology. The proposed model consists of two subsystems, each of which contains two optical cavities, injected with a classical field and a quantum signal via a 50:50 beam splitter, and a mechanical oscillator, coupled to both cavities via optomechanical coupling. Meanwhile two cavities and an oscillator in a subsystem are respectively coupled to their corresponding cavities and an oscillator in the other subsystem. Our scheme yields nonreciprocal effects at different frequencies with opposite directions, but each effective linear optomechanical coupling can be controlled by an independent classical one-frequency pump. With this setup one is able to apply quantum states with large fluctuations, which extends the scope of applicable quantum states, and exploit the independence of paths. Moreover, the optimal frequencies for nonreciprocal effects can be controlled by adjusting the relevant parameters. We also exhibit the path switching of two directions, from a mechanical input to two optical output channels, via tuning the signal frequency. In experiment, the considered scheme can be tuned to reach small damping rates of the oscillators relative to those of the cavities, which is more practical and requires less power than in previous schemes.

  11. Saccade Preparation Is Required for Exogenous Attention but Not Endogenous Attention or IOR

    ERIC Educational Resources Information Center

    Smith, Daniel T.; Schenk, Thomas; Rorden, Chris

    2012-01-01

    Covert attention is tightly coupled with the control of eye movements, but there is controversy about how tight this coupling is. The premotor theory of attention proposes that activation of the eye movement system is necessary to produce shifts of attention. In this study, we experimentally prevented healthy participants from planning or…

  12. Tunable Bistability in Hybrid Bose-Einstein Condensate Optomechanics

    PubMed Central

    Yasir, Kashif Ammar; Liu, Wu-Ming

    2015-01-01

    Cavity-optomechanics, a rapidly developing area of research, has made a remarkable progress. A stunning manifestation of optomechanical phenomena is in exploiting the mechanical effects of light to couple the optical degree of freedom with mechanical degree of freedom. In this report, we investigate the controlled bistable dynamics of such hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC) trapped inside high-finesse optical cavity with one moving-end mirror and is driven by a single mode optical field. The numerical results provide evidence for controlled optical bistability in optomechanics using transverse optical field which directly interacts with atoms causing the coupling of transverse field with momentum side modes, exited by intra-cavity field. This technique of transverse field coupling is also used to control bistable dynamics of both moving-end mirror and BEC. The report provides an understanding of temporal dynamics of moving-end mirror and BEC with respect to transverse field. Moreover, dependence of effective potential of the system on transverse field has also been discussed. To observe this phenomena in laboratory, we have suggested a certain set of experimental parameters. These findings provide a platform to investigate the tunable behavior of novel phenomenon like electromagnetically induced transparency and entanglement in hybrid systems. PMID:26035206

  13. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence.

    PubMed

    Korkali, Mert; Veneman, Jason G; Tivnan, Brian F; Bagrow, James P; Hines, Paul D H

    2017-03-20

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a "smart" power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  14. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    NASA Astrophysics Data System (ADS)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-03-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  15. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    PubMed Central

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-01-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained. PMID:28317835

  16. Dynamics, stability, and control of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Rote, D.M.

    1993-06-01

    The dynamic response of maglev systems is important in several respects: Safety and ride quality, guideway design, and system costs. The dynamic response of vehicles is the key element in the determination of ride quality, and vehicle stability is one of the important elements relative to safety. To design a proper guideway that provides acceptable ride quality in the stable region, the vehicle dynamics must be understood. The trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. This paper is a summary of our previous work on dynamics,more » stability and control of maglev systems. First of all, the importance of dynamics of vehicle/guideway of maglev systems is discussed. Emphasis is placed on the modeling vehicle/guideway interactions of maglev systems with a multicar, or multiload vehicle traversing on a single or double-span flexible guideway. Coupled effects of vehicle/guideway interactions in wide range of vehicle speeds with various vehicle and guideway parameters for maglev systems are investigated. Secondly, the alternative control designs of maglev vehicle suspension systems are investigated in this study to achieve safe, stable operation and acceptable ride comfort requires some form of vehicle motion control. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. Finally, this paper discusses the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.« less

  17. Dynamics, stability, and control of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Rote, D.M.

    1993-01-01

    The dynamic response of maglev systems is important in several respects: Safety and ride quality, guideway design, and system costs. The dynamic response of vehicles is the key element in the determination of ride quality, and vehicle stability is one of the important elements relative to safety. To design a proper guideway that provides acceptable ride quality in the stable region, the vehicle dynamics must be understood. The trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. This paper is a summary of our previous work on dynamics,more » stability and control of maglev systems. First of all, the importance of dynamics of vehicle/guideway of maglev systems is discussed. Emphasis is placed on the modeling vehicle/guideway interactions of maglev systems with a multicar, or multiload vehicle traversing on a single or double-span flexible guideway. Coupled effects of vehicle/guideway interactions in wide range of vehicle speeds with various vehicle and guideway parameters for maglev systems are investigated. Secondly, the alternative control designs of maglev vehicle suspension systems are investigated in this study to achieve safe, stable operation and acceptable ride comfort requires some form of vehicle motion control. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. Finally, this paper discusses the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.« less

  18. System and method for islanding detection and prevention in distributed generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhowmik, Shibashis; Mazhari, Iman; Parkhideh, Babak

    Various examples are directed to systems and methods for detecting an islanding condition at an inverter configured to couple a distributed generation system to an electrical grid network. A controller may determine a command frequency and a command frequency variation. The controller may determine that the command frequency variation indicates a potential islanding condition and send to the inverter an instruction to disconnect the distributed generation system from the electrical grid network. When the distributed generation system is disconnected from the electrical grid network, the controller may determine whether the grid network is valid.

  19. Late Quaternary to Holocene Geology, Geomorphology and Glacial History of Dawson Creek and Surrounding area, Northeast British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Henry, Edward Trowbridge

    Semiconductor quantum dots in silicon demonstrate exceptionally long spin lifetimes as qubits and are therefore promising candidates for quantum information processing. However, control and readout techniques for these devices have thus far employed low frequency electrons, in contrast to high speed temperature readout techniques used in other qubit architectures, and coupling between multiple quantum dot qubits has not been satisfactorily addressed. This dissertation presents the design and characterization of a semiconductor charge qubit based on double quantum dot in silicon with an integrated microwave resonator for control and readout. The 6 GHz resonator is designed to achieve strong coupling with the quantum dot qubit, allowing the use of circuit QED control and readout techniques which have not previously been applicable to semiconductor qubits. To achieve this coupling, this document demonstrates successful operation of a novel silicon double quantum dot design with a single active metallic layer and a coplanar stripline resonator with a bias tee for dc excitation. Experiments presented here demonstrate quantum localization and measurement of both electrons on the quantum dot and photons in the resonator. Further, it is shown that the resonator-qubit coupling in these devices is sufficient to reach the strong coupling regime of circuit QED. The details of a measurement setup capable of performing simultaneous low noise measurements of the resonator and quantum dot structure are also presented here. The ultimate aim of this research is to integrate the long coherence times observed in electron spins in silicon with the sophisticated readout architectures available in circuit QED based quantum information systems. This would allow superconducting qubits to be coupled directly to semiconductor qubits to create hybrid quantum systems with separate quantum memory and processing components.

  20. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    NASA Astrophysics Data System (ADS)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the economic performance for both the end user and local distribution company.

  1. Programmable dispersion on a photonic integrated circuit for classical and quantum applications.

    PubMed

    Notaros, Jelena; Mower, Jacob; Heuck, Mikkel; Lupo, Cosmo; Harris, Nicholas C; Steinbrecher, Gregory R; Bunandar, Darius; Baehr-Jones, Tom; Hochberg, Michael; Lloyd, Seth; Englund, Dirk

    2017-09-04

    We demonstrate a large-scale tunable-coupling ring resonator array, suitable for high-dimensional classical and quantum transforms, in a CMOS-compatible silicon photonics platform. The device consists of a waveguide coupled to 15 ring-based dispersive elements with programmable linewidths and resonance frequencies. The ability to control both quality factor and frequency of each ring provides an unprecedented 30 degrees of freedom in dispersion control on a single spatial channel. This programmable dispersion control system has a range of applications, including mode-locked lasers, quantum key distribution, and photon-pair generation. We also propose a novel application enabled by this circuit - high-speed quantum communications using temporal-mode-based quantum data locking - and discuss the utility of the system for performing the high-dimensional unitary optical transformations necessary for a quantum data locking demonstration.

  2. Automatic reactor control system for transient operation

    NASA Astrophysics Data System (ADS)

    Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.

    Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.

  3. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling

    PubMed Central

    Hou, Yan-Hua; Yu, Zhenhua

    2015-01-01

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations. PMID:26483090

  4. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    PubMed

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  5. Attitude tracking control of flexible spacecraft with large amplitude slosh

    NASA Astrophysics Data System (ADS)

    Deng, Mingle; Yue, Baozeng

    2017-12-01

    This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.

  6. Lock-up control system for an automatic transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashi, H.; Yashiki, S.; Waki, K.

    A lock-up control system is described for an automatic transmission including a torque converter coupled with the output portion on an engine, and a power transmitting gear arrangement coupled with the output portion of the torque converter and controlled to vary the transmitting gear ratio therein by gear ratio control means in accordance with a shifting up or down command supplied to the latter. A lock-up clutch is provided for locking up the output portion of the torque converter to the output portion of the engine. The lock-up control system comprises: lock-up operation control means for controlling the lock-up clutchmore » to be in its operative state and in its inoperative state selectively, and for causing the lock-up clutch to be in the inoperative state thereof when the gear ratio control means performs the control with the shifting up or down command, and lock-up command means for preventing the lock-up operation control means from causing the lock-up clutch to be in the inoperative state thereof until a predetermined reductive variation in the speed of the output portion of the torque converter arises after the shifting up command is supplied to the gear ratio control means under the condition in which the lock-up clutch is in operation to hold a lock-up state.« less

  7. Daylight control system device and method

    DOEpatents

    Paton, John Douglas

    2007-03-13

    A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.

  8. Daylight control system, device and method

    DOEpatents

    Paton, John Douglas

    2012-08-28

    A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.

  9. Daylight control system device and method

    DOEpatents

    Paton, John Douglas

    2009-12-01

    A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.

  10. Control of strong light-matter coupling using the capacitance of metamaterial nanocavities

    DOE PAGES

    Benz, Alexander; Campione, Salvatore; Klem, John Frederick; ...

    2015-01-27

    Metallic nanocavities with deep subwavelength mode volumes can lead to dramatic changes in the behavior of emitters placed in their vicinity. The resulting collocation and interaction often leads to strong coupling. We present for the first time experimental evidence that the Rabi splitting is directly proportional to the electrostatic capacitance associated with the metallic nanocavity. As a result, the system analyzed consists of different metamaterial geometries with the same resonance wavelength coupled to intersubband transitions in quantum wells.

  11. Cluster-modified function projective synchronisation of complex networks with asymmetric coupling

    NASA Astrophysics Data System (ADS)

    Wang, Shuguo

    2018-02-01

    This paper investigates the cluster-modified function projective synchronisation (CMFPS) of a generalised linearly coupled network with asymmetric coupling and nonidentical dynamical nodes. A novel synchronisation scheme is proposed to achieve CMFPS in community networks. We use adaptive control method to derive CMFPS criteria based on Lyapunov stability theory. Each cluster of networks is synchronised with target system by state transformation with scaling function matrix. Numerical simulation results are presented finally to illustrate the effectiveness of this method.

  12. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    PubMed

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  14. Integral backstepping sliding mode control for underactuated systems: swing-up and stabilization of the Cart-Pendulum System.

    PubMed

    Adhikary, Nabanita; Mahanta, Chitralekha

    2013-11-01

    In this paper an integral backstepping sliding mode controller is proposed for controlling underactuated systems. A feedback control law is designed based on backstepping algorithm and a sliding surface is introduced in the final stage of the algorithm. The backstepping algorithm makes the controller immune to matched and mismatched uncertainties and the sliding mode control provides robustness. The proposed controller ensures asymptotic stability. The effectiveness of the proposed controller is compared against a coupled sliding mode controller for swing-up and stabilization of the Cart-Pendulum System. Simulation results show that the proposed integral backstepping sliding mode controller is able to reject both matched and mismatched uncertainties with a chattering free control law, while utilizing less control effort than the sliding mode controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Thermal Vacuum Test of GLAS Propylene Loop Heat Pipe Development Model

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Ku, Jentung; Kaya, Tarik; Nikitkin, Michael

    2000-01-01

    This paper presents viewgraphs on Thermal Vacuum Tests of the GLAS (Geoscience Laser Altimeter System) Propylene Loop Heat Pipe Development Model. The topics include: 1) Flight LHP System (Laser); 2) Test Design and Objectives; 3) DM (Development Model) LHP (Loop Heat Pipe) Test Design; 4) Starter Heater and Coupling Blocks; 5) CC Control Heaters and PRT; 6) Heater Plates (Shown in Reflux Mode); 7) Startup Tests; 8) CC Control Heater Power Tests for CC Temperature Control; and 9) Control Temperature Stability.

  16. Dissipation Assisted Quantum Memory with Coupled Spin Systems

    NASA Astrophysics Data System (ADS)

    Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail

    2009-05-01

    Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.

  17. Quantum synchronization of chaotic oscillator behaviors among coupled BEC-optomechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Li, Chong; Song, Heshan

    2017-03-01

    We consider and theoretically analyze a Bose-Einstein condensate (BEC) trapped inside an optomechanical system consisting of single-mode optical cavity with a moving end mirror. The BEC is formally analogous to a mirror driven by radiation pressure with strong nonlinear coupling. Such a nonlinear enhancement can make the oscillator display chaotic behavior. By establishing proper oscillator couplings, we find that this chaotic motion can be synchronized with other oscillators, even an oscillator network. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our results provide a promising platform for the quantum signal transmission and quantum logic control, and they are of potential applications in quantum information processing and quantum networks.

  18. Space Station Freedom coupling tasks: An evaluation of their telerobotic and EVA compatibility

    NASA Technical Reports Server (NTRS)

    Sampaio, Carlos E.; Bierschwale, John M.; Fleming, Terence F.; Stuart, Mark A.

    1993-01-01

    Of the couplings included in this study, several design components were found to be of interest. With respect to the operation of the couplings, the various concepts resulted in differing reactions from the four subjects who participated in this study. The purpose of this study was not to conceive the final coupling design. Rather, it was intended as a step along an interactive process. The newly modified coupling will be included in a series of further controlled, as well as subjective, evaluations. This part of the ongoing work in the Remote Operator Interaction Laboratory (ROIL) designed to enhance the overall interface by improving design at both the teleoperator and telerobot ends of the system.

  19. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY

    2008-02-19

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  20. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  1. Telemedicine optoelectronic biomedical data processing system

    NASA Astrophysics Data System (ADS)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  2. Dynamic analysis of a magnetic bearing system with flux control

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Walsh, Thomas; Virgin, Lawrence

    1994-01-01

    Using measured values of two-dimensional forces in a magnetic actuator, equations of motion for an active magnetic bearing are presented. The presence of geometric coupling between coordinate directions causes the equations of motion to be nonlinear. Two methods are used to examine the unbalance response of the system: simulation by direct integration in time; and determination of approximate steady state solutions by harmonic balance. For relatively large values of the derivative control coefficient, the system behaves in an essentially linear manner, but for lower values of this parameter, or for higher values of the coupling coefficient, the response shows a split of amplitudes in the two principal directions. This bifurcation is sensitive to initial conditions. The harmonic balance solution shows that the separation of amplitudes actually corresponds to a change in stability of multiple coexisting solutions.

  3. Control system and method for a power delivery system having a continuously variable ratio transmission

    DOEpatents

    Frank, Andrew A.

    1984-01-01

    A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.

  4. Sexuality examined through the lens of attachment theory: attachment, caregiving, and sexual satisfaction.

    PubMed

    Péloquin, Katherine; Brassard, Audrey; Lafontaine, Marie-France; Shaver, Phillip R

    2014-01-01

    Attachment researchers have proposed that the attachment, caregiving, and sexual behavioral systems are interrelated in adult love relationships (Mikulincer & Shaver, 2007 ). This study examined whether aspects of partners' caregiving (proximity, sensitivity, control, compulsive caregiving) mediated the association between their attachment insecurities (anxiety and avoidance) and each other's sexual satisfaction in two samples of committed couples (Study 1: 126 cohabiting or married couples from the general community; Study 2: 55 clinically distressed couples). Partners completed the Experiences in Close Relationships measure (Brennan, Clark, & Shaver, 1998 ), the Caregiving Questionnaire (Kunce & Shaver, 1994 ), and the Global Measure of Sexual Satisfaction (Lawrance & Byers, 1998 ). Path analyses based on the actor-partner interdependence model (APIM) revealed that caregiving proximity mediated the association between low attachment avoidance and partners' sexual satisfaction in distressed and nondistressed couples. Sensitivity mediated this association in nondistressed couples only. Control mediated the association between men's insecurities (attachment-related avoidance and anxiety) and their partners' low sexual satisfaction in nondistressed couples. Attachment anxiety predicted compulsive caregiving, but this caregiving dimension was not a significant mediator. These results are discussed in light of attachment theory and their implications for treating distressed couples.

  5. Noise-constrained switching times for heteroclinic computing

    NASA Astrophysics Data System (ADS)

    Neves, Fabio Schittler; Voit, Maximilian; Timme, Marc

    2017-03-01

    Heteroclinic computing offers a novel paradigm for universal computation by collective system dynamics. In such a paradigm, input signals are encoded as complex periodic orbits approaching specific sequences of saddle states. Without inputs, the relevant states together with the heteroclinic connections between them form a network of states—the heteroclinic network. Systems of pulse-coupled oscillators or spiking neurons naturally exhibit such heteroclinic networks of saddles, thereby providing a substrate for general analog computations. Several challenges need to be resolved before it becomes possible to effectively realize heteroclinic computing in hardware. The time scales on which computations are performed crucially depend on the switching times between saddles, which in turn are jointly controlled by the system's intrinsic dynamics and the level of external and measurement noise. The nonlinear dynamics of pulse-coupled systems often strongly deviate from that of time-continuously coupled (e.g., phase-coupled) systems. The factors impacting switching times in pulse-coupled systems are still not well understood. Here we systematically investigate switching times in dependence of the levels of noise and intrinsic dissipation in the system. We specifically reveal how local responses to pulses coact with external noise. Our findings confirm that, like in time-continuous phase-coupled systems, piecewise-continuous pulse-coupled systems exhibit switching times that transiently increase exponentially with the number of switches up to some order of magnitude set by the noise level. Complementarily, we show that switching times may constitute a good predictor for the computation reliability, indicating how often an input signal must be reiterated. By characterizing switching times between two saddles in conjunction with the reliability of a computation, our results provide a first step beyond the coding of input signal identities toward a complementary coding for the intensity of those signals. The results offer insights on how future heteroclinic computing systems may operate under natural, and thus noisy, conditions.

  6. IEEE 1988 International Symposium on Electromagnetic Compatibility, Seattle, WA, Aug. 2-4, 1988, Record

    NASA Astrophysics Data System (ADS)

    Various papers on electromagnetic compatibility are presented. Some of the optics considered include: field-to-wire coupling 1 to 18 GHz, SHF/EHF field-to-wire coupling model, numerical method for the analysis of coupling to thin wire structures, spread-spectrum system with an adaptive array for combating interference, technique to select the optimum modulation indices for suppression of undesired signals for simultaneous range and data operations, development of a MHz RF leak detector technique for aircraft harness surveillance, and performance of standard aperture shielding techniques at microwave frequncies. Also discussed are: spectrum efficiency of spread-spectrum systems, control of power supply ripple produced sidebands in microwave transistor amplifiers, an intership SATCOM versus radar electromagnetic interference prediction model, considerations in the design of a broadband E-field sensing system, unique bonding methods for spacecraft, and review of EMC practice for launch vehicle systems.

  7. Control of magnetic direction in multi-layer ferromagnetic devices by bias voltage

    DOEpatents

    You, Chun-Yeol; Bader, Samuel D.

    2001-01-01

    A system for controlling the direction of magnetization of materials comprising a ferromagnetic device with first and second ferromagnetic layers. The ferromagnetic layers are disposed such that they combine to form an interlayer with exchange coupling. An insulating layer and a spacer layer are located between the first and second ferromagnetic layers. A direct bias voltage is applied to the interlayer exchange coupling, causing the direction of magnetization of the second ferromagnetic layer to change. This change of magnetization direction occurs in the absence of any applied external magnetic field.

  8. Dynamic analysis of beam-cable coupled systems using Chebyshev spectral element method

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Xin; Tian, Hao; Zhao, Yang

    2017-10-01

    The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.

  9. Changes of pelvis control with subacute stroke: A comparison of body-weight- support treadmill training coupled virtual reality system and over-ground training.

    PubMed

    Mao, Yurong; Chen, Peiming; Li, Lifang; Li, Le; Huang, Dongfeng

    2015-01-01

    Gait recovery is very important to stroke survivors to regain their independence in activity of daily life. This study aimed to investigate the effects of virtual reality (VR) coupled body weight support treadmill training (BWSTT) on pelvic control at the early stage of stroke. Kinematic and kinetic changes of pelvic motion were evaluated by a 3D gait analysis system and were compared to the results from over-ground walking training. Twenty-four patients having unilateral hemiplegia with subacute stroke were recruited to a VR coupled BWSTT group (n= 12) and a conventional therapy (CT) group (n= 12). Both of the groups received training of 20-40 min/day, 5 days/week, for 3 weeks. The results showed the tilt of pelvis in sagittal plane improved significantly (P= 0.038) after treatment in the BWSTT+VR group, in terms of decreased amplitude of anterior peak (mean, from 10.99° to 6.25°), while there were no significant differences in the control group. The findings suggested that VR coupled BWSTT gait training could decrease anterior tilt of pelvis in early hemiparetic persons following a modest intervention dose, and the training may have advantages over conventional over-ground gait training and can assist the therapists in correcting abnormal gait pattern of stroke survivors.

  10. A trajectory design method via target practice for air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Kong, Xue; Yang, Ming; Ning, Guodong; Wang, Songyan; Chao, Tao

    2017-11-01

    There are strong coupling interactions between aerodynamics and scramjet, this kind of aircraft also has multiple restrictions, such as the range and difference of dynamic pressure, airflow, and fuel. On the one hand, we need balance the requirement between maneuverability of vehicle and stabilization of scramjet. On the other hand, we need harmonize the change of altitude and the velocity. By describing aircraft's index system of climbing capability, acceleration capability, the coupling degree in aerospace, this paper further propose a rapid design method which based on target practice. This method aimed for reducing the coupling degree, it depresses the coupling between aircraft and engine in navigation phase, satisfy multiple restriction conditions to leave some control buffer and create good condition for control implementation. According to the simulation, this method could be used for multiple typical fly commissions such as climbing, acceleration or both.

  11. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  12. Anti-backlash drive systems for multi-degree freedom devices

    DOEpatents

    Tsai, Lung-Wen; Chang, Sun-Lai

    1993-01-01

    A new and innovative concept for the control of backlash in gear-coupled transmission mechanisms. The concept utilizes redundant unidirectional drives to assure positive coupling of gear meshes at all times. Based on this concept, a methodology for the enumeration of admissible redundant-drive backlash-free robotic mechanisms has been established. Some typical two- and three-DOF mechanisms are disclosed. Furthermore, actuator torques have been derived as functions of either joint torques or end-effector dynamic performance requirements. A redundantly driven gear coupled transmission mechanism manipulator has a fail-safe advantage in that, except of the loss of backlash control, it can continue to function when one of its actuators fails. A two-DOF backlash-free arm has been reduced to practice to demonstrate the principle.

  13. Controllability in tunable chains of coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Buchmann, L. F.; Mølmer, K.; Petrosyan, D.

    2018-04-01

    We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides complete access to all Gaussian states of N -1 collective modes. The proof relies on the construction of a suitable basis of cradle modes for the system. An iterative algorithm to reach any desired Gaussian state requires at most 3 N (N -1 )/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled harmonic oscillators can be implemented by a number of current state-of-the-art experimental platforms, including cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides.

  14. Methods and apparatus for controlling rotary machines

    DOEpatents

    Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Scotia, NY; Barnes, Gary R [Delanson, NY; Fric, Thomas Frank [Greer, SC; Lyons, James Patrick Francis [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Holley, William Edwin [Greer, SC; Barbu, Corneliu [Guilderland, NY

    2009-09-01

    A control system for a rotary machine is provided. The rotary machine has at least one rotating member and at least one substantially stationary member positioned such that a clearance gap is defined between a portion of the rotating member and a portion of the substantially stationary member. The control system includes at least one clearance gap dimension measurement apparatus and at least one clearance gap adjustment assembly. The adjustment assembly is coupled in electronic data communication with the measurement apparatus. The control system is configured to process a clearance gap dimension signal and modulate the clearance gap dimension.

  15. Optimal decentralized feedback control for a truss structure

    NASA Technical Reports Server (NTRS)

    Cagle, A.; Ozguner, U.

    1989-01-01

    One approach to the decentralized control of large flexible space structures involves the design of controllers for the substructures of large systems and their subsequent application to the entire coupled system. This approach is presently developed for the case of active vibration damping on an experimental large struss structure. The isolated boundary loading method is used to define component models by FEM; component controllers are designed using an interlocking control concept which minimizes the motion of the boundary nodes, thereby reducing the exchange of mechanical disturbances among components.

  16. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.

    PubMed

    Chang, Cheng-Yang; Chen, Tsung-Lin

    2017-10-31

    Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  17. Changing Me, Changing Us: Relationship Quality and Collective Efficacy as Major Outcomes in Systemic Couple Therapy.

    PubMed

    Aguilar-Raab, Corina; Grevenstein, Dennis; Gotthardt, Linda; Jarczok, Marc N; Hunger, Christina; Ditzen, Beate; Schweitzer, Jochen

    2018-06-01

    We examine the sensitivity to change in the Evaluation of Social Systems (EVOS) scale, which assesses relationship quality and collective efficacy. In Study 1 we conducted a waitlist-control, short-term couple therapy RCT study (N = 43 couples) with five systemic therapy sessions treating communication and partnership problems; our intent was to provide high external validity. Construct validity of EVOS was assessed by comparison with additionally applied scales (Family Scales; Outcome Questionnaire, OQ-45.2). In Study 2, N = 332 individuals completed an experiment with high internal validity in order to verify sensitivity to change in three different social contexts. Results from Study 1 revealed a significant increase in relationship quality in the treatment group directly after treatment, as compared to the control group. Sensitivity to change was slightly better for EVOS than for other measures. While this positive change could not be fully sustained between posttreatment and a 4-week follow-up, EVOS score did not fall below baseline and pretreatment levels, supporting moderate-to-large sensitivity to change. Study 2 supported high sensitivity to change in EVOS for couple relations, family relations, and work-team relationships. Therefore, EVOS can be used as an outcome measure to monitor the process of systemic interventions focusing on relationship quality and collective efficacy. Due to its sensitivity to change, EVOS can provide evidence for treatment success with regard to relationship aspects. © 2017 Family Process Institute.

  18. Planar rigid-flexible coupling spacecraft modeling and control considering solar array deployment and joint clearance

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Wang, Zilu; Wang, Cong; Huang, Wenhu

    2018-01-01

    Based on Nodal Coordinate Formulation (NCF) and Absolute Nodal Coordinate Formulation (ANCF), this paper establishes rigid-flexible coupling dynamic model of the spacecraft with large deployable solar arrays and multiple clearance joints to analyze and control the satellite attitude under deployment disturbance. Considering torque spring, close cable loop (CCL) configuration and latch mechanisms, a typical spacecraft composed of a rigid main-body described by NCF and two flexible panels described by ANCF is used as a demonstration case. Nonlinear contact force model and modified Coulomb friction model are selected to establish normal contact force and tangential friction model, respectively. Generalized elastic force are derived and all generalized forces are defined in the NCF-ANCF frame. The Newmark-β method is used to solve system equations of motion. The availability and superiority of the proposed model is verified through comparing with numerical co-simulations of Patran and ADAMS software. The numerical results reveal the effects of panel flexibility, joint clearance and their coupling on satellite attitude. The effects of clearance number, clearance size and clearance stiffness on satellite attitude are investigated. Furthermore, a proportional-differential (PD) attitude controller of spacecraft is designed to discuss the effect of attitude control on the dynamic responses of the whole system.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Cox, Jonathan Albert

    Methods and systems for stabilizing a resonant modulator include receiving pre-modulation and post-modulation portions of a carrier signal, determining the average power from these portions, comparing an average input power to the average output power, and operating a heater coupled to the modulator based on the comparison. One system includes a pair of input structures, one or more processing elements, a comparator, and a control element. The input structures are configured to extract pre-modulation and post-modulation portions of a carrier signal. The processing elements are configured to determine average powers from the extracted portions. The comparator is configured to comparemore » the average input power and the average output power. The control element operates a heater coupled to the modulator based on the comparison.« less

  20. Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.

    2011-01-01

    Wind tunnel measurements of performance, loads, and vibration of a full-scale UH-60A Black Hawk main rotor with an individual blade control (IBC) system are compared with calculations obtained using the comprehensive helicopter analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. Measured data show a 5.1% rotor power reduction (8.6% rotor lift to effective-drag ratio increase) using 2/rev IBC actuation with 2.0 amplitude at = 0.4. At the optimum IBC phase for rotor performance, IBC actuator force (pitch link force) decreased, and neither flap nor chord bending moments changed significantly. CAMRAD II predicts the rotor power variations with the IBC phase reasonably well at = 0.35. However, the correlation degrades at = 0.4. Coupled CAMRAD II/OVERFLOW 2 shows excellent correlation with the measured rotor power variations with the IBC phase at both = 0.35 and = 0.4. Maximum reduction of IBC actuator force is better predicted with CAMRAD II, but general trends are better captured with the coupled analysis. The correlation of vibratory hub loads is generally poor by both methods, although the coupled analysis somewhat captures general trends.

  1. Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.

    2011-01-01

    Wind tunnel measurements of performance, loads, and vibration of a full-scale UH-60A Black Hawk main rotor with an individual blade control (IBC) system are compared with calculations obtained using the comprehensive helicopter analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. Measured data show a 5.1% rotor power reduction (8.6% rotor lift to effective-drag ratio increase) using 2/rev IBC actuation with 2.0. amplitude at u = 0.4. At the optimum IBC phase for rotor performance, IBC actuator force (pitch link force) decreased, and neither flap nor chord bending moments changed significantly. CAMRAD II predicts the rotor power variations with IBC phase reasonably well at u = 0.35. However, the correlation degrades at u = 0.4. Coupled CAMRAD II/OVERFLOW 2 shows excellent correlation with the measured rotor power variations with IBC phase at both u = 0.35 and u = 0.4. Maximum reduction of IBC actuator force is better predicted with CAMRAD II, but general trends are better captured with the coupled analysis. The correlation of vibratory hub loads is generally poor by both methods, although the coupled analysis somewhat captures general trends.

  2. Microscopic thermodynamics with levitated nanoparticles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gieseler, Jan; Jain, Vijay; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-09-01

    Micsospheres trapped in liquid by so called optical tweezers have been established as useful tools to study microscopic thermodynamics. Since the sphere is in direct contact with the liquid, it is strongly coupled to the thermal bath and its dynamics is dominated by thermal fluctuations. In contrast, here we use an optically trapped nanoparticle in vacuum to study fluctuations of a system that is coupled only weakly to the thermal bath. The weak coupling allows us to resolve the ballistic dynamics and to control its motion via modulation of the trapping beam, thereby preparing it in a highly non-thermal state. We develop a theory for the effective Hamiltonian that describes the system dynamics in this state and show that all the relevant parameters can be controlled in situ. This tunability allows us to study classical fluctuation theorems for different effective Hamiltonians and for varying coupling to the thermal bath ranging over several orders of magnitude. The ultimate goal, however, is to completely suppress the effect of the thermal bath and to prepare the levitated nanoparticle in a quantum mechanical state. Our most recent result indicate that this regime is now within reach.

  3. Split Flow Online Solid-Phase Extraction Coupled with Inductively Coupled Plasma Mass Spectrometry System for One-Shot Data Acquisition of Quantification and Recovery Efficiency.

    PubMed

    Furukawa, Makoto; Takagai, Yoshitaka

    2016-10-04

    Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ( 90 Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.

  4. Controlled Photon Switch Assisted by Coupled Quantum Dots

    PubMed Central

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049

  5. Striking a Balance: Managing Blogs in Loosely Coupled Systems

    ERIC Educational Resources Information Center

    Swanson, Troy A.; Gregory, Dennis E.; Raspiller, Edward E.

    2012-01-01

    As the oldest implementation of Web 2.0 technologies, blogs present an opportunity to understand how community college administrators are addressing two conundrums: conundrum of control and the conundrum of adaptability. These problems arise from the need of leaders to put organizational controls in place even as these controls limit the tool's…

  6. Input Shaping enhanced Active Disturbance Rejection Control for a twin rotor multi-input multi-output system (TRMS).

    PubMed

    Yang, Xiaoyan; Cui, Jianwei; Lao, Dazhong; Li, Donghai; Chen, Junhui

    2016-05-01

    In this paper, a composite control based on Active Disturbance Rejection Control (ADRC) and Input Shaping is presented for TRMS with two degrees of freedom (DOF). The control tasks consist of accurately tracking desired trajectories and obtaining disturbance rejection in both horizontal and vertical planes. Due to un-measurable states as well as uncertainties stemming from modeling uncertainty and unknown disturbance torques, ADRC is employed, and feed-forward Input Shaping is used to improve the dynamical response. In the proposed approach, because the coupling effects are maintained in controller derivation, there is no requirement to decouple the TRMS into horizontal and vertical subsystems, which is usually performed in the literature. Finally, the proposed method is implemented on the TRMS platform, and the results are compared with those of PID and ADRC in a similar structure. The experimental results demonstrate the effectiveness of the proposed method. The operation of the controller allows for an excellent set-point tracking behavior and disturbance rejection with system nonlinearity and complex coupling conditions. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Basic EMC (Electromagnetic compatibility) technology advancement for C3 systems. Volume 4D: Modeling crosstalk in balanced twisted pairs

    NASA Astrophysics Data System (ADS)

    Koopman, D. A.; Paul, C. R.

    1984-08-01

    Electrical devices (computers, radar systems, communication radios, etc.) are interconnected by wires on most present systems. Electromagnetic fields produced by the excitation of these wires will cause unintentional coupling of signals onto nearby wires. This undesired electromagnetic coupling is termed crosstalk. It is important to be able to determine whether these crosstalk signals will cause the devices at the ends of the wires to malfunction. Wires are often grouped together in cable bundles or harnesses. The close proximity of wires in these bundles enhances the possibility that the crosstalk levels will be sufficiently large to cause malfunctions. The ability to predict crosstalk levels and the means to control crosstalk when it causes a problem are important to optimum system design. It interference of this type is allowed to surface during final system tests, a costly and time consuming retrofit of the wiring or the addition of filters and other interference control measures may be required.

  8. Quantum acoustics with superconducting qubits

    NASA Astrophysics Data System (ADS)

    Chu, Yiwen

    2017-04-01

    The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. In this talk, I will describe our recent experiments demonstrating a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.

  9. Effector-Triggered Self-Replication in Coupled Subsystems.

    PubMed

    Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren

    2017-11-13

    In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Spin-Orbit Coupling Controlled J = 3 / 2 Electronic Ground State in 5 d 3 Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A. E.; Calder, S.; Morrow, R.

    Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3LiOsO6 and Ba2YOsO6, which reveals a dramatic spitting of the t2g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5dmore » systems and introduces a new arena in the search for spin-orbit controlled phases of matter.« less

  11. Ultra-strong coupling with spin-split heavyhole cyclotron resonances in sGe QWs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Keller, Janine; Scalari, Giacomo; Maissen, Curdin; Paravicini-Bagliani, Gian Lorenzo; Haase, Johannes; Failla, Michele; Myronov, Maksym; Leadley, David R.; Lloyd-Hughes, James; Faist, Jérôme

    2017-02-01

    We study the ultra-strong coupling (USC) of Landau level transitions in strained Germanium quantum wells (sGe QW) to THz metasurfaces. The spin-splitting of the heavy-hole cyclotron resonance in sGe QWs due to the Rashba spin-orbit interaction in magnetic field offers an excellent platform to investigate ultra-strong coupling to a non-parabolic system. THz split ring resonators can be tuned to coincide with the single cyclotron transition (around 0.4 THz and a magnetic field of 1.5 T) or the spin-resolved transitions of the sGe QWs (at 1.3 THz and 4.5 T). Coupling to the single cyclotron yields a normalized USC rate of 25%, resulting from fitting with a Hopfield-like Hamiltonian model. Coupling to two or three cyclotron resonances in sGe QWs lead to the observation of multiple polaritons branches, one polariton branch for each oscillator involved in the system. An adaption of the theory allows to also describe this multiple-oscillator system and to determine the coupling strengths. The different Rabi-splittings for the multiple cyclotrons coupling to the same resonator mode relate to the underlying differences in the material. Furthermore, the visibility of an additional transition, possibly a light hole transition with very low carrier density, is strongly enhanced due to the coupling to the LC-resonance with a normalized strong coupling ratio of 4.7%. Future perspectives include controlling spin-flip transitions in USC and studying the impact of non-parabolicity on the ultra-strong coupling physics.

  12. Intelligent optical fiber sensor system for measurement of gas concentration

    NASA Astrophysics Data System (ADS)

    Pan, Jingming; Yin, Zongmin

    1991-08-01

    A measuring, controlling, and alarming system for the concentration of a gas or transparent liquid is described. In this system, a Fabry-Perot etalon with an optical fiber is used as the sensor, a charge-coupled device (CCD) is used as the photoelectric converter, and a single- chip microcomputer 8031 along with an interface circuit is used to measure the interference ring signal. The system has such features as real-time and on-line operation, continuous dynamic handling, and intelligent control.

  13. Sex-specific effects of intranasal oxytocin on autonomic nervous system and emotional responses to couple conflict

    PubMed Central

    Nater, Urs M.; Schaer, Marcel; La Marca, Roberto; Bodenmann, Guy; Ehlert, Ulrike; Heinrichs, Markus

    2013-01-01

    Unhappy couple relationships are associated with impaired individual health, an effect thought to be mediated through ongoing couple conflicts. Little is known, however, about the underlying mechanisms regulating psychobiological stress, and particularly autonomic nervous system (ANS) reactivity, during negative couple interaction. In this study, we tested the effects of the neuropeptide oxytocin on ANS reactivity during couple conflict in a standardized laboratory paradigm. In a double-blind, placebo-controlled design, 47 heterosexual couples (total n = 94) received oxytocin or placebo intranasally prior to instructed couple conflict. Participants’ behavior was videotaped and salivary alpha-amylase (sAA), a measure of sympathetic activity, and emotional arousal were repeatedly measured during the experiment. Oxytocin significantly reduced sAA during couple conflict in women, whereas men showed increases in sAA levels (sex × group interaction: B = −49.36, t = −2.68, P = 0.009). In men, these increases were related to augmented emotional arousal (r = 0.286, P = 0.028) and more positive behavior (r = 0.291, P = 0.026), whereas there was no such association in women. Our results imply sex-specific effects of oxytocin on sympathetic activity, to negative couple interaction, with the neuropeptide reducing sAA responses and emotional arousal in women while increasing them in men. PMID:22842905

  14. Robot Control Through Brain Computer Interface For Patterns Generation

    NASA Astrophysics Data System (ADS)

    Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.

    2011-09-01

    A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.

  15. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar

    2016-07-01

    We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey-Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart-Landau and Van der Pol oscillators.

  16. Use of blade pitch control to provide power train damping for the Mod-2, 2.5-mW wind turbine

    NASA Technical Reports Server (NTRS)

    Blissell, W. A., Jr.

    1995-01-01

    The Control System for the Mod-2 wind turbine system is required to provide not only for startup, RPM regulation, maximizing or regulating power, and stopping the rotor, but also for load limiting, especially in the power train. Early operations with above-rated winds revealed an instability which was caused primarily by coupling between the quill shaft and the rotor air loads. This instability caused the first of several major Mod-2 Control System changes which are reviewed in the paper.

  17. The Galileo Attitude and Articulation Control System - A radiation-hard, high precision, state-of-the-art control system

    NASA Technical Reports Server (NTRS)

    Rhoads Stephenson, R.

    1986-01-01

    The Galileo Mission and Spacecraft design impose tight requirements on the Attitude and Articulation Control System (AACS). These requirements, coupled with the flexible spacecraft, the need for autonomy, and a severe radiation environment, pose a great challenge for the AACS designer. The resulting design and implementation are described, along with the discovery and solution of the Single-Event Upset problem. The status of the testing of the AACS in the Integration and Test Laboratory as well as at the spacecraft level is summarized.

  18. Mechatronics as a Technological Basis for an Innovative Learning Environment in Engineering

    ERIC Educational Resources Information Center

    Garner, Gavin Thomas

    2009-01-01

    Mechatronic systems that couple mechanical and electrical systems with the help of computer control are forcing a paradigm shift in the design, manufacture, and implementation of mechanical devices. The inherently interdisciplinary nature of these systems generates exciting new opportunities for developing a hands-on, inventive, and…

  19. System and method for quench protection of a superconductor

    DOEpatents

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  20. Multi-agent autonomous system and method

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A method of controlling a plurality of crafts in an operational area includes providing a command system, a first craft in the operational area coupled to the command system, and a second craft in the operational area coupled to the command system. The method further includes determining a first desired destination and a first trajectory to the first desired destination, sending a first command from the command system to the first craft to move a first distance along the first trajectory, and moving the first craft according to the first command. A second desired destination and a second trajectory to the second desired destination are determined and a second command is sent from the command system to the second craft to move a second distance along the second trajectory.

  1. Coordinated Path-Following in the Presence of Communication Losses and Time Delays

    DTIC Science & Technology

    2009-01-01

    of Type I or Type II. The results are quite general in that they apply to a large class of PF control systems satisfying a certain input-to-state...Maggiore, State agreement for continuous- time coupled nonlinear systems , SIAM J. Control Optim., 46 (2007), pp. 288–307. [39] M. Mesbahi and F...40] L. Moreau, Stability of continuous- time distributed consensus algorithm, in Proceedings of the 43rd IEEE Conference on Decision and Control

  2. Guaranteed cost control with poles assignment for a flexible air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Li, Hongyi; Si, Yulin; Wu, Ligang; Hu, Xiaoxiang; Gao, Huijun

    2011-05-01

    This article investigates the problem of guaranteed cost control for a flexible air-breathing hypersonic vehicle (FAHV). The FAHV includes intricate coupling between the engine and flight dynamics as well as complex interplay between flexible and rigid modes, which results in an intractable system for the control design. A longitudinal model is adopted for control design due to the complexity of the vehicle. First, for a highly nonlinear and coupled FAHV, a linearised model is established around the trim condition, which includes the state of altitude, velocity, angle of attack, pitch angle and pitch rate, etc. Secondly, by using the Lyapunov approach, performance analysis is carried out for the resulting closed-loop FAHV system, whose criterion with respect to guaranteed performance cost and poles assignment is expressed in the framework of linear matrix inequalities (LMIs). The established criterion exhibits a kind of decoupling between the Lyapunov positive-definite matrices to be determined and the FAHV system matrices, which is enabled by the introduction of additional slack matrix variables. Thirdly, a convex optimisation problem with LMI constraints is formulated for designing an admissible controller, which guarantees a prescribed performance cost with the simultaneous consideration of poles assignment for the resulting closed-loop system. Finally, some simulation results are provided to show that the guaranteed cost controller could assign the poles into the desired regional and achieve excellent reference altitude and velocity tracking performance.

  3. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1994-01-01

    During the first half of the year, the investigators concentrated their efforts on completing the design of control laws for the longitudinal axis of the HARV. During the second half of the year they concentrated on the synthesis of control laws for the lateral-directional axes. The longitudinal control law design efforts can be briefly summarized as follows. Longitudinal control laws were developed for the HARV using mu synthesis design techniques coupled with dynamic inversion. An inner loop dynamic inversion controller was used to simplify the system dynamics by eliminating the aerodynamic nonlinearities and inertial cross coupling. Models of the errors resulting from uncertainties in the principal longitudinal aerodynamic terms were developed and included in the model of the HARV with the inner loop dynamic inversion controller. This resulted in an inner loop transfer function model which was an integrator with the modeling errors characterized as uncertainties in gain and phase. Outer loop controllers were then designed using mu synthesis to provide robustness to these modeling errors and give desired response to pilot inputs. Both pitch rate and angle of attack command following systems were designed. The following tasks have been accomplished for the lateral-directional controllers: inner and outer loop dynamic inversion controllers have been designed; an error model based on a linearized perturbation model of the inner loop system was derived; controllers for the inner loop system have been designed, using classical techniques, that control roll rate and Dutch roll response; the inner loop dynamic inversion and classical controllers have been implemented on the six degree of freedom simulation; and lateral-directional control allocation scheme has been developed based on minimizing required control effort.

  4. Tunable resonant and non-resonant interactions between a phase qubit and LC resonator

    NASA Astrophysics Data System (ADS)

    Allman, Michael Shane; Whittaker, Jed D.; Castellanos-Beltran, Manuel; Cicak, Katarina; da Silva, Fabio; Defeo, Michael; Lecocq, Florent; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.

    2014-03-01

    We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current (dc) SQUID to generate strong resonant and non-resonant tunable interactions between a phase qubit and a lumped-element resonator. The rf-SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling rates from zero to near the ultra-strong coupling regime. By modulating the magnetic susceptibility, non-resonant parametric coupling achieves rates > 100 MHz . Nonlinearity of the magnetic susceptibility also leads to parametric coupling at subharmonics of the qubit-resonator detuning. Controllable coupling is generically important for constructing coupled-mode systems ubiquitous in physics, useful for both, quantum information architectures and quantum simulators. This work supported by NIST and NSA grant EAO140639.

  5. Two-dimensional spectroscopy: An approach to distinguish Förster and Dexter transfer processes in coupled nanostructures

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Knorr, Andreas; Richter, Marten

    2015-04-01

    The linear and two-dimensional coherent optical spectra of Coulomb-coupled quantum emitters are discussed with respect to the underlying coupling processes. We present a theoretical analysis of the two different resonance energy transfer mechanisms between coupled nanostructures: Förster and Dexter interaction. Our investigation shows that the features visible in optical spectra of coupled quantum dots can be traced back to the nature of the underlying coupling mechanism (Förster or Dexter). Therefore, we discuss how the excitation transfer pathways can be controlled by choosing particular laser polarizations and mutual orientations of the quantum emitters in coherent two-dimensional spectroscopy. In this context, we analyze to what extent the delocalized double-excitonic states are bound to the optical selection rules of the uncoupled system.

  6. Clustering and phase synchronization in populations of coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Cascallares, Guadalupe; Gleiser, Pablo M.

    2015-10-01

    In many species daily rhythms are endogenously generated by groups of coupled neurons that play the role of a circadian pacemaker. The adaptation of the circadian clock to environmental and seasonal changes has been proposed to be regulated by a dual oscillator system. In order to gain insight into this model, we analyzed the synchronization properties of two fully coupled groups of Kuramoto oscillators. Each group has an internal coupling parameter and the interaction between the two groups can be controlled by two parameters allowing for symmetric or non-symmetric coupling. We show that even for such a simple model counterintuitive behaviours take place, such as a global decrease in synchrony when the coupling between the groups is increased. Through a detailed analysis of the local synchronization processes we explain this behaviour.

  7. Reconfigurable assembly work station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yhu-Tin; Abell, Jeffrey A.; Spicer, John Patrick

    A reconfigurable autonomous workstation includes a multi-faced superstructure including a horizontally-arranged frame section supported on a plurality of posts. The posts form a plurality of vertical faces arranged between adjacent pairs of the posts, the faces including first and second faces and a power distribution and position reference face. A controllable robotic arm suspends from the rectangular frame section, and a work table fixedly couples to the power distribution and position reference face. A plurality of conveyor tables are fixedly coupled to the work table including a first conveyor table through the first face and a second conveyor table throughmore » the second face. A vision system monitors the work table and each of the conveyor tables. A programmable controller monitors signal inputs from the vision system to identify and determine orientation of the component on the first conveyor table and control the robotic arm to execute an assembly task.« less

  8. Low-photon-number optical switch and AND/OR logic gates based on quantum dot-bimodal cavity coupling system.

    PubMed

    Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min

    2016-01-11

    We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing.

  9. Low-photon-number optical switch and AND/OR logic gates based on quantum dot-bimodal cavity coupling system

    PubMed Central

    Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min

    2016-01-01

    We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing. PMID:26750557

  10. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.

    PubMed

    Chen, Bor-Sen; Hsu, Chih-Yuan

    2012-10-26

    Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks.

  11. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    PubMed Central

    2012-01-01

    Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. Conclusion If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks. PMID:23101662

  12. Redundancy, Self-Motion, and Motor Control

    PubMed Central

    Martin, V.; Scholz, J. P.; Schöner, G.

    2011-01-01

    Outside the laboratory, human movement typically involves redundant effector systems. How the nervous system selects among the task-equivalent solutions may provide insights into how movement is controlled. We propose a process model of movement generation that accounts for the kinematics of goal-directed pointing movements performed with a redundant arm. The key element is a neuronal dynamics that generates a virtual joint trajectory. This dynamics receives input from a neuronal timer that paces end-effector motion along its path. Within this dynamics, virtual joint velocity vectors that move the end effector are dynamically decoupled from velocity vectors that do not. Moreover, the sensed real joint configuration is coupled back into this neuronal dynamics, updating the virtual trajectory so that it yields to task-equivalent deviations from the dynamic movement plan. Experimental data from participants who perform in the same task setting as the model are compared in detail to the model predictions. We discover that joint velocities contain a substantial amount of self-motion that does not move the end effector. This is caused by the low impedance of muscle joint systems and by coupling among muscle joint systems due to multiarticulatory muscles. Back-coupling amplifies the induced control errors. We establish a link between the amount of self-motion and how curved the end-effector path is. We show that models in which an inverse dynamics cancels interaction torques predict too little self-motion and too straight end-effector paths. PMID:19718817

  13. Theory on the Dynamics of Oscillatory Loops in the Transcription Factor Networks

    PubMed Central

    Murugan, Rajamanickam

    2014-01-01

    We develop a detailed theoretical framework for various types of transcription factor gene oscillators. We further demonstrate that one can build genetic-oscillators which are tunable and robust against perturbations in the critical control parameters by coupling two or more independent Goodwin-Griffith oscillators through either -OR- or -AND- type logic. Most of the coupled oscillators constructed in the literature so far seem to be of -OR- type. When there are transient perturbations in one of the -OR- type coupled-oscillators, then the overall period of the system remains constant (period-buffering) whereas in case of -AND- type coupling the overall period of the system moves towards the perturbed oscillator. Though there is a period-buffering, the amplitudes of oscillators coupled through -OR- type logic are more sensitive to perturbations in the parameters associated with the promoter state dynamics than -AND- type. Further analysis shows that the period of -AND- type coupled dual-feedback oscillators can be tuned without conceding on the amplitudes. Using these results we derive the basic design principles governing the robust and tunable synthetic gene oscillators without compromising on their amplitudes. PMID:25111803

  14. Mechanical design of walking machines.

    PubMed

    Arikawa, Keisuke; Hirose, Shigeo

    2007-01-15

    The performance of existing actuators, such as electric motors, is very limited, be it power-weight ratio or energy efficiency. In this paper, we discuss the method to design a practical walking machine under this severe constraint with focus on two concepts, the gravitationally decoupled actuation (GDA) and the coupled drive. The GDA decouples the driving system against the gravitational field to suppress generation of negative power and improve energy efficiency. On the other hand, the coupled drive couples the driving system to distribute the output power equally among actuators and maximize the utilization of installed actuator power. First, we depict the GDA and coupled drive in detail. Then, we present actual machines, TITAN-III and VIII, quadruped walking machines designed on the basis of the GDA, and NINJA-I and II, quadruped wall walking machines designed on the basis of the coupled drive. Finally, we discuss walking machines that travel on three-dimensional terrain (3D terrain), which includes the ground, walls and ceiling. Then, we demonstrate with computer simulation that we can selectively leverage GDA and coupled drive by walking posture control.

  15. Development of a remote digital augmentation system and application to a remotely piloted research vehicle

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Deets, D. A.

    1975-01-01

    A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.

  16. Preparation and analysis of standardized waste samples for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Carden, J. L.; Browner, R.

    1982-01-01

    The preparation and analysis of standardized waste samples for controlled ecological life support systems (CELSS) are considered. Analysis of samples from wet oxidation experiments, the development of ion chromatographic techniques utilizing conventional high pressure liquid chromatography (HPLC) equipment, and an investigation of techniques for interfacing an ion chromatograph (IC) with an inductively coupled plasma optical emission spectrometer (ICPOES) are discussed.

  17. Fundamental concepts of structural loading and load relief techniques for the space shuttle

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Mowery, D. K.; Winder, S. W.

    1972-01-01

    The prediction of flight loads and their potential reduction, using various control system logics for the space shuttle vehicles, is discussed. Some factors not found on previous launch vehicles that increase the complexity are large lifting surfaces, unsymmetrical structure, unsymmetrical aerodynamics, trajectory control system coupling, and large aeroelastic effects. These load-producing factors and load-reducing techniques are analyzed.

  18. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  19. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  20. Tuning maps for setpoint changes and load disturbance upsets in a three capacity process under multivariable control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Smith, Ira C.

    1991-01-01

    Tuning maps are an aid in the controller tuning process because they provide a convenient way for the plant operator to determine the consequences of adjusting different controller parameters. In this application the maps provide a graphical representation of the effect of varying the gains in the state feedback matrix on startup and load disturbance transients for a three capacity process. Nominally, the three tank system, represented in diagonal form, has a Proportional-Integral control on each loop. Cross coupling is then introduced between the loops by using non-zero off-diagonal proportional parameters. Changes in transient behavior due to setpoint and load changes are examined by varying the gains of the cross coupling terms.

Top