Mechanical Engineering Design Project report: Enabler control systems
NASA Technical Reports Server (NTRS)
Cullen, Christian; Delvecchio, Dave; Scarborough, Alan; Havics, Andrew A.
1992-01-01
The Controls Group was assigned the responsibility for designing the Enabler's control system. The requirement for the design was that the control system must provide a simple user interface to control the boom articulation joints, chassis articulation joints, and the wheel drive. The system required controlling hydraulic motors on the Enabler by implementing 8-bit microprocessor boards. In addition, feedback to evaluate positions and velocities must be interfaced to provide the operator with confirmation as well as control.
System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems
Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James
2014-09-23
A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.
Spuler, Martin
2015-08-01
A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.
Advancement of Optical Component Control for an Imaging Fabry-Perot Interferometer
NASA Technical Reports Server (NTRS)
Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.
2009-01-01
Risk mitigation activities associated with a prototype imaging Fabry-Perot Interferometer (FPI) system are continuing at the NASA Langley Research Center. The system concept and technology center about enabling and improving future space-based atmospheric composition missions, with a current focus on observing tropospheric ozone around 9.6 micron, while having applicability toward measurement in different spectral regions and other applications. Recent activities have focused on improving an optical element control subsystem to enable precise and accurate positioning and control of etalon plates; this is needed to provide high system spectral fidelity critical for enabling the required ability to spectrally-resolve atmospheric line structure. The latest results pertaining to methodology enhancements, system implementation, and laboratory characterization testing will be reported
A Merged IQC/SOS Theory for Analysis and Synthesis of Nonlinear Control Systems
2015-06-23
constraints. As mentioned previously, this enables new applications of IQCs to analyze the robustness of time-varying and nonlinear systems . This...enables new applications of IQCs to analyze the robustness of time-varying and nonlinear systems . This section considers the analysis of nonlinear systems ...AFRL-AFOSR-VA-TR-2016-0008 A Merged IQC/SOS Theory for Analysis and Synthesis of Nonlinear Control Systems Gary Balas REGENTS OF THE UNIVERSITY OF
Demand Response Advanced Controls Framework and Assessment of Enabling Technology Costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, Jennifer; Cappers, Peter
The Demand Response Advanced Controls Framework and Assessment of Enabling Technology Costs research describe a variety of DR opportunities and the various bulk power system services they can provide. The bulk power system services are mapped to a generalized taxonomy of DR “service types”, which allows us to discuss DR opportunities and bulk power system services in fewer yet broader categories that share similar technological requirements which mainly drive DR enablement costs. The research presents a framework for the costs to automate DR and provides descriptions of the various elements that drive enablement costs. The report introduces the various DRmore » enabling technologies and end-uses, identifies the various services that each can provide to the grid and provides the cost assessment for each enabling technology. In addition to a report, this research includes a Demand Response Advanced Controls Database and User Manual. They are intended to provide users with the data that underlies this research and instructions for how to use that database more effectively and efficiently.« less
The Use of Software Agents for Autonomous Control of a DC Space Power System
NASA Technical Reports Server (NTRS)
May, Ryan D.; Loparo, Kenneth A.
2014-01-01
In order to enable manned deep-space missions, the spacecraft must be controlled autonomously using on-board algorithms. A control architecture is proposed to enable this autonomous operation for an spacecraft electric power system and then implemented using a highly distributed network of software agents. These agents collaborate and compete with each other in order to implement each of the control functions. A subset of this control architecture is tested against a steadystate power system simulation and found to be able to solve a constrained optimization problem with competing objectives using only local information.
Baranwal, Mayank; Gorugantu, Ram S; Salapaka, Srinivasa M
2015-08-01
This paper aims at control design and its implementation for robust high-bandwidth precision (nanoscale) positioning systems. Even though modern model-based control theoretic designs for robust broadband high-resolution positioning have enabled orders of magnitude improvement in performance over existing model independent designs, their scope is severely limited by the inefficacies of digital implementation of the control designs. High-order control laws that result from model-based designs typically have to be approximated with reduced-order systems to facilitate digital implementation. Digital systems, even those that have very high sampling frequencies, provide low effective control bandwidth when implementing high-order systems. In this context, field programmable analog arrays (FPAAs) provide a good alternative to the use of digital-logic based processors since they enable very high implementation speeds, moreover with cheaper resources. The superior flexibility of digital systems in terms of the implementable mathematical and logical functions does not give significant edge over FPAAs when implementing linear dynamic control laws. In this paper, we pose the control design objectives for positioning systems in different configurations as optimal control problems and demonstrate significant improvements in performance when the resulting control laws are applied using FPAAs as opposed to their digital counterparts. An improvement of over 200% in positioning bandwidth is achieved over an earlier digital signal processor (DSP) based implementation for the same system and same control design, even when for the DSP-based system, the sampling frequency is about 100 times the desired positioning bandwidth.
Sparsity enabled cluster reduced-order models for control
NASA Astrophysics Data System (ADS)
Kaiser, Eurika; Morzyński, Marek; Daviller, Guillaume; Kutz, J. Nathan; Brunton, Bingni W.; Brunton, Steven L.
2018-01-01
Characterizing and controlling nonlinear, multi-scale phenomena are central goals in science and engineering. Cluster-based reduced-order modeling (CROM) was introduced to exploit the underlying low-dimensional dynamics of complex systems. CROM builds a data-driven discretization of the Perron-Frobenius operator, resulting in a probabilistic model for ensembles of trajectories. A key advantage of CROM is that it embeds nonlinear dynamics in a linear framework, which enables the application of standard linear techniques to the nonlinear system. CROM is typically computed on high-dimensional data; however, access to and computations on this full-state data limit the online implementation of CROM for prediction and control. Here, we address this key challenge by identifying a small subset of critical measurements to learn an efficient CROM, referred to as sparsity-enabled CROM. In particular, we leverage compressive measurements to faithfully embed the cluster geometry and preserve the probabilistic dynamics. Further, we show how to identify fewer optimized sensor locations tailored to a specific problem that outperform random measurements. Both of these sparsity-enabled sensing strategies significantly reduce the burden of data acquisition and processing for low-latency in-time estimation and control. We illustrate this unsupervised learning approach on three different high-dimensional nonlinear dynamical systems from fluids with increasing complexity, with one application in flow control. Sparsity-enabled CROM is a critical facilitator for real-time implementation on high-dimensional systems where full-state information may be inaccessible.
Automated Cooperative Trajectories for a More Efficient and Responsive Air Transportation System
NASA Technical Reports Server (NTRS)
Hanson, Curt
2015-01-01
The NASA Automated Cooperative Trajectories project is developing a prototype avionics system that enables multi-vehicle cooperative control by integrating 1090 MHz ES ADS-B digital communications with onboard autopilot systems. This cooperative control capability will enable meta-aircraft operations for enhanced airspace utilization, as well as improved vehicle efficiency through wake surfing. This briefing describes the objectives and approach to a flight evaluation of this system planned for 2016.
Motion-Capture-Enabled Software for Gestural Control of 3D Models
NASA Technical Reports Server (NTRS)
Norris, Jeffrey S.; Luo, Victor; Crockett, Thomas M.; Shams, Khawaja S.; Powell, Mark W.; Valderrama, Anthony
2012-01-01
Current state-of-the-art systems use general-purpose input devices such as a keyboard, mouse, or joystick that map to tasks in unintuitive ways. This software enables a person to control intuitively the position, size, and orientation of synthetic objects in a 3D virtual environment. It makes possible the simultaneous control of the 3D position, scale, and orientation of 3D objects using natural gestures. Enabling the control of 3D objects using a commercial motion-capture system allows for natural mapping of the many degrees of freedom of the human body to the manipulation of the 3D objects. It reduces training time for this kind of task, and eliminates the need to create an expensive, special-purpose controller.
NASA Astrophysics Data System (ADS)
Metcalfe, Jason S.; Alban, Jillyn; Cosenzo, Keryl; Johnson, Tony; Capstick, Erin
2010-04-01
Those applying autonomous technologies to military systems strive to enhance human-robot and robot-robot performance. Beyond performance, the military must be concerned with local area security. Characterized as "secure mobility", military systems must enable safe and effective terrain traversal concurrent with maintenance of situational awareness (SA). One approach to interleaving these objectives is supervisory control, with popular options being shared and traded control. Yet, with the scale and expense of military assets, common technical issues such as transition time and safeguarding become critical; especially as they interact with Soldier capabilities. Study is required to enable selection of control methods that optimize Soldier-system performance while safeguarding both individually. The current report describes a study utilizing experimental military vehicles and simulation systems enabling teleoperation and supervisory control. Automated triggering of SA demands was interspersed with a set of challenging driving maneuvers in a 'teleoperation-like' context to examine the influence of supervisory control on Soldier-system performance. Results indicated that direct application of supervisory control, while beneficial under particular demands, requires continued development to be perceived by Soldiers as useful. Future efforts should more tightly couple the information exchanged between the Soldier and system to overcome current challenges not addressed by standard control methods.
Defining and Enabling Resiliency of Electric Distribution Systems With Multiple Microgrids
Chanda, Sayonsom; Srivastava, Anurag K.
2016-05-02
This paper presents a method for quantifying and enabling the resiliency of a power distribution system (PDS) using analytical hierarchical process and percolation theory. Using this metric, quantitative analysis can be done to analyze the impact of possible control decisions to pro-actively enable the resilient operation of distribution system with multiple microgrids and other resources. Developed resiliency metric can also be used in short term distribution system planning. The benefits of being able to quantify resiliency can help distribution system planning engineers and operators to justify control actions, compare different reconfiguration algorithms, develop proactive control actions to avert power systemmore » outage due to impending catastrophic weather situations or other adverse events. Validation of the proposed method is done using modified CERTS microgrids and a modified industrial distribution system. Furthermore, simulation results show topological and composite metric considering power system characteristics to quantify the resiliency of a distribution system with the proposed methodology, and improvements in resiliency using two-stage reconfiguration algorithm and multiple microgrids.« less
Multi-layer neural networks for robot control
NASA Technical Reports Server (NTRS)
Pourboghrat, Farzad
1989-01-01
Two neural learning controller designs for manipulators are considered. The first design is based on a neural inverse-dynamics system. The second is the combination of the first one with a neural adaptive state feedback system. Both types of controllers enable the manipulator to perform any given task very well after a period of training and to do other untrained tasks satisfactorily. The second design also enables the manipulator to compensate for unpredictable perturbations.
Energy Systems Integration News | Energy Systems Integration Facility |
hierarchical control architecture that enables a hybrid control approach, where centralized control systems will be complemented by distributed control algorithms for solar inverters and autonomous control of ), involves developing a novel control scheme that provides system-wide monitoring and control using a small
Wireless battery management control and monitoring system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zumstein, James M.; Chang, John T.; Farmer, Joseph C.
A battery management system using a sensor inside of the battery that sensor enables monitoring and detection of various events in the battery and transmission of a signal from the sensor through the battery casing to a control and data acquisition module by wireless transmission. The detection of threshold events in the battery enables remedial action to be taken to avoid catastrophic events.
NASA Technical Reports Server (NTRS)
Hilton, Kevin; Karl, Chad; Litherland, Mark; Ritchie, David; Sun, Nancy
1992-01-01
The dust control group designed a system to restrict dust that is disturbed by the Enabler during its operation from interfering with astronaut or camera visibility. This design also considers the many different wheel positions made possible through the use of artinuation joints that provide the steering and wheel pitching for the Enabler. The system uses a combination of brushes and fenders to restrict the dust when the vehicle is moving in either direction and in a turn. This design also allows for each of maintenance as well as accessibility of the remainder of the vehicle.
NASA Technical Reports Server (NTRS)
Hilton, Kevin; Karl, Chad; Litherland, Mark; Ritchie, David; Sun, Nancy
1992-01-01
The dust control group designed a system to restrict dust that is disturbed by the Enabler during its operation from interfering with astronaut or camera visibility. This design also considers the many different wheel positions made possible through the use of artinuation joints that provide the steering and wheel pitching for the Enabler. The system uses a combination of brushes and fenders to restrict the dust when the vehicle is moving in either direction and in a turn. This design also allows for ease of maintenance as well as accessibility of the remainder of the vehicle.
NASA Technical Reports Server (NTRS)
Burns, W. W., III
1977-01-01
An analytically derived approach to the control of energy-storage dc-to-dc converters, which enables improved system performance and an extensive understanding of the manner in which this improved performance is accomplished, is presented. The control approach is derived from a state-plane analysis of dc-to-dc converter power stages which enables a graphical visualization of the movement of the system state during both steady state and transient operation. This graphical representation of the behavior of dc-to-dc converter systems yields considerable qualitative insight into the cause and effect relationships which exist between various commonly used converter control functions and the system performance which results from them.
Fukawa, Toshihiko; Hirakawa, Takashi; Maegawa, Jiro
2014-01-01
Background: We have developed a hybrid facial osteogenesis distraction system that combines the advantages of external and internal distraction devices to enable control of both the distraction distance and vector. However, when the advanced maxilla has excessive clockwise rotation and shifts more downward vertically than planned, it might be impossible to pull it up to correct it. We invented devices attached to external distraction systems that can control the vertical vector of distraction to resolve this problem. The purpose of this article is to describe the result of utilizing the distraction system for syndromic craniosynostosis. Methods: In addition to a previously reported hybrid facial distraction system, the devices for controlling the vertical direction of the advanced maxilla were attached to the external distraction device. The vertical direction of the advanced maxilla can be controlled by adjustment of the spindle units. This system was used for 2 patients with Crouzon and Apert syndrome. Results: The system enabled control of the vertical distance, with no complications during the procedures. As a result, the maxilla could be advanced into the planned position including overcorrection without excessive clockwise rotation of distraction. Conclusion: Our system can alter the cases and bring them into the planned position, by controlling the vertical vector of distraction. We believe that this system might be effective in infants with syndromic craniosynostosis as it involves 2 osteotomies and horizontal and vertical direction of elongation can be controlled. PMID:25289307
Human-like Compliance for Dexterous Robot Hands
NASA Technical Reports Server (NTRS)
Jau, Bruno M.
1995-01-01
This paper describes the Active Electromechanical Compliance (AEC) system that was developed for the Jau-JPL anthropomorphic robot. The AEC system imitates the functionality of the human muscle's secondary function, which is to control the joint's stiffness: AEC is implemented through servo controlling the joint drive train's stiffness. The control strategy, controlling compliant joints in teleoperation, is described. It enables automatic hybrid position and force control through utilizing sensory feedback from joint and compliance sensors. This compliant control strategy is adaptable for autonomous robot control as well. Active compliance enables dual arm manipulations, human-like soft grasping by the robot hand, and opens the way to many new robotics applications.
Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project
NASA Technical Reports Server (NTRS)
Harp, Janice Leshay
2014-01-01
This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.
Integrated Design and Implementation of Embedded Control Systems with Scilab
Ma, Longhua; Xia, Feng; Peng, Zhe
2008-01-01
Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly time-consuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost. PMID:27873827
Integrated Design and Implementation of Embedded Control Systems with Scilab.
Ma, Longhua; Xia, Feng; Peng, Zhe
2008-09-05
Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.
DOT National Transportation Integrated Search
1995-04-01
Improved navigational technology, such as microwave landing systems (MLS) or : global positioning systems (GPS), installed in today's commercial aircraft : enable the air traffic control (ATC) system to better utilize its airspace. : This increased e...
HVAC System Automatic Controls and Indoor Air Quality in Schools. Technical Bulletin.
ERIC Educational Resources Information Center
Wheeler, Arthur E.
Fans, motors, coils, and other control components enable a heating, ventilating, and air-conditioning (HVAC) system to function smoothly. An explanation of these control components and how they make school HVAC systems work is provided. Different systems may be compared by counting the number of controlled devices that are required. Control…
Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human.
Friedenberg, David A; Schwemmer, Michael A; Landgraf, Andrew J; Annetta, Nicholas V; Bockbrader, Marcia A; Bouton, Chad E; Zhang, Mingming; Rezai, Ali R; Mysiw, W Jerry; Bresler, Herbert S; Sharma, Gaurav
2017-08-21
Neuroprosthetics that combine a brain computer interface (BCI) with functional electrical stimulation (FES) can restore voluntary control of a patients' own paralyzed limbs. To date, human studies have demonstrated an "all-or-none" type of control for a fixed number of pre-determined states, like hand-open and hand-closed. To be practical for everyday use, a BCI-FES system should enable smooth control of limb movements through a continuum of states and generate situationally appropriate, graded muscle contractions. Crucially, this functionality will allow users of BCI-FES neuroprosthetics to manipulate objects of different sizes and weights without dropping or crushing them. In this study, we present the first evidence that using a BCI-FES system, a human with tetraplegia can regain volitional, graded control of muscle contraction in his paralyzed limb. In addition, we show the critical ability of the system to generalize beyond training states and accurately generate wrist flexion states that are intermediate to training levels. These innovations provide the groundwork for enabling enhanced and more natural fine motor control of paralyzed limbs by BCI-FES neuroprosthetics.
Internet Enabled Remote Driving of a Combat Hybrid Electric Power System for Duty Cycle Measurement
2007-06-01
INTERNET ENABLED REMOTE DRIVING OF A COMBAT HYBRID ELECTRIC POWER SYSTEM FOR DUTY CYCLE MEASUREMENT Jarrett Goodell1 Marc Compere , Ph.D.2...Orlando, FL, April 2006. 2. Compere , M.; M.; Goodell, J.; Simon, M; Smith, W.; Brudnak, M, “Robust Control Techniques Enabling Duty Cycle...2006-01-3077, SAE Power Systems Conference, Nov. 2006. 3. Compere , M.; Simon, M.; Kajs, J.; Pozolo, M., “Tracked Vehicle Mobility Load Emulation for a
ERIC Educational Resources Information Center
Esque, Timm J.
1996-01-01
Conventional management controls employees, but successful management encourages and enables employees to control themselves. Where control resides in an organization can be determined by examining its performance tracking systems. Most are management information systems. The best are owned and used by the employees to control and adjust their own…
Pointing and control system enabling technology for future automated space missions
NASA Technical Reports Server (NTRS)
Dahlgren, J. B.
1978-01-01
Future automated space missions present challenging opportunities in the pointing-and-control technology disciplines. The enabling pointing-and-control system technologies for missions from 1985 to the year 2000 were identified and assessed. A generic mission set including Earth orbiter, planetary, and other missions which predominantly drive the pointing-and-control requirements was selected for detailed evaluation. Technology candidates identified were prioritized as planning options for future NASA-OAST advanced development programs. The primary technology thrusts in each candidate program were cited, and advanced development programs in pointing-and-control were recommended for the FY 80 to FY 87 period, based on these technology thrusts.
Electron-Nuclear Quantum Information Processing
2008-11-13
quantum information processing that exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin...exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin system, addressing only a...sample of irradiated malonic acid. (a) Papers published in peer-reviewed journals (N/A for none) Universal control of nuclear spins via anisotropic
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2015-01-12
The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers willmore » now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.« less
System and method for controlling remote devices
Carrender, Curtis Lee [Richland, WA; Gilbert, Ronald W [Benton City, WA; Scott, Jeff W [Pasco, WA; Clark, David A [Kennewick, WA
2006-02-07
A system and method for controlling remote devices utilizing a radio frequency identification (RFID) tag device having a control circuit adapted to render the tag device, and associated objects, permanently inoperable in response to radio-frequency control signals. The control circuit is configured to receive the control signals that can include an enable signal, and in response thereto enable an associated object, such as a weapon; and in response to a disable signal, to disable the tag itself, or, if desired, to disable the associated weapon or both the device and the weapon. Permanent disabling of the tag can be accomplished by several methods, including, but not limited to, fusing a fusable link, breaking an electrically conductive path, permanently altering the modulation or backscattering characteristics of the antenna circuit, and permanently erasing an associated memory. In this manner, tags in the possession of unauthorized employees can be remotely disabled, and weapons lost on a battlefield can be easily tracked and enabled or disabled automatically or at will.
Variable-Structure Control of a Model Glider Airplane
NASA Technical Reports Server (NTRS)
Waszak, Martin R.; Anderson, Mark R.
2008-01-01
A variable-structure control system designed to enable a fuselage-heavy airplane to recover from spin has been demonstrated in a hand-launched, instrumented model glider airplane. Variable-structure control is a high-speed switching feedback control technique that has been developed for control of nonlinear dynamic systems.
Modular microfluidic systems using reversibly attached PDMS fluid control modules
NASA Astrophysics Data System (ADS)
Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert; Dufva, Martin
2013-05-01
The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through-holes. The versatile system facilitates a wide range of applications due to the modular approach, where application specific passive chips can be readily attached to the flow control module.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... works such as video games and slide presentations). B. Computer programs that enable wireless telephone... enabling interoperability of such applications, when they have been lawfully obtained, with computer... new printer driver to a computer constitutes a `modification' of the operating system already...
Chemistry with spatial control using particles and streams†
Kalinin, Yevgeniy V.; Murali, Adithya
2012-01-01
Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis. PMID:23145348
Quantum phase gate based on electromagnetically induced transparency in optical cavities
NASA Astrophysics Data System (ADS)
Borges, Halyne S.; Villas-Bôas, Celso J.
2016-11-01
We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.
Systems and Methods for Collaboratively Controlling at Least One Aircraft
NASA Technical Reports Server (NTRS)
Estkowski, Regina I. (Inventor)
2016-01-01
An unmanned vehicle management system includes an unmanned aircraft system (UAS) control station controlling one or more unmanned vehicles (UV), a collaborative routing system, and a communication network connecting the UAS and the collaborative routing system. The collaborative routing system being configured to receive flight parameters from an operator of the UAS control station and, based on the received flight parameters, automatically present the UAS control station with flight plan options to enable the operator to operate the UV in a defined airspace.
Development of a miniaturized deformable mirror controller
NASA Astrophysics Data System (ADS)
Bendek, Eduardo; Lynch, Dana; Pluzhnik, Eugene; Belikov, Ruslan; Klamm, Benjamin; Hyde, Elizabeth; Mumm, Katherine
2016-07-01
High-Performance Adaptive Optics systems are rapidly spreading as useful applications in the fields of astronomy, ophthalmology, and telecommunications. This technology is critical to enable coronagraphic direct imaging of exoplanets utilized in ground-based telescopes and future space missions such as WFIRST, EXO-C, HabEx, and LUVOIR. We have developed a miniaturized Deformable Mirror controller to enable active optics on small space imaging mission. The system is based on the Boston Micromachines Corporation Kilo-DM, which is one of the most widespread DMs on the market. The system has three main components: The Deformable Mirror, the Driving Electronics, and the Mechanical and Heat management. The system is designed to be extremely compact and have lowpower consumption to enable its use not only on exoplanet missions, but also in a wide-range of applications that require precision optical systems, such as direct line-of-sight laser communications, and guidance systems. The controller is capable of handling 1,024 actuators with 220V maximum dynamic range, 16bit resolution, and 14bit accuracy, and operating at up to 1kHz frequency. The system fits in a 10x10x5cm volume, weighs less than 0.5kg, and consumes less than 8W. We have developed a turnkey solution reducing the risk for currently planned as well as future missions, lowering their cost by significantly reducing volume, weight and power consumption of the wavefront control hardware.
Health management and controls for Earth-to-orbit propulsion systems
NASA Astrophysics Data System (ADS)
Bickford, R. L.
1995-03-01
Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.
Operations management: a tool to increase profitability.
Mulvehill, M J
2001-03-01
Operations management enables the efficient utilization of the production systems in a business. This paper will address several key elements in the business competency of operations management. Specifically, this discussion will review the components of a material requirement planning system and a "just-in-time" system for inventory control and time management to enable the dentist to monitor a portion of the practice's overhead costs.
Control over high peak-power laser light and laser-driven X-rays
NASA Astrophysics Data System (ADS)
Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald
2018-04-01
An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.
Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system.
Inostroza-Brito, Karla E; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H; Monge-Marcet, Amàlia; Ferreira, Daniela S; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S; Mata, Alvaro
2015-11-01
Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.
Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system
NASA Astrophysics Data System (ADS)
Inostroza-Brito, Karla E.; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H.; Monge-Marcet, Amàlia; Ferreira, Daniela S.; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L.; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S.; Mata, Alvaro
2015-11-01
Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.
2009-01-06
enabling precise blue force tracking (BFT), enhancing joint force situational awareness, maneuverability, and command and control (C2... spacecraft , transmits the status of those systems to the control segment on the ground, and receives and processes instructions from the control segment...missions include the tracking , telemetry, and control operations of: (1) Ultrahigh frequency (UHF) follow-on satellite system and fleet
NASA Astrophysics Data System (ADS)
Redfern, Andrew; Koplow, Michael; Wright, Paul
2007-01-01
Most residential heating, ventilating, and air-conditioning (HVAC) systems utilize a single zone for conditioning air throughout the entire house. While inexpensive, these systems lead to wide temperature distributions and inefficient cooling due to the difference in thermal loads in different rooms. The end result is additional cost to the end user because the house is over conditioned. To reduce the total amount of energy used in a home and to increase occupant comfort there is a need for a better control system using multiple temperature zones. Typical multi-zone systems are costly and require extensive infrastructure to function. Recent advances in wireless sensor networks (WSNs) have enabled a low cost drop-in wireless vent register control system. The register control system is controlled by a master controller unit, which collects sensor data from a distributed wireless sensor network. Each sensor node samples local settings (occupancy, light, humidity and temperature) and reports the data back to the master control unit. The master control unit compiles the incoming data and then actuates the vent resisters to control the airflow throughout the house. The control system also utilizes a smart thermostat with a movable set point to enable the user to define their given comfort levels. The new system can reduce the run time of the HVAC system and thus decreasing the amount of energy used and increasing the comfort of the home occupations.
Development of an EtherCAT enabled digital servo controller for the Green Bank Telescope
NASA Astrophysics Data System (ADS)
Whiteis, Peter G.; Mello, Melinda J.
2012-09-01
EtherCAT (Ethernet for Control Automation Technology) is gaining wide spread popularity in the automation industry as a real time field bus based on low cost, Ethernet hardware. EtherCAT maximizes use of 100Mbps Ethernet hardware by using a collision free ring topology, efficient Ethernet frame utilization (> 95%), and data exchange "on the fly". These characteristics enable EtherCAT to achieve Master to Slave node data exchange rates of > 1000 Hz. The Green Bank Telescope, commissioned in 2000, utilizes an analog control system for motion control of 8 elevation and 16 azimuth motors. This architecture, while sufficient for observations at frequencies up to 50GHz, has significant limitations for the current scientific goals of observing at 115GHz. Accordingly, the Green Bank staff has embarked on a servo upgrade project to develop a digital servo system which accommodates development and implementation of advanced control algorithms. This paper describes how the new control system requirements, use of existing infrastructure and budget constraints led us to define a distributed motion control architecture where EtherCAT real-time Ethernet was selected as the communication bus. Finally, design details are provided that describe how NRAO developed a custom EtherCAT-enabled motor controller interface for the GBT's legacy motor drives in order to provide technical benefits and flexibility not available in commercial products.
Reliability-Based Control Design for Uncertain Systems
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2005-01-01
This paper presents a robust control design methodology for systems with probabilistic parametric uncertainty. Control design is carried out by solving a reliability-based multi-objective optimization problem where the probability of violating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymptotic approximations, greatly reduces the numerical burden associated with complex probabilistic computations without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with state estimation are used to demonstrate the ideas proposed.
A Modular System of Interfacing Microcomputers.
ERIC Educational Resources Information Center
Martin, Peter
1983-01-01
Describes a system of interfacing allowing a range of signal conditioning and control modules to be connected to microcomputers, enabling execution of such experiments as: examining rate of cooling; control by light-activated switch; pH measurements; control frequency of signal generators; and making automated measurements of frequency response of…
NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
2005-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the NASA (National Aeronautics and Space Administration) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
Supervisory autonomous local-remote control system design: Near-term and far-term applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul
1993-01-01
The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.
Magnetic-field-mediated coupling and control in hybrid atomic-nanomechanical systems
NASA Astrophysics Data System (ADS)
Tretiakov, A.; LeBlanc, L. J.
2016-10-01
Magnetically coupled hybrid quantum systems enable robust quantum state control through Landau-Zener transitions. Here, we show that an ultracold atomic sample magnetically coupled to a nanomechanical resonator can be used to cool the resonator's mechanical motion, to measure the mechanical temperature, and to enable entanglement of more than one of these mesoscopic objects. We calculate the expected coupling for both permanent-magnet and current-conducting nanostring resonators and describe how this hybridization is attainable using recently developed fabrication techniques, including SiN nanostrings and atom chips.
Smith, P J; Vigneswaran, S; Ngo, H H; Nguyen, H T; Ben-Aim, R
2006-01-01
The application of automation and supervisory control and data acquisition (SCADA) systems to municipal water and wastewater treatment plants is rapidly increasing. However, the application of these systems is less frequent in the research and development phases of emerging treatment technologies used in these industries. This study involved the implementation of automation and a SCADA system to the submerged membrane adsorption hybrid system for use in a semi-pilot scale research project. An incremental approach was used in the development of the automation and SCADA systems, leading to the development of two new control systems. The first system developed involved closed loop control of the backwash initiation, based upon a pressure increase, leading to productivity improvements as the backwash is only activated when required, not at a fixed time. This system resulted in a 40% reduction in the number of backwashes required and also enabled optimised operations under unsteady concentrations of wastewater. The second system developed involved closed loop control of the backwash duration, whereby the backwash was terminated when the pressure reached a steady state. This system resulted in a reduction of the duration of the backwash of up to 25% and enabled optimised operations as the foulant build-up within the reactor increased.
System Engineering and Integration of Controls for Advanced Life Support
NASA Technical Reports Server (NTRS)
Overland, David; Hoo, Karlene; Ciskowski, Marvin
2006-01-01
The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.
Advanced Plasma Shape Control to Enable High-Performance Divertor Operation on NSTX-U
NASA Astrophysics Data System (ADS)
Vail, Patrick; Kolemen, Egemen; Boyer, Mark; Welander, Anders
2017-10-01
This work presents the development of an advanced framework for control of the global plasma shape and its application to a variety of shape control challenges on NSTX-U. Operations in high-performance plasma scenarios will require highly-accurate and robust control of the plasma poloidal shape to accomplish such tasks as obtaining the strong-shaping required for the avoidance of MHD instabilities and mitigating heat flux through regulation of the divertor magnetic geometry. The new control system employs a high-fidelity model of the toroidal current dynamics in NSTX-U poloidal field coils and conducting structures as well as a first-principles driven calculation of the axisymmetric plasma response. The model-based nature of the control system enables real-time optimization of controller parameters in response to time-varying plasma conditions and control objectives. The new control scheme is shown to enable stable and on-demand plasma operations in complicated magnetic geometries such as the snowflake divertor. A recently-developed code that simulates the nonlinear evolution of the plasma equilibrium is used to demonstrate the capabilities of the designed shape controllers. Plans for future real-time implementations on NSTX-U and elsewhere are also presented. Supported by the US DOE under DE-AC02-09CH11466.
Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2002-01-01
This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.
Polyhedral Interpolation for Optimal Reaction Control System Jet Selection
NASA Technical Reports Server (NTRS)
Gefert, Leon P.; Wright, Theodore
2014-01-01
An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.
A Work Station For Control Of Changing Systems
NASA Technical Reports Server (NTRS)
Mandl, Daniel J.
1988-01-01
Touch screen and microcomputer enable flexible control of complicated systems. Computer work station equipped to produce graphical displays used as command panel and status indicator for command-and-control system. Operator uses images of control buttons displayed on touch screen to send prestored commands. Use of prestored library of commands reduces incidence of errors. If necessary, operator uses conventional keyboard to enter commands in real time to handle unforeseeable situations.
Içten, Elçin; Giridhar, Arun; Nagy, Zoltan K; Reklaitis, Gintaras V
2016-04-01
The features of a drop-on-demand-based system developed for the manufacture of melt-based pharmaceuticals have been previously reported. In this paper, a supervisory control system, which is designed to ensure reproducible production of high quality of melt-based solid oral dosages, is presented. This control system enables the production of individual dosage forms with the desired critical quality attributes: amount of active ingredient and drug morphology by monitoring and controlling critical process parameters, such as drop size and product and process temperatures. The effects of these process parameters on the final product quality are investigated, and the properties of the produced dosage forms characterized using various techniques, such as Raman spectroscopy, optical microscopy, and dissolution testing. A crystallization temperature control strategy, including controlled temperature cycles, is presented to tailor the crystallization behavior of drug deposits and to achieve consistent drug morphology. This control strategy can be used to achieve the desired bioavailability of the drug by mitigating variations in the dissolution profiles. The supervisor control strategy enables the application of the drop-on-demand system to the production of individualized dosage required for personalized drug regimens.
Kinesthetic Force Feedback and Belt Control for the Treadport Locomotion Interface.
Hejrati, Babak; Crandall, Kyle L; Hollerbach, John M; Abbott, Jake J
2015-01-01
This paper describes an improved control system for the Treadport immersive locomotion interface, with results that generalize to any treadmill that utilizes an actuated tether to enable self-selected walking speed. A new belt controller is implemented to regulate the user's position; when combined with the user's own volition, this controller also enables the user to naturally self-select their walking speed as they would when walking over ground. A new kinesthetic-force-feedback controller is designed for the tether that applies forces to the user's torso. This new controller is derived based on maintaining the user's sense of balance during belt acceleration, rather than by rendering an inertial force as was done in our prior work. Based on the results of a human-subjects study, the improvements in both controllers significantly contribute to an improved perception of realistic walking on the Treadport. The improved control system uses intuitive dynamic-system and anatomical parameters and requires no ad hoc gain tuning. The control system simply requires three measurements to be made for a given user: the user's mass, the user's height, and the height of the tether attachment point on the user's torso.
PointCom: semi-autonomous UGV control with intuitive interface
NASA Astrophysics Data System (ADS)
Rohde, Mitchell M.; Perlin, Victor E.; Iagnemma, Karl D.; Lupa, Robert M.; Rohde, Steven M.; Overholt, James; Fiorani, Graham
2008-04-01
Unmanned ground vehicles (UGVs) will play an important role in the nation's next-generation ground force. Advances in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual UGV teleoperation and full autonomy. In this paper, we present current research on a unique command and control system for UGVs named PointCom (Point-and-Go Command). PointCom is a semi-autonomous command system for one or multiple UGVs. The system, when complete, will be easy to operate and will enable significant reduction in operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single operator to command multiple UGVs. The project leverages new image processing algorithms for monocular visual servoing and odometry to yield a unique, high-performance fused navigation system. Human Computer Interface (HCI) techniques from the entertainment software industry are being used to develop video-game style interfaces that require little training and build upon the navigation capabilities. By combining an advanced navigation system with an intuitive interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less burdensome than many current generation systems. mand).
Integrating Systems Health Management with Adaptive Controls for a Utility-Scale Wind Turbine
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Goebel, Kai; Trinh, Khanh V.; Balas, Mark J.; Frost, Alan M.
2011-01-01
Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. Systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage. Advanced adaptive controls can provide the mechanism to enable optimized operations that also provide the enabling technology for Systems Health Management goals. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency management and adaptive controls. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.
MEMS: Enabled Drug Delivery Systems.
Cobo, Angelica; Sheybani, Roya; Meng, Ellis
2015-05-01
Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
BioNet Digital Communications Framework
NASA Technical Reports Server (NTRS)
Gifford, Kevin; Kuzminsky, Sebastian; Williams, Shea
2010-01-01
BioNet v2 is a peer-to-peer middleware that enables digital communication devices to talk to each other. It provides a software development framework, standardized application, network-transparent device integration services, a flexible messaging model, and network communications for distributed applications. BioNet is an implementation of the Constellation Program Command, Control, Communications and Information (C3I) Interoperability specification, given in CxP 70022-01. The system architecture provides the necessary infrastructure for the integration of heterogeneous wired and wireless sensing and control devices into a unified data system with a standardized application interface, providing plug-and-play operation for hardware and software systems. BioNet v2 features a naming schema for mobility and coarse-grained localization information, data normalization within a network-transparent device driver framework, enabling of network communications to non-IP devices, and fine-grained application control of data subscription band width usage. BioNet directly integrates Disruption Tolerant Networking (DTN) as a communications technology, enabling networked communications with assets that are only intermittently connected including orbiting relay satellites and planetary rover vehicles.
Design and simulation of a sensor for heliostat field closed loop control
NASA Astrophysics Data System (ADS)
Collins, Mike; Potter, Daniel; Burton, Alex
2017-06-01
Significant research has been completed in pursuit of capital cost reductions for heliostats [1],[2]. The camera array closed loop control concept has potential to radically alter the way heliostats are controlled and installed by replacing high quality open loop targeting systems with low quality targeting devices that rely on measurement of image position to remove tracking errors during operation. Although the system could be used for any heliostat size, the system significantly benefits small heliostats by reducing actuation costs, enabling large numbers of heliostats to be calibrated simultaneously, and enabling calibration of heliostats that produce low irradiance (similar or less than ambient light images) on Lambertian calibration targets, such as small heliostats that are far from the tower. A simulation method for the camera array has been designed and verified experimentally. The simulation tool demonstrates that closed loop calibration or control is possible using this device.
Overview of Intelligent Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.
2014-01-01
Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low Earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond low Earth orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.
Overview of Intelligent Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.
2014-01-01
Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond Low Earth Orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.
Overview of Intelligent Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan
2014-01-01
Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASAs current long term human space platform, the International Space Station, is in low earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond Low Earth Orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.
Computer hardware and software for robotic control
NASA Technical Reports Server (NTRS)
Davis, Virgil Leon
1987-01-01
The KSC has implemented an integrated system that coordinates state-of-the-art robotic subsystems. It is a sensor based real-time robotic control system performing operations beyond the capability of an off-the-shelf robot. The integrated system provides real-time closed loop adaptive path control of position and orientation of all six axes of a large robot; enables the implementation of a highly configurable, expandable testbed for sensor system development; and makes several smart distributed control subsystems (robot arm controller, process controller, graphics display, and vision tracking) appear as intelligent peripherals to a supervisory computer coordinating the overall systems.
Energy Systems Integration News | Energy Systems Integration Facility |
the electric grid. These control systems will enable real-time coordination between distributed energy with real-time voltage and frequency control at the level of the home or distributed energy resource least for electricity. A real-time connection to weather forecasts and energy prices would allow the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, A. S.
2013-01-15
A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.
Bioburden control for Space Station Freedom's Ultrapure Water System
NASA Technical Reports Server (NTRS)
Snodgrass, Donald W.; Rodgers, Elizabeth B.; Obenhuber, Don; Huff, Tim
1991-01-01
Bioburden control is one of the challenges for the Ultrapure Water System on Space Station Freedom. Bioburden control must enable the system to deliver water with a low bacterial count as well as maintain biological contamination at a manageable level, to permit continued production of quality water. Ozone has been chosen as the primary means of Bioburden control. Planned tests to determine the effectiveness of ozone on free-floating microbes and biofilms are described.
Testbed-based Performance Evaluation of Attack Resilient Control for AGC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashok, Aditya; Sridhar, Siddharth; McKinnon, Archibald D.
The modern electric power grid is a complex cyber-physical system whose reliable operation is enabled by a wide-area monitoring and control infrastructure. This infrastructure, supported by an extensive communication backbone, enables several control applications functioning at multiple time scales to ensure the grid is maintained within stable operating limits. Recent events have shown that vulnerabilities in this infrastructure may be exploited to manipulate the data being exchanged. Such a scenario could cause the associated control application to mis-operate, potentially causing system-wide instabilities. There is a growing emphasis on looking beyond traditional cybersecurity solutions to mitigate such threats. In this papermore » we perform a testbed-based validation of one such solution - Attack Resilient Control (ARC) - on Iowa State University's \\textit{PowerCyber} testbed. ARC is a cyber-physical security solution that combines domain-specific anomaly detection and model-based mitigation to detect stealthy attacks on Automatic Generation Control (AGC). In this paper, we first describe the implementation architecture of the experiment on the testbed. Next, we demonstrate the capability of stealthy attack templates to cause forced under-frequency load shedding in a 3-area test system. We then validate the performance of ARC by measuring its ability to detect and mitigate these attacks. Our results reveal that ARC is efficient in detecting stealthy attacks and enables AGC to maintain system operating frequency close to its nominal value during an attack. Our studies also highlight the importance of testbed-based experimentation for evaluating the performance of cyber-physical security and control applications.« less
NASA Technical Reports Server (NTRS)
Jacklin, Stephen; Schumann, Johann; Gupta, Pramod; Richard, Michael; Guenther, Kurt; Soares, Fola
2005-01-01
Adaptive control technologies that incorporate learning algorithms have been proposed to enable automatic flight control and vehicle recovery, autonomous flight, and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments. In order for adaptive control systems to be used in safety-critical aerospace applications, they must be proven to be highly safe and reliable. Rigorous methods for adaptive software verification and validation must be developed to ensure that control system software failures will not occur. Of central importance in this regard is the need to establish reliable methods that guarantee convergent learning, rapid convergence (learning) rate, and algorithm stability. This paper presents the major problems of adaptive control systems that use learning to improve performance. The paper then presents the major procedures and tools presently developed or currently being developed to enable the verification, validation, and ultimate certification of these adaptive control systems. These technologies include the application of automated program analysis methods, techniques to improve the learning process, analytical methods to verify stability, methods to automatically synthesize code, simulation and test methods, and tools to provide on-line software assurance.
Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.
2017-01-01
Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.
Control assembly for controlling a fuel cell system during shutdown and restart
Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred
2010-06-15
A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.
Phase Change Permeation Technology For Environmental Control Life Support Systems
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.
2014-01-01
Use of a phase change permeation membrane (Dutyion [Trademark]) to passively and selectively mobilize water in microgravity to enable improved water recovery from urine/brine for Environment Control and Life Support Systems (ECLSS) and water delivery to plans for potential use in microgravity.
A Probabilistic System Analysis of Intelligent Propulsion System Technologies
NASA Technical Reports Server (NTRS)
Tong, Michael T.
2007-01-01
NASA s Intelligent Propulsion System Technology (Propulsion 21) project focuses on developing adaptive technologies that will enable commercial gas turbine engines to produce fewer emissions and less noise while increasing reliability. It features adaptive technologies that have included active tip-clearance control for turbine and compressor, active combustion control, turbine aero-thermal and flow control, and enabling technologies such as sensors which are reliable at high operating temperatures and are minimally intrusive. A probabilistic system analysis is performed to evaluate the impact of these technologies on aircraft CO2 (directly proportional to fuel burn) and LTO (landing and takeoff) NO(x) reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that NASA s Intelligent Propulsion System technologies have the potential to significantly reduce the CO2 and NO(x) emissions. The results are used to support informed decisionmaking on the development of the intelligent propulsion system technology portfolio for CO2 and NO(x) reductions.
A History of Spacecraft Environmental Control and Life Support Systems
NASA Technical Reports Server (NTRS)
Daues, Katherine R.
2006-01-01
A spacecraft's Environmental Control and Life Support (ECLS) system enables and maintains a habitable and sustaining environment for its crew. A typical ECLS system provides for atmosphere consumables and revitalization, environmental monitoring, pressure, temperature and humidity control, heat rejection (including equipment cooling), food and water supply and management, waste management, and fire detection and suppression. The following is a summary of ECLS systems used in United States (US) and Russian human spacecraft.
The Ground Control Room as an Enabling Technology in the Unmanned Aerial System
NASA Technical Reports Server (NTRS)
Gear, Gary; Mace, Thomas
2007-01-01
This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.
2004-02-26
Shorter payback periods After 19 Cost Benefit of Powerlink Rule of Thumb for Powerlink: Powerlink becomes more cost effective beyond 16 controlled...web enabled control (and management software) Increase in level of integration between building systems Increase in new features, functions, benefits ...focus on reducing run-time via Scheduling, Sensing, Switching Growing focus on payback Direct energy cost (with demand) Additional maintenance benefits
Biologically-inspired navigation and flight control for Mars flyer missions
NASA Technical Reports Server (NTRS)
Thakoor, S.; Chahl, J.; Hine, B.; Zornetzer, S.
2003-01-01
Bioinspired Engineering Exploration Systems (BEES), is enabling new bioinspired sensors for autonomous exploration of Mars. The steps towards autonomy in development of these BEES flyers are described. A future set of Mars mission that are uniquely enabled by surch flyers are finally described.
Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.
Agrawal, Deepak K; Tang, Xun; Westbrook, Alexandra; Marshall, Ryan; Maxwell, Colin S; Lucks, Julius; Noireaux, Vincent; Beisel, Chase L; Dunlop, Mary J; Franco, Elisa
2018-05-08
Feedback allows biological systems to control gene expression precisely and reliably, even in the presence of uncertainty, by sensing and processing environmental changes. Taking inspiration from natural architectures, synthetic biologists have engineered feedback loops to tune the dynamics and improve the robustness and predictability of gene expression. However, experimental implementations of biomolecular control systems are still far from satisfying performance specifications typically achieved by electrical or mechanical control systems. To address this gap, we present mathematical models of biomolecular controllers that enable reference tracking, disturbance rejection, and tuning of the temporal response of gene expression. These controllers employ RNA transcriptional regulators to achieve closed loop control where feedback is introduced via molecular sequestration. Sensitivity analysis of the models allows us to identify which parameters influence the transient and steady state response of a target gene expression process, as well as which biologically plausible parameter values enable perfect reference tracking. We quantify performance using typical control theory metrics to characterize response properties and provide clear selection guidelines for practical applications. Our results indicate that RNA regulators are well-suited for building robust and precise feedback controllers for gene expression. Additionally, our approach illustrates several quantitative methods useful for assessing the performance of biomolecular feedback control systems.
Converged photonic data storage and switch platform for exascale disaggregated data centers
NASA Astrophysics Data System (ADS)
Pitwon, R.; Wang, K.; Worrall, A.
2017-02-01
We report on a converged optically enabled Ethernet storage, switch and compute platform, which could support future disaggregated data center architectures. The platform includes optically enabled Ethernet switch controllers, an advanced electro-optical midplane and optically interchangeable generic end node devices. We demonstrate system level performance using optically enabled Ethernet disk drives and micro-servers across optical links of varied lengths.
Design and control of a macro-micro robot for precise force applications
NASA Technical Reports Server (NTRS)
Wang, Yulun; Mangaser, Amante; Laby, Keith; Jordan, Steve; Wilson, Jeff
1993-01-01
Creating a robot which can delicately interact with its environment has been the goal of much research. Primarily two difficulties have made this goal hard to attain. The execution of control strategies which enable precise force manipulations are difficult to implement in real time because such algorithms have been too computationally complex for available controllers. Also, a robot mechanism which can quickly and precisely execute a force command is difficult to design. Actuation joints must be sufficiently stiff, frictionless, and lightweight so that desired torques can be accurately applied. This paper describes a robotic system which is capable of delicate manipulations. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system. Delicate force tasks such as polishing, finishing, cleaning, and deburring, are the target applications of the robot.
Martins, Goncalo; Moondra, Arul; Dubey, Abhishek; Bhattacharjee, Anirban; Koutsoukos, Xenofon D.
2016-01-01
In modern networked control applications, confidentiality and integrity are important features to address in order to prevent against attacks. Moreover, network control systems are a fundamental part of the communication components of current cyber-physical systems (e.g., automotive communications). Many networked control systems employ Time-Triggered (TT) architectures that provide mechanisms enabling the exchange of precise and synchronous messages. TT systems have computation and communication constraints, and with the aim to enable secure communications in the network, it is important to evaluate the computational and communication overhead of implementing secure communication mechanisms. This paper presents a comprehensive analysis and evaluation of the effects of adding a Hash-based Message Authentication (HMAC) to TT networked control systems. The contributions of the paper include (1) the analysis and experimental validation of the communication overhead, as well as a scalability analysis that utilizes the experimental result for both wired and wireless platforms and (2) an experimental evaluation of the computational overhead of HMAC based on a kernel-level Linux implementation. An automotive application is used as an example, and the results show that it is feasible to implement a secure communication mechanism without interfering with the existing automotive controller execution times. The methods and results of the paper can be used for evaluating the performance impact of security mechanisms and, thus, for the design of secure wired and wireless TT networked control systems. PMID:27463718
Martins, Goncalo; Moondra, Arul; Dubey, Abhishek; Bhattacharjee, Anirban; Koutsoukos, Xenofon D
2016-07-25
In modern networked control applications, confidentiality and integrity are important features to address in order to prevent against attacks. Moreover, network control systems are a fundamental part of the communication components of current cyber-physical systems (e.g., automotive communications). Many networked control systems employ Time-Triggered (TT) architectures that provide mechanisms enabling the exchange of precise and synchronous messages. TT systems have computation and communication constraints, and with the aim to enable secure communications in the network, it is important to evaluate the computational and communication overhead of implementing secure communication mechanisms. This paper presents a comprehensive analysis and evaluation of the effects of adding a Hash-based Message Authentication (HMAC) to TT networked control systems. The contributions of the paper include (1) the analysis and experimental validation of the communication overhead, as well as a scalability analysis that utilizes the experimental result for both wired and wireless platforms and (2) an experimental evaluation of the computational overhead of HMAC based on a kernel-level Linux implementation. An automotive application is used as an example, and the results show that it is feasible to implement a secure communication mechanism without interfering with the existing automotive controller execution times. The methods and results of the paper can be used for evaluating the performance impact of security mechanisms and, thus, for the design of secure wired and wireless TT networked control systems.
NASA Technical Reports Server (NTRS)
Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray
2013-01-01
This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.
Flexible distributed architecture for semiconductor process control and experimentation
NASA Astrophysics Data System (ADS)
Gower, Aaron E.; Boning, Duane S.; McIlrath, Michael B.
1997-01-01
Semiconductor fabrication requires an increasingly expensive and integrated set of tightly controlled processes, driving the need for a fabrication facility with fully computerized, networked processing equipment. We describe an integrated, open system architecture enabling distributed experimentation and process control for plasma etching. The system was developed at MIT's Microsystems Technology Laboratories and employs in-situ CCD interferometry based analysis in the sensor-feedback control of an Applied Materials Precision 5000 Plasma Etcher (AME5000). Our system supports accelerated, advanced research involving feedback control algorithms, and includes a distributed interface that utilizes the internet to make these fabrication capabilities available to remote users. The system architecture is both distributed and modular: specific implementation of any one task does not restrict the implementation of another. The low level architectural components include a host controller that communicates with the AME5000 equipment via SECS-II, and a host controller for the acquisition and analysis of the CCD sensor images. A cell controller (CC) manages communications between these equipment and sensor controllers. The CC is also responsible for process control decisions; algorithmic controllers may be integrated locally or via remote communications. Finally, a system server images connections from internet/intranet (web) based clients and uses a direct link with the CC to access the system. Each component communicates via a predefined set of TCP/IP socket based messages. This flexible architecture makes integration easier and more robust, and enables separate software components to run on the same or different computers independent of hardware or software platform.
NASA Astrophysics Data System (ADS)
Morita, Yoshifumi; Hirose, Akinori; Uno, Takashi; Uchid, Masaki; Ukai, Hiroyuki; Matsui, Nobuyuki
2007-12-01
In this paper we propose a new rehabilitation training support system for upper limbs. The proposed system enables therapists to quantitatively evaluate the therapeutic effect of upper limb motor function during training, to easily change the load of resistance of training and to easily develop a new training program suitable for the subjects. For this purpose we develop control algorithms of training programs in the 3D force display robot. The 3D force display robot has parallel link mechanism with three motors. The control algorithm simulating sanding training is developed for the 3D force display robot. Moreover the teaching/training function algorithm is developed. It enables the therapists to easily make training trajectory suitable for subject's condition. The effectiveness of the developed control algorithms is verified by experiments.
MCCx C3I Control Center Interface Emulator
NASA Technical Reports Server (NTRS)
Mireles, James R.
2010-01-01
This slide presentation reviews the project to develop and demonstrate alternate Information Technologies and systems for new Mission Control Centers that will reduce the cost of facility development, maintenance and operational costs and will enable more efficient cost and effective operations concepts for ground support operations. The development of a emulator for the Control Center capability will enable the facilities to conduct the simulation requiring interactivity with the Control Center when it is off line or unavailable, and it will support testing of C3I interfaces for both command and telemetry data exchange messages (DEMs).
NASA Astrophysics Data System (ADS)
Melton, R.; Thomas, J.
With the rapid growth in the number of space actors, there has been a marked increase in the complexity and diversity of software systems utilized to support SSA target tracking, indication, warning, and collision avoidance. Historically, most SSA software has been constructed with "closed" proprietary code, which limits interoperability, inhibits the code transparency that some SSA customers need to develop domain expertise, and prevents the rapid injection of innovative concepts into these systems. Open-source aerospace software, a rapidly emerging, alternative trend in code development, is based on open collaboration, which has the potential to bring greater transparency, interoperability, flexibility, and reduced development costs. Open-source software is easily adaptable, geared to rapidly changing mission needs, and can generally be delivered at lower costs to meet mission requirements. This paper outlines Ball's COSMOS C2 system, a fully open-source, web-enabled, command-and-control software architecture which provides several unique capabilities to move the current legacy SSA software paradigm to an open source model that effectively enables pre- and post-launch asset command and control. Among the unique characteristics of COSMOS is the ease with which it can integrate with diverse hardware. This characteristic enables COSMOS to serve as the command-and-control platform for the full life-cycle development of SSA assets, from board test, to box test, to system integration and test, to on-orbit operations. The use of a modern scripting language, Ruby, also permits automated procedures to provide highly complex decision making for the tasking of SSA assets based on both telemetry data and data received from outside sources. Detailed logging enables quick anomaly detection and resolution. Integrated real-time and offline data graphing renders the visualization of the both ground and on-orbit assets simple and straightforward.
Cloud-based distributed control of unmanned systems
NASA Astrophysics Data System (ADS)
Nguyen, Kim B.; Powell, Darren N.; Yetman, Charles; August, Michael; Alderson, Susan L.; Raney, Christopher J.
2015-05-01
Enabling warfighters to efficiently and safely execute dangerous missions, unmanned systems have been an increasingly valuable component in modern warfare. The evolving use of unmanned systems leads to vast amounts of data collected from sensors placed on the remote vehicles. As a result, many command and control (C2) systems have been developed to provide the necessary tools to perform one of the following functions: controlling the unmanned vehicle or analyzing and processing the sensory data from unmanned vehicles. These C2 systems are often disparate from one another, limiting the ability to optimally distribute data among different users. The Space and Naval Warfare Systems Center Pacific (SSC Pacific) seeks to address this technology gap through the UxV to the Cloud via Widgets project. The overarching intent of this three year effort is to provide three major capabilities: 1) unmanned vehicle control using an open service oriented architecture; 2) data distribution utilizing cloud technologies; 3) a collection of web-based tools enabling analysts to better view and process data. This paper focuses on how the UxV to the Cloud via Widgets system is designed and implemented by leveraging the following technologies: Data Distribution Service (DDS), Accumulo, Hadoop, and Ozone Widget Framework (OWF).
Observation of optomechanical buckling transitions
Xu, H.; Kemiktarak, U.; Fan, J.; Ragole, S.; Lawall, J.; Taylor, J. M.
2017-01-01
Correlated phases of matter provide long-term stability for systems as diverse as solids, magnets and potential exotic quantum materials. Mechanical systems, such as buckling transition spring switches, can have engineered, stable configurations whose dependence on a control variable is reminiscent of non-equilibrium phase transitions. In hybrid optomechanical systems, light and matter are strongly coupled, allowing engineering of rapid changes in the force landscape, storing and processing information, and ultimately probing and controlling behaviour at the quantum level. Here we report the observation of first- and second-order buckling transitions between stable mechanical states in an optomechanical system, in which full control of the nature of the transition is obtained by means of the laser power and detuning. The underlying multiwell confining potential we create is highly tunable, with a sub-nanometre distance between potential wells. Our results enable new applications in photonics and information technology, and may enable explorations of quantum phase transitions and macroscopic quantum tunnelling in mechanical systems. PMID:28248293
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2002-01-01
This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.
Interactive Controls Analysis (INCA)
NASA Technical Reports Server (NTRS)
Bauer, Frank H.
1989-01-01
Version 3.12 of INCA provides user-friendly environment for design and analysis of linear control systems. System configuration and parameters easily adjusted, enabling INCA user to create compensation networks and perform sensitivity analysis in convenient manner. Full complement of graphical routines makes output easy to understand. Written in Pascal and FORTRAN.
NASA Astrophysics Data System (ADS)
Prasad, Guru; Jayaram, Sanjay; Ward, Jami; Gupta, Pankaj
2004-08-01
In this paper, Aximetric proposes a decentralized Command and Control (C2) architecture for a distributed control of a cluster of on-board health monitoring and software enabled control systems called SimBOX that will use some of the real-time infrastructure (RTI) functionality from the current military real-time simulation architecture. The uniqueness of the approach is to provide a "plug and play environment" for various system components that run at various data rates (Hz) and the ability to replicate or transfer C2 operations to various subsystems in a scalable manner. This is possible by providing a communication bus called "Distributed Shared Data Bus" and a distributed computing environment used to scale the control needs by providing a self-contained computing, data logging and control function module that can be rapidly reconfigured to perform different functions. This kind of software-enabled control is very much needed to meet the needs of future aerospace command and control functions.
NASA Astrophysics Data System (ADS)
Prasad, Guru; Jayaram, Sanjay; Ward, Jami; Gupta, Pankaj
2004-09-01
In this paper, Aximetric proposes a decentralized Command and Control (C2) architecture for a distributed control of a cluster of on-board health monitoring and software enabled control systems called
RTS2: a powerful robotic observatory manager
NASA Astrophysics Data System (ADS)
Kubánek, Petr; Jelínek, Martin; Vítek, Stanislav; de Ugarte Postigo, Antonio; Nekola, Martin; French, John
2006-06-01
RTS2, or Remote Telescope System, 2nd Version, is an integrated package for remote telescope control under the Linux operating system. It is designed to run in fully autonomous mode, picking targets from a database table, storing image meta data to the database, processing images and storing their WCS coordinates in the database and offering Virtual-Observatory enabled access to them. It is currently running on various telescope setups world-wide. For control of devices from various manufacturers we developed an abstract device layer, enabling control of all possible combinations of mounts, CCDs, photometers, roof and cupola controllers. We describe the evolution of RTS2 from Python-based RTS to C and later C++ based RTS2, focusing on the problems we faced during development. The internal structure of RTS2, focusing on object layering, which is used to uniformly control various devices and provides uniform reporting layer, is also discussed.
3D model generation using an airborne swarm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, R. A.; Punzo, G.; Macdonald, M.
2015-03-31
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing throughmore » photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.« less
3D model generation using an airborne swarm
NASA Astrophysics Data System (ADS)
Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.
2015-03-01
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.
Coordinated joint motion control system with position error correction
Danko, George [Reno, NV
2011-11-22
Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.
Coordinated joint motion control system with position error correction
Danko, George L.
2016-04-05
Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.
[Quality management in emergency departments: Lack of uniform standards for fact-based controlling].
Ries, M; Christ, M
2015-11-01
The general high occupancy of emergency departments during the winter months of 2014/2015 outlined deficits in health politics. Whether on the regional, province, or federal level, verifiable and accepted figures to enable in depth analysis and fact-based controlling of emergency care systems are lacking. As the first step, reasons for the current situation are outlined in order to developed concrete recommendations for individual hospitals. This work is based on a selective literature search with focus on quality management, ratio driven management, and process management within emergency departments as well as personal experience with implementation of a key ratio system in a German maximum care hospital. The insufficient integration of emergencies into the DRG systematic, the role as gatekeeper between inpatient and outpatient care sector, the decentralized organization of emergency departments in many hospitals, and the inconsistent representation within the medical societies can be mentioned as reasons for the lack of key ratio systems. In addition to the important role within treatment procedures, emergency departments also have an immense economic importance. Consequently, the management of individual hospitals should promote implementation of key ratio systems to enable controlling of emergency care processes. Thereby the perspectives finance, employees, processes as well as partners and patients should be equally considered. Within the process perspective, milestones could be used to enable detailed controlling of treatment procedures. An implementation of key ratio systems without IT support is not feasible; thus, existing digital data should be used and future data analysis should already be considered during implementation of new IT systems.
Enhanced Control for Local Helicity Injection on the Pegasus ST
NASA Astrophysics Data System (ADS)
Pierren, C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.
2017-10-01
Local helicity injection (LHI) experiments on Pegasus rely upon programmable control of a 250 MVA modular power supply system that drives the electromagnets and helicity injection systems. Precise control of the central solenoid is critical to experimental campaigns that test the LHI Taylor relaxation limit and the coupling efficiency of LHI-produced plasmas to Ohmic current drive. Enhancement and expansion of the present control system is underway using field programmable gate array (FPGA) technology for digital logic and control, coupled to new 10 MHz optical-to-digital transceivers for semiconductor level device communication. The system accepts optical command signals from existing analog feedback controllers, transmits them to multiple devices in parallel H-bridges, and aggregates their status signals for fault detection. Present device-level multiplexing/de-multiplexing and protection logic is extended to include bridge-level protections with the FPGA. An input command filter protects against erroneous and/or spurious noise generated commands that could otherwise cause device failures. Fault registration and response times with the FPGA system are 25 ns. Initial system testing indicates an increased immunity to power supply induced noise, enabling plasma operations at higher working capacitor bank voltage. This can increase the applied helicity injection drive voltage, enable longer pulse lengths and improve Ohmic loop voltage control. Work supported by US DOE Grant DE-FG02-96ER54375.
Analysis of Controller-Pilot Voice Communications from Kansas City Air Route Traffic Control Center
DOT National Transportation Integrated Search
2017-07-01
The implementation of Controller Pilot Datalink Communications (CPDLC) in domestic en route airspace is a key enabling technology in the Next Generation Air Transportation System. The Federal Aviation Administration plans to implement en route CPDLC ...
Software for Collaborative Engineering of Launch Rockets
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy
2003-01-01
The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.
NASA Astrophysics Data System (ADS)
Bower, Ward
2011-09-01
An overview of the activities and progress made during the US DOE Solar Energy Grid Integration Systems (SEGIS) solicitation, while maintaining reliability and economics is provided. The SEGIS R&D opened pathways for interconnecting PV systems to intelligent utility grids and micro-grids of the future. In addition to new capabilities are "value added" features. The new hardware designs resulted in smaller, less material-intensive products that are being viewed by utilities as enabling dispatchable generation and not just unpredictable negative loads. The technical solutions enable "advanced integrated system" concepts and "smart grid" processes to move forward in a faster and focused manner. The advanced integrated inverters/controllers can now incorporate energy management functionality, intelligent electrical grid support features and a multiplicity of communication technologies. Portals for energy flow and two-way communications have been implemented. SEGIS hardware was developed for the utility grid of today, which was designed for one-way power flow, for intermediate grid scenarios, AND for the grid of tomorrow, which will seamlessly accommodate managed two-way power flows as required by large-scale deployment of solar and other distributed generation. The SEGIS hardware and control developed for today meets existing standards and codes AND provides for future connections to a "smart grid" mode that enables utility control and optimized performance.
Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.
Silva, Pedro; Matos, Vitor; Santos, Cristina P
2014-02-01
There is an increasing interest in conceiving robotic systems that are able to move and act in an unstructured and not predefined environment, for which autonomy and adaptability are crucial features. In nature, animals are autonomous biological systems, which often serve as bio-inspiration models, not only for their physical and mechanical properties, but also their control structures that enable adaptability and autonomy-for which learning is (at least) partially responsible. This work proposes a system which seeks to enable a quadruped robot to online learn to detect and to avoid stumbling on an obstacle in its path. The detection relies in a forward internal model that estimates the robot's perceptive information by exploring the locomotion repetitive nature. The system adapts the locomotion in order to place the robot optimally before attempting to step over the obstacle, avoiding any stumbling. Locomotion adaptation is achieved by changing control parameters of a central pattern generator (CPG)-based locomotion controller. The mechanism learns the necessary alterations to the stride length in order to adapt the locomotion by changing the required CPG parameter. Both learning tasks occur online and together define a sensorimotor map, which enables the robot to learn to step over the obstacle in its path. Simulation results show the feasibility of the proposed approach.
DIAMS revisited: Taming the variety of knowledge in fault diagnosis expert systems
NASA Technical Reports Server (NTRS)
Haziza, M.; Ayache, S.; Brenot, J.-M.; Cayrac, D.; Vo, D.-P.
1994-01-01
The DIAMS program, initiated in 1986, led to the development of a prototype expert system, DIAMS-1 dedicated to the Telecom 1 Attitude and Orbit Control System, and to a near-operational system, DIAMS-2, covering a whole satellite (the Telecom 2 platform and its interfaces with the payload), which was installed in the Satellite Control Center in 1993. The refinement of the knowledge representation and reasoning is now being studied, focusing on the introduction of appropriate handling of incompleteness, uncertainty and time, and keeping in mind operational constraints. For the latest generation of the tool, DIAMS-3, a new architecture has been proposed, that enables the cooperative exploitation of various models and knowledge representations. On the same baseline, new solutions enabling higher integration of diagnostic systems in the operational environment and cooperation with other knowledge intensive systems such as data analysis, planning or procedure management tools have been introduced.
EPICS as a MARTe Configuration Environment
NASA Astrophysics Data System (ADS)
Valcarcel, Daniel F.; Barbalace, Antonio; Neto, André; Duarte, André S.; Alves, Diogo; Carvalho, Bernardo B.; Carvalho, Pedro J.; Sousa, Jorge; Fernandes, Horácio; Goncalves, Bruno; Sartori, Filippo; Manduchi, Gabriele
2011-08-01
The Multithreaded Application Real-Time executor (MARTe) software provides an environment for the hard real-time execution of codes while leveraging a standardized algorithm development process. The Experimental Physics and Industrial Control System (EPICS) software allows the deployment and remote monitoring of networked control systems. Channel Access (CA) is the protocol that enables the communication between EPICS distributed components. It allows to set and monitor process variables across the network belonging to different systems. The COntrol and Data Acquisition and Communication (CODAC) system for the ITER Tokamak will be EPICS based and will be used to monitor and live configure the plant controllers. The reconfiguration capability in a hard real-time system requires strict latencies from the request to the actuation and it is a key element in the design of the distributed control algorithm. Presently, MARTe and its objects are configured using a well-defined structured language. After each configuration, all objects are destroyed and the system rebuilt, following the strong hard real-time rule that a real-time system in online mode must behave in a strictly deterministic fashion. This paper presents the design and considerations to use MARTe as a plant controller and enable it to be EPICS monitorable and configurable without disturbing the execution at any time, in particular during a plasma discharge. The solutions designed for this will be presented and discussed.
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.
1991-01-01
Control-Structures Interaction (CSI) technology embraces the understanding of the interaction between the spacecraft structure and the control system, and the creation and validation of concepts, techniques, and tools, for enabling the interdisciplinary design of an integrated structure and control system, rather than the integration of a structural design and a control system design. The goal of this program is to develop validated CSI technology for integrated design/analysis and qualification of large flexible space systems and precision space structures. A description of the CSI technology program is presented.
Model-based control strategies for systems with constraints of the program type
NASA Astrophysics Data System (ADS)
Jarzębowska, Elżbieta
2006-08-01
The paper presents a model-based tracking control strategy for constrained mechanical systems. Constraints we consider can be material and non-material ones referred to as program constraints. The program constraint equations represent tasks put upon system motions and they can be differential equations of orders higher than one or two, and be non-integrable. The tracking control strategy relies upon two dynamic models: a reference model, which is a dynamic model of a system with arbitrary order differential constraints and a dynamic control model. The reference model serves as a motion planner, which generates inputs to the dynamic control model. It is based upon a generalized program motion equations (GPME) method. The method enables to combine material and program constraints and merge them both into the motion equations. Lagrange's equations with multipliers are the peculiar case of the GPME, since they can be applied to systems with constraints of first orders. Our tracking strategy referred to as a model reference program motion tracking control strategy enables tracking of any program motion predefined by the program constraints. It extends the "trajectory tracking" to the "program motion tracking". We also demonstrate that our tracking strategy can be extended to a hybrid program motion/force tracking.
Architectures for mission control at the Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Davidson, Reger A.; Murphy, Susan C.
1992-01-01
JPL is currently converting to an innovative control center data system which is a distributed, open architecture for telemetry delivery and which is enabling advancement towards improved automation and operability, as well as new technology, in mission operations at JPL. The scope of mission control within mission operations is examined. The concepts of a mission control center and how operability can affect the design of a control center data system are discussed. Examples of JPL's mission control architecture, data system development, and prototype efforts at the JPL Operations Engineering Laboratory are provided. Strategies for the future of mission control architectures are outlined.
Advanced thermal control for spacecraft applications
NASA Astrophysics Data System (ADS)
Hardesty, Robert; Parker, Kelsey
2015-09-01
In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.
Control and automation of the Pegasus multi-point Thomson scattering system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodner, G. M., E-mail: gbodner@wisc.edu; Bongard, M. W.; Fonck, R. J.
A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (∼1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.
Control and automation of the Pegasus multi-point Thomson scattering system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodner, Grant M.; Bongard, Michael W.; Fonck, Raymond J.
A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. In addition, the system has been upgraded with a set of fast (~1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.
Control and automation of the Pegasus multi-point Thomson scattering system
Bodner, Grant M.; Bongard, Michael W.; Fonck, Raymond J.; ...
2016-08-12
A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. In addition, the system has been upgraded with a set of fast (~1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.
Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System
NASA Technical Reports Server (NTRS)
Wang, Shin-Ywan
2012-01-01
The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.
Migration strategies for service-enabling ground control stations for unmanned systems
NASA Astrophysics Data System (ADS)
Kroculick, Joseph B.
2011-06-01
Future unmanned systems will be integrated into the Global Information Grid (GIG) and support net-centric data sharing, where information in a domain is exposed to a wide variety of GIG stakeholders that can make use of the information provided. Adopting a Service-Oriented Architecture (SOA) approach to package reusable UAV control station functionality into common control services provides a number of benefits including enabling dynamic plug and play of components depending on changing mission requirements, supporting information sharing to the enterprise, and integrating information from authoritative sources such as mission planners with the UAV control stations data model. It also allows the wider enterprise community to use the services provided by unmanned systems and improve data quality to support more effective decision-making. We explore current challenges in migrating UAV control systems that manage multiple types of vehicles to a Service-Oriented Architecture (SOA). Service-oriented analysis involves reviewing legacy systems and determining which components can be made into a service. Existing UAV control stations provide audio/visual, navigation, and vehicle health and status information that are useful to C4I systems. However, many were designed to be closed systems with proprietary software and hardware implementations, message formats, and specific mission requirements. An architecture analysis can be performed that reviews legacy systems and determines which components can be made into a service. A phased SOA adoption approach can then be developed that improves system interoperability.
Process Instrumentation. Teacher Edition.
ERIC Educational Resources Information Center
Brown, A. O., III; Fowler, Malcolm
This module provides instructional materials that are designed to help teachers train students in job skills for entry-level jobs as instrumentation technicians. This text addresses the basics of troubleshooting control loops, and the transducers, transmitters, signal conditioners, control valves, and controllers that enable process systems to…
Distributed Control Architecture for Gas Turbine Engine. Chapter 4
NASA Technical Reports Server (NTRS)
Culley, Dennis; Garg, Sanjay
2009-01-01
The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.
The 113 GHz ECRH system for JET
NASA Astrophysics Data System (ADS)
Verhoeven, A. G. A.; Bongers, W. A.; Elzendoorn, B. S. Q.; Graswinckel, M.; Hellingman, P.; Kamp, J. J.; Kooijman, W.; Kruijt, O. G.; Maagdenberg, J.; Ronden, D.; Stakenborg, J.; Sterk, A. B.; Tichler, J.; Alberti, S.; Goodman, T.; Henderson, M.; Hoekzema, J. A.; Oosterbeek, J. W.; Fernandez, A.; Likin, K.; Bruschi, A.; Cirant, S.; Novak, S.; Piosczyk, B.; Thumm, M.; Bindslev, H.; Kaye, A.; Fleming, C.; Zohm, H.
2003-02-01
An ECRH (Electron Cyclotron Resonance Heating) system has been designed for JET in the framework of the JET Enhanced-Performance project (JET-EP) under the European Fusion Development Agreement (EFDA). Due to financial constraints it has recently been decided not to implement this project. Nevertheless, the design work conducted from April 2000 to January 2002 shows a number of features that can be relevant in preparation of future ECRH systems, e.g., for ITER. The ECRH system was foreseen to comprise 6 gyrotrons, 1 MW each, in order to deliver 5 MW into the plasma [1]. The main aim was to enable the control of neo-classical tearing modes (NTM). The paper will concentrate on: • The power-supply and modulation system, including series IGBT switches, to enable independent control of each gyrotron and an all-solid-state body power supply to stabilise the gyrotron output power and to enable fast modulations up to 10 kHz. • A plug-in launcher, that is steerable in both toroidal and poloidal angle, and able to handle 8 separate mm-wave beams. Four steerable launching mirrors were foreseen to handle two mm-wave beams each. Water cooling of all the mirrors was a particularly ITER relevant feature.
1982-06-01
start/stop chiller optimization , and demand limiting were added. The system monitors a 7,000 ton chiller plant and controls 74 air handlers. The EMCS does...Modify analog limits. g. Adjust setpoints of selected controllers. h. Select manual or automatic control modes. i. Enable and disable individual points...or event schedules and controller setpoints ; make nonscheduled starts and stops of equipment or disable field panels when required for routine
Fuzzy logic controllers: A knowledge-based system perspective
NASA Technical Reports Server (NTRS)
Bonissone, Piero P.
1993-01-01
Over the last few years we have seen an increasing number of applications of Fuzzy Logic Controllers. These applications range from the development of auto-focus cameras, to the control of subway trains, cranes, automobile subsystems (automatic transmissions), domestic appliances, and various consumer electronic products. In summary, we consider a Fuzzy Logic Controller to be a high level language with its local semantics, interpreter, and compiler, which enables us to quickly synthesize non-linear controllers for dynamic systems.
Automotive Control Systems: For Engine, Driveline, and Vehicle
NASA Astrophysics Data System (ADS)
Kiencke, Uwe; Nielsen, Lars
Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience
Experimental Air Pressure Tank Systems for Process Control Education
ERIC Educational Resources Information Center
Long, Christopher E.; Holland, Charles E.; Gatzke, Edward P.
2006-01-01
In process control education, particularly in the field of chemical engineering, there is an inherent need for industrially relevant hands-on apparatuses that enable one to bridge the gap between the theoretical content of coursework and real-world applications. At the University of South Carolina, two experimental air-pressure tank systems have…
NASA Astrophysics Data System (ADS)
Li, Chengcheng; Li, Yuefeng; Wang, Guanglin
2017-07-01
The work presented in this paper seeks to address the tracking problem for uncertain continuous nonlinear systems with external disturbances. The objective is to obtain a model that uses a reference-based output feedback tracking control law. The control scheme is based on neural networks and a linear difference inclusion (LDI) model, and a PDC structure and H∞ performance criterion are used to attenuate external disturbances. The stability of the whole closed-loop model is investigated using the well-known quadratic Lyapunov function. The key principles of the proposed approach are as follows: neural networks are first used to approximate nonlinearities, to enable a nonlinear system to then be represented as a linearised LDI model. An LMI (linear matrix inequality) formula is obtained for uncertain and disturbed linear systems. This formula enables a solution to be obtained through an interior point optimisation method for some nonlinear output tracking control problems. Finally, simulations and comparisons are provided on two practical examples to illustrate the validity and effectiveness of the proposed method.
Highly Automated Arrival Management and Control System Suitable for Early NextGen
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Jung, Jaewoo
2013-01-01
This is a presentation of previously published work conducted in the development of the Terminal Area Precision Scheduling and Spacing (TAPSS) system. Included are concept and technical descriptions of the TAPSS system and results from human in the loop simulations conducted at Ames Research Center. The Terminal Area Precision Scheduling and Spacing system has demonstrated through research and extensive high-fidelity simulation studies to have benefits in airport arrival throughput, supporting efficient arrival descents, and enabling mixed aircraft navigation capability operations during periods of high congestion. NASA is currently porting the TAPSS system into the FAA TBFM and STARS system prototypes to ensure its ability to operate in the FAA automation Infrastructure. NASA ATM Demonstration Project is using the the TAPSS technologies to provide the ground-based automation tools to enable airborne Interval Management (IM) capabilities. NASA and the FAA have initiated a Research Transition Team to enable potential TAPSS and IM Technology Transfer.
A study of interactive control scheduling and economic assessment for robotic systems
NASA Technical Reports Server (NTRS)
1982-01-01
A class of interactive control systems is derived by generalizing interactive manipulator control systems. Tasks of interactive control systems can be represented as a network of a finite set of actions which have specific operational characteristics and specific resource requirements, and which are of limited duration. This has enabled the decomposition of the overall control algorithm simultaneously and asynchronously. The performance benefits of sensor referenced and computer-aided control of manipulators in a complex environment is evaluated. The first phase of the CURV arm control system software development and the basic features of the control algorithms and their software implementation are presented. An optimal solution for a production scheduling problem that will be easy to implement in practical situations is investigated.
Scanner focus metrology and control system for advanced 10nm logic node
NASA Astrophysics Data System (ADS)
Oh, Junghun; Maeng, Kwang-Seok; Shin, Jae-Hyung; Choi, Won-Woong; Won, Sung-Keun; Grouwstra, Cedric; El Kodadi, Mohamed; Heil, Stephan; van der Meijden, Vidar; Hong, Jong Kyun; Kim, Sang-Jin; Kwon, Oh-Sung
2018-03-01
Immersion lithography is being extended beyond the 10-nm node and the lithography performance requirement needs to be tightened further to ensure good yield. Amongst others, good on-product focus control with accurate and dense metrology measurements is essential to enable this. In this paper, we will present new solutions that enable onproduct focus monitoring and control (mean and uniformity) suitable for high volume manufacturing environment. We will introduce the concept of pure focus and its role in focus control through the imaging optimizer scanner correction interface. The results will show that the focus uniformity can be improved by up to 25%.
NASA Technical Reports Server (NTRS)
Waterman, Robert D.; Rice, Herbert D.; Waterman, Susan J.
2010-01-01
Command, Control and Communications (CCC) has evolved through the years from simple switches, dials, analogue hardwire networks and lights to a modern computer based digital network. However there are two closely coupled pillars upon which a CCC system is built. The first, is that technology drives the pace of advancement. The second is that a culture that fosters resistance to change can limit technological advancements in the CCC system. While technology has advanced at a tremendous rate throughout the years, the change in culture has moved slowly. This paper will attempt to show through a historical perspective where specific design decisions for early CCC systems have erroneously evolved into general requirements being imposed on later systems. Finally this paper will provide a glimpse into the future directions envisioned for CCC capabilities that will enable 21st century missions.
Drug delivery across length scales.
Delcassian, Derfogail; Patel, Asha K; Cortinas, Abel B; Langer, Robert
2018-02-20
Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.
Apparatus for Controlling Low Power Voltages in Space Based Processing Systems
NASA Technical Reports Server (NTRS)
Petrick, David J. (Inventor)
2017-01-01
A low power voltage control circuit for use in space missions includes a switching device coupled between an input voltage and an output voltage. The switching device includes a control input coupled to an enable signal, wherein the control input is configured to selectively turn the output voltage on or off based at least in part on the enable signal. A current monitoring circuit is coupled to the output voltage and configured to produce a trip signal, wherein the trip signal is active when a load current flowing through the switching device is determined to exceed a predetermined threshold and is inactive otherwise. The power voltage control circuit is constructed of space qualified components.
Large-scale optimal control of interconnected natural gas and electrical transmission systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Nai-Yuan; Zavala, Victor M.
2016-04-01
We present a detailed optimal control model that captures spatiotemporal interactions between gas and electric transmission networks. We use the model to study flexibility and economic opportunities provided by coordination. A large-scale case study in the Illinois system reveals that coordination can enable the delivery of significantly larger amounts of natural gas to the power grid. In particular, under a coordinated setting, gas-fired generators act as distributed demand response resources that can be controlled by the gas pipeline operator. This enables more efficient control of pressures and flows in space and time and overcomes delivery bottlenecks. We demonstrate that themore » additional flexibility not only can benefit the gas operator but can also lead to more efficient power grid operations and results in increased revenue for gas-fired power plants. We also use the optimal control model to analyze computational issues arising in these complex models. We demonstrate that the interconnected Illinois system with full physical resolution gives rise to a highly nonlinear optimal control problem with 4400 differential and algebraic equations and 1040 controls that can be solved with a state-of-the-art sparse optimization solver. (C) 2016 Elsevier Ltd. All rights reserved.« less
Self-organized adaptation of a simple neural circuit enables complex robot behaviour
NASA Astrophysics Data System (ADS)
Steingrube, Silke; Timme, Marc; Wörgötter, Florentin; Manoonpong, Poramate
2010-03-01
Controlling sensori-motor systems in higher animals or complex robots is a challenging combinatorial problem, because many sensory signals need to be simultaneously coordinated into a broad behavioural spectrum. To rapidly interact with the environment, this control needs to be fast and adaptive. Present robotic solutions operate with limited autonomy and are mostly restricted to few behavioural patterns. Here we introduce chaos control as a new strategy to generate complex behaviour of an autonomous robot. In the presented system, 18 sensors drive 18 motors by means of a simple neural control circuit, thereby generating 11 basic behavioural patterns (for example, orienting, taxis, self-protection and various gaits) and their combinations. The control signal quickly and reversibly adapts to new situations and also enables learning and synaptic long-term storage of behaviourally useful motor responses. Thus, such neural control provides a powerful yet simple way to self-organize versatile behaviours in autonomous agents with many degrees of freedom.
Low-cost wireless voltage & current grid monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, Jacqueline
This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distributionmore » grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.« less
Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers
NASA Technical Reports Server (NTRS)
Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry
2006-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based on human input or integrated health state-derived conditions. Shifting from Systems to Mission Management functions, we discuss the role of automated planning applications (tactical planning) on-board, which receive data from the other cockpit automation systems and evaluate the mission plan against the dynamic systems and mission states and events, to provide the crew with capabilities that enable them to understand, change, and manage the timeline of their mission. Lastly, we discuss the role of advanced human interface technologies that organize and provide the system md mission information to the crew in ways that maximize their situational awareness and ability to provide oversight and control of aLl the automated data and functions.
Implementation of RCCL, a robot control C library on a microVAX II
NASA Technical Reports Server (NTRS)
Lee, Jin S.; Hayati, Samad; Hayward, Vincent; Lloyd, John E.
1987-01-01
The robot control C library (RCCL), a high-level robot programing system which enables a progammer to employ a set of system calls to specify robot manipulator tasks, is discussed. The general structure of RCCL is described, and the implementation of RCCL on a microVAX II is examined. Proposed extensions and improvements of RCCL relevant to NASA's telerobotic system are addressed.
Nanoarchitecture Control Enabled by Ionic Liquids
NASA Astrophysics Data System (ADS)
Murdoch, Heather A.; Limmer, Krista R.; Labukas, Joseph P.
2017-04-01
Ionic liquids have many advantages over traditional aqueous electrosynthesis for fabrication of functional nanoarchitectures, including enabling the integration of nanoparticles into traditional coatings, superhydrophobicity, nanofoams, and other hierarchical structures. Shape and size control through ionic liquid selection and processing conditions can synthesize nanoparticles and nanoarchitectures without the use of capping agents, surfactants, or templates that are often deleterious to the functionality of the resultant system. Here we give a brief overview of some recent and interesting applications of ionic liquids to the synthesis of nanoparticles and nanoarchitectures.
A Reward-Based Behavioral Platform to Measure Neural Activity during Head-Fixed Behavior.
Micallef, Andrew H; Takahashi, Naoya; Larkum, Matthew E; Palmer, Lucy M
2017-01-01
Understanding the neural computations that contribute to behavior requires recording from neurons while an animal is behaving. This is not an easy task as most subcellular recording techniques require absolute head stability. The Go/No-Go sensory task is a powerful decision-driven task that enables an animal to report a binary decision during head-fixation. Here we discuss how to set up an Ardunio and Python based platform system to control a Go/No-Go sensory behavior paradigm. Using an Arduino micro-controller and Python-based custom written program, a reward can be delivered to the animal depending on the decision reported. We discuss the various components required to build the behavioral apparatus that can control and report such a sensory stimulus paradigm. This system enables the end user to control the behavioral testing in real-time and therefore it provides a strong custom-made platform for probing the neural basis of behavior.
Wind Turbine Contingency Control Through Generator De-Rating
NASA Technical Reports Server (NTRS)
Frost, Susan; Goebel, Kai; Balas, Mark
2013-01-01
Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.
Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control
Cho, Youngtak; Shin, Narae; Kim, Daesan; Park, Jae Yeol
2017-01-01
This paper provides a concise review on the recent development of nanoscale hybrid systems based on carbon nanotubes (CNTs) for biological sensing and control. CNT-based hybrid systems have been intensively studied for versatile applications of biological interfaces such as sensing, cell therapy and tissue regeneration. Recent advances in nanobiotechnology not only enable the fabrication of highly sensitive biosensors at nanoscale but also allow the applications in the controls of cell growth and differentiation. This review describes the fabrication methods of such CNT-based hybrid systems and their applications in biosensing and cell controls. PMID:28188158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, R.; Melin, A.; Burress, T.
The objective of this project is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant (NPP) components and systems. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration platform. I&C is intimately part of the basic millisecond-by-millisecond functioning of the system; treating I&C as an integral part of the system design is innovative and will allow significant improvement in capabilities and performance. As systems become more complex and greater performance is required, traditional I&C design techniques become inadequate andmore » more advanced I&C needs to be applied. New I&C techniques enable optimal and reliable performance and tolerance of noise and uncertainties in the system rather than merely monitoring quasistable performance. Traditionally, I&C has been incorporated in NPP components after the design is nearly complete; adequate performance was obtained through over-design. By incorporating I&C at the beginning of the design phase, the control system can provide superior performance and reliability and enable designs that are otherwise impossible. This report describes the progress and status of the project and provides a conceptual design overview for the platform to demonstrate the performance and reliability improvements enabled by advanced embedded I&C.« less
A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure
NASA Technical Reports Server (NTRS)
Murch, Austin M.
2008-01-01
A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalsi, Karan; Fuller, Jason C.; Somani, Abhishek
Disclosed herein are representative embodiments of methods, apparatus, and systems for facilitating operation and control of a resource distribution system (such as a power grid). Among the disclosed embodiments is a distributed hierarchical control architecture (DHCA) that enables smart grid assets to effectively contribute to grid operations in a controllable manner, while helping to ensure system stability and equitably rewarding their contribution. Embodiments of the disclosed architecture can help unify the dispatch of these resources to provide both market-based and balancing services.
Comparative study between two different active flutter suppression systems
NASA Technical Reports Server (NTRS)
Nissim, E.
1978-01-01
An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.
Mission Control Technologies: A New Way of Designing and Evolving Mission Systems
NASA Technical Reports Server (NTRS)
Trimble, Jay; Walton, Joan; Saddler, Harry
2006-01-01
Current mission operations systems are built as a collection of monolithic software applications. Each application serves the needs of a specific user base associated with a discipline or functional role. Built to accomplish specific tasks, each application embodies specialized functional knowledge and has its own data storage, data models, programmatic interfaces, user interfaces, and customized business logic. In effect, each application creates its own walled-off environment. While individual applications are sometimes reused across multiple missions, it is expensive and time consuming to maintain these systems, and both costly and risky to upgrade them in the light of new requirements or modify them for new purposes. It is even more expensive to achieve new integrated activities across a set of monolithic applications. These problems impact the lifecycle cost (especially design, development, testing, training, maintenance, and integration) of each new mission operations system. They also inhibit system innovation and evolution. This in turn hinders NASA's ability to adopt new operations paradigms, including increasingly automated space systems, such as autonomous rovers, autonomous onboard crew systems, and integrated control of human and robotic missions. Hence, in order to achieve NASA's vision affordably and reliably, we need to consider and mature new ways to build mission control systems that overcome the problems inherent in systems of monolithic applications. The keys to the solution are modularity and interoperability. Modularity will increase extensibility (evolution), reusability, and maintainability. Interoperability will enable composition of larger systems out of smaller parts, and enable the construction of new integrated activities that tie together, at a deep level, the capabilities of many of the components. Modularity and interoperability together contribute to flexibility. The Mission Control Technologies (MCT) Project, a collaboration of multiple NASA Centers, led by NASA Ames Research Center, is building a framework to enable software to be assembled from flexible collections of components and services.
Thaw flow control for liquid heat transport systems
Kirpich, Aaron S.
1989-01-01
In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.
76 FR 74753 - Authority To Manufacture and Distribute Postage Evidencing Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... revision of the rules governing the inventory control processes of Postage Evidencing Systems (PES... destruction or disposal of all Postage Evidencing Systems and their components to enable accurate accounting...) Postage Evidencing System repair process--any physical or electronic access to the internal components of...
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Plice, Laura; Pisanich, Greg
2003-01-01
The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control
Ohulchanskyy, Tymish Y; Kopwitthaya, Atcha; Jeon, Mansik; Guo, Moran; Law, Wing-Cheung; Furlani, Edward P; Kim, Chulhong; Prasad, Paras N
2013-11-01
We present a magnetoplasmonic nanoplatform combining gold nanorods (GNR) and iron-oxide nanoparticles within phospholipid-based polymeric nanomicelles (PGRFe). The gold nanorods exhibit plasmon resonance absorbance at near infrared wavelengths to enable photoacoustic imaging and photothermal therapy, while the Fe3O4 nanoparticles enable magnetophoretic control of the nanoformulation. The fabricated nanoformulation can be directed and concentrated by an external magnetic field, which provides enhancement of a photoacoustic signal. Application of an external field also leads to enhanced uptake of the magnetoplasmonic formulation by cancer cells in vitro. Under laser irradiation at the wavelength of the GNR absorption peak, the PGRFe formulation efficiently generates plasmonic nanobubbles within cancer cells, as visualized by confocal microscopy, causing cell destruction. The combined magnetic and plasmonic functionalities of the nanoplatform enable magnetic field-directed, imaging-guided, enhanced photo-induced cancer therapy. In this study, a nano-formulation of gold nanorods and iron oxide nanoparticles is presented using a phospholipid micelle-based delivery system for magnetic field-directed and imaging-guided photo-induced cancer therapy. The gold nanorods enable photoacoustic imaging and photothermal therapy, while the Fe3O4 nanoparticles enable magnetophoretic control of the formulation. This and similar systems could enable more precise and efficient cancer therapy, hopefully in the near future, after additional testing. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Adams, Richard J.
2015-01-01
The patent-pending Glove-Enabled Computer Operations (GECO) design leverages extravehicular activity (EVA) glove design features as platforms for instrumentation and tactile feedback, enabling the gloves to function as human-computer interface devices. Flexible sensors in each finger enable control inputs that can be mapped to any number of functions (e.g., a mouse click, a keyboard strike, or a button press). Tracking of hand motion is interpreted alternatively as movement of a mouse (change in cursor position on a graphical user interface) or a change in hand position on a virtual keyboard. Programmable vibro-tactile actuators aligned with each finger enrich the interface by creating the haptic sensations associated with control inputs, such as recoil of a button press.
Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad
2015-01-01
This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.
Enabling plant synthetic biology through genome engineering.
Baltes, Nicholas J; Voytas, Daniel F
2015-02-01
Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Holloway, C. M.; Johnson, C. W.
2008-01-01
This paper describes five loss of control accidents involving commercial aircraft, and derives from those accidents three principles to consider when developing a potential safety case for an advanced flight control system for commercial aircraft. One, among the foundational evidence needed to support a safety case is the availability to the control system of accurate and timely information about the status and health of relevant systems and components. Two, an essential argument to be sustained in the safety case is that pilots are provided with adequate information about the control system to enable them to understand the capabilities that it provides. Three, another essential argument is that the advanced control system will not perform less safely than a good pilot.
Enabling Airspace Integration for High Density Urban Air Mobility
NASA Technical Reports Server (NTRS)
Mueller, Eric Richard
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. These challenge for ODM may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude the UAS traffic management (UTM) system to higher altitudes and aircraft with humans onboard in controlled airspace, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
Magnetic steering control of multi-cellular bio-hybrid microswimmers.
Carlsen, Rika Wright; Edwards, Matthew R; Zhuang, Jiang; Pacoret, Cecile; Sitti, Metin
2014-10-07
Bio-hybrid devices, which integrate biological cells with synthetic components, have opened a new path in miniaturized systems with the potential to provide actuation and control for systems down to a few microns in size. Here, we address the challenge of remotely controlling bio-hybrid microswimmers propelled by multiple bacterial cells. These devices have been proposed as a viable method for targeted drug delivery but have also been shown to exhibit stochastic motion. We demonstrate a method of remote magnetic control that significantly reduces the stochasticity of the motion, enabling steering control. The demonstrated microswimmers consist of multiple Serratia marcescens (S. marcescens) bacteria attached to a 6 μm-diameter superparamagnetic bead. We characterize their motion and define the parameters governing their controllability. We show that the microswimmers can be controlled along two-dimensional (2-D) trajectories using weak magnetic fields (≤10 mT) and can achieve 2-D swimming speeds up to 7.3 μm s(-1). This magnetic steering approach can be integrated with sensory-based steering in future work, enabling new control strategies for bio-hybrid microsystems.
Development of modular control software for construction 3D-printer
NASA Astrophysics Data System (ADS)
Bazhanov, A.; Yudin, D.; Porkhalo, V.
2018-03-01
This article discusses the approach to developing modular software for real-time control of an industrial construction 3D printer. The proposed structure of a two-level software solution is implemented for a robotic system that moves in a Cartesian coordinate system with multi-axis interpolation. An algorithm for the formation and analysis of a path is considered to enable the most effective control of printing through dynamic programming.
Embedded control system for computerized franking machine
NASA Astrophysics Data System (ADS)
Shi, W. M.; Zhang, L. B.; Xu, F.; Zhan, H. W.
2007-12-01
This paper presents a novel control system for franking machine. A methodology for operating a franking machine using the functional controls consisting of connection, configuration and franking electromechanical drive is studied. A set of enabling technologies to synthesize postage management software architectures driven microprocessor-based embedded systems is proposed. The cryptographic algorithm that calculates mail items is analyzed to enhance the postal indicia accountability and security. The study indicated that the franking machine is reliability, performance and flexibility in printing mail items.
Experimental verification of Pyragas-Schöll-Fiedler control.
von Loewenich, Clemens; Benner, Hartmut; Just, Wolfram
2010-09-01
We present an experimental realization of time-delayed feedback control proposed by Schöll and Fiedler. The scheme enables us to stabilize torsion-free periodic orbits in autonomous systems, and to overcome the so-called odd number limitation. The experimental control performance is in quantitative agreement with the bifurcation analysis of simple model systems. The results uncover some general features of the control scheme which are deemed to be relevant for a large class of setups.
Fuzzy regulator design for wind turbine yaw control.
Theodoropoulos, Stefanos; Kandris, Dionisis; Samarakou, Maria; Koulouras, Grigorios
2014-01-01
This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness.
Overview of Intelligent Power Controller Development for the Deep Space Gateway
NASA Technical Reports Server (NTRS)
Csank, Jeffrey
2017-01-01
Intelligent, or autonomous, control of a spacecraft is an enabling technology that must be developed for deep space human exploration. NASAs current long term human space platform, the International Space Station, which is in Low Earth Orbit, is in almost continuous communication with ground based mission control. This allows near real-time control of all the vehicle core systems, including power, to be controlled by the ground. As focus shifts from Low Earth Orbit, communication time-lag and communication bandwidth limitations beyond geosynchronous orbit does not permit this type of operation. This presentation contains ongoing work at NASA to develop an architecture for autonomous power control and the vehicle manager which monitors, coordinates, and delegates to all the on-board subsystems to enable autonomous control of the complete spacecraft.
pH-driven colloidal transformations based on the vasoactive drug nicergoline.
Salentinig, Stefan; Tangso, Kristian J; Hawley, Adrian; Boyd, Ben J
2014-12-16
The structure of colloidal self-assembled drug delivery systems can be influenced by intermolecular interactions between drug and amphiphilic molecules, and is important to understand in the context of designing improved delivery systems. Controlling these structures can enable controlled or targeted release systems for poorly water-soluble drugs. Here we present the interaction of the hydrophobic vasoactive drug nicergoline with the internal structure of nanostructured emulsion particles based on the monoglyceride-water system. Addition of this drug leads to modification of the internal bicontinuous cubic structure to generate highly pH-responsive systems. The colloidal structures were characterized with small-angle X-ray scattering and visualized using cryogenic transmission electron microscopy. Reversible transformations to inverse micelles at high pH, vesicles at low pH, and the modification of the spacing of the bicontinuous cubic structure at intermediate pH were observed, and enabled the in situ determination of an apparent pKa for the drug in this system--a difficult task using solution-based approaches. The characterization of this phase behavior is also highly interesting for the design of pH-responsive controlled release systems for poorly water-soluble drug molecules.
Advanced I&C for Fault-Tolerant Supervisory Control of Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Daniel G.
In this research, we have developed a supervisory control approach to enable automated control of SMRs. By design the supervisory control system has an hierarchical, interconnected, adaptive control architecture. A considerable advantage to this architecture is that it allows subsystems to communicate at different/finer granularity, facilitates monitoring of process at the modular and plant levels, and enables supervisory control. We have investigated the deployment of automation, monitoring, and data collection technologies to enable operation of multiple SMRs. Each unit's controller collects and transfers information from local loops and optimize that unit’s parameters. Information is passed from the each SMR unitmore » controller to the supervisory controller, which supervises the actions of SMR units and manage plant processes. The information processed at the supervisory level will provide operators the necessary information needed for reactor, unit, and plant operation. In conjunction with the supervisory effort, we have investigated techniques for fault-tolerant networks, over which information is transmitted between local loops and the supervisory controller to maintain a safe level of operational normalcy in the presence of anomalies. The fault-tolerance of the supervisory control architecture, the network that supports it, and the impact of fault-tolerance on multi-unit SMR plant control has been a second focus of this research. To this end, we have investigated the deployment of advanced automation, monitoring, and data collection and communications technologies to enable operation of multiple SMRs. We have created a fault-tolerant multi-unit SMR supervisory controller that collects and transfers information from local loops, supervise their actions, and adaptively optimize the controller parameters. The goal of this research has been to develop the methodologies and procedures for fault-tolerant supervisory control of small modular reactors. To achieve this goal, we have identified the following objectives. These objective are an ordered approach to the research: I) Development of a supervisory digital I&C system II) Fault-tolerance of the supervisory control architecture III) Automated decision making and online monitoring.« less
Bio-inspired Computing for Robots
NASA Technical Reports Server (NTRS)
Laufenberg, Larry
2003-01-01
Living creatures may provide algorithms to enable active sensing/control systems in robots. Active sensing could enable planetary rovers to feel their way in unknown environments. The surface of Jupiter's moon Europa consists of fractured ice over a liquid sea that may contain microbes similar to those on Earth. To explore such extreme environments, NASA needs robots that autonomously survive, navigate, and gather scientific data. They will be too far away for guidance from Earth. They must sense their environment and control their own movements to avoid obstacles or investigate a science opportunity. To meet this challenge, CICT's Information Technology Strategic Research (ITSR) Project is funding neurobiologists at NASA's Jet Propulsion Laboratory (JPL) and selected universities to search for biologically inspired algorithms that enable robust active sensing and control for exploratory robots. Sources for these algorithms are living creatures, including rats and electric fish.
ERIC Educational Resources Information Center
Zhang, Qing; Brode, Ly; Cao, Tingting; Thompson, J. E.
2017-01-01
We describe the construction and initial demonstration of a new instructional tool called ROXI (Research Opportunity through eXperimental Instruction). The system interfaces a series of electronic sensors to control software via the Arduino platform. The sensors have been designed to enable low-cost data collection in laboratory courses. Data are…
Centralized Accounting and Electronic Filing Provides Efficient Receivables Collection.
ERIC Educational Resources Information Center
School Business Affairs, 1983
1983-01-01
An electronic filing system makes financial control manageable at Bowling Green State University, Ohio. The system enables quick access to computer-stored consolidated account data and microfilm images of charges, statements, and other billing documents. (MLF)
High Resolution Sensing and Control of Urban Water Networks
NASA Astrophysics Data System (ADS)
Bartos, M. D.; Wong, B. P.; Kerkez, B.
2016-12-01
We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.
Dynamic analysis of a photovoltaic power system with battery storage capability
NASA Technical Reports Server (NTRS)
Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.
1979-01-01
A photovolataic power system with a battery storage capability is analyzed. A dual battery current control concept is proposed, which enables the battery to either supply or accept power depending upon system environment and load conditions. A simulation of the power system, including the battery current control, is developed and evaluated. The evaulation demonstrate the visbility of the battery control concept of switch the battery from a charge to discharge mode and back as required by load and environmental conditions. An acceptable system operation is demonstrated over the entire insolation range. Additionally, system sensitivity, bandwidth, and damping characteristics of the battery control are shown to be acceptable for a projected hardware implementation.
Safety climate and culture: Integrating psychological and systems perspectives.
Casey, Tristan; Griffin, Mark A; Flatau Harrison, Huw; Neal, Andrew
2017-07-01
Safety climate research has reached a mature stage of development, with a number of meta-analyses demonstrating the link between safety climate and safety outcomes. More recently, there has been interest from systems theorists in integrating the concept of safety culture and to a lesser extent, safety climate into systems-based models of organizational safety. Such models represent a theoretical and practical development of the safety climate concept by positioning climate as part of a dynamic work system in which perceptions of safety act to constrain and shape employee behavior. We propose safety climate and safety culture constitute part of the enabling capitals through which organizations build safety capability. We discuss how organizations can deploy different configurations of enabling capital to exert control over work systems and maintain safe and productive performance. We outline 4 key strategies through which organizations to reconcile the system control problems of promotion versus prevention, and stability versus flexibility. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Power and Energy Management Strategy for Solid State Transformer Interfaced DC Microgrid
NASA Astrophysics Data System (ADS)
Yu, Xunwei
As a result of more and more applications of renewable energy into our ordinary life, how to construct a microgrid (MG) based on the distributed renewable energy resources and energy storages, and then to supply a reliable and flexible power to the conventional power system are the hottest topics nowadays. Comparing to the AC microgrid (AC MG), DC microgrid (DC MG) gets more attentions, because it has its own advantages, such as high efficiency, easy to integrate the DC energy sources and energy storages, and so on. Furthermore, the interaction between DC MG system and the distribution system is also an important and practical issue. In Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM), the Solid State Transformer (SST) is built, which can transform the distribution system to the low AC and DC system directly (usually home application level). Thus, the SST gives a new promising solution for low voltage level MG to interface the distribution level system instead of the traditional transformer. So a SST interfaced DC MG is proposed. However, it also brings new challenges in the design and control fields for this system because the system gets more complicated, which includes distributed energy sources and storages, load, and SST. The purpose of this dissertation is to design a reliable and flexible SST interfaced DC MG based on the renewable energy sources and energy storages, which can operate in islanding mode and SST-enabled mode. Dual Half Bridge (DHB) is selected as the topology for DC/DC converter in DC MG. The DHB operation procedure and average model are analyzed, which is the basis for the system modeling, control and operation. Furthermore, two novel power and energy management strategies are proposed. The first one is a distributed energy management strategy for the DC MG operating in the SST-enabled mode. In this method, the system is not only in distributed control to increase the system reliability, but the power sharing between DC MG and SST, State of Charge (SOC) for battery, are both considered in the system energy management strategy. Then the DC MG output power is controllable and the battery is autonomous charged and discharged based on its SOC and system information without communication. The system operation modes are defined, analyzed and the simulation results verify the strategy. The second power and energy management strategy is the hierarchical control. In this control strategy, three-layer control structure is presented and defined. The first layer is the primary control for the DC MG in islanding mode, which is to guarantee the DC MG system power balance without communication to increase the system reliability. The second control layer is to implement the seamless switch for DC MG system from islanding mode to SST-enabled mode. The third control layer is the tertiary control for the system energy management and the communication is also involved. The tertiary layer not only controls the whole DC MG output power, but also manages battery module charge and discharge statuses based on its SOC. The simulation and experimental results verify the methods. Some practical issues for the SST interfaced DC MG are also investigated. Power unbalance issue of SST is analyzed and a distributed control strategy is presented to solve this problem. Simulation and experimental results verify it. Furthermore, the control strategy for SST interfaced DC MG blackout is presented and the simulation results are shown to valid it. Also a plug and play SST interfaced DC MG is constructed and demonstrated. Several battery and PV modules construct a typical DC MG and a DC source is adopted to simulate the SST. The system is in distributed control and can operate in islanding mode and SST-enabled mode. The experimental results verify that individual module can plug into and unplug from the DC MG randomly without affecting the system stability. Furthermore, the communication ports are embedded into the system and a universal communication protocol is proposed to implement the plug and play function. Specified ID is defined for individual PV and battery for system recognition. A database is built to store the whole system date for visual display, monitor and history query.
Ando, Noriyasu; Kanzaki, Ryohei
2017-09-01
The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.
A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC) system.
Sudomoina, Marina; Latypova, Ekaterina; Favorova, Olga O; Golemis, Erica A; Serebriiskii, Ilya G
2004-04-29
Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC) system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.
Adapting Wireless Technology to Lighting Control and Environmental Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana Teasdale; Francis Rubinstein; Dave Watson
The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wirelessmore » mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.« less
Communication Needs Assessment for Distributed Turbine Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Behbahani, Alireza R.
2008-01-01
Control system architecture is a major contributor to future propulsion engine performance enhancement and life cycle cost reduction. The control system architecture can be a means to effect net weight reduction in future engine systems, provide a streamlined approach to system design and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a centralized, point-to-point analog control topology to a modular, networked, distributed system is paramount to extracting these system improvements. However, distributed engine control systems are only possible through the successful design and implementation of a suitable communication system. In a networked system, understanding the data flow between control elements is a fundamental requirement for specifying the communication architecture which, itself, is dependent on the functional capability of electronics in the engine environment. This paper presents an assessment of the communication needs for distributed control using strawman designs and relates how system design decisions relate to overall goals as we progress from the baseline centralized architecture, through partially distributed and fully distributed control systems.
Mobility experiments with microrobots for minimally invasive intraocular surgery.
Ullrich, Franziska; Bergeles, Christos; Pokki, Juho; Ergeneman, Olgac; Erni, Sandro; Chatzipirpiridis, George; Pané, Salvador; Framme, Carsten; Nelson, Bradley J
2013-04-23
To investigate microrobots as an assistive tool for minimally invasive intraocular surgery and to demonstrate mobility and controllability inside the living rabbit eye. A system for wireless magnetic control of untethered microrobots was developed. Mobility and controllability of a microrobot are examined in different media, specifically vitreous, balanced salt solution (BSS), and silicone oil. This is demonstrated through ex vivo and in vivo animal experiments. The developed electromagnetic system enables precise control of magnetic microrobots over a workspace that covers the posterior eye segment. The system allows for rotation and translation of the microrobot in different media (vitreous, BSS, silicone oil) inside the eye. Intravitreal introduction of untethered mobile microrobots can enable sutureless and precise ophthalmic procedures. Ex vivo and in vivo experiments demonstrate that microrobots can be manipulated inside the eye. Potential applications are targeted drug delivery for maculopathies such as AMD, intravenous deployment of anticoagulation agents for retinal vein occlusion (RVO), and mechanical applications, such as manipulation of epiretinal membrane peeling (ERM). The technology has the potential to reduce the invasiveness of ophthalmic surgery and assist in the treatment of a variety of ophthalmic diseases.
NASA Technical Reports Server (NTRS)
Robertson, Edward A.; Charles, Dingell W.; Bufkin, Ann L.; Rodriggs, Liana M.; Peterson, Wayne; Cuthbert, Peter; Lee, David E.; Westhelle, Carlos
2006-01-01
A report discusses the Gumdrop capsule a conceptual spacecraft that would enable the crew to escape safely in the event of a major equipment failure at any time from launch through atmospheric re-entry. The scaleable Gumdrop capsule would comprise a command module (CM), a service module (SM), and a crew escape system (CES). The CM would contain a pressurized crew environment that would include avionic, life-support, thermal control, propulsive attitude control, and recovery systems. The SM would provide the primary propulsion and would also supply electrical power, life-support resources, and active thermal control to the CM. The CES would include a solid rocket motor, embedded within the SM, for pushing the CM away from the SM in the event of a critical thermal-protection-system failure or loss of control. The CM and SM would normally remain integrated with each other from launch through recovery, but could be separated using the CES, if necessary, to enable the safe recovery of the crew in the CM. The crew escape motor could be used, alternatively, as a redundant means of de-orbit propulsion for the CM in the event of a major system failure in the SM.
Engineering the Follicle Microenvironment
West, Erin R.; Shea, Lonnie D.; Woodruff, Teresa K.
2008-01-01
In vitro ovarian follicle culture provides a tool to investigate folliculogenesis, and may one day provide women with fertility-preservation options. The application of tissue engineering principles to ovarian follicle maturation may enable the creation of controllable microenvironments that will coordinate the growth of the multiple cellular compartments within the follicle. Three-dimensional culture systems can preserve follicle architecture, thereby maintaining critical cell–cell and cell–matrix signaling lost in traditional two-dimensional attached follicle culture systems. Maintaining the follicular structure while manipulating the biochemical and mechanical environment will enable the development of controllable systems to investigate the fundamental biological principles underlying follicle maturation. This review describes recent advances in ovarian follicle culture, and highlights the tissue engineering principles that may be applied to follicle culture, with the ultimate objective of germline preservation for females facing premature infertility. PMID:17594609
A Printed Organic Circuit System for Wearable Amperometric Electrochemical Sensors.
Shiwaku, Rei; Matsui, Hiroyuki; Nagamine, Kuniaki; Uematsu, Mayu; Mano, Taisei; Maruyama, Yuki; Nomura, Ayako; Tsuchiya, Kazuhiko; Hayasaka, Kazuma; Takeda, Yasunori; Fukuda, Takashi; Kumaki, Daisuke; Tokito, Shizuo
2018-04-23
Wearable sensor device technologies, which enable continuous monitoring of biological information from the human body, are promising in the fields of sports, healthcare, and medical applications. Further thinness, light weight, flexibility and low-cost are significant requirements for making the devices attachable onto human tissues or clothes like a patch. Here we demonstrate a flexible and printed circuit system consisting of an enzyme-based amperometric sensor, feedback control and amplification circuits based on organic thin-film transistors. The feedback control and amplification circuits based on pseudo-CMOS inverters were successfuly integrated by printing methods on a plastic film. This simple system worked very well like a potentiostat for electrochemical measurements, and enabled the quantitative and real-time measurement of lactate concentration with high sensitivity of 1 V/mM and a short response time of a hundred seconds.
Cunningham, James; Ainsworth, John
2017-01-01
The rise of distributed ledger technology, initiated and exemplified by the Bitcoin blockchain, is having an increasing impact on information technology environments in which there is an emphasis on trust and security. Management of electronic health records, where both conformation to legislative regulations and maintenance of public trust are paramount, is an area where the impact of these new technologies may be particularly beneficial. We present a system that enables fine-grained personalized control of third-party access to patients' electronic health records, allowing individuals to specify when and how their records are accessed for research purposes. The use of the smart contract based Ethereum blockchain technology to implement this system allows it to operate in a verifiably secure, trustless, and openly auditable environment, features crucial to health information systems moving forward.
Stocker, Gernot; Rieder, Dietmar; Trajanoski, Zlatko
2004-03-22
ClusterControl is a web interface to simplify distributing and monitoring bioinformatics applications on Linux cluster systems. We have developed a modular concept that enables integration of command line oriented program into the application framework of ClusterControl. The systems facilitate integration of different applications accessed through one interface and executed on a distributed cluster system. The package is based on freely available technologies like Apache as web server, PHP as server-side scripting language and OpenPBS as queuing system and is available free of charge for academic and non-profit institutions. http://genome.tugraz.at/Software/ClusterControl
Power control system for a hot gas engine
Berntell, John O.
1986-01-01
A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.
Frank, Andrew A.
1984-01-01
A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.
Quadrocopter Control Design and Flight Operation
NASA Technical Reports Server (NTRS)
Karwoski, Katherine
2011-01-01
A limiting factor in control system design and analysis for spacecraft is the inability to physically test new algorithms quickly and cheaply. Test flights of space vehicles are costly and take much preparation. As such, EV41 recently acquired a small research quadrocopter that has the ability to be a test bed for new control systems. This project focused on learning how to operate, fly, and maintain the quadrocopter, as well as developing and testing protocols for its use. In parallel to this effort, developing a model in Simulink facilitated the design and analysis of simple control systems for the quadrocopter. Software provided by the manufacturer enabled testing of the Simulink control system on the vehicle.
Small Spacecraft Active Thermal Control: Micro-Vascular Composites Enable Small Satellite Cooling
NASA Technical Reports Server (NTRS)
Ghosh, Alexander
2016-01-01
The Small Spacecraft Integrated Power System with Active Thermal Control project endeavors to achieve active thermal control for small spacecraft in a practical and lightweight structure by circulating a coolant through embedded micro-vascular channels in deployable composite panels. Typically, small spacecraft rely on small body mounted passive radiators to discard heat. This limits cooling capacity and leads to the necessity to design for limited mission operations. These restrictions severely limit the ability of the system to dissipate large amounts of heat from radios, propulsion systems, etc. An actively pumped cooling system combined with a large deployable radiator brings two key advantages over the state of the art for small spacecraft: capacity and flexibility. The use of a large deployable radiator increases the surface area of the spacecraft and allows the radiation surface to be pointed in a direction allowing the most cooling, drastically increasing cooling capacity. With active coolant circulation, throttling of the coolant flow can enable high heat transfer rates during periods of increased heat load, or isolate the radiator during periods of low heat dissipation.
Technologies for Controlled, Local Delivery of siRNA
Sarett, Samantha M.; Nelson, Christopher E.; Duvall, Craig L.
2015-01-01
The discovery of RNAi in the late 1990s unlocked a new realm of therapeutic possibilities by enabling potent and specific silencing of theoretically any desired genetic target. Better elucidation of the mechanism of action, the impact of chemical modifications that stabilize and reduce nonspecific effects of siRNA molecules, and the key design considerations for effective delivery systems has spurred progress toward developing clinically-successful siRNA therapies. A logical aim for initial siRNA translation is local therapies, as delivering siRNA directly to its site of action helps to ensure that a sufficient dose reaches the target tissue, lessens the potential for off-target side effects, and circumvents the substantial systemic delivery barriers. While topical siRNA delivery has progressed into numerous clinical trials, an enormous opportunity also exists to develop sustained-release, local delivery systems that enable both spatial and temporal control of gene silencing. This review focuses on material platforms that establish both localized and controlled gene silencing, with emphasis on the systems that show most promise for clinical translation. PMID:26476177
NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems
NASA Technical Reports Server (NTRS)
Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)
1994-01-01
Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.
Eddy Current System and Method for Crack Detection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)
2012-01-01
An eddy current system and method enables detection of sub-surface damage in a cylindrical object. The invention incorporates a dual frequency, orthogonally wound eddy current probe mounted on a stepper motor-controlled scanning system. The system is designed to inspect for outer surface damage from the interior of the cylindrical object.
An intelligent control and virtual display system for evolutionary space station workstation design
NASA Technical Reports Server (NTRS)
Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.
1992-01-01
Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.
Workstation-Based Simulation for Rapid Prototyping and Piloted Evaluation of Control System Designs
NASA Technical Reports Server (NTRS)
Mansur, M. Hossein; Colbourne, Jason D.; Chang, Yu-Kuang; Aiken, Edwin W. (Technical Monitor)
1998-01-01
The development and optimization of flight control systems for modem fixed- and rotary-. wing aircraft consume a significant portion of the overall time and cost of aircraft development. Substantial savings can be achieved if the time required to develop and flight test the control system, and the cost, is reduced. To bring about such reductions, software tools such as Matlab/Simulink are being used to readily implement block diagrams and rapidly evaluate the expected responses of the completed system. Moreover, tools such as CONDUIT (CONtrol Designer's Unified InTerface) have been developed that enable the controls engineers to optimize their control laws and ensure that all the relevant quantitative criteria are satisfied, all within a fully interactive, user friendly, unified software environment.
Disturbance Accommodating Adaptive Control with Application to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan
2012-01-01
Adaptive control techniques are well suited to applications that have unknown modeling parameters and poorly known operating conditions. Many physical systems experience external disturbances that are persistent or continually recurring. Flexible structures and systems with compliance between components often form a class of systems that fail to meet standard requirements for adaptive control. For these classes of systems, a residual mode filter can restore the ability of the adaptive controller to perform in a stable manner. New theory will be presented that enables adaptive control with accommodation of persistent disturbances using residual mode filters. After a short introduction to some of the control challenges of large utility-scale wind turbines, this theory will be applied to a high-fidelity simulation of a wind turbine.
Fuzzy Regulator Design for Wind Turbine Yaw Control
Koulouras, Grigorios
2014-01-01
This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness. PMID:24693237
Chamber for the optical manipulation of microscopic particles
Buican, Tudor N.; Upham, Bryan D.
1992-01-01
A particle control chamber enables experiments to be carried out on biological cells and the like using a laser system to trap and manipulate the particles. A manipulation chamber provides a plurality of inlet and outlet ports for the particles and for fluids used to control or to contact the particles. A central manipulation area is optically accessible by the laser and includes first enlarged volumes for containing a selected number of particles for experimentation. A number of first enlarged volumes are connected by flow channels through second enlarged volumes. The second enlarged volumes act as bubble valves for controlling the interconnections between the first enlarged volumes. Electrode surfaces may be applied above the first enlarged volumes to enable experimentation using the application of electric fields within the first enlarged volumes. A variety of chemical and environmental conditions may be established within individual first enlarged volumes to enable experimental conditions for small scale cellular interactions.
Electrospinning Robot for Regenerative Coating of Implants
NASA Astrophysics Data System (ADS)
Gerstenhaber, Jonathan A.
Electrospinning of nanofibrous mats and scaffolds enables generation of scaffolding that is not only highly porous, but also has a structure that essentially mimics the natural basement membrane. As a result, the method has proliferated extensively, and is commonly used for diverse applications such as water filtration or tissue engineering, the latter of which may involve the use of natural or synthetic materials. Common laboratory scale electrospinning setups can be built inexpensively with merely a syringe pump, a high voltage supply, and an aluminum foil target. These systems, however, are limited to flat target surface geometries that span several centimeters. While a scaffold can be cut or folded to conform to a bone or other biological surface, spinning directly onto a surface with significant peaks and troughs results in poor fiber uniformity. Furthermore, if an alteration of fiber properties is preferred, the high voltage setup limits user access and customization of parameters during the spinning period. Finally, control of the electric field is compromised by the proximity of grounded electrical components. As its first aim, this project develops a robotic control system to enable custom coatings of arbitrary surfaces. By augmenting the traditional electrospinning system with a three-dimensional robotic control system, electric field focusing fibers, and additional aerodynamic forces terms 'electroblowing', the device can be produced across targets with strong topographic anisotropy. The second aim continues to enhance these attributes with biocompatible soy based scaffolds. Craniofacial implants are often complex in geometry, and conformal bandages are particularly hard to produce in these areas. Soy based scaffolds will be produced for 3D-printed replicas of these situations. Finally, the methods developed across this aim enables the development and use of a handheld electrospinning system that combines a coaxial high velocity air flow with the high voltage spinning element to reduce effects of operator error. The final goal of the thesis is to test whether fiber control successfully reduces effects of fiber anisotropy in vitro and to use the enhanced fiber control mechanisms to produce scaffolds with significant anisotropy, depositing aligned fibers at a target point to eventually enable generation of scaffolds with programmable variable spatial alignment similar to tendon. When completed, the systems described will enable custom production of coatings or scaffolds for functionality as scaffolding on medically relevant surfaces. Specifically, this means first, that scaffolds can be used with confidence to improve fixation even of non-cylindrical implants and enhance local tissue integration, and second, that implants can be customized with areas of 'guidance' fibers or local drug depots to either promote regeneration and population by surrounding tissue or mimic natural anisotropic cues necessary for mechanical or biological functionality.
Concepts for Distributed Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Thomas, Randy; Saus, Joseph
2007-01-01
Gas turbine engines for aero-propulsion systems are found to be highly optimized machines after over 70 years of development. Still, additional performance improvements are sought while reduction in the overall cost is increasingly a driving factor. Control systems play a vitally important part in these metrics but are severely constrained by the operating environment and the consequences of system failure. The considerable challenges facing future engine control system design have been investigated. A preliminary analysis has been conducted of the potential benefits of distributed control architecture when applied to aero-engines. In particular, reductions in size, weight, and cost of the control system are possible. NASA is conducting research to further explore these benefits, with emphasis on the particular benefits enabled by high temperature electronics and an open-systems approach to standardized communications interfaces.
ERIC Educational Resources Information Center
Kennedy, Mike
2000-01-01
Examines how the use of electronic access-control system enables college and universities to provide a safer environment for students and staff. The advantages of no-key doors, adapting entry card systems for multiple uses, and successfully retaining lock and key systems when facilities do not lend themselves to electronic security are discussed.…
A unifying framework for systems modeling, control systems design, and system operation
NASA Technical Reports Server (NTRS)
Dvorak, Daniel L.; Indictor, Mark B.; Ingham, Michel D.; Rasmussen, Robert D.; Stringfellow, Margaret V.
2005-01-01
Current engineering practice in the analysis and design of large-scale multi-disciplinary control systems is typified by some form of decomposition- whether functional or physical or discipline-based-that enables multiple teams to work in parallel and in relative isolation. Too often, the resulting system after integration is an awkward marriage of different control and data mechanisms with poor end-to-end accountability. System of systems engineering, which faces this problem on a large scale, cries out for a unifying framework to guide analysis, design, and operation. This paper describes such a framework based on a state-, model-, and goal-based architecture for semi-autonomous control systems that guides analysis and modeling, shapes control system software design, and directly specifies operational intent. This paper illustrates the key concepts in the context of a large-scale, concurrent, globally distributed system of systems: NASA's proposed Array-based Deep Space Network.
NASA Astrophysics Data System (ADS)
Ikeda, Sei; Sato, Tomokazu; Kanbara, Masayuki; Yokoya, Naokazu
2004-05-01
Technology that enables users to experience a remote site virtually is called telepresence. A telepresence system using real environment images is expected to be used in the field of entertainment, medicine, education and so on. This paper describes a novel telepresence system which enables users to walk through a photorealistic virtualized environment by actual walking. To realize such a system, a wide-angle high-resolution movie is projected on an immersive multi-screen display to present users the virtualized environments and a treadmill is controlled according to detected user's locomotion. In this study, we use an omnidirectional multi-camera system to acquire images real outdoor scene. The proposed system provides users with rich sense of walking in a remote site.
Light-operated machines based on threaded molecular structures.
Credi, Alberto; Silvi, Serena; Venturi, Margherita
2014-01-01
Rotaxanes and related species represent the most common implementation of the concept of artificial molecular machines, because the supramolecular nature of the interactions between the components and their interlocked architecture allow a precise control on the position and movement of the molecular units. The use of light to power artificial molecular machines is particularly valuable because it can play the dual role of "writing" and "reading" the system. Moreover, light-driven machines can operate without accumulation of waste products, and photons are the ideal inputs to enable autonomous operation mechanisms. In appropriately designed molecular machines, light can be used to control not only the stability of the system, which affects the relative position of the molecular components but also the kinetics of the mechanical processes, thereby enabling control on the direction of the movements. This step forward is necessary in order to make a leap from molecular machines to molecular motors.
Enabling technologies for Chinese Mars lander guidance system
NASA Astrophysics Data System (ADS)
Jiang, Xiuqiang; Li, Shuang
2017-04-01
Chinese first Mars exploration activity, orbiting landing and roaming collaborative mission, has been programmed and started. As a key technology, Mars lander guidance system is intended to serve atmospheric entry, descent and landing (EDL) phases. This paper is to report the formation process of enabling technology road map for Chinese Mars lander guidance system. First, two scenarios of the first-stage of the Chinese Mars exploration project are disclosed in detail. Second, mission challenges and engineering needs of EDL guidance, navigation, and control (GNC) are presented systematically for Chinese Mars exploration program. Third, some useful related technologies developed in China's current aerospace projects are pertinently summarized, especially on entry guidance, parachute descent, autonomous hazard avoidance and safe landing. Finally, an enabling technology road map of Chinese Mars lander guidance is given through technological inheriting and improving.
STIMULUS: End-System Network Interface Controller for 100 Gb/s Wide Area Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkesh-Ha, Payman
2014-09-12
The main goal of this research grant is to develop a system-level solution leveraging novel technologies that enable network communications at 100 Gb/s or beyond. University of New Mexico in collaboration with Acadia Optronics LLC has been working on this project to develop the 100 Gb/s Network Interface Controller (NIC) under this Department of Energy (DOE) grant.
Force reflection with compliance control
NASA Technical Reports Server (NTRS)
Kim, Won S. (Inventor)
1993-01-01
Two types of systems for force-reflecting control, which enables high force-reflection gain, are presented: position-error-based force reflection and low-pass-filtered force reflection. Both of the systems are combined with shared compliance control. In the position-error-based class, the position error between the commanded and the actual position of a compliantly controlled robot is used to provide force reflection. In the low-pass-filtered force reflection class, the low-pass-filtered output of the compliance control is used to provide force reflection. The increase in force reflection gain can be more than 10-fold as compared to a conventional high-bandwidth pure force reflection system, when high compliance values are used for the compliance control.
The ViewRay system: magnetic resonance-guided and controlled radiotherapy.
Mutic, Sasa; Dempsey, James F
2014-07-01
A description of the first commercially available magnetic resonance imaging (MRI)-guided radiation therapy (RT) system is provided. The system consists of a split 0.35-T MR scanner straddling 3 (60)Co heads mounted on a ring gantry, each head equipped with independent doubly focused multileaf collimators. The MR and RT systems share a common isocenter, enabling simultaneous and continuous MRI during RT delivery. An on-couch adaptive RT treatment-planning system and integrated MRI-guided RT control system allow for rapid adaptive planning and beam delivery control based on the visualization of soft tissues. Treatment of patients with this system commenced at Washington University in January 2014. Copyright © 2014 Elsevier Inc. All rights reserved.
Bolie, V.W.
1990-07-03
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.
Bolie, Victor W.
1990-01-01
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya Lee; Spielman, Zachary Alexander; Rice, Brandon Charles
2016-04-01
This report describes the installation of two advanced control room technologies, an advanced alarm system and a computerized procedure system, into the Human Systems Simulation Laboratory (HSSL). Installation of these technologies enables future phases of this research by providing a platform to systematically evaluate the effect of these technologies on operator and plant performance.
Self-contained microfluidic systems: a review.
Boyd-Moss, Mitchell; Baratchi, Sara; Di Venere, Martina; Khoshmanesh, Khashayar
2016-08-16
Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined.
A Reward-Based Behavioral Platform to Measure Neural Activity during Head-Fixed Behavior
Micallef, Andrew H.; Takahashi, Naoya; Larkum, Matthew E.; Palmer, Lucy M.
2017-01-01
Understanding the neural computations that contribute to behavior requires recording from neurons while an animal is behaving. This is not an easy task as most subcellular recording techniques require absolute head stability. The Go/No-Go sensory task is a powerful decision-driven task that enables an animal to report a binary decision during head-fixation. Here we discuss how to set up an Ardunio and Python based platform system to control a Go/No-Go sensory behavior paradigm. Using an Arduino micro-controller and Python-based custom written program, a reward can be delivered to the animal depending on the decision reported. We discuss the various components required to build the behavioral apparatus that can control and report such a sensory stimulus paradigm. This system enables the end user to control the behavioral testing in real-time and therefore it provides a strong custom-made platform for probing the neural basis of behavior. PMID:28620282
Autonomous Guidance of Agile Small-scale Rotorcraft
NASA Technical Reports Server (NTRS)
Mettler, Bernard; Feron, Eric
2004-01-01
This report describes a guidance system for agile vehicles based on a hybrid closed-loop model of the vehicle dynamics. The hybrid model represents the vehicle dynamics through a combination of linear-time-invariant control modes and pre-programmed, finite-duration maneuvers. This particular hybrid structure can be realized through a control system that combines trim controllers and a maneuvering control logic. The former enable precise trajectory tracking, and the latter enables trajectories at the edge of the vehicle capabilities. The closed-loop model is much simpler than the full vehicle equations of motion, yet it can capture a broad range of dynamic behaviors. It also supports a consistent link between the physical layer and the decision-making layer. The trajectory generation was formulated as an optimization problem using mixed-integer-linear-programming. The optimization is solved in a receding horizon fashion. Several techniques to improve the computational tractability were investigate. Simulation experiments using NASA Ames 'R-50 model show that this approach fully exploits the vehicle's agility.
A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig
2015-01-01
Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.
A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Hartl, Darren J.; Sheth, Rubik; Dinsmore, Craig
2014-01-01
Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system may be required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a relatively high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but crew safety and environment compatibility have constrained these solutions to massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design that employs the behavior of shape memory alloys (SMAs) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, or power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Coupled thermal-stress analyses predict that the desired morphing behavior of the concept is attainable. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept has been demonstrated in proof-of-concept benchtop tests.
NASA Technical Reports Server (NTRS)
Davis, Kirsch; Bankieris, Derek
2016-01-01
As an intern project for NASA Johnson Space Center (JSC), my job was to familiarize myself and operate a Robotics Operating System (ROS). The project outcome will convert existing software assets into ROS using nodes, enabling a robotic Hexapod to communicate and to be functional and controlled by an existing PlayStation 3 (PS3) controller. Existing control algorithms and current libraries have no ROS capabilities within the Hexapod C++ source code. Conversion of C++ codes to ROS will enable existing code to be compatible with ROS, and will be controlled using existing PS3 controller. Furthermore, my job description is to design ROS messages and script programs which will enable assets to participate in the ROS ecosystem. In addition, an open source software (IDE) Arduino board will be integrated in the ecosystem with designing circuitry on a breadboard to add additional behavior with push buttons, potentiometers and other simple elements in the electrical circuitry. Other projects with the Arduino will be a GPS module digital clock that will run off 22 satellites to show accurate real time using a GPS signal and internal patch antenna to communicate with satellites.
1998 IEEE Aerospace Conference. Proceedings.
NASA Astrophysics Data System (ADS)
The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.
Automated position control of a surface array relative to a liquid microjunction surface sampler
Van Berkel, Gary J.; Kertesz, Vilmos; Ford, Michael James
2007-11-13
A system and method utilizes an image analysis approach for controlling the probe-to-surface distance of a liquid junction-based surface sampling system for use with mass spectrometric detection. Such an approach enables a hands-free formation of the liquid microjunction used to sample solution composition from the surface and for re-optimization, as necessary, of the microjunction thickness during a surface scan to achieve a fully automated surface sampling system.
A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Simon, Donald L.; Garg, Sanjay; Guo, Ten-Heui; Mercer, Carolyn; Behbahani, Alireza; Bajwa, Anupa; Jensen, Daniel T.
2005-01-01
Intelligent Control and Health Management technology for aircraft propulsion systems is much more developed in the laboratory than in practice. With a renewed emphasis on reducing engine life cycle costs, improving fuel efficiency, increasing durability and life, etc., driven by various government programs, there is a strong push to move these technologies out of the laboratory and onto the engine. This paper describes the existing state of engine control and on-board health management, and surveys some specific technologies under development that will enable an aircraft propulsion system to operate in an intelligent way--defined as self-diagnostic, self-prognostic, self-optimizing, and mission adaptable. These technologies offer the potential for creating extremely safe, highly reliable systems. The technologies will help to enable a level of performance that far exceeds that of today s propulsion systems in terms of reduction of harmful emissions, maximization of fuel efficiency, and minimization of noise, while improving system affordability and safety. Technologies that are discussed include various aspects of propulsion control, diagnostics, prognostics, and their integration. The paper focuses on the improvements that can be achieved through innovative software and algorithms. It concentrates on those areas that do not require significant advances in sensors and actuators to make them achievable, while acknowledging the additional benefit that can be realized when those technologies become available. The paper also discusses issues associated with the introduction of some of the technologies.
28 CFR 16.98 - Exemption of the Drug Enforcement Administration (DEA)-limited access.
Code of Federal Regulations, 2010 CFR
2010-07-01
... enable him to avoid compliance with the Drug Abuse Prevention and Control Act of 1970 (Pub. L. 91-513...) because many of the records in this system are derived from other domestic record systems and therefore it...
Telerobot local-remote control architecture for space flight program applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John
1993-01-01
The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.
Adapting Wireless Technology to Lighting Control and Environmental Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana Teasdale; Francis Rubinstein; David S. Watson
Although advanced lighting control systems offer significant energy savings, the high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor,more » and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output, in addition to 0-24 Volt and 0-10 Volt inputs. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multisensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including open and closed-loop daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 20% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years. At 30% market penetration saturation, a cumulative 695 Billion kWh of energy could be saved through 2025, a cost savings of $52 Billion.« less
PDEMOD: Software for control/structures optimization
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Zimmerman, David
1991-01-01
Because of the possibility of adverse interaction between the control system and the structural dynamics of large, flexible spacecraft, great care must be taken to ensure stability and system performance. Because of the high cost of insertion of mass into low earth orbit, it is prudent to optimize the roles of structure and control systems simultaneously. Because of the difficulty and the computational burden in modeling and analyzing the control structure system dynamics, the total problem is often split and treated iteratively. It would aid design if the control structure system dynamics could be represented in a single system of equations. With the use of the software PDEMOD (Partial Differential Equation Model), it is now possible to optimize structure and control systems simultaneously. The distributed parameter modeling approach enables embedding the control system dynamics into the same equations for the structural dynamics model. By doing this, the current difficulties involved in model order reduction are avoided. The NASA Mini-MAST truss is used an an example for studying integrated control structure design.
Hydraulic actuator mechanism to control aircraft spoiler movements through dual input commands
NASA Technical Reports Server (NTRS)
Irick, S. C. (Inventor)
1981-01-01
An aircraft flight spoiler control mechanism is described. The invention enables the conventional, primary spoiler control system to retain its operational characteristics while accommodating a secondary input controlled by a conventional computer system to supplement the settings made by the primary input. This is achieved by interposing springs between the primary input and the spoiler control unit. The springs are selected to have a stiffness intermediate to the greater force applied by the primary control linkage and the lesser resistance offered by the spoiler control unit. Thus, operation of the primary input causes the control unit to yield before the springs, yet, operation of the secondary input, acting directly on the control unit, causes the springs to yield and absorb adjustments before they are transmitted into the primary control system.
Field-Oriented Control Of Induction Motors
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.
1993-01-01
Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.
Frank, A.A.
1984-07-10
A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine. 4 figs.
Flight control actuation system
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)
2004-01-01
A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.
Flight control actuation system
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)
2006-01-01
A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.
Web-Altairis: An Internet-Enabled Ground System
NASA Technical Reports Server (NTRS)
Miller, Phil; Coleman, Jason; Gemoets, Darren; Hughes, Kevin
2000-01-01
This paper describes Web-Altairis, an Internet-enabled ground system software package funded by the Advanced Automation and Architectures Branch (Code 588) of NASA's Goddard Space Flight Center. Web-Altairis supports the trend towards "lights out" ground systems, where the control center is unattended and problems are resolved by remote operators. This client/server software runs on most popular platforms and provides for remote data visualization using the rich functionality of the VisAGE toolkit. Web-Altairis also supports satellite commanding over the Internet. This paper describes the structure of Web-Altairis and VisAGE, the underlying technologies, the provisions for security, and our experiences in developing and testing the software.
Managing Information On Technical Requirements
NASA Technical Reports Server (NTRS)
Mauldin, Lemuel E., III; Hammond, Dana P.
1993-01-01
Technical Requirements Analysis and Control Systems/Initial Operating Capability (TRACS/IOC) computer program provides supplemental software tools for analysis, control, and interchange of project requirements so qualified project members have access to pertinent project information, even if in different locations. Enables users to analyze and control requirements, serves as focal point for project requirements, and integrates system supporting efficient and consistent operations. TRACS/IOC is HyperCard stack for use on Macintosh computers running HyperCard 1.2 or later and Oracle 1.2 or later.
Cyber-physical geographical information service-enabled control of diverse in-situ sensors.
Chen, Nengcheng; Xiao, Changjiang; Pu, Fangling; Wang, Xiaolei; Wang, Chao; Wang, Zhili; Gong, Jianya
2015-01-23
Realization of open online control of diverse in-situ sensors is a challenge. This paper proposes a Cyber-Physical Geographical Information Service-enabled method for control of diverse in-situ sensors, based on location-based instant sensing of sensors, which provides closed-loop feedbacks. The method adopts the concepts and technologies of newly developed cyber-physical systems (CPSs) to combine control with sensing, communication, and computation, takes advantage of geographical information service such as services provided by the Tianditu which is a basic geographic information service platform in China and Sensor Web services to establish geo-sensor applications, and builds well-designed human-machine interfaces (HMIs) to support online and open interactions between human beings and physical sensors through cyberspace. The method was tested with experiments carried out in two geographically distributed scientific experimental fields, Baoxie Sensor Web Experimental Field in Wuhan city and Yemaomian Landslide Monitoring Station in Three Gorges, with three typical sensors chosen as representatives using the prototype system Geospatial Sensor Web Common Service Platform. The results show that the proposed method is an open, online, closed-loop means of control.
Cyber-Physical Geographical Information Service-Enabled Control of Diverse In-Situ Sensors
Chen, Nengcheng; Xiao, Changjiang; Pu, Fangling; Wang, Xiaolei; Wang, Chao; Wang, Zhili; Gong, Jianya
2015-01-01
Realization of open online control of diverse in-situ sensors is a challenge. This paper proposes a Cyber-Physical Geographical Information Service-enabled method for control of diverse in-situ sensors, based on location-based instant sensing of sensors, which provides closed-loop feedbacks. The method adopts the concepts and technologies of newly developed cyber-physical systems (CPSs) to combine control with sensing, communication, and computation, takes advantage of geographical information service such as services provided by the Tianditu which is a basic geographic information service platform in China and Sensor Web services to establish geo-sensor applications, and builds well-designed human-machine interfaces (HMIs) to support online and open interactions between human beings and physical sensors through cyberspace. The method was tested with experiments carried out in two geographically distributed scientific experimental fields, Baoxie Sensor Web Experimental Field in Wuhan city and Yemaomian Landslide Monitoring Station in Three Gorges, with three typical sensors chosen as representatives using the prototype system Geospatial Sensor Web Common Service Platform. The results show that the proposed method is an open, online, closed-loop means of control. PMID:25625906
Energy storage requirements of dc microgrids with high penetration renewables under droop control
Weaver, Wayne W.; Robinett, Rush D.; Parker, Gordon G.; ...
2015-01-09
Energy storage is a important design component in microgrids with high penetration renewable sources to maintain the system because of the highly variable and sometimes stochastic nature of the sources. Storage devices can be distributed close to the sources and/or at the microgrid bus. In addition, storage requirements can be minimized with a centralized control architecture, but this creates a single point of failure. Distributed droop control enables a completely decentralized architecture but, the energy storage optimization becomes more difficult. Our paper presents an approach to droop control that enables the local and bus storage requirements to be determined. Givenmore » a priori knowledge of the design structure of a microgrid and the basic cycles of the renewable sources, we found that the droop settings of the sources are such that they minimize both the bus voltage variations and overall energy storage capacity required in the system. This approach can be used in the design phase of a microgrid with a decentralized control structure to determine appropriate droop settings as well as the sizing of energy storage devices.« less
Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
Boyer, M. D.; Battaglia, D. J.; Mueller, D.; ...
2018-01-25
Here, the upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgradedmore » to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.« less
Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, M. D.; Battaglia, D. J.; Mueller, D.
Here, the upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgradedmore » to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.« less
Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
NASA Astrophysics Data System (ADS)
Boyer, M. D.; Battaglia, D. J.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D. A.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C. E.; Sabbagh, S. A.; Scotti, F.; Vail, P.
2018-03-01
The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.
Cache coherency without line exclusivity in MP systems having store-in caches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomerene, J.H.; Puzak, T.R.; Rechtschaffen, R.N.
1983-11-01
By modifying the function of the storage control unit, a multiprocessor (MP) system having store-in caches is enabled to operate with the same versatility as an MP system having store-through caches, thereby eliminating the requirement for line exclusivity and greatly reducing the occurrence of cross-interrogates.
Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.; Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2004-01-01
NASA increasingly will rely on autonomous systems concepts, not only in the mission control centers on the ground, but also on spacecraft and on rovers and other assets on extraterrestrial bodies. Automomy enables not only reduced operations costs, But also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will be unable to achieve the full range of advanced mission objectives, given that human control under dynamic environmental conditions will not be feasible due, in part, to the unavoidably high signal propagation latency and constrained data rates of mission communications links. While autonomy cost-effectively supports accomplishment of mission goals, autonomicity supports survivability of remote mission assets, especially when human tending is not feasible. Autonomic system properties (which ensure self-configuring, self-optimizing self-healing, and self-protecting behavior) conceptually may enable space missions of a higher order into any previously flown. Analysis of two NASA agent-based systems previously prototyped, and of a proposed future mission involving numerous cooperating spacecraft, illustrates how autonomous and autonomic system concepts may be brought to bear on future space missions.
Controlling the Transport of an Ion: Classical and Quantum Mechanical Solutions
2014-07-09
quantum systems: tools, achievements, and limitations Christiane P Koch Shortcuts to adiabaticity for an ion in a rotating radially- tight trap M Palmero...Keywords: coherent control, ion traps, quantum information, optimal control theory 1. Introduction Control methods are key enabling techniques in many...figure 6. 3.4. Feasibility analysis of quantum optimal control Numerical optimization of the wavepacket motion is expected to become necessary once
Planning And Reasoning For A Telerobot
NASA Technical Reports Server (NTRS)
Peters, Stephen F.; Mittman, David S.; Collins, Carol E.; O'Meara Callahan, Jacquelyn S.; Rokey, Mark J.
1992-01-01
Document discusses research and development of Telerobot Interactive Planning System (TIPS). Goal in development of TIPS is to enable it to accept instructions from operator, then command run-time controller to execute operations to execute instructions. Challenges in transferring technology from testbed to operational system discussed.
NASA Astrophysics Data System (ADS)
Duong, Tuan A.; Duong, Nghi; Le, Duong
2017-01-01
In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.
Evaluation of Standards for Access Control Enabling PHR-S Federation.
Mense, Alexander; Urbauer, Philipp; Sauermann, Stefan
2017-01-01
The adoption of the Internet of Things (IoT) and mobile applications in the healthcare may transform the healthcare industry by offering better disease tracking and management as well as patient empowerment. Unfortunately, almost all of these new systems set up their own ecosystem and to be really valuable for the care process they need to be integrated or federated with user managed access control services based on international standards and profiles to enable interoperability. Thus, this work presents the results of an evaluation of available specifications for federated authorization, based on a set of basic requirements.
Independent polarisation control of multiple optical traps
Preece, Daryl; Keen, Stephen; Botvinick, Elliot; Bowman, Richard; Padgett, Miles; Leach, Jonathan
2009-01-01
We present a system which uses a single spatial light modulator to control the spin angular momentum of multiple optical traps. These traps may be independently controlled both in terms of spatial location and in terms of their spin angular momentum content. The system relies on a spatial light modulator used in a “split-screen” configuration to generate beams of orthogonal polarisation states which are subsequently combined at a polarising beam splitter. Defining the phase difference between the beams with the spatial light modulator enables control of the polarisation state of the light. We demonstrate the functionality of the system by controlling the rotation and orientation of birefringent vaterite crystals within holographic optical tweezers. PMID:18825226
Dependable control systems with Internet of Things.
Tran, Tri; Ha, Q P
2015-11-01
This paper presents an Internet of Things (IoT)-enabled dependable control system (DepCS) for continuous processes. In a DepCS, an actuator and a transmitter form a regulatory control loop. Each processor inside such actuator and transmitter is designed as a computational platform implementing the feedback control algorithm. The connections between actuators and transmitters via IoT create a reliable backbone for a DepCS. The centralized input-output marshaling system is not required in DepCSs. A state feedback control synthesis method for DepCS applying the self-recovery constraint is presented in the second part of the paper. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Interpersonal Biocybernetics: Connecting Through Social Psychophysiology
NASA Technical Reports Server (NTRS)
Pope, Alan T.; Stephens, Chad L.
2012-01-01
One embodiment of biocybernetic adaptation is a human-computer interaction system designed such that physiological signals modulate the effect that control of a task by other means, usually manual control, has on performance of the task. Such a modulation system enables a variety of human-human interactions based upon physiological self-regulation performance. These interpersonal interactions may be mixes of competition and cooperation for simulation training and/or videogame entertainment
Common Badging and Access Control System (CBACS)
NASA Technical Reports Server (NTRS)
Baldridge, Tim
2005-01-01
The goals of the project are: Achieve high business value through a common badging and access control system that integrates with smart cards. Provide physical (versus logical) deployment of smart cards initially. Provides a common consistent and reliable environment into which to release the smart card. Gives opportunity to develop agency-wide consistent processes, practices and policies. Enables enterprise data capture and management. Promotes data validation prior to SC issuance.
Electrolyzers Enhancing Flexibility in Electric Grids
Mohanpurkar, Manish; Luo, Yusheng; Terlip, Danny; ...
2017-11-10
This paper presents a real-time simulation with a hardware-in-the-loop (HIL)-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC) is proposed, which enables an optimal operation of the load on themore » basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. In conclusion, the FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load.« less
Robust Informatics Infrastructure Required For ICME: Combining Virtual and Experimental Data
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Holland, Frederic A. Jr.; Bednarcyk, Brett A.
2014-01-01
With the increased emphasis on reducing the cost and time to market of new materials, the need for robust automated materials information management system(s) enabling sophisticated data mining tools is increasing, as evidenced by the emphasis on Integrated Computational Materials Engineering (ICME) and the recent establishment of the Materials Genome Initiative (MGI). This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and or multi-scale models requires both the processing of large volumes of test data and complex materials data necessary to establish processing-microstructure-property-performance relationships. Fortunately, material information management systems have kept pace with the growing user demands and evolved to enable: (i) the capture of both point wise data and full spectra of raw data curves, (ii) data management functions such as access, version, and quality controls;(iii) a wide range of data import, export and analysis capabilities; (iv) data pedigree traceability mechanisms; (v) data searching, reporting and viewing tools; and (vi) access to the information via a wide range of interfaces. This paper discusses key principles for the development of a robust materials information management system to enable the connections at various length scales to be made between experimental data and corresponding multiscale modeling toolsets to enable ICME. In particular, NASA Glenn's efforts towards establishing such a database for capturing constitutive modeling behavior for both monolithic and composites materials
Yue, Xiao; Wang, Huiju; Jin, Dawei; Li, Mingqiang; Jiang, Wei
2016-10-01
Healthcare data are a valuable source of healthcare intelligence. Sharing of healthcare data is one essential step to make healthcare system smarter and improve the quality of healthcare service. Healthcare data, one personal asset of patient, should be owned and controlled by patient, instead of being scattered in different healthcare systems, which prevents data sharing and puts patient privacy at risks. Blockchain is demonstrated in the financial field that trusted, auditable computing is possible using a decentralized network of peers accompanied by a public ledger. In this paper, we proposed an App (called Healthcare Data Gateway (HGD)) architecture based on blockchain to enable patient to own, control and share their own data easily and securely without violating privacy, which provides a new potential way to improve the intelligence of healthcare systems while keeping patient data private. Our proposed purpose-centric access model ensures patient own and control their healthcare data; simple unified Indicator-Centric Schema (ICS) makes it possible to organize all kinds of personal healthcare data practically and easily. We also point out that MPC (Secure Multi-Party Computing) is one promising solution to enable untrusted third-party to conduct computation over patient data without violating privacy.
Boiret, Mathieu; Chauchard, Fabien
2017-01-01
Near-infrared (NIR) spectroscopy is a non-destructive analytical technique that enables better-understanding and optimization of pharmaceutical processes and final drug products. The use in line is often limited by acquisition speed and sampling area. This work focuses on performing a multipoint measurement at high acquisition speed at the end of the manufacturing process on a conveyor belt system to control both the distribution and the content of active pharmaceutical ingredient within final drug products, i.e., tablets. A specially designed probe with several collection fibers was developed for this study. By measuring spectral and spatial information, it provides physical and chemical knowledge on the final drug product. The NIR probe was installed on a conveyor belt system that enables the analysis of a lot of tablets. The use of these NIR multipoint measurement probes on a conveyor belt system provided an innovative method that has the potential to be used as a new paradigm to ensure the drug product quality at the end of the manufacturing process and as a new analytical method for the real-time release control strategy. Graphical abstract Use of near-infrared spectroscopy and multipoint measurements for quality control of pharmaceutical drug products.
The OptIPuter microscopy demonstrator: enabling science through a transatlantic lightpath
Ellisman, M.; Hutton, T.; Kirkland, A.; Lin, A.; Lin, C.; Molina, T.; Peltier, S.; Singh, R.; Tang, K.; Trefethen, A.E.; Wallom, D.C.H.; Xiong, X.
2009-01-01
The OptIPuter microscopy demonstrator project has been designed to enable concurrent and remote usage of world-class electron microscopes located in Oxford and San Diego. The project has constructed a network consisting of microscopes and computational and data resources that are all connected by a dedicated network infrastructure using the UK Lightpath and US Starlight systems. Key science drivers include examples from both materials and biological science. The resulting system is now a permanent link between the Oxford and San Diego microscopy centres. This will form the basis of further projects between the sites and expansion of the types of systems that can be remotely controlled, including optical, as well as electron, microscopy. Other improvements will include the updating of the Microsoft cluster software to the high performance computing (HPC) server 2008, which includes the HPC basic profile implementation that will enable the development of interoperable clients. PMID:19487201
The OptIPuter microscopy demonstrator: enabling science through a transatlantic lightpath.
Ellisman, M; Hutton, T; Kirkland, A; Lin, A; Lin, C; Molina, T; Peltier, S; Singh, R; Tang, K; Trefethen, A E; Wallom, D C H; Xiong, X
2009-07-13
The OptIPuter microscopy demonstrator project has been designed to enable concurrent and remote usage of world-class electron microscopes located in Oxford and San Diego. The project has constructed a network consisting of microscopes and computational and data resources that are all connected by a dedicated network infrastructure using the UK Lightpath and US Starlight systems. Key science drivers include examples from both materials and biological science. The resulting system is now a permanent link between the Oxford and San Diego microscopy centres. This will form the basis of further projects between the sites and expansion of the types of systems that can be remotely controlled, including optical, as well as electron, microscopy. Other improvements will include the updating of the Microsoft cluster software to the high performance computing (HPC) server 2008, which includes the HPC basic profile implementation that will enable the development of interoperable clients.
Bilateral Impedance Control For Telemanipulators
NASA Technical Reports Server (NTRS)
Moore, Christopher L.
1993-01-01
Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.
openECA Platform and Analytics Alpha Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Russell
The objective of the Open and Extensible Control and Analytics (openECA) Platform for Phasor Data project is to develop an open source software platform that significantly accelerates the production, use, and ongoing development of real-time decision support tools, automated control systems, and off-line planning systems that (1) incorporate high-fidelity synchrophasor data and (2) enhance system reliability while enabling the North American Electric Reliability Corporation (NERC) operating functions of reliability coordinator, transmission operator, and/or balancing authority to be executed more effectively.
openECA Platform and Analytics Beta Demonstration Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Russell
The objective of the Open and Extensible Control and Analytics (openECA) Platform for Phasor Data project is to develop an open source software platform that significantly accelerates the production, use, and ongoing development of real-time decision support tools, automated control systems, and off-line planning systems that (1) incorporate high-fidelity synchrophasor data and (2) enhance system reliability while enabling the North American Electric Reliability Corporation (NERC) operating functions of reliability coordinator, transmission operator, and/or balancing authority to be executed more effectively.
The CF6 Jet Engine Performance Improvement - Low Pressure Turbine Active Clearance Control
NASA Technical Reports Server (NTRS)
Beck, B. D.; Fasching, W. A.
1982-01-01
A low pressure turbine (LPT) active clearance control (ACC) cooling system was developed to reduce the fuel consumption of current CF6-50 turbofan engines for wide bodied commercial aircraft. The program performance improvement goal of 0.3% delta sfc was determined to be achievable with an improved impingement cooling system. The technology enables the design of an optimized manifold and piping system which is capable of a performance gain of 0.45% delta sfc.
ERIC Educational Resources Information Center
Demski, Jennifer
2009-01-01
This article describes how centralized presentation control systems enable IT support staff to monitor equipment and assist end users more efficiently. At Temple University, 70 percent of the classrooms are equipped with an AMX touch panel, linked via a Netlink controller to an in-classroom computer, projector, DVD/VCR player, and speakers. The…
Occupant-responsive optimal control of smart facade systems
NASA Astrophysics Data System (ADS)
Park, Cheol-Soo
Windows provide occupants with daylight, direct sunlight, visual contact with the outside and a feeling of openness. Windows enable the use of daylighting and offer occupants a outside view. Glazing may also cause a number of problems: undesired heat gain/loss in winter. An over-lit window can cause glare, which is another major complaint by occupants. Furthermore, cold or hot window surfaces induce asymmetric thermal radiation which can result in thermal discomfort. To reduce the potential problems of window systems, double skin facades and airflow window systems have been introduced in the 1970s. They typically contain interstitial louvers and ventilation openings. The current problem with double skin facades and airflow windows is that their operation requires adequate dynamic control to reach their expected performance. Many studies have recognized that only an optimal control enables these systems to truly act as active energy savers and indoor environment controllers. However, an adequate solution for this dynamic optimization problem has thus far not been developed. The primary objective of this study is to develop occupant responsive optimal control of smart facade systems. The control could be implemented as a smart controller that operates the motorized Venetian blind system and the opening ratio of ventilation openings. The objective of the control is to combine the benefits of large windows with low energy demands for heating and cooling, while keeping visual well-being and thermal comfort at an optimal level. The control uses a simulation model with an embedded optimization routine that allows occupant interaction via the Web. An occupant can access the smart controller from a standard browser and choose a pre-defined mode (energy saving mode, visual comfort mode, thermal comfort mode, default mode, nighttime mode) or set a preferred mode (user-override mode) by moving preference sliders on the screen. The most prominent feature of these systems is the capability of dynamically reacting to the environmental input data through real-time optimization. The proposed occupant responsive optimal control of smart facade systems could provide a breakthrough in this under-developed area and lead to a renewed interest in smart facade systems.
Simulating Human Cognition in the Domain of Air Traffic Control
NASA Technical Reports Server (NTRS)
Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)
1995-01-01
Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.
Chado controller: advanced annotation management with a community annotation system.
Guignon, Valentin; Droc, Gaëtan; Alaux, Michael; Baurens, Franc-Christophe; Garsmeur, Olivier; Poiron, Claire; Carver, Tim; Rouard, Mathieu; Bocs, Stéphanie
2012-04-01
We developed a controller that is compliant with the Chado database schema, GBrowse and genome annotation-editing tools such as Artemis and Apollo. It enables the management of public and private data, monitors manual annotation (with controlled vocabularies, structural and functional annotation controls) and stores versions of annotation for all modified features. The Chado controller uses PostgreSQL and Perl. The Chado Controller package is available for download at http://www.gnpannot.org/content/chado-controller and runs on any Unix-like operating system, and documentation is available at http://www.gnpannot.org/content/chado-controller-doc The system can be tested using the GNPAnnot Sandbox at http://www.gnpannot.org/content/gnpannot-sandbox-form valentin.guignon@cirad.fr; stephanie.sidibe-bocs@cirad.fr Supplementary data are available at Bioinformatics online.
Bionic models for identification of biological systems
NASA Astrophysics Data System (ADS)
Gerget, O. M.
2017-01-01
This article proposes a clinical decision support system that processes biomedical data. For this purpose a bionic model has been designed based on neural networks, genetic algorithms and immune systems. The developed system has been tested on data from pregnant women. The paper focuses on the approach to enable selection of control actions that can minimize the risk of adverse outcome. The control actions (hyperparameters of a new type) are further used as an additional input signal. Its values are defined by a hyperparameter optimization method. A software developed with Python is briefly described.
NASA Astrophysics Data System (ADS)
Lamont, L. A.; Chaar, L.; Toms, C.
2010-03-01
Interactive learning is beneficial to students in that it allows the continual development and testing of many skills. An interactive approach enables students to improve their technical capabilities, as well as developing both verbal and written communicative ability. Problem solving and communication skills are vital for engineering students; in the workplace they will be required to communicate with people of varying technical abilities and from different linguistic and engineering backgrounds. In this paper, a case study is presented that discusses how the traditional method of teaching control systems can be improved. 'Control systems' is a complex engineering topic requiring students to process an extended amount of mathematical formulae. MATLAB software, which enables students to interactively compare a range of possible combinations and analyse the optimal solution, is used to this end. It was found that students became more enthusiastic and interested when given ownership of their learning objectives. As well as improving the students' technical knowledge, other important engineering skills are also improved by introducing an interactive method of teaching.
A novel framework for command and control of networked sensor systems
NASA Astrophysics Data System (ADS)
Chen, Genshe; Tian, Zhi; Shen, Dan; Blasch, Erik; Pham, Khanh
2007-04-01
In this paper, we have proposed a highly innovative advanced command and control framework for sensor networks used for future Integrated Fire Control (IFC). The primary goal is to enable and enhance target detection, validation, and mitigation for future military operations by graphical game theory and advanced knowledge information fusion infrastructures. The problem is approached by representing distributed sensor and weapon systems as generic warfare resources which must be optimized in order to achieve the operational benefits afforded by enabling a system of systems. This paper addresses the importance of achieving a Network Centric Warfare (NCW) foundation of information superiority-shared, accurate, and timely situational awareness upon which advanced automated management aids for IFC can be built. The approach uses the Data Fusion Information Group (DFIG) Fusion hierarchy of Level 0 through Level 4 to fuse the input data into assessments for the enemy target system threats in a battlespace to which military force is being applied. Compact graph models are employed across all levels of the fusion hierarchy to accomplish integrative data fusion and information flow control, as well as cross-layer sensor management. The functional block at each fusion level will have a set of innovative algorithms that not only exploit the corresponding graph model in a computationally efficient manner, but also permit combined functional experiments across levels by virtue of the unifying graphical model approach.
Di Leo, Giovanni; Spadavecchia, Chiara; Zanardo, Moreno; Secchi, Francesco; Veronese, Ivan; Cantone, Marie Claire; Sardanelli, Francesco
2017-07-01
To estimate the impact of endoaortic stents/mechanical heart valves on the output of an automatic exposure control (AEC) system and CT radiation dose. In this phantom study, seven stents and two valves were scanned with varying tube voltage (80/100/120 kVp), AEC activation (enabled/disabled) and prosthesis (present/absent), for a total of 540 scans. For each prosthesis, the dose-length product (DLP) was compared between scans with the AEC enabled and disabled. Percentage confidence levels for differences due to the prosthesis were calculated. Differences between results with the AEC enabled and disabled were not statistically significant (p ≥ 0.059). In the comparison with and without the prosthesis, DLP was unchanged at 80 kVp and 100 kVp, while a slight increase was observed at 120 kVp. The radiation dose varied from 1.8 mGy to 2.4 mGy without the prosthesis and from 1.8 mGy to 2.5 mGy with the prosthesis (confidence level 37-100%). The effect of the prosthesis on the AEC system was negligible and not clinically relevant. Therefore, disabling the AEC system when scanning these patients is not likely to provide a benefit. • CT-AEC system is not impaired in patients with endoaortic prostheses/heart valves. • Negligible differences may be observed only at 120 kVp. • Disabling the AEC system in these patients is not recommended.
Enabling Airspace Integration for High-Density On-Demand Mobility Operations
NASA Technical Reports Server (NTRS)
Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitudethe UAS traffic management (UTM) systemto higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
Towards autonomous fuzzy control
NASA Technical Reports Server (NTRS)
Shenoi, Sujeet; Ramer, Arthur
1993-01-01
The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.
2015-10-15
to state-of- hydration . Polarization modulated infrared reflection- absorption spectroscopy experiments are enabled by the use of a spin-coater to coat...NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SPEEK, Nafion, Ionomers, state-of- hydration ...enabled correlation of the exchange site structure to state-of- hydration . Polarization modulated infrared reflection-absorption spectroscopy experiments
NASA Advanced Exploration Systems: Advancements in Life Support Systems
NASA Technical Reports Server (NTRS)
Shull, Sarah A.; Schneider, Walter F.
2016-01-01
The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.
Frequency-selective design of wireless power transfer systems for controlled access applications
NASA Astrophysics Data System (ADS)
Maschino, Tyler Stephen
Wireless power transfer (WPT) has become a common way to charge or power many types of devices, ranging from cell phones to electric toothbrushes. WPT became popular through the introduction of a transmission mode known as strongly coupled magnetic resonance (SCMR). This means of transmission is non-radiative and enables mid-range WPT. Shortly after the development of WPT via SCMR, a group of researchers introduced the concept of resonant repeaters, which allows power to hop from the source to the device. These repeaters are in resonance with the WPT system, which enables them to propagate the power wirelessly with minimal losses to the environment. Resonant repeaters have rekindled the dream of ubiquitous wireless power. Inherent risks come with the realization of such a dream. One of the most prominent risks, which we set out in this thesis to address, is that of accessibility to the WPT system. We propose the incorporation of a controlled access schema within a WPT system to prevent unwarranted use of wireless power. Our thesis discusses the history of electromagnetism, examines the inception of WPT via SCMR, evaluates recent developments in WPT, and further elaborates on the controlled access schema we wish to contribute to the field.
Baseline Assessment and Prioritization Framework for IVHM Integrity Assurance Enabling Capabilities
NASA Technical Reports Server (NTRS)
Cooper, Eric G.; DiVito, Benedetto L.; Jacklin, Stephen A.; Miner, Paul S.
2009-01-01
Fundamental to vehicle health management is the deployment of systems incorporating advanced technologies for predicting and detecting anomalous conditions in highly complex and integrated environments. Integrated structural integrity health monitoring, statistical algorithms for detection, estimation, prediction, and fusion, and diagnosis supporting adaptive control are examples of advanced technologies that present considerable verification and validation challenges. These systems necessitate interactions between physical and software-based systems that are highly networked with sensing and actuation subsystems, and incorporate technologies that are, in many respects, different from those employed in civil aviation today. A formidable barrier to deploying these advanced technologies in civil aviation is the lack of enabling verification and validation tools, methods, and technologies. The development of new verification and validation capabilities will not only enable the fielding of advanced vehicle health management systems, but will also provide new assurance capabilities for verification and validation of current generation aviation software which has been implicated in anomalous in-flight behavior. This paper describes the research focused on enabling capabilities for verification and validation underway within NASA s Integrated Vehicle Health Management project, discusses the state of the art of these capabilities, and includes a framework for prioritizing activities.
Fuzzy control of burnout of multilayer ceramic actuators
NASA Astrophysics Data System (ADS)
Ling, Alice V.; Voss, David; Christodoulou, Leo
1996-08-01
To improve the yield and repeatability of the burnout process of multilayer ceramic actuators (MCAs), an intelligent processing of materials (IPM-based) control system has been developed for the manufacture of MCAs. IPM involves the active (ultimately adaptive) control of a material process using empirical or analytical models and in situ sensing of critical process states (part features and process parameters) to modify the processing conditions in real time to achieve predefined product goals. Thus, the three enabling technologies for the IPM burnout control system are process modeling, in situ sensing and intelligent control. This paper presents the design of an IPM-based control strategy for the burnout process of MCAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Rhett
The SDN Project completed on time and on budget and successfully accomplished 100% of the scope of work outlined in the original Statement of Project Objective (SOPO). The SDN Project formed an alliance between Ameren Corporation, University of Illinois Urbana- Champaign (UIUC), Pacific Northwest National Laboratories (PNNL), and Schweitzer Engineering Laboratories, Inc. (SEL). The objective of the SDN Project is to address Topic Area of Interest 2: Sustain critical energy delivery functions while responding to a cyber-intrusion under Funding Opportunity Announcement DE-FOA-0000797. The goal of the project is to design and commercially release technology that provides a method to sustainmore » critical energy delivery functions during a cyber intrusion and to do this control system operators need the ability to quickly identify and isolate the affected network areas, and re-route critical information and control flows around. The objective of the SDN Project is to develop a Flow Controller that monitors, configures, and maintains the safe, reliable network traffic flows of all the local area networks (LANs) on a control system in the Energy sector. The SDN team identified the core attributes of a control system and produced an SDN flow controller that has the same core attributes enabling networks to be designed, configured and deployed that maximize the whitelisted, deny-bydefault and purpose built networks. This project researched, developed and commercially released technology that: Enables all field networks be to configured and monitored as if they are a single asset to be protected; Enables greatly improved and even precalculated response actions to reliability and cyber events; Supports pre-configured localized response actions tailored to provide resilience against failures and centralized response to cyber-attacks that improve network reliability and availability; Architecturally enables the right subject matter experts, who are usually the information technology and operational technology engineers, to be the ones centrally administering the technology and responding to events; Simplifies network configuration, improving deterministic Ethernet transport times, and providing instant visualization on where the communication circuits are and how all circuits are impacted when changes (e.g., configuration changes, failures or intrusions) happen, allowing operators to minimize downtime; and Improves the ability to identify deviations in network behavior resulting in detection and analysis of potential cyber intrusions and faster response times Results: This project has forever changed the way critical infrastructure networks are designed, secured, deployed and maintained. The cybersecurity and performance advantages achieved are significant, simply put traditional networking has been obsoleted while the team maintained Ethernet interoperability avoiding any legacy concerns. The team commercially released technology that accomplished all the cybersecurity goals outlined in the SOPO and completed it by executing the project management plan approved in the initial contract. The resulting Energy sector SDN flow controller model number is SEL-5056 and can be freely downloaded from the www.SELinc.com website. This technology not only improves the cybersecurity of control systems but has measured results that it improves the performance and reliability of the control system as well. This means the system owners can confidently apply it to their systems knowing that it will, “first do no harm” but actually improve the system as well. Success of the project is best measured by the sales and deployment of the technology. System owners in industrial, electric, defense, and oil and gas only months after commercial release have approved plans for deployment.« less
Large Space Antenna Systems Technology, 1984
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1985-01-01
Papers are presented which provide a comprehensive review of space missions requiring large antenna systems and of the status of key technologies required to enable these missions. Topic areas include mission applications for large space antenna systems, large space antenna structural systems, materials and structures technology, structural dynamics and control technology, electromagnetics technology, large space antenna systems and the space station, and flight test and evaluation.
Predictive Analytics for Coordinated Optimization in Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui
This talk will present NREL's work on developing predictive analytics that enables the optimal coordination of all the available resources in distribution systems to achieve the control objectives of system operators. Two projects will be presented. One focuses on developing short-term state forecasting-based optimal voltage regulation in distribution systems; and the other one focuses on actively engaging electricity consumers to benefit distribution system operations.
Interfacing external sensors with Android smartphones through near field communication
NASA Astrophysics Data System (ADS)
Leikanger, Tore; Häkkinen, Juha; Schuss, Christian
2017-04-01
In this paper, we present and evaluate a new approach to communicate with inter-integrated circuit (I2C) enabled circuits such as sensors over near field communication (NFC). The NFC-to-I2C interface was designed using a non-standard NFC command to control the I2C bus directly from a smartphone, which was controlling both, the read and write operations on the I2C bus. The NFC-to-I2C interface was reporting back the data bytes on the bus to the smartphone when the transaction was completed successfully. The proposed system was tested experimentally, both, with write and read requests to a commercial microcontroller featuring a hardware I2C port, as well as reading a commercial I2C enabled humidity and temperature sensor. We present experimental results of the system which show that our approach enables an easy interface between smartphones and external sensors. Interfacing external sensors is useful and beneficial for smartphone users, especially, if certain types of sensors are not available on smartphones.
Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.
Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu
2012-01-10
An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integrated soldier power and data system (ISPDS)
NASA Astrophysics Data System (ADS)
Ostroumov, Roman; Forrester, Thomas; Lee, Kang; Stephens, Robert; Lai, Anthony; Zahzah, Mohamad
2014-06-01
Physical Optics Corporation (POC) developed the body-worn Integrated Soldier Power and Data System (ISPDS), a configurable node for plug-in wired or wireless server/client or peer-to-peer computing with accommodations for power, sensor I/O interfaces, and energy harvesting. The enabling technology increases the efficacy of uniformed personnel and first responders and provides an option for reducing force structure associated with the need for hardware network infrastructure to enable a mobile digital communications architecture for dismounted troops. The ISPDS system addresses the DoD's need for an "intelligent" power control system in an effort to increase mission duration and maximize the first responders and warfighter's effectiveness without concern for the available energy resources (i.e., batteries). ISPDS maximizes durability and survivability, assesses influences that affect performance, and provides the network backbone and mobile node hardware. POC is producing two vest-integrated variants, one each for the U.S. Army PEO Ground Soldier and the Air Soldier, with each including state-of-the-art low-profile and robust wearable connectors, cabling, and harnesses, and an integrated low-profile power manager and conformal battery for data and power distribution. The innovative intelligent power controller (IPC), in the form of the ISPDS firmware and power sensing and control electronics, will enable ISPDS to optimize power levels both automatically and in accordance with manually set preferences. The IPC module is power dense and efficient, and adaptively provides lossless transfer of available harvested photovoltaic energy to the battery. The integrated systems were tested for suitable electrical, electromagnetic interference (EMI), and environmental performance as outlined in military standards such as MIL-STD- 810G and MIL STD-461F.
Precise control of lycopene production to enable a fast-responding, minimal-equipment biosensor.
McNerney, Monica P; Styczynski, Mark P
2017-09-01
Pigmented metabolites have great potential for use in biosensors that target low-resource areas, since sensor output can be interpreted without any equipment. However, full repression of pigment production when undesired is challenging, as even small amounts of enzyme can catalyze the production of large, visible amounts of pigment. The red pigment lycopene could be particularly useful because of its position in the multi-pigment carotenoid pathway, but commonly used inducible promoter systems cannot repress lycopene production. In this paper, we designed a system that could fully repress lycopene production in the absence of an inducer and produce visible lycopene within two hours of induction. We engineered Lac, Ara, and T7 systems to be up to 10 times more repressible, but these improved systems could still not fully repress lycopene. Translational modifications proved much more effective in controlling lycopene. By decreasing the strength of the ribosomal binding sites on the crtEBI genes, we enabled full repression of lycopene and production of visible lycopene in 3-4h of induction. Finally, we added the mevalonate pathway enzymes to increase the rate of lycopene production upon induction and demonstrated that supplementation of metabolic precursors could decrease the time to coloration to about 1.5h. In total, this represents over an order of magnitude reduction in response time compared to the previously reported strategy. The approaches used here demonstrate the disconnect between fluorescent and metabolite reporters, help enable the use of lycopene as a reporter, and are likely generalizable to other systems that require precise control of metabolite production. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Boskovic, Jovan D.
2008-01-01
This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.
Design Of Feedforward Controllers For Multivariable Plants
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
Controllers based on simple low-order transfer functions. Mathematical criteria derived for design of feedforward controllers for class of multiple-input/multiple-output linear plants. Represented by simple low-order transfer functions, obtained without reconstruction of states of commands and disturbances. Enables plant to track command while remaining unresponsive to disturbance in steady state. Feedback controller added independently to stabilize plant or to make control system less susceptible to variations in parameters of plant.
Modeling the Multi-Body System Dynamics of a Flexible Solar Sail Spacecraft
NASA Technical Reports Server (NTRS)
Kim, Young; Stough, Robert; Whorton, Mark
2005-01-01
Solar sail propulsion systems enable a wide range of space missions that are not feasible with current propulsion technology. Hardware concepts and analytical methods have matured through ground development to the point that a flight validation mission is now realizable. Much attention has been given to modeling the structural dynamics of the constituent elements, but to date an integrated system level dynamics analysis has been lacking. Using a multi-body dynamics and control analysis tool called TREETOPS, the coupled dynamics of the sailcraft bus, sail membranes, flexible booms, and control system sensors and actuators of a representative solar sail spacecraft are investigated to assess system level dynamics and control issues. With this tool, scaling issues and parametric trade studies can be performed to study achievable performance, control authority requirements, and control/structure interaction assessments.
Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.
2009-01-01
The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.
Control Design for an Advanced Geared Turbofan Engine
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Litt, Jonathan S.
2017-01-01
This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 lbf thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 ft and from 0 to 0.8 Mach. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller integrated with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding system operational limits.
NASA Technical Reports Server (NTRS)
1993-01-01
C Language Integration Production System (CLIPS), a NASA-developed expert systems program, has enabled a security systems manufacturer to design a new generation of hardware. C.CURESystem 1 Plus, manufactured by Software House, is a software based system that is used with a variety of access control hardware at installations around the world. Users can manage large amounts of information, solve unique security problems and control entry and time scheduling. CLIPS acts as an information management tool when accessed by C.CURESystem 1 Plus. It asks questions about the hardware and when given the answer, recommends possible quick solutions by non-expert persons.
NASA Technical Reports Server (NTRS)
Kubiak, Jonathan M.; Arnett, Lori A.
2016-01-01
The NASA Glenn Research Center (GRC) is committed to providing simulated altitude rocket test capabilities to NASA programs, other government agencies, private industry partners, and academic partners. A primary facility to support those needs is the Altitude Combustion Stand (ACS). ACS provides the capability to test combustion components at a simulated altitude up to 100,000 ft. (approx.0.2 psia/10 Torr) through a nitrogen-driven ejector system. The facility is equipped with an axial thrust stand, gaseous and cryogenic liquid propellant feed systems, data acquisition system with up to 1000 Hz recording, and automated facility control system. Propellant capabilities include gaseous and liquid hydrogen, gaseous and liquid oxygen, and liquid methane. A water-cooled diffuser, exhaust spray cooling chamber, and multi-stage ejector systems can enable run times up to 180 seconds to 16 minutes. The system can accommodate engines up to 2000-lbf thrust, liquid propellant supply pressures up to 1800 psia, and test at the component level. Engines can also be fired at sea level if needed. The NASA GRC is in the process of modifying ACS capabilities to enable the testing of green propellant (GP) thrusters and components. Green propellants are actively being explored throughout government and industry as a non-toxic replacement to hydrazine monopropellants for applications such as reaction control systems or small spacecraft main propulsion systems. These propellants offer increased performance and cost savings over hydrazine. The modification of ACS is intended to enable testing of a wide range of green propellant engines for research and qualification-like testing applications. Once complete, ACS will have the capability to test green propellant engines up to 880 N in thrust, thermally condition the green propellants, provide test durations up to 60 minutes depending on thrust class, provide high speed control and data acquisition, as well as provide advanced imaging and diagnostics such as infrared (IR) imaging.
Modelling and control algorithms of the cross conveyors line with multiengine variable speed drives
NASA Astrophysics Data System (ADS)
Cheremushkina, M. S.; Baburin, S. V.
2017-02-01
The paper deals with the actual problem of developing the control algorithm that meets the technical requirements of the mine belt conveyors, and enables energy and resource savings taking into account a random sort of traffic. The most effective method of solution of these tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. The authors designed the mathematical model of the system ‘variable speed multiengine drive - conveyor - control system of conveyors’ that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows one to reduce the dynamic overload in the belt to 15-20%.
NASA Astrophysics Data System (ADS)
Croft, John; Deily, John; Hartman, Kathy; Weidow, David
1998-01-01
In the twenty-first century, NASA envisions frequent low-cost missions to explore the solar system, observe the universe, and study our planet. To realize NASA's goal, the Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center sponsors technology programs that enhance spacecraft performance, streamline processes and ultimately enable cheaper science. Our technology programs encompass control system architectures, sensor and actuator components, electronic systems, design and development of algorithms, embedded systems and space vehicle autonomy. Through collaboration with government, universities, non-profit organizations, and industry, the GNCC incrementally develops key technologies that conquer NASA's challenges. This paper presents an overview of several innovative technology initiatives for the autonomous guidance, navigation, and control (GN&C) of satellites.
Design of a structural and functional hierarchy for planning and control of telerobotic systems
NASA Technical Reports Server (NTRS)
Acar, Levent; Ozguner, Umit
1989-01-01
Hierarchical structures offer numerous advantages over conventional structures for the control of telerobotic systems. A hierarchically organized system can be controlled via undetailed task assignments and can easily adapt to changing circumstances. The distributed and modular structure of these systems also enables fast response needed in most telerobotic applications. On the other hand, most of the hierarchical structures proposed in the literature are based on functional properties of a system. These structures work best for a few given functions of a large class of systems. In telerobotic applications, all functions of a single system needed to be explored. This approach requires a hierarchical organization based on physical properties of a system and such a hierarchical organization is introduced. The decomposition, organization, and control of the hierarchical structure are considered, and a system with two robot arms and a camera is presented.
What can formal methods offer to digital flight control systems design
NASA Technical Reports Server (NTRS)
Good, Donald I.
1990-01-01
Formal methods research begins to produce methods which will enable mathematic modeling of the physical behavior of digital hardware and software systems. The development of these methods directly supports the NASA mission of increasing the scope and effectiveness of flight system modeling capabilities. The conventional, continuous mathematics that is used extensively in modeling flight systems is not adequate for accurate modeling of digital systems. Therefore, the current practice of digital flight control system design has not had the benefits of extensive mathematical modeling which are common in other parts of flight system engineering. Formal methods research shows that by using discrete mathematics, very accurate modeling of digital systems is possible. These discrete modeling methods will bring the traditional benefits of modeling to digital hardware and hardware design. Sound reasoning about accurate mathematical models of flight control systems can be an important part of reducing risk of unsafe flight control.
Digital redesign of anti-wind-up controller for cascaded analog system.
Chen, Y S; Tsai, J S H; Shieh, L S; Moussighi, M M
2003-01-01
The cascaded conventional anti-wind-up (CAW) design method for integral controller is discussed. Then, the prediction-based digital redesign methodology is utilized to find the new pulse amplitude modulated (PAM) digital controller for effective digital control of the analog plant with input saturation constraint. The desired digital controller is determined from existing or pre-designed CAW analog controller. The proposed method provides a novel methodology for indirect digital design of a continuous-time unity output-feedback system with a cascaded analog controller as in the case of PID controllers for industrial control processes with the presence of actuator saturations. It enables us to implement an existing or pre-designed cascaded CAW analog controller via a digital controller effectively.
Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities.
Yeow, Jonathan; Boyer, Cyrille
2017-07-01
The polymerization-induced self-assembly (PISA) process is a useful synthetic tool for the efficient synthesis of polymeric nanoparticles of different morphologies. Recently, studies on visible light initiated PISA processes have offered a number of key research opportunities that are not readily accessible using traditional thermally initiated systems. For example, visible light mediated PISA (Photo-PISA) enables a high degree of control over the dispersion polymerization process by manipulation of the wavelength and intensity of incident light. In some cases, the final nanoparticle morphology of a single formulation can be modulated by simple manipulation of these externally controlled parameters. In addition, temporal (and in principle spatial) control over the Photo-PISA process can be achieved in most cases. Exploitation of the mild room temperature polymerizations conditions can enable the encapsulation of thermally sensitive therapeutics to occur without compromising the polymerization rate and their activities. Finally, the Photo-PISA process can enable further mechanistic insights into the morphological evolution of nanoparticle formation such as the effects of temperature on the self-assembly process. The purpose of this mini-review is therefore to examine some of these recent advances that have been made in Photo-PISA processes, particularly in light of the specific advantages that may exist in comparison with conventional thermally initiated systems.
Photoinitiated Polymerization‐Induced Self‐Assembly (Photo‐PISA): New Insights and Opportunities
Yeow, Jonathan
2017-01-01
The polymerization‐induced self‐assembly (PISA) process is a useful synthetic tool for the efficient synthesis of polymeric nanoparticles of different morphologies. Recently, studies on visible light initiated PISA processes have offered a number of key research opportunities that are not readily accessible using traditional thermally initiated systems. For example, visible light mediated PISA (Photo‐PISA) enables a high degree of control over the dispersion polymerization process by manipulation of the wavelength and intensity of incident light. In some cases, the final nanoparticle morphology of a single formulation can be modulated by simple manipulation of these externally controlled parameters. In addition, temporal (and in principle spatial) control over the Photo‐PISA process can be achieved in most cases. Exploitation of the mild room temperature polymerizations conditions can enable the encapsulation of thermally sensitive therapeutics to occur without compromising the polymerization rate and their activities. Finally, the Photo‐PISA process can enable further mechanistic insights into the morphological evolution of nanoparticle formation such as the effects of temperature on the self‐assembly process. The purpose of this mini‐review is therefore to examine some of these recent advances that have been made in Photo‐PISA processes, particularly in light of the specific advantages that may exist in comparison with conventional thermally initiated systems. PMID:28725534
SE Capstone Project: Building Systems Engineering Education and Workforce Capacity
2012-04-01
This project developed a system to improve fuel efficiency by means of regenerative braking . The team designed a simple system that allows "bolt-on...air traffic control, social networking, credit/debit cards, and anti-lock brakes are only a few functions enabled by complex systems of systems . We...Building Systems Engineering Education and Workforce Capacity SE Capstone Project APRIL 2012 Report Documentation Page Form ApprovedOMB No. 0704
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrun`kin, S.P.; Garavina, E.V.; Trostin, V.N.
1995-02-01
A container (cell) and a temperature-control system have been designed enabling one to carry out x-ray diffraction study of liquid samples both at a fixed temperature and within a certain temperature range using a commercial DRON-UMl x-ray diffractometer. Special features of the cell and the materials used for it allow one to study both chemically inert and corrosive liquids.
MIT-Skywalker: On the use of a markerless system.
Goncalves, Rogerio S; Hamilton, Taya; Krebs, Hermano I
2017-07-01
This paper describes our efforts to employ the Microsoft Kinect as a low cost vision control system for the MIT-Skywalker, a robotic gait rehabilitation device. The Kinect enables an alternative markerless solution to control the MIT-Skywalker and allows a more user-friendly set-up. A study involving eight healthy subjects and two stroke survivors using the MIT-Skywalker device demonstrates the advantages and challenges of this new proposed approach.
Chemical signal activation of an organocatalyst enables control over soft material formation.
Trausel, Fanny; Maity, Chandan; Poolman, Jos M; Kouwenberg, D S J; Versluis, Frank; van Esch, Jan H; Eelkema, Rienk
2017-10-12
Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organocatalyst that is activated by a chemical signal, enabling temporal control over reaction rates and the formation of materials. Using self-immolative chemistry, we design a deactivated aniline organocatalyst that is activated by the chemical signal hydrogen peroxide and catalyses hydrazone formation. Upon activation of the catalyst, the rate of hydrazone formation increases 10-fold almost instantly. The responsive organocatalyst enables temporal control over the formation of gels featuring hydrazone bonds. The generic design should enable the use of a large range of triggers and organocatalysts, and appears a promising method for the introduction of signal response in materials, constituting a first step towards achieving communication between artificial chemical systems.Enzymes regulated by chemical signals are common in biology, but few such artificial catalysts exist. Here, the authors design an aniline catalyst that, when activated by a chemical trigger, catalyses formation of hydrazone-based gels, demonstrating signal response in a soft material.
A Verification-Driven Approach to Control Analysis and Tuning
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.
2008-01-01
This paper proposes a methodology for the analysis and tuning of controllers using control verification metrics. These metrics, which are introduced in a companion paper, measure the size of the largest uncertainty set of a given class for which the closed-loop specifications are satisfied. This framework integrates deterministic and probabilistic uncertainty models into a setting that enables the deformation of sets in the parameter space, the control design space, and in the union of these two spaces. In regard to control analysis, we propose strategies that enable bounding regions of the design space where the specifications are satisfied by all the closed-loop systems associated with a prescribed uncertainty set. When this is unfeasible, we bound regions where the probability of satisfying the requirements exceeds a prescribed value. In regard to control tuning, we propose strategies for the improvement of the robust characteristics of a baseline controller. Some of these strategies use multi-point approximations to the control verification metrics in order to alleviate the numerical burden of solving a min-max problem. Since this methodology targets non-linear systems having an arbitrary, possibly implicit, functional dependency on the uncertain parameters and for which high-fidelity simulations are available, they are applicable to realistic engineering problems..
Observability of Boolean multiplex control networks
NASA Astrophysics Data System (ADS)
Wu, Yuhu; Xu, Jingxue; Sun, Xi-Ming; Wang, Wei
2017-04-01
Boolean multiplex (multilevel) networks (BMNs) are currently receiving considerable attention as theoretical arguments for modeling of biological systems and system level analysis. Studying control-related problems in BMNs may not only provide new views into the intrinsic control in complex biological systems, but also enable us to develop a method for manipulating biological systems using exogenous inputs. In this article, the observability of the Boolean multiplex control networks (BMCNs) are studied. First, the dynamical model and structure of BMCNs with control inputs and outputs are constructed. By using of Semi-Tensor Product (STP) approach, the logical dynamics of BMCNs is converted into an equivalent algebraic representation. Then, the observability of the BMCNs with two different kinds of control inputs is investigated by giving necessary and sufficient conditions. Finally, examples are given to illustrate the efficiency of the obtained theoretical results.
Design for active and passive flutter suppression and gust alleviation. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Karpel, M.
1981-01-01
Analytical design techniques for active and passive control of aeroelastic systems are based on a rational approximation of the unsteady aerodynamic loads in the entire Laplace domain, which yields matrix equations of motion with constant coefficients. Some existing schemes are reviewed, the matrix Pade approximant is modified, and a technique which yields a minimal number of augmented states for a desired accuracy is presented. The state-space aeroelastic model is used to design an active control system for simultaneous flutter suppression and gust alleviation. The design target is for a continuous controller which transfers some measurements taken on the vehicle to a control command applied to a control surface. Structural modifications are formulated in a way which enables the treatment of passive flutter suppression system with the same procedures by which active control systems are designed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gniazdowski, J.
1995-12-31
JOHNSON CONTROLS manufactures measuring and control equipment (800 types) and is as well a {open_quotes}turn-key{close_quotes} supplier of complete automatic controls systems for heating, air conditioning, ventilation and refrigerating engineering branches. The Company also supplies Buildings` Computer-Based Supervision and Monitoring Systems that may be applied in both small and large structures. Since 1990 the company has been performing full-range trade and contracting activities on the Polish market. We have our own well-trained technical staff and we collaborate with a series of designing and contracting enterprises that enable us to have our projects carried out all over Poland. The prices of ourmore » supplies and services correspond with the level of the Polish market.« less
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934
Practical aspects of modern interferometry for optical manufacturing quality control: Part 2
NASA Astrophysics Data System (ADS)
Smythe, Robert
2012-07-01
Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space based satellite imaging and DVD and Blu-Ray disks are all enabled by phase shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful towards the practical use of interferometers. An understanding of the parameters that drive system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.
Practical aspects of modern interferometry for optical manufacturing quality control, Part 3
NASA Astrophysics Data System (ADS)
Smythe, Robert A.
2012-09-01
Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space-based satellite imaging, and DVD and Blu-Ray disks are all enabled by phase-shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful toward the practical use of interferometers. An understanding of the parameters that drive the system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.
Foam-machining tool with eddy-current transducer
NASA Technical Reports Server (NTRS)
Copper, W. P.
1975-01-01
Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.
Building Energy Modeling and Control Methods for Optimization and Renewables Integration
NASA Astrophysics Data System (ADS)
Burger, Eric M.
This dissertation presents techniques for the numerical modeling and control of building systems, with an emphasis on thermostatically controlled loads. The primary objective of this work is to address technical challenges related to the management of energy use in commercial and residential buildings. This work is motivated by the need to enhance the performance of building systems and by the potential for aggregated loads to perform load following and regulation ancillary services, thereby enabling the further adoption of intermittent renewable energy generation technologies. To increase the generalizability of the techniques, an emphasis is placed on recursive and adaptive methods which minimize the need for customization to specific buildings and applications. The techniques presented in this dissertation can be divided into two general categories: modeling and control. Modeling techniques encompass the processing of data streams from sensors and the training of numerical models. These models enable us to predict the energy use of a building and of sub-systems, such as a heating, ventilation, and air conditioning (HVAC) unit. Specifically, we first present an ensemble learning method for the short-term forecasting of total electricity demand in buildings. As the deployment of intermittent renewable energy resources continues to rise, the generation of accurate building-level electricity demand forecasts will be valuable to both grid operators and building energy management systems. Second, we present a recursive parameter estimation technique for identifying a thermostatically controlled load (TCL) model that is non-linear in the parameters. For TCLs to perform demand response services in real-time markets, online methods for parameter estimation are needed. Third, we develop a piecewise linear thermal model of a residential building and train the model using data collected from a custom-built thermostat. This model is capable of approximating unmodeled dynamics within a building by learning from sensor data. Control techniques encompass the application of optimal control theory, model predictive control, and convex distributed optimization to TCLs. First, we present the alternative control trajectory (ACT) representation, a novel method for the approximate optimization of non-convex discrete systems. This approach enables the optimal control of a population of non-convex agents using distributed convex optimization techniques. Second, we present a distributed convex optimization algorithm for the control of a TCL population. Experimental results demonstrate the application of this algorithm to the problem of renewable energy generation following. This dissertation contributes to the development of intelligent energy management systems for buildings by presenting a suite of novel and adaptable modeling and control techniques. Applications focus on optimizing the performance of building operations and on facilitating the integration of renewable energy resources.
Artificially Engineered Protein Polymers.
Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D
2017-06-07
Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.
The design of an ECRH system for JET-EP
NASA Astrophysics Data System (ADS)
Verhoeven, A. G. A.; Bongers, W. A.; Elzendoorn, B. S. Q.; Graswinckel, M.; Hellingman, P.; Kooijman, W.; Kruijt, O. G.; Maagdenberg, J.; Ronden, D.; Stakenborg, J.; Sterk, A. B.; Tichler, J.; Alberti, S.; Goodman, T.; Henderson, M.; Hoekzema, J. A.; Oosterbeek, J. W.; Fernandez, A.; Likin, K.; Bruschi, A.; Cirant, S.; Novak, S.; Piosczyk, B.; Thumm, M.; Bindslev, H.; Kaye, A.; Fleming, C.; Zohm, H.
2003-11-01
An electron cyclotron resonance heating (ECRH) system has been designed for JET in the framework of the JET enhanced performance project (JET-EP) under the European fusion development agreement. Due to financial constraints it has been decided not to implement this project. Nevertheless, the design work conducted from April 2000 to January 2002 shows a number of features that can be relevant in preparation of future ECRH systems, e.g. for ITER. The ECRH system was foreseen to comprise six gyrotrons, 1 MW each, in order to deliver 5 MW into the plasma (Verhoeven A.G.A. et al 2001 The ECRH system for JET 26th Int. Conf. on Infrared and Millimeter Waves (Toulouse, 10 14 September 2001) p 83; Verhoeven A.G.A. et al 2003 The 113 GHz ECRH system for JET Proc. 12th Joint Workshop on ECE and ECRH (13 16 May 2002) ed G. Giruzzi (Aix-en-Provence: World Scientific) pp 511 16). The main aim was to enable the control of neo-classical tearing modes. The paper will concentrate on: the power-supply and modulation system, including series IGBT switches, to enable independent control of each gyrotron and an all-solid-state body power supply to stabilize the gyrotron output power and to enable fast modulations up to 10 kHz and a plug-in launcher that is steerable in both toroidal and poloidal angles and able to handle eight separate mm-wave beams. Four steerable launching mirrors were foreseen to handle two mm-wave beams each. Water cooling of all the mirrors was a particularly ITER-relevant feature.
Enabling Airspace Integration for High-Density On-Demand Mobility Operations
NASA Technical Reports Server (NTRS)
Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude - the UAS traffic management (UTM) system - to higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODM's economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
FOCU:S--future operator control unit: soldier
NASA Astrophysics Data System (ADS)
O'Brien, Barry J.; Karan, Cem; Young, Stuart H.
2009-05-01
The U.S. Army Research Laboratory's (ARL) Computational and Information Sciences Directorate (CISD) has long been involved in autonomous asset control, specifically as it relates to small robots. Over the past year, CISD has been making strides in the implementation of three areas of small robot autonomy, namely platform autonomy, Soldier-robot interface, and tactical behaviors. It is CISD's belief that these three areas must be considered as a whole in order to provide Soldiers with useful capabilities. In addressing the Soldier-robot interface aspect, CISD has begun development on a unique dismounted controller called the Future Operator Control Unit: Soldier (FOCU:S) that is based on an Apple iPod Touch. The iPod Touch's small form factor, unique touch-screen input device, and the presence of general purpose computing applications such as a web browser combine to give this device the potential to be a disruptive technology. Setting CISD's implementation apart from other similar iPod or iPhone-based devices is the ARL software that allows multiple robotic platforms to be controlled from a single OCU. The FOCU:S uses the same Agile Computing Infrastructure (ACI) that all other assets in the ARL robotic control system use, enabling automated asset discovery on any type of network. Further, a custom ad hoc routing implementation allows the FOCU:S to communicate with the ARL ad hoc communications system and enables it to extend the range of the network. This paper will briefly describe the current robotic control architecture employed by ARL and provide short descriptions of existing capabilities. Further, the paper will discuss FOCU:S specific software developed for the iPod Touch, including unique capabilities enabled by the device's unique hardware.
An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane; Simon, Donald L.; Owen, A. Karl; Rinehart, Aidan W.; Chicatelli, Amy K.; Acheson, Michael J.; Hueschen, Richard M.; Spiers, Christopher W.
2018-01-01
This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.
Flight Control Laws for NASA's Hyper-X Research Vehicle
NASA Technical Reports Server (NTRS)
Davidson, J.; Lallman, F.; McMinn, J. D.; Martin, J.; Pahle, J.; Stephenson, M.; Selmon, J.; Bose, D.
1999-01-01
The goal of the Hyper-X program is to demonstrate and validate technology for design and performance predictions of hypersonic aircraft with an airframe-integrated supersonic-combustion ramjet propulsion system. Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. A key enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to enable a successful stage separation, to achieve and maintain the design condition during the engine test, and to provide a controlled descent. Before the contract award, NASA developed preliminary flight control laws for the Hyper-X to evaluate the feasibility of the proposed scramjet test sequence and descent trajectory. After the contract award, a Boeing/NASA partnership worked to develop the current control laws. This paper presents a description of the Hyper-X Research Vehicle control law architectures with performance and robustness analyses. Assessments of simulated flight trajectories and stability margin analyses demonstrate that these control laws meet the flight test requirements.
Cloud-based robot remote control system for smart factory
NASA Astrophysics Data System (ADS)
Wu, Zhiming; Li, Lianzhong; Xu, Yang; Zhai, Jingmei
2015-12-01
With the development of internet technologies and the wide application of robots, there is a prospect (trend/tendency) of integration between network and robots. A cloud-based robot remote control system over networks for smart factory is proposed, which enables remote users to control robots and then realize intelligent production. To achieve it, a three-layer system architecture is designed including user layer, service layer and physical layer. Remote control applications running on the cloud server is developed on Microsoft Azure. Moreover, DIV+ CSS technologies are used to design human-machine interface to lower maintenance cost and improve development efficiency. Finally, an experiment is implemented to verify the feasibility of the program.
Implementation of a robotic flexible assembly system
NASA Technical Reports Server (NTRS)
Benton, Ronald C.
1987-01-01
As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning.
Controllability and observability of Boolean networks arising from biology
NASA Astrophysics Data System (ADS)
Li, Rui; Yang, Meng; Chu, Tianguang
2015-02-01
Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.
Main control computer security model of closed network systems protection against cyber attacks
NASA Astrophysics Data System (ADS)
Seymen, Bilal
2014-06-01
The model that brings the data input/output under control in closed network systems, that maintains the system securely, and that controls the flow of information through the Main Control Computer which also brings the network traffic under control against cyber-attacks. The network, which can be controlled single-handedly thanks to the system designed to enable the network users to make data entry into the system or to extract data from the system securely, intends to minimize the security gaps. Moreover, data input/output record can be kept by means of the user account assigned for each user, and it is also possible to carry out retroactive tracking, if requested. Because the measures that need to be taken for each computer on the network regarding cyber security, do require high cost; it has been intended to provide a cost-effective working environment with this model, only if the Main Control Computer has the updated hardware.
Spinning reserve in Puerto Rico doesn`t spin. It`s a battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.; Torres, W.; Akhil, A.
1995-04-01
A battery energy-storage facility is described which provides Puerto Rico Electric Power Authority 20 MW and 14.1 MWh for frequency control and instantaneous spinning reserve. A self-commuted power-conditioning system also enables black starts and provides reactive power for voltage control on transmission lines. 7 figs.
On-demand Droplet Manipulation via Triboelectrification
NASA Astrophysics Data System (ADS)
Wang, Wei; Vahabi, Hamed; Cackovic, Matthew; Jiang, Rui; Kota, Arun
2017-11-01
Controlled manipulation of liquid droplets has attracted tremendous interest across different scientific fields over the past two decades. To date, a variety of external stimuli-mediated methods such as magnetic field, electric field, and light have been developed for manipulating droplets on surfaces. However, these methods usually have drawbacks such as complex fabrication of manipulation platform, low droplet motility, expensive actuation system and lack of precise control. In this work, we demonstrate the controlled manipulation of liquid droplet with both high (e.g., water) and low (e.g., n-hexadecane) dielectric strengths on a smooth, slippery surface via triboelectric effect. Our highly simple, facile and portable methodology enables on-demand, precise manipulation of droplets using solely the electrostatic attraction or repulsion force, which is exerted on the droplet by a simple charged actuator (e.g., Teflon film). We envision that our triboelectric effect enabled droplet manipulation methodology will open a new avenue for droplet based lab-on-a-chip systems, energy harvesting devices and biomedical applications.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.
1997-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.
NASA Technical Reports Server (NTRS)
Johnson, David W.
1992-01-01
Virtual realities are a type of human-computer interface (HCI) and as such may be understood from a historical perspective. In the earliest era, the computer was a very simple, straightforward machine. Interaction was human manipulation of an inanimate object, little more than the provision of an explicit instruction set to be carried out without deviation. In short, control resided with the user. In the second era of HCI, some level of intelligence and control was imparted to the system to enable a dialogue with the user. Simple context sensitive help systems are early examples, while more sophisticated expert system designs typify this era. Control was shared more equally. In this, the third era of the HCI, the constructed system emulates a particular environment, constructed with rules and knowledge about 'reality'. Control is, in part, outside the realm of the human-computer dialogue. Virtual reality systems are discussed.
ICAROUS - Integrated Configurable Algorithms for Reliable Operations Of Unmanned Systems
NASA Technical Reports Server (NTRS)
Consiglio, María; Muñoz, César; Hagen, George; Narkawicz, Anthony; Balachandran, Swee
2016-01-01
NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This paper describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and contingency control functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.
Two Mechanisms to Avoid Control Conflicts Resulting from Uncoordinated Intent
NASA Technical Reports Server (NTRS)
Mishkin, Andrew H.; Dvorak, Daniel L.; Wagner, David A.; Bennett, Matthew B.
2013-01-01
This software implements a real-time access control protocol that is intended to make all connected users aware of the presence of other connected users, and which of them is currently in control of the system. Here, "in control" means that a single user is authorized and enabled to issue instructions to the system. The software The software also implements a goal scheduling mechanism that can detect situations where plans for the operation of a target system proposed by different users overlap and interact in conflicting ways. In such situations, the system can either simply report the conflict (rejecting one goal or the entire plan), or reschedule the goals in a way that does not conflict. The access control mechanism (and associated control protocol) is unique. Other access control mechanisms are generally intended to authenticate users, or exclude unauthorized access. This software does neither, and would likely depend on having some other mechanism to support those requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, Blake; Gotseff, Peter; Giraldez, Julieta
Continued deployment of renewable and distributed energy resources is fundamentally changing the way that electric distribution systems are controlled and operated; more sophisticated active system control and greater situational awareness are needed. Real-time measurements and distribution system state estimation (DSSE) techniques enable more sophisticated system control and, when combined with visualization applications, greater situational awareness. This paper presents a novel demonstration of a high-speed, real-time DSSE platform and related control and visualization functionalities, implemented using existing open-source software and distribution system monitoring hardware. Live scrolling strip charts of meter data and intuitive annotated map visualizations of the entire state (obtainedmore » via DSSE) of a real-world distribution circuit are shown. The DSSE implementation is validated to demonstrate provision of accurate voltage data. This platform allows for enhanced control and situational awareness using only a minimum quantity of distribution system measurement units and modest data and software infrastructure.« less
[A skin cell segregating control system based on PC].
Liu, Wen-zhong; Zhou, Ming; Zhang, Hong-bing
2005-11-01
A skin cell segregating control system based on PC (personal computer) is presented in this paper. Its front controller is a single-chip microcomputer which enables the manipulation for 6 patients simultaneously, and thus provides a great convenience for clinical treatments for vitiligo. With the use of serial port communication technology, it's possible to monitor and control the front controller in a PC terminal. And the application of computer image acquisition technology realizes the synchronous acquisition of pathologic shin cell images pre/after the operation and a case history. Clinical tests prove its conformity with national standards and the pre-set technological requirements.
Chado Controller: advanced annotation management with a community annotation system
Guignon, Valentin; Droc, Gaëtan; Alaux, Michael; Baurens, Franc-Christophe; Garsmeur, Olivier; Poiron, Claire; Carver, Tim; Rouard, Mathieu; Bocs, Stéphanie
2012-01-01
Summary: We developed a controller that is compliant with the Chado database schema, GBrowse and genome annotation-editing tools such as Artemis and Apollo. It enables the management of public and private data, monitors manual annotation (with controlled vocabularies, structural and functional annotation controls) and stores versions of annotation for all modified features. The Chado controller uses PostgreSQL and Perl. Availability: The Chado Controller package is available for download at http://www.gnpannot.org/content/chado-controller and runs on any Unix-like operating system, and documentation is available at http://www.gnpannot.org/content/chado-controller-doc The system can be tested using the GNPAnnot Sandbox at http://www.gnpannot.org/content/gnpannot-sandbox-form Contact: valentin.guignon@cirad.fr; stephanie.sidibe-bocs@cirad.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22285827
Propulsion Risk Reduction Activities for Non-Toxic Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth
2010-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for non-toxic or "green" propellants. The PCAD project focuses on the development of non-toxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of non-toxic propellants for space missions. Implementation of non-toxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that non-toxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.
Propulsion Risk Reduction Activities for Nontoxic Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth L.
2010-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for nontoxic or "green" propellants. The PCAD project focuses on the development of nontoxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of nontoxic propellants for space missions. Implementation of nontoxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that nontoxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.
Robot Would Climb Steep Terrain
NASA Technical Reports Server (NTRS)
Kennedy, Brett; Ganino, Anthony; Aghazarian, Hrand; Hogg, Robert; McHerny, Michael; Garrett, Michael
2007-01-01
This brief describes the steep terrain access robot (STAR) -- a walking robot that has been proposed for exploring steep terrain on remote planets. The STAR would be able to climb up or down on slopes as steep as vertical, and even beyond vertical to overhangs. Its system of walking mechanisms and controls would be to react forces and maintain stability. To enable the STAR to anchor itself in the terrain on steep slopes to maintain stability and react forces, it would be necessary to equip the tips of the walking legs with new ultrasonic/ sonic drill corers (USDCs) and to develop sensors and control algorithms to enable robust utilization of the USDCs.
Precision displacement reference system
Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.
2000-02-22
A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.
Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Matsuyama, Takashi
2015-01-16
Control of the expression levels of multiple enzymes in transgenic yeasts is essential for the effective production of complex molecules through fermentation. Here, we propose a tunable strategy for the control of expression levels based on the design of terminator regions and other gene-expression control elements in Saccharomyces cerevisiae. Our genome-integrated system, which is capable of producing high expression levels over a wide dynamic range, will broadly enable metabolic engineering and synthetic biology. We demonstrated that the activities of multiple cellulases and the production of ethanol were doubled in a transgenic yeast constructed with our system compared with those achieved with a standard expression system.
Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control.
Li, Chuang; Song, Jie; Xia, Yan; Ding, Weiqiang
2018-01-22
Based on Lyapunov control theory in closed and open systems, we propose a scheme to generate W state of many distant atoms in the cavity-fiber-cavity system. In the closed system, the W state is generated successfully even when the coupling strength between the cavity and fiber is extremely weak. In the presence of atomic spontaneous emission or cavity and fiber decay, the photon-measurement and quantum feedback approaches are proposed to improve the fidelity, which enable efficient generation of high-fidelity W state in the case of large dissipation. Furthermore, the time-optimal Lyapunov control is investigated to shorten the evolution time and improve the fidelity in open systems.
ControlShell: A real-time software framework
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Chen, Vincent W.; Pardo-Castellote, Gerardo
1994-01-01
The ControlShell system is a programming environment that enables the development and implementation of complex real-time software. It includes many building tools for complex systems, such as a graphical finite state machine (FSM) tool to provide strategic control. ControlShell has a component-based design, providing interface definitions and mechanisms for building real-time code modules along with providing basic data management. Some of the system-building tools incorporated in ControlShell are a graphical data flow editor, a component data requirement editor, and a state-machine editor. It also includes a distributed data flow package, an execution configuration manager, a matrix package, and an object database and dynamic binding facility. This paper presents an overview of ControlShell's architecture and examines the functions of several of its tools.
The DIII-D Plasma Control System as a Scientific Research Tool
NASA Astrophysics Data System (ADS)
Hyatt, A. W.; Ferron, J. R.; Humphreys, D. A.; Leuer, J. A.; Walker, M. L.; Welander, A. S.
2006-10-01
The digital plasma control system (PCS) is an essential element of the DIII-D tokamak as a scientific research instrument, providing experimenters with real-time measurement and control of the plasma equilibrium, heating, current drive, transport, stability, and plasma-wall interactions. A wide range of sensors and actuators allow feedback control not only of global quantities such as discharge shape, plasma energy, and toroidal rotation, but also of non-axisymmetric magnetic fields and features of the internal profiles of temperature and current density. These diverse capabilities of the PCS improve the effectiveness of tokamak operation and enable unique physics experiments. We will present an overview of the PCS and the systems it controls and interacts with, and show examples of various plasma parameters controlled by the PCS and its actuators.
NASA Astrophysics Data System (ADS)
Cui, Guozeng; Xu, Shengyuan; Ma, Qian; Li, Yongmin; Zhang, Zhengqiang
2018-05-01
In this paper, the problem of prescribed performance distributed output consensus for higher-order non-affine nonlinear multi-agent systems with unknown dead-zone input is investigated. Fuzzy logical systems are utilised to identify the unknown nonlinearities. By introducing prescribed performance, the transient and steady performance of synchronisation errors are guaranteed. Based on Lyapunov stability theory and the dynamic surface control technique, a new distributed consensus algorithm for non-affine nonlinear multi-agent systems is proposed, which ensures cooperatively uniformly ultimately boundedness of all signals in the closed-loop systems and enables the output of each follower to synchronise with the leader within predefined bounded error. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.
Internet SCADA Utilizing API's as Data Source
NASA Astrophysics Data System (ADS)
Robles, Rosslin John; Kim, Haeng-Kon; Kim, Tai-Hoon
An Application programming interface or API is an interface implemented by a software program that enables it to interact with other software. Many companies provide free API services which can be utilized in Control Systems. SCADA is an example of a control system and it is a system that collects data from various sensors at a factory, plant or in other remote locations and then sends this data to a central computer which then manages and controls the data. In this paper, we designed a scheme for Weather Condition in Internet SCADA Environment utilizing data from external API services. The scheme was designed to double check the weather information in SCADA.
Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs
2018-01-01
Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.
NASA Astrophysics Data System (ADS)
Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.
2000-12-01
Implementation of closed-loop microelectromechanical system (MEMS) control enables mechanical microsystems to adapt to the demands of the environment that they are actuating, opening a broad range of new opportunities for future MEMS applications. Integrated optical microsystems have the potential to enable continuous in situ optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation that is necessary for realization of feedback control. We present the results of initial research evaluating through-wafer optical microprobes for surface micromachined MEMS integrated optical position monitoring. Results from the through-wafer free-space optical probe of a lateral comb resonator fabricated using the multiuser MEMS process service (MUMPS) indicate significant positional information content with an achievable return probe signal dynamic range of up to 80% arising from film transmission contrast. Static and dynamic deflection analysis and experimental results indicate a through-wafer probe positional signal sensitivity of 40 mV/micrometers for the present setup or 10% signal change per micrometer. A simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure given the availability of positional state information.
Integrated Tools for Future Distributed Engine Control Technologies
NASA Technical Reports Server (NTRS)
Culley, Dennis; Thomas, Randy; Saus, Joseph
2013-01-01
Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.
Soft, Conformal Bioelectronics for a Wireless Human-Wheelchair Interface
Mishra, Saswat; Norton, James J. S.; Lee, Yongkuk; Lee, Dong Sup; Agee, Nicolas; Chen, Yanfei; Chun, Youngjae; Yeo, Woon-Hong
2017-01-01
There are more than 3 million people in the world whose mobility relies on wheelchairs. Recent advancement on engineering technology enables more intuitive, easy-to-use rehabilitation systems. A human-machine interface that uses non-invasive, electrophysiological signals can allow a systematic interaction between human and devices; for example, eye movement-based wheelchair control. However, the existing machine-interface platforms are obtrusive, uncomfortable, and often cause skin irritations as they require a metal electrode affixed to the skin with a gel and acrylic pad. Here, we introduce a bioelectronic system that makes dry, conformal contact to the skin. The mechanically comfortable sensor records high-fidelity electrooculograms, comparable to the conventional gel electrode. Quantitative signal analysis and infrared thermographs show the advantages of the soft biosensor for an ergonomic human-machine interface. A classification algorithm with an optimized set of features shows the accuracy of 94% with five eye movements. A Bluetooth-enabled system incorporating the soft bioelectronics demonstrates a precise, hands-free control of a robotic wheelchair via electrooculograms. PMID:28152485
Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; ...
2015-11-04
Here, interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression withmore » single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.« less
NASA Technical Reports Server (NTRS)
Ruiz, Ian B.; Burke, Gary R.; Lung, Gerald; Whitaker, William D.; Nowicki, Robert M.
2004-01-01
The Jet Propulsion Laboratory (JPL) has developed a command interface chip-set that primarily consists of two mixed-signal ASICs'; the Command Interface ASIC (CIA) and Analog Interface ASIC (AIA). The Open-systems architecture employed during the design of this chip-set enables its use as both an intelligent gateway between the system's flight computer and the control, actuation, and activation of the spacecraft's loads, valves, and pyrotechnics respectfully as well as the regulator of the spacecraft power bus. Furthermore, the architecture is highly adaptable and employed fault-tolerant design methods enabling a host of other mission uses including reliable remote data collection. The objective of this design is to both provide a needed flight component that meets the stringent environmental requirements of current deep space missions and to add a new element to a growing library that can be used as a standard building block for future missions to the outer planets.
Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)
NASA Technical Reports Server (NTRS)
1980-01-01
The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.
2016-08-10
enable JCS managers to detect advanced cyber attacks, mitigate the effects of those attacks, and recover their networks following an attack. It also... managers of ICS networks to Detect, Mitigate, and Recover from nation-state-level cyber attacks (strategic, deliberate, well-trained, and funded...Successful Detection of cyber anomalies is best achieved when IT and ICS managers remain in close coordination. The Integrity Checks Table
Using Dual Process Models to Examine Impulsivity Throughout Neural Maturation.
Leshem, Rotem
2016-01-01
The multivariate construct of impulsivity is examined through neural systems and connections that comprise the executive functioning system. It is proposed that cognitive and behavioral components of impulsivity can be divided into two distinct groups, mediated by (1) the cognitive control system: deficits in top-down cognitive control processes referred to as action/cognitive impulsivity and (2) the socioemotional system: related to bottom-up affective/motivational processes referred to as affective impulsivity. Examination of impulsivity from a developmental viewpoint can guide future research, potentially enabling the selection of more effective interventions for impulsive individuals, based on the cognitive components requiring improvement.
NASA Astrophysics Data System (ADS)
Mousas, Christos; Anagnostopoulos, Christos-Nikolaos
2017-06-01
This paper presents a hybrid character control interface that provides the ability to synthesize in real-time a variety of actions based on the user's performance capture. The proposed methodology enables three different performance interaction modules: the performance animation control that enables the direct mapping of the user's pose to the character, the motion controller that synthesizes the desired motion of the character based on an activity recognition methodology, and the hybrid control that lies within the performance animation and the motion controller. With the methodology presented, the user will have the freedom to interact within the virtual environment, as well as the ability to manipulate the character and to synthesize a variety of actions that cannot be performed directly by him/her, but which the system synthesizes. Therefore, the user is able to interact with the virtual environment in a more sophisticated fashion. This paper presents examples of different scenarios based on the three different full-body character control methodologies.
ERIC Educational Resources Information Center
Chen, Charlie C.; Vannoy, Sandra
2013-01-01
Voice over Internet Protocol- (VoIP) enabled online learning service providers struggling with high attrition rates and low customer loyalty issues despite VoIP's high degree of system fit for online global learning applications. Effective solutions to this prevalent problem rely on the understanding of system quality, information quality, and…
Solving Equations of Multibody Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Lim, Christopher
2007-01-01
Darts++ is a computer program for solving the equations of motion of a multibody system or of a multibody model of a dynamic system. It is intended especially for use in dynamical simulations performed in designing and analyzing, and developing software for the control of, complex mechanical systems. Darts++ is based on the Spatial-Operator- Algebra formulation for multibody dynamics. This software reads a description of a multibody system from a model data file, then constructs and implements an efficient algorithm that solves the dynamical equations of the system. The efficiency and, hence, the computational speed is sufficient to make Darts++ suitable for use in realtime closed-loop simulations. Darts++ features an object-oriented software architecture that enables reconfiguration of system topology at run time; in contrast, in related prior software, system topology is fixed during initialization. Darts++ provides an interface to scripting languages, including Tcl and Python, that enable the user to configure and interact with simulation objects at run time.
Novel online monitoring and alert system for anaerobic digestion reactors.
Dong, Fang; Zhao, Quan-Bao; Li, Wen-Wei; Sheng, Guo-Ping; Zhao, Jin-Bao; Tang, Yong; Yu, Han-Qing; Kubota, Kengo; Li, Yu-You; Harada, Hideki
2011-10-15
Effective monitoring and diagnosis of anaerobic digestion processes is a great challenge for anaerobic digestion reactors, which limits their stable operation. In this work, an online monitoring and alert system for upflow anaerobic sludge blanket (UASB) reactors is developed on the basis of a set of novel evaluating indexes. The two indexes, i.e., stability index S and auxiliary index a, which incorporate both gas- and liquid-phase parameters for UASB, enable a quantitative and comprehensive evaluation of reactor status. A series of shock tests is conducted to evaluate the response of the monitoring and alert system to organic overloading, hydraulic, temperature, and toxicant shocks. The results show that this system enables an accurate and rapid monitoring and diagnosis of the reactor status, and offers reliable early warnings on the potential risks. As the core of this system, the evaluating indexes are demonstrated to be of high accuracy and sensitivity in process evaluation and good adaptability to the artificial intelligence and automated control apparatus. This online monitoring and alert system presents a valuable effort to promote the automated monitoring and control of anaerobic digestion process, and holds a high promise for application.
SCORPION II persistent surveillance system update
NASA Astrophysics Data System (ADS)
Coster, Michael; Chambers, Jon
2010-04-01
This paper updates the improvements and benefits demonstrated in the next generation Northrop Grumman SCORPION II family of persistent surveillance and target recognition systems produced by the Xetron Campus in Cincinnati, Ohio. SCORPION II reduces the size, weight, and cost of all SCORPION components in a flexible, field programmable system that is easier to conceal and enables integration of over fifty different Unattended Ground Sensor (UGS) and camera types from a variety of manufacturers, with a modular approach to supporting multiple Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications interfaces. Since 1998 Northrop Grumman has been integrating best in class sensors with its proven universal modular Gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control. In addition to feeding COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system gateways on single or multiple displays. This GUI enables a large amount of sensor data and imagery to be used for actionable intelligence as well as remote sensor command and control by a minimum number of analysts.
Internet Teleoperation of a Robot with Streaming Buffer System under Varying Time Delays
NASA Astrophysics Data System (ADS)
Park, Jahng-Hyon; Shin, Wanjae
It is known that existence of irregular transmission time delay is a major bottleneck for application of advanced robot control schemes to internet telerobotic systems. In the internet teleoperation system, the irregular transmission time delay causes a critical problem, which includes instability and inaccuracy. This paper suggests a practical internet teleoperation system with streaming buffer system, which consists of a buffer, a buffer manager, and a control timer. The proposed system converts the irregular transmission time delay to a constant. So, the system effectively transmits the control input to a remote site to operate a robot stably and accurately. This feature enables short control input intervals. That means the entire system has a large control bandwidth. The validity of the proposed method is demonstrated by experiments of teleoperation from USC (University of Southern California in U. S.A.) to HYU (Hanyang Univ. in Korea) through the Internet. The proposed method is also demonstrated by experiments of teleoperation through the wireless internet.
Signal acquisition and analysis for cortical control of neuroprosthetics.
Tillery, Stephen I Helms; Taylor, Dawn M
2004-12-01
Work in cortically controlled neuroprosthetic systems has concentrated on decoding natural behaviors from neural activity, with the idea that if the behavior could be fully decoded it could be duplicated using an artificial system. Initial estimates from this approach suggested that a high-fidelity signal comprised of many hundreds of neurons would be required to control a neuroprosthetic system successfully. However, recent studies are showing hints that these systems can be controlled effectively using only a few tens of neurons. Attempting to decode the pre-existing relationship between neural activity and natural behavior is not nearly as important as choosing a decoding scheme that can be more readily deployed and trained to generate the desired actions of the artificial system. These artificial systems need not resemble or behave similarly to any natural biological system. Effective matching of discrete and continuous neural command signals to appropriately configured device functions will enable effective control of both natural and abstract artificial systems using compatible thought processes.
Controllability of structural brain networks
NASA Astrophysics Data System (ADS)
Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.
2015-10-01
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.
Operating room integration and telehealth.
Bucholz, Richard D; Laycock, Keith A; McDurmont, Leslie
2011-01-01
The increasing use of advanced automated and computer-controlled systems and devices in surgical procedures has resulted in problems arising from the crowding of the operating room with equipment and the incompatible control and communication standards associated with each system. This lack of compatibility between systems and centralized control means that the surgeon is frequently required to interact with multiple computer interfaces in order to obtain updates and exert control over the various devices at his disposal. To reduce this complexity and provide the surgeon with more complete and precise control of the operating room systems, a unified interface and communication network has been developed. In addition to improving efficiency, this network also allows the surgeon to grant remote access to consultants and observers at other institutions, enabling experts to participate in the procedure without having to travel to the site.
Resonance: The science behind the art of sonic drilling
NASA Astrophysics Data System (ADS)
Lucon, Peter Andrew
The research presented in this dissertation quantifies the system dynamics and the influence of control variables of a sonic drill system. The investigation began with an initial body of work funded by the Department of Energy under a Small Business Innovative Research Phase I Grant, grant number: DE-FG02-06ER84618, to investigate the feasibility of using sonic drills to drill micro well holes to depths of 1500 feet. The Department of Energy funding enabled feasibility testing using a 750 hp sonic drill owned by Jeffery Barrow, owner of Water Development Co. During the initial feasibility testing, data was measured and recorded at the sonic drill head while the sonic drill penetrated to a depth of 120 feet. To demonstrate feasibility, the system had to be well understood to show that testing of a larger sonic drill could simulate the results of drilling a micro well hole of 2.5 inch diameter. A first-order model of the system was developed that produced counter-intuitive findings that enabled the feasibility of using this method to drill deeper and produce micro-well holes to 1500 feet using sonic drills. Although funding was not continued, the project work continued. This continued work expanded on the sonic drill models by understanding the governing differential equation and solving the boundary value problem, finite difference methods, and finite element methods to determine the significance of the control variables that can affect the sonic drill. Using a design of experiment approach and commercially available software, the significance of the variables to the effectiveness of the drill system were determined. From the significant variables, as well as the real world testing, a control system schematic for a sonic drill was derived and is patent pending. The control system includes sensors, actuators, personal logic controllers, as well as a human machine interface. It was determined that the control system should control the resonant mode and the weight on the bit as the primary two control variables. The sonic drill can also be controlled using feedback from sensors mounted on the sonic drill head, which is the driver for the sonic drill located above ground
A brain-machine interface enables bimanual arm movements in monkeys.
Ifft, Peter J; Shokur, Solaiman; Li, Zheng; Lebedev, Mikhail A; Nicolelis, Miguel A L
2013-11-06
Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to paralyzed patients. So far, BMIs have enabled only one arm to be moved at a time. Control of bimanual arm movements remains a major challenge. We have developed and tested a bimanual BMI that enables rhesus monkeys to control two avatar arms simultaneously. The bimanual BMI was based on the extracellular activity of 374 to 497 neurons recorded from several frontal and parietal cortical areas of both cerebral hemispheres. Cortical activity was transformed into movements of the two arms with a decoding algorithm called a fifth-order unscented Kalman filter (UKF). The UKF was trained either during a manual task performed with two joysticks or by having the monkeys passively observe the movements of avatar arms. Most cortical neurons changed their modulation patterns when both arms were engaged simultaneously. Representing the two arms jointly in a single UKF decoder resulted in improved decoding performance compared with using separate decoders for each arm. As the animals' performance in bimanual BMI control improved over time, we observed widespread plasticity in frontal and parietal cortical areas. Neuronal representation of the avatar and reach targets was enhanced with learning, whereas pairwise correlations between neurons initially increased and then decreased. These results suggest that cortical networks may assimilate the two avatar arms through BMI control. These findings should help in the design of more sophisticated BMIs capable of enabling bimanual motor control in human patients.
Mobile terawatt laser propagation facility (Conference Presentation)
NASA Astrophysics Data System (ADS)
Shah, Lawrence; Roumayah, Patrick; Bodnar, Nathan; Bradford, Joshua D.; Maukonen, Douglas; Richardson, Martin C.
2017-03-01
This presentation will describe the design and construction status of a new mobile high-energy femtosecond laser systems producing 500 mJ, 100 fs pulses at 10 Hz. This facility is built into a shipping container and includes a cleanroom housing the laser system, a separate section for the beam director optics with a retractable roof, and the environmental control equipment necessary to maintain stable operation. The laser system includes several innovations to improve the utility of the system for "in field" experiments. For example, this system utilizes a fiber laser oscillator and a monolithic chirped Bragg grating stretcher to improve system robustness/size and employs software to enable remote monitoring and system control. Uniquely, this facility incorporates a precision motion-controlled gimbal altitude-azimuth mount with a coudé path to enable aiming of the beam over a wide field of view. In addition to providing the ability to precisely aim at multiple targets, it is also possible to coordinate the beam with separate tracking/diagnostic sensing equipment as well as other laser systems. This mobile platform will be deployed at the Townes Institute Science and Technology Experimental Facility (TISTEF) located at the Kennedy Space Center in Florida, to utilize the 1-km secured laser propagation range and the wide array of meteorological instrumentation for atmospheric and turbulence characterization. This will provide significant new data on the propagation of high peak power ultrashort laser pulses and detailed information on the atmospheric conditions in a coastal semi-tropical environment.
Active Thermal Control System Development for Exploration
NASA Technical Reports Server (NTRS)
Westheimer, David
2007-01-01
All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.
Flatness-based control and Kalman filtering for a continuous-time macroeconomic model
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.
2017-11-01
The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.
ERIC Educational Resources Information Center
Read, Janet
1994-01-01
Describes the development of a British-Hungarian project focused on training specialist teachers (conductors) in Great Britain in conductive education, a system of special education developed at the Peto Institute in Hungary for children and adults with central nervous system disorders affecting motor control. Conductors enable the physical,…
2006-06-01
systems. Cyberspace is the electronic medium of net-centric operations, communications systems, and computers, in which horizontal integration and online...will be interoperable, more robust, responsive, and able to support faster spacecraft initialization times. This Intergrated Satellite Control... horizontally and vertically integrated information through machine-to-machine conversations enabled by a peer-based network of sensors, command
NASA Technical Reports Server (NTRS)
Riddlebaugh, Stephen M. (Editor)
2008-01-01
The NASA Glenn Research Center is pushing the envelope of research and technology in aeronautics, space exploration, science, and space operations. Our research in aeropropulsion, structures and materials, and instrumentation and controls is enabling next-generation transportation systems that are faster, more environmentally friendly, more fuel efficient, and safer. Our research and development of space flight systems is enabling advanced power, propulsion, communications, and human health systems that will advance the exploration of our solar system. This report selectively summarizes NASA Glenn Research Center s research and technology accomplishments for fiscal year 2007. Comprising 104 short articles submitted by the staff scientists and engineers, the report is organized into six major sections: Aeropropulsion, Power and Space Propulsion, Communications, Space Processes and Experiments, Instrumentation and Controls, and Structures and Materials. It is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year; most of the work is reported in Glenn-published technical reports, journal articles, and presentations. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained.
A Flight Control System for Small Unmanned Aerial Vehicle
NASA Astrophysics Data System (ADS)
Tunik, A. A.; Nadsadnaya, O. I.
2018-03-01
The program adaptation of the controller for the flight control system (FCS) of an unmanned aerial vehicle (UAV) is considered. Linearized flight dynamic models depend mainly on the true airspeed of the UAV, which is measured by the onboard air data system. This enables its use for program adaptation of the FCS over the full range of altitudes and velocities, which define the flight operating range. FCS with program adaptation, based on static feedback (SF), is selected. The SF parameters for every sub-range of the true airspeed are determined using the linear matrix inequality approach in the case of discrete systems for synthesis of a suboptimal robust H ∞-controller. The use of the Lagrange interpolation between true airspeed sub-ranges provides continuous adaptation. The efficiency of the proposed approach is shown against an example of the heading stabilization system.
Hernández-Ramos, José L.; Bernabe, Jorge Bernal; Moreno, M. Victoria; Skarmeta, Antonio F.
2015-01-01
As we get into the Internet of Things era, security and privacy concerns remain as the main obstacles in the development of innovative and valuable services to be exploited by society. Given the Machine-to-Machine (M2M) nature of these emerging scenarios, the application of current privacy-friendly technologies needs to be reconsidered and adapted to be deployed in such global ecosystem. This work proposes different privacy-preserving mechanisms through the application of anonymous credential systems and certificateless public key cryptography. The resulting alternatives are intended to enable an anonymous and accountable access control approach to be deployed on large-scale scenarios, such as Smart Cities. Furthermore, the proposed mechanisms have been deployed on constrained devices, in order to assess their suitability for a secure and privacy-preserving M2M-enabled Internet of Things. PMID:26140349
Hernández-Ramos, José L; Bernabe, Jorge Bernal; Moreno, M Victoria; Skarmeta, Antonio F
2015-07-01
As we get into the Internet of Things era, security and privacy concerns remain as the main obstacles in the development of innovative and valuable services to be exploited by society. Given the Machine-to-Machine (M2M) nature of these emerging scenarios, the application of current privacy-friendly technologies needs to be reconsidered and adapted to be deployed in such global ecosystem. This work proposes different privacy-preserving mechanisms through the application of anonymous credential systems and certificateless public key cryptography. The resulting alternatives are intended to enable an anonymous and accountable access control approach to be deployed on large-scale scenarios, such as Smart Cities. Furthermore, the proposed mechanisms have been deployed on constrained devices, in order to assess their suitability for a secure and privacy-preserving M2M-enabled Internet of Things.
Movable Ground Based Recovery System for Reuseable Space Flight Hardware
NASA Technical Reports Server (NTRS)
Sarver, George L. (Inventor)
2013-01-01
A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.
Facilitating Secure Sharing of Personal Health Data in the Cloud.
Thilakanathan, Danan; Calvo, Rafael A; Chen, Shiping; Nepal, Surya; Glozier, Nick
2016-05-27
Internet-based applications are providing new ways of promoting health and reducing the cost of care. Although data can be kept encrypted in servers, the user does not have the ability to decide whom the data are shared with. Technically this is linked to the problem of who owns the data encryption keys required to decrypt the data. Currently, cloud service providers, rather than users, have full rights to the key. In practical terms this makes the users lose full control over their data. Trust and uptake of these applications can be increased by allowing patients to feel in control of their data, generally stored in cloud-based services. This paper addresses this security challenge by providing the user a way of controlling encryption keys independently of the cloud service provider. We provide a secure and usable system that enables a patient to share health information with doctors and specialists. We contribute a secure protocol for patients to share their data with doctors and others on the cloud while keeping complete ownership. We developed a simple, stereotypical health application and carried out security tests, performance tests, and usability tests with both students and doctors (N=15). We developed the health application as an app for Android mobile phones. We carried out the usability tests on potential participants and medical professionals. Of 20 participants, 14 (70%) either agreed or strongly agreed that they felt safer using our system. Using mixed methods, we show that participants agreed that privacy and security of health data are important and that our system addresses these issues. We presented a security protocol that enables patients to securely share their eHealth data with doctors and nurses and developed a secure and usable system that enables patients to share mental health information with doctors.
Development of a Hybrid EPR/NMR Coimaging System
Samouilov, Alexandre; Caia, George L.; Kesselring, Eric; Petryakov, Sergey; Wasowicz, Tomasz; Zweier, Jay L.
2010-01-01
Electron paramagnetic resonance imaging (EPRI) is a powerful technique that enables spatial mapping of free radicals or other paramagnetic compounds; however, it does not in itself provide anatomic visualization of the body. Proton magnetic resonance imaging (MRI) is well suited to provide anatomical visualization. A hybrid EPR/NMR coimaging instrument was constructed that utilizes the complementary capabilities of both techniques, superimposing EPR and proton-MR images to provide the distribution of paramagnetic species in the body. A common magnet and field gradient system is utilized along with a dual EPR and proton-NMR resonator assembly, enabling coimaging without the need to move the sample. EPRI is performed at ~1.2 GHz/~40 mT and proton MRI is performed at 16.18 MHz/~380 mT; hence the method is suitable for whole-body coimaging of living mice. The gradient system used is calibrated and controlled in such a manner that the spatial geometry of the two acquired images is matched, enabling their superposition without additional postprocessing or marker registration. The performance of the system was tested in a series of phantoms and in vivo applications by mapping the location of a paramagnetic probe in the gastrointestinal (GI) tract of mice. This hybrid EPR/NMR coimaging instrument enables imaging of paramagnetic molecules along with their anatomic localization in the body. PMID:17659621
Pilot-in-the-Loop Analysis of Propulsive-Only Flight Control Systems
NASA Technical Reports Server (NTRS)
Chou, Hwei-Lan; Biezad, Daniel J.
1996-01-01
Longitudinal control system architectures are presented which directly couple flight stick motions to throttle commands for a multi-engine aircraft. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of Quantitative Feedback Theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control. These characteristics will be tested in a simulator study involving failed flight controls for a multi-engine aircraft.
Update on Development of SiC Multi-Chip Power Modules
NASA Technical Reports Server (NTRS)
Lostetter, Alexander; Cilio, Edgar; Mitchell, Gavin; Schupbach, Roberto
2008-01-01
Progress has been made in a continuing effort to develop multi-chip power modules (SiC MCPMs). This effort at an earlier stage was reported in 'SiC Multi-Chip Power Modules as Power-System Building Blocks' (LEW-18008-1), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 28. The following recapitulation of information from the cited prior article is prerequisite to a meaningful summary of the progress made since then: 1) SiC MCPMs are, more specifically, electronic power-supply modules containing multiple silicon carbide power integrated-circuit chips and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking; 2) The stacked SiC MCPMs in a given system can be electrically connected in series, parallel, or a series/parallel combination to increase the overall power-handling capability of the system. In addition to power connections, the modules have communication connections. The SOI controllers in the modules communicate with each other as nodes of a decentralized control network, in which no single controller exerts overall command of the system. Control functions effected via the network include synchronization of switching of power devices and rapid reconfiguration of power connections to enable the power system to continue to supply power to a load in the event of failure of one of the modules; and, 3) In addition to serving as building blocks of reliable power-supply systems, SiC MCPMs could be augmented with external control circuitry to make them perform additional power-handling functions as needed for specific applications. Because identical SiC MCPM building blocks could be utilized in such a variety of ways, the cost and difficulty of designing new, highly reliable power systems would be reduced considerably. This concludes the information from the cited prior article. The main activity since the previously reported stage of development was the design, fabrication, and testing a 120- VDC-to-28-VDC modular power-converter system composed of eight SiC MCPMs in a 4 (parallel)-by-2 (series) matrix configuration, with normally-off controllable power switches. The SiC MCPM power modules include closed-loop control subsystems and are capable of operating at high power density or high temperature. The system was tested under various configurations, load conditions, load-transient conditions, and failure-recovery conditions. Planned future work includes refinement of the demonstrated modular system concept and development of a new converter hardware topology that would enable sharing of currents without the need for communication among modules. Toward these ends, it is also planned to develop a new converter control algorithm that would provide for improved sharing of current and power under all conditions, and to implement advanced packaging concepts that would enable operation at higher power density.
Autonomy-Enabled Fuel Savings for Military Vehicles: Report on 2016 Aberdeen Test Center Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragatz, Adam; Prohaska, Robert; Gonder, Jeff
Fuel savings have never been the primary focus for autonomy-enabled military vehicles. However, studies have estimated that autonomy in passenger and commercial vehicles could improve fuel economy by as much as 22%-33% over various drive cycles. If even a fraction of this saving could be realized in military vehicles, significant cost savings could be realized each year through reduced fuel transport missions, reduced fuel purchases, less maintenance, fewer required personnel, and increased vehicle range. Researchers from the National Renewable Energy Laboratory installed advanced data logging equipment and instrumentation on two autonomy-enabled convoy vehicles configured with Lockheed Martin's Autonomous Mobility Appliquemore » System to determine system performance and improve on the overall vehicle control strategies of the vehicles. Initial test results from testing conducted at the U.S. Army Aberdeen Test Center at the Aberdeen Proving Grounds are included in this report. Lessons learned from in-use testing and performance results have been provided to the project partners for continued system refinement.« less
A synthetic biological quantum optical system
Lishchuk, Anna; Kodali, Goutham; Mancini, Joshua A.; ...
2018-01-01
Strong coupling between plasmon modes and chlorins in synthetic light-harvesting maquette proteins yields hybrid light–matter states (plexcitons) whose energies are controlled by design of protein structure, enabling the creation of new states not seen under weak coupling.
Human Support Technology Research to Enable Exploration
NASA Technical Reports Server (NTRS)
Joshi, Jitendra
2003-01-01
Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.
Power monitoring and control for large scale projects: SKA, a case study
NASA Astrophysics Data System (ADS)
Barbosa, Domingos; Barraca, João. Paulo; Maia, Dalmiro; Carvalho, Bruno; Vieira, Jorge; Swart, Paul; Le Roux, Gerhard; Natarajan, Swaminathan; van Ardenne, Arnold; Seca, Luis
2016-07-01
Large sensor-based science infrastructures for radio astronomy like the SKA will be among the most intensive datadriven projects in the world, facing very high demanding computation, storage, management, and above all power demands. The geographically wide distribution of the SKA and its associated processing requirements in the form of tailored High Performance Computing (HPC) facilities, require a Greener approach towards the Information and Communications Technologies (ICT) adopted for the data processing to enable operational compliance to potentially strict power budgets. Addressing the reduction of electricity costs, improve system power monitoring and the generation and management of electricity at system level is paramount to avoid future inefficiencies and higher costs and enable fulfillments of Key Science Cases. Here we outline major characteristics and innovation approaches to address power efficiency and long-term power sustainability for radio astronomy projects, focusing on Green ICT for science and Smart power monitoring and control.
A sigma factor toolbox for orthogonal gene expression in Escherichia coli
Van Brempt, Maarten; Van Nerom, Katleen; Van Hove, Bob; Maertens, Jo; De Mey, Marjan; Charlier, Daniel
2018-01-01
Abstract Synthetic genetic sensors and circuits enable programmable control over timing and conditions of gene expression and, as a result, are increasingly incorporated into the control of complex and multi-gene pathways. Size and complexity of genetic circuits are growing, but stay limited by a shortage of regulatory parts that can be used without interference. Therefore, orthogonal expression and regulation systems are needed to minimize undesired crosstalk and allow for dynamic control of separate modules. This work presents a set of orthogonal expression systems for use in Escherichia coli based on heterologous sigma factors from Bacillus subtilis that recognize specific promoter sequences. Up to four of the analyzed sigma factors can be combined to function orthogonally between each other and toward the host. Additionally, the toolbox is expanded by creating promoter libraries for three sigma factors without loss of their orthogonal nature. As this set covers a wide range of transcription initiation frequencies, it enables tuning of multiple outputs of the circuit in response to different sensory signals in an orthogonal manner. This sigma factor toolbox constitutes an interesting expansion of the synthetic biology toolbox and may contribute to the assembly of more complex synthetic genetic systems in the future. PMID:29361130
The new high field photoexcitation muon spectrometer at the ISIS pulsed neutron and muon source
NASA Astrophysics Data System (ADS)
Yokoyama, K.; Lord, J. S.; Murahari, P.; Wang, K.; Dunstan, D. J.; Waller, S. P.; McPhail, D. J.; Hillier, A. D.; Henson, J.; Harper, M. R.; Heathcote, P.; Drew, A. J.
2016-12-01
A high power pulsed laser system has been installed on the high magnetic field muon spectrometer (HiFi) at the International Science Information Service pulsed neutron and muon source, situated at the STFC Rutherford Appleton Laboratory in the UK. The upgrade enables one to perform light-pump muon-probe experiments under a high magnetic field, which opens new applications of muon spin spectroscopy. In this report we give an overview of the principle of the HiFi laser system and describe the newly developed techniques and devices that enable precisely controlled photoexcitation of samples in the muon instrument. A demonstration experiment illustrates the potential of this unique combination of the photoexcited system and avoided level crossing technique.
The new high field photoexcitation muon spectrometer at the ISIS pulsed neutron and muon source.
Yokoyama, K; Lord, J S; Murahari, P; Wang, K; Dunstan, D J; Waller, S P; McPhail, D J; Hillier, A D; Henson, J; Harper, M R; Heathcote, P; Drew, A J
2016-12-01
A high power pulsed laser system has been installed on the high magnetic field muon spectrometer (HiFi) at the International Science Information Service pulsed neutron and muon source, situated at the STFC Rutherford Appleton Laboratory in the UK. The upgrade enables one to perform light-pump muon-probe experiments under a high magnetic field, which opens new applications of muon spin spectroscopy. In this report we give an overview of the principle of the HiFi laser system and describe the newly developed techniques and devices that enable precisely controlled photoexcitation of samples in the muon instrument. A demonstration experiment illustrates the potential of this unique combination of the photoexcited system and avoided level crossing technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayeski, N.; Armstrong, Peter; Alvira, M.
2011-11-30
KGS Buildings LLC (KGS) and Pacific Northwest National Laboratory (PNNL) have developed a simplified control algorithm and prototype low-lift chiller controller suitable for model-predictive control in a demonstration project of low-lift cooling. Low-lift cooling is a highly efficient cooling strategy conceived to enable low or net-zero energy buildings. A low-lift cooling system consists of a high efficiency low-lift chiller, radiant cooling, thermal storage, and model-predictive control to pre-cool thermal storage overnight on an optimal cooling rate trajectory. We call the properly integrated and controlled combination of these elements a low-lift cooling system (LLCS). This document is the final report formore » that project.« less
Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.
System for controlled acoustic rotation of objects
NASA Technical Reports Server (NTRS)
Barmatz, M. B. (Inventor)
1983-01-01
A system is described for use with acoustically levitated objects, which enables close control of rotation of the object. One system includes transducers that propagate acoustic waves along the three dimensions (X, Y, Z) of a chamber of rectangular cross section. Each transducers generates one wave which is resonant to a corresponding chamber dimension to acoustically levitate an object, and additional higher frequency resonant wavelengths for controlling rotation of the object. The three chamber dimensions and the corresponding three levitation modes (resonant wavelengths) are all different, to avoid degeneracy, or interference, of waves with one another, that could have an effect on object rotation. Only the higher frequencies, with pairs of them having the same wavelength, are utilized to control rotation, so that rotation is controlled independently of levitation and about any arbitrarily chosen axis.
SDN-Enabled Dynamic Feedback Control and Sensing in Agile Optical Networks
NASA Astrophysics Data System (ADS)
Lin, Likun
Fiber optic networks are no longer just pipelines for transporting data in the long haul backbone. Exponential growth in traffic in metro-regional areas has pushed higher capacity fiber toward the edge of the network, and highly dynamic patterns of heterogeneous traffic have emerged that are often bursty, severely stressing the historical "fat and dumb pipe" static optical network, which would need to be massively over-provisioned to deal with these loads. What is required is a more intelligent network with a span of control over the optical as well as electrical transport mechanisms which enables handling of service requests in a fast and efficient way that guarantees quality of service (QoS) while optimizing capacity efficiency. An "agile" optical network is a reconfigurable optical network comprised of high speed intelligent control system fed by real-time in situ network sensing. It provides fast response in the control and switching of optical signals in response to changing traffic demands and network conditions. This agile control of optical signals is enabled by pushing switching decisions downward in the network stack to the physical layer. Implementing such agility is challenging due to the response dynamics and interactions of signals in the physical layer. Control schemes must deal with issues such as dynamic power equalization, EDFA transients and cascaded noise effects, impairments due to self-phase modulation and dispersion, and channel-to-channel cross talk. If these issues are not properly predicted and mitigated, attempts at dynamic control can drive the optical network into an unstable state. In order to enable high speed actuation of signal modulators and switches, the network controller must be able to make decisions based on predictive models. In this thesis, we consider how to take advantage of Software Defined Networking (SDN) capabilities for network reconfiguration, combined with embedded models that access updates from deployed network monitoring sensors. In order to maintain signal quality while optimizing network resources, we find that it is essential to model and update estimates of the physical link impairments in real-time. In this thesis, we consider the key elements required to enable an agile optical network, with contributions as follows: • Control Framework: extended the SDN concept to include the optical transport network through extensions to the OpenFlow (OF) protocol. A unified SDN control plane is built to facilitate control and management capability across the electrical/packet-switched and optical/circuit-switched portions of the network seamlessly. The SDN control plane serves as a platform to abstract the resources of multilayer/multivendor networks. Through this platform, applications can dynamically request the network resources to meet their service requirements. • Use of In-situ Monitors: enabled real-time physical impairment sensing in the control plane using in-situ Optical Performance Monitoring (OPM) and bit error rate (BER) analyzers. OPM and BER values are used as quantitative indicators of the link status and are fed to the control plane through a high-speed data collection interface to form a closed-loop feedback system to enable adaptive resource allocation. • Predictive Network Model: used a network model embedded in the control layer to study the link status. The estimated results of network status is fed into the control decisions to precompute the network resources. The performance of the network model can be enhanced by the sensing results. • Real-Time Control Algorithms: investigated various dynamic resource allocation mechanisms supporting an agile optical network. Intelligent routing and wavelength switching for recovering from traffic impairments is achieved experimentally in the agile optical network within one second. A distance-adaptive spectrum allocation scheme to address transmission impairments caused by cascaded Wavelength Selective Switches (WSS) is proposed and evaluated for improving network spectral efficiency.
Policy Driven Development: Flexible Policy Insertion for Large Scale Systems.
Demchak, Barry; Krüger, Ingolf
2012-07-01
The success of a software system depends critically on how well it reflects and adapts to stakeholder requirements. Traditional development methods often frustrate stakeholders by creating long latencies between requirement articulation and system deployment, especially in large scale systems. One source of latency is the maintenance of policy decisions encoded directly into system workflows at development time, including those involving access control and feature set selection. We created the Policy Driven Development (PDD) methodology to address these development latencies by enabling the flexible injection of decision points into existing workflows at runtime , thus enabling policy composition that integrates requirements furnished by multiple, oblivious stakeholder groups. Using PDD, we designed and implemented a production cyberinfrastructure that demonstrates policy and workflow injection that quickly implements stakeholder requirements, including features not contemplated in the original system design. PDD provides a path to quickly and cost effectively evolve such applications over a long lifetime.
Magnelok technology: a complement to magnetorheological fluids
NASA Astrophysics Data System (ADS)
Carlson, J. David
2004-07-01
Magnetorheological or MR fluids have been successfully used to enable highly effective semi-active control systems in automobile primary suspensions to control unwanted motions in civil engineering structures and to provide force-feedback in steer-by-wire systems. A key to the successful use of MR fluids is an appreciation and understanding of the balance and trade-off between the magnetically controlled on-state force and the ever-present off-state viscous force. In all MR fluid applications, one must deal with the fact that MR fluids never fully decouple or go to zero force in their off-state. Magnelok devices are a magnetically controlled compliment to traditional MR fluid devices that have been developed to enable a true force decoupling in the off-state. Magnelok devices may be embodied as linear or rotary dampers, brakes, lockable struts or position holding devices. They are particularly suitable for lock/un-lock applications. Unlike MR fluid devices they contain no fluid yet they do provide a variable level of friction damping that is controlled by the magnitude of the applied magnetic field. Magnelok devices are low cost as they easily accommodate relatively loose mechanical tolerances and require no seals or accumulator. A variety of controllable Magnelok devices and applications are described.
Suboptimal distributed control and estimation: application to a four coupled tanks system
NASA Astrophysics Data System (ADS)
Orihuela, Luis; Millán, Pablo; Vivas, Carlos; Rubio, Francisco R.
2016-06-01
The paper proposes an innovative estimation and control scheme that enables the distributed monitoring and control of large-scale processes. The proposed approach considers a discrete linear time-invariant process controlled by a network of agents that may both collect information about the evolution of the plant and apply control actions to drive its behaviour. The problem makes full sense when local observability/controllability is not assumed and the communication between agents can be exploited to reach system-wide goals. Additionally, to reduce agents bandwidth requirements and power consumption, an event-based communication policy is studied. The design procedure guarantees system stability, allowing the designer to trade-off performance, control effort and communication requirements. The obtained controllers and observers are implemented in a fully distributed fashion. To illustrate the performance of the proposed technique, experimental results on a quadruple-tank process are provided.
NASA Astrophysics Data System (ADS)
Lazzari, R.; Parma, C.; De Marco, A.; Bittanti, S.
2015-07-01
In this paper, we describe a control strategy for a photovoltaic (PV) power plant equipped with an energy storage system (ESS), based on lithium-ion battery. The plant consists of the following units: the PV generator, the energy storage system, the DC-bus and the inverter. The control, organised in a hierarchical manner, maximises the self-consumption of the local load unit. In particular, the ESS action performs power balance in case of low solar radiation or surplus of PV generation, thus managing the power exchange variability at the plant with the grid. The implemented control strategy is under testing in RSE pilot test facility in Milan, Italy.
Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.
Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José
2015-01-01
A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.
Integrated health monitoring and controls for rocket engines
NASA Technical Reports Server (NTRS)
Merrill, W. C.; Musgrave, J. L.; Guo, T. H.
1992-01-01
Current research in intelligent control systems at the Lewis Research Center is described in the context of a functional framework. The framework is applicable to a variety of reusable space propulsion systems for existing and future launch vehicles. It provides a 'road map' technology development to enable enhanced engine performance with increased reliability, durability, and maintainability. The framework hierarchy consists of a mission coordination level, a propulsion system coordination level, and an engine control level. Each level is described in the context of the Space Shuttle Main Engine. The concept of integrating diagnostics with control is discussed within the context of the functional framework. A distributed real time simulation testbed is used to realize and evaluate the functionalities in closed loop.
Optogenetic Light Crafting Tools for the Control of Cardiac Arrhythmias.
Richter, Claudia; Christoph, Jan; Lehnart, Stephan E; Luther, Stefan
2016-01-01
The control of spatiotemporal dynamics in biological systems is a fundamental problem in nonlinear sciences and has important applications in engineering and medicine. Optogenetic tools combined with advanced optical technologies provide unique opportunities to develop and validate novel approaches to control spatiotemporal complexity in neuronal and cardiac systems. Understanding of the mechanisms and instabilities underlying the onset, perpetuation, and control of cardiac arrhythmias will enable the development and translation of novel therapeutic approaches. Here we describe in detail the preparation and optical mapping of transgenic channelrhodopsin-2 (ChR2) mouse hearts, cardiac cell cultures, and the optical setup for photostimulation using digital light processing.
Biocatalytic Self-Assembly on Magnetic Nanoparticles.
Conte, Maria P; Sahoo, Jugal Kishore; Abul-Haija, Yousef M; Lau, K H Aaron; Ulijn, Rein V
2018-01-24
Combining (bio)catalysis and molecular self-assembly provides an effective approach for the production and processing of self-assembled materials by exploiting catalysis to direct the assembly kinetics and hence controlling the formation of ordered nanostructures. Applications of (bio)catalytic self-assembly in biologically interfacing systems and in nanofabrication have recently been reported. Inspired by self-assembly in biological cells, efforts to confine catalysts on flat or patterned surfaces to exert spatial control over molecular gelator generation and nanostructure self-assembly have also emerged. Building on our previous work in the area, we demonstrate in this report the use of enzymes immobilized onto magnetic nanoparticles (NPs) to spatially localize the initiation of peptide self-assembly into nanofibers around NPs. The concept is generalized for both an equilibrium biocatalytic system that forms stable hydrogels and a nonequilibrium system that normally has a preset lifetime. Characterization of the hydrogels shows that self-assembly occurs at the site of enzyme immobilization on the NPs to give rise to gels with a "hub-and-spoke" morphology, where the nanofibers are linked through the enzyme-NP conjugates. This NP-controlled arrangement of self-assembled nanofibers enables both remarkable enhancements in the shear strength of hydrogel systems and a dramatic extension of the hydrogel stability in the nonequilibrium system. We are also able to show that the use of magnetic NPs enables the external control of both the formation of the hydrogel and its overall structure by application of an external magnetic field. We anticipate that the enhanced properties and stimuli-responsiveness of our NP-enzyme system will have applications ranging from nanomaterial fabrication to biomaterials and biosensing.
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth; Jang, Jiann-Woei; McCants, Edward; Omohundro, Zachary; Ring, Tom; Templeton, Jeremy; Zoss, Jeremy; Wallace, Jonathan; Ziegler, Philip
2011-01-01
Draper Station Analysis Tool (DSAT) is a computer program, built on commercially available software, for simulating and analyzing complex dynamic systems. Heretofore used in designing and verifying guidance, navigation, and control systems of the International Space Station, DSAT has a modular architecture that lends itself to modification for application to spacecraft or terrestrial systems. DSAT consists of user-interface, data-structures, simulation-generation, analysis, plotting, documentation, and help components. DSAT automates the construction of simulations and the process of analysis. DSAT provides a graphical user interface (GUI), plus a Web-enabled interface, similar to the GUI, that enables a remotely located user to gain access to the full capabilities of DSAT via the Internet and Webbrowser software. Data structures are used to define the GUI, the Web-enabled interface, simulations, and analyses. Three data structures define the type of analysis to be performed: closed-loop simulation, frequency response, and/or stability margins. DSAT can be executed on almost any workstation, desktop, or laptop computer. DSAT provides better than an order of magnitude improvement in cost, schedule, and risk assessment for simulation based design and verification of complex dynamic systems.
NASA Astrophysics Data System (ADS)
Bae, Euiwon; Patsekin, Valery; Rajwa, Bartek; Bhunia, Arun K.; Holdman, Cheryl; Davisson, V. Jo; Hirleman, E. Daniel; Robinson, J. Paul
2012-04-01
A microbial high-throughput screening (HTS) system was developed that enabled high-speed combinatorial studies directly on bacterial colonies. The system consists of a forward scatterometer for elastic light scatter (ELS) detection, a plate transporter for sample handling, and a robotic incubator for automatic incubation. To minimize the ELS pattern-capturing time, a new calibration plate and correction algorithms were both designed, which dramatically reduced correction steps during acquisition of the circularly symmetric ELS patterns. Integration of three different control software programs was implemented, and the performance of the system was demonstrated with single-species detection for library generation and with time-resolved measurement for understanding ELS colony growth correlation, using Escherichia coli and Listeria. An in-house colony-tracking module enabled researchers to easily understand the time-dependent variation of the ELS from identical colony, which enabled further analysis in other biochemical experiments. The microbial HTS system provided an average scan time of 4.9 s per colony and the capability of automatically collecting more than 4000 ELS patterns within a 7-h time span.
Stand for testing the electrical race car engine
NASA Astrophysics Data System (ADS)
Baier, M.; Franiasz, J.; Mierzwa, P.; Wylenzek, D.
2015-11-01
An engine test stand created especially for research of electrical race car is described in the paper. The car is an aim of Silesian Greenpower project whose participants build and test electrical vehicles to take part in international races in Great Britain. The engine test stand is used to test and measure the characteristics of vehicles and their engines. It has been designed particularly to test the electric cars engineered by students of Silesian Greenpower project. The article contains a description how the test stand works and shows its versatility in many areas. The paper presents both construction of the test stand, control system and sample results of conducted research. The engine test stand was designed and modified using PLM Siemens NX 8.5. The construction of the test stand is highly modular, which means it can be used both for testing the vehicle itself or for tests without the vehicle. The test stand has its own wheel, motor, powertrain and braking system with second engine. Such solution enables verifying various concepts without changing the construction of the vehicle. The control system and measurement system are realized by enabling National Instruments product myRIO (RIO - Reconfigurable Input/Output). This controller in combination with powerful LabVIEW environment performs as an advanced tool to control torque and speed simultaneously. It is crucial as far as the test stand is equipped in two motors - the one being tested and the braking one. The feedback loop is realized by an optical encoder cooperating with the rotor mounted on the wheel. The results of tests are shown live on the screen both as a chart and as single values. After performing several tests there is a report generated. The engine test stand is widely used during process of the Silesian Greenpower vehicle design. Its versatility enables powertrain testing, wheels and tires tests, thermal analysis and more.
Automatic Learning of Fine Operating Rules for Online Power System Security Control.
Sun, Hongbin; Zhao, Feng; Wang, Hao; Wang, Kang; Jiang, Weiyong; Guo, Qinglai; Zhang, Boming; Wehenkel, Louis
2016-08-01
Fine operating rules for security control and an automatic system for their online discovery were developed to adapt to the development of smart grids. The automatic system uses the real-time system state to determine critical flowgates, and then a continuation power flow-based security analysis is used to compute the initial transfer capability of critical flowgates. Next, the system applies the Monte Carlo simulations to expected short-term operating condition changes, feature selection, and a linear least squares fitting of the fine operating rules. The proposed system was validated both on an academic test system and on a provincial power system in China. The results indicated that the derived rules provide accuracy and good interpretability and are suitable for real-time power system security control. The use of high-performance computing systems enables these fine operating rules to be refreshed online every 15 min.
Systems engineering and management.
Rouse, William B; Compton, W Dale
2010-01-01
This chapter offers a systems view of healthcare delivery and outlines a wide range of concepts, principles, models, methods and tools from systems engineering and management that can enable the transformation of the dysfunctional "as is" healthcare system to an agreed-upon "to be" system that will provide quality, affordable care for everyone. Topics discussed include systems definition, design, analysis, and control, as well as the data and information needed to support these functions. Barriers to implementation are also considered.
Mars, the Moon, and the Ends of the Earth: Autonomy for Small Reactor Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Richard Thomas
2008-01-01
In recent years, the National Aeronautics and Space Administration (NASA) has been considering deep space missions that utilize a small-reactor power system (SRPS) to provide energy for propulsion and spacecraft power. Additionally, application of SRPS modules as a planetary power source is being investigated to enable a continuous human presence for nonpolar lunar sites and on Mars. A SRPS can supply high-sustained power for space and surface applications that is both reliable and mass efficient. The use of small nuclear reactors for deep space or planetary missions presents some unique challenges regarding the operations and control of the power system.more » Current-generation terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a SRPS employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. While surface power systems for planetary outposts face less extreme delays and periods of isolation and may benefit from limited maintenance capabilities, considerations such as human safety, resource limitations and usage priorities, and economics favor minimizing direct, continuous human interaction with the SRPS for online, dedicated power system management. Thus, a SRPS control system for space or planetary missions must provide capabilities for operational autonomy. For terrestrial reactors, large-scale power plants remain the preferred near-term option for nuclear power generation. However, the desire to reduce reliance on carbon-emitting power sources in developing countries may lead to increased consideration of SRPS modules for local power generation in remote regions that are characterized by emerging, less established infrastructures. Additionally, many Generation IV (Gen IV) reactor concepts have goals for optimizing investment recovery and economic efficiency that promote significant reductions in plant operations and maintenance staff over current-generation nuclear power plants. To accomplish these Gen IV goals and also address the SRPS remote-siting challenges, higher levels of automation, fault tolerance, and advanced diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. Essentially, the SRPS control system for several anticipated terrestrial applications can benefit from the kind of operational autonomy that is necessary for deep space and planetary SRPS-enabled missions. Investigation of the state of the technology for autonomous control confirmed that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. As an example, NASA has pursued autonomy for spacecraft and surface exploration vehicles (e.g., rovers) to reduce mission costs, increase efficiency for communications between ground control and the vehicle, and enable independent operation of the vehicle during times of communications blackout. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and fully automated control of normal SRPS operations is clearly feasible. However, the space-based and remote terrestrial applications of SRPS modules require autonomous capabilities that can accommodate nonoptimum operations when degradation, failure, and other off-normal events challenge the performance of the reactor while immediate human intervention is not possible. The independent action provided by autonomous control, which is distinct from the more limited self action of automated control, can satisfy these conditions. Key characteristics that distinguish autonomous control include: (1) intelligence to confirm system performance and detect degraded or failed conditions, (2) optimization to minimize stress on SRPS components and efficiently react to operational events without compromising system integrity, (3) robustness to accommodate uncertainties and changing conditions, and (4) flexibility and adaptability to accommodate failures through reconfiguration among available control system elements or adjustment of control system strategies, algorithms, or parameters.« less
A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities
NASA Technical Reports Server (NTRS)
Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.;
2015-01-01
We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.
The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap
NASA Technical Reports Server (NTRS)
Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.;
2014-01-01
We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.
NASA Technical Reports Server (NTRS)
1990-01-01
A review is presented of the literature concerning control and display technology that is applicable to the Orbital Maneuvering Vehicle (OMV), a system being developed by NASA that will enable the user to remotely pilot it during a mission in space. In addition to the general review, special consideration is given to virtual image displays and their potential for use in the system, and a preliminary partial task analysis of the user's functions is also presented.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Phil; Feinberg, Lee
2006-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
2010-12-01
computers in 1953. HIL motion simulators were also built for the dynamic testing of vehicle com- ponents (e.g. suspensions, bodies ) with hydraulic or...complex, comprehensive mechanical systems can be simulated in real-time by parallel computers; examples include multi- body sys- tems, brake systems...hard constraints in a multivariable control framework. And the third aspect is the ability to perform online optimization. These aspects results in
Towards integrated crisis support of regional emergency networks.
Caro, D H
1999-01-01
Emergency and crisis management pose multidimensional information systems challenges for communities across North America. In the quest to reduce mortality and morbidity risks and to increase the level of crisis preparedness, regional emergency management networks have evolved. Integrated Crisis Support Systems (ICSS) are enabling information technologies that assist emergency managers by enhancing the ability to strategically manage and control these regional emergency networks efficiently and effectively. This article underscores the ICCS development, control and leadership issues and their promising implications for regional emergency management networks.
Cost efficient command management
NASA Technical Reports Server (NTRS)
Brandt, Theresa; Murphy, C. W.; Kuntz, Jon; Barlett, Tom
1996-01-01
The design and implementation of a command management system (CMS) for a NASA control center, is described. The technology innovations implemented in the CMS provide the infrastructure required for operations cost reduction and future development cost reduction through increased operational efficiency and reuse in future missions. The command management design facilitates error-free operations which enables the automation of the routine control center functions and allows for the distribution of scheduling responsibility to the instrument teams. The reusable system was developed using object oriented methodologies.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Feinberg, Lee
2007-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
A Flexible Evolvable Architecture for Constellation Mission Systems User Applications
NASA Technical Reports Server (NTRS)
Trimble, Jay P.; Crocker, Alan R.
2008-01-01
While simulating a complex set of repair tasks to be performed by EVA crewmembers on an upcoming mission, flight controllers and astronauts determine that the repair will take much longer than originally anticipated. All equipment in the vicinity of the worksite must be powered off to maintain a safe environment for the astronauts. Because heater power will be unavailable, several critical components will now be at risk of freezing and permanent damage. If an impending thermal violation is detected, Mission Control will have very limited time to react. Therefore, flight controllers must not only modify their procedures to account for these risks, they must also incorporate into their displays outputs from thermal models, alternate temperature measurements, new alarm limits, and emergency power-on commands to enable the detection and response to freezing conditions. Current software for mission control systems makes scenarios like this difficult to address. Given the time frame for modifying software, operations teams are left with labor-intensive operational workarounds as their only options. NASA Ames Research Center (ARC) and NASA Johnson Space Center (JSC) are collaborating on the development of a flexible software system for mission operations that will enable greater user flexibility than has been available to date. Using composable software, end users in the scenario described above could recompose procedures and command and control displays to allow flight controllers to monitor temperature measurements, identify time-critical conditions, and execute the procedures required to respond to these conditions before flight hardware is permanently damaged.
STOVL aircraft simulation for integrated flight and propulsion control research
NASA Technical Reports Server (NTRS)
Mihaloew, James R.; Drummond, Colin K.
1989-01-01
The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.
Advanced helicopter cockpit and control configurations for helicopter combat missions
NASA Technical Reports Server (NTRS)
Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel
1987-01-01
Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.
Mazzola, Mark; Freilich, Shiri
2017-03-01
Biological disease control of soilborne plant diseases has traditionally employed the biopesticide approach whereby single strains or strain mixtures are introduced into production systems through inundative/inoculative release. The approach has significant barriers that have long been recognized, including a generally limited spectrum of target pathogens for any given biocontrol agent and inadequate colonization of the host rhizosphere, which can plague progress in the utilization of this resource in commercial field-based crop production systems. Thus, although potential exists, this model has continued to lag in its application. New omics' tools have enabled more rapid screening of microbial populations allowing for the identification of strains with multiple functional attributes that may contribute to pathogen suppression. Similarly, these technologies also enable the characterization of consortia in natural systems which provide the framework for construction of synthetic microbiomes for disease control. Harnessing the potential of the microbiome indigenous to agricultural soils for disease suppression through application of specific management strategies has long been a goal of plant pathologists. Although this tactic also possesses limitation, our enhanced understanding of functional attributes of suppressive soil systems through application of community and metagenomic analysis methods provide opportunity to devise effective resource management schemes. As these microbial communities in large part are fostered by the resources endemic to soil and the rhizosphere, substrate mediated recruitment of disease-suppressive microbiomes constitutes a practical means to foster their establishment in crop production systems.
Improvement of Vivarium Biodecontamination through Data-acquisition Systems and Automation.
Devan, Shakthi Rk; Vasu, Suresh; Mallikarjuna, Yogesha; Ponraj, Ramkumar; Kamath, Gireesh; Poosala, Suresh
2018-03-01
Biodecontamination is important for eliminating pathogens at research animal facilities, thereby preventing contamination within barrier systems. We enhanced our facility's standard biodecontamination method to replace the traditional foggers, and the new system was used effectively after creating bypass ducts in HVAC units so that individual rooms could be isolated. The entire system was controlled by inhouse-developed supervisory control and data-acquisition software that supported multiple cycles of decontamination by equipment, which had different decontamination capacities, operated in parallel, and used different agents, including H2O2 vapor and ClO2 gas. The process was validated according to facility mapping, and effectiveness was assessed by using biologic (Geobacillus stearothermophilus) and chemical indicator strips, which were positioned before decontamination, and by sampling contact plates after the completion of each cycle. The results of biologic indicators showed 6-log reduction in microbial counts after successful decontamination cycles for both agents and found to be compatible with clean-room panels including commonly used materials in vivarium such as racks, cages, trolleys, cage changing stations, biosafety cabinets, refrigerators and other equipment in both procedure and animal rooms. In conclusion, the automated process enabled users to perform effective decontamination through multiple cycles with realtime documentation and provided additional capability to deal with potential outbreaks. Enabling software integration of automation improved quality-control systems in our vivarium.
Using Mach threads to control DSN operational sequences
NASA Technical Reports Server (NTRS)
Urista, Juan
1993-01-01
The Link Monitor and Control Operator Assistant prototype (LMCOA) is a state-of-the-art, semiautomated monitor and control system based on an object-oriented design. The purpose of the LMCOA prototyping effort is to both investigate new technology (such as artificial intelligence) to support automation and to evaluate advances in information systems toward developing systems that take advantage of the technology. The emergence of object-oriented design methodology has enabled a major change in how software is designed and developed. This paper describes how the object-oriented approach was used to design and implement the LMCOA and the results of operational testing. The LMCOA is implemented on a NeXT workstation using the Mach operating system and the Objective-C programming language.
Enabling New Operations Concepts for Lunar and Mars Exploration
NASA Astrophysics Data System (ADS)
Jaap, John; Maxwell, Theresa
2005-02-01
The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the ``operations concept'' that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a ``job jar'' of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space Flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a planning and scheduling system that would enable multiple planners, some on the earth and some in space, to build one integrated timeline. Its modeling schema can capture all the task requirements; its scheduling engine can build the schedule automatically; and its architecture can allow those (on earth and in space) with the best knowledge of the tasks to schedule them. This paper describes the enabling technology and proposes an operations concept for astronauts autonomously scheduling their activities and the activities around them.
Enabling New Operations Concepts for Lunar and Mars Exploration
NASA Technical Reports Server (NTRS)
Jaap, John; Maxwell, Theresa
2005-01-01
The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the operations concept that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a job jar of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a planning and scheduling system that would enable multiple planners, some on the earth and some in space, to build one integrated timeline. Its modeling schema can capture all the task requirements; its scheduling engine can build the schedule automatically, and its architecture can allow those (on earth and in space) with the best knowledge of the tasks to schedule them. This paper describes the enabling technology and proposes an operations concept for astronauts autonomously scheduling their activities and the activities around them.
Field Testing of Telemetry for Demand Response Control of Small Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanzisera, Steven; Weber, Adam; Liao, Anna
The electricity system in California, from generation through loads, must be prepared for high renewable penetration and increased electrification of end uses while providing increased resilience and lower operating cost. California has an aggressive renewable portfolio standard that is complemented by world-leading greenhouse gas goals. The goal of this project was to evaluate methods of enabling fast demand response (DR) signaling to small loads for low-cost site enablement. We used OpenADR 2.0 to meet telemetry requirements for providing ancillary services, and we used a variety of low-cost devices coupled with open-source software to enable an end-to-end fast DR. The devices,more » architecture, implementation, and testing of the system is discussed in this report. We demonstrate that the emerging Internet of Things (IoT) and Smart Home movements provide an opportunity for diverse small loads to provide fast, low-cost demand response. We used Internet-connected lights, thermostats, load interruption devices, and water heaters to demonstrate an ecosystem of controllable devices. The system demonstrated is capable of providing fast load shed for between 20 dollars and $300 per kilowatt (kW) of available load. The wide range results from some loads may have very low cost but also very little shed capability (a 10 watt [W] LED light can only shed a maximum of 10 W) while some loads (e.g., water heaters or air conditioners) can shed several kilowatts but have a higher initial cost. These costs, however, compare well with other fast demand response costs, with typically are over $100/kilowatt of shed. We contend these loads are even more attractive than their price suggests because many of them will be installed for energy efficiency or non-energy benefits (e.g., improved lighting quality or controllability), and the ability to use them for fast DR is a secondary benefit. Therefore the cost of enabling them for DR may approach zero if a software-only solution can be deployed to enable fast DR after devices are installed for other reasons. We recommend that the DR research community continue to engage with the IoT community to encourage the use of documented and open development interfaces. A library of device drivers and machine-readable interface specifications would significantly reduce the burden on users or system integrators for deploying systems in large numbers of buildings in California.« less
Open Source Next Generation Visualization Software for Interplanetary Missions
NASA Technical Reports Server (NTRS)
Trimble, Jay; Rinker, George
2016-01-01
Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).
Canova, Lorenzo; Chen, Xiaowei; Trisorio, Alexandre; Jullien, Aurélie; Assion, Andreas; Tempea, Gabriel; Forget, Nicolas; Oksenhendler, Thomas; Lopez-Martens, Rodrigo
2009-05-01
Carrier-envelope phase (CEP) stabilization of a femtosecond chirped-pulse amplification system featuring a compact transmission grating compressor is demonstrated. The system includes two amplification stages and routinely generates phase-stable (approximately 250 mrad rms) 2 mJ, 25 fs pulses at 1 kHz. Minimizing the optical pathway in the compressor enables phase stabilization without feedback control of the grating separation or beam pointing. We also demonstrate for the first time to the best of our knowledge, out-of-loop control of the CEP using an acousto-optic programmable dispersive filter inside the laser chain.
Enabling UAS Research at the NASA EAV Laboratory
NASA Technical Reports Server (NTRS)
Ippolito, Corey A.
2015-01-01
The Exploration Aerial Vehicles (EAV) Laboratory at NASA Ames Research Center leads research into intelligent autonomy and advanced control systems, bridging the gap between simulation and full-scale technology through flight test experimentation on unmanned sub-scale test vehicles.
Bio-inspired direct patterning functional nanothin microlines: controllable liquid transfer.
Wang, Qianbin; Meng, Qingan; Wang, Pengwei; Liu, Huan; Jiang, Lei
2015-04-28
Developing a general and low-cost strategy that enables direct patterning of microlines with nanometer thickness from versatile liquid-phase functional materials and precise positioning of them on various substrates remains a challenge. Herein, with inspiration from the oriental wisdom to control ink transfer by Chinese brushes, we developed a facile and general writing strategy to directly pattern various functional microlines with homogeneous distribution and nanometer-scale thickness. It is demonstrated that the width and thickness of the microlines could be well-controlled by tuning the writing method, providing guidance for the adaptation of this technique to various systems. It is also shown that various functional liquid-phase materials, such as quantum dots, small molecules, polymers, and suspensions of nanoparticles, could directly write on the substrates with intrinsic physicochemical properties well-preserved. Moreover, this technique enabled direct patterning of liquid-phase materials on certain microdomains, even in multiple layered style, thus a microdomain localized chemical reaction and the patterned surface chemical modification were enabled. This bio-inspired direct writing device will shed light on the template-free printing of various functional micropatterns, as well as the integrated functional microdevices.
Electromechanical systems with transient high power response operating from a resonant ac link
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Hansen, Irving G.
1992-01-01
The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed under contract to NASA.
Finite Control Set Model Predictive Control for Multiple Distributed Generators Microgrids
NASA Astrophysics Data System (ADS)
Babqi, Abdulrahman Jamal
This dissertation proposes two control strategies for AC microgrids that consist of multiple distributed generators (DGs). The control strategies are valid for both grid-connected and islanded modes of operation. In general, microgrid can operate as a stand-alone system (i.e., islanded mode) or while it is connected to the utility grid (i.e., grid connected mode). To enhance the performance of a micrgorid, a sophisticated control scheme should be employed. The control strategies of microgrids can be divided into primary and secondary controls. The primary control regulates the output active and reactive powers of each DG in grid-connected mode as well as the output voltage and frequency of each DG in islanded mode. The secondary control is responsible for regulating the microgrid voltage and frequency in the islanded mode. Moreover, it provides power sharing schemes among the DGs. In other words, the secondary control specifies the set points (i.e. reference values) for the primary controllers. In this dissertation, Finite Control Set Model Predictive Control (FCS-MPC) was proposed for controlling microgrids. FCS-MPC was used as the primary controller to regulate the output power of each DG (in the grid-connected mode) or the voltage of the point of DG coupling (in the islanded mode of operation). In the grid-connected mode, Direct Power Model Predictive Control (DPMPC) was implemented to manage the power flow between each DG and the utility grid. In the islanded mode, Voltage Model Predictive Control (VMPC), as the primary control, and droop control, as the secondary control, were employed to control the output voltage of each DG and system frequency. The controller was equipped with a supplementary current limiting technique in order to limit the output current of each DG in abnormal incidents. The control approach also enabled smooth transition between the two modes. The performance of the control strategy was investigated and verified using PSCAD/EMTDC software platform. This dissertation also proposes a control and power sharing strategy for small-scale microgrids in both grid-connected and islanded modes based on centralized FCS-MPC. In grid-connected mode, the controller was capable of managing the output power of each DG and enabling flexible power regulation between the microgrid and the utility grid. In islanded mode, the controller regulated the microgrid voltage and frequency, and provided a precise power sharing scheme among the DGs. In addition, the power sharing can be adjusted flexibly by changing the sharing ratio. The proposed control also enabled plug-and-play operation. Moreover, a smooth transition between the two modes of operation was achieved without any disturbance in the system. Case studies were carried out in order to validate the proposed control strategy with the PSCAD/EMTDA software package.
Ruano, M V; Ribes, J; Seco, A; Ferrer, J
2011-01-01
This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP.
NASA Astrophysics Data System (ADS)
Brunner, D.; Kuang, A. Q.; LaBombard, B.; Burke, W.
2017-07-01
A new servomotor drive system has been developed for the horizontal reciprocating probe on the Alcator C-Mod tokamak. Real-time measurements of plasma temperature and density—through use of a mirror Langmuir probe bias system—combined with a commercial linear servomotor and controller enable self-adaptive position control. Probe surface temperature and its rate of change are computed in real time and used to control probe insertion depth. It is found that a universal trigger threshold can be defined in terms of these two parameters; if the probe is triggered to retract when crossing the trigger threshold, it will reach the same ultimate surface temperature, independent of velocity, acceleration, or scrape-off layer heat flux scale length. In addition to controlling the probe motion, the controller is used to monitor and control all aspects of the integrated probe drive system.
An Internet of Things Approach to Electrical Power Monitoring and Outage Reporting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Daniel B
The so-called Internet of Things concept has captured much attention recently as ordinary devices are connected to the Internet for monitoring and control purposes. One enabling technology is the proliferation of low-cost, single board computers with built-in network interfaces. Some of these are capable of hosting full-fledged operating systems that provide rich programming environments. Taken together, these features enable inexpensive solutions for even traditional tasks such as the one presented here for electrical power monitoring and outage reporting.
High performance bilateral telerobot control.
Kline-Schoder, Robert; Finger, William; Hogan, Neville
2002-01-01
Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.
NASA Technical Reports Server (NTRS)
Charron, C. S.; Cantliffe, D. J.; Wheeler, R. M.; Manukian, A.; Heath, R. R.
1996-01-01
A system and methodology were developed for the nondestructive qualitative and quantitative analysis of volatile emissions from hydroponically grown 'Waldmann's Green' leaf lettuce (Lactuca sativa L.). Photosynthetic photon flux (PPF), photoperiod, and temperature were automatically controlled and monitored in a growth chamber modified for the collection of plant volatiles. The lipoxygenase pathway products (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate were emitted by lettuce plants after the transition from the light period to the dark period. The volatile collection system developed in this study enabled measurements of volatiles emitted by intact plants, from planting to harvest, under controlled environmental conditions.
Many-body coherent destruction of tunneling in photonic lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhi, Stefano
2011-03-15
An optical realization of the phenomenon of many-body coherent destruction of tunneling, recently predicted for interacting many-boson systems by Gong, Molina, and Haenggi [Phys. Rev. Lett. 103, 133002 (2009)], is proposed for light transport in engineered waveguide arrays. The optical system enables a direct visualization in Fock space of the many-body tunneling control process.
EPA's Web Taxonomy is a faceted hierarchical vocabulary used to tag web pages with terms from a controlled vocabulary. Tagging enables search and discovery of EPA's Web based information assests. EPA's Web Taxonomy is being provided in Simple Knowledge Organization System (SKOS) format. SKOS is a standard for sharing and linking knowledge organization systems that promises to make Federal terminology resources more interoperable.
Sensor Needs for Control and Health Management of Intelligent Aircraft Engines
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Gang, Sanjay; Hunter, Gary W.; Guo, Ten-Huei; Semega, Kenneth J.
2004-01-01
NASA and the U.S. Department of Defense are conducting programs which support the future vision of "intelligent" aircraft engines for enhancing the affordability, performance, operability, safety, and reliability of aircraft propulsion systems. Intelligent engines will have advanced control and health management capabilities enabling these engines to be self-diagnostic, self-prognostic, and adaptive to optimize performance based upon the current condition of the engine or the current mission of the vehicle. Sensors are a critical technology necessary to enable the intelligent engine vision as they are relied upon to accurately collect the data required for engine control and health management. This paper reviews the anticipated sensor requirements to support the future vision of intelligent engines from a control and health management perspective. Propulsion control and health management technologies are discussed in the broad areas of active component controls, propulsion health management and distributed controls. In each of these three areas individual technologies will be described, input parameters necessary for control feedback or health management will be discussed, and sensor performance specifications for measuring these parameters will be summarized.
Design and Integration of an Actuated Nose Strake Control System
NASA Technical Reports Server (NTRS)
Flick, Bradley C.; Thomson, Michael P.; Regenie, Victoria A.; Wichman, Keith D.; Pahle, Joseph W.; Earls, Michael R.
1996-01-01
Aircraft flight characteristics at high angles of attack can be improved by controlling vortices shed from the nose. These characteristics have been investigated with the integration of the actuated nose strakes for enhanced rolling (ANSER) control system into the NASA F-18 High Alpha Research Vehicle. Several hardware and software systems were developed to enable performance of the research goals. A strake interface box was developed to perform actuator control and failure detection outside the flight control computer. A three-mode ANSER control law was developed and installed in the Research Flight Control System. The thrust-vectoring mode does not command the strakes. The strakes and thrust-vectoring mode uses a combination of thrust vectoring and strakes for lateral- directional control, and strake mode uses strakes only for lateral-directional control. The system was integrated and tested in the Dryden Flight Research Center (DFRC) simulation for testing before installation in the aircraft. Performance of the ANSER system was monitored in real time during the 89-flight ANSER flight test program in the DFRC Mission Control Center. One discrepancy resulted in a set of research data not being obtained. The experiment was otherwise considered a success with the majority of the research objectives being met.
Active Vibration Reduction of the Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.
2016-01-01
Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC operating parameters and mounting conditions. All tests were performed at three different piston amplitudes, 3.0 mm, 3.75 mm, and 4.5 mm. Overall, the transmitted force was reduced to 2% of the total unbalanced force by actively balancing out only the first fundamental frequency, with balancer motor power remaining under one watt. The test results will be used to guide future balancer designs.
Active Vibration Reduction of the Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.
2016-01-01
Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC operating parameters and mounting conditions. All tests were performed at three different piston amplitudes, 3.0, 3.75, and 4.5 mm. Overall, the transmitted force was reduced to 2 percent of the total unbalanced force by actively balancing out only the first fundamental frequency, with balancer motor power remaining under 1 watt. The test results will be used to guide future balancer designs.
Intelligent Integrated System Health Management
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
2012-01-01
Intelligent Integrated System Health Management (ISHM) is the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system (Management: storage, distribution, sharing, maintenance, processing, reasoning, and presentation). Presentation discusses: (1) ISHM Capability Development. (1a) ISHM Knowledge Model. (1b) Standards for ISHM Implementation. (1c) ISHM Domain Models (ISHM-DM's). (1d) Intelligent Sensors and Components. (2) ISHM in Systems Design, Engineering, and Integration. (3) Intelligent Control for ISHM-Enabled Systems
A Novel UAV Electric Propulsion Testbed for Diagnostics and Prognostics
NASA Technical Reports Server (NTRS)
Gorospe, George E., Jr.; Kulkarni, Chetan S.
2017-01-01
This paper presents a novel hardware-in-the-loop (HIL) testbed for systems level diagnostics and prognostics of an electric propulsion system used in UAVs (unmanned aerial vehicle). Referencing the all electric, Edge 540T aircraft used in science and research by NASA Langley Flight Research Center, the HIL testbed includes an identical propulsion system, consisting of motors, speed controllers and batteries. Isolated under a controlled laboratory environment, the propulsion system has been instrumented for advanced diagnostics and prognostics. To produce flight like loading on the system a slave motor is coupled to the motor under test (MUT) and provides variable mechanical resistance, and the capability of introducing nondestructive mechanical wear-like frictional loads on the system. This testbed enables the verification of mathematical models of each component of the propulsion system, the repeatable generation of flight-like loads on the system for fault analysis, test-to-failure scenarios, and the development of advanced system level diagnostics and prognostics methods. The capabilities of the testbed are extended through the integration of a LabVIEW-based client for the Live Virtual Constructive Distributed Environment (LVCDC) Gateway which enables both the publishing of generated data for remotely located observers and prognosers and the synchronization the testbed propulsion system with vehicles in the air. The developed HIL testbed gives researchers easy access to a scientifically relevant portion of the aircraft without the overhead and dangers encountered during actual flight.
2012-05-01
indoor air quality from installation of a new, improved cleaning line ventilation system. Cultural Resources No adverse effect on cultural...EA) has been prepared to assess the potential effects on the human and natural environment of replacing the chemical cleaning line at Tinker Air...providing improved system monitors and controls, reducing the overall energy consumption of the system, and enabling the system to accommodate larger
Networking the Global Maritime Partnership
2008-06-01
how do the navies of disparate nations that desire to operate together at sea obtain the requisite, compatible C4ISR (command, control, communications ...compatible C4ISR (command, control, communications , computers, intelligence, surveillance, and reconnaissance) systems that will enable them to truly...partnership. Coalition Naval Operations Maritime coalitions have existed for two and one-half millennia and navies have communicated at sea for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckman, W.G.
1991-12-31
A major expenditure to maintain oil and gas leases is the support of pumpers, those individuals who maintain the pumping systems on wells to achieve optimum production. Many leases are marginal and are in remote areas and this requires considerable driving time for the pumper. The Air Pulse Oil Pump System is designed to be an economical system for the shallow stripper wells. To improve on the economics of this system, we have designed a Remote Oil Field Monitor and Controller to enable us to acquire data from the lease to our central office at anytime and to control themore » pumping activities from the central office by using a personal computer. The advent and economics of low-power microcontrollers have made it feasible to use this type of system for numerous remote control systems. We can also adapt this economical system to monitor and control the production of gas wells and/or pump jacks.« less
Automatic systems and the low-level wind hazard
NASA Technical Reports Server (NTRS)
Schaeffer, Dwight R.
1987-01-01
Automatic flight control systems provide means for significantly enhancing survivability in severe wind hazards. The technology required to produce the necessary control algorithms is available and has been made technically feasible by the advent of digital flight control systems and accurate, low-noise sensors, especially strap-down inertial sensors. The application of this technology and these means has not generally been enabled except for automatic landing systems, and even then the potential has not been fully exploited. To fully exploit the potential of automatic systems for enhancing safety in wind hazards requires providing incentives, creating demand, inspiring competition, education, and eliminating prejudicial disincentitives to overcome the economic penalties associated with the extensive and riskly development and certification of these systems. If these changes will come about at all, it will likely be through changes in the regulations provided by the certifying agencies.
NASA Technical Reports Server (NTRS)
Burns, III, William Wesley (Inventor); Wilson, Thomas George (Inventor)
1978-01-01
This invention provides a method and apparatus for determining a precise switching sequence for the power switching elements of electric power delivery systems of the on-off switching type and which enables extremely fast transient response, precise regulation and highly stable operation. The control utilizes the values of the power delivery system power handling network components, a desired output characteristic, a system timing parameter, and the externally imposed operating conditions to determine where steady state operations should be in order to yield desired output characteristics for the given system specifications. The actual state of the power delivery system is continuously monitored and compared to a state-space boundary which is derived from the desired equilibrium condition, and from the information obtained from this comparison, the system is moved to the desired equilibrium condition in one cycle of switching control. Since the controller continuously monitors the power delivery system's externally imposed operating conditions, a change in the conditions is immediately sensed and a new equilibrium condition is determined and achieved, again in a single cycle of switching control.
Nanowire systems: technology and design
Gaillardon, Pierre-Emmanuel; Amarù, Luca Gaetano; Bobba, Shashikanth; De Marchi, Michele; Sacchetto, Davide; De Micheli, Giovanni
2014-01-01
Nanosystems are large-scale integrated systems exploiting nanoelectronic devices. In this study, we consider double independent gate, vertically stacked nanowire field effect transistors (FETs) with gate-all-around structures and typical diameter of 20 nm. These devices, which we have successfully fabricated and evaluated, control the ambipolar behaviour of the nanostructure by selectively enabling one type of carriers. These transistors work as switches with electrically programmable polarity and thus realize an exclusive or operation. The intrinsic higher expressive power of these FETs, when compared with standard complementary metal oxide semiconductor technology, enables us to realize more efficient logic gates, which we organize as tiles to realize nanowire systems by regular arrays. This article surveys both the technology for double independent gate FETs as well as physical and logic design tools to realize digital systems with this fabrication technology. PMID:24567471
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.
1998-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption
Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs
2018-01-01
Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments. PMID:29867383
An experimental version of the MZT (speech-from-text) system with external F(sub 0) control
NASA Astrophysics Data System (ADS)
Nowak, Ignacy
1994-12-01
The version of a Polish speech from text system described in this article was developed using the speech-from-text system. The new system has additional functions which make it possible to enter commands in edited orthographic text to control the phrase component and accentuation parameters. This makes it possible to generate a series of modified intonation contours in the texts spoken by the system. The effects obtained are made easier to control by a graphic illustration of the base frequency pattern in phrases that were last 'spoken' by the system. This version of the system was designed as a test prototype which will help us expand and refine our set of rules for automatic generation of intonation contours, which in turn will enable the fully automated speech-from-text system to generate speech with a more varied and precisely formed fundamental frequency pattern.
The cybernetics of viability: an overview
NASA Astrophysics Data System (ADS)
Nechansky, Helmut
2011-10-01
A three-level approach to viability is developed, considering (1) living systems, (2) a niche, understood as the area within the reach of their actions, and (3) an environment. A systematic analysis of the interrelations between these levels shows that living systems emerge with matter/energy processing systems. These can add controller structures when producing excess energy. A three-sensor controller structure enables a living system to deal with unfavourable and scarce environments. Further evolution of these controller structures offers improved ways to act on niches. Maintaining niches in scarce environments can require technology or economy. So social systems emerge, which are understood as aggregates of living systems. Basic patterns of interactions within social systems are analysed. So the introduction of the notion of the niche into the discussion of viability allows us to explain phenomena ranging from properties of single living systems to societal organization.
Awareware: Narrowcasting Attributes for Selective Attention, Privacy, and Multipresence
NASA Astrophysics Data System (ADS)
Cohen, Michael; Newton Fernando, Owen Noel
The domain of cscw, computer-supported collaborative work, and DSC, distributed synchronous collaboration, spans real-time interactive multiuser systems, shared information spaces, and applications for teleexistence and artificial reality, including collaborative virtual environments ( cves) (Benford et al., 2001). As presence awareness systems emerge, it is important to develop appropriate interfaces and architectures for managing multimodal multiuser systems. Especially in consideration of the persistent connectivity enabled by affordable networked communication, shared distributed environments require generalized control of media streams, techniques to control source → sink transmissions in synchronous groupware, including teleconferences and chatspaces, online role-playing games, and virtual concerts.
Space/ground systems as cooperating agents
NASA Technical Reports Server (NTRS)
Grant, T. J.
1994-01-01
Within NASA and the European Space Agency (ESA) it is agreed that autonomy is an important goal for the design of future spacecraft and that this requires on-board artificial intelligence. NASA emphasizes deep space and planetary rover missions, while ESA considers on-board autonomy as an enabling technology for missions that must cope with imperfect communications. ESA's attention is on the space/ground system. A major issue is the optimal distribution of intelligent functions within the space/ground system. This paper describes the multi-agent architecture for space/ground systems (MAASGS) which would enable this issue to be investigated. A MAASGS agent may model a complete spacecraft, a spacecraft subsystem or payload, a ground segment, a spacecraft control system, a human operator, or an environment. The MAASGS architecture has evolved through a series of prototypes. The paper recommends that the MAASGS architecture should be implemented in the operational Dutch Utilization Center.
Field oriented control of induction motors
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen
1990-01-01
Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaobu; Huang, Renke; Huang, Zhenyu
The objective of this research work is to develop decoupled modulation control methods for damping inter-area oscillations with low frequencies, so the damping control can be more effective and easier to design with less interference among different oscillation modes in the power system. A signal-decoupling algorithm was developed that can enable separation of multiple oscillation frequency contents and extraction of a “pure” oscillation frequency mode that are fed into Power System Stabilizers (PSSs) as the modulation input signals. As a result, instead of introducing interferences between different oscillation modes from the traditional approaches, the output of the new PSS modulationmore » control signal mainly affects only one oscillation mode of interest. The new decoupled modulation damping control algorithm has been successfully developed and tested on the standard IEEE 4-machine 2-area test system and a minniWECC system. The results are compared against traditional modulation controls, which demonstrates the validity and effectiveness of the newly-developed decoupled modulation damping control algorithm.« less
Goldrick, Stephen; Lee, Kenneth; Spencer, Christopher; Holmes, William; Kuiper, Marcel; Turner, Richard; Farid, Suzanne S
2018-04-01
Glucose control is vital to ensure consistent growth and protein production in mammalian cell cultures. The typical fed-batch glucose control strategy involving bolus glucose additions based on infrequent off-line daily samples results in cells experiencing significant glucose concentration fluctuations that can influence product quality and growth. This study proposes an on-line method to control and manipulate glucose utilizing readily available process measurements. The method generates a correlation between the cumulative oxygen transfer rate and the cumulative glucose consumed. This correlation generates an on-line prediction of glucose that has been successfully incorporated into a control algorithm manipulating the glucose feed-rate. This advanced process control (APC) strategy enables the glucose concentration to be maintained at an adjustable set-point and has been found to significantly reduce the deviation in glucose concentration in comparison to conventional operation. This method has been validated to produce various therapeutic proteins across cell lines with different glucose consumption demands and is successfully demonstrated on micro (15 mL), laboratory (7 L), and pilot (50 L) scale systems. This novel APC strategy is simple to implement and offers the potential to significantly enhance the glucose control strategy for scales spanning micro-scale systems through to full scale industrial bioreactors. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Franchetti, Franz; Sandryhaila, Aliaksei; Johnson, Jeremy R.
2014-06-01
In this paper we introduce High Assurance SPIRAL to solve the last mile problem for the synthesis of high assurance implementations of controllers for vehicular systems that are executed in today's and future embedded and high performance embedded system processors. High Assurance SPIRAL is a scalable methodology to translate a high level specification of a high assurance controller into a highly resource-efficient, platform-adapted, verified control software implementation for a given platform in a language like C or C++. High Assurance SPIRAL proves that the implementation is equivalent to the specification written in the control engineer's domain language. Our approach scales to problems involving floating-point calculations and provides highly optimized synthesized code. It is possible to estimate the available headroom to enable assurance/performance trade-offs under real-time constraints, and enables the synthesis of multiple implementation variants to make attacks harder. At the core of High Assurance SPIRAL is the Hybrid Control Operator Language (HCOL) that leverages advanced mathematical constructs expressing the controller specification to provide high quality translation capabilities. Combined with a verified/certified compiler, High Assurance SPIRAL provides a comprehensive complete solution to the efficient synthesis of verifiable high assurance controllers. We demonstrate High Assurance SPIRALs capability by co-synthesizing proofs and implementations for attack detection and sensor spoofing algorithms and deploy the code as ROS nodes on the Landshark unmanned ground vehicle and on a Synthetic Car in a real-time simulator.
Flight-Test Validation and Flying Qualities Evaluation of a Rotorcraft UAV Flight Control System
NASA Technical Reports Server (NTRS)
Mettler, Bernard; Tuschler, Mark B.; Kanade, Takeo
2000-01-01
This paper presents a process of design and flight-test validation and flying qualities evaluation of a flight control system for a rotorcraft-based unmanned aerial vehicle (RUAV). The keystone of this process is an accurate flight-dynamic model of the aircraft, derived by using system identification modeling. The model captures the most relevant dynamic features of our unmanned rotorcraft, and explicitly accounts for the presence of a stabilizer bar. Using the identified model we were able to determine the performance margins of our original control system and identify limiting factors. The performance limitations were addressed and the attitude control system was 0ptimize.d for different three performance levels: slow, medium, fast. The optimized control laws will be implemented in our RUAV. We will first determine the validity of our control design approach by flight test validating our optimized controllers. Subsequently, we will fly a series of maneuvers with the three optimized controllers to determine the level of flying qualities that can be attained. The outcome enable us to draw important conclusions on the flying qualities requirements for small-scale RUAVs.
Impact of Passive Safety on FHR Instrumentation Systems Design and Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, David Eugene
2015-01-01
Fluoride salt-cooled high-temperature reactors (FHRs) will rely more extensively on passive safety than earlier reactor classes. 10CFR50 Appendix A, General Design Criteria for Nuclear Power Plants, establishes minimum design requirements to provide reasonable assurance of adequate safety. 10CFR50.69, Risk-Informed Categorization and Treatment of Structures, Systems and Components for Nuclear Power Reactors, provides guidance on how the safety significance of systems, structures, and components (SSCs) should be reflected in their regulatory treatment. The Nuclear Energy Institute (NEI) has provided 10 CFR 50.69 SSC Categorization Guideline (NEI-00-04) that factors in probabilistic risk assessment (PRA) model insights, as well as deterministic insights, throughmore » an integrated decision-making panel. Employing the PRA to inform deterministic requirements enables an appropriately balanced, technically sound categorization to be established. No FHR currently has an adequate PRA or set of design basis accidents to enable establishing the safety classification of its SSCs. While all SSCs used to comply with the general design criteria (GDCs) will be safety related, the intent is to limit the instrumentation risk significance through effective design and reliance on inherent passive safety characteristics. For example, FHRs have no safety-significant temperature threshold phenomena, thus enabling the primary and reserve reactivity control systems required by GDC 26 to be passively, thermally triggered at temperatures well below those for which core or primary coolant boundary damage would occur. Moreover, the passive thermal triggering of the primary and reserve shutdown systems may relegate the control rod drive motors to the control system, substantially decreasing the amount of safety-significant wiring needed. Similarly, FHR decay heat removal systems are intended to be running continuously to minimize the amount of safety-significant instrumentation needed to initiate operation of systems and components important to safety as required in GDC 20. This paper provides an overview of the design process employed to develop a pre-conceptual FHR instrumentation architecture intended to lower plant capital and operational costs by minimizing reliance on expensive, safety related, safety-significant instrumentation through the use of inherent passive features of FHRs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
VOLTTRON is an agent execution platform providing services to its agents that allow them to easily communicate with physical devices and other resources. VOLTTRON delivers an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions. VOLTTRON can independently manage a wide range of applications, such as HVAC systems, electric vehicles, distributed energy or entire building loads, leading to improved operational efficiency.
Optimum Aggregation and Control of Spatially Distributed Flexible Resources in Smart Grid
Bhattarai, Bishnu; Mendaza, Iker Diaz de Cerio; Myers, Kurt S.; ...
2017-03-24
This paper presents an algorithm to optimally aggregate spatially distributed flexible resources at strategic microgrid/smart-grid locations. The aggregation reduces a distribution network having thousands of nodes to an equivalent network with a few aggregated nodes, thereby enabling distribution system operators (DSOs) to make faster operational decisions. Moreover, the aggregation enables flexibility from small distributed flexible resources to be traded to different power and energy markets. A hierarchical control architecture comprising a combination of centralized and decentralized control approaches is proposed to practically deploy the aggregated flexibility. The proposed method serves as a great operational tool for DSOs to decide themore » exact amount of required flexibilities from different network section(s) for solving grid constraint violations. The effectiveness of the proposed method is demonstrated through simulation of three operational scenarios in a real low voltage distribution system having high penetrations of electric vehicles and heat pumps. Finally, the simulation results demonstrated that the aggregation helps DSOs not only in taking faster operational decisions, but also in effectively utilizing the available flexibility.« less
Optimum Aggregation and Control of Spatially Distributed Flexible Resources in Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu; Mendaza, Iker Diaz de Cerio; Myers, Kurt S.
This paper presents an algorithm to optimally aggregate spatially distributed flexible resources at strategic microgrid/smart-grid locations. The aggregation reduces a distribution network having thousands of nodes to an equivalent network with a few aggregated nodes, thereby enabling distribution system operators (DSOs) to make faster operational decisions. Moreover, the aggregation enables flexibility from small distributed flexible resources to be traded to different power and energy markets. A hierarchical control architecture comprising a combination of centralized and decentralized control approaches is proposed to practically deploy the aggregated flexibility. The proposed method serves as a great operational tool for DSOs to decide themore » exact amount of required flexibilities from different network section(s) for solving grid constraint violations. The effectiveness of the proposed method is demonstrated through simulation of three operational scenarios in a real low voltage distribution system having high penetrations of electric vehicles and heat pumps. Finally, the simulation results demonstrated that the aggregation helps DSOs not only in taking faster operational decisions, but also in effectively utilizing the available flexibility.« less
NASA Technical Reports Server (NTRS)
Cotton, Will; Liechty, John
2015-01-01
This paper describes a testing methodology undertaken on the Facilities Development and Operations Contract (FDOC) by Lockheed Martin. The methodology was defined with the intent of reducing project schedule time to enable NASA's Johnson Space Center (JSC) to be able to deliver the Mission Control Center (MCC) 21 project as quickly as possible. 21 represents the 21st century where NASA JSC is updating its control center with new technology and operational concepts in order to support NASA customers wanting to use control center assets to support space vehicle operations. In collaboration with the NASA customer, a new test concept was conceived early during MCC21 project planning with the goal of reducing project delivery time. One enabler that could help reduce delivery time was testing. Within the project, testing was performed by two entities, software development responsible for subsystem testing and system test responsible for system integration testing. The MCC21 project took a deliberate review of testing to determine how it could be performed differently to realize an overall reduction in test time to support the goal of a more rapid project delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, J. K. R.; Alderman, O. L. G.; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
2016-07-15
An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment wasmore » integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less
Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells
Zhong, Guocai; Wang, Haimin; Bailey, Charles C; Gao, Guangping; Farzan, Michael
2016-01-01
Efforts to control mammalian gene expression with ligand-responsive riboswitches have been hindered by lack of a general method for generating efficient switches in mammalian systems. Here we describe a rational-design approach that enables rapid development of efficient cis-acting aptazyme riboswitches. We identified communication-module characteristics associated with aptazyme functionality through analysis of a 32-aptazyme test panel. We then developed a scoring system that predicts an aptazymes’s activity by integrating three characteristics of communication-module bases: hydrogen bonding, base stacking, and distance to the enzymatic core. We validated the power and generality of this approach by designing aptazymes responsive to three distinct ligands, each with markedly wider dynamic ranges than any previously reported. These aptayzmes efficiently regulated adeno-associated virus (AAV)-vectored transgene expression in cultured mammalian cells and mice, highlighting one application of these broadly usable regulatory switches. Our approach enables efficient, protein-independent control of gene expression by a range of small molecules. DOI: http://dx.doi.org/10.7554/eLife.18858.001 PMID:27805569
Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; ...
2016-07-01
We integrated an aerodynamic levitator with carbon dioxide laser beam heating with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. Furthermore, the chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The samplemore » environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. Our system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less
Glass-based confined structures enabling light control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiappini, Andrea; Normani, Simone; Chiasera, Alessandro
2015-04-24
When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures bymore » different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties.« less
Direct Final Rule for Heavy-Duty Highway Program: Revisions for Emergency Vehicles
Revises the heavy-duty diesel regulations to enable emergency vehicles to perform mission-critical life-saving work without risking that abnormal conditions of the emission control system could lead to decreased engine power, speed or torque.
Andereggen, Lukas; Neuschmelting, Volker; von Gunten, Michael; Widmer, Hans Rudolf; Takala, Jukka; Jakob, Stephan M; Fandino, Javier; Marbacher, Serge
2014-10-02
Early brain injury and delayed cerebral vasospasm both contribute to unfavorable outcomes after subarachnoid hemorrhage (SAH). Reproducible and controllable animal models that simulate both conditions are presently uncommon. Therefore, new models are needed in order to mimic human pathophysiological conditions resulting from SAH. This report describes the technical nuances of a rabbit blood-shunt SAH model that enables control of intracerebral pressure (ICP). An extracorporeal shunt is placed between the arterial system and the subarachnoid space, which enables examiner-independent SAH in a closed cranium. Step-by-step procedural instructions and necessary equipment are described, as well as technical considerations to produce the model with minimal mortality and morbidity. Important details required for successful surgical creation of this robust, simple and consistent ICP-controlled SAH rabbit model are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj
This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltagemore » measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj
This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltagemore » measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.« less
High spatial and temporal resolution cell manipulation techniques in microchannels.
Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P
2016-03-21
The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.
Optogenetic feedback control of neural activity
Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M
2015-01-01
Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329
Design and Control of Modular Spine-Like Tensegrity Structures
NASA Technical Reports Server (NTRS)
Mirletz, Brian T.; Park, In-Won; Flemons, Thomas E.; Agogino, Adrian K.; Quinn, Roger D.; SunSpiral, Vytas
2014-01-01
We present a methodology enabled by the NASA Tensegrity Robotics Toolkit (NTRT) for the rapid structural design of tensegrity robots in simulation and an approach for developing control systems using central pattern generators, local impedance controllers, and parameter optimization techniques to determine effective locomotion strategies for the robot. Biomimetic tensegrity structures provide advantageous properties to robotic locomotion and manipulation tasks, such as their adaptability and force distribution properties, flexibility, energy efficiency, and access to extreme terrains. While strides have been made in designing insightful static biotensegrity structures, gaining a clear understanding of how a particular structure can efficiently move has been an open problem. The tools in the NTRT enable the rapid exploration of the dynamics of a given morphology, and the links between structure, controllability, and resulting gait efficiency. To highlight the effectiveness of the NTRT at this exploration of morphology and control, we will provide examples from the designs and locomotion of four different modular spine-like tensegrity robots.
Implementation of Enhanced Propulsion Control Modes for Emergency Flight Operation
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Chin, Jeffrey C.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2011-01-01
Aircraft engines can be effective actuators to help pilots avert or recover from emergency situations. Emergency control modes are being developed to enhance the engines performance to increase the probability of recovery under these circumstances. This paper discusses a proposed implementation of an architecture that requests emergency propulsion control modes, allowing the engines to deliver additional performance in emergency situations while still ensuring a specified safety level. In order to determine the appropriate level of engine performance enhancement, information regarding the current emergency scenario (including severity) and current engine health must be known. This enables the engine to operate beyond its nominal range while minimizing overall risk to the aircraft. In this architecture, the flight controller is responsible for determining the severity of the event and the level of engine risk that is acceptable, while the engine controller is responsible for delivering the desired performance within the specified risk range. A control mode selector specifies an appropriate situation-specific enhanced mode, which the engine controller then implements. The enhanced control modes described in this paper provide additional engine thrust or response capabilities through the modification of gains, limits, and the control algorithm, but increase the risk of engine failure. The modifications made to the engine controller to enable the use of the enhanced control modes are described, as are the interaction between the various subsystems and importantly, the interaction between the flight controller/pilot and the propulsion control system. Simulation results demonstrate how the system responds to requests for enhanced operation and the corresponding increase in performance.
Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
This paper considers future distribution networks featuring inverter-interfaced photovoltaic (PV) systems, and addresses the synthesis of feedback controllers that seek real- and reactive-power inverter setpoints corresponding to AC optimal power flow (OPF) solutions. The objective is to bridge the temporal gap between long-term system optimization and real-time inverter control, and enable seamless PV-owner participation without compromising system efficiency and stability. The design of the controllers is grounded on a dual ..epsilon..-subgradient method, while semidefinite programming relaxations are advocated to bypass the non-convexity of AC OPF formulations. Global convergence of inverter output powers is analytically established for diminishing stepsize rules formore » cases where: i) computational limits dictate asynchronous updates of the controller signals, and ii) inverter reference inputs may be updated at a faster rate than the power-output settling time.« less
Biomechanical basis of wing and haltere coordination in flies
Deora, Tanvi; Singh, Amit Kumar; Sane, Sanjay P.
2015-01-01
The spectacular success and diversification of insects rests critically on two major evolutionary adaptations. First, the evolution of flight, which enhanced the ability of insects to colonize novel ecological habitats, evade predators, or hunt prey; and second, the miniaturization of their body size, which profoundly influenced all aspects of their biology from development to behavior. However, miniaturization imposes steep demands on the flight system because smaller insects must flap their wings at higher frequencies to generate sufficient aerodynamic forces to stay aloft; it also poses challenges to the sensorimotor system because precise control of wing kinematics and body trajectories requires fast sensory feedback. These tradeoffs are best studied in Dipteran flies in which rapid mechanosensory feedback to wing motor system is provided by halteres, reduced hind wings that evolved into gyroscopic sensors. Halteres oscillate at the same frequency as and precisely antiphase to the wings; they detect body rotations during flight, thus providing feedback that is essential for controlling wing motion during aerial maneuvers. Although tight phase synchrony between halteres and wings is essential for providing proper timing cues, the mechanisms underlying this coordination are not well understood. Here, we identify specific mechanical linkages within the thorax that passively mediate both wing–wing and wing–haltere phase synchronization. We demonstrate that the wing hinge must possess a clutch system that enables flies to independently engage or disengage each wing from the mechanically linked thorax. In concert with a previously described gearbox located within the wing hinge, the clutch system enables independent control of each wing. These biomechanical features are essential for flight control in flies. PMID:25605915
A robotic system for researching social integration in honeybees.
Griparić, Karlo; Haus, Tomislav; Miklić, Damjan; Polić, Marsela; Bogdan, Stjepan
2017-01-01
In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera), are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.
On the transient dynamics of piezoelectric-based, state-switched systems
NASA Astrophysics Data System (ADS)
Lopp, Garrett K.; Kelley, Christopher R.; Kauffman, Jeffrey L.
2018-01-01
This letter reports on the induced mechanical transients for piezoelectric-based, state-switching approaches utilizing both experimental tests and a numerical model that more accurately captures the dynamics associated with a switch between stiffness states. Currently, switching models instantaneously dissipate the stored piezoelectric voltage, resulting in a discrete change in effective stiffness states and a discontinuity in the system dynamics during the switching event. The proposed model allows for a rapid but continuous voltage dissipation and the corresponding variation between stiffness states, as one sees in physical implementations. This rapid variation in system stiffness when switching at a point of non-zero strain leads to high-frequency, large-amplitude transients in the system acceleration response. Utilizing a fundamental piezoelectric bimorph, a comparison between the numerical and experimental results reveals that these mechanical transients are much stronger than originally anticipated and masked by measurement hardware limitations, thus highlighting the significance of an appropriate system model governing the switch dynamics. Such a model enables designers to analyze systems that incorporate piezoelectric-based state switching with greater accuracy to ensure that these transients do not degrade the intended performance. Finally, if the switching does create unacceptable transients, controlling the duration of voltage dissipation enables control over the frequency content and peak amplitudes associated with the switch-induced acceleration transients.
SCORPION II persistent surveillance system with universal gateway
NASA Astrophysics Data System (ADS)
Coster, Michael; Chambers, Jonathan; Brunck, Albert
2009-05-01
This paper addresses improvements and benefits derived from the next generation Northrop Grumman SCORPION II family of persistent surveillance and target recognition systems produced by the Xetron campus in Cincinnati, Ohio. SCORPION II reduces the size, weight, and cost of all SCORPION components in a flexible, field programmable system that is easier to conceal, backward compatible, and enables integration of over forty Unattended Ground Sensor (UGS) and camera types from a variety of manufacturers, with a modular approach to supporting multiple Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications interfaces. Since 1998 Northrop Grumman has been integrating best in class sensors with its proven universal modular Gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control. In addition to being fed to COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system Gateways on single or multiple displays. This GUI enables a large amount of sensor data and imagery to be used for actionable intelligence as well as remote sensor command and control by a minimum number of analysts.
NASA Technical Reports Server (NTRS)
Guman, W. J. (Editor)
1972-01-01
Two flight prototype solid propellant pulsed plasma microthruster propulsion systems for the SMS satellite were fabricated, assembled and tested. The propulsion system is a completely self contained system requiring only three electrical inputs to operate: a 29.4 volt power source, a 28 volt enable signal and a 50 millsec long command fire signal that can be applied at any rate from 50 ppm to 110 ppm. The thrust level can be varied over a range 2.2 to 1 at constant impulse bit amplitude. By controlling the duration of the 28 volt enable either steady state thrust or a series of discrete impulse bits can be generated. A new technique of capacitor charging was implemented to reduce high voltage stress on energy storage capacitors.
Auletta, G; Ellis, G.F.R; Jaeger, L
2008-01-01
It has been claimed that different types of causes must be considered in biological systems, including top-down as well as same-level and bottom-up causation, thus enabling the top levels to be causally efficacious in their own right. To clarify this issue, the important distinctions between information and signs are introduced here and the concepts of information control and functional equivalence classes in those systems are rigorously defined and used to characterize when top-down causation by feedback control happens, in a way that is testable. The causally significant elements we consider are equivalence classes of lower level processes, realized in biological systems through different operations having the same outcome within the context of information control and networks. PMID:18319208
NASA Technical Reports Server (NTRS)
Zeller, Mary V.; Lei, Jih-Fen
2002-01-01
The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.
The CARIBU EBIS control and synchronization system
NASA Astrophysics Data System (ADS)
Dickerson, Clayton; Peters, Christopher
2015-01-01
The Californium Rare Isotope Breeder Upgrade (CARIBU) Electron Beam Ion Source (EBIS) charge breeder has been built and tested. The bases of the CARIBU EBIS electrical system are four voltage platforms on which both DC and pulsed high voltage outputs are controlled. The high voltage output pulses are created with either a combination of a function generator and a high voltage amplifier, or two high voltage DC power supplies and a high voltage solid state switch. Proper synchronization of the pulsed voltages, fundamental to optimizing the charge breeding performance, is achieved with triggering from a digital delay pulse generator. The control system is based on National Instruments realtime controllers and LabVIEW software implementing Functional Global Variables (FGV) to store and access instrument parameters. Fiber optic converters enable network communication and triggering across the platforms.
Karlsson, Petra; Wallen, Margaret
2017-01-01
Eye-gaze control technology enables people with significant physical disability to access computers for communication, play, learning and environmental control. This pilot study used a multiple case study design with repeated baseline assessment and parents' evaluations to compare two eye-gaze control technology systems to identify any differences in factors such as ease of use and impact of the systems for their young children. Five children, aged 3 to 5 years, with dyskinetic cerebral palsy, and their families participated. Overall, families were satisfied with both the Tobii PCEye Go and myGaze® eye tracker, found them easy to position and use, and children learned to operate them quickly. This technology provides young children with important opportunities for learning, play, leisure, and developing communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.; Britt, J.; Birkmire, R.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematicmore » development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.« less
A new approach to driving and controlling precision lasers for cold-atom science
NASA Astrophysics Data System (ADS)
Luey, Ben; Shugrue, Jeremy; Anderson, Mike
2014-05-01
Vescent's Integrated Control Electronics (ICE) Platform is a new approach to controlling and driving lasers and other electoral devices in complex atomic and optical experiments. By employing low-noise, high-bandwidth analog electronics with digital control, ICE combines the performance of analog design with the convenience of the digital world. Utilizing a simple USB COM port interface, ICE can easily be controlled via LabView, Python, or an FPGA. High-speed TTL inputs enable precise external timing or triggering. ICE is capable of generating complex timing internally, enabling ICE to drive an entire experiment or it can be directed by an external control program. The system is capable of controlling up to 8 unique ICE slave boards providing flexibility to tailor an assortment of electronics hardware to the needs of a specific experiment. Examples of ICE slave boards are: a current controller and peak-lock laser servo, a four channel temperature controller, a current controller and offset phase lock servo. A single ensemble can drive, stabilize, and frequency lock 3 lasers in addition to powering an optical amplifier, while still leaving 2 remaining slots for further control needs. Staff Scientist
Firmware Development Improves System Efficiency
NASA Technical Reports Server (NTRS)
Chern, E. James; Butler, David W.
1993-01-01
Most manufacturing processes require physical pointwise positioning of the components or tools from one location to another. Typical mechanical systems utilize either stop-and-go or fixed feed-rate procession to accomplish the task. The first approach achieves positional accuracy but prolongs overall time and increases wear on the mechanical system. The second approach sustains the throughput but compromises positional accuracy. A computer firmware approach has been developed to optimize this point wise mechanism by utilizing programmable interrupt controls to synchronize engineering processes 'on the fly'. This principle has been implemented in an eddy current imaging system to demonstrate the improvement. Software programs were developed that enable a mechanical controller card to transmit interrupts to a system controller as a trigger signal to initiate an eddy current data acquisition routine. The advantages are: (1) optimized manufacturing processes, (2) increased throughput of the system, (3) improved positional accuracy, and (4) reduced wear and tear on the mechanical system.
Discrete Event Supervisory Control Applied to Propulsion Systems
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Shah, Neerav
2005-01-01
The theory of discrete event supervisory (DES) control was applied to the optimal control of a twin-engine aircraft propulsion system and demonstrated in a simulation. The supervisory control, which is implemented as a finite-state automaton, oversees the behavior of a system and manages it in such a way that it maximizes a performance criterion, similar to a traditional optimal control problem. DES controllers can be nested such that a high-level controller supervises multiple lower level controllers. This structure can be expanded to control huge, complex systems, providing optimal performance and increasing autonomy with each additional level. The DES control strategy for propulsion systems was validated using a distributed testbed consisting of multiple computers--each representing a module of the overall propulsion system--to simulate real-time hardware-in-the-loop testing. In the first experiment, DES control was applied to the operation of a nonlinear simulation of a turbofan engine (running in closed loop using its own feedback controller) to minimize engine structural damage caused by a combination of thermal and structural loads. This enables increased on-wing time for the engine through better management of the engine-component life usage. Thus, the engine-level DES acts as a life-extending controller through its interaction with and manipulation of the engine s operation.
Design of a force reflecting hand controller for space telemanipulation studies
NASA Technical Reports Server (NTRS)
Paines, J. D. B.
1987-01-01
The potential importance of space telemanipulator systems is reviewed, along with past studies of master-slave manipulation using a generalized force reflecting master arm. Problems concerning their dynamic interaction with the human operator have been revealed in the use of these systems, with marked differences between 1-g and simulated weightless conditions. A study is outlined to investigate the optimization of the man machine dynamics of master-slave manipulation, and a set of specifications is determined for the apparatus necessary to perform this investigation. This apparatus is a one degree of freedom force reflecting hand controller with closed loop servo control which enables it to simulate arbitrary dynamic properties to high bandwidth. Design of the complete system and its performance is discussed. Finally, the experimental adjustment of the hand controller dynamics for smooth manual control performance with good operator force perception is described, resulting in low inertia, viscously damped hand controller dynamics.
A Framework for Context Sensitive Risk-Based Access Control in Medical Information Systems
Choi, Donghee; Kim, Dohoon; Park, Seog
2015-01-01
Since the access control environment has changed and the threat of insider information leakage has come to the fore, studies on risk-based access control models that decide access permissions dynamically have been conducted vigorously. Medical information systems should protect sensitive data such as medical information from insider threat and enable dynamic access control depending on the context such as life-threatening emergencies. In this paper, we suggest an approach and framework for context sensitive risk-based access control suitable for medical information systems. This approach categorizes context information, estimating and applying risk through context- and treatment-based permission profiling and specifications by expanding the eXtensible Access Control Markup Language (XACML) to apply risk. The proposed framework supports quick responses to medical situations and prevents unnecessary insider data access through dynamic access authorization decisions in accordance with the severity of the context and treatment. PMID:26075013
NASA Astrophysics Data System (ADS)
Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te
2016-10-01
Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions.
Control Design for an Advanced Geared Turbofan Engine
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Litt, Jonathan S.
2017-01-01
This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 pound-force thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 feet and from 0 to 0.8 Mach. The purpose of this paper is to review the engine control design process for an advanced turbofan engine configuration. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding operational limits.
Deterministic quantum teleportation with feed-forward in a solid state system.
Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A
2013-08-15
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.
High-efficiency water-loaded microwave antenna in ultra-high-frequency band
NASA Astrophysics Data System (ADS)
Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie
2018-03-01
High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.
Optical computing, optical memory, and SBIRs at Foster-Miller
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.
1994-03-01
A desktop design and manufacturing system for binary diffractive elements, MacBEEP, was developed with the optical researcher in mind. Optical processing systems for specialized tasks such as cellular automation computation and fractal measurement were constructed. A new family of switchable holograms has enabled several applications for control of laser beams in optical memories. New spatial light modulators and optical logic elements have been demonstrated based on a more manufacturable semiconductor technology. Novel synthetic and polymeric nonlinear materials for optical storage are under development in an integrated memory architecture. SBIR programs enable creative contributions from smaller companies, both product oriented and technology oriented, and support advances that might not otherwise be developed.
Brain-computer interfaces in neurological rehabilitation.
Daly, Janis J; Wolpaw, Jonathan R
2008-11-01
Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.
Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability
Treviño-Quintanilla, Luis Gerardo; Freyre-González, Julio Augusto; Martínez-Flores, Irma
2013-01-01
In bacteria, transcriptional regulation is a key step in cellular gene expression. All bacteria contain a core RNA polymerase that is catalytically competent but requires an additional σ factor for specific promoter recognition and correct transcriptional initiation. The RNAP core is not able to selectively bind to a given σ factor. In contrast, different σ factors have different affinities for the RNAP core. As a consequence, the concentration of alternate σ factors requires strict regulation in order to properly control the delicate interplay among them, which favors the competence for the RNAP core. This control is archived by different σ/anti-σ controlling mechanisms that shape complex regulatory networks and cascades, and enable the response to sudden environmental cues, whose global understanding is a current challenge for systems biology. Although there have been a number of excellent studies on each of these σ/anti-σ post-transcriptional regulatory systems, no comprehensive comparison of these mechanisms in a single model organism has been conducted. Here, we survey all these systems in E. coli dissecting and analyzing their inner workings and highlightin their differences. Then, following an integral approach, we identify their commonalities and outline some of the principles exploited by the cell to effectively and globally reprogram the transcriptional machinery. These principles provide guidelines for developing biological synthetic circuits enabling an efficient and robust response to sudden stimuli. PMID:24396271
Molecular controlled of quantum nano systems
NASA Astrophysics Data System (ADS)
Paltiel, Yossi
2014-03-01
A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.
Investigation of Injector Slot Geometry on Curved-Diffuser Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Silva, Odlanier
2004-01-01
The Compressor Branch vision is to be recognized as world-class leaders in research for fluid mechanics of compressors. Its mission is to conduct research and develop technology to advance the state of the art of compressors and transfer new technology to U.S. industries. Maintain partnerships with U.S. industries, universities, and other government organizations. Maintain a balance between customers focused and long range research. Flow control comprises enabling technologies to meet compression system performance requirements driven by emissions and fuel reduction goals (e.g., in UEET), missions (e.g., access-to-space), aerodynamically aggressive vehicle configurations (e.g., UAV and future blended wing body configurations with highly distorted inlets), and cost goals (e.g., in VAATE). The compression system requirements include increased efficiency, power-to-weight, and adaptability (i.e., robustness in terms of wide operability, distortion tolerance, and engine system health and reliability). The compressor flow control task comprises efforts to develop, demonstrate, and transfer adaptive flow control technology to industry to increase aerodynamic loading at current blade row loss levels, to enable adaptive1 y wide operability, and to develop plant models for adaptive compression systems. In this context, flow control is the controlled modification of a flow field by a deliberate means beyond the natural (uncontrolled) shaping of the solid surfaces that define the principal flow path. The objective of the compressor flow control task is to develop and apply techniques that control circulation, aerodynamic blockage, and entropy production in order to enhance the performance and operability of compression systems for advanced aero-propulsion applications. This summer I would be working with a curved-diffuser because it simulates what happens with flow in the stator blades in the compressor. With this experiment I will be doing some data analysis and parametric study of the injector slot geometries to get the best aerodynamic performance of it. This includes some data reduction, redesign and fast prototyping of the injector nozzle.
MX: A beamline control system toolkit
NASA Astrophysics Data System (ADS)
Lavender, William M.
2000-06-01
The development of experimental and beamline control systems for two Collaborative Access Teams at the Advanced Photon Source has resulted in the creation of a portable data acquisition and control toolkit called MX. MX consists of a set of servers, application programs and libraries that enable the creation of command line and graphical user interface applications that may be easily retargeted to new and different kinds of motor and device controllers. The source code for MX is written in ANSI C and Tcl/Tk with interprocess communication via TCP/IP. MX is available for several versions of Unix, Windows 95/98/NT and DOS. It may be downloaded from the web site http://www.imca.aps.anl.gov/mx/.
Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Warren
2004-06-01
There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning (D&D) operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, this project focused on the basic science challenges leading to the development of visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix andmore » by disturbances such as nonlinear radial distortion. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This research project focused on the development of a visual servo control methodology that targets compensating for disturbances in the camera model (i.e., camera calibration and the recovery of range information) as a means to achieve predictable response by the robotic system operating in unstructured environments. The fundamental idea is to use nonlinear Lyapunov-based techniques along with photogrammetry methods to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current robotic applications. The outcome of this control methodology is a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature recognition and extraction to enable robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). The developed methodology has been reported in numerous peer-reviewed publications and the performance and enabling capabilities of the resulting visual servo control modules have been demonstrated on mobile robot and robot manipulator platforms.« less
Adaptive Engine Technologies for Aviation CO2 Emissions Reduction
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.
2006-01-01
Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.
Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing.
Leonard, Simon; Wu, Kyle L; Kim, Yonjae; Krieger, Axel; Kim, Peter C W
2014-04-01
This paper introduces the smart tissue anastomosis robot (STAR). Currently, the STAR is a proof-of-concept for a vision-guided robotic system featuring an actuated laparoscopic suturing tool capable of executing running sutures from image-based commands. The STAR tool is designed around a commercially available laparoscopic suturing tool that is attached to a custom-made motor stage and the STAR supervisory control architecture that enables a surgeon to select and track incisions and the placement of stitches. The STAR supervisory-control interface provides two modes: A manual mode that enables a surgeon to specify the placement of each stitch and an automatic mode that automatically computes equally-spaced stitches based on an incision contour. Our experiments on planar phantoms demonstrate that the STAR in either mode is more accurate, up to four times more consistent and five times faster than surgeons using state-of-the-art robotic surgical system, four times faster than surgeons using manual Endo360(°)®, and nine times faster than surgeons using manual laparoscopic tools.
A highly articulated robotic surgical system for minimally invasive surgery.
Ota, Takeyoshi; Degani, Amir; Schwartzman, David; Zubiate, Brett; McGarvey, Jeremy; Choset, Howie; Zenati, Marco A
2009-04-01
We developed a novel, highly articulated robotic surgical system (CardioARM) to enable minimally invasive intrapericardial therapeutic delivery through a subxiphoid approach. We performed preliminary proof of concept studies in a porcine preparation by performing epicardial ablation. CardioARM is a robotic surgical system having an articulated design to provide unlimited but controllable flexibility. The CardioARM consists of serially connected, rigid cyclindrical links housing flexible working ports through which catheter-based tools for therapy and imaging can be advanced. The CardioARM is controlled by a computer-driven, user interface, which is operated outside the operative field. In six experimental subjects, the CardioARM was introduced percutaneously through a subxiphoid access. A commercial 5-French radiofrequency ablation catheter was introduced through the working port, which was then used to guide deployment. In all subjects, regional ("linear") left atrial ablation was successfully achieved without complications. Based on these preliminary studies, we believe that the CardioARM promises to enable deployment of a number of epicardium-based therapies. Improvements in imaging techniques will likely facilitate increasingly complex procedures.
A microcomputer controlled snow ski binding system--I. Instrumentation and field evaluation.
MacGregor, D; Hull, M L; Dorius, L K
1985-01-01
This paper presents the design and field evaluation of the first microcomputer controlled ski binding system. This system incorporates an Intel 8086 microcomputer controller and an integral binding/dynamometer. This instrumentation system not only undertakes real time control, but also it records dynamometer data via a miniature digital cassette tape recorder. The integral binding/dynamometer offers the same operational and mounting convenience of commercially available mechanical bindings. The binding may be released either manually or electrically via the controller. Comprised of four octagonal half strain rings, the strain gage dynamometer measures the three moment load components at the boot. To enable the user to conveniently operate the computer, extensive operating software was developed. The operating software is discussed in relation to both the acquisition and storage of data from the dynamometer and the control of the electro-mechanical snow ski binding. The binding system has been used successfully to both record boot moment components and control ski binding release during actual skiing maneuvers. Moment histories typical of three common recreational skiing maneuvers are presented.
A Framework for Optimal Control Allocation with Structural Load Constraints
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Jutte, Christine V.; Burken, John J.; Trinh, Khanh V.; Bodson, Marc
2010-01-01
Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented.
Losier, Y; Englehart, K; Hudgins, B
2007-01-01
The integration of multiple input sources within a control strategy for powered upper limb prostheses could provide smoother, more intuitive multi-joint reaching movements based on the user's intended motion. The work presented in this paper presents the results of using myoelectric signals (MES) of the shoulder area in combination with the position of the shoulder as input sources to multiple linear discriminant analysis classifiers. Such an approach may provide users with control signals capable of controlling three degrees of freedom (DOF). This work is another important step in the development of hybrid systems that will enable simultaneous control of multiple degrees of freedom used for reaching tasks in a prosthetic limb.
Effectiveness of basic display augmentation in vehicular control by visual field cues
NASA Technical Reports Server (NTRS)
Grunwald, A. J.; Merhav, S. J.
1978-01-01
The paper investigates the effectiveness of different basic display augmentation concepts - fixed reticle, velocity vector, and predicted future vehicle path - for RPVs controlled by a vehicle-mounted TV camera. The task is lateral manual control of a low flying RPV along a straight reference line in the presence of random side gusts. The man-machine system and the visual interface are modeled as a linear time-invariant system. Minimization of a quadratic performance criterion is assumed to underlie the control strategy of a well-trained human operator. The solution for the optimal feedback matrix enables the explicit computation of the variances of lateral deviation and directional error of the vehicle and of the control force that are used as performance measures.
NASA Technical Reports Server (NTRS)
Mitchell, C.; Sherman, L.; Nielsen, S.; Nelson, P.; Trumbo, P.; Hodges, T.; Hasegawa, P.; Bressan, R.; Ladisch, M.; Auslander, D.
1996-01-01
Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainabilty of a CELSS that will enable management of diverse complex systems on Earth.
NASA Astrophysics Data System (ADS)
Mitchell, C.; Sherman, L.; Nielsen, S.; Nelson, P.; Trumbo, P.; Hodges, T.; Hasegawa, P.; Bressan, R.; Ladisch, M.; Auslander, D.
Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO_2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainability of a CELSS that will enable management of diverse complex systems on Earth.
Reducing The Risk Of Fires In Conveyor Transport
NASA Astrophysics Data System (ADS)
Cheremushkina, M. S.; Poddubniy, D. A.
2017-01-01
The paper deals with the actual problem of increasing the safety of operation of belt conveyors in mines. Was developed the control algorithm that meets the technical requirements of the mine belt conveyors, reduces the risk of fires of conveyors belt, and enables energy and resource savings taking into account random sort of traffic. The most effective method of decision such tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. Was designed the mathematical model of the system "variable speed multiengine drive - conveyor - control system of conveyors", that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows to reduce the dynamic overload in the belt to (15-20)%.
Sudden infant death syndrome: a cybernetic etiology.
ben-Aaron, M
2003-01-01
The brain's processes, by hypothesis, involve information processing by an extraordinarily complex, highly sophisticated, self-organizing cybernetic system embedded in the central nervous system. This cybernetic system generates itself in successive stages. Breathing is, by default, an autonomous function, but breath control is learned. If there is not a smooth transfer of function at the time when a successor system (one that enables autonomous breathing to be overridden by voluntary control) takes over, breathing may cease, without any overt cause being detectable, even with a thorough postmortem examination. If conditions are such that, at that point, the infant's body lacks the strength to resume breathing again under autonomic control, Sudden Infant Death Syndrome may result. The theory explains why infants are at greater risk if they sleep face down.