Sample records for control system pre-feedbacked

  1. A technique for pole-zero placement for dual-input control systems. [computer simulation of CH-47 helicopter longitudinal dynamics

    NASA Technical Reports Server (NTRS)

    Reid, G. F.

    1976-01-01

    A technique is presented for determining state variable feedback gains that will place both the poles and zeros of a selected transfer function of a dual-input control system at pre-determined locations in the s-plane. Leverrier's algorithm is used to determine the numerator and denominator coefficients of the closed-loop transfer function as functions of the feedback gains. The values of gain that match these coefficients to those of a pre-selected model are found by solving two systems of linear simultaneous equations. The algorithm has been used in a computer simulation of the CH-47 helicopter to control longitudinal dynamics.

  2. Control of the constrained planar simple inverted pendulum

    NASA Technical Reports Server (NTRS)

    Bavarian, B.; Wyman, B. F.; Hemami, H.

    1983-01-01

    Control of a constrained planar inverted pendulum by eigenstructure assignment is considered. Linear feedback is used to stabilize and decouple the system in such a way that specified subspaces of the state space are invariant for the closed-loop system. The effectiveness of the feedback law is tested by digital computer simulation. Pre-compensation by an inverse plant is used to improve performance.

  3. Improvement on vibration measurement performance of laser self-mixing interference by using a pre-feedback mirror

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Chen, Qianghua; Wang, Yanghong; Luo, Huifu; Wu, Huan; Ma, Binwu

    2018-06-01

    In the laser self-mixing interference vibration measurement system, the self mixing interference signal is usually weak so that it can be hardly distinguished from the environmental noise. In order to solve this problem, we present a self-mixing interference optical path with a pre-feedback mirror, a pre-feedback mirror is added between the object and the collimator lens, corresponding feedback light enters into the inner cavity of the laser and the interference by the pre-feedback mirror occurs. The pre-feedback system is established after that. The self-mixing interference theoretical model with a pre-feedback based on the F-P model is derived. The theoretical analysis shows that the amplitude of the intensity of the interference signal can be improved by 2-4 times. The influence factors of system are also discussed. The experiment results show that the amplitude of the signal is greatly improved, which agrees with the theoretical analysis.

  4. Using Hi-FAME (High Feedback-Assessment-Multimedia-Environment) Instructional Model in WBI: A Case Study for Biology Teacher Education.

    ERIC Educational Resources Information Center

    Wang, Tzu-Hua; Wang, Wei-Lung; Wang, Kuo-Hua; Huang, Shih-Chieh

    The study attempted to adapt two web tools, FFS system (Frontpage Feedback System) and WATA system (Web-based Assessment and Test Analysis System), to construct a Hi-FAME (High Feedback-Assessment-Multimedia-Environment) Model in WBI (Web-based Instruction) to facilitate pre-service teacher training. Participants were 30 junior pre-service…

  5. Optimizing the feedback control of Galvo scanners for laser manufacturing systems

    NASA Astrophysics Data System (ADS)

    Mirtchev, Theodore; Weeks, Robert; Minko, Sergey

    2010-06-01

    This paper summarizes the factors that limit the performance of moving-magnet galvo scanners driven by closed-loop digital servo amplifiers: torsional resonances, drifts, nonlinearities, feedback noise and friction. Then it describes a detailed Simulink® simulator that takes into account these factors and can be used to automatically tune the controller for best results with given galvo type and trajectory patterns. It allows for rapid testing of different control schemes, for instance combined position/velocity PID loops and displays the corresponding output in terms of torque, angular position and feedback sensor signal. The tool is configurable and can either use a dynamical state-space model of galvo's open-loop response, or can import the experimentally measured frequency domain transfer function. Next a drive signal digital pre-filtering technique is discussed. By performing a real-time Fourier analysis of the raw command signal it can be pre-warped to minimize all harmonics around the torsional resonances while boosting other non-resonant high frequencies. The optimized waveform results in much smaller overshoot and better settling time. Similar performance gain cannot be extracted from the servo controller alone.

  6. Digital redesign of anti-wind-up controller for cascaded analog system.

    PubMed

    Chen, Y S; Tsai, J S H; Shieh, L S; Moussighi, M M

    2003-01-01

    The cascaded conventional anti-wind-up (CAW) design method for integral controller is discussed. Then, the prediction-based digital redesign methodology is utilized to find the new pulse amplitude modulated (PAM) digital controller for effective digital control of the analog plant with input saturation constraint. The desired digital controller is determined from existing or pre-designed CAW analog controller. The proposed method provides a novel methodology for indirect digital design of a continuous-time unity output-feedback system with a cascaded analog controller as in the case of PID controllers for industrial control processes with the presence of actuator saturations. It enables us to implement an existing or pre-designed cascaded CAW analog controller via a digital controller effectively.

  7. Active muscle response using feedback control of a finite element human arm model.

    PubMed

    Östh, Jonas; Brolin, Karin; Happee, Riender

    2012-01-01

    Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM.

  8. Pre-training evaluation and feedback improved skills retention of basic life support in medical students.

    PubMed

    Li, Qi; Zhou, Rong-hua; Liu, Jin; Lin, Jing; Ma, Er-Li; Liang, Peng; Shi, Ting-wei; Fang, Li-qun; Xiao, Hong

    2013-09-01

    Pre-training evaluation and feedback have been shown to improve medical students' skills acquisition of basic life support (BLS) immediately following training. The impact of such training on BLS skills retention is unknown. This study was conducted to investigate effects of pre-training evaluation and feedback on BLS skills retention in medical students. Three hundred and thirty 3rd year medical students were randomized to two groups, the control group (C group) and pre-training evaluation and feedback group (EF group). Each group was subdivided into four subgroups according to the time of retention-test (at 1-, 3-, 6-, 12-month following the initial training). After a 45-min BLS lecture, BLS skills were assessed (pre-training evaluation) in both groups before training. Following this, the C group received 45 min training. 15 min of group feedback corresponding to students' performance in pre-training evaluation was given only in the EF group that was followed by 30 min of BLS training. BLS skills were assessed immediately after training (post-test) and at follow up (retention-test). No skills difference was observed between the two groups in pre-training evaluation. Better skills acquisition was observed in the EF group (85.3 ± 7.3 vs. 68.1 ± 12.2 in C group) at post-test (p<0.001). In all retention-test, better skills retention was observed in each EF subgroup, compared with its paired C subgroup. Pre-training evaluation and feedback improved skills retention in the EF group for 12 months after the initial training, compared with the control group. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Emerald Ash Borer Threat Reveals Ecohydrologic Feedbacks in Northern U.S. Black Ash Wetlands

    NASA Astrophysics Data System (ADS)

    Diamond, J.; Mclaughlin, D. L.; Slesak, R.

    2016-12-01

    Hydrology is a primary driver of wetland structure and process that can be modified by abiotic and biotic feedbacks, leading to self-organization of wetland systems. Large-scale disturbance to these feedbacks, such as loss of vegetation, can thus be expected to impact wetland hydrology. The Emerald Ash Borer is an invasive beetle that is expected to cause widespread-loss of ash trees throughout the northern U.S. and Canada. To predict ecosystem response to this threat of vegetation loss, we ask if and how Black Ash (Fraxinus nigra), a ubiquitous facultative-wetland ash species, actively controls wetland hydrology to determine if Black Ash creates favorable hydrologic regimes for growth (i.e., evidence for ecohydrologic feedbacks). We do this by taking advantage of plot-level tree removal experiments in Black Ash-dominated (75-100% basal area) wetlands in the Chippewa National Forest, Minnesota. The monospecies dominance in these systems minimizes variation associated with species-specific effects, allowing for clearer interpretation of results regarding ecohydrologic feedbacks. Here, we present an analysis of six years of water table and soil moisture time series in experimental plots with the following treatments: 1) clear cut, 2) girdling, 3) group-selection thinning, and 4) control. We also present evapotranspiration (ET) time series estimates for each experimental plot using analysis of diel water level variation. Results show elevated water tables in treatment plots relative to control plots for all treatments for several years after treatments were applied, with differences as great as 50 cm. Some recovery of water table to pre-treatment levels was observed over time, but only the group-selection thinning treatment showed near-complete recovery to pre-treatment levels, and clear-cut treatments indicate sustained elevated water tables over five years. Differences among treatments are directly attributed to variably reduced ET relative to controls. Results also indicate changes to the ET vs. water table relationship among treatments, with implications for ET feedbacks to favorable hydrologic regimes for growth. Finally, we present a conceptual model for these ecosystems and discuss how the model will be used to explore ecohydrologic feedbacks in upcoming years.

  10. An efficient magnetron transmitter for superconducting accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less

  11. An efficient magnetron transmitter for superconducting accelerators

    DOE PAGES

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; ...

    2016-09-22

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less

  12. [Experimental study of angiography using vascular interventional robot-2(VIR-2)].

    PubMed

    Tian, Zeng-min; Lu, Wang-sheng; Liu, Da; Wang, Da-ming; Guo, Shu-xiang; Xu, Wu-yi; Jia, Bo; Zhao, De-peng; Liu, Bo; Gao, Bao-feng

    2012-06-01

    To verify the feasibility and safety of new vascular interventional robot system used in vascular interventional procedures. Vascular interventional robot type-2 (VIR-2) included master-slave parts of body propulsion system, image navigation systems and force feedback system, the catheter movement could achieve under automatic control and navigation, force feedback was integrated real-time, followed by in vitro pre-test in vascular model and cerebral angiography in dog. Surgeon controlled vascular interventional robot remotely, the catheter was inserted into the intended target, the catheter positioning error and the operation time would be evaluated. In vitro pre-test and animal experiment went well; the catheter can enter any branch of vascular. Catheter positioning error was less than 1 mm. The angiography operation in animal was carried out smoothly without complication; the success rate of the operation was 100% and the entire experiment took 26 and 30 minutes, efficiency was slightly improved compared with the VIR-1, and the time what staff exposed to the DSA machine was 0 minute. The resistance of force sensor can be displayed to the operator to provide a security guarantee for the operation. No surgical complications. VIR-2 is safe and feasible, and can achieve the catheter remote operation and angiography; the master-slave system meets the characteristics of traditional procedure. The three-dimensional image can guide the operation more smoothly; force feedback device provides remote real-time haptic information to provide security for the operation.

  13. Inertial sensor real-time feedback enhances the learning of cervical spine manipulation: a prospective study

    PubMed Central

    2014-01-01

    Background Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. Methods Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. Results There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). Conclusion Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training. PMID:24942483

  14. The Social Science Observation Record: A Guide for Pre-service and In-service Teachers Participating in Microteaching.

    ERIC Educational Resources Information Center

    Casteel, J. Doyle; Stahl, Robert J.

    Systematic and reliable feedback are critical elements of microteaching. One system whereby pre-service and in-service teachers may obtain systematic and reliable feedback during microteaching is called the Social Science Observation Record (SSOR). This monograph is intended to meet three purposes: (1) To explain the SSOR as a verbal system for…

  15. Effects of interactive visual feedback training on post-stroke pusher syndrome: a pilot randomized controlled study.

    PubMed

    Yang, Yea-Ru; Chen, Yi-Hua; Chang, Heng-Chih; Chan, Rai-Chi; Wei, Shun-Hwa; Wang, Ray-Yau

    2015-10-01

    We investigated the effects of a computer-generated interactive visual feedback training program on the recovery from pusher syndrome in stroke patients. Assessor-blinded, pilot randomized controlled study. A total of 12 stroke patients with pusher syndrome were randomly assigned to either the experimental group (N = 7, computer-generated interactive visual feedback training) or control group (N = 5, mirror visual feedback training). The scale for contraversive pushing for severity of pusher syndrome, the Berg Balance Scale for balance performance, and the Fugl-Meyer assessment scale for motor control were the outcome measures. Patients were assessed pre- and posttraining. A comparison of pre- and posttraining assessment results revealed that both training programs led to the following significant changes: decreased severity of pusher syndrome scores (decreases of 4.0 ± 1.1 and 1.4 ± 1.0 in the experimental and control groups, respectively); improved balance scores (increases of 14.7 ± 4.3 and 7.2 ± 1.6 in the experimental and control groups, respectively); and higher scores for lower extremity motor control (increases of 8.4 ± 2.2 and 5.6 ± 3.3 in the experimental and control groups, respectively). Furthermore, the computer-generated interactive visual feedback training program produced significantly better outcomes in the improvement of pusher syndrome (p < 0.01) and balance (p < 0.05) compared with the mirror visual feedback training program. Although both training programs were beneficial, the computer-generated interactive visual feedback training program more effectively aided recovery from pusher syndrome compared with mirror visual feedback training. © The Author(s) 2014.

  16. A real-time laser feedback control method for the three-wave laser source used in the polarimeter-interferometer diagnostic on Joint-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Xiong, C. Y.; Chen, J.; Li, Q.; Liu, Y.; Gao, L.

    2014-12-01

    A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (˜100-˜500 kHz/10 min) and decay of laser power (˜10%-˜20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.

  17. A real-time laser feedback control method for the three-wave laser source used in the polarimeter-interferometer diagnostic on Joint-TEXT tokamak.

    PubMed

    Xiong, C Y; Chen, J; Li, Q; Liu, Y; Gao, L

    2014-12-01

    A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (∼100-∼500 kHz/10 min) and decay of laser power (∼10%-∼20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.

  18. Pre-training evaluation and feedback improve medical students' skills in basic life support.

    PubMed

    Li, Qi; Ma, Er-Li; Liu, Jin; Fang, Li-Qun; Xia, Tian

    2011-01-01

    Evaluation and feedback are two factors that could influence simulation-based medical education and the time when they were delivered contributes their different effects. To investigate the impact of pre-training evaluation and feedback on medical students' performance in basic life support (BLS). Forty 3rd-year undergraduate medical students were randomly divided into two groups, C group (the control) and pre-training evaluation and feedback group (E&F group), each of 20. After BLS theoretical lecture, the C group received 45 min BLS training and the E&F group was individually evaluated (video-taped) in a mock cardiac arrest (pre-training evaluation). Fifteen minutes of group feedback related with the students' BLS performance in pre-training evaluation was given in the E&F group, followed by a 30-min BLS training. After BLS training, both groups were evaluated with one-rescuer BLS skills in a 3-min mock cardiac arrest scenario (post-training evaluation). The score from the post-training evaluation was converted to a percentage and was compared between the two groups. The score from the post-training evaluation was higher in the E&F group (82.9 ± 3.2% vs. 63.9 ± 13.4% in C group). In undergraduate medical students without previous BLS training, pre-training evaluation and feedback improve their performance in followed BLS training.

  19. Controls design with crossfeeds for hovering rotorcraft using quantitative feedback theory

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Biezad, Daniel J.; Cheng, Rendy

    1996-01-01

    A multi-input, multi-output controls design with dynamic crossfeed pre-compensation is presented for rotorcraft in near-hovering flight using Quantitative Feedback Theory (QFT). The resulting closed-loop control system bandwidth allows the rotorcraft to be considered for use as an inflight simulator. The use of dynamic, robust crossfeeds prior to the QFT design reduces the magnitude of required feedback gain and results in performance that meets most handling qualities specifications relative to the decoupling of off-axis responses. Handling qualities are Level 1 for both low-gain tasks and high-gain tasks in the roll, pitch, and yaw axes except for the 10 deg/sec moderate-amplitude yaw command where the rotorcraft exhibits Level 2 handling qualities in the yaw axis caused by phase lag. The combined effect of the QFT feedback design following the implementation of low-order, dynamic crossfeed compensators successfully decouples ten of twelve off-axis channels. For the other two channels it was not possible to find a single, low-order crossfeed that was effective. This is an area to be investigated in future research.

  20. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    NASA Technical Reports Server (NTRS)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  1. Feedback tracking control for dynamic morphing of piezocomposite actuated flexible wings

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zhou, Wenya; Wu, Zhigang

    2018-03-01

    Aerodynamic properties of flexible wings can be improved via shape morphing using piezocomposite materials. Dynamic shape control of flexible wings is investigated in this study by considering the interactions between structural dynamics, unsteady aerodynamics and piezo-actuations. A novel antisymmetric angle-ply bimorph configuration of piezocomposite actuators is presented to realize coupled bending-torsional shape control. The active aeroelastic model is derived using finite element method and Theodorsen unsteady aerodynamic loads. A time-varying linear quadratic Gaussian (LQG) tracking control system is designed to enhance aerodynamic lift with pre-defined trajectories. Proof-of-concept simulations of static and dynamic shape control are presented for a scaled high-aspect-ratio wing model. Vibrations of the wing and fluctuations in aerodynamic forces are caused by using the static voltages directly in dynamic shape control. The lift response has tracked the trajectories well with favorable dynamic morphing performance via feedback tracking control.

  2. EC power management in ITER for NTM control: the path from the commissioning phase to demonstration discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poli, Francesca M.; Fredrickson, Eric; Henderson, Mark A.

    Time dependent simulations that evolve consistently the magnetic equilibrium and plasma pressure profiles and the width and frequency rotation of magnetic islands under the effect of the Electron Cyclotron feedback system are used to assess whether the control of NTMs on ITER is compatible with other simulataneous functionalities of the EC system, like core heating and current profile tailoring, or sawtooth control. Furthermore, results indicate that the power needs for control can be reduced if the EC power is reserved and if pre-emptive control is used as opposed to an active search for an already developed island.

  3. EC power management in ITER for NTM control: the path from the commissioning phase to demonstration discharges

    DOE PAGES

    Poli, Francesca M.; Fredrickson, Eric; Henderson, Mark A.; ...

    2017-10-23

    Time dependent simulations that evolve consistently the magnetic equilibrium and plasma pressure profiles and the width and frequency rotation of magnetic islands under the effect of the Electron Cyclotron feedback system are used to assess whether the control of NTMs on ITER is compatible with other simulataneous functionalities of the EC system, like core heating and current profile tailoring, or sawtooth control. Furthermore, results indicate that the power needs for control can be reduced if the EC power is reserved and if pre-emptive control is used as opposed to an active search for an already developed island.

  4. The Effect of Feedback on Instructional Behaviours of Pre-Service Teacher Education

    ERIC Educational Resources Information Center

    Gürkan, Serkan

    2018-01-01

    Teacher training programs have a pivotal role in sophisticated Turkish education system. In order to reach high standards in teacher training, trainers should encourage and supervise pre-service teachers to use effective teaching skills and strategies. To ensure that providing feedback is regarded to be a widely accepted way for maximizing the use…

  5. Exploring consequences of short- and long-term deafness on speech production: a lip-tube perturbation study.

    PubMed

    Turgeon, Christine; Prémont, Amélie; Trudeau-Fisette, Paméla; Ménard, Lucie

    2015-05-01

    Studies have reported strong links between speech production and perception. We aimed to evaluate the role of long- and short-term auditory feedback alteration on speech production. Eleven adults with normal hearing (controls) and 17 cochlear implant (CI) users (7 pre-lingually deaf and 10 post-lingually deaf adults) were recruited. Short-term auditory feedback deprivation was induced by turning off the CI or by providing masking noise. Acoustic and articulatory measures were obtained during the production of /u/, with and without a tube inserted between the lips (perturbation), and with and without auditory feedback. F1 values were significantly different between the implant OFF and ON conditions for the pre-lingually deaf participants. In the absence of auditory feedback, the pre-lingually deaf participants moved the tongue more forward. Thus, a lack of normal auditory experience of speech may affect the internal representation of a vowel.

  6. Facilitating the Feedback Process on a Clinical Clerkship Using a Smartphone Application.

    PubMed

    Joshi, Aditya; Generalla, Jenilee; Thompson, Britta; Haidet, Paul

    2017-10-01

    This pilot study evaluated the effects of a smartphone-triggered method of feedback delivery on students' perceptions of the feedback process. An interactive electronic feedback form was made available to students through a smartphone app. Students were asked to evaluate various aspects of the feedback process. Responses from a previous year served as control. In the first three quarters of academic year 2014-2015 (pre-implementation), only 65% of responders reported receiving oral feedback and 40% reported receiving written feedback. During the pilot phase (transition), these increased to 80% for both forms. Following full implementation in academic year 2015-2016 (post-implementation), 97% reported receiving oral feedback, and 92% reported receiving written feedback. A statistically significant difference was noted pre- to post-implementation for both oral and written feedback (p < 0.01). A significant increase from pre-implementation to transition was noted for written feedback (p < 0.01) and from transition to post-implementation for oral feedback (p < 0.01). Ninety-one and 94% of responders reported ease of access and timeliness of the feedback, 75% perceived the quality of the feedback to be good to excellent; 64% felt receiving feedback via the app improved their performance; 69% indicated the feedback method as better compared to other methods. Students acknowledged the facilitation of conversation with supervisors and the convenience of receiving feedback, as well as the promptness with which feedback was provided. The use of a drop-down menu was thought to limit the scope of conversation. These data point to the effectiveness of this method to cue supervisors to provide feedback to students.

  7. A Framework for Engineering Stress Resilient Plants Using Genetic Feedback Control and Regulatory Network Rewiring.

    PubMed

    Foo, Mathias; Gherman, Iulia; Zhang, Peijun; Bates, Declan G; Denby, Katherine J

    2018-05-23

    Crop disease leads to significant waste worldwide, both pre- and postharvest, with subsequent economic and sustainability consequences. Disease outcome is determined both by the plants' response to the pathogen and by the ability of the pathogen to suppress defense responses and manipulate the plant to enhance colonization. The defense response of a plant is characterized by significant transcriptional reprogramming mediated by underlying gene regulatory networks, and components of these networks are often targeted by attacking pathogens. Here, using gene expression data from Botrytis cinerea-infected Arabidopsis plants, we develop a systematic approach for mitigating the effects of pathogen-induced network perturbations, using the tools of synthetic biology. We employ network inference and system identification techniques to build an accurate model of an Arabidopsis defense subnetwork that contains key genes determining susceptibility of the plant to the pathogen attack. Once validated against time-series data, we use this model to design and test perturbation mitigation strategies based on the use of genetic feedback control. We show how a synthetic feedback controller can be designed to attenuate the effect of external perturbations on the transcription factor CHE in our subnetwork. We investigate and compare two approaches for implementing such a controller biologically-direct implementation of the genetic feedback controller, and rewiring the regulatory regions of multiple genes-to achieve the network motif required to implement the controller. Our results highlight the potential of combining feedback control theory with synthetic biology for engineering plants with enhanced resilience to environmental stress.

  8. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms.

    PubMed

    Baertsch, Nathan Andrew; Baertsch, Hans Christopher; Ramirez, Jan Marino

    2018-02-26

    The preBötzinger Complex (preBötC), a medullary network critical for breathing, relies on excitatory interneurons to generate the inspiratory rhythm. Yet, half of preBötC neurons are inhibitory, and the role of inhibition in rhythmogenesis remains controversial. Using optogenetics and electrophysiology in vitro and in vivo, we demonstrate that the intrinsic excitability of excitatory neurons is reduced following large depolarizing inspiratory bursts. This refractory period limits the preBötC to very slow breathing frequencies. Inhibition integrated within the network is required to prevent overexcitation of preBötC neurons, thereby regulating the refractory period and allowing rapid breathing. In vivo, sensory feedback inhibition also regulates the refractory period, and in slowly breathing mice with sensory feedback removed, activity of inhibitory, but not excitatory, neurons restores breathing to physiological frequencies. We conclude that excitation and inhibition are interdependent for the breathing rhythm, because inhibition permits physiological preBötC bursting by controlling refractory properties of excitatory neurons.

  9. Developing Business Management Students' Persuasive Writing through Blog-Based Peer-Feedback

    ERIC Educational Resources Information Center

    Sayed, Osama H.

    2010-01-01

    The present study attempted to investigate the effect of using blog-based peer feedback on the persuasive writing of EFL business management students at the community college in Bisha, King Khalid University, Saudi Arabia. The study used a pre-test/post-test experimental and control group design. An experimental group and a control group were…

  10. Effects of a computerized feedback intervention on safety performance by junior doctors: results from a randomized mixed method study

    PubMed Central

    2013-01-01

    Background The behaviour of doctors and their responses to warnings can inform the effective design of Clinical Decision Support Systems. We used data from a University hospital electronic prescribing and laboratory reporting system with hierarchical warnings and alerts to explore junior doctors’ behaviour. The objective of this trial was to establish whether a Junior Doctor Dashboard providing feedback on prescription warning information and laboratory alerting acceptance rates was effective in changing junior doctors’ behaviour. Methods A mixed methods approach was employed which included a parallel group randomised controlled trial, and individual and focus group interviews. Junior doctors below the specialty trainee level 3 grade were recruited and randomised to two groups. Every doctor (N = 42) in the intervention group was e-mailed a link to a personal dashboard every week for 4 months. Nineteen participated in interviews. The 44 control doctors did not receive any automated feedback. The outcome measures were the difference in responses to prescribing warnings (of two severities) and laboratory alerting (of two severities) between the months before and the months during the intervention, analysed as the difference in performance between the intervention and the control groups. Results No significant differences were observed in the rates of generating prescription warnings, or in the acceptance of laboratory alarms. However, responses to laboratory alerts differed between the pre-intervention and intervention periods. For the doctors of Foundation Year 1 grade, this improvement was significantly (p = 0.002) greater in the group with access to the dashboard (53.6% ignored pre-intervention compared to 29.2% post intervention) than in the control group (47.9% ignored pre-intervention compared to 47.0% post intervention). Qualitative interview data indicated that while junior doctors were positive about the electronic prescribing functions, they were discriminating in the way they responded to other alerts and warnings given that from their perspective these were not always immediately clinically relevant or within the scope of their responsibility. Conclusions We have only been able to provide weak evidence that a clinical dashboard providing individualized feedback data has the potential to improve safety behaviour and only in one of several domains. The construction of metrics used in clinical dashboards must take account of actual work processes. Trial registration ISRCTN: ISRCTN72253051 PMID:23734871

  11. Effects of video-feedback on the communication, clinical competence and motivational interviewing skills of practice nurses: a pre-test posttest control group study.

    PubMed

    Noordman, Janneke; van der Weijden, Trudy; van Dulmen, Sandra

    2014-10-01

    To examine the effects of individual video-feedback on the generic communication skills, clinical competence (i.e. adherence to practice guidelines) and motivational interviewing skills of experienced practice nurses working in primary care. Continuing professional education may be necessary to refresh and reflect on the communication and motivational interviewing skills of experienced primary care practice nurses. A video-feedback method was designed to improve these skills. Pre-test/posttest control group design. Seventeen Dutch practice nurses and 325 patients participated between June 2010-June 2011. Nurse-patient consultations were videotaped at two moments (T0 and T1), with an interval of 3-6 months. The videotaped consultations were rated using two protocols: the Maastrichtse Anamnese en Advies Scorelijst met globale items (MAAS-global) and the Behaviour Change Counselling Index. Before the recordings, nurses were allocated to a control or video-feedback group. Nurses allocated to the video-feedback group received video-feedback between T0 and T1. Data were analysed using multilevel linear or logistic regression. Nurses who received video-feedback appeared to pay significantly more attention to patients' request for help, their physical examination and gave significantly more understandable information. With respect to motivational interviewing, nurses who received video-feedback appeared to pay more attention to 'agenda setting and permission seeking' during their consultations. Video-feedback is a potentially effective method to improve practice nurses' generic communication skills. Although a single video-feedback session does not seem sufficient to increase all motivational interviewing skills, significant improvement in some specific skills was found. Nurses' clinical competences were not altered after feedback due to already high standards. © 2014 John Wiley & Sons Ltd.

  12. Motivational and metacognitive feedback in SQL-Tutor*

    NASA Astrophysics Data System (ADS)

    Hull, Alison; du Boulay, Benedict

    2015-04-01

    Motivation and metacognition are strongly intertwined, with learners high in self-efficacy more likely to use a variety of self-regulatory learning strategies, as well as to persist longer on challenging tasks. The aim of the research was to improve the learner's focus on the process and experience of problem-solving while using an Intelligent Tutoring System (ITS) and including motivational and metacognitive feedback based on the learner's past states and experiences. An existing ITS, SQL-Tutor, was used with first-year undergraduates studying a database module. The study used two versions of SQL-Tutor: the Control group used a base version providing domain feedback and the Study group used an extended version that also provided motivational and metacognitive feedback. This paper summarises the pre- and post-process results. Comparisons between groups showed some differing trends both in learning outcomes and behaviour in favour of the Study group.

  13. Loss-of-Control-Inhibitor Systems for Aircraft

    NASA Technical Reports Server (NTRS)

    AHarrah, Ralph C.

    2007-01-01

    Systems to provide improved tactile feedback to aircraft pilots are being developed to help the pilots maintain harmony between their control actions and the positions of aircraft control surfaces, thereby helping to prevent loss of control. A system of this type, denoted a loss-of-control-inhibitor system (LOCIS) can be implemented as a relatively simple addition to almost any pre-existing flight-control system. The LOCIS concept offers at least a partial solution to the problem of (1) keeping a pilot aware of the state of the control system and the aircraft and (2) maintaining sufficient control under conditions that, as described below, have been known to lead to loss of control. Current commercial aircraft exhibit uneven responses of primary flight-control surfaces to aggressive pilot control commands, leading to deterioration of pilots ability to control their aircraft. In severe cases, this phenomenon can result in loss of control and consequent loss of aircraft. For an older aircraft equipped with a purely mechanical control system, the loss of harmony between a pilot s command action and the control- surface response can be attributed to compliance in the control system (caused, for example, by stretching of control cables, flexing of push rods, or servo-valve distortion). In a newer aircraft equipped with a fly-by-wire control system, the major contributions to loss of harmony between the pilot and the control surfaces are delays attributable to computer cycle time, control shaping, filtering, aliasing, servo-valve distortion, and actuator rate limiting. In addition, a fly-by-wire control system provides no tactile feedback that would enable the pilot to sense such features of the control state as surface flutter, surface jam, position limiting, actuator rate limiting, and control limiting imposed by the aircraft operational envelope. Hence, for example, when a pilot is involved in aggressive closed-loop maneuvering, as when encountering a wake-vortex upset on final landing approach, the control-surface delay can lead to loss of control. Aggressive piloting can be triggered and exacerbated by control-system anomalies, which the pilot cannot diagnose because of the lack of symptoms caused by the absence of feedback through the controls. The purpose served by a LOCIS is to counteract these adverse effects by providing real-time feedback that notifies the pilot that the aircraft is tending to lag the pilot s commands. A LOCIS (see figure) includes cockpit control input-position sensors, control-surface output-position sensors, variable dampers (for example, shock absorbers containing magneto-rheological fluids such that the damping forces can be varied within times of the order of milliseconds by varying applied magnetic fields) attached to the cockpit control levers, electromagnet coils to apply the magnetic fields, and feedback control circuits to drive the electromagnet coils. The feedback control gains are chosen so that the current applied to each electromagnet coil results in a damping force that increases in a suitable nonlinear manner (e.g., exponentially) with the difference between the actual and commanded positions of the affected control surface. The increasing damping force both alerts the pilot to the onset of a potentially dangerous situation and resists the pilot s effort to command a control surface to change position at an excessive rate

  14. Feedback-Equivalence of Nonlinear Systems with Applications to Power System Equations.

    NASA Astrophysics Data System (ADS)

    Marino, Riccardo

    The key concept of the dissertation is feedback equivalence among systems affine in control. Feedback equivalence to linear systems in Brunovsky canonical form and the construction of the corresponding feedback transformation are used to: (i) design a nonlinear regulator for a detailed nonlinear model of a synchronous generator connected to an infinite bus; (ii) establish which power system network structures enjoy the feedback linearizability property and design a stabilizing control law for these networks with a constraint on the control space which comes from the use of d.c. lines. It is also shown that the feedback linearizability property allows the use of state feedback to contruct a linear controllable system with a positive definite linear Hamiltonian structure for the uncontrolled part if the state space is even; a stabilizing control law is derived for such systems. Feedback linearizability property is characterized by the involutivity of certain nested distributions for strongly accessible analytic systems; if the system is defined on a manifold M diffeomorphic to the Euclidean space, it is established that the set where the property holds is a submanifold open and dense in M. If an analytic output map is defined, a set of nested involutive distributions can be always defined and that allows the introduction of an observability property which is the dual concept, in some sense, to feedback linearizability: the goal is to investigate when a nonlinear system affine in control with an analytic output map is feedback equivalent to a linear controllable and observable system. Finally a nested involutive structure of distributions is shown to guarantee the existence of a state feedback that takes a nonlinear system affine in control to a single input one, both feedback equivalent to linear controllable systems, preserving one controlled vector field.

  15. Pre-Results of the Real-Time ODIN Validation on MARTe Using Plasma Linearized Model in FTU Tokamak

    NASA Astrophysics Data System (ADS)

    Sadeghi, Yahya; Boncagni, Luca

    2012-06-01

    MARTe is a modular framework for real-time control aspects. At present time there are several MARTe systems under development at Frascati Tokamak Upgrade (Boncagni et al. in First steps in the FTU migration towards a modular and distributed real time control architecture based on MARTe and RTNet, 2010) such as the LH power percentage system, the gas puffing control system, the real-time ODIN plasma equilibrium reconstruction system and the position/current feedback control system (in a design phase) (Boncagni et al. in J Fusion Eng Design). The real-time reconstruction of magnetic flux in FTU tokamak is an important issue to estimate some quantities that can be use to control the plasma. This paper addresses the validation of real-time implementation of that task on MARTe.

  16. Sensorimotor Integration by Corticospinal System

    PubMed Central

    Moreno-López, Yunuen; Olivares-Moreno, Rafael; Cordero-Erausquin, Matilde; Rojas-Piloni, Gerardo

    2016-01-01

    The corticospinal (CS) tract is a complex system which targets several areas of the spinal cord. In particular, the CS descending projection plays a major role in motor command, which results from direct and indirect control of spinal cord pre-motor interneurons as well as motoneurons. But in addition, this system is also involved in a selective and complex modulation of sensory feedback. Despite recent evidence confirms that CS projections drive distinct segmental neural circuits that are part of the sensory and pre-motor pathways, little is known about the spinal networks engaged by the corticospinal tract (CST), the organization of CS projections, the intracortical microcircuitry, and the synaptic interactions in the sensorimotor cortex (SMC) that may encode different cortical outputs to the spinal cord. Here is stressed the importance of integrated approaches for the study of sensorimotor function of CS system, in order to understand the functional compartmentalization and hierarchical organization of layer 5 output neurons, who are key elements for motor control and hence, of behavior. PMID:27013985

  17. Sensorimotor Integration by Corticospinal System.

    PubMed

    Moreno-López, Yunuen; Olivares-Moreno, Rafael; Cordero-Erausquin, Matilde; Rojas-Piloni, Gerardo

    2016-01-01

    The corticospinal (CS) tract is a complex system which targets several areas of the spinal cord. In particular, the CS descending projection plays a major role in motor command, which results from direct and indirect control of spinal cord pre-motor interneurons as well as motoneurons. But in addition, this system is also involved in a selective and complex modulation of sensory feedback. Despite recent evidence confirms that CS projections drive distinct segmental neural circuits that are part of the sensory and pre-motor pathways, little is known about the spinal networks engaged by the corticospinal tract (CST), the organization of CS projections, the intracortical microcircuitry, and the synaptic interactions in the sensorimotor cortex (SMC) that may encode different cortical outputs to the spinal cord. Here is stressed the importance of integrated approaches for the study of sensorimotor function of CS system, in order to understand the functional compartmentalization and hierarchical organization of layer 5 output neurons, who are key elements for motor control and hence, of behavior.

  18. Effects of structured written feedback by cards on medical students' performance at Mini Clinical Evaluation Exercise (Mini-CEX) in an outpatient clinic.

    PubMed

    Haghani, Fariba; Hatef Khorami, Mohammad; Fakhari, Mohammad

    2016-07-01

    Feedback cards are recommended as a feasible tool for structured written feedback delivery in clinical education while effectiveness of this tool on the medical students' performance is still questionable.  The purpose of this study was to compare the effects of structured written feedback by cards as well as verbal feedback versus verbal feedback alone on the clinical performance of medical students at the Mini Clinical Evaluation Exercise (Mini-CEX) test in an outpatient clinic. This is a quasi-experimental study with pre- and post-test comprising four groups in two terms of medical students' externship. The students' performance was assessed through the Mini-Clinical Evaluation Exercise (Mini-CEX) as a clinical performance evaluation tool. Structured written feedbacks were given to two experimental groups by designed feedback cards as well as verbal feedback, while in the two control groups feedback was delivered verbally as a routine approach in clinical education. By consecutive sampling method, 62 externship students were enrolled in this study and seven students were excluded from the final analysis due to their absence for three days. According to the ANOVA analysis and Post Hoc Tukey test,  no statistically significant difference was observed among the four groups at the pre-test, whereas a statistically significant difference was observed between the experimental and control groups at the post-test  (F = 4.023, p =0.012). The effect size of the structured written feedbacks on clinical performance was 0.19. Structured written feedback by cards could improve the performance of medical students in a statistical sense. Further studies must be conducted in other clinical courses with longer durations.

  19. Performance-based maintenance of gas turbines for reliable control of degraded power systems

    NASA Astrophysics Data System (ADS)

    Mo, Huadong; Sansavini, Giovanni; Xie, Min

    2018-03-01

    Maintenance actions are necessary for ensuring proper operations of control systems under component degradation. However, current condition-based maintenance (CBM) models based on component health indices are not suitable for degraded control systems. Indeed, failures of control systems are only determined by the controller outputs, and the feedback mechanism compensates the control performance loss caused by the component deterioration. Thus, control systems may still operate normally even if the component health indices exceed failure thresholds. This work investigates the CBM model of control systems and employs the reduced control performance as a direct degradation measure for deciding maintenance activities. The reduced control performance depends on the underlying component degradation modelled as a Wiener process and the feedback mechanism. To this aim, the controller features are quantified by developing a dynamic and stochastic control block diagram-based simulation model, consisting of the degraded components and the control mechanism. At each inspection, the system receives a maintenance action if the control performance deterioration exceeds its preventive-maintenance or failure thresholds. Inspired by realistic cases, the component degradation model considers random start time and unit-to-unit variability. The cost analysis of maintenance model is conducted via Monte Carlo simulation. Optimal maintenance strategies are investigated to minimize the expected maintenance costs, which is a direct consequence of the control performance. The proposed framework is able to design preventive maintenance actions on a gas power plant, to ensuring required load frequency control performance against a sudden load increase. The optimization results identify the trade-off between system downtime and maintenance costs as a function of preventive maintenance thresholds and inspection frequency. Finally, the control performance-based maintenance model can reduce maintenance costs as compared to CBM and pre-scheduled maintenance.

  20. Design of DSP-based high-power digital solar array simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo

    2013-12-01

    To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).

  1. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    NASA Astrophysics Data System (ADS)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  2. Older driver training using video and global positioning system technology--a randomized controlled trial.

    PubMed

    Porter, Michelle M

    2013-05-01

    There is emerging evidence that older driver training programs with on-road instruction are more effective than driver education programs that are conducted only in the classroom. Although most programs have provided this additional in-vehicle training with a driving instructor and a dual-braked vehicle, technology could assist in providing this feedback. It was hypothesized that participants who received video and global positioning system (GPS) feedback (Video group) in addition to classroom education would improve to a greater extent than those who received a classroom-based course alone (Education) or Control participants. Fifty-four participants (32 men and 22 women), 70-89 years old, randomized to one of the three groups, completed the study. All participants underwent pre- and postintervention driving tests, in their own vehicle, on a standardized route, that were recorded with video and GPS equipment. The Video group met with a driving instructor to receive feedback on their driving errors in their preintervention driving test. A blinded assessor scored all driving tests in random order. The Video group significantly reduced their driving errors by 25% (p < .05) following the intervention, whereas the other two groups did not change significantly. Fifty-two percent of participants from the Video group improved their global safety rating, whereas only 5.3% in the Control and 22.2% in the Education groups did. This study suggests that direct driving feedback using video and GPS technology could be an effective and novel means to provide older driver education.

  3. Corrective Feedback, Spoken Accuracy and Fluency, and the Trade-Off Hypothesis

    ERIC Educational Resources Information Center

    Chehr Azad, Mohammad Hassan; Farrokhi, Farahman; Zohrabi, Mohammad

    2018-01-01

    The current study was an attempt to investigate the effects of different corrective feedback (CF) conditions on Iranian EFL learners' spoken accuracy and fluency (AF) and the trade-off between them. Consequently, four pre-intermediate intact classes were randomly selected as the control, delayed explicit metalinguistic CF, extensive recast, and…

  4. Development of feedback-speed-control system of fixed-abrasive tool for mat-surface fabrication

    NASA Astrophysics Data System (ADS)

    Yanagihara, K.; Kita, R.

    2018-01-01

    This study deals with the new method to fabricate a mat-surface by using fixed-abrasive tool. Mat-surface is a surface with microscopic irregularities whose dimensions are close to the wavelengths of visible light (400-700 nanometers). In order to develop the new method to fabricate mat-surface without pre-masking and large scale back up facility, utilization of fixed-abrasive tool is discussed. The discussion clarifies that abrasives in shot blasting are given kinetic energy along to only plunge-direction while excluding traverse-direction. If the relative motion between tool and work in fixed-abrasive process can be realized as that in blasting, mat-surface will be accomplished with fixed-abrasive process. To realize the proposed idea, new surface-fabrication system to which is adopted feedback-speed-control of abrasive wheel has been designed. The system consists of micro-computer unit (MPU), work-speed sensor, fixed-abrasive wheel, and wheel driving unit. The system can control relative speed between work and wheel in optimum range to produce mat-surface. Finally experiment to verify the developed system is carried out. The results of experiments show that the developed system is effective and it can produce the surface from grinding to mat-surface seamlessly.

  5. Design Of Combined Stochastic Feedforward/Feedback Control

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1989-01-01

    Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.

  6. Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form.

    PubMed

    Chen, Bing; Zhang, Huaguang; Lin, Chong

    2016-01-01

    This paper focuses on the problem of adaptive neural network (NN) control for a class of nonlinear nonstrict-feedback systems via output feedback. A novel adaptive NN backstepping output-feedback control approach is first proposed for nonlinear nonstrict-feedback systems. The monotonicity of system bounding functions and the structure character of radial basis function (RBF) NNs are used to overcome the difficulties that arise from nonstrict-feedback structure. A state observer is constructed to estimate the immeasurable state variables. By combining adaptive backstepping technique with approximation capability of radial basis function NNs, an output-feedback adaptive NN controller is designed through backstepping approach. It is shown that the proposed controller guarantees semiglobal boundedness of all the signals in the closed-loop systems. Two examples are used to illustrate the effectiveness of the proposed approach.

  7. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  8. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    PubMed

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  9. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  10. Inferential modeling and predictive feedback control in real-time motion compensation using the treatment couch during radiotherapy

    NASA Astrophysics Data System (ADS)

    Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray

    2007-09-01

    Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.

  11. Servo control booster system for minimizing following error

    DOEpatents

    Wise, W.L.

    1979-07-26

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  12. Stabilization of model-based networked control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Francisco; Instituto Politécnico de Viana do Castelo, Viana do Castelo; Abreu, Carlos

    2016-06-08

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtainmore » an optimal feedback control is also presented.« less

  13. A generalised optimal linear quadratic tracker with universal applications. Part 2: discrete-time systems

    NASA Astrophysics Data System (ADS)

    Ebrahimzadeh, Faezeh; Tsai, Jason Sheng-Hong; Chung, Min-Ching; Liao, Ying Ting; Guo, Shu-Mei; Shieh, Leang-San; Wang, Li

    2017-01-01

    Contrastive to Part 1, Part 2 presents a generalised optimal linear quadratic digital tracker (LQDT) with universal applications for the discrete-time (DT) systems. This includes (1) a generalised optimal LQDT design for the system with the pre-specified trajectories of the output and the control input and additionally with both the input-to-output direct-feedthrough term and known/estimated system disturbances or extra input/output signals; (2) a new optimal filter-shaped proportional plus integral state-feedback LQDT design for non-square non-minimum phase DT systems to achieve a minimum-phase-like tracking performance; (3) a new approach for computing the control zeros of the given non-square DT systems; and (4) a one-learning-epoch input-constrained iterative learning LQDT design for the repetitive DT systems.

  14. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  15. Self-Controlled Feedback Facilitates Motor Learning in Both High and Low Activity Individuals

    PubMed Central

    Fairbrother, Jeffrey T.; Laughlin, David D.; Nguyen, Timothy V.

    2012-01-01

    The purpose of this study was to determine if high and low activity individuals differed in terms of the effects of self-controlled feedback on the performance and learning of a movement skill. The task consisted of a blindfolded beanbag toss using the non-preferred arm. Participants were pre-screened according to their physical activity level using the International Physical Activity Questionnaire. An equal number of high activity (HA) and low activity (LA) participants were assigned to self-control (SC) and yoked (YK) feedback conditions, creating four groups: Self-Control-High Activity; Self-Control-Low Activity; Yoked-High Activity; and Yoked-Low Activity. SC condition participants were provided feedback whenever they requested it, while YK condition participants received feedback according to a schedule created by their SC counterpart. Results indicated that the SC condition was more accurate than the YK condition during acquisition and transfer phases, and the HA condition was more accurate than the LA condition during all phases of the experiment. A post-training questionnaire indicated that participants in the SC condition asked for feedback mostly after what they perceived to be “good” trials; those in the YK condition indicated that they would have preferred to receive feedback after “good” trials. This study provided further support for the advantages of self-controlled feedback when learning motor skills, additionally showing benefits for both active and less active individuals. The results suggested that the provision of self-controlled feedback to less active learners may be a potential avenue to teaching motor skills necessary to engage in greater amounts of physical activity. PMID:22969745

  16. An enhanced velocity-based algorithm for safe implementations of gain-scheduled controllers

    NASA Astrophysics Data System (ADS)

    Lhachemi, H.; Saussié, D.; Zhu, G.

    2017-09-01

    This paper presents an enhanced velocity-based algorithm to implement gain-scheduled controllers for nonlinear and parameter-dependent systems. A new scheme including pre- and post-filtering is proposed with the assumption that the time-derivative of the controller inputs is not available for feedback control. It is shown that the proposed control structure can preserve the input-output properties of the linearised closed-loop system in the neighbourhood of each equilibrium point, avoiding the emergence of the so-called hidden coupling terms. Moreover, it is guaranteed that this implementation will not introduce unobservable or uncontrollable unstable modes, and hence the internal stability will not be affected. A case study dealing with the design of a pitch-axis missile autopilot is carried out and the numerical simulation results confirm the validity of the proposed approach.

  17. Analysis of dental students' written peer feedback from a prospective peer assessment protocol.

    PubMed

    Tricio, J; Woolford, M; Escudier, M

    2016-11-01

    Peer assessment and feedback is encouraged to enhance students' learning. The aim of this study was to quantitatively and qualitatively analyse pre-clinical and clinical dental students' written peer feedback provided as part of a continuous, formative and structured peer assessment protocol. A total of 309 Year-2 and Year-5 dental students were invited to participate in a peer assessment and peer feedback protocol. Consenting volunteer students were trained to observe each other whilst working in the skills laboratory (Year-2) and in the dental clinic (Year-5). Subsequently, they followed a structured protocol of peer assessment and peer feedback using specially designed work-based forms during a complete academic year. The content of their written feedback was coded according to the UK General Dental Council domain, sign (positive or negative), specificity (task specific or general), and grouped into themes. A total of 108 participants (40 Year-2 and 68 Year-5) completed 1169 peer assessment work-based forms (516 pre-clinical and 653 clinical); 94% contained written feedback. The large majority (82%) of Year-2 feedback represented the clinical domain, 89% were positive, 77% were task specific, and they were grouped into 14 themes. Year-5 feedback was related mostly to Management and Leadership (37%) and Communication (32%), 64% were positive, 75% task specific, and they were clustered into 24 themes. The content of the feedback showed notable differences between Year-2 and Year-5 students. Senior students focused more on Communication and Management and Leadership skills, whilst juniors were more concerned with clinical skills. Year-5 students provided 13% negative feedback compared to only 2% from Year-2. Regulatory focus theory is discussed to explain these differences. Both groups provided peer feedback on a wide and different range of themes. However, four themes emerged in both groups: efficiency, infection control, time management and working speed. A structured peer assessment framework can be used to guide pre-clinical and clinical students to provide peer feedback focused on different domains, and on contrasting signs and specificities. It can also present an opportunity to complement tutors' feedback. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Minimal-Inversion Feedforward-And-Feedback Control System

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1990-01-01

    Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.

  19. What would you do? The effect of verbal persuasion on task choice.

    PubMed

    Lamarche, Larkin; Gionfriddo, Alicia M; Cline, Lindsay E; Gammage, Kimberley L; Adkin, Allan L

    2014-01-01

    Verbal persuasion has been shown to influence psychological and behavioral outcomes. The present study had two objectives: (1) to examine the effect of verbal persuasion on task choice in a balance setting and (2) to evaluate the use of verbal persuasion as an approach to experimentally induce mismatches between perceived and actual balance. Healthy young adults (N=68) completed an 8-m tandem walk task without vision and then were randomly assigned to a feedback group (good, control, or poor), regardless of actual balance. Following the feedback, participants chose to perform the task in one of three conditions differing in level of challenge and also were required to perform the task under the same pre-feedback conditions. Balance efficacy and perceived stability were rated before and after each pre- and post-feedback task, respectively. Balance performance measures were also collected. Following the feedback, participants in the good group were more likely to choose the most challenging task while those in the poor group were more likely to choose the least challenging task. Following the feedback, all groups showed improved balance performance. However, balance efficacy and perceived stability increased for the good and control groups but balance efficacy decreased and perceived stability was unchanged for the poor group. Thus, these findings demonstrate that verbal persuasion can influence task choice and may be used as an approach to experimentally create mismatches between perceived and actual balance. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)

    NASA Technical Reports Server (NTRS)

    Weisbrich, R.; Perley, R.; Howes, H.

    1977-01-01

    The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight.

  1. Results of a multicentre randomised controlled trial of statistical process control charts and structured diagnostic tools to reduce ward-acquired meticillin-resistant Staphylococcus aureus: the CHART Project.

    PubMed

    Curran, E; Harper, P; Loveday, H; Gilmour, H; Jones, S; Benneyan, J; Hood, J; Pratt, R

    2008-10-01

    Statistical process control (SPC) charts have previously been advocated for infection control quality improvement. To determine their effectiveness, a multicentre randomised controlled trial was undertaken to explore whether monthly SPC feedback from infection control nurses (ICNs) to healthcare workers of ward-acquired meticillin-resistant Staphylococcus aureus (WA-MRSA) colonisation or infection rates would produce any reductions in incidence. Seventy-five wards in 24 hospitals in the UK were randomised into three arms: (1) wards receiving SPC chart feedback; (2) wards receiving SPC chart feedback in conjunction with structured diagnostic tools; and (3) control wards receiving neither type of feedback. Twenty-five months of pre-intervention WA-MRSA data were compared with 24 months of post-intervention data. Statistically significant and sustained decreases in WA-MRSA rates were identified in all three arms (P<0.001; P=0.015; P<0.001). The mean percentage reduction was 32.3% for wards receiving SPC feedback, 19.6% for wards receiving SPC and diagnostic feedback, and 23.1% for control wards, but with no significant difference between the control and intervention arms (P=0.23). There were significantly more post-intervention 'out-of-control' episodes (P=0.021) in the control arm (averages of 0.60, 0.28, and 0.28 for Control, SPC and SPC+Tools wards, respectively). Participants identified SPC charts as an effective communication tool and valuable for disseminating WA-MRSA data.

  2. Control Theory Perspective of Effects-Based Thinking and Operations: Modelling Operations as a Feedback Control System

    DTIC Science & Technology

    2007-11-01

    Control Theory Perspective of Effects-Based Thinking and Operations Modelling “Operations” as a Feedback Control System Philip S. E... Theory Perspective of Effects-Based Thinking and Operations Modelling “Operations” as a Feedback Control System Philip S. E. Farrell...Abstract This paper explores operations that involve effects-based thinking (EBT) using Control Theory techniques in order to highlight the concept’s

  3. Improving Diabetes-Related Parent-Adolescent Communication With Individualized Feedback.

    PubMed

    May, Dana K K; Ellis, Deborah A; Cano, Annmarie; Dekelbab, Bassem

    2017-11-01

    To pilot a brief individualized feedback intervention to improve the communication skills of parents with an adolescent with type 1 diabetes. Parent-adolescent dyads (N = 79) discussed a diabetes-related problem, while an interventionist rated the parent's communication skills to give feedback to the parents. Parents were then randomized to a brief feedback session to target person-centered communication skills or an educational session. Dyads discussed another diabetes care problem to assess for change in communication skills. Independent raters coded parent communication skills from video recordings to rate behaviors in the service of examining possible changes in communication skills. Dyads completed ratings of perceived closeness and empathy after each conversation. Controlling for overall positive communication at baseline, parents who received feedback showed more improvement in specific person-centered communication skills than parents in the control group. Adolescents in the feedback group reported greater increases in parental empathy and intimacy from pre- to postmanipulation than the control. The feedback intervention showed preliminary efficacy for increasing person-centered communication skills and perceived empathy and intimacy. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. Output transformations and separation results for feedback linearisable delay systems

    NASA Astrophysics Data System (ADS)

    Cacace, F.; Conte, F.; Germani, A.

    2018-04-01

    The class of strict-feedback systems enjoys special properties that make it similar to linear systems. This paper proves that such a class is equivalent, under a change of coordinates, to the wider class of feedback linearisable systems with multiplicative input, when the multiplicative terms are functions of the measured variables only. We apply this result to the control problem of feedback linearisable nonlinear MIMO systems with input and/or output delays. In this way, we provide sufficient conditions under which a separation result holds for output feedback control and moreover a predictor-based controller exists. When these conditions are satisfied, we obtain that the existence of stabilising controllers for arbitrarily large delays in the input and/or the output can be proved for a wider class of systems than previously known.

  5. Texting Your Way to Healthier Eating? Effects of Participating in a Feedback Intervention Using Text Messaging on Adolescents' Fruit and Vegetable Intake

    ERIC Educational Resources Information Center

    Pedersen, Susanne; Grønhøj, Alice; Thøgersen, John

    2016-01-01

    This study investigates the effects of a feedback intervention employing text messaging during 11 weeks on adolescents' behavior, self-efficacy and outcome expectations regarding fruit and vegetable intake. A pre- and post-survey was completed by 1488 adolescents school-wise randomly allocated to a control group and two experimental groups. Both…

  6. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    PubMed Central

    Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934

  7. Study on real-time force feedback for a master-slave interventional surgical robotic system.

    PubMed

    Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua

    2018-04-13

    In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.

  8. Mixed H∞ and passive control for linear switched systems via hybrid control approach

    NASA Astrophysics Data System (ADS)

    Zheng, Qunxian; Ling, Youzhu; Wei, Lisheng; Zhang, Hongbin

    2018-03-01

    This paper investigates the mixed H∞ and passive control problem for linear switched systems based on a hybrid control strategy. To solve this problem, first, a new performance index is proposed. This performance index can be viewed as the mixed weighted H∞ and passivity performance. Then, the hybrid controllers are used to stabilise the switched systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. The design of state updating controllers not only depends on the pre-switching subsystem and the post-switching subsystem, but also depends on the measurable output signal. The hybrid controllers proposed in this paper can include some existing ones as special cases. Combine the multiple Lyapunov functions approach with the average dwell time technique, new sufficient conditions are obtained. Under the new conditions, the closed-loop linear switched systems are globally uniformly asymptotically stable with a mixed H∞ and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities. Finally, a numerical example and a practical example are given.

  9. Geometric foundations of the theory of feedback equivalence

    NASA Technical Reports Server (NTRS)

    Hermann, R.

    1987-01-01

    A description of feedback control is presented within the context of differential equations, differential geometry, and Lie theory. Work related to the integration of differential geometry with the control techniques of feedback linearization is summarized. Particular attention is given to the application of the theory of vector field systems. Feedback invariants for control systems in state space form are also addressed.

  10. Dynamic Data-Driven UAV Network for Plume Characterization

    DTIC Science & Technology

    2016-05-23

    data collection where simulations and measurements become a symbiotic feedback control system where simulations inform measurement locations and the...and measurements become a symbiotic feedback control system where simulations inform measurement locations and the measured data augments simulations...data analysis techniques with mobile sensor data collection where simulations and measurements become a symbiotic feedback control system where

  11. Pre-Lingual Communication and Attachment Behavior.

    ERIC Educational Resources Information Center

    Modarressi, Taghi; McCulloch, Duncan

    Infant's crying may have an important mediating role in the formation of attachment behavior. The earliest vocalizations are discussed in terms of an acoustic communications model in which the baby's vocal repertoire becomes incorporated into a closed-loop, feedback system with his mother. Certain pre-lingual "signals" may be associated with those…

  12. A coherent optical feedback system for optical information processing

    NASA Technical Reports Server (NTRS)

    Jablonowski, D. P.; Lee, S. H.

    1975-01-01

    A unique optical feedback system for coherent optical data processing is described. With the introduction of feedback, the well-known transfer function for feedback systems is obtained in two dimensions. Operational details of the optical feedback system are given. Experimental results of system applications in image restoration, contrast control and analog computation are presented.

  13. Combustion Control System Design of Diesel Engine via ASPR based Output Feedback Control Strategy with a PFC

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Tsunematsu, Junpei; Fujii, Seiya

    2016-09-01

    In this paper, a design method of an output feedback control system with a simple feedforward input for a combustion model of diesel engine will be proposed based on the almost strictly positive real-ness (ASPR-ness) of the controlled system for a combustion control of diesel engines. A parallel feedforward compensator (PFC) design scheme which renders the resulting augmented controlled system ASPR will also be proposed in order to design a stable output feedback control system for the considered combustion model. The effectiveness of our proposed method will be confirmed through numerical simulations.

  14. Direct laser additive fabrication system with image feedback control

    DOEpatents

    Griffith, Michelle L.; Hofmeister, William H.; Knorovsky, Gerald A.; MacCallum, Danny O.; Schlienger, M. Eric; Smugeresky, John E.

    2002-01-01

    A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

  15. Adaptation of handwriting size under distorted visual feedback in patients with Parkinson's disease and elderly and young controls

    PubMed Central

    Teulings, H; Contreras-Vidal, J; Stelmach, G; Adler, C

    2002-01-01

    Objective: The ability to use visual feedback to control handwriting size was compared in patients with Parkinson's disease (PD), elderly people, and young adults to better understand factors playing a part in parkinsonian micrographia. Methods: The participants wrote sequences of eight cursive l loops with visual target sizes of 0.5 and 2 cm on a flat panel display digitiser which both recorded and displayed the pen movements. In the pre-exposure and postexposure conditions, the display digitiser showed the actual pen trace in real time and real size. In the distortion exposure conditions, the gain of the vertical dimension of the visual feedback was either reduced to 70% or enlarged to 140%. Results: The young controls showed a gradual visuomotor adaptation that compensated for the visual feedback distortions during the exposure conditions. They also showed significant after effects during the postexposure conditions. The elderly controls marginally corrected for the size distortions and showed small after effects. The patients with PD, however, showed no trial by trial adaptations or after effects but instead, a progressive amplification of the distortion effect in each individual trial. Conclusion: The young controls used visual feedback to update their visuomotor map. The elderly controls seemed to make little use of visual feedback. The patients with Parkinson's disease rely on the visual feedback of previous or of ongoing strokes to programme subsequent strokes. This recursive feedback may play a part in the progressive reductions in handwriting size found in parkinsonian micrographia. PMID:11861687

  16. Thrust control system design of ducted rockets

    NASA Astrophysics Data System (ADS)

    Chang, Juntao; Li, Bin; Bao, Wen; Niu, Wenyu; Yu, Daren

    2011-07-01

    The investigation of the thrust control system is aroused by the need for propulsion system of ducted rockets. Firstly the dynamic mathematical models of gas flow regulating system, pneumatic servo system and ducted rocket engine were established and analyzed. Then, to conquer the discussed problems of thrust control, the idea of information fusion was proposed to construct a new feedback variable. With this fused feedback variable, the thrust control system was designed. According to the simulation results, the introduction of the new fused feedback variable is valid in eliminating the contradiction between rapid response and stability for the thrust control system of ducted rockets.

  17. A cluster-randomised quality improvement study to improve two inpatient stroke quality indicators.

    PubMed

    Williams, Linda; Daggett, Virginia; Slaven, James E; Yu, Zhangsheng; Sager, Danielle; Myers, Jennifer; Plue, Laurie; Woodward-Hagg, Heather; Damush, Teresa M

    2016-04-01

    Quality indicator collection and feedback improves stroke care. We sought to determine whether quality improvement training plus indicator feedback was more effective than indicator feedback alone in improving inpatient stroke indicators. We conducted a cluster-randomised quality improvement trial, randomising hospitals to quality improvement training plus indicator feedback versus indicator feedback alone to improve deep vein thrombosis (DVT) prophylaxis and dysphagia screening. Intervention sites received collaborative-based quality improvement training, external facilitation and indicator feedback. Control sites received only indicator feedback. We compared indicators pre-implementation (pre-I) to active implementation (active-I) and post-implementation (post-I) periods. We constructed mixed-effect logistic models of the two indicators with a random intercept for hospital effect, adjusting for patient, time, intervention and hospital variables. Patients at intervention sites (1147 admissions), had similar race, gender and National Institutes of Health Stroke Scale scores to control sites (1017 admissions). DVT prophylaxis improved more in intervention sites during active-I period (ratio of ORs 4.90, p<0.001), but did not differ in post-I period. Dysphagia screening improved similarly in both groups during active-I, but control sites improved more in post-I period (ratio of ORs 0.67, p=0.04). In logistic models, the intervention was independently positively associated with DVT performance during active-I period, and negatively associated with dysphagia performance post-I period. Quality improvement training was associated with early DVT improvement, but the effect was not sustained over time and was not seen with dysphagia screening. External quality improvement programmes may quickly boost performance but their effect may vary by indicator and may not sustain over time. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Plug-in module acceleration feedback control for fast steering mirror-based beam stabilization systems

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge

    2017-08-01

    A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.

  19. The Use of Keywords for Delivering Immediate Performance Feedback on Teacher Competence Development

    ERIC Educational Resources Information Center

    Coninx, Nele; Kreijns, Karel; Jochems, Wim

    2013-01-01

    Literature shows that feedback that is specific, immediate and goal-oriented is effective on (pre-service) teachers' performance. Synchronous coaching gives this kind of feedback. Due to immediateness of feedback, pre-service teachers can suffer from cognitive load. We propose a set of standardised keywords through which this performance feedback…

  20. The importance of cutaneous feedback on neural activation during maximal voluntary contraction.

    PubMed

    Cruz-Montecinos, Carlos; Maas, Huub; Pellegrin-Friedmann, Carla; Tapia, Claudio

    2017-12-01

    The purpose of this study was to investigate the importance of cutaneous feedback on neural activation during maximal voluntary contraction (MVC) of the ankle plantar flexors. The effects of cutaneous plantar anaesthesia were assessed in 15 subjects and compared to 15 controls, using a one-day pre/post-repeated measures design. Cutaneous plantar anaesthesia was induced by lidocaine injection at the centre of forefoot, lateral midfoot, and heel. Each subject performed isometric MVCs of the ankle plantar flexors. During each isometric ramp contraction, the following variables were assessed: maximal isometric torque; surface electromyography (EMG) activity of the medial gastrocnemius (MG) and tibialis anterior (TA) muscles; and co-contraction index (CCI) between the MG and TA. For ankle torque, two-way ANOVA showed no significant interaction between the pre/post-measurements × group (p = 0.166). However, MG activity presented significant interactions between the pre/post-measurements × group (p = 0.014). Post hoc comparisons indicated a decrease of MG activity in the experimental group, from 85.9 ± 11.9 to 62.7 ± 30.8% (p = 0.016). Additionally, the post-anaesthesia MG activity of the experimental group differed statistically with pre- and post-MG activity of the control group (p = 0.027 and p = 0.008, respectively). For TA activity and CCI, two-way ANOVA detected no significant interactions between the pre/post-measurements × group (p = 0.605 and p = 0.332, respectively). Our results indicate that during MVC, cutaneous feedback modulates neural activity to MG muscle, without changing the extent of MG-TA co-contraction.

  1. On the stabilization of decentralized control systems.

    NASA Technical Reports Server (NTRS)

    Wang, S.-H.; Davison, E. J.

    1973-01-01

    This paper considers the problem of stabilizing a linear time-variant multivariable system by using several local feedback control laws. Each local feedback control law depends only on partial system outputs. A necessary and sufficient condition for the existence of local control laws with dynamic compensation to stabilize a given system is derived. This condition is stated in terms of a new notion, called fixed modes, which is a natural generalization of the well-known concept of uncontrollable modes and unobservable modes that occur in centralized control system problems. A procedure that constructs a set of stabilizing feedback control laws is given.

  2. Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.

    PubMed

    Li, Xianwei; Gao, Huijun

    2015-10-01

    Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.

  3. A combined stochastic feedforward and feedback control design methodology with application to autoland design

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1987-01-01

    A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.

  4. A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems

    PubMed Central

    Wright, James; Macefield, Vaughan G.; van Schaik, André; Tapson, Jonathan C.

    2016-01-01

    It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202

  5. Finite-time stabilization of uncertain nonholonomic systems in feedforward-like form by output feedback.

    PubMed

    Gao, Fangzheng; Wu, Yuqiang; Zhang, Zhongcai

    2015-11-01

    This paper investigates the problem of finite-time stabilization by output feedback for a class of nonholonomic systems in chained form with uncertainties. Comparing with the existing relevant literature, a distinguishing feature of the systems under investigation is that the x-subsystem is a feedforward-like rather than feedback-like system. This renders the existing control methods inapplicable to the control problems of the systems. A constructive design procedure for output feedback control is given. The designed controller renders that the states of closed-loop system are regulated to zero in a finite time. Two simulation examples are provided to illustrate the effectiveness of the proposed approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Role of measurement in feedback-controlled quantum engines

    NASA Astrophysics Data System (ADS)

    Yi, Juyeon; Kim, Yong Woon

    2018-01-01

    In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.

  7. Rapid change in articulatory lip movement induced by preceding auditory feedback during production of bilabial plosives.

    PubMed

    Mochida, Takemi; Gomi, Hiroaki; Kashino, Makio

    2010-11-08

    There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a temporally asymmetric window where acoustic features of the syllable to be produced may be coded.

  8. V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.

    1973-01-01

    An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.

  9. Decoupling control of vehicle chassis system based on neural network inverse system

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  10. Graphene/elastomer composite-based photo-thermal nanopositioners

    PubMed Central

    Loomis, James; Fan, Xiaoming; Khosravi, Farhad; Xu, Peng; Fletcher, Micah; Cohn, Robert W.; Panchapakesan, Balaji

    2013-01-01

    The addition of nanomaterials to polymers can result not only in significant material property improvements, but also assist in creating entirely new composite functionalities. By dispersing graphene nanoplatelets (GNPs) within a polydimethylsiloxane matrix, we show that efficient light absorption by GNPs and subsequent energy transduction to the polymeric chains can be used to controllably produce significant amounts of motion through entropic elasticity of the pre-strained composite. Using dual actuators, a two-axis sub-micron resolution stage was developed, and allowed for two-axis photo-thermal positioning (~100 μm per axis) with 120 nm resolution (feedback sensor limitation), and ~5 μm/s actuation speeds. A PID control loop automatically stabilizes the stage against thermal drift, as well as random thermal-induced position fluctuations (up to the bandwidth of the feedback and position sensor). Maximum actuator efficiency values of ~0.03% were measured, approximately 1000 times greater than recently reported for light-driven polymer systems. PMID:23712601

  11. Constant peak-power single-frequency linearly-polarized all-fiber laser for coherent detection based on closed-loop feedback technology

    NASA Astrophysics Data System (ADS)

    Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui

    2015-10-01

    In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.

  12. Employing the Five-Factor Mentoring Instrument: Analysing Mentoring Practices for Teaching Primary Science

    ERIC Educational Resources Information Center

    Hudson, Peter; Usak, Muhammet; Savran-Gencer, Ayse

    2009-01-01

    Primary science education is a concern around the world and quality mentoring within schools can develop pre-service teachers' practices. A five-factor model for mentoring has been identified, namely, personal attributes, system requirements, pedagogical knowledge, modelling, and feedback. Final-year pre-service teachers (mentees, n = 211) from…

  13. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  14. Optimal control of nonlinear continuous-time systems in strict-feedback form.

    PubMed

    Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani

    2015-10-01

    This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.

  15. The Roles of Feedback and Feedforward as Humans Learn to Control Unknown Dynamic Systems.

    PubMed

    Zhang, Xingye; Wang, Shaoqian; Hoagg, Jesse B; Seigler, T Michael

    2018-02-01

    We present results from an experiment in which human subjects interact with an unknown dynamic system 40 times during a two-week period. During each interaction, subjects are asked to perform a command-following (i.e., pursuit tracking) task. Each subject's performance at that task improves from the first trial to the last trial. For each trial, we use subsystem identification to estimate each subject's feedforward (or anticipatory) control, feedback (or reactive) control, and feedback time delay. Over the 40 trials, the magnitudes of the identified feedback controllers and the identified feedback time delays do not change significantly. In contrast, the identified feedforward controllers do change significantly. By the last trial, the average identified feedforward controller approximates the inverse of the dynamic system. This observation provides evidence that a fundamental component of human learning is updating the anticipatory control until it models the inverse dynamics.

  16. Adaptive Neural Output Feedback Control for Nonstrict-Feedback Stochastic Nonlinear Systems With Unknown Backlash-Like Hysteresis and Unknown Control Directions.

    PubMed

    Yu, Zhaoxu; Li, Shugang; Yu, Zhaosheng; Li, Fangfei

    2018-04-01

    This paper investigates the problem of output feedback adaptive stabilization for a class of nonstrict-feedback stochastic nonlinear systems with both unknown backlashlike hysteresis and unknown control directions. A new linear state transformation is applied to the original system, and then, control design for the new system becomes feasible. By combining the neural network's (NN's) parameterization, variable separation technique, and Nussbaum gain function method, an input-driven observer-based adaptive NN control scheme, which involves only one parameter to be updated, is developed for such systems. All closed-loop signals are bounded in probability and the error signals remain semiglobally bounded in the fourth moment (or mean square). Finally, the effectiveness and the applicability of the proposed control design are verified by two simulation examples.

  17. Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach.

    PubMed

    Lam, H K

    2012-02-01

    This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach.

  18. Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Sen, A. K.; Longman, R. W.

    2006-01-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.

  19. Adaptive Optimal Stochastic State Feedback Control of Resistive Wall Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Sen, A. K.; Longman, R. W.

    2007-06-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least square method with exponential forgetting factor and covariance resetting is used to identify the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.

  20. Vegetation-rainfall feedbacks across the Sahel: a combined observational and modeling study

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.

    2016-12-01

    The Sahel rainfall is characterized by large interannual variability. Past modeling studies have concluded that the Sahel rainfall variability is primarily driven by oceanic forcings and amplified by land-atmosphere interactions. However, the relative importance of oceanic versus terrestrial drivers has never been assessed from observations. The current understanding of vegetation's impacts on climate, i.e. positive vegetation-rainfall feedback through the albedo, moisture, and momentum mechanisms, comes from untested models. Neither the positive vegetation-rainfall feedback, nor the underlying mechanisms, has been fully resolved in observations. The current study fills the knowledge gap about the observed vegetation-rainfall feedbacks, through the application of the multivariate statistical method Generalized Equilibrium Feedback Assessment (GEFA) to observational data. According to GEFA, the observed oceanic impacts dominate over terrestrial impacts on Sahel rainfall, except in the post-monsoon period. Positive leaf area index (LAI) anomalies favor an extended, wetter monsoon across the Sahel, largely due to moisture recycling. The albedo mechanism is not responsible for this positive vegetation feedback on the seasonal-interannual time scale, which is too short for a grass-desert transition. A low-level stabilization and subsidence is observed in response to increased LAI - potentially responsible for a negative vegetation-rainfall feedback. However, the positive moisture feedback overwhelms the negative momentum feedback, resulting in an observed positive vegetation-rainfall feedback. We further applied GEFA to a fully-coupled Community Earth System Model (CESM) control run, as an example of evaluating climate models against the GEFA-based observational benchmark. In contrast to the observed positive vegetation-rainfall feedbacks, CESM simulates a negative vegetation-rainfall feedback across Sahel, peaking in the pre-monsoon season. The simulated negative feedback is largely due to the low-level stabilization caused by increased LAI. Positive moisture feedback is present in the CESM simulation, but an order weaker than the observed and weaker than the negative momentum feedback, thereby leading to the simulated negative vegetation-rainfall feedbacks.

  1. Children's feedback preferences in response to an experimentally manipulated peer evaluation outcome: the role of depressive symptoms.

    PubMed

    Reijntjes, Albert; Dekovic, Maja; Vermande, Marjolijn; Telch, Michael J

    2007-06-01

    The present study examined the linkage between pre-adolescent children's depressive symptoms and their preferences for receiving positive vs. negative feedback subsequent to being faced with an experimentally manipulated peer evaluation outcome in real time. Participants (n = 142) ages 10 to 13, played a computer contest based on the television show Survivor and were randomized to either a peer rejection (i.e., receiving the lowest total 'likeability' score from a group of peer-judges), a peer success (i.e., receiving the highest score), or a control peer evaluation condition. Children's self-reported feedback preferences were then assessed. Results revealed that participants assigned to the negative evaluation outcome, relative to either the success or the control outcome, showed a significantly higher subsequent preference for negatively tuned feedback. Contrary to previous work and predictions derived from self-verification theory, children higher in depressive symptoms were only more likely to prefer negative feedback in response to the negative peer evaluation outcome. These effects for depression were not accounted for by either state mood at baseline or mood change in response to the feedback manipulation.

  2. Adaptive Strategies for Controls of Flexible Arms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yuan, Bau-San

    1989-01-01

    An adaptive controller for a modern manipulator has been designed based on asymptotical stability via the Lyapunov criterion with the output error between the system and a reference model used as the actuating control signal. Computer simulations were carried out to test the design. The combination of the adaptive controller and a system vibration and mode shape estimator show that the flexible arm should move along a pre-defined trajectory with high-speed motion and fast vibration setting time. An existing computer-controlled prototype two link manipulator, RALF (Robotic Arm, Large Flexible), with a parallel mechanism driven by hydraulic actuators was used to verify the mathematical analysis. The experimental results illustrate that assumed modes found from finite element techniques can be used to derive the equations of motion with acceptable accuracy. The robust adaptive (modal) control is implemented to compensate for unmodelled modes and nonlinearities and is compared with the joint feedback control in additional experiments. Preliminary results show promise for the experimental control algorithm.

  3. Spacecraft stability and control using new techniques for periodic and time-delayed systems

    NASA Astrophysics Data System (ADS)

    NAzari, Morad

    This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves use of both CSCTA and the reduced Lyapunov Floquet transformation (RLFT) in order to design a non-delayed feedback control law. The delayed Mathieu equation is used as an illustrative example in which the closed-loop response and control effort are compared for all three control strategies. Finally, three example applications of control of time-periodic astrodynamic systems, i.e. formation flying control for an elliptic Keplerian chief orbit, body-fixed hovering control over a tumbling asteroid, and stationkeeping in Earth-Moon L1 halo orbits, are shown using versions of the control strategies introduced above. These applications employ a mixture of feedforward and non-delayed periodic-gain state feedback for tracking control of natural and non-natural motions in these systems. A major conclusion is that control effort is minimized by employing periodic-gain (rather than constant-gain) feedback control in such systems.

  4. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude cannot be asymptotically stabilized using continuous feedback, but a discontinuous stabilizing feedback control strategy is constructed. If the uncontrolled principal axis is an axis of symmetry, the complete spacecraft dynamics cannot be stabilized. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but again a discontinuous feedback control strategy is constructed.

  5. Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems

    NASA Astrophysics Data System (ADS)

    Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.

    2007-09-01

    Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.

  6. Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems

    PubMed Central

    Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.

    2008-01-01

    Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes, and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this nonconservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot. PMID:17873426

  7. Advanced feedback control methods in EXTRAP T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Yadikin, D.; Brunsell, P. R.; Paccagnella, R.

    2006-07-01

    Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of td≈10τw is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system.

  8. On the interaction structure of linear multi-input feedback control systems. M.S. Thesis; [problem solving, lattices (mathematics)

    NASA Technical Reports Server (NTRS)

    Wong, P. K.

    1975-01-01

    The closely-related problems of designing reliable feedback stabilization strategy and coordinating decentralized feedbacks are considered. Two approaches are taken. A geometric characterization of the structure of control interaction (and its dual) was first attempted and a concept of structural homomorphism developed based on the idea of 'similarity' of interaction pattern. The idea of finding classes of individual feedback maps that do not 'interfere' with the stabilizing action of each other was developed by identifying the structural properties of nondestabilizing and LQ-optimal feedback maps. Some known stability properties of LQ-feedback were generalized and some partial solutions were provided to the reliable stabilization and decentralized feedback coordination problems. A concept of coordination parametrization was introduced, and a scheme for classifying different modes of decentralization (information, control law computation, on-line control implementation) in control systems was developed.

  9. Pre-Feedback Risk Expectancies and Reception of Low-Risk Health Feedback: Absolute and Comparative Lack of Reassurance.

    PubMed

    Gamp, Martina; Renner, Britta

    2016-11-01

    Personalised health-risk assessment is one of the most common components of health promotion programs. Previous research on responses to health risk feedback has commonly focused on the reception of bad news (high-risk feedback). The reception of low-risk feedback has been comparably neglected since it is assumed that good news is reassuring and readily received. However, field studies suggest mixed responses to low-risk health feedback. Accordingly, we examine whether pre-feedback risk expectancies can mitigate the reassuring effects of good news. In two studies (N = 187, N = 565), after assessing pre-feedback risk expectancies, participants received low-risk personalised feedback about their own risk of developing (the fictitious) Tucson Chronic Fatigue Syndrome (TCFS). Study 2 also included peer TCFS risk status feedback. Afterwards, self- and peer-related risk perception for TCFS was assessed. In both studies, participants who expected to be at high risk but received good news (unexpected low-risk feedback) showed absolute lack of reassurance. Specifically, they felt at significantly greater TCFS risk than participants who received expected good news. Moreover, the unexpected low-risk group even believed that their risk was as high as (Study 1) or higher (Study 2) than that of their peers (comparative lack of reassurance). Results support the notion that high pre-feedback risk expectancies can mitigate absolute and comparative reassuring effects of good news. © 2016 The International Association of Applied Psychology.

  10. Applications of nonlinear systems theory to control design

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1988-01-01

    For most applications in the control area, the standard practice is to approximate a nonlinear mathematical model by a linear system. Since the feedback linearizable systems contain linear systems as a subclass, the procedure of approximating a nonlinear system by a feedback linearizable one is examined. Because many physical plants (e.g., aircraft at the NASA Ames Research Center) have mathematical models which are close to feedback linearizable systems, such approximations are certainly justified. Results and techniques are introduced for measuring the gap between the model and its truncated linearizable part. The topic of pure feedback systems is important to the study.

  11. Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions.

    PubMed

    Lehrer, Paul; Eddie, David

    2013-06-01

    Systems theory has long been used in psychology, biology, and sociology. This paper applies newer methods of control systems modeling for assessing system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning.

  12. Brain-computer interface: changes in performance using virtual reality techniques.

    PubMed

    Ron-Angevin, Ricardo; Díaz-Estrella, Antonio

    2009-01-09

    The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.

  13. Analysis of a dc bus system with a nonlinear constant power load and its delayed feedback control.

    PubMed

    Konishi, Keiji; Sugitani, Yoshiki; Hara, Naoyuki

    2014-02-01

    This paper tackles a destabilizing problem of a direct-current (dc) bus system with constant power loads, which can be considered a fundamental problem of dc power grid networks. The present paper clarifies scenarios of the destabilization and applies the well-known delayed-feedback control to the stabilization of the destabilized bus system on the basis of nonlinear science. Further, we propose a systematic procedure for designing the delayed feedback controller. This controller can converge the bus voltage exactly on an unstable operating point without accurate information and can track it using tiny control energy even when a system parameter, such as the power consumption of the load, is slowly varied. These features demonstrate that delayed feedback control can be considered a strong candidate for solving the destabilizing problem.

  14. The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output

    PubMed Central

    Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate

    2014-01-01

    Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001 PMID:24849626

  15. A Pilot Study for Evaluation of Digital Systems as an Adjunct to Sphygmomanometry for Undergraduate Teaching

    PubMed Central

    Sharma, Renuka; Kapoor, Raj

    2016-01-01

    Objectives: Blood pressure estimation is a key skill for medical practitioners. It is routinely taught to undergraduate medical students using an aneroid sphygmomanometer. However, the conceptual understanding in the practical remains limited. We conducted the following study to evaluate the efficacy of digital data acquisition systems as an adjunct to the sphygmomanometer to teach blood pressure. Methods: Fifty-seven first-year medical students participated in the study. An MCQ test of 15 questions, consisting of 10 conceptual and five factual questions, was administered twice – pre- and post-demonstration of blood pressure measurement using a digital data acquisition system. In addition, qualitative feedback was also obtained. Results: Median scores were 7 (6 - 8) and 3 (1.5 - 4) in pre-test sessions for conceptual and factual questions, respectively. Post-test scores showed a significant improvement in both categories (10 (9 - 10) and 4 (4 - 4.5), respectively, Mann-Whitney U test, p < 0.0001). Student feedback also indicated that the digital system enhanced learning and student participation. Conclusions: Student feedback regarding the demonstrations was uniformly positive, which was also reflected in significantly improved post-test scores. We conclude that parallel demonstration on digital systems and the sphygmomanometer will enhance student engagement and understanding of blood pressure measurement. PMID:27660735

  16. Autonomous benthic algal cultivator under feedback control of ecosystem metabolism

    USDA-ARS?s Scientific Manuscript database

    An autonomous and internally-controlled techno-ecological hybrid was developed that controls primary production of algae in a laboratory-scale cultivator. The technoecosystem is based on an algal turf scrubber (ATS) system that combines engineered feedback control programming with internal feedback...

  17. Return Difference Feedback Design for Robust Uncertainty Tolerance in Stochastic Multivariable Control Systems.

    DTIC Science & Technology

    1982-11-01

    D- R136 495 RETURN DIFFERENCE FEEDBACK DESIGN FOR ROBUSTj/ UNCERTAINTY TOLERANCE IN STO..(U) UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT OF...State and ZIP Code) 7. b6 ADORESS (City. Staft and ZIP Code) Department of Electrical Engineering -’M Directorate of Mathematical & Information Systems ...13. SUBJECT TERMS Continur on rverse ineeesaty and identify by block nmber) FIELD GROUP SUE. GR. Systems theory; control; feedback; automatic control

  18. Feedforward/feedback control synthesis for performance and robustness

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Liu, Qiang

    1990-01-01

    Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.

  19. Physics-model-based nonlinear actuator trajectory optimization and safety factor profile feedback control for advanced scenario development in DIII-D

    DOE PAGES

    Barton, Justin E.; Boyer, Mark D.; Shi, Wenyu; ...

    2015-07-30

    DIII-D experimental results are reported to demonstrate the potential of physics-model-based safety factor profile control for robust and reproducible sustainment of advanced scenarios. In the absence of feedback control, variability in wall conditions and plasma impurities, as well as drifts due to external disturbances, can limit the reproducibility of discharges with simple pre-programmed scenario trajectories. The control architecture utilized is a feedforward + feedback scheme where the feedforward commands are computed off-line and the feedback commands are computed on-line. In this work, firstly a first-principles-driven (FPD), physics-based model of the q profile and normalized beta (β N) dynamics is embeddedmore » into a numerical optimization algorithm to design feedforward actuator trajectories that sheer the plasma through the tokamak operating space to reach a desired stationary target state that is characterized by the achieved q profile and β N. Good agreement between experimental results and simulations demonstrates the accuracy of the models employed for physics-model-based control design. Secondly, a feedback algorithm for q profile control is designed following a FPD approach, and the ability of the controller to achieve and maintain a target q profile evolution is tested in DIII-D high confinement (H-mode) experiments. The controller is shown to be able to effectively control the q profile when β N is relatively close to the target, indicating the need for integrated q profile and β N control to further enhance the ability to achieve robust scenario execution. Furthermore, the ability of an integrated q profile + β N feedback controller to track a desired target is demonstrated through simulation.« less

  20. Impaired Feedforward Control and Enhanced Feedback Control of Speech in Patients with Cerebellar Degeneration

    PubMed Central

    Agnew, Zarinah; Nagarajan, Srikantan; Houde, John; Ivry, Richard B.

    2017-01-01

    The cerebellum has been hypothesized to form a crucial part of the speech motor control network. Evidence for this comes from patients with cerebellar damage, who exhibit a variety of speech deficits, as well as imaging studies showing cerebellar activation during speech production in healthy individuals. To date, the precise role of the cerebellum in speech motor control remains unclear, as it has been implicated in both anticipatory (feedforward) and reactive (feedback) control. Here, we assess both anticipatory and reactive aspects of speech motor control, comparing the performance of patients with cerebellar degeneration and matched controls. Experiment 1 tested feedforward control by examining speech adaptation across trials in response to a consistent perturbation of auditory feedback. Experiment 2 tested feedback control, examining online corrections in response to inconsistent perturbations of auditory feedback. Both male and female patients and controls were tested. The patients were impaired in adapting their feedforward control system relative to controls, exhibiting an attenuated anticipatory response to the perturbation. In contrast, the patients produced even larger compensatory responses than controls, suggesting an increased reliance on sensory feedback to guide speech articulation in this population. Together, these results suggest that the cerebellum is crucial for maintaining accurate feedforward control of speech, but relatively uninvolved in feedback control. SIGNIFICANCE STATEMENT Speech motor control is a complex activity that is thought to rely on both predictive, feedforward control as well as reactive, feedback control. While the cerebellum has been shown to be part of the speech motor control network, its functional contribution to feedback and feedforward control remains controversial. Here, we use real-time auditory perturbations of speech to show that patients with cerebellar degeneration are impaired in adapting feedforward control of speech but retain the ability to make online feedback corrections; indeed, the patients show an increased sensitivity to feedback. These results indicate that the cerebellum forms a crucial part of the feedforward control system for speech but is not essential for online, feedback control. PMID:28842410

  1. Effectiveness of a smartphone app in increasing physical activity amongst male adults: a randomised controlled trial.

    PubMed

    Harries, Tim; Eslambolchilar, Parisa; Rettie, Ruth; Stride, Chris; Walton, Simon; van Woerden, Hugo C

    2016-09-02

    Smartphones are ideal for promoting physical activity in those with little intrinsic motivation for exercise. This study tested three hypotheses: H1 - receipt of social feedback generates higher step-counts than receipt of no feedback; H2 - receipt of social feedback generates higher step-counts than only receiving feedback on one's own walking; H3 - receipt of feedback on one's own walking generates higher step-counts than no feedback (H3). A parallel group randomised controlled trial measured the impact of feedback on steps-counts. Healthy male participants (n = 165) aged 18-40 were given phones pre-installed with an app that recorded steps continuously, without the need for user activation. Participants carried these with them as their main phones for a two-week run-in and six-week trial. Randomisation was to three groups: no feedback (control); personal feedback on step-counts; group feedback comparing step-counts against those taken by others in their group. The primary outcome measure, steps per day, was assessed using longitudinal multilevel regression analysis. Control variables included attitude to physical activity and perceived barriers to physical activity. Fifty-five participants were allocated to each group; 152 completed the study and were included in the analysis: n = 49, no feedback; n = 53, individual feedback; n = 50, individual and social feedback. The study provided support for H1 and H3 but not H2. Receipt of either form of feedback explained 7.7 % of between-subject variability in step-count (F = 6.626, p < 0.0005). Compared to the control, the expected step-count for the individual feedback group was 60 % higher (effect on log step-count = 0.474, 95 % CI = 0.166-0.782) and that for the social feedback group, 69 % higher (effect on log step-count = 0.526, 95 % CI = 0.212-0.840). The difference between the two feedback groups (individual vs social feedback) was not statistically significant. Always-on smartphone apps that provide step-counts can increase physical activity in young to early-middle-aged men but the provision of social feedback has no apparent incremental impact. This approach may be particularly suitable for inactive people with low levels of physical activity; it should now be tested with this population.

  2. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    PubMed

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre-speech modulation is not directly related to limited auditory-motor adaptation; and in AWS, DAF paradoxically tends to normalize their otherwise limited pre-speech auditory modulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Non-fragile observer-based output feedback control for polytopic uncertain system under distributed model predictive control approach

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun

    2017-07-01

    In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.

  4. Coherent feedback control of a single qubit in diamond

    NASA Astrophysics Data System (ADS)

    Hirose, Masashi; Cappellaro, Paola

    2016-04-01

    Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation after the feedback algorithm voids the protection, even if the rest of the dynamics is unchanged.

  5. Multivariable control theory applied to hierarchial attitude control for planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III; Russell, D. W.

    1972-01-01

    Multivariable control theory is applied to the design of a hierarchial attitude control system for the CARD space vehicle. The system selected uses reaction control jets (RCJ) and control moment gyros (CMG). The RCJ system uses linear signal mixing and a no-fire region similar to that used on the Skylab program; the y-axis and z-axis systems which are coupled use a sum and difference feedback scheme. The CMG system uses the optimum steering law and the same feedback signals as the RCJ system. When both systems are active the design is such that the torques from each system are never in opposition. A state-space analysis was made of the CMG system to determine the general structure of the input matrices (steering law) and feedback matrices that will decouple the axes. It is shown that the optimum steering law and proportional-plus-rate feedback are special cases. A derivation of the disturbing torques on the space vehicle due to the motion of the on-board television camera is presented. A procedure for computing an upper bound on these torques (given the system parameters) is included.

  6. Control systems for platform landings cushioned by air bags

    NASA Astrophysics Data System (ADS)

    Ross, Edward W.

    1987-07-01

    This report presents an exploratory mathematical study of control systems for airdrop platform landings cushioned by airbags. The basic theory of airbags is reviewed and solutions to special cases are noted. A computer program is presented, which calculates the time-dependence of the principal variables during a landing under the action of various control systems. Two existing control systems of open-loop type are compared with a conceptual feedback (closed-loop) system for a fairly typical set of landing conditions. The feedback controller is shown to have performance much superior to the other systems. The feedback system undergoes an interesting oscillation not present in the other systems, the source of which is investigated. Recommendations for future work are included.

  7. Adaptive Fuzzy Control for Nonstrict Feedback Systems With Unmodeled Dynamics and Fuzzy Dead Zone via Output Feedback.

    PubMed

    Wang, Lijie; Li, Hongyi; Zhou, Qi; Lu, Renquan

    2017-09-01

    This paper investigates the problem of observer-based adaptive fuzzy control for a category of nonstrict feedback systems subject to both unmodeled dynamics and fuzzy dead zone. Through constructing a fuzzy state observer and introducing a center of gravity method, unmeasurable states are estimated and the fuzzy dead zone is defuzzified, respectively. By employing fuzzy logic systems to identify the unknown functions. And combining small-gain approach with adaptive backstepping control technique, a novel adaptive fuzzy output feedback control strategy is developed, which ensures that all signals involved are semi-globally uniformly bounded. Simulation results are given to demonstrate the effectiveness of the presented method.

  8. Three degree-of-freedom force feedback control for robotic mating of umbilical lines

    NASA Technical Reports Server (NTRS)

    Fullmer, R. Rees

    1988-01-01

    The use of robotic manipulators for the mating and demating of umbilical fuel lines to the Space Shuttle Vehicle prior to launch is investigated. Force feedback control is necessary to minimize the contact forces which develop during mating. The objective is to develop and demonstrate a working robotic force control system. Initial experimental force control tests with an ASEA IRB-90 industrial robot using the system's Adaptive Control capabilities indicated that control stability would by a primary problem. An investigation of the ASEA system showed a 0.280 second software delay between force input commands and the output of command voltages to the servo system. This computational delay was identified as the primary cause of the instability. Tests on a second path into the ASEA's control computer using the MicroVax II supervisory computer show that time delay would be comparable, offering no stability improvement. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servosystem directly, allowing the robot to use force feedback control while in rigid contact with a moving three-degree-of-freedom target. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servo system directly. This method allowed the robot to use force feedback control while in rigid contact with moving three degree-of-freedom target. Tests on this approach indicated adequate force feedback control even under worst case conditions. A strategy to digitally-controlled vision system was developed. This requires switching between the digital controller when using vision control and the analog controller when using force control, depending on whether or not the mating plates are in contact.

  9. Dynamic Processes in Regulation and Some Implications for Biofeedback and Biobehavioral Interventions

    PubMed Central

    Lehrer, Paul; Eddie, David

    2013-01-01

    Systems theory has long been applied in psychology, biology, and sociology. This paper applies newer methods of control systems modeling to the assessment of system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning. PMID:23572244

  10. Control theory for scanning probe microscopy revisited.

    PubMed

    Stirling, Julian

    2014-01-01

    We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the literature that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic feedback behaviour. As such the stability of SPM feedback for a wide range of feedback gains can be understood. Further consideration of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner during feedback operation.

  11. Sensitivity analysis of primary resonances and bifurcations of a controlled piecewise-smooth system with negative stiffness

    NASA Astrophysics Data System (ADS)

    Huang, Dongmei; Xu, Wei

    2017-11-01

    In this paper, the combination of the cubic nonlinearity and time delay is proposed to improve the performance of a piecewise-smooth (PWS) system with negative stiffness. Dynamical properties, feedback control performance and symmetry-breaking bifurcation are mainly considered for a PWS system with negative stiffness under nonlinear position and velocity feedback control. For the free vibration system, the homoclinic-like orbits are firstly derived. Then, the amplitude-frequency response of the controlled system is obtained analytically in aspect of the Lindstedt-Poincaré method and the method of multiple scales, which is also verified through the numerical results. In this regard, a softening-type behavior, which directly leads to the multi-valued responses, is illustrated over the negative position feedback. Especially, the five-valued responses in which three branches of them are stable are found. And complex multi-valued characteristics are also observed in the force-amplitude responses. Furthermore, for explaining the effectiveness of feedback control, the equivalent damping and stiffness are also introduced. Sensitivity of the system response to the feedback gain and time delay is comprehensively considered and interesting dynamical properties are found. Relatively, from the perspective of suppressing the maximum amplitude and controlling the resonance stability, the selection of the feedback parameters is discussed. Finally, the symmetry-breaking bifurcation and chaotic motion are considered.

  12. Maintenance and operation procedure, and feedback controls of the J-PARC RF-driven H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.

    2015-04-08

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second stage requirements of an H{sup −} ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H{sup −} ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). The maintenance and operation procedure to minimize the plasma chamber (PCH) replacement time on the beam line, which is very important to maximize the J-PARC beam time especially for an antenna failure,more » is presented in this paper. The PCH preserved by filling argon (Ar) gas inside after pre-conditioning including pre-cesiation to produce the required beam at a test-stand successfully produced the required beam on the beam line with slight addition of cesium (Cs). The methods of the feedback controls of a 2MHz-RF-matching, an H{sup −} ion beam intensity and the addition of Cs are also presented. The RF-matching feedback by using two vacuum variable capacitors (VVCs) and RF-frequency shift produced the almost perfect matching with negligibly small reflected RF-power. The H{sup −} ion beam intensity was controlled within errors of ±0.1mA by the RF-power feedback. The amount of Cs was also controlled by remotely opening a Cs-valve to keep the RF-power lower than a settled value.« less

  13. Method and apparatus for loss of control inhibitor systems

    NASA Technical Reports Server (NTRS)

    A'Harrah, Ralph C. (Inventor)

    2007-01-01

    Active and adaptive systems and methods to prevent loss of control incidents by providing tactile feedback to a vehicle operator are disclosed. According to the present invention, an operator gives a control input to an inceptor. An inceptor sensor measures an inceptor input value of the control input. The inceptor input is used as an input to a Steady-State Inceptor Input/Effector Output Model that models the vehicle control system design. A desired effector output from the inceptor input is generated from the model. The desired effector output is compared to an actual effector output to get a distortion metric. A feedback force is generated as a function of the distortion metric. The feedback force is used as an input to a feedback force generator which generates a loss of control inhibitor system (LOCIS) force back to the inceptor. The LOCIS force is felt by the operator through the inceptor.

  14. A Case Study of Using Peer Feedback in Face-to-Face and Distance Learning Classes among Pre-Service Teachers

    ERIC Educational Resources Information Center

    Vásquez-Colina, María D.; Russo, Marianne Robin; Lieberman, Mary; Morris, John D.

    2017-01-01

    This study investigated a feedback exchange activity for engaging pre-service teachers and the nature of such feedback in two undergraduate classes, a distance learning (DL) and a face-to-face (F2F) class. The research question asked if the nature of peer feedback was different between F2F and DL class formats. Students' work samples were…

  15. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1987-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  16. Optimal integral force feedback for active vibration control

    NASA Astrophysics Data System (ADS)

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  17. Web/smart phone based control and feedback systems for irrigation systems

    USDA-ARS?s Scientific Manuscript database

    The role of the internet and mobile devices in the control and feedback of irrigation systems is reviewed. This role is placed in the larger context of four distinct components required for irrigation management, including 1. the control panel; 2. remote control; 3. soil, plant, and weather (SPW) se...

  18. Balanced bridge feedback control system

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (Inventor)

    1990-01-01

    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  19. High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization

    DTIC Science & Technology

    1992-05-01

    High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization A Thesis Presented by Louis Joseph PoehIman, Captain, USAF B.S., U.S. Air...High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization by Louis Joseph Poehlman, Captain, USAF Submitted to the Department of...31 2-4 Attitude Determination and Control System Architecture ................. 33 3-1 Exact Linearization Using Nonlinear Feedback

  20. Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure.

    PubMed

    Fei, Juntao; Lu, Cheng

    2018-04-01

    In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.

  1. Feedback control of flow vorticity at low Reynolds numbers.

    PubMed

    Zeitz, Maria; Gurevich, Pavel; Stark, Holger

    2015-03-01

    Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times.

  2. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Information Feedback Strategies in a Signal Controlled Network with Overlapped Routes

    NASA Astrophysics Data System (ADS)

    Tian, Li-Jun; Huang, Hai-Jun; Liu, Tian-Liang

    2009-07-01

    We investigate the effects of four different information feedback strategies on the dynamics of traffic, travelers' route choice and the resultant system performance in a signal controlled network with overlapped routes. Simulation results given by the cellular automaton model show that the system purpose-based mean velocity feedback strategy and the congestion coefficient feedback strategy have more advantages in improving network utilization efficiency and reducing travelers' travel times. The travel time feedback strategy and the individual purposed-based mean velocity feedback strategy behave slightly better to ensure user equity.

  3. Real-time optical signal processors employing optical feedback: amplitude and phase control.

    PubMed

    Gallagher, N C

    1976-04-01

    The development of real-time coherent optical signal processors has increased the appeal of optical computing techniques in signal processing applications. A major limitation of these real-time systems is the. fact that the optical processing material is generally of a phase-only type. The result is that the spatial filters synthesized with these systems must be either phase-only filters or amplitude-only filters. The main concern of this paper is the application of optical feedback techniques to obtain simultaneous and independent amplitude and phase control of the light passing through the system. It is shown that optical feedback techniques may be employed with phase-only spatial filters to obtain this amplitude and phase control. The feedback system with phase-only filters is compared with other feedback systems that employ combinations of phase-only and amplitude-only filters; it is found that the phase-only system is substantially more flexible than the other two systems investigated.

  4. Combined input shaping and feedback control for double-pendulum systems

    NASA Astrophysics Data System (ADS)

    Mar, Robert; Goyal, Anurag; Nguyen, Vinh; Yang, Tianle; Singhose, William

    2017-02-01

    A control system combining input shaping and feedback is developed for double-pendulum systems subjected to external disturbances. The proposed control method achieves fast point-to-point response similar to open-loop input-shaping control. It also minimizes transient deflections during the motion of the system, and disturbance-induced residual swing using the feedback control. Effects of parameter variations such as the mass ratio of the double pendulum, the suspension length ratio, and the move distance were studied via numerical simulation. The most important results were also verified with experiments on a small-scale crane. The controller effectively suppresses the disturbances and is robust to modelling uncertainties and task variations.

  5. New MHD feedback control schemes using the MARTe framework in RFX-mod

    NASA Astrophysics Data System (ADS)

    Piron, Chiara; Manduchi, Gabriele; Marrelli, Lionello; Piovesan, Paolo; Zanca, Paolo

    2013-10-01

    Real-time feedback control of MHD instabilities is a topic of major interest in magnetic thermonuclear fusion, since it allows to optimize a device performance even beyond its stability bounds. The stability properties of different magnetic configurations are important test benches for real-time control systems. RFX-mod, a Reversed Field Pinch experiment that can also operate as a tokamak, is a well suited device to investigate this topic. It is equipped with a sophisticated magnetic feedback system that controls MHD instabilities and error fields by means of 192 active coils and a corresponding grid of sensors. In addition, the RFX-mod control system has recently gained new potentialities thanks to the introduction of the MARTe framework and of a new CPU architecture. These capabilities allow to study new feedback algorithms relevant to both RFP and tokamak operation and to contribute to the debate on the optimal feedback strategy. This work focuses on the design of new feedback schemes. For this purpose new magnetic sensors have been explored, together with new algorithms that refine the de-aliasing computation of the radial sideband harmonics. The comparison of different sensor and feedback strategy performance is described in both RFP and tokamak experiments.

  6. Effects of continuous visual feedback during sitting balance training in chronic stroke survivors.

    PubMed

    Pellegrino, Laura; Giannoni, Psiche; Marinelli, Lucio; Casadio, Maura

    2017-10-16

    Postural control deficits are common in stroke survivors and often the rehabilitation programs include balance training based on visual feedback to improve the control of body position or of the voluntary shift of body weight in space. In the present work, a group of chronic stroke survivors, while sitting on a force plate, exercised the ability to control their Center of Pressure with a training based on continuous visual feedback. The goal of this study was to test if and to what extent chronic stroke survivors were able to learn the task and transfer the learned ability to a condition without visual feedback and to directions and displacement amplitudes different from those experienced during training. Eleven chronic stroke survivors (5 Male - 6 Female, age: 59.72 ± 12.84 years) participated in this study. Subjects were seated on a stool positioned on top of a custom-built force platform. Their Center of Pressure positions were mapped to the coordinate of a cursor on a computer monitor. During training, the cursor position was always displayed and the subjects were to reach targets by shifting their Center of Pressure by moving their trunk. Pre and post-training subjects were required to reach without visual feedback of the cursor the training targets as well as other targets positioned in different directions and displacement amplitudes. During training, most stroke survivors were able to perform the required task and to improve their performance in terms of duration, smoothness, and movement extent, although not in terms of movement direction. However, when we removed the visual feedback, most of them had no improvement with respect to their pre-training performance. This study suggests that postural training based exclusively on continuous visual feedback can provide limited benefits for stroke survivors, if administered alone. However, the positive gains observed during training justify the integration of this technology-based protocol in a well-structured and personalized physiotherapy training, where the combination of the two approaches may lead to functional recovery.

  7. The role of auditory and kinaesthetic feedback mechanisms on phonatory stability in children.

    PubMed

    Rathna Kumar, S B; Azeem, Suhail; Choudhary, Abhishek Kumar; Prakash, S G R

    2013-12-01

    Auditory feedback plays an important role in phonatory control. When auditory feedback is disrupted, various changes are observed in vocal motor control. Vocal intensity and fundamental frequency (F0) levels tend to increase in response to auditory masking. Because of the close reflexive links between the auditory and phonatory systems, it is likely that phonatory stability may be disrupted when auditory feedback is disrupted or altered. However, studies on phonatory stability under auditory masking condition in adult subjects showed that most of the subjects maintained normal levels of phonatory stability. The authors in the earlier investigations suggested that auditory feedback is not the sole contributor to vocal motor control and phonatory stability, a complex neuromuscular reflex system known as kinaesthetic feedback may play a role in controlling phonatory stability when auditory feedback is disrupted or lacking. This proposes the need to further investigate this phenomenon as to whether children show similar patterns of phonatory stability under auditory masking since their neuromotor systems are still at developmental stage, less mature and are less resistant to altered auditory feedback than adults. A total of 40 normal hearing and speaking children (20 male and 20 female) between the age group of 6 and 8 years participated as subjects. The acoustic parameters such as shimmer, jitter and harmonic-to-noise ratio (HNR) were measures and compared between no masking condition (0 dB ML) and masking condition (90 dB ML). Despite the neuromotor systems being less mature in children and less resistant than adults to altered auditory feedback, most of the children in the study demonstrated increased phonatory stability which was reflected by reduced shimmer, jitter and increased HNR values. This study implicates that most of the children demonstrate well established patterns of kinaesthetic feedback, which might have allowed them to maintain normal levels of vocal motor control even in the presence of disturbed auditory feedback. Hence, it can be concluded that children also exhibit kinaesthetic feedback mechanism to control phonatory stability when auditory feedback is disrupted which in turn highlights the importance of kinaesthetic feedback to be included in the therapeutic/intervention approaches for children with hearing and neurogenic speech deficits.

  8. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point.

    PubMed

    Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong

    2015-07-01

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  9. Depth Camera-Based 3D Hand Gesture Controls with Immersive Tactile Feedback for Natural Mid-Air Gesture Interactions

    PubMed Central

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-01

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback. PMID:25580901

  10. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions.

    PubMed

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-08

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.

  11. Learning What Works in ITS from Non-Traditional Randomized Controlled Trial Data

    ERIC Educational Resources Information Center

    Pardos, Zachary A.; Dailey, Matthew D.; Heffernan, Neil T.

    2011-01-01

    The well established, gold standard approach to finding out what works in education research is to run a randomized controlled trial (RCT) using a standard pre-test and post-test design. RCTs have been used in the intelligent tutoring community for decades to determine which questions and tutorial feedback work best. Practically speaking, however,…

  12. Voluntarily controlled but not merely observed visual feedback affects postural sway

    PubMed Central

    Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi

    2018-01-01

    Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421

  13. The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output.

    PubMed

    Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate

    2014-05-21

    Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001. Copyright © 2014, Brown et al.

  14. Children’s Feedback Preferences in Response to an Experimentally Manipulated Peer Evaluation Outcome: The Role of Depressive Symptoms

    PubMed Central

    Dekovic, Maja; Vermande, Marjolijn; Telch, Michael J.

    2007-01-01

    The present study examined the linkage between pre-adolescent children’s depressive symptoms and their preferences for receiving positive vs. negative feedback subsequent to being faced with an experimentally manipulated peer evaluation outcome in real time. Participants (n = 142) ages 10 to 13, played a computer contest based on the television show Survivor and were randomized to either a peer rejection (i.e., receiving the lowest total ‘likeability’ score from a group of peer-judges), a peer success (i.e., receiving the highest score), or a control peer evaluation condition. Children’s self-reported feedback preferences were then assessed. Results revealed that participants assigned to the negative evaluation outcome, relative to either the success or the control outcome, showed a significantly higher subsequent preference for negatively tuned feedback. Contrary to previous work and predictions derived from self-verification theory, children higher in depressive symptoms were only more likely to prefer negative feedback in response to the negative peer evaluation outcome. These effects for depression were not accounted for by either state mood at baseline or mood change in response to the feedback manipulation. PMID:17279340

  15. Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.

    PubMed

    Agrawal, Deepak K; Tang, Xun; Westbrook, Alexandra; Marshall, Ryan; Maxwell, Colin S; Lucks, Julius; Noireaux, Vincent; Beisel, Chase L; Dunlop, Mary J; Franco, Elisa

    2018-05-08

    Feedback allows biological systems to control gene expression precisely and reliably, even in the presence of uncertainty, by sensing and processing environmental changes. Taking inspiration from natural architectures, synthetic biologists have engineered feedback loops to tune the dynamics and improve the robustness and predictability of gene expression. However, experimental implementations of biomolecular control systems are still far from satisfying performance specifications typically achieved by electrical or mechanical control systems. To address this gap, we present mathematical models of biomolecular controllers that enable reference tracking, disturbance rejection, and tuning of the temporal response of gene expression. These controllers employ RNA transcriptional regulators to achieve closed loop control where feedback is introduced via molecular sequestration. Sensitivity analysis of the models allows us to identify which parameters influence the transient and steady state response of a target gene expression process, as well as which biologically plausible parameter values enable perfect reference tracking. We quantify performance using typical control theory metrics to characterize response properties and provide clear selection guidelines for practical applications. Our results indicate that RNA regulators are well-suited for building robust and precise feedback controllers for gene expression. Additionally, our approach illustrates several quantitative methods useful for assessing the performance of biomolecular feedback control systems.

  16. Load speed regulation in compliant mechanical transmission systems using feedback and feedforward control actions.

    PubMed

    Raul, P R; Dwivedula, R V; Pagilla, P R

    2016-07-01

    The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Closed-loop control of anesthesia: a primer for anesthesiologists.

    PubMed

    Dumont, Guy A; Ansermino, J Mark

    2013-11-01

    Feedback control is ubiquitous in nature and engineering and has revolutionized safety in fields from space travel to the automobile. In anesthesia, automated feedback control holds the promise of limiting the effects on performance of individual patient variability, optimizing the workload of the anesthesiologist, increasing the time spent in a more desirable clinical state, and ultimately improving the safety and quality of anesthesia care. The benefits of control systems will not be realized without widespread support from the health care team in close collaboration with industrial partners. In this review, we provide an introduction to the established field of control systems research for the everyday anesthesiologist. We introduce important concepts such as feedback and modeling specific to control problems and provide insight into design requirements for guaranteeing the safety and performance of feedback control systems. We focus our discussion on the optimization of anesthetic drug administration.

  18. Active Nonlinear Feedback Control for Aerospace Systems. Processor

    DTIC Science & Technology

    1990-12-01

    relating to the role of nonlinearities in feedback control. These area include Lyapunov function theory, chaotic controllers, statistical energy analysis , phase robustness, and optimal nonlinear control theory.

  19. Quasi-modal vibration control by means of active control bearings

    NASA Technical Reports Server (NTRS)

    Nonami, K.; Fleming, D. P.

    1986-01-01

    This paper investigates a design method of an active control bearing system with only velocity feedback. The study provides a new quasi-modal control method for a control system design of an active control bearing system in which feedback coefficients are determined on the basis of a modal analysis. Although the number of sensors and actuators is small, this quasi-modal control method produces a control effect close to an ideal modal control.

  20. Stabilising falling liquid film flows using feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Alice B., E-mail: alice.thompson1@imperial.ac.uk; Gomes, Susana N.; Pavliotis, Grigorios A.

    2016-01-15

    Falling liquid films become unstable due to inertial effects when the fluid layer is sufficiently thick or the slope sufficiently steep. This free surface flow of a single fluid layer has industrial applications including coating and heat transfer, which benefit from smooth and wavy interfaces, respectively. Here, we discuss how the dynamics of the system are altered by feedback controls based on observations of the interface height, and supplied to the system via the perpendicular injection and suction of fluid through the wall. In this study, we model the system using both Benney and weighted-residual models that account for themore » fluid injection through the wall. We find that feedback using injection and suction is a remarkably effective control mechanism: the controls can be used to drive the system towards arbitrary steady states and travelling waves, and the qualitative effects are independent of the details of the flow modelling. Furthermore, we show that the system can still be successfully controlled when the feedback is applied via a set of localised actuators and only a small number of system observations are available, and that this is possible using both static (where the controls are based on only the most recent set of observations) and dynamic (where the controls are based on an approximation of the system which evolves over time) control schemes. This study thus provides a solid theoretical foundation for future experimental realisations of the active feedback control of falling liquid films.« less

  1. Nonlinear feedback model attitude control using CCD in magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Lin, CHIN-E.; Hou, Ann-San

    1994-01-01

    A model attitude control system for a CCD camera magnetic suspension system is studied in this paper. In a recent work, a position and attitude sensing method was proposed. From this result, model position and attitude of a magnetic suspension system can be detected by generating digital outputs. Based on this achievement, a control system design using nonlinear feedback techniques for magnetic suspended model attitude control is proposed.

  2. Nonlinear Control Systems

    DTIC Science & Technology

    2009-11-18

    J.M. Schumacher, Finite -dimensional regulators for a class of infinite dimensional systems . Systems and Control Letters, 3 (1983), 7-12. [39J J.M...for the control of certain examples or system classes us- ing particular feedback design methods ([20, 21, 16, 17, 19, 18]). Still, the control of...long time existence and asymptotic behavior for certain examples or system classes using particular feedback design methods (see, e.g., [20, 21, 16, 17

  3. Feedback Control Systems Loop Shaping Design with Practical Considerations

    NASA Technical Reports Server (NTRS)

    Kopsakis, George

    2007-01-01

    This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.

  4. Feedforward-Feedback Hybrid Control for Magnetic Shape Memory Alloy Actuators Based on the Krasnosel'skii-Pokrovskii Model

    PubMed Central

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system. PMID:24828010

  5. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    PubMed

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  6. Impaired Feedforward Control and Enhanced Feedback Control of Speech in Patients with Cerebellar Degeneration.

    PubMed

    Parrell, Benjamin; Agnew, Zarinah; Nagarajan, Srikantan; Houde, John; Ivry, Richard B

    2017-09-20

    The cerebellum has been hypothesized to form a crucial part of the speech motor control network. Evidence for this comes from patients with cerebellar damage, who exhibit a variety of speech deficits, as well as imaging studies showing cerebellar activation during speech production in healthy individuals. To date, the precise role of the cerebellum in speech motor control remains unclear, as it has been implicated in both anticipatory (feedforward) and reactive (feedback) control. Here, we assess both anticipatory and reactive aspects of speech motor control, comparing the performance of patients with cerebellar degeneration and matched controls. Experiment 1 tested feedforward control by examining speech adaptation across trials in response to a consistent perturbation of auditory feedback. Experiment 2 tested feedback control, examining online corrections in response to inconsistent perturbations of auditory feedback. Both male and female patients and controls were tested. The patients were impaired in adapting their feedforward control system relative to controls, exhibiting an attenuated anticipatory response to the perturbation. In contrast, the patients produced even larger compensatory responses than controls, suggesting an increased reliance on sensory feedback to guide speech articulation in this population. Together, these results suggest that the cerebellum is crucial for maintaining accurate feedforward control of speech, but relatively uninvolved in feedback control. SIGNIFICANCE STATEMENT Speech motor control is a complex activity that is thought to rely on both predictive, feedforward control as well as reactive, feedback control. While the cerebellum has been shown to be part of the speech motor control network, its functional contribution to feedback and feedforward control remains controversial. Here, we use real-time auditory perturbations of speech to show that patients with cerebellar degeneration are impaired in adapting feedforward control of speech but retain the ability to make online feedback corrections; indeed, the patients show an increased sensitivity to feedback. These results indicate that the cerebellum forms a crucial part of the feedforward control system for speech but is not essential for online, feedback control. Copyright © 2017 the authors 0270-6474/17/379249-10$15.00/0.

  7. Changes in glance behaviour when using a visual eco-driving system - A field study.

    PubMed

    Ahlstrom, Christer; Kircher, Katja

    2017-01-01

    While in-vehicle eco-driving support systems have the potential to reduce greenhouse gas emissions and save fuel, they may also distract drivers, especially if the system makes use of a visual interface. The objective of this study is to investigate the visual behaviour of drivers interacting with such a system, implemented on a five-inch screen mounted above the middle console. Ten drivers participated in a real-world, on-road driving study where they drove a route nine times (2 pre-baseline drives, 5 treatment drives, 2 post-baseline drives). The route was 96 km long and consisted of rural roads, urban roads and a dual-lane motorway. The results show that drivers look at the system for 5-8% of the time, depending on road type, with a glance duration of about 0.6 s, and with 0.05% long glances (>2s) per kilometre. These figures are comparable to what was found for glances to the speedometer in this study. Glance behaviour away from the windscreen is slightly increased in treatment as compared to pre- and post-baseline, mirror glances decreased in treatment and post-baseline compared to pre-baseline, and speedometer glances increased compared to pre-baseline. The eco-driving support system provided continuous information interspersed with additional advice pop-ups (announced by a beep) and feedback pop-ups (no auditory cue). About 20% of sound initiated advice pop-ups were disregarded, and the remaining cases were usually looked at within the first two seconds. About 40% of the feedback pop-ups were disregarded. The amount of glances to the system immediately before the onset of a pop-up was clearly higher for feedback than for advice. All in all, the eco-driving support system under investigation is not likely to have a strong negative impact on glance behaviour. However, there is room for improvements. We recommend that eco-driving information is integrated with the speedometer, that optional activation of sound alerts for intermittent information is made available, and that the pop-up duration should be extended to facilitate self-regulation of information intake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of Real-Time Visual Feedback on Pre-Service Teachers' Singing

    ERIC Educational Resources Information Center

    Leong, S.; Cheng, L.

    2014-01-01

    This pilot study focuses on the use real-time visual feedback technology (VFT) in vocal training. The empirical research has two aims: to ascertain the effectiveness of the real-time visual feedback software "Sing & See" in the vocal training of pre-service music teachers and the teachers' perspective on their experience with…

  9. Intelligent shell feedback control in EXTRAP T2R reversed field pinch with partial coverage of the toroidal surface by a discrete active coil array

    NASA Astrophysics Data System (ADS)

    Yadikin, D.; Brunsell, P. R.; Drake, J. R.

    2006-01-01

    An active feedback system is required for long pulse operation of the reversed field pinch (RFP) device to suppress resistive wall modes (RWMs). A general feature of a feedback system using a discrete active coil array is a coupling effect which arises when a set of side band modes determined by the number of active coils is produced. Recent results obtained on the EXTRAP T2R RFP demonstrated the suppression of independent m = 1 RWMs using an active feedback system with a two-dimensional array of discrete active coils in the poloidal and toroidal directions. One of the feedback algorithms used is the intelligent shell feedback scheme. Active feedback systems having different number of active coils in the poloidal (Mc) and toroidal (Nc) directions (Mc × Nc = 2 × 32 and Mc × Nc = 4 × 16) are studied. Different side band effects are seen for these configurations. A significant prolongation of the plasma discharge is achieved for the intelligent shell feedback scheme using the 2 × 32 active coil configuration. This is attributed to the side band sets including only one of the dominant unstable RWMs and avoiding coupling to resonant modes. Analog proportional-integral-derivative controllers are used in the feedback system. Regimes with different values of the proportional gain are studied. The requirement of the proportional-integral control for low proportional gain and proportional-derivative control for high proportional gain is seen in the experiments.

  10. Act-and-wait time-delayed feedback control of autonomous systems

    NASA Astrophysics Data System (ADS)

    Pyragas, Viktoras; Pyragas, Kestutis

    2018-02-01

    Recently an act-and-wait modification of time-delayed feedback control has been proposed for the stabilization of unstable periodic orbits in nonautonomous dynamical systems (Pyragas and Pyragas, 2016 [30]). The modification implies a periodic switching of the feedback gain and makes the closed-loop system finite-dimensional. Here we extend this modification to autonomous systems. In order to keep constant the phase difference between the controlled orbit and the act-and-wait switching function an additional small-amplitude periodic perturbation is introduced. The algorithm can stabilize periodic orbits with an odd number of real unstable Floquet exponents using a simple single-input single-output constraint control.

  11. An open-closed-loop iterative learning control approach for nonlinear switched systems with application to freeway traffic control

    NASA Astrophysics Data System (ADS)

    Sun, Shu-Ting; Li, Xiao-Dong; Zhong, Ren-Xin

    2017-10-01

    For nonlinear switched discrete-time systems with input constraints, this paper presents an open-closed-loop iterative learning control (ILC) approach, which includes a feedforward ILC part and a feedback control part. Under a given switching rule, the mathematical induction is used to prove the convergence of ILC tracking error in each subsystem. It is demonstrated that the convergence of ILC tracking error is dependent on the feedforward control gain, but the feedback control can speed up the convergence process of ILC by a suitable selection of feedback control gain. A switched freeway traffic system is used to illustrate the effectiveness of the proposed ILC law.

  12. Using Control Theory to Teach Control Theory (or Any Other Course).

    ERIC Educational Resources Information Center

    Mansfield, George

    1979-01-01

    Describes an undergraduate automatic controls course in which the teaching-learning process is regarded as a closed loop feedback system. The three basic components of the system: the controller, the plant, and the learning sensors are identified as the teacher, the student, and student feedback respectively. (SMB)

  13. Fuzzy control system for a remote focusing microscope

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan J.; Tran, Luc P.

    1992-01-01

    Space Station Crew Health Care System procedures require the use of an on-board microscope whose slide images will be transmitted for analysis by ground-based microbiologists. Focusing of microscope slides is low on the list of crew priorities, so NASA is investigating the option of telerobotic focusing controlled by the microbiologist on the ground, using continuous video feedback. However, even at Space Station distances, the transmission time lag may disrupt the focusing process, severely limiting the number of slides that can be analyzed within a given bandwidth allocation. Substantial time could be saved if on-board automation could pre-focus each slide before transmission. The authors demonstrate the feasibility of on-board automatic focusing using a fuzzy logic ruled-based system to bring the slide image into focus. The original prototype system was produced in under two months and at low cost. Slide images are captured by a video camera, then digitized by gray-scale value. A software function calculates an index of 'sharpness' based on gray-scale contrasts. The fuzzy logic rule-based system uses feedback to set the microscope's focusing control in an attempt to maximize sharpness. The systems as currently implemented performs satisfactorily in focusing a variety of slide types at magnification levels ranging from 10 to 1000x. Although feasibility has been demonstrated, the system's performance and usability could be improved substantially in four ways: by upgrading the quality and resolution of the video imaging system (including the use of full color); by empirically defining and calibrating the index of image sharpness; by letting the overall focusing strategy vary depending on user-specified parameters; and by fine-tuning the fuzzy rules, set definitions, and procedures used.

  14. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching LO

    1993-01-01

    This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.

  15. Pre-Service Teacher Use of Communication Strategies upon Receiving Immediate Feedback

    ERIC Educational Resources Information Center

    Coogle, Christan Grygas; Rahn, Naomi L.; Ottley, Jennifer Riggie

    2015-01-01

    The purpose of this research was to investigate the impact of immediate feedback through bug-in-ear eCoaching on early childhood special education pre-service teachers' use of communication strategies using an activity-based intervention approach. Three early childhood special education pre-service teachers participated in this study. A…

  16. Reliable Control Using Disturbance Observer and Equivalent Transfer Function for Position Servo System in Current Feedback Loop Failure

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kaoru; Nakamura, Taro; Osumi, Hisashi

    A reliable control method is proposed for multiple loop control system. After a feedback loop failure, such as case of the sensor break down, the control system becomes unstable and has a big fluctuation even if it has a disturbance observer. To cope with this problem, the proposed method uses an equivalent transfer function (ETF) as active redundancy compensation after the loop failure. The ETF is designed so that it does not change the transfer function of the whole system before and after the loop failure. In this paper, the characteristic of reliable control system that uses an ETF and a disturbance observer is examined by the experiment that uses the DC servo motor for the current feedback loop failure in the position servo system.

  17. Tailoring communication in cancer genetic counseling through individual video-supported feedback: a controlled pretest-posttest design.

    PubMed

    Pieterse, Arwen H; van Dulmen, Alexandra M; Beemer, Frits A; Ausems, Margreet G E M; Bensing, Jozien M

    2006-03-01

    To assess the influence of a 1-day individual video-feedback training for cancer genetic counselors on the interaction during initial visits. Feedback was intended to help counselors make counselees' needs more explicit and increase counselors' sensitivity to these. In total 158 counselees, mainly referred for breast or colon cancer and visiting 1 of 10 counselors, received a pre- and post-visit questionnaire assessing needs (fulfillment). Visits were videotaped, counselor eye gaze was assessed, and verbal communication was analyzed by Roter Interaction Analysis System (RIAS) adapted to the genetic setting. Halfway the study, five counselors were trained. Trained counselors provided more psychosocial information, and with trained counselors emotional consequences of DNA-testing was more often discussed. Counselees seen by a trained counselor considered their need for explanations on (emotional) consequences of counseling as better fulfilled. Unexpectedly, counselees' contribution to the interaction was smaller with trained counselors. Feedback appeared to result in greater emphasis on psychosocial issues, without lengthening the visit. However, counselors did not become more verbally supportive in other ways than by providing information. A 1 day individual training appears effective to some extend; increased opportunities for watching and practicing behavioral alternatives and arranging consolidating sessions may improve training results.

  18. Design of integrated autopilot/autothrottle for NASA TSRV airplane using integral LQG methodology. [transport systems research vehicle

    NASA Technical Reports Server (NTRS)

    Kaminer, Isaac; Benson, Russell A.

    1989-01-01

    An integrated autopilot/autothrottle control system has been developed for the NASA transport system research vehicle using a two-degree-of-freedom approach. Based on this approach, the feedback regulator was designed using an integral linear quadratic regulator design technique, which offers a systematic approach to satisfy desired feedback performance requirements and guarantees stability margins in both control and sensor loops. The resulting feedback controller was discretized and implemented using a delta coordinate concept, which allows for transient free controller switching by initializing all controller states to zero and provides a simple solution for dealing with throttle limiting cases.

  19. Fringe-jump corrected far infrared tangential interferometer/polarimeter for a real-time density feedback control system of NSTX plasmasa)

    NASA Astrophysics Data System (ADS)

    Juhn, J.-W.; Lee, K. C.; Hwang, Y. S.; Domier, C. W.; Luhmann, N. C.; Leblanc, B. P.; Mueller, D.; Gates, D. A.; Kaita, R.

    2010-10-01

    The far infrared tangential interferometer/polarimeter (FIReTIP) of the National Spherical Torus Experiment (NSTX) has been set up to provide reliable electron density signals for a real-time density feedback control system. This work consists of two main parts: suppression of the fringe jumps that have been prohibiting the plasma density from use in the direct feedback to actuators and the conceptual design of a density feedback control system including the FIReTIP, control hardware, and software that takes advantage of the NSTX plasma control system (PCS). By investigating numerous shot data after July 2009 when the new electronics were installed, fringe jumps in the FIReTIP are well characterized, and consequently the suppressing algorithms are working properly as shown in comparisons with the Thomson scattering diagnostic. This approach is also applicable to signals taken at a 5 kHz sampling rate, which is a fundamental constraint imposed by the digitizers providing inputs to the PCS. The fringe jump correction algorithm, as well as safety and feedback modules, will be included as submodules either in the gas injection system category or a new category of density in the PCS.

  20. Listening and Speaking: A Cybernetic Synthesis.

    ERIC Educational Resources Information Center

    Nord, James R.

    1985-01-01

    Cybernetic feedback theory sees the individual as a self-organizing feedback control system that generates its own activity to control its own perceptions. Applying the principle of feedback to language use, it appears that speaking as an overt public behavior is controlled by an internally private listening capacity. With that listening capacity,…

  1. Predictive error detection in pianists: a combined ERP and motion capture study

    PubMed Central

    Maidhof, Clemens; Pitkäniemi, Anni; Tervaniemi, Mari

    2013-01-01

    Performing a piece of music involves the interplay of several cognitive and motor processes and requires extensive training to achieve a high skill level. However, even professional musicians commit errors occasionally. Previous event-related potential (ERP) studies have investigated the neurophysiological correlates of pitch errors during piano performance, and reported pre-error negativity already occurring approximately 70–100 ms before the error had been committed and audible. It was assumed that this pre-error negativity reflects predictive control processes that compare predicted consequences with actual consequences of one's own actions. However, in previous investigations, correct and incorrect pitch events were confounded by their different tempi. In addition, no data about the underlying movements were available. In the present study, we exploratively recorded the ERPs and 3D movement data of pianists' fingers simultaneously while they performed fingering exercises from memory. Results showed a pre-error negativity for incorrect keystrokes when both correct and incorrect keystrokes were performed with comparable tempi. Interestingly, even correct notes immediately preceding erroneous keystrokes elicited a very similar negativity. In addition, we explored the possibility of computing ERPs time-locked to a kinematic landmark in the finger motion trajectories defined by when a finger makes initial contact with the key surface, that is, at the onset of tactile feedback. Results suggest that incorrect notes elicited a small difference after the onset of tactile feedback, whereas correct notes preceding incorrect ones elicited negativity before the onset of tactile feedback. The results tentatively suggest that tactile feedback plays an important role in error-monitoring during piano performance, because the comparison between predicted and actual sensory (tactile) feedback may provide the information necessary for the detection of an upcoming error. PMID:24133428

  2. An overview of neural function and feedback control in human communication.

    PubMed

    Hood, L J

    1998-01-01

    The speech and hearing mechanisms depend on accurate sensory information and intact feedback mechanisms to facilitate communication. This article provides a brief overview of some components of the nervous system important for human communication and some electrophysiological methods used to measure cortical function in humans. An overview of automatic control and feedback mechanisms in general and as they pertain to the speech motor system and control of the hearing periphery is also presented, along with a discussion of how the speech and auditory systems interact.

  3. A high precision dual feedback discrete control system designed for satellite trajectory simulator

    NASA Astrophysics Data System (ADS)

    Liu, Ximin; Liu, Liren; Sun, Jianfeng; Xu, Nan

    2005-08-01

    Cooperating with the free-space laser communication terminals, the satellite trajectory simulator is used to test the acquisition, pointing, tracking and communicating performances of the terminals. So the satellite trajectory simulator plays an important role in terminal ground test and verification. Using the double-prism, Sun etc in our group designed a satellite trajectory simulator. In this paper, a high precision dual feedback discrete control system designed for the simulator is given and a digital fabrication of the simulator is made correspondingly. In the dual feedback discrete control system, Proportional- Integral controller is used in velocity feedback loop and Proportional- Integral- Derivative controller is used in position feedback loop. In the controller design, simplex method is introduced and an improvement to the method is made. According to the transfer function of the control system in Z domain, the digital fabrication of the simulator is given when it is exposed to mechanism error and moment disturbance. Typically, when the mechanism error is 100urad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.49urad, 6.12urad, 4.56urad, 4.09urad respectively. When the moment disturbance is 0.1rad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.26urad, 0.22urad, 0.16urad, 0.15urad respectively. The digital fabrication results demonstrate that the dual feedback discrete control system designed for the simulator can achieve the anticipated high precision performance.

  4. Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller

    NASA Astrophysics Data System (ADS)

    Nino, Daniel; Wang, Haowei; Milstein, Joshua N.

    2014-09-01

    Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices.

  5. Time-delayed feedback control of coherence resonance chimeras

    NASA Astrophysics Data System (ADS)

    Zakharova, Anna; Semenova, Nadezhda; Anishchenko, Vadim; Schöll, Eckehard

    2017-11-01

    Using the model of a FitzHugh-Nagumo system in the excitable regime, we investigate the influence of time-delayed feedback on noise-induced chimera states in a network with nonlocal coupling, i.e., coherence resonance chimeras. It is shown that time-delayed feedback allows for the control of the range of parameter values where these chimera states occur. Moreover, for the feedback delay close to the intrinsic period of the system, we find a novel regime which we call period-two coherence resonance chimera.

  6. Generalized fast feedback system in the SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, L.; Allison, S.; Gromme, T.

    A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLCmore » and have proven to be invaluable in stabilizing the machine.« less

  7. Uncontrolled Manifold Reference Feedback Control of Multi-Joint Robot Arms

    PubMed Central

    Togo, Shunta; Kagawa, Takahiro; Uno, Yoji

    2016-01-01

    The brain must coordinate with redundant bodies to perform motion tasks. The aim of the present study is to propose a novel control model that predicts the characteristics of human joint coordination at a behavioral level. To evaluate the joint coordination, an uncontrolled manifold (UCM) analysis that focuses on the trial-to-trial variance of joints has been proposed. The UCM is a nonlinear manifold associated with redundant kinematics. In this study, we directly applied the notion of the UCM to our proposed control model called the “UCM reference feedback control.” To simplify the problem, the present study considered how the redundant joints were controlled to regulate a given target hand position. We considered a conventional method that pre-determined a unique target joint trajectory by inverse kinematics or any other optimization method. In contrast, our proposed control method generates a UCM as a control target at each time step. The target UCM is a subspace of joint angles whose variability does not affect the hand position. The joint combination in the target UCM is then selected so as to minimize the cost function, which consisted of the joint torque and torque change. To examine whether the proposed method could reproduce human-like joint coordination, we conducted simulation and measurement experiments. In the simulation experiments, a three-link arm with a shoulder, elbow, and wrist regulates a one-dimensional target of a hand through proposed method. In the measurement experiments, subjects performed a one-dimensional target-tracking task. The kinematics, dynamics, and joint coordination were quantitatively compared with the simulation data of the proposed method. As a result, the UCM reference feedback control could quantitatively reproduce the difference of the mean value for the end hand position between the initial postures, the peaks of the bell-shape tangential hand velocity, the sum of the squared torque, the mean value for the torque change, the variance components, and the index of synergy as well as the human subjects. We concluded that UCM reference feedback control can reproduce human-like joint coordination. The inference for motor control of the human central nervous system based on the proposed method was discussed. PMID:27462215

  8. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  9. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    PubMed

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  10. Output Containment Control of Linear Heterogeneous Multi-Agent Systems Using Internal Model Principle.

    PubMed

    Zuo, Shan; Song, Yongduan; Lewis, Frank L; Davoudi, Ali

    2017-01-04

    This paper studies the output containment control of linear heterogeneous multi-agent systems, where the system dynamics and even the state dimensions can generally be different. Since the states can have different dimensions, standard results from state containment control do not apply. Therefore, the control objective is to guarantee the convergence of the output of each follower to the dynamic convex hull spanned by the outputs of leaders. This can be achieved by making certain output containment errors go to zero asymptotically. Based on this formulation, two different control protocols, namely, full-state feedback and static output-feedback, are designed based on internal model principles. Sufficient local conditions for the existence of the proposed control protocols are developed in terms of stabilizing the local followers' dynamics and satisfying a certain H∞ criterion. Unified design procedures to solve the proposed two control protocols are presented by formulation and solution of certain local state-feedback and static output-feedback problems, respectively. Numerical simulations are given to validate the proposed control protocols.

  11. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.

    PubMed

    Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R

    2002-11-01

    In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.

  12. Utility of an app-based system to improve feedback following workplace-based assessment.

    PubMed

    Lefroy, Janet; Roberts, Nicola; Molyneux, Adrian; Bartlett, Maggie; Gay, Simon; McKinley, Robert

    2017-05-31

    To determine whether an app-based software system to support production and storage of assessment feedback summaries makes workplace-based assessment easier for clinical tutors and enhances the educational impact on medical students. We monitored our workplace assessor app's usage by Year 3 to 5 medical students in 2014-15 and conducted focus groups with Year 4 medical students and interviews with clinical tutors who had used the apps. Analysis was by constant comparison using a framework based on elements of van der Vleuten's utility index. The app may enhance the content of feedback for students. Using a screen may be distracting if the app is used during feedback discussions.    Educational impact was reduced by students' perceptions that an easy-to-produce feedback summary is less valuable than one requiring more tutor time and effort. Tutors' typing, dictation skills and their familiarity with mobile devices varied. This influenced their willingness to use the assessment and feedback mobile app rather than the equivalent web app. Electronic feedback summaries had more real and perceived uses than anticipated both for tutors and students including perceptions that they were for the school rather than the student. Electronic workplace-based assessment systems can be acceptable to tutors and can make giving detailed written feedback more practical but can interrupt the social interaction required for the feedback conversation. Tutor training and flexible systems will be required to minimise unwanted consequences. The educational impact on both tutors and students of providing pre-formulated advice within the app is worth further study.

  13. Utility of an app-based system to improve feedback following workplace-based assessment

    PubMed Central

    Roberts, Nicola; Molyneux, Adrian; Bartlett, Maggie; Gay, Simon; McKinley, Robert

    2017-01-01

    Objectives To determine whether an app-based software system to support production and storage of assessment feedback summaries makes workplace-based assessment easier for clinical tutors and enhances the educational impact on medical students. Methods We monitored our workplace assessor app’s usage by Year 3 to 5 medical students in 2014-15 and conducted focus groups with Year 4 medical students and interviews with clinical tutors who had used the apps. Analysis was by constant comparison using a framework based on elements of van der Vleuten’s utility index. Results The app may enhance the content of feedback for students. Using a screen may be distracting if the app is used during feedback discussions.    Educational impact was reduced by students’ perceptions that an easy-to-produce feedback summary is less valuable than one requiring more tutor time and effort. Tutors’ typing, dictation skills and their familiarity with mobile devices varied. This influenced their willingness to use the assessment and feedback mobile app rather than the equivalent web app. Electronic feedback summaries had more real and perceived uses than anticipated both for tutors and students including perceptions that they were for the school rather than the student. Conclusions Electronic workplace-based assessment systems can be acceptable to tutors and can make giving detailed written feedback more practical but can interrupt the social interaction required for the feedback conversation. Tutor training and flexible systems will be required to minimise unwanted consequences. The educational impact on both tutors and students of providing pre-formulated advice within the app is worth further study.  PMID:28578320

  14. Adaptive output-feedback control for switched stochastic uncertain nonlinear systems with time-varying delay.

    PubMed

    Song, Zhibao; Zhai, Junyong

    2018-04-01

    This paper addresses the problem of adaptive output-feedback control for a class of switched stochastic time-delay nonlinear systems with uncertain output function, where both the control coefficients and time-varying delay are unknown. The drift and diffusion terms are subject to unknown homogeneous growth condition. By virtue of adding a power integrator technique, an adaptive output-feedback controller is designed to render that the closed-loop system is bounded in probability, and the state of switched stochastic nonlinear system can be globally regulated to the origin almost surely. A numerical example is provided to demonstrate the validity of the proposed control method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. The Impact of Incentivizing the Use of Feedback on Learning and Performance in Educational Videogames

    NASA Technical Reports Server (NTRS)

    Delacruz, Girlie C.

    2012-01-01

    Educational videogames can be designed to provide instructional feedback responsive to specific actions. However, existing research indicates that students tend to ignore the feedback provided. That is, students often use ineffective help-seeking strategies. Research on the topic of help-seeking in learning environments have primarily focused on the role of cognitive factors, the nature of the help, or issues of timing and frequency. There is a noticeable gap in understanding how to motivate the use provided feedback. This study examined the relation between incentivizing the use of feedback and providing an explanation of the game's scoring rules on math learning in a pre-algebra videogame. A randomized-control design was used, comparing learning outcomes of students who received the incentive with those who did not. Results indicated that students given the incentive to use feedback had significantly higher normalized change scores on math items (d = .53), with stronger effects for students with low academic intrinsic motivation (d = .88 - 1.17).

  16. Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays.

    PubMed

    Karimi, Hamid Reza; Gao, Huijun

    2008-07-01

    A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.

  17. Robust decentralised stabilisation of uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative feedback

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zhang, Qingling; Ren, Junchao; Zhang, Yanhao

    2017-10-01

    This paper studies the problem of robust stability and stabilisation for uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative state feedback or proportional plus derivative output feedback. The basic idea of this work is to use the well-known differential mean value theorem to deal with the nonlinear model such that the considered nonlinear descriptor systems can be transformed into linear parameter varying systems. By using a parameter-dependent Lyapunov function, a decentralised proportional plus derivative state feedback controller and decentralised proportional plus derivative output feedback controller are designed, respectively such that the closed-loop system is quadratically normal and quadratically stable. Finally, a hypersonic vehicle practical simulation example and numerical example are given to illustrate the effectiveness of the results obtained in this paper.

  18. Simulation results of automatic restructurable flight control system concepts

    NASA Technical Reports Server (NTRS)

    Weiss, J. L.; Looze, D. P.; Eterno, J. S.; Ostroff, A.

    1986-01-01

    The restructurable flight control system (RFCS) described by Weiss et al. (1986) is reviewed, and several results of an extensive six degrees of freedom nonlinear simulation of several aspects of this system are reported. It is concluded that the nontraditional use of standard control surfaces in a nominal feedback control system to spread control authority among many redundant control elements provides a significant amount of fault tolerance without any use of restructuring techniques. The use of new feedback gains alone following a failure can provide significantly improved recovery as long as the control elements remain within their travel limits and as long as uncertainty about the failure identity is properly handled. The use of the feed-forward trim solution in conjunction with redesigned feedback gains allows recovery to take place even when significant control saturation occurs.

  19. Hand-held survey probe

    DOEpatents

    Young, Kevin L [Idaho Falls, ID; Hungate, Kevin E [Idaho Falls, ID

    2010-02-23

    A system for providing operational feedback to a user of a detection probe may include an optical sensor to generate data corresponding to a position of the detection probe with respect to a surface; a microprocessor to receive the data; a software medium having code to process the data with the microprocessor and pre-programmed parameters, and making a comparison of the data to the parameters; and an indicator device to indicate results of the comparison. A method of providing operational feedback to a user of a detection probe may include generating output data with an optical sensor corresponding to the relative position with respect to a surface; processing the output data, including comparing the output data to pre-programmed parameters; and indicating results of the comparison.

  20. Analyzing Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    Interactive controls analysis (INCA) program developed to provide user-friendly environment for design and analysis of linear control systems, primarily feedback control. Designed for use with both small- and large-order systems. Using interactive-graphics capability, INCA user quickly plots root locus, frequency response, or time response of either continuous-time system or sampled-data system. Configuration and parameters easily changed, allowing user to design compensation networks and perform sensitivity analyses in very convenient manner. Written in Pascal and FORTRAN.

  1. A variable-gain output feedback control design methodology

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Moerder, Daniel D.; Broussard, John R.; Taylor, Deborah B.

    1989-01-01

    A digital control system design technique is developed in which the control system gain matrix varies with the plant operating point parameters. The design technique is obtained by formulating the problem as an optimal stochastic output feedback control law with variable gains. This approach provides a control theory framework within which the operating range of a control law can be significantly extended. Furthermore, the approach avoids the major shortcomings of the conventional gain-scheduling techniques. The optimal variable gain output feedback control problem is solved by embedding the Multi-Configuration Control (MCC) problem, previously solved at ICS. An algorithm to compute the optimal variable gain output feedback control gain matrices is developed. The algorithm is a modified version of the MCC algorithm improved so as to handle the large dimensionality which arises particularly in variable-gain control problems. The design methodology developed is applied to a reconfigurable aircraft control problem. A variable-gain output feedback control problem was formulated to design a flight control law for an AFTI F-16 aircraft which can automatically reconfigure its control strategy to accommodate failures in the horizontal tail control surface. Simulations of the closed-loop reconfigurable system show that the approach produces a control design which can accommodate such failures with relative ease. The technique can be applied to many other problems including sensor failure accommodation, mode switching control laws and super agility.

  2. New nonlinear control algorithms for multiple robot arms

    NASA Technical Reports Server (NTRS)

    Tarn, T. J.; Bejczy, A. K.; Yun, X.

    1988-01-01

    Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space.

  3. Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.

    PubMed

    Felt, Wyatt; Chin, Khai Yi; Remy, C David

    2017-09-01

    This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.

  4. Automatic and controlled processing in the corticocerebellar system.

    PubMed

    Ramnani, Narender

    2014-01-01

    During learning, performance changes often involve a transition from controlled processing in which performance is flexible and responsive to ongoing error feedback, but effortful and slow, to a state in which processing becomes swift and automatic. In this state, performance is unencumbered by the requirement to process feedback, but its insensitivity to feedback reduces its flexibility. Many properties of automatic processing are similar to those that one would expect of forward models, and many have suggested that these may be instantiated in cerebellar circuitry. Since hierarchically organized frontal lobe areas can both send and receive commands, I discuss the possibility that they can act both as controllers and controlled objects and that their behaviors can be independently modeled by forward models in cerebellar circuits. Since areas of the prefrontal cortex contribute to this hierarchically organized system and send outputs to the cerebellar cortex, I suggest that the cerebellum is likely to contribute to the automation of cognitive skills, and to the formation of habitual behavior which is resistant to error feedback. An important prerequisite to these ideas is that cerebellar circuitry should have access to higher order error feedback that signals the success or failure of cognitive processing. I have discussed the pathways through which such feedback could arrive via the inferior olive and the dopamine system. Cerebellar outputs inhibit both the inferior olive and the dopamine system. It is possible that learned representations in the cerebellum use this as a mechanism to suppress the processing of feedback in other parts of the nervous system. Thus, cerebellar processes that control automatic performance may be completed without triggering the engagement of controlled processes by prefrontal mechanisms. © 2014 Elsevier B.V. All rights reserved.

  5. Event-triggered output feedback control for distributed networked systems.

    PubMed

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2016-01-01

    This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1988-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  7. Investigation, development and application of optimal output feedback theory. Volume 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Halyo, N.

    1984-01-01

    This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.

  8. Velocity feedback control with a flywheel proof mass actuator

    NASA Astrophysics Data System (ADS)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  9. Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Changzheng; Yu, Shenbo

    2017-07-01

    This paper deals with the problem of non-fragile H∞ static output-feedback control of vehicle active suspension systems with finite-frequency constraint. The control objective is to improve ride comfort within the given frequency range and ensure the hard constraints in the time-domain. Moreover, in order to enhance the robustness of the controller, the control gain perturbation is also considered in controller synthesis. Firstly, a new non-fragile H∞ finite-frequency control condition is established by using generalized Kalman-Yakubovich-Popov (GKYP) lemma. Secondly, the static output-feedback control gain is directly derived by using a non-iteration algorithm. Different from the existing iteration LMI results, the static output-feedback design is simple and less conservative. Finally, the proposed control algorithm is applied to a quarter-car active suspension model with actuator dynamics, numerical results are made to show the effectiveness and merits of the proposed method.

  10. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    NASA Astrophysics Data System (ADS)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  11. Orphanin FQ-ORL-1 regulation of reproduction and reproductive behavior in the female.

    PubMed

    Sinchak, Kevin; Dalhousay, Lauren; Sanathara, Nayna

    2015-01-01

    Orphanin FQ (OFQ/N) and its receptor, opioid receptor-like receptor-1 (ORL-1), are expressed throughout steroid-responsive limbic and hypothalamic circuits that regulate female ovarian hormone feedback and reproductive behavior circuits. The arcuate nucleus of the hypothalamus (ARH) is a brain region that expresses OFQ/N and ORL-1 important for both sexual behavior and modulating estradiol feedback loops. Within the ARH, the activation of the OFQ/N-ORL-1 system facilitates sexual receptivity (lordosis) through the inhibition of β-endorphin neuronal activity. Estradiol initially activates ARH β-endorphin neurons to inhibit lordosis. Simultaneously, estradiol upregulates coexpression of OFQ/N and progesterone receptors and ORL-1 in ARH β-endorphin neurons. Ovarian hormones regulate pre- and postsynaptic coupling of ORL-1 to its G protein-coupled signaling pathways. When the steroid-primed rat is nonreceptive, estradiol acts pre- and postsynaptically to decrease the ability of the OFQ/N-ORL-1 system to inhibit ARH β-endorphin neurotransmission. Conversely, when sexually receptive, ORL-1 signaling is restored to inhibit β-endorphin neurotransmission. Although steroid signaling that facilitates lordosis converges to deactivate ARH β-endorphin neurons, estradiol-only facilitation of lordosis requires the activation of ORL-1, but estradiol+progesterone does not, indicating that multiple circuits mediate ovarian hormone signaling to deactivate ARH β-endorphin neurons. Research on the role of OFQ/N-ORL-1 in ovarian hormone feedback loops is just beginning. In the rat, OFQ/N may act to terminate gonadotropin-releasing hormone and luteinizing hormone release under positive and negative feedbacks. In the ewe, it appears to directly inhibit gonadotropin-releasing hormone release to mediate progesterone-negative feedback. As a whole, the localization and actions of OFQ/N-ORL-1 system indicate that it may mediate the actions of estradiol and progesterone to synchronize reproductive behavior and ovarian hormone feedback loops. © 2015 Elsevier Inc. All rights reserved.

  12. Performance capabilities of a JPL dual-arm advanced teleoperation system

    NASA Technical Reports Server (NTRS)

    Szakaly, Z. F.; Bejczy, A. K.

    1991-01-01

    The system comprises: (1) two PUMA 560 robot arms, each equipped with the latest JPL developed smart hands which contain 3-D force/moment and grasp force sensors; (2) two general purpose force reflecting hand controllers; (3) a NS32016 microprocessors based distributed computing system together with JPL developed universal motor controllers; (4) graphics display of sensor data; (5) capabilities for time delay experiments; and (6) automatic data recording capabilities. Several different types of control modes are implemented on this system using different feedback control techniques. Some of the control modes and the related feedback control techniques are described, and the achievable control performance for tracking position and force trajectories are reported. The interaction between position and force trajectory tracking is illustrated. The best performance is obtained by using a novel, task space error feedback technique.

  13. Feedback to semi-professional counselors in treating child aggression.

    PubMed

    Shechtman, Zipora; Tutian, Rony

    2017-05-01

    To investigate the impact of outcome feedback provided to semi-professional counselors of children and adolescents at risk for aggressive behavior, following group treatment. Participants included 230 aggressive children and adolescents and 64 educators in a quasi-experimental design of 3 conditions: experimental group with feedback, experimental group without feedback, and control group (no treatment). The current study employed a feedback system based on self-report aggression scores measured after each session, provided to teachers, including an alert system and weekly follow-up group support. Outcomes were more favorable for the treatment children than the control group, but feedback had no impact on the results. Outcome feedback provided to group therapists does not have an effect on children and adolescents' reduction of aggression. Further research is needed to identify possible reasons for failure to show feedback effect.

  14. A hospital-site controlled intervention using audit and feedback to implement guidelines concerning inappropriate treatment of catheter-associated asymptomatic bacteriuria

    PubMed Central

    2011-01-01

    Background Catheter-associated urinary tract infection (CAUTI) is one of the most common hospital-acquired infections. However, many cases treated as hospital-acquired CAUTI are actually asymptomatic bacteriuria (ABU). Evidence-based guidelines recommend that providers neither screen for nor treat ABU in most catheterized patients, but there is a significant gap between these guidelines and clinical practice. Our objectives are (1) to evaluate the effectiveness of an audit and feedback intervention for increasing guideline-concordant care concerning catheter-associated ABU and (2) to measure improvements in healthcare providers' knowledge of and attitudes toward the practice guidelines associated with the intervention. Methods/Design The study uses a controlled pre/post design to test an intervention using audit and feedback of healthcare providers to improve their compliance with ABU guidelines. The intervention and the control sites are two VA hospitals. For objective 1 we will review medical records to measure the clinical outcomes of inappropriate screening for and treatment of catheter-associated ABU. For objective 2 we will survey providers' knowledge and attitudes. Three phases of our protocol are proposed: the first 12-month phase will involve observation of the baseline incidence of inappropriate screening for and treatment of ABU at both sites. This surveillance for clinical outcomes will continue at both sites throughout the study. Phase 2 consists of 12 months of individualized audit and feedback at the intervention site and guidelines distribution at both sites. The third phase, also over 12 months, will provide unit-level feedback at the intervention site to assess sustainability. Healthcare providers at the intervention site during phase 2 and at both sites during phase 3 will complete pre/post surveys of awareness and familiarity (knowledge), as well as of acceptance and outcome expectancy (attitudes) regarding the relevant practice guidelines. Discussion Our proposal to bring clinical practice in line with published guidelines has significant potential to decrease overdiagnosis of CAUTI and associated inappropriate antibiotic use. Our study will also provide information about how to maximize effectiveness of audit and feedback to achieve guideline adherence in the inpatient setting. Trial Registration NCT01052545 PMID:21513539

  15. A hospital-site controlled intervention using audit and feedback to implement guidelines concerning inappropriate treatment of catheter-associated asymptomatic bacteriuria.

    PubMed

    Trautner, Barbara W; Kelly, P Adam; Petersen, Nancy; Hysong, Sylvia; Kell, Harrison; Liao, Kershena S; Patterson, Jan E; Naik, Aanand D

    2011-04-22

    Catheter-associated urinary tract infection (CAUTI) is one of the most common hospital-acquired infections. However, many cases treated as hospital-acquired CAUTI are actually asymptomatic bacteriuria (ABU). Evidence-based guidelines recommend that providers neither screen for nor treat ABU in most catheterized patients, but there is a significant gap between these guidelines and clinical practice. Our objectives are (1) to evaluate the effectiveness of an audit and feedback intervention for increasing guideline-concordant care concerning catheter-associated ABU and (2) to measure improvements in healthcare providers' knowledge of and attitudes toward the practice guidelines associated with the intervention. The study uses a controlled pre/post design to test an intervention using audit and feedback of healthcare providers to improve their compliance with ABU guidelines. The intervention and the control sites are two VA hospitals. For objective 1 we will review medical records to measure the clinical outcomes of inappropriate screening for and treatment of catheter-associated ABU. For objective 2 we will survey providers' knowledge and attitudes. Three phases of our protocol are proposed: the first 12-month phase will involve observation of the baseline incidence of inappropriate screening for and treatment of ABU at both sites. This surveillance for clinical outcomes will continue at both sites throughout the study. Phase 2 consists of 12 months of individualized audit and feedback at the intervention site and guidelines distribution at both sites. The third phase, also over 12 months, will provide unit-level feedback at the intervention site to assess sustainability. Healthcare providers at the intervention site during phase 2 and at both sites during phase 3 will complete pre/post surveys of awareness and familiarity (knowledge), as well as of acceptance and outcome expectancy (attitudes) regarding the relevant practice guidelines. Our proposal to bring clinical practice in line with published guidelines has significant potential to decrease overdiagnosis of CAUTI and associated inappropriate antibiotic use. Our study will also provide information about how to maximize effectiveness of audit and feedback to achieve guideline adherence in the inpatient setting. NCT01052545.

  16. Consideration of computer limitations in implementing on-line controls. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Roberts, G. K.

    1976-01-01

    A formal statement of the optimal control problem which includes the interval of dicretization as an optimization parameter, and extend this to include selection of a control algorithm as part of the optimization procedure, is formulated. The performance of the scalar linear system depends on the discretization interval. Discrete-time versions of the output feedback regulator and an optimal compensator, and the use of these results in presenting an example of a system for which fast partial-state-feedback control better minimizes a quadratic cost than either a full-state feedback control or a compensator, are developed.

  17. Servo control of an optical trap.

    PubMed

    Wulff, Kurt D; Cole, Daniel G; Clark, Robert L

    2007-08-01

    A versatile optical trap has been constructed to control the position of trapped objects and ultimately to apply specified forces using feedback control. While the design, development, and use of optical traps has been extensive and feedback control has played a critical role in pushing the state of the art, few comprehensive examinations of feedback control of optical traps have been undertaken. Furthermore, as the requirements are pushed to ever smaller distances and forces, the performance of optical traps reaches limits. It is well understood that feedback control can result in both positive and negative effects in controlled systems. We give an analysis of the trapping limits as well as introducing an optical trap with a feedback control scheme that dramatically improves an optical trap's sensitivity at low frequencies.

  18. A program to evaluate a control system based on feedback of aerodynamic pressure differentials

    NASA Technical Reports Server (NTRS)

    Levy, D. W.; Finn, P.; Roskam, J.

    1981-01-01

    The use of aerodynamic pressure differentials to position a control surface is evaluated. The system is a differential pressure command loop, analogous to a position command loop, where the surface is commanded to move until a desired differential pressure across the surface is achieved. This type of control is more direct and accurate because it is the differential pressure which causes the control forces and moments. A frequency response test was performed in a low speed wind tunnel to measure the performance of the system. Both pressure and position feedback were tested. The pressure feedback performed as well as position feedback implying that the actuator, with a break frequency on the order of 10 Rad/sec, was the limiting component. Theoretical considerations indicate that aerodynamic lags will not appear below frequencies of 50 Rad/sec, or higher.

  19. Reduced-order dynamic output feedback control of uncertain discrete-time Markov jump linear systems

    NASA Astrophysics Data System (ADS)

    Morais, Cecília F.; Braga, Márcio F.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.

    2017-11-01

    This paper deals with the problem of designing reduced-order robust dynamic output feedback controllers for discrete-time Markov jump linear systems (MJLS) with polytopic state space matrices and uncertain transition probabilities. Starting from a full order, mode-dependent and polynomially parameter-dependent dynamic output feedback controller, sufficient linear matrix inequality based conditions are provided for the existence of a robust reduced-order dynamic output feedback stabilising controller with complete, partial or none mode dependency assuring an upper bound to the ? or the ? norm of the closed-loop system. The main advantage of the proposed method when compared to the existing approaches is the fact that the dynamic controllers are exclusively expressed in terms of the decision variables of the problem. In other words, the matrices that define the controller realisation do not depend explicitly on the state space matrices associated with the modes of the MJLS. As a consequence, the method is specially suitable to handle order reduction or cluster availability constraints in the context of ? or ? dynamic output feedback control of discrete-time MJLS. Additionally, as illustrated by means of numerical examples, the proposed approach can provide less conservative results than other conditions in the literature.

  20. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Chenxi, E-mail: cxshao@ustc.edu.cn; Xue, Yong; Fang, Fang

    2015-07-15

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedbackmore » control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.« less

  1. Changes in brain activity following intensive voice treatment in children with cerebral palsy.

    PubMed

    Bakhtiari, Reyhaneh; Cummine, Jacqueline; Reed, Alesha; Fox, Cynthia M; Chouinard, Brea; Cribben, Ivor; Boliek, Carol A

    2017-09-01

    Eight children (3 females; 8-16 years) with motor speech disorders secondary to cerebral palsy underwent 4 weeks of an intensive neuroplasticity-principled voice treatment protocol, LSVT LOUD ® , followed by a structured 12-week maintenance program. Children were asked to overtly produce phonation (ah) at conversational loudness, cued-phonation at perceived twice-conversational loudness, a series of single words, and a prosodic imitation task while being scanned using fMRI, immediately pre- and post-treatment and 12 weeks following a maintenance program. Eight age- and sex-matched controls were scanned at each of the same three time points. Based on the speech and language literature, 16 bilateral regions of interest were selected a priori to detect potential neural changes following treatment. Reduced neural activity in the motor areas (decreased motor system effort) before and immediately after treatment, and increased activity in the anterior cingulate gyrus after treatment (increased contribution of decision making processes) were observed in the group with cerebral palsy compared to the control group. Using graphical models, post-treatment changes in connectivity were observed between the left supramarginal gyrus and the right supramarginal gyrus and the left precentral gyrus for the children with cerebral palsy, suggesting LSVT LOUD enhanced contributions of the feedback system in the speech production network instead of high reliance on feedforward control system and the somatosensory target map for regulating vocal effort. Network pruning indicates greater processing efficiency and the recruitment of the auditory and somatosensory feedback control systems following intensive treatment. Hum Brain Mapp 38:4413-4429, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Output feedback regulator design for jet engine control systems

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1977-01-01

    A multivariable control design procedure based on the output feedback regulator formulation is described and applied to turbofan engine model. Full order model dynamics, were incorporated in the example design. The effect of actuator dynamics on closed loop performance was investigaged. Also, the importance of turbine inlet temperature as an element of the dynamic feedback was studied. Step responses were given to indicate the improvement in system performance with this control. Calculation times for all experiments are given in CPU seconds for comparison purposes.

  3. Performance recovery of a class of uncertain non-affine systems with unmodelled dynamics: an indirect dynamic inversion method

    NASA Astrophysics Data System (ADS)

    Yi, Bowen; Lin, Shuyi; Yang, Bo; Zhang, Weidong

    2018-02-01

    This paper presents an output feedback indirect dynamic inversion (IDI) approach for a class of uncertain nonaffine systems with input unmodelled dynamics. Compared with previous approaches to achieve performance recovery, the proposed method aims at dealing with a broader class of nonaffine-in-control systems with triangular structure. An IDI state feedback law is designed first, in which less knowledge of the model plant is needed compared to earlier approximate dynamic inversion methods, thus yielding more robust performance. After that, an extended high-gain observer is designed to accomplish the task with output feedback. Finally, we prove that the designed IDI controller is equivalent to an adaptive proportional-integral (PI) controller, with respect to both time response equivalence and robustness equivalence. The conclusion implies that for the studied strict-feedback non-affine systems with unmodelled dynamics, there always exits a PI controller to stabilise the systems. The effectiveness and benefits of the designed approach are verified by three examples.

  4. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  5. Design of multivariable feedback control systems via spectral assignment. [as applied to aircraft flight control

    NASA Technical Reports Server (NTRS)

    Liberty, S. R.; Mielke, R. R.; Tung, L. J.

    1981-01-01

    Applied research in the area of spectral assignment in multivariable systems is reported. A frequency domain technique for determining the set of all stabilizing controllers for a single feedback loop multivariable system is described. It is shown that decoupling and tracking are achievable using this procedure. The technique is illustrated with a simple example.

  6. Adaptive NN control for discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints.

    PubMed

    Chen, Weisheng

    2009-07-01

    This paper focuses on the problem of adaptive neural network tracking control for a class of discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints. Two novel state-feedback and output-feedback dynamic control laws are established where the function tanh(.) is employed to solve the saturation constraint problem. Implicit function theorem and mean value theorem are exploited to deal with non-affine variables that are used as actual control. Radial basis function neural networks are used to approximate the desired input function. Discrete Nussbaum gain is used to estimate the unknown sign of control gain. The uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. A simulation example is provided to illustrate the effectiveness of control schemes proposed in this paper.

  7. Study to eliminate ground resonance using active controls

    NASA Technical Reports Server (NTRS)

    Straub, F. K.

    1984-01-01

    The effectiveness of active control blade feathering in increasing rotor body damping and the possibility to eliminate ground resonance instabilities were investigated. An analytical model representing rotor flapping and lead-lag degrees of freedom and body pitch, roll, longitudinal and lateral motion is developed. Active control blade feathering is implemented as state variable feedback through a conventional swashplate. The influence of various feedback states, feedback gain, and weighting between the cyclic controls is studied through stability and response analyses. It is shown that blade cyclic inplane motion, roll rate and roll acceleration feedback can add considerable damping to the system and eliminate ground resonance instabilities, which the feedback phase is also a powerful parameter, if chosen properly, it maximizes augmentation of the inherent regressing lag mode damping. It is shown that rotor configuration parameters, like blade root hinge offset, flapping stiffness, and precone considerably influence the control effectiveness. It is found that active control is particularly powerful for hingeless and bearingless rotor systems.

  8. The effects of driver identity on driving safety in a retrospective feedback system.

    PubMed

    Zhao, Guozhen; Wu, Changxu

    2012-03-01

    Retrospective feedback that provides detailed information on a driver's performance in critical driving situations at the end of a trip enhances his/her driving behaviors and safe driving habits. Although this has been demonstrated by a previous study, retrospective feedback can be further improved and applied to non-critical driving situations, which is needed for transportation safety. To propose a new retrospective feedback system that uses driver identity (i.e., a driver's name) and to experimentally study its effects on measures of driving performance and safety in a driving simulator. We conducted a behavioral experimental study with 30 participants. "Feedback type" was a between-subject variable with three conditions: no feedback (control group), feedback without driver identity, and feedback with driver identity. We measured multiple aspects of participants' driving behavior. To control for potential confounds, factors that were significantly correlated with driving behavior (e.g., age and driving experience) were all entered as covariates into a multivariate analysis of variance. To examine the effects of speeding on collision severity in driving simulation studies, we also developed a new index - momentum of potential collision - with a set of equations. Subjects who used a feedback system with driver identity had the fewest speeding violations and central-line crossings, spent the least amount of time speeding and crossing the central line, had the lowest speeding and central-line crossing magnitude, ran the fewest red lights, and had the smallest momentum of potential collision compared to the groups with feedback without driver identity and without feedback (control group). The new retrospective feedback system with driver identity has the potential to enhance a person's driving safety (e.g., speeding, central-line crossing, momentum of potential collision), which is an indication of the valence of one's name in a feedback system design. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher [Williamsburg, VA

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  10. Feedback Error Learning Controller for Functional Electrical Stimulation Assistance in a Hybrid Robotic System for Reaching Rehabilitation

    PubMed Central

    Resquín, Francisco; Gonzalez-Vargas, Jose; Ibáñez, Jaime; Brunetti, Fernando; Pons, José Luis

    2016-01-01

    Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES) is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL) control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model. PMID:27990245

  11. Time-delayed feedback control of diffusion in random walkers.

    PubMed

    Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U

    2017-07-01

    Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.

  12. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity.

    PubMed

    Takeda, Kenta; Mani, Hiroki; Hasegawa, Naoya; Sato, Yuki; Tanaka, Shintaro; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-07-19

    The benefit of visual feedback of the center of pressure (COP) on quiet standing is still debatable. This study aimed to investigate the adaptation effects of visual feedback training using both the COP and center of gravity (COG) during quiet standing. Thirty-four healthy young adults were divided into three groups randomly (COP + COG, COP, and control groups). A force plate was used to calculate the coordinates of the COP in the anteroposterior (COP AP ) and mediolateral (COP ML ) directions. A motion analysis system was used to calculate the coordinates of the center of mass (COM) in both directions (COM AP and COM ML ). The coordinates of the COG in the AP direction (COG AP ) were obtained from the force plate signals. Augmented visual feedback was presented on a screen in the form of fluctuation circles in the vertical direction that moved upward as the COP AP and/or COG AP moved forward and vice versa. The COP + COG group received the real-time COP AP and COG AP feedback simultaneously, whereas the COP group received the real-time COP AP feedback only. The control group received no visual feedback. In the training session, the COP + COG group was required to maintain an even distance between the COP AP and COG AP and reduce the COG AP fluctuation, whereas the COP group was required to reduce the COP AP fluctuation while standing on a foam pad. In test sessions, participants were instructed to keep their standing posture as quiet as possible on the foam pad before (pre-session) and after (post-session) the training sessions. In the post-session, the velocity and root mean square of COM AP in the COP + COG group were lower than those in the control group. In addition, the absolute value of the sum of the COP - COM distances in the COP + COG group was lower than that in the COP group. Furthermore, positive correlations were found between the COM AP velocity and COP - COM parameters. The results suggest that the novel visual feedback training that incorporates the COP AP -COG AP interaction reduces postural sway better than the training using the COP AP alone during quiet standing. That is, even COP AP fluctuation around the COG AP would be effective in reducing the COM AP velocity.

  13. Nonlinear adaptive control of an elastic robotic arm

    NASA Technical Reports Server (NTRS)

    Singh, S. N.

    1986-01-01

    An approach to control of a class of nonlinear flexible robotic systems is presented. For simplicity, a robot arm (PUMA-type) with three rotational joints is considered. The third link is assumed to be elastic. An adaptive torquer control law is derived for controlling the joint angles. This controller includes a dynamic system in the feedback path, requires only joint angle and rate for feedback, and asymptotically decomposes the elastic dynamics into two subsystems representing the transverse vibrations of the elastic link in two orthogonal planes. To damp out the elastic vibration, a force control law using modal feedback is synthesized. The combination of the torque and force control laws accomplishes joint angle control and elastic mode stabilization.

  14. Compensatory Effort Parallels Midbrain Deactivation during Mental Fatigue: An fMRI Study

    PubMed Central

    Nakagawa, Seishu; Sugiura, Motoaki; Akitsuki, Yuko; Hosseini, S. M. Hadi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yomogida, Yukihito; Yokoyama, Ryoichi; Takeuchi, Hikaru; Kawashima, Ryuta

    2013-01-01

    Fatigue reflects the functioning of our physiological negative feedback system, which prevents us from overworking. When fatigued, however, we often try to suppress this system in an effort to compensate for the resulting deterioration in performance. Previous studies have suggested that the effect of fatigue on neurovascular demand may be influenced by this compensatory effort. The primary goal of the present study was to isolate the effect of compensatory effort on neurovascular demand. Healthy male volunteers participated in a series of visual and auditory divided attention tasks that steadily increased fatigue levels for 2 hours. Functional magnetic resonance imaging scans were performed during the first and last quarter of the study (Pre and Post sessions, respectively). Tasks with low and high attentional load (Low and High conditions, respectively) were administrated in alternating blocks. We assumed that compensatory effort would be greater under the High-attentional-load condition compared with the Low-load condition. The difference was assessed during the two sessions. The effect of compensatory effort on neurovascular demand was evaluated by examining the interaction between load (High vs. Low) and time (Pre vs. Post). Significant fatigue-induced deactivation (i.e., Pre>Post) was observed in the frontal, temporal, occipital, and parietal cortices, in the cerebellum, and in the midbrain in both the High and Low conditions. The interaction was significantly greater in the High than in the Low condition in the midbrain. Neither significant fatigue-induced activation (i.e., Pre[PreE– PostE]) may reflect suppression of the negative feedback system that normally triggers recuperative rest to maintain homeostasis. PMID:23457592

  15. Training of Working Memory Impacts Neural Processing of Vocal Pitch Regulation

    PubMed Central

    Li, Weifeng; Guo, Zhiqiang; Jones, Jeffery A.; Huang, Xiyan; Chen, Xi; Liu, Peng; Chen, Shaozhen; Liu, Hanjun

    2015-01-01

    Working memory training can improve the performance of tasks that were not trained. Whether auditory-motor integration for voice control can benefit from working memory training, however, remains unclear. The present event-related potential (ERP) study examined the impact of working memory training on the auditory-motor processing of vocal pitch. Trained participants underwent adaptive working memory training using a digit span backwards paradigm, while control participants did not receive any training. Before and after training, both trained and control participants were exposed to frequency-altered auditory feedback while producing vocalizations. After training, trained participants exhibited significantly decreased N1 amplitudes and increased P2 amplitudes in response to pitch errors in voice auditory feedback. In addition, there was a significant positive correlation between the degree of improvement in working memory capacity and the post-pre difference in P2 amplitudes. Training-related changes in the vocal compensation, however, were not observed. There was no systematic change in either vocal or cortical responses for control participants. These findings provide evidence that working memory training impacts the cortical processing of feedback errors in vocal pitch regulation. This enhanced cortical processing may be the result of increased neural efficiency in the detection of pitch errors between the intended and actual feedback. PMID:26553373

  16. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate.

    PubMed

    Frank, David C; Esper, Jan; Raible, Christoph C; Büntgen, Ulf; Trouet, Valerie; Stocker, Benjamin; Joos, Fortunat

    2010-01-28

    The processes controlling the carbon flux and carbon storage of the atmosphere, ocean and terrestrial biosphere are temperature sensitive and are likely to provide a positive feedback leading to amplified anthropogenic warming. Owing to this feedback, at timescales ranging from interannual to the 20-100-kyr cycles of Earth's orbital variations, warming of the climate system causes a net release of CO(2) into the atmosphere; this in turn amplifies warming. But the magnitude of the climate sensitivity of the global carbon cycle (termed gamma), and thus of its positive feedback strength, is under debate, giving rise to large uncertainties in global warming projections. Here we quantify the median gamma as 7.7 p.p.m.v. CO(2) per degrees C warming, with a likely range of 1.7-21.4 p.p.m.v. CO(2) per degrees C. Sensitivity experiments exclude significant influence of pre-industrial land-use change on these estimates. Our results, based on the coupling of a probabilistic approach with an ensemble of proxy-based temperature reconstructions and pre-industrial CO(2) data from three ice cores, provide robust constraints for gamma on the policy-relevant multi-decadal to centennial timescales. By using an ensemble of >200,000 members, quantification of gamma is not only improved, but also likelihoods can be assigned, thereby providing a benchmark for future model simulations. Although uncertainties do not at present allow exclusion of gamma calculated from any of ten coupled carbon-climate models, we find that gamma is about twice as likely to fall in the lowermost than in the uppermost quartile of their range. Our results are incompatibly lower (P < 0.05) than recent pre-industrial empirical estimates of approximately 40 p.p.m.v. CO(2) per degrees C (refs 6, 7), and correspondingly suggest approximately 80% less potential amplification of ongoing global warming.

  17. Feedback control of a Darrieus wind turbine and optimization of the produced energy

    NASA Astrophysics Data System (ADS)

    Maurin, T.; Henry, B.; Devos, F.; de Saint Louvent, B.; Gosselin, J.

    1984-03-01

    A microprocessor-driven control system, applied to the feedback control of a Darrieus wind turbine is presented. The use of a dc machine as a generator to recover the energy and as a motor to start the engine, allows simplified power electronics. The architecture of the control unit is built to ensure four different functions: starting, optimization of the recoverable energy, regulation of the speed, and braking. An experimental study of the system in a wind tunnel allowed optimization of the coefficients of the proportional and integral (pi) control algorithm. The electrical energy recovery was found to be much more efficient using the feedback system than without the control unit. This system allows a better characterization of the wind turbine and a regulation adapted to the wind statistics observed in one given geographical location.

  18. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.

    PubMed

    Yong, Ma; Yongzhen, Peng; Shuying, Wang

    2005-07-01

    As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control, and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark. Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could be reduced by up to 8-15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration could be reduced by up to 15-25%. This control strategy can be expected to be accepted by the operating personnel in wastewater treatment plants.

  19. Fast global orbit feedback system in PLS-II

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, C.; Kim, J. M.; Kim, K. R.; Lee, E. H.; Lee, J. W.; Lee, T. Y.; Park, C. D.; Shin, S.; Yoon, J. C.; Cho, W. S.; Park, G. S.; Kim, S. C.

    2016-12-01

    The transverse position of the electron beam in the Pohang Light Source-II is stabilized by the global orbit feedback system. A slow orbit feedback system has been operating at 2 Hz, and a fast orbit feedback (FOFB) system at 813 Hz was installed recently. This FOFB system consists of 96 electron-beam-position monitors, 48 horizontal fast correctors, 48 vertical fast correctors and Versa Module Europa bus control system. We present the design and implementation of the FOFB system and its test result. Simulation analysis is presented and future improvements are suggested.

  20. Evaluation of the ’Mentor’ Assessment and Feedback System for Air Battle Management Team Training

    DTIC Science & Technology

    2006-11-01

    authorised properly All aircraft entering ADIZ are identified in a timely manner Challenge procedures issued Unauthorised aircraft...maintained Effective low-level sanitisation Tactical Employment Pre-emptive Inter-FEZ Co- ordination Authentication procedures enforced

  1. Adaptive Fuzzy Tracking Control for a Class of MIMO Nonlinear Systems in Nonstrict-Feedback Form.

    PubMed

    Chen, Bing; Lin, Chong; Liu, Xiaoping; Liu, Kefu

    2015-12-01

    This paper focuses on the problem of fuzzy adaptive control for a class of multiinput and multioutput (MIMO) nonlinear systems in nonstrict-feedback form, which contains the strict-feedback form as a special case. By the condition of variable partition, a new fuzzy adaptive backstepping is proposed for such a class of nonlinear MIMO systems. The suggested fuzzy adaptive controller guarantees that the proposed control scheme can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking errors eventually converge to a small neighborhood around the origin. The main advantage of this paper is that a control approach is systematically derived for nonlinear systems with strong interconnected terms which are the functions of all states of the whole system. Simulation results further illustrate the effectiveness of the suggested approach.

  2. Simulation and design of feedback control on resistive wall modes in Keda Torus eXperiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chenguang; Liu, Wandong; Li, Hong

    2014-12-15

    The feedback control of resistive wall modes (RWMs) in Keda Torus eXperiment (KTX) (Liu et al., Plasma Phys. Controlled Fusion 56, 094009 (2014)) is investigated by simulation. A linear model is built to describe the growth of the unstable modes in the absence of feedback and the resulting mode suppression due to feedback, given the typical reversed field pinch plasma equilibrium. The layout of KTX with two shell structures (the vacuum vessel and the stabilizing shell) is taken into account. The feedback performance is explored both in the scheme of “clean mode control” (Zanca et al., Nucl. Fusion 47, 1425more » (2007)) and “raw mode control.” The discrete time control model with specific characteristic times will mimic the real feedback control action and lead to the favored control cycle. Moreover, the conceptual design of feedback control system is also presented, targeting on both RWMs and tearing modes.« less

  3. Local feedback control of light honeycomb panels.

    PubMed

    Hong, Chinsuk; Elliott, Stephen J

    2007-01-01

    This paper summarizes theoretical and experimental work on the feedback control of sound radiation from honeycomb panels using piezoceramic actuators. It is motivated by the problem of sound transmission in aircraft, specifically the active control of trim panels. Trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently mounted to the fuselage for the passive reduction of noise transmission. Local coupling of the closely spaced sensor and actuator was observed experimentally and modeled using a single degree of freedom system. The effect of the local coupling was to roll off the response between the actuator and sensor at high frequencies, so that a feedback control system can have high gain margins. Unfortunately, only relatively poor global performance is then achieved because of localization of reduction around the actuator. This localization prompts the investigation of a multichannel active control system. Globalized reduction was predicted using a model of 12-channel direct velocity feedback control. The multichannel system, however, does not appear to yield a significant improvement in the performance because of decreased gain margin.

  4. Electromechanical modelling and design for phase control of locked modes in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olofsson, K. E. J.; Choi, W.; Humphreys, D. A.

    A basic nonlinear electromechanical model is developed for the interaction between a pre-existing near-saturated tearing-mode, a conducting wall, active coils internal to the wall, and active coils external to the wall. The tearing-mode is represented by a perturbed helical surface current and its island has a small but finite moment of inertia. The model is shown to have several properties that are qualitatively consistent with the experimental observations of mode-wall and mode-coil interactions. The main purpose of the model is to guide the design of a phase control system for locked modes (LMs) in tokamaks. Such a phase controller maymore » become an important component in integrated disruption avoidance systems. A realistic feedback controller for the LM phase is designed and tested for the electromechanical model. The results indicate that a simple fixed-gain controller can perform phase control of LMs with a range of sizes, and at arbitrary misalignment relative to a realistically dimensioned background error field. Finally, the basic model is expected to be a useful minimal dynamical system representation also for other aspects of mode-wall-coil interactions.« less

  5. Electromechanical modelling and design for phase control of locked modes in the DIII-D tokamak

    DOE PAGES

    Olofsson, K. E. J.; Choi, W.; Humphreys, D. A.; ...

    2016-02-05

    A basic nonlinear electromechanical model is developed for the interaction between a pre-existing near-saturated tearing-mode, a conducting wall, active coils internal to the wall, and active coils external to the wall. The tearing-mode is represented by a perturbed helical surface current and its island has a small but finite moment of inertia. The model is shown to have several properties that are qualitatively consistent with the experimental observations of mode-wall and mode-coil interactions. The main purpose of the model is to guide the design of a phase control system for locked modes (LMs) in tokamaks. Such a phase controller maymore » become an important component in integrated disruption avoidance systems. A realistic feedback controller for the LM phase is designed and tested for the electromechanical model. The results indicate that a simple fixed-gain controller can perform phase control of LMs with a range of sizes, and at arbitrary misalignment relative to a realistically dimensioned background error field. Finally, the basic model is expected to be a useful minimal dynamical system representation also for other aspects of mode-wall-coil interactions.« less

  6. Development and Piloting of a Classroom-focused Measurement Feedback System

    PubMed Central

    Nadeem, Erum; Cappella, Elise; Holland, Sibyl; Coccaro, Candace; Crisonino, Gerard

    2015-01-01

    The present study used a community partnered research method to develop and pilot a classroom-focused measurement feedback system (MFS) for school mental health providers to support teachers’ use of effective universal and target classroom practices related to student emotional and behavioral issues. School personnel from seven urban elementary and middle school classrooms participated. Phase I involved development and refinement of the system through a baseline needs assessment and rapid-cycle feedback. Phase II involved detailed case study analysis of pre-to-post quantitative and implementation process data. Results suggest that teachers who used the dashboard along with consultation showed improvement in observed classroom organization and emotional support. Results also suggest that MFS use was tied closely to consultation dose, and that broader support at the school level was critical. Classroom-focused MFSs are a promising tool to support classroom improvement, and warrant future research focused on their effectiveness and broad applicability. PMID:25894312

  7. Control of Uncertain Systems under Constraints: Switching Horizon Predictive Control of Persistently Disturbed Input-Saturated Plants

    DTIC Science & Technology

    2006-12-01

    on at any time from a family of candidate feedback-gains so as to control a discrete- time input-saturated LTI system possibly subject to persistent... times robustness Mosca, E. (2006) Control of Uncertain Systems under Constraints: Switching Horizon Predictive Control of Persistently Disturbed...feedback controls u = f(x̂) (3) so as to ensure, under suitable conditions, stability in the noiseless case as well as finite l∞-induced gain of the

  8. Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback.

    PubMed

    Lawrence, Emma J; Su, Li; Barker, Gareth J; Medford, Nick; Dalton, Jeffrey; Williams, Steve C R; Birbaumer, Niels; Veit, Ralf; Ranganatha, Sitaram; Bodurka, Jerzy; Brammer, Michael; Giampietro, Vincent; David, Anthony S

    2014-03-01

    The anterior insula (AI) plays a key role in affective processing, and insular dysfunction has been noted in several clinical conditions. Real-time functional MRI neurofeedback (rtfMRI-NF) provides a means of helping people learn to self-regulate activation in this brain region. Using the Blood Oxygenated Level Dependant (BOLD) signal from the right AI (RAI) as neurofeedback, we trained participants to increase RAI activation. In contrast, another group of participants was shown 'control' feedback from another brain area. Pre- and post-training affective probes were shown, with subjective ratings and skin conductance response (SCR) measured. We also investigated a reward-related reinforcement learning model of rtfMRI-NF. In contrast to the controls, we hypothesised a positive linear increase in RAI activation in participants shown feedback from this region, alongside increases in valence ratings and SCR to affective probes. Hypothesis-driven analyses showed a significant interaction between the RAI/control neurofeedback groups and the effect of self-regulation. Whole-brain analyses revealed a significant linear increase in RAI activation across four training runs in the group who received feedback from RAI. Increased activation was also observed in the caudate body and thalamus, likely representing feedback-related learning. No positive linear trend was observed in the RAI in the group receiving control feedback, suggesting that these data are not a general effect of cognitive strategy or control feedback. The control group did, however, show diffuse activation across the putamen, caudate and posterior insula which may indicate the representation of false feedback. No significant training-related behavioural differences were observed for valence ratings, or SCR. In addition, correlational analyses based on a reinforcement learning model showed that the dorsal anterior cingulate cortex underpinned learning in both groups. In summary, these data demonstrate that it is possible to regulate the RAI using rtfMRI-NF within one scanning session, and that such reward-related learning is mediated by the dorsal anterior cingulate. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. System identification from closed-loop data with known output feedback dynamics

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.

    1992-01-01

    This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.

  10. Integrated Control Using the SOFFT Control Structure

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  11. Cooperative learning neural network output feedback control of uncertain nonlinear multi-agent systems under directed topologies

    NASA Astrophysics Data System (ADS)

    Wang, W.; Wang, D.; Peng, Z. H.

    2017-09-01

    Without assuming that the communication topologies among the neural network (NN) weights are to be undirected and the states of each agent are measurable, the cooperative learning NN output feedback control is addressed for uncertain nonlinear multi-agent systems with identical structures in strict-feedback form. By establishing directed communication topologies among NN weights to share their learned knowledge, NNs with cooperative learning laws are employed to identify the uncertainties. By designing NN-based κ-filter observers to estimate the unmeasurable states, a new cooperative learning output feedback control scheme is proposed to guarantee that the system outputs can track nonidentical reference signals with bounded tracking errors. A simulation example is given to demonstrate the effectiveness of the theoretical results.

  12. Large deviation analysis of a simple information engine

    NASA Astrophysics Data System (ADS)

    Maitland, Michael; Grosskinsky, Stefan; Harris, Rosemary J.

    2015-11-01

    Information thermodynamics provides a framework for studying the effect of feedback loops on entropy production. It has enabled the understanding of novel thermodynamic systems such as the information engine, which can be seen as a modern version of "Maxwell's Dæmon," whereby a feedback controller processes information gained by measurements in order to extract work. Here, we analyze a simple model of such an engine that uses feedback control based on measurements to obtain negative entropy production. We focus on the distribution and fluctuations of the information obtained by the feedback controller. Significantly, our model allows an analytic treatment for a two-state system with exact calculation of the large deviation rate function. These results suggest an approximate technique for larger systems, which is corroborated by simulation data.

  13. Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.

    PubMed

    Sun, Kangkang; Sui, Shuai; Tong, Shaocheng

    2018-04-01

    This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.

  14. Kinematic and neurophysiological consequences of an assisted-force-feedback brain-machine interface training: a case study.

    PubMed

    Silvoni, Stefano; Cavinato, Marianna; Volpato, Chiara; Cisotto, Giulia; Genna, Clara; Agostini, Michela; Turolla, Andrea; Ramos-Murguialday, Ander; Piccione, Francesco

    2013-01-01

    In a proof-of-principle prototypical demonstration we describe a new type of brain-machine interface (BMI) paradigm for upper limb motor-training. The proposed technique allows a fast contingent and proportionally modulated stimulation of afferent proprioceptive and motor output neural pathways using operant learning. Continuous and immediate assisted-feedback of force proportional to rolandic rhythm oscillations during actual movements was employed and illustrated with a single case experiment. One hemiplegic patient was trained for 2 weeks coupling somatosensory brain oscillations with force-field control during a robot-mediated center-out motor-task whose execution approaches movements of everyday life. The robot facilitated actual movements adding a modulated force directed to the target, thus providing a non-delayed proprioceptive feedback. Neuro-electric, kinematic, and motor-behavioral measures were recorded in pre- and post-assessments without force assistance. Patient's healthy arm was used as control since neither a placebo control was possible nor other control conditions. We observed a generalized and significant kinematic improvement in the affected arm and a spatial accuracy improvement in both arms, together with an increase and focalization of the somatosensory rhythm changes used to provide assisted-force-feedback. The interpretation of the neurophysiological and kinematic evidences reported here is strictly related to the repetition of the motor-task and the presence of the assisted-force-feedback. Results are described as systematic observations only, without firm conclusions about the effectiveness of the methodology. In this prototypical view, the design of appropriate control conditions is discussed. This study presents a novel operant-learning-based BMI-application for motor-training coupling brain oscillations and force feedback during an actual movement.

  15. Adaptive neural control of MIMO nonlinear systems with a block-triangular pure-feedback control structure.

    PubMed

    Chen, Zhenfeng; Ge, Shuzhi Sam; Zhang, Yun; Li, Yanan

    2014-11-01

    This paper presents adaptive neural tracking control for a class of uncertain multiinput-multioutput (MIMO) nonlinear systems in block-triangular form. All subsystems within these MIMO nonlinear systems are of completely nonaffine pure-feedback form and allowed to have different orders. To deal with the nonaffine appearance of the control variables, the mean value theorem is employed to transform the systems into a block-triangular strict-feedback form with control coefficients being couplings among various inputs and outputs. A systematic procedure is proposed for the design of a new singularity-free adaptive neural tracking control strategy. Such a design procedure can remove the couplings among subsystems and hence avoids the possible circular control construction problem. As a consequence, all the signals in the closed-loop system are guaranteed to be semiglobally uniformly ultimately bounded. Moreover, the outputs of the systems are ensured to converge to a small neighborhood of the desired trajectories. Simulation studies verify the theoretical findings revealed in this paper.

  16. Physical constraints on biological integral control design for homeostasis and sensory adaptation.

    PubMed

    Ang, Jordan; McMillen, David R

    2013-01-22

    Synthetic biology includes an effort to use design-based approaches to create novel controllers, biological systems aimed at regulating the output of other biological processes. The design of such controllers can be guided by results from control theory, including the strategy of integral feedback control, which is central to regulation, sensory adaptation, and long-term robustness. Realization of integral control in a synthetic network is an attractive prospect, but the nature of biochemical networks can make the implementation of even basic control structures challenging. Here we present a study of the general challenges and important constraints that will arise in efforts to engineer biological integral feedback controllers or to analyze existing natural systems. Constraints arise from the need to identify target output values that the combined process-plus-controller system can reach, and to ensure that the controller implements a good approximation of integral feedback control. These constraints depend on mild assumptions about the shape of input-output relationships in the biological components, and thus will apply to a variety of biochemical systems. We summarize our results as a set of variable constraints intended to provide guidance for the design or analysis of a working biological integral feedback controller. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching L.; Adams, Neil; Bedrossian, Nazareth; Valavani, Lena

    1993-01-01

    This paper demonstrates an approach to nonlinear control system design that uses linearization by state feedback to allow faster maneuvering of payloads by the Shuttle Remote Manipulator System (SRMS). A nonlinear feedback law is defined to cancel the nonlinear plant dynamics so that a linear controller can be designed for the SRMS. First a nonlinear design model was generated via SIMULINK. This design model included nonlinear arm dynamics derived from the Lagrangian approach, linearized servo model, and linearized gearbox model. The current SRMS position hold controller was implemented on this system. Next, a trajectory was defined using a rigid body kinematics SRMS tool, KRMS. The maneuver was simulated. Finally, higher bandwidth controllers were developed. Results of the new controllers were compared with the existing SRMS automatic control modes for the Space Station Freedom Mission Build 4 Payload extended on the SRMS.

  18. Decentralised output feedback control of Markovian jump interconnected systems with unknown interconnections

    NASA Astrophysics Data System (ADS)

    Li, Li-Wei; Yang, Guang-Hong

    2017-07-01

    The problem of decentralised output feedback control is addressed for Markovian jump interconnected systems with unknown interconnections and general transition rates (TRs) allowed to be unknown or known with uncertainties. A class of decentralised dynamic output feedback controllers are constructed, and a cyclic-small-gain condition is exploited to dispose the unknown interconnections so that the resultant closed-loop system is stochastically stable and satisfies an H∞ performance. With slack matrices to cope with the nonlinearities incurred by unknown and uncertain TRs in control synthesis, a novel controller design condition is developed in linear matrix inequality formalism. Compared with the existing works, the proposed approach leads to less conservatism. Finally, two examples are used to illustrate the effectiveness of the new results.

  19. Observer-Based Adaptive Fault-Tolerant Tracking Control of Nonlinear Nonstrict-Feedback Systems.

    PubMed

    Wu, Chengwei; Liu, Jianxing; Xiong, Yongyang; Wu, Ligang

    2017-06-28

    This paper studies an output-based adaptive fault-tolerant control problem for nonlinear systems with nonstrict-feedback form. Neural networks are utilized to identify the unknown nonlinear characteristics in the system. An observer and a general fault model are constructed to estimate the unavailable states and describe the fault, respectively. Adaptive parameters are constructed to overcome the difficulties in the design process for nonstrict-feedback systems. Meanwhile, dynamic surface control technique is introduced to avoid the problem of ''explosion of complexity''. Furthermore, based on adaptive backstepping control method, an output-based adaptive neural tracking control strategy is developed for the considered system against actuator fault, which can ensure that all the signals in the resulting closed-loop system are bounded, and the system output signal can be regulated to follow the response of the given reference signal with a small error. Finally, the simulation results are provided to validate the effectiveness of the control strategy proposed in this paper.

  20. Feedback control for manipulating magnetization in spin-exchange optical pumping system

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Li, Jun; Jiang, Min; Zhao, Nan; Peng, XinHua

    2018-08-01

    Control of magnetization plays an important role in the scientific and technological field of manipulating spin systems. In this work, we study the problem of manipulating nuclear magnetization in the spin-exchange optical pumping system, including accelerating the recovery of nuclear polarization and fixing it on a specific desired state. A real-time feedback control strategy is exploited here. We have also done some numerical simulations, with the results clearly demonstrating the effectiveness of our method, that the nuclear magnetization is able to be driven towards the equilibrium state at a much faster speed and also can be stabilized to a target state. We expect that our feedback control method can find applications in gyro experiments.

  1. Combining a leadership course and multi-source feedback has no effect on leadership skills of leaders in postgraduate medical education. An intervention study with a control group.

    PubMed

    Malling, Bente; Mortensen, Lene; Bonderup, Thomas; Scherpbier, Albert; Ringsted, Charlotte

    2009-12-10

    Leadership courses and multi-source feedback are widely used developmental tools for leaders in health care. On this background we aimed to study the additional effect of a leadership course following a multi-source feedback procedure compared to multi-source feedback alone especially regarding development of leadership skills over time. Study participants were consultants responsible for postgraduate medical education at clinical departments. pre-post measures with an intervention and control group. The intervention was participation in a seven-day leadership course. Scores of multi-source feedback from the consultants responsible for education and respondents (heads of department, consultants and doctors in specialist training) were collected before and one year after the intervention and analysed using Mann-Whitney's U-test and Multivariate analysis of variances. There were no differences in multi-source feedback scores at one year follow up compared to baseline measurements, either in the intervention or in the control group (p = 0.149). The study indicates that a leadership course following a MSF procedure compared to MSF alone does not improve leadership skills of consultants responsible for education in clinical departments. Developing leadership skills takes time and the time frame of one year might have been too short to show improvement in leadership skills of consultants responsible for education. Further studies are needed to investigate if other combination of initiatives to develop leadership might have more impact in the clinical setting.

  2. Aversive stimuli exacerbate defensive motor behaviour in motor conversion disorder.

    PubMed

    Blakemore, Rebekah L; Sinanaj, Indrit; Galli, Silvio; Aybek, Selma; Vuilleumier, Patrik

    2016-12-01

    Conversion disorder or functional neurological symptom disorder (FND) can affect the voluntary motor system, without an organic cause. Functional symptoms are thought to be generated unconsciously, arising from underlying psychological stressors. However, attempts to demonstrate a direct relationship between the limbic system and disrupted motor function in FND are lacking. We tested whether negative affect would exacerbate alterations of motor control and corresponding brain activations in individuals with FND. Ten patients and ten healthy controls produced an isometric precision-grip contraction at 10% of maximum force while either viewing visual feedback of their force output, or unpleasant or pleasant emotional images (without feedback). Force magnitude was continuously recorded together with change in brain activity using fMRI. For controls, force output decayed from the target level while viewing pleasant and unpleasant images. Patients however, maintained force at the target level without decay while viewing unpleasant images, indicating a pronounced effect of negative affect on force output in FND. This emotional modulation of force control was associated with different brain activation patterns between groups. Contrasting the unpleasant with the pleasant condition, controls showed increased activity in the inferior frontal cortex and pre-supplementary motor area, whereas patients had greater activity in the cerebellum (vermis), posterior cingulate cortex, and hippocampus. Engagement of a cerebellar-limbic network in patients is consistent with heightened processing of emotional salience, and supports the role of the cerebellum in freezing responses in the presence of aversive events. These data highlight a possible neural circuit through which psychological stressors elicit defensive behaviour and modulate motor function in FND. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Conic Sector Analysis of Hybrid Control Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1982-01-01

    A hybrid control system contains an analog plant and a hybrid (or sampled-data) compensator. In this thesis a new conic sector is determined which is constructive and can be used to: (1) determine closed loop stability, (2) analyze robustness with respect to modelling uncertainties, (3) analyze steady state response to commands, and (4) select the sample rate. The use of conic sectors allows the designer to treat hybrid control systems as though they were analog control systems. The center of the conic sector can be used as a rigorous linear time invariant approximation of the hybrid control system, and the radius places a bound on the errors of this approximation. The hybrid feedback system can be multivariable, and the sampler is assumed to be synchronous. Algorithms to compute the conic sector are presented. Several examples demonstrate how the conic sector analysis techniques are applied. Extensions to single loop multirate hybrid feedback systems are presented. Further extensions are proposed for multiloop multirate hybrid feedback system and for single rate systems with asynchronous sampling.

  4. Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays.

    PubMed

    Tong, Shao Cheng; Li, Yong Ming; Zhang, Hua-Guang

    2011-07-01

    In this paper, two adaptive neural network (NN) decentralized output feedback control approaches are proposed for a class of uncertain nonlinear large-scale systems with immeasurable states and unknown time delays. Using NNs to approximate the unknown nonlinear functions, an NN state observer is designed to estimate the immeasurable states. By combining the adaptive backstepping technique with decentralized control design principle, an adaptive NN decentralized output feedback control approach is developed. In order to overcome the problem of "explosion of complexity" inherent in the proposed control approach, the dynamic surface control (DSC) technique is introduced into the first adaptive NN decentralized control scheme, and a simplified adaptive NN decentralized output feedback DSC approach is developed. It is proved that the two proposed control approaches can guarantee that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded, and the observer errors and the tracking errors converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approaches.

  5. Effect of intermittent feedback control on robustness of human-like postural control system

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  6. Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Eure, Kenneth W.

    1998-01-01

    Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.

  7. Effect of intermittent feedback control on robustness of human-like postural control system.

    PubMed

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-02

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  8. Effect of intermittent feedback control on robustness of human-like postural control system

    PubMed Central

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-01-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281

  9. Feedback control of acoustic musical instruments: collocated control using physical analogs.

    PubMed

    Berdahl, Edgar; Smith, Julius O; Niemeyer, Günter

    2012-01-01

    Traditionally, the average professional musician has owned numerous acoustic musical instruments, many of them having distinctive acoustic qualities. However, a modern musician could prefer to have a single musical instrument whose acoustics are programmable by feedback control, where acoustic variables are estimated from sensor measurements in real time and then fed back in order to influence the controlled variables. In this paper, theory is presented that describes stable feedback control of an acoustic musical instrument. The presentation should be accessible to members of the musical acoustics community who may have limited or no experience with feedback control. First, the only control strategy guaranteed to be stable subject to any musical instrument mobility is described: the sensors and actuators must be collocated, and the controller must emulate a physical analog system. Next, the most fundamental feedback controllers and the corresponding physical analog systems are presented. The effects that these controllers have on acoustic musical instruments are described. Finally, practical design challenges are discussed. A proof explains why changing the resonance frequency of a musical resonance requires much more control power than changing the decay time of the resonance. © 2012 Acoustical Society of America.

  10. Adaptive Nonlinear Tracking Control of Kinematically Redundant Robot Manipulators with Sub-Task Extensions

    DTIC Science & Technology

    2005-01-01

    C. Hughes, Spacecraft Attitude Dynamics, New York, NY: Wiley, 1994. [8] H. K. Khalil, “Adaptive Output Feedback Control of Non- linear Systems...Closed-Loop Manipulator Control Using Quaternion Feedback ”, IEEE Trans. Robotics and Automation, Vol. 4, No. 4, pp. 434-440, (1988). [23] E...full-state feedback quaternion based controller de- veloped in [5] and focuses on the design of a general sub-task controller. This sub-task controller

  11. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  12. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horan, D.

    1999-04-13

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less

  13. Use of an innovative video feedback technique to enhance communication skills training.

    PubMed

    Roter, Debra L; Larson, Susan; Shinitzky, Harold; Chernoff, Robin; Serwint, Janet R; Adamo, Graceanne; Wissow, Larry

    2004-02-01

    Despite growing interest in medical communication by certification bodies, significant methodological and logistic challenges are evident in experiential methods of instruction. There were three study objectives: 1) to explore the acceptability of an innovative video feedback programme to residents and faculty; 2) to evaluate a brief teaching intervention comprising the video feedback innovation when linked to a one-hour didactic and role-play teaching session on paediatric residents' communication with a simulated patient; and 3) to explore the impact of resident gender on communication change. Pre/post comparison of residents' performance in videotaped interviews with simulated patients before and after the teaching intervention. Individually tailored feedback on targeted communication skills was facilitated by embedding the Roter Interaction Analysis System (RIAS) within a software platform that presents a fully coded interview with instant search and review features. 28 first year residents in a large, urban, paediatric residency programme. Communication changes following the teaching intervention were demonstrated through significant improvements in residents' performance with simulated patients pre and post teaching and feedback. Using paired t-tests, differences include: reduced verbal dominance; increased use of open-ended questions; increased use of empathy; and increased partnership building and problem solving for therapeutic regimen adherence. Female residents demonstrated greater communication change than males. The RIAS embedded CD-ROM provides a flexible structure for individually tailoring feedback of targeted communication skills that is effective in facilitating communication change as part of a very brief teaching intervention.

  14. Temperature feedback control for long-term carrier-envelope phase locking

    DOEpatents

    Chang, Zenghu [Manhattan, KS; Yun, Chenxia [Manhattan, KS; Chen, Shouyuan [Manhattan, KS; Wang, He [Manhattan, KS; Chini, Michael [Manhattan, KS

    2012-07-24

    A feedback control module for stabilizing a carrier-envelope phase of an output of a laser oscillator system comprises a first photodetector, a second photodetector, a phase stabilizer, an optical modulator, and a thermal control element. The first photodetector may generate a first feedback signal corresponding to a first portion of a laser beam from an oscillator. The second photodetector may generate a second feedback signal corresponding to a second portion of the laser beam filtered by a low-pass filter. The phase stabilizer may divide the frequency of the first feedback signal by a factor and generate an error signal corresponding to the difference between the frequency-divided first feedback signal and the second feedback signal. The optical modulator may modulate the laser beam within the oscillator corresponding to the error signal. The thermal control unit may change the temperature of the oscillator corresponding to a signal operable to control the optical modulator.

  15. Discretization chaos - Feedback control and transition to chaos

    NASA Technical Reports Server (NTRS)

    Grantham, Walter J.; Athalye, Amit M.

    1990-01-01

    Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.

  16. Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2018-01-01

    This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.

  17. Feedback control of nonlinear quantum systems: a rule of thumb.

    PubMed

    Jacobs, Kurt; Lund, Austin P

    2007-07-13

    We show that in the regime in which feedback control is most effective - when measurements are relatively efficient, and feedback is relatively strong - then, in the absence of any sharp inhomogeneity in the noise, it is always best to measure in a basis that does not commute with the system density matrix than one that does. That is, it is optimal to make measurements that disturb the state one is attempting to stabilize.

  18. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1989-01-01

    A robust control scheme to accomplish accurate trajectory tracking for an integrated system of manipulator-plus-actuators is proposed. The control scheme comprises a feedforward and a feedback controller. The feedforward controller contains any known part of the manipulator dynamics that can be used for online control. The feedback controller consists of adaptive position and velocity feedback gains and an auxiliary signal which is simply generated by a fixed-gain proportional/integral/derivative controller. The feedback controller is updated by very simple adaptation laws which contain both proportional and integral adaptation terms. By introduction of a simple sigma modification to the adaptation laws, robustness is guaranteed in the presence of unmodeled dynamics and disturbances.

  19. An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Sruthi Raju

    The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.

  20. The effects of instructions, incentive, and feedback on a community problem: dormitory noise.

    PubMed

    Meyers, A W; Artz, L M; Craighead, W E

    A reinforcement system utilizing instructions, modelling, feedback, and group reinforcement was employed in an attempt to reduce disruptive noise on three university residence halls. A fourth hall received the same treatment program without the reinforcement component. Noise scores were determined by recording the number of discrete noise occurrences over a criterion decibel level. On all four residential floors, noise scores during treatment conditions were lower than initial and final baseline levels. Additionally, periods of noise reduction corresponded to the changing criterion multiple-baseline and reversal designs utilized. Pre- and posttreatment questionnaire responses from the three reinforcement floors paralleled changes in objective noise data. At posttreatment, residents reported less noise disturbance of study and sleep and more control over the noise situation and floor problems in general. These results indicated that a comprehensive behavior-modification treatment package was effective in reducing disruptive noise in university residence halls. Difficulties in data collection and anomalies in the data are discussed. Future directions for field-based behavior-modification research are outlined.

  1. Perturbed cooperative-state feedback strategy for model predictive networked control of interconnected systems.

    PubMed

    Tran, Tri; Ha, Q P

    2018-01-01

    A perturbed cooperative-state feedback (PSF) strategy is presented for the control of interconnected systems in this paper. The subsystems of an interconnected system can exchange data via the communication network that has multiple connection topologies. The PSF strategy can resolve both issues, the sensor data losses and the communication network breaks, thanks to the two components of the control including a cooperative-state feedback and a perturbation variable, e.g., u i =K ij x j +w i . The PSF is implemented in a decentralized model predictive control scheme with a stability constraint and a non-monotonic storage function (ΔV(x(k))≥0), derived from the dissipative systems theory. Numerical simulation for the automatic generation control problem in power systems is studied to illustrate the effectiveness of the presented PSF strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Excitation system for rotating synchronous machines

    DOEpatents

    Umans, Stephen D.; Driscoll, David J.

    2002-01-01

    A system for providing DC current to a rotating superconducting winding is provided. The system receives current feedback from the superconducting winding and determines an error signal based on the current feedback and a reference signal. The system determines a control signal corresponding to the error signal and provides a positive and negative superconducting winding excitation voltage based on the control signal.

  3. Feedback linearizing control of a MIMO power system

    NASA Astrophysics Data System (ADS)

    Ilyes, Laszlo

    Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.

  4. A stochastic optimal feedforward and feedback control methodology for superagility

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Direskeneli, Haldun; Taylor, Deborah B.

    1992-01-01

    A new control design methodology is developed: Stochastic Optimal Feedforward and Feedback Technology (SOFFT). Traditional design techniques optimize a single cost function (which expresses the design objectives) to obtain both the feedforward and feedback control laws. This approach places conflicting demands on the control law such as fast tracking versus noise atttenuation/disturbance rejection. In the SOFFT approach, two cost functions are defined. The feedforward control law is designed to optimize one cost function, the feedback optimizes the other. By separating the design objectives and decoupling the feedforward and feedback design processes, both objectives can be achieved fully. A new measure of command tracking performance, Z-plots, is also developed. By analyzing these plots at off-nominal conditions, the sensitivity or robustness of the system in tracking commands can be predicted. Z-plots provide an important tool for designing robust control systems. The Variable-Gain SOFFT methodology was used to design a flight control system for the F/A-18 aircraft. It is shown that SOFFT can be used to expand the operating regime and provide greater performance (flying/handling qualities) throughout the extended flight regime. This work was performed under the NASA SBIR program. ICS plans to market the software developed as a new module in its commercial CACSD software package: ACET.

  5. Negative feedback system reduces pump oscillations

    NASA Technical Reports Server (NTRS)

    Rosenmann, W.

    1967-01-01

    External negative feedback system counteracts low frequency oscillations in rocket engine propellant pumps. The system uses a control piston to sense pump discharge fluid on one side and a gas pocket on the other.

  6. Effect of biased feedback on motor imagery learning in BCI-teleoperation system.

    PubMed

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2014-01-01

    Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users' BCI performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects' performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects' BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects' online performance, evaluation of brain activity patterns revealed that subjects' self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects' motor imagery skills.

  7. LED lamp color control system and method

    DOEpatents

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  8. Adaptive Output-Feedback Neural Control of Switched Uncertain Nonlinear Systems With Average Dwell Time.

    PubMed

    Long, Lijun; Zhao, Jun

    2015-07-01

    This paper investigates the problem of adaptive neural tracking control via output-feedback for a class of switched uncertain nonlinear systems without the measurements of the system states. The unknown control signals are approximated directly by neural networks. A novel adaptive neural control technique for the problem studied is set up by exploiting the average dwell time method and backstepping. A switched filter and different update laws are designed to reduce the conservativeness caused by adoption of a common observer and a common update law for all subsystems. The proposed controllers of subsystems guarantee that all closed-loop signals remain bounded under a class of switching signals with average dwell time, while the output tracking error converges to a small neighborhood of the origin. As an application of the proposed design method, adaptive output feedback neural tracking controllers for a mass-spring-damper system are constructed.

  9. Flatness-based control and Kalman filtering for a continuous-time macroeconomic model

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.

    2017-11-01

    The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.

  10. Feedback control methods for drug dosage optimisation. Concepts, classification and clinical application.

    PubMed

    Vozeh, S; Steimer, J L

    1985-01-01

    The concept of feedback control methods for drug dosage optimisation is described from the viewpoint of control theory. The control system consists of 5 parts: (a) patient (the controlled process); (b) response (the measured feedback); (c) model (the mathematical description of the process); (d) adaptor (to update the parameters); and (e) controller (to determine optimum dosing strategy). In addition to the conventional distinction between open-loop and closed-loop control systems, a classification is proposed for dosage optimisation techniques which distinguishes between tight-loop and loose-loop methods depending on whether physician's interaction is absent or included as part of the control step. Unlike engineering problems where the process can usually be controlled by fully automated devices, therapeutic situations often require that the physician be included in the decision-making process to determine the 'optimal' dosing strategy. Tight-loop and loose-loop methods can be further divided into adaptive and non-adaptive, depending on the presence of the adaptor. The main application areas of tight-loop feedback control methods are general anaesthesia, control of blood pressure, and insulin delivery devices. Loose-loop feedback methods have been used for oral anticoagulation and in therapeutic drug monitoring. The methodology, advantages and limitations of the different approaches are reviewed. A general feature common to all application areas could be observed: to perform well under routine clinical conditions, which are characterised by large interpatient variability and sometimes also intrapatient changes, control systems should be adaptive. Apart from application in routine drug treatment, feedback control methods represent an important research tool. They can be applied for the investigation of pathophysiological and pharmacodynamic processes. A most promising application is the evaluation of the relationship between an intermediate response (e.g. drug level), which is often used as feedback for dosage adjustment, and the final therapeutic goal.

  11. Neural dynamic programming and its application to control systems

    NASA Astrophysics Data System (ADS)

    Seong, Chang-Yun

    There are few general practical feedback control methods for nonlinear MIMO (multi-input-multi-output) systems, although such methods exist for their linear counterparts. Neural Dynamic Programming (NDP) is proposed as a practical design method of optimal feedback controllers for nonlinear MIMO systems. NDP is an offspring of both neural networks and optimal control theory. In optimal control theory, the optimal solution to any nonlinear MIMO control problem may be obtained from the Hamilton-Jacobi-Bellman equation (HJB) or the Euler-Lagrange equations (EL). The two sets of equations provide the same solution in different forms: EL leads to a sequence of optimal control vectors, called Feedforward Optimal Control (FOC); HJB yields a nonlinear optimal feedback controller, called Dynamic Programming (DP). DP produces an optimal solution that can reject disturbances and uncertainties as a result of feedback. Unfortunately, computation and storage requirements associated with DP solutions can be problematic, especially for high-order nonlinear systems. This dissertation presents an approximate technique for solving the DP problem based on neural network techniques that provides many of the performance benefits (e.g., optimality and feedback) of DP and benefits from the numerical properties of neural networks. We formulate neural networks to approximate optimal feedback solutions whose existence DP justifies. We show the conditions under which NDP closely approximates the optimal solution. Finally, we introduce the learning operator characterizing the learning process of the neural network in searching the optimal solution. The analysis of the learning operator provides not only a fundamental understanding of the learning process in neural networks but also useful guidelines for selecting the number of weights of the neural network. As a result, NDP finds---with a reasonable amount of computation and storage---the optimal feedback solutions to nonlinear MIMO control problems that would be very difficult to solve with DP. NDP was demonstrated on several applications such as the lateral autopilot logic for a Boeing 747, the minimum fuel control of a double-integrator plant with bounded control, the backward steering of a two-trailer truck, and the set-point control of a two-link robot arm.

  12. Global output feedback stabilisation of stochastic high-order feedforward nonlinear systems with time-delay

    NASA Astrophysics Data System (ADS)

    Zhang, Kemei; Zhao, Cong-Ran; Xie, Xue-Jun

    2015-12-01

    This paper considers the problem of output feedback stabilisation for stochastic high-order feedforward nonlinear systems with time-varying delay. By using the homogeneous domination theory and solving several troublesome obstacles in the design and analysis, an output feedback controller is constructed to drive the closed-loop system globally asymptotically stable in probability.

  13. Output power stability of a HCN laser using a stepping motor for the EAST interferometer system

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.

    2015-11-01

    The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.

  14. Incremental passivity and output regulation for switched nonlinear systems

    NASA Astrophysics Data System (ADS)

    Pang, Hongbo; Zhao, Jun

    2017-10-01

    This paper studies incremental passivity and global output regulation for switched nonlinear systems, whose subsystems are not required to be incrementally passive. A concept of incremental passivity for switched systems is put forward. First, a switched system is rendered incrementally passive by the design of a state-dependent switching law. Second, the feedback incremental passification is achieved by the design of a state-dependent switching law and a set of state feedback controllers. Finally, we show that once the incremental passivity for switched nonlinear systems is assured, the output regulation problem is solved by the design of global nonlinear regulator controllers comprising two components: the steady-state control and the linear output feedback stabilising controllers, even though the problem for none of subsystems is solvable. Two examples are presented to illustrate the effectiveness of the proposed approach.

  15. Study on fault diagnosis and load feedback control system of combine harvester

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Kun

    2017-01-01

    In order to timely gain working status parameters of operating parts in combine harvester and improve its operating efficiency, fault diagnosis and load feedback control system is designed. In the system, rotation speed sensors were used to gather these signals of forward speed and rotation speeds of intermediate shaft, conveying trough, tangential and longitudinal flow threshing rotors, grain conveying auger. Using C8051 single chip microcomputer (SCM) as processor for main control unit, faults diagnosis and forward speed control were carried through by rotation speed ratio analysis of each channel rotation speed and intermediate shaft rotation speed by use of multi-sensor fused fuzzy control algorithm, and these processing results would be sent to touch screen and display work status of combine harvester. Field trials manifest that fault monitoring and load feedback control system has good man-machine interaction and the fault diagnosis method based on rotation speed ratios has low false alarm rate, and the system can realize automation control of forward speed for combine harvester.

  16. Choosing Sensor Configuration for a Flexible Structure Using Full Control Synthesis

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Nalbantoglu, Volkan; Balas, Gary

    1997-01-01

    Optimal locations and types for feedback sensors which meet design constraints and control requirements are difficult to determine. This paper introduces an approach to choosing a sensor configuration based on Full Control synthesis. A globally optimal Full Control compensator is computed for each member of a set of sensor configurations which are feasible for the plant. The sensor configuration associated with the Full Control system achieving the best closed-loop performance is chosen for feedback measurements to an output feedback controller. A flexible structure is used as an example to demonstrate this procedure. Experimental results show sensor configurations chosen to optimize the Full Control performance are effective for output feedback controllers.

  17. Feedback: A Systems Approach to Evaluation and Course Design. Working Papers No. 21.

    ERIC Educational Resources Information Center

    Holmes, John

    Two types of feedback are examined, and their use in controlling the processes of instructional development and improvement are discussed. Closed-loop feedback, the most direct, uses immediate feedback about a process or product to make immediate adjustments in it. Open-loop feedback, in which input cannot be changed immediately, uses feedback to…

  18. Structural Properties and Estimation of Delay Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kwong, R. H. S.

    1975-01-01

    Two areas in the theory of delay systems were studied: structural properties and their applications to feedback control, and optimal linear and nonlinear estimation. The concepts of controllability, stabilizability, observability, and detectability were investigated. The property of pointwise degeneracy of linear time-invariant delay systems is considered. Necessary and sufficient conditions for three dimensional linear systems to be made pointwise degenerate by delay feedback were obtained, while sufficient conditions for this to be possible are given for higher dimensional linear systems. These results were applied to obtain solvability conditions for the minimum time output zeroing control problem by delay feedback. A representation theorem is given for conditional moment functionals of general nonlinear stochastic delay systems, and stochastic differential equations are derived for conditional moment functionals satisfying certain smoothness properties.

  19. Prompting Secondary Students' Use of Criteria, Feedback Specificity and Feedback Levels during an Investigative Task

    ERIC Educational Resources Information Center

    Gan, Mark J. S.; Hattie, John

    2014-01-01

    This study investigates the effects of prompting on secondary students' written peer feedback in chemistry investigation reports. In particular, we examined students' feedback features in relation to the use of criteria, feedback specificity, and feedback levels. A quasi-experimental pre-test post-test design was adopted. Reviewers in…

  20. CRPS: A contingent hypothesis with prostaglandins as crucial conversion factor.

    PubMed

    van der Veen, Phe

    2015-11-01

    CRPS is an acute pain disease expressed as chronic pain with a severe loss of tissue and function. CRPS usually occurs after minor injuries and then progresses in a way that is scarcely controllable, or completely uncontrollable. This article addresses the functional control mechanism of a biological organism, a comparison of techniques, and the way the negative feedback mechanisms fail in regulated feedback systems. The measurement and regulation system is controlled at the local, regional, and central levels in a biological system. Locally generated substances such as prostaglandins and hormones, as well as the central nervous system, play important roles in this process. Prostaglandins fulfil many conversion functions and are involved in vasoactive processes, pain, and inflammation. They play an intermediating role between the activity of the autonomic nervous system and local occurrences. The insufficiently explored conversion function of prostaglandins as a ubiquitously present cofactor may be related to the development of CRPS at sites which have had minor injuries in the past. Chronic Regional Pain Syndrome (CRPS) is a moderately prevalent disease, which occurs more frequently with age. Even though there are diseases known to have a precipitating effect on the aetiology of CRPS, for example Carpal tunnel syndrome, the mechanism of onset is unknown. The disease falls under the category of chronic pain, and seldom has an effective treatment based on scientific research. The economic and psychosocial aspects of the disease are substantial. CRPS is the final position of a positive feedback measurement and control system. Homoeostasis is directed by measurement and control processes. In electronics, a rapid conversion system, which quickly adapts to changing circumstances, superimposed with a delayed conversion system, which ensures a stable basis of homoeostasis. Measured changes are compensatorily controlled. An analogy is expected for a Complex Adaptive System such as a living organism. Hormonal systems are slow systems, suitable for stabilising activity. Neural reflex systems function quickly. Prostaglandins that come from local tissue may be the link between the slow and rapid control. In electronics, negative feedback can convert into a feedback loop which results in the dysregulation, which is what prostaglandins do in biochemistry. A dysregulated feedback control mechanism only has two positions: a zero position and a final position. The process is not easily influenced by other factors. Only phase shifting and signal weakness can affect the feedback process. Theoretically, prostaglandins can also affect this process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Flight-test experience in digital control of a remotely piloted vehicle.

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1972-01-01

    The development of a remotely piloted vehicle system consisting of a remote pilot cockpit and a ground-based digital computer coupled to the aircraft through telemetry data links is described. The feedback control laws are implemented in a FORTRAN program. Flight-test experience involving high feedback gain limits for attitude and attitude rate feedback variables, filtering of sampled data, and system operation during intermittent telemetry data link loss is discussed. Comparisons of closed-loop flight tests with analytical calculations, and pilot comments on system operation are included.

  2. Design of the RWM Feedback Control System for NSTX

    NASA Astrophysics Data System (ADS)

    Bialek, James; Sabbagh, Steven; Paoletti, Franco

    2002-11-01

    The National Spherical Torus Experiment ( NSTX ) has been designed to investigate the physics of global mode stabilization at low aspect ratio. Present experiments are now probing performance limits determined by machine configuration and passive stabilization. For example, the ideal no-wall normalized beta limit has already been exceeded by greater than 20stabilized by a nearby perfectly conducting wall are observed to grow at a rate determined by nearby resistive structure. Sustained performance improvements may be obtained by using active feedback to suppress such long wavelength pressure driven instabilities, known as resistive wall modes (RWM). We report on the performance of several design options for an NSTX - RWM feedback control system. The VALEN feedback analysis code has been used to evaluate the performance of these configurations. We explicitly model the vacuum vessel, center stack casing, the 48 copper passive plates, their mounts, active feedback coils and sensor arrays. The highest performance system has both control coils and sensors inside the vacuum vessel. In this case it is possible to reach 94beta limit.

  3. Closed-loop and robust control of quantum systems.

    PubMed

    Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  4. Comparison of Total Evaporation (TE) and Direct Total Evaporation (DTE) methods in TIMS by using NBL CRMs

    NASA Astrophysics Data System (ADS)

    Hasözbek, Altug; Mathew, Kattathu; Wegener, Michael

    2013-04-01

    The total evaporation (TE) is a well-established analytical method for safeguards measurement of uranium and plutonium isotope-amount ratios using the thermal ionization mass spectrometry (TIMS). High accuracy and precision isotopic measurements find many applications in nuclear safeguards, for e.g. assay measurements using isotope dilution mass spectrometry. To achieve high accuracy and precision in TIMS measurements, mass dependent fractionation effects are minimized by either the measurement technique or changes in the hardware components that are used to control sample heating and evaporation process. At NBL, direct total evaporation (DTE) method on the modified MAT261 instrument, uses the data system to read the ion signal intensity and its difference from a pre-determined target intensity, is used to control the incremental step at which the evaporation filament is heated. The feedback and control is achieved by proprietary hardware from SPECTROMAT that uses an analog regulator in the filament power supply with direct feedback of the detector intensity. Compared to traditional TE method on this instrument, DTE provides better precision (relative standard deviation, expressed as a percent) and accuracy (relative difference, expressed as a percent) of 0.05 to 0.08 % for low enriched and high enriched NBL uranium certified reference materials.

  5. Mach 10 Stage Separation Analysis for the X43-A

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Bose, David M.; Thornblom, Mark N.; Lien, J. P.; Martin, John G.

    2007-01-01

    This paper describes the pre-flight stage separation analysis that was conducted in support of the final flight of the X-43A. In that flight, which occurred less than eight months after the successful Mach 7 flight, the X-43A Research Vehicle attained a peak speed of Mach 9.6. Details are provided on how the lessons learned from the Mach 7 flight affected separation modeling and how adjustments were made to account for the increased flight Mach number. Also, the procedure for defining the feedback loop closure and feed-forward parameters employed in the separation control logic are described, and their effect on separation performance is explained. In addition, the range and nominal values of these parameters, which were included in the Mission Data Load, are presented. Once updates were made, the nominal pre-flight trajectory and Monte Carlo statistical results were determined and stress tests were performed to ensure system robustness. During flight the vehicle performed within the uncertainty bounds predicted in the pre-flight analysis and ultimately set the world record for airbreathing powered flight.

  6. Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.

    PubMed

    Tong, Shaocheng; Sui, Shuai; Li, Yongming

    2015-12-01

    In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach.

  7. Zero Power Non-Contact Suspension System with Permanent Magnet Motion Feedback

    NASA Astrophysics Data System (ADS)

    Sun, Feng; Oka, Koichi

    This paper proposes a zero power control method for a permanent magnetic suspension system consisting mainly of a permanent magnet, an actuator, sensors, a suspended iron ball and a spring. A system using this zero power control method will consume quasi-zero power when the levitated object is suspended in an equilibrium state. To realize zero power control, a spring is installed in the magnetic suspension device to counterbalance the gravitational force on the actuator in the equilibrium position. In addition, an integral feedback loop in the controller affords zero actuator current when the device is in a balanced state. In this study, a model was set up for feasibility analysis, a prototype was manufactured for experimental confirmation, numerical simulations of zero power control with nonlinear attractive force were carried out based on the model, and experiments were completed to confirm the practicality of the prototype. The simulations and experiments were performed under varied conditions, such as without springs and without zero power control, with springs and without zero power control, with springs and with zero power control, using different springs and integral feedback gains. Some results are shown and analyzed in this paper. All results indicate that this zero power control method is feasible and effective for use in this suspension system with a permanent magnet motion feedback loop.

  8. Intermittent Feedback-Control Strategy for Stabilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick Balancing

    PubMed Central

    Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin

    2016-01-01

    The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy. PMID:27148031

  9. Intermittent Feedback-Control Strategy for Stabilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick Balancing.

    PubMed

    Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin

    2016-01-01

    The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy.

  10. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  11. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    PubMed

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  12. Nonlinear force feedback control of piezoelectric-hydraulic pump actuator for automotive transmission shift control

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2008-03-01

    In recent years, researchers have investigated the feasibility of utilizing piezoelectric-hydraulic pump based actuation systems for automotive transmission controls. This new concept could eventually reduce the complexity, weight, and fuel consumption of the current transmissions. In this research, we focus on how to utilize this new approach on the shift control of automatic transmissions (AT), which generally requires pressure profiling for friction elements during the operation. To illustrate the concept, we will consider the 1--> 2 up shift control using band brake friction elements. In order to perform the actuation force tracking for AT shift control, nonlinear force feedback control laws are designed based on the sliding mode theory for the given nonlinear system. This paper will describe the modeling of the band brake actuation system, the design of the nonlinear force feedback controller, and simulation and experimental results for demonstration of the new concept.

  13. Stabilization of an inverted pendulum-cart system by fractional PI-state feedback.

    PubMed

    Bettayeb, M; Boussalem, C; Mansouri, R; Al-Saggaf, U M

    2014-03-01

    This paper deals with pole placement PI-state feedback controller design to control an integer order system. The fractional aspect of the control law is introduced by a dynamic state feedback as u(t)=K(p)x(t)+K(I)I(α)(x(t)). The closed loop characteristic polynomial is thus fractional for which the roots are complex to calculate. The proposed method allows us to decompose this polynomial into a first order fractional polynomial and an integer order polynomial of order n-1 (n being the order of the integer system). This new stabilization control algorithm is applied for an inverted pendulum-cart test-bed, and the effectiveness and robustness of the proposed control are examined by experiments. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. The impact of Earth system feedbacks on carbon budgets and climate response.

    PubMed

    Lowe, Jason A; Bernie, Daniel

    2018-05-13

    A number of studies have examined the size of the allowable global cumulative carbon budget compatible with limiting twenty-first century global average temperature rise to below 2°C and below 1.5°C relative to pre-industrial levels. These estimates of cumulative emissions have a number of uncertainties including those associated with the climate sensitivity and the global carbon cycle. Although the IPCC fifth assessment report contained information on a range of Earth system feedbacks, such as carbon released by thawing of permafrost or methane production by wetlands as a result of climate change, the impact of many of these Earth system processes on the allowable carbon budgets remains to be quantified. Here, we make initial estimates to show that the combined impact from typically unrepresented Earth system processes may be important for the achievability of limiting warming to 1.5°C or 2°C above pre-industrial levels. The size of the effects range up to around a 350 GtCO 2 budget reduction for a 1.5°C warming limit and around a 500 GtCO 2 reduction for achieving a warming limit of 2°C. Median estimates for the extra Earth system forcing lead to around 100 GtCO 2 and 150 GtCO 2 , respectively, for the two warming limits. Our estimates are equivalent to several years of anthropogenic carbon dioxide emissions at present rates. In addition to the likely reduction of the allowable global carbon budgets, the extra feedbacks also bring forward the date at which a given warming threshold is likely to be exceeded for a particular emission pathway.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Author(s).

  15. The impact of Earth system feedbacks on carbon budgets and climate response

    NASA Astrophysics Data System (ADS)

    Lowe, Jason A.; Bernie, Daniel

    2018-05-01

    A number of studies have examined the size of the allowable global cumulative carbon budget compatible with limiting twenty-first century global average temperature rise to below 2°C and below 1.5°C relative to pre-industrial levels. These estimates of cumulative emissions have a number of uncertainties including those associated with the climate sensitivity and the global carbon cycle. Although the IPCC fifth assessment report contained information on a range of Earth system feedbacks, such as carbon released by thawing of permafrost or methane production by wetlands as a result of climate change, the impact of many of these Earth system processes on the allowable carbon budgets remains to be quantified. Here, we make initial estimates to show that the combined impact from typically unrepresented Earth system processes may be important for the achievability of limiting warming to 1.5°C or 2°C above pre-industrial levels. The size of the effects range up to around a 350 GtCO2 budget reduction for a 1.5°C warming limit and around a 500 GtCO2 reduction for achieving a warming limit of 2°C. Median estimates for the extra Earth system forcing lead to around 100 GtCO2 and 150 GtCO2, respectively, for the two warming limits. Our estimates are equivalent to several years of anthropogenic carbon dioxide emissions at present rates. In addition to the likely reduction of the allowable global carbon budgets, the extra feedbacks also bring forward the date at which a given warming threshold is likely to be exceeded for a particular emission pathway. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  16. Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer

    NASA Astrophysics Data System (ADS)

    Du, Zhongzhou; Sun, Yi; Liu, Jie; Su, Rijian; Yang, Ming; Li, Nana; Gan, Yong; Ye, Na

    2018-04-01

    Magnetic fluid hyperthermia, as a novel cancer treatment, requires precise temperature control at 315 K-319 K (42 °C-46 °C). However, the traditional temperature measurement method cannot obtain the real-time temperature in vivo, resulting in a lack of temperature feedback during the heating process. In this study, the feasibility of temperature measurement and feedback control using magnetic nanoparticles is proposed and demonstrated. This technique could be applied in hyperthermia. Specifically, the triangular-wave temperature measurement method is improved by reconstructing the original magnetization response of magnetic nanoparticles based on a digital phase-sensitive detection algorithm. The standard deviation of the temperature in the magnetic nanoparticle thermometer is about 0.1256 K. In experiments, the temperature fluctuation of the temperature measurement and feedback control system using magnetic nanoparticles is less than 0.5 K at the expected temperature of 315 K. This shows the feasibility of the temperature measurement method for temperature control. The method provides a new solution for temperature measurement and feedback control in hyperthermia.

  17. Reinforcement-learning-based dual-control methodology for complex nonlinear discrete-time systems with application to spark engine EGR operation.

    PubMed

    Shih, Peter; Kaul, Brian C; Jagannathan, S; Drallmeier, James A

    2008-08-01

    A novel reinforcement-learning-based dual-control methodology adaptive neural network (NN) controller is developed to deliver a desired tracking performance for a class of complex feedback nonlinear discrete-time systems, which consists of a second-order nonlinear discrete-time system in nonstrict feedback form and an affine nonlinear discrete-time system, in the presence of bounded and unknown disturbances. For example, the exhaust gas recirculation (EGR) operation of a spark ignition (SI) engine is modeled by using such a complex nonlinear discrete-time system. A dual-controller approach is undertaken where primary adaptive critic NN controller is designed for the nonstrict feedback nonlinear discrete-time system whereas the secondary one for the affine nonlinear discrete-time system but the controllers together offer the desired performance. The primary adaptive critic NN controller includes an NN observer for estimating the states and output, an NN critic, and two action NNs for generating virtual control and actual control inputs for the nonstrict feedback nonlinear discrete-time system, whereas an additional critic NN and an action NN are included for the affine nonlinear discrete-time system by assuming the state availability. All NN weights adapt online towards minimization of a certain performance index, utilizing gradient-descent-based rule. Using Lyapunov theory, the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight estimates, and observer estimates are shown. The adaptive critic NN controller performance is evaluated on an SI engine operating with high EGR levels where the controller objective is to reduce cyclic dispersion in heat release while minimizing fuel intake. Simulation and experimental results indicate that engine out emissions drop significantly at 20% EGR due to reduction in dispersion in heat release thus verifying the dual-control approach.

  18. Evaluating Internal Model Strength and Performance of Myoelectric Prosthesis Control Strategies.

    PubMed

    Shehata, Ahmed W; Scheme, Erik J; Sensinger, Jonathon W

    2018-05-01

    On-going developments in myoelectric prosthesis control have provided prosthesis users with an assortment of control strategies that vary in reliability and performance. Many studies have focused on improving performance by providing feedback to the user but have overlooked the effect of this feedback on internal model development, which is key to improve long-term performance. In this paper, the strength of internal models developed for two commonly used myoelectric control strategies: raw control with raw feedback (using a regression-based approach) and filtered control with filtered feedback (using a classifier-based approach), were evaluated using two psychometric measures: trial-by-trial adaptation and just-noticeable difference. The performance of both strategies was also evaluated using Schmidt's style target acquisition task. Results obtained from 24 able-bodied subjects showed that although filtered control with filtered feedback had better short-term performance in path efficiency ( ), raw control with raw feedback resulted in stronger internal model development ( ), which may lead to better long-term performance. Despite inherent noise in the control signals of the regression controller, these findings suggest that rich feedback associated with regression control may be used to improve human understanding of the myoelectric control system.

  19. Robust H(infinity) tracking control of boiler-turbine systems.

    PubMed

    Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

    2010-07-01

    In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Adaptive Neural Networks Decentralized FTC Design for Nonstrict-Feedback Nonlinear Interconnected Large-Scale Systems Against Actuator Faults.

    PubMed

    Li, Yongming; Tong, Shaocheng

    The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.

  1. Robust output feedback H∞ control for networked control systems based on the occurrence probabilities of time delays

    NASA Astrophysics Data System (ADS)

    Guo, Chenyu; Zhang, Weidong; Bao, Jie

    2012-02-01

    This article is concerned with the problem of robust H ∞ output feedback control for a kind of networked control systems with time-varying network-induced delays. Instead of using boundaries of time delays to represent all time delays, the occurrence probability of each time delay is considered in H∞ stability analysis and stabilisation. The problem addressed is the design of an output feedback controller such that, for all admissible uncertainties, the resulting closed-loop system is stochastically stable for the zero disturbance input and also simultaneously achieves a prescribed H∞ performance level. It is shown that less conservativeness is obtained. A set of linear matrix inequalities is given to solve the corresponding controller design problem. An example is provided to show the effectiveness and applicability of the proposed method.

  2. Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Wang, C.

    1989-01-01

    A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.

  3. Digital controller design: Analysis of the annular suspension pointing system. [analog controllers with feedback

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.

    1978-01-01

    The analog controllers of the annular suspension pointing system are designed for control of the chi, phi sub 1, and phi sub 2 bandwidth dynamics through decoupling and pole placement. Since it is virtually impossible to find an equivalent bandwidth of the overall system and establish a general eigenvalue requirement for the system, the subsystem dynamics are decoupled through state feedback and the poles are placed simultaneously to realize the desired bandwidths for the three system components. Decoupling and pole placement are also used to design the closed-loop digital system through approximation.

  4. Learning feedback and feedforward control in a mirror-reversed visual environment.

    PubMed

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn

    2015-10-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.

  5. Learning feedback and feedforward control in a mirror-reversed visual environment

    PubMed Central

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi

    2015-01-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. PMID:26245313

  6. Spacecraft nonlinear control

    NASA Technical Reports Server (NTRS)

    Sheen, Jyh-Jong; Bishop, Robert H.

    1992-01-01

    The feedback linearization technique is applied to the problem of spacecraft attitude control and momentum management with control moment gyros (CMGs). The feedback linearization consists of a coordinate transformation, which transforms the system to a companion form, and a nonlinear feedback control law to cancel the nonlinear dynamics resulting in a linear equivalent model. Pole placement techniques are then used to place the closed-loop poles. The coordinate transformation proposed here evolves from three output functions of relative degree four, three, and two, respectively. The nonlinear feedback control law is presented. Stability in a neighborhood of a controllable torque equilibrium attitude (TEA) is guaranteed and this fact is demonstrated by the simulation results. An investigation of the nonlinear control law shows that singularities exist in the state space outside the neighborhood of the controllable TEA. The nonlinear control law is simplified by a standard linearization technique and it is shown that the linearized nonlinear controller provides a natural way to select control gains for the multiple-input, multiple-output system. Simulation results using the linearized nonlinear controller show good performance relative to the nonlinear controller in the neighborhood of the TEA.

  7. Deadbeat Predictive Controllers

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1997-01-01

    Several new computational algorithms are presented to compute the deadbeat predictive control law. The first algorithm makes use of a multi-step-ahead output prediction to compute the control law without explicitly calculating the controllability matrix. The system identification must be performed first and then the predictive control law is designed. The second algorithm uses the input and output data directly to compute the feedback law. It combines the system identification and the predictive control law into one formulation. The third algorithm uses an observable-canonical form realization to design the predictive controller. The relationship between all three algorithms is established through the use of the state-space representation. All algorithms are applicable to multi-input, multi-output systems with disturbance inputs. In addition to the feedback terms, feed forward terms may also be added for disturbance inputs if they are measurable. Although the feedforward terms do not influence the stability of the closed-loop feedback law, they enhance the performance of the controlled system.

  8. Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems.

    PubMed

    Wang, Wei; Tong, Shaocheng

    2018-02-01

    This paper studies the adaptive fuzzy bounded control problem for leader-follower multiagent systems, where each follower is modeled by the uncertain nonlinear strict-feedback system. Combining the fuzzy approximation with the dynamic surface control, an adaptive fuzzy control scheme is developed to guarantee the output consensus of all agents under directed communication topologies. Different from the existing results, the bounds of the control inputs are known as a priori, and they can be determined by the feedback control gains. To realize smooth and fast learning, a predictor is introduced to estimate each error surface, and the corresponding predictor error is employed to learn the optimal fuzzy parameter vector. It is proved that the developed adaptive fuzzy control scheme guarantees the uniformly ultimate boundedness of the closed-loop systems, and the tracking error converges to a small neighborhood of the origin. The simulation results and comparisons are provided to show the validity of the control strategy presented in this paper.

  9. Hypersonic Vehicle Trajectory Optimization and Control

    NASA Technical Reports Server (NTRS)

    Balakrishnan, S. N.; Shen, J.; Grohs, J. R.

    1997-01-01

    Two classes of neural networks have been developed for the study of hypersonic vehicle trajectory optimization and control. The first one is called an 'adaptive critic'. The uniqueness and main features of this approach are that: (1) they need no external training; (2) they allow variability of initial conditions; and (3) they can serve as feedback control. This is used to solve a 'free final time' two-point boundary value problem that maximizes the mass at the rocket burn-out while satisfying the pre-specified burn-out conditions in velocity, flightpath angle, and altitude. The second neural network is a recurrent network. An interesting feature of this network formulation is that when its inputs are the coefficients of the dynamics and control matrices, the network outputs are the Kalman sequences (with a quadratic cost function); the same network is also used for identifying the coefficients of the dynamics and control matrices. Consequently, we can use it to control a system whose parameters are uncertain. Numerical results are presented which illustrate the potential of these methods.

  10. Adaptive Distributed Environment for Procedure Training (ADEPT)

    NASA Technical Reports Server (NTRS)

    Domeshek, Eric; Ong, James; Mohammed, John

    2013-01-01

    ADEPT (Adaptive Distributed Environment for Procedure Training) is designed to provide more effective, flexible, and portable training for NASA systems controllers. When creating a training scenario, an exercise author can specify a representative rationale structure using the graphical user interface, annotating the results with instructional texts where needed. The author's structure may distinguish between essential and optional parts of the rationale, and may also include "red herrings" - hypotheses that are essential to consider, until evidence and reasoning allow them to be ruled out. The system is built from pre-existing components, including Stottler Henke's SimVentive? instructional simulation authoring tool and runtime. To that, a capability was added to author and exploit explicit control decision rationale representations. ADEPT uses SimVentive's Scalable Vector Graphics (SVG)- based interactive graphic display capability as the basis of the tool for quickly noting aspects of decision rationale in graph form. The ADEPT prototype is built in Java, and will run on any computer using Windows, MacOS, or Linux. No special peripheral equipment is required. The software enables a style of student/ tutor interaction focused on the reasoning behind systems control behavior that better mimics proven Socratic human tutoring behaviors for highly cognitive skills. It supports fast, easy, and convenient authoring of such tutoring behaviors, allowing specification of detailed scenario-specific, but content-sensitive, high-quality tutor hints and feedback. The system places relatively light data-entry demands on the student to enable its rationale-centered discussions, and provides a support mechanism for fostering coherence in the student/ tutor dialog by including focusing, sequencing, and utterance tuning mechanisms intended to better fit tutor hints and feedback into the ongoing context.

  11. Frequency-Offset Cartesian Feedback Based on Polyphase Difference Amplifiers

    PubMed Central

    Zanchi, Marta G.; Pauly, John M.; Scott, Greig C.

    2010-01-01

    A modified Cartesian feedback method called “frequency-offset Cartesian feedback” and based on polyphase difference amplifiers is described that significantly reduces the problems associated with quadrature errors and DC-offsets in classic Cartesian feedback power amplifier control systems. In this method, the reference input and feedback signals are down-converted and compared at a low intermediate frequency (IF) instead of at DC. The polyphase difference amplifiers create a complex control bandwidth centered at this low IF, which is typically offset from DC by 200–1500 kHz. Consequently, the loop gain peak does not overlap DC where voltage offsets, drift, and local oscillator leakage create errors. Moreover, quadrature mismatch errors are significantly attenuated in the control bandwidth. Since the polyphase amplifiers selectively amplify the complex signals characterized by a +90° phase relationship representing positive frequency signals, the control system operates somewhat like single sideband (SSB) modulation. However, the approach still allows the same modulation bandwidth control as classic Cartesian feedback. In this paper, the behavior of the polyphase difference amplifier is described through both the results of simulations, based on a theoretical analysis of their architecture, and experiments. We then describe our first printed circuit board prototype of a frequency-offset Cartesian feedback transmitter and its performance in open and closed loop configuration. This approach should be especially useful in magnetic resonance imaging transmit array systems. PMID:20814450

  12. Feedback Control of Rotor Overspeed

    NASA Technical Reports Server (NTRS)

    Churchill, G. B.

    1984-01-01

    Feedback system for automatically governing helicopter rotor speed promises to lessen pilot's workload, enhance maneuverability, and protect airframe. With suitable modifications, concept applied to control speed of electrical generators, automotive engines and other machinery.

  13. Event-Triggered Distributed Approximate Optimal State and Output Control of Affine Nonlinear Interconnected Systems.

    PubMed

    Narayanan, Vignesh; Jagannathan, Sarangapani

    2017-06-08

    This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.

  14. Gap-metric-based robustness analysis of nonlinear systems with full and partial feedback linearisation

    NASA Astrophysics Data System (ADS)

    Al-Gburi, A.; Freeman, C. T.; French, M. C.

    2018-06-01

    This paper uses gap metric analysis to derive robustness and performance margins for feedback linearising controllers. Distinct from previous robustness analysis, it incorporates the case of output unstructured uncertainties, and is shown to yield general stability conditions which can be applied to both stable and unstable plants. It then expands on existing feedback linearising control schemes by introducing a more general robust feedback linearising control design which classifies the system nonlinearity into stable and unstable components and cancels only the unstable plant nonlinearities. This is done in order to preserve the stabilising action of the inherently stabilising nonlinearities. Robustness and performance margins are derived for this control scheme, and are expressed in terms of bounds on the plant nonlinearities and the accuracy of the cancellation of the unstable plant nonlinearity by the controller. Case studies then confirm reduced conservatism compared with standard methods.

  15. A Note on the Disturbance Decoupling Problem for Retarded Systems.

    DTIC Science & Technology

    1984-10-01

    disturbance decoupling problem f or linear control system is to design a feedback control law in such a way that the disturbances do not * influence...and in 141 by Pandolfi who analyses the situation in some detail. HeU concludes that for retarded systems one needs an unbounded feedback control law...ult) 6 JP is the control input, d(t) 6 AR is same disturbance, and z(t) e 3k is the output to be regularted. We assume that L is a bounded linear

  16. An improved output feedback control of flexible large space structures

    NASA Technical Reports Server (NTRS)

    Lin, Y. H.; Lin, J. G.

    1980-01-01

    A special output feedback control design technique for flexible large space structures is proposed. It is shown that the technique will increase both the damping and frequency of selected modes for more effective control. It is also able to effect integrated control of elastic and rigid-body modes and, in particular, closed-loop system stability and robustness to modal truncation and parameter variation. The technique is seen as marking an improvement over previous work concerning large space structures output feedback control.

  17. Synchronization of Multipoint Hoists

    DTIC Science & Technology

    A contractor has conceived an electrohydraulic feedback system that will provide position synchronization of four aircraft cargo hoists. To... synchronized hoist system. Test results show that the feedback system concept provides adequate synchronization control; i.e., the platform pitch and roll

  18. A theory of circular organization and negative feedback: defining life in a cybernetic context.

    PubMed

    Tsokolov, Sergey

    2010-12-01

    All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.

  19. A Theory of Circular Organization and Negative Feedback: Defining Life in a Cybernetic Context

    NASA Astrophysics Data System (ADS)

    Tsokolov, Sergey

    2010-12-01

    All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.

  20. State-Dependent Riccati Equation Regulation of Systems with State and Control Nonlinearities

    NASA Technical Reports Server (NTRS)

    Beeler, Scott C.; Cox, David E. (Technical Monitor)

    2004-01-01

    The state-dependent Riccati equations (SDRE) is the basis of a technique for suboptimal feedback control of a nonlinear quadratic regulator (NQR) problem. It is an extension of the Riccati equation used for feedback control of linear problems, with the addition of nonlinearities in the state dynamics of the system resulting in a state-dependent gain matrix as the solution of the equation. In this paper several variations on the SDRE-based method will be considered for the feedback control problem with control nonlinearities. The control nonlinearities may result in complications in the numerical implementation of the control, which the different versions of the SDRE method must try to overcome. The control methods will be applied to three test problems and their resulting performance analyzed.

  1. Voltage regulator/amplifier is self-regulated

    NASA Technical Reports Server (NTRS)

    Day, W. E.; Phillips, D. E.

    1967-01-01

    Signal modulated, self-regulating voltage regulator/amplifier controls the output b-plus voltage in modulated regulator systems. It uses self-oscillation with feedback to a control circuit with a discontinuous amplitude action feedback loop.

  2. Adaptive Fuzzy Output Feedback Control for Switched Nonlinear Systems With Unmodeled Dynamics.

    PubMed

    Tong, Shaocheng; Li, Yongming

    2017-02-01

    This paper investigates a robust adaptive fuzzy control stabilization problem for a class of uncertain nonlinear systems with arbitrary switching signals that use an observer-based output feedback scheme. The considered switched nonlinear systems possess the unstructured uncertainties, unmodeled dynamics, and without requiring the states being available for measurement. A state observer which is independent of switching signals is designed to solve the problem of unmeasured states. Fuzzy logic systems are used to identify unknown lumped nonlinear functions so that the problem of unstructured uncertainties can be solved. By combining adaptive backstepping design principle and small-gain approach, a novel robust adaptive fuzzy output feedback stabilization control approach is developed. The stability of the closed-loop system is proved via the common Lyapunov function theory and small-gain theorem. Finally, the simulation results are given to demonstrate the validity and performance of the proposed control strategy.

  3. Second law of thermodynamics and quantum feedback control: Maxwell's demon with weak measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Kurt

    2009-07-15

    Recently Sagawa and Ueda [Phys. Rev. Lett. 100, 080403 (2008)] derived a bound on the work that can be extracted from a quantum system with the use of feedback control. For many quantum measurements their bound was not tight. We show that a tight version of this bound follows straightforwardly from recent work on Maxwell's demon by Alicki et al. [Open Syst. Inf. Dyn. 11, 205 (2004)], for both discrete and continuous feedback control. Our analysis also shows that bare, efficient measurements always do non-negative work on a system in equilibrium, but do not add heat.

  4. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator

    NASA Astrophysics Data System (ADS)

    Tsukamoto, O.; Utsunomiya, A.

    2007-10-01

    We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor.

  5. Cross Feedback Control of a Magnetic Bearing System: Controller Design Considering Gyroscopic Effects

    NASA Technical Reports Server (NTRS)

    Ahrens, Markus; Kucera, Ladislav

    1996-01-01

    For flywheel rotors or other rotors with significant ratios of moments of inertia, the influence of gyroscopic effects has to be considered. While conservative or damped systems remain stable even under gyroscopic effects, magnetically suspended rotors can be destabilized with increasing rotational speed. The influence of gyroscopic effects on the stability and behavior of a magnetic bearing system is analyzed. The analysis is carried out with a rigid body model for the rotor and a nonlinear model for the magnetic bearing and its amplifier. Cross feedback control can compensate gyroscopic effects. This compensation leads to better system performance and can avoid instability. Furthermore, the implementation of this compensation is simple. The main structure of a decentralized controller can still be used. It has only to be expanded by the cross feedback path.

  6. Neural Approximation-Based Adaptive Control for a Class of Nonlinear Nonstrict Feedback Discrete-Time Systems.

    PubMed

    Yan-Jun Liu; Shu Li; Shaocheng Tong; Chen, C L Philip

    2017-07-01

    In this paper, an adaptive control approach-based neural approximation is developed for a class of uncertain nonlinear discrete-time (DT) systems. The main characteristic of the considered systems is that they can be viewed as a class of multi-input multioutput systems in the nonstrict feedback structure. The similar control problem of this class of systems has been addressed in the past, but it focused on the continuous-time systems. Due to the complicacies of the system structure, it will become more difficult for the controller design and the stability analysis. To stabilize this class of systems, a new recursive procedure is developed, and the effect caused by the noncausal problem in the nonstrict feedback DT structure can be solved using a semirecurrent neural approximation. Based on the Lyapunov difference approach, it is proved that all the signals of the closed-loop system are semiglobal, ultimately uniformly bounded, and a good tracking performance can be guaranteed. The feasibility of the proposed controllers can be validated by setting a simulation example.

  7. The effect of videotape augmented feedback on drop jump landing strategy: Implications for anterior cruciate ligament and patellofemoral joint injury prevention.

    PubMed

    Munro, Allan; Herrington, Lee

    2014-10-01

    Modification of high-risk movement strategies such as dynamic knee valgus is key to the reduction of anterior cruciate ligament (ACL) and patellofemoral joint (PFJ) injuries. Augmented feedback, which includes video and verbal feedback, could offer a quick, simple and effective alternative to training programs for altering high-risk movement patterns. It is not clear whether feedback can reduce dynamic knee valgus measured using frontal plane projection angle (FPPA). Vertical ground reaction force (vGRF), two-dimensional FPPA of the knee, contact time and jump height of 20 recreationally active university students were measured during a drop jump task pre- and post- an augmented feedback intervention. A control group of eight recreationally active university students were also studied at baseline and repeat test. There was a significant reduction in vGRF (p=0.033), FPPA (p<0.001) and jump height (p<0.001) and an increase in contact time (p<0.001) post feedback in the intervention group. No changes were evident in the control group. Augmented feedback leads to significant decreases in vGRF, FPPA and contact time which may help to reduce ACL and PFJ injury risk. However, these changes may result in decreased performance. Augmented feedback reduces dynamic knee valgus, as measured via FPPA, and forces experienced during the drop jump task and therefore could be used as a tool for helping decrease ACL and PFJ injury risk prior to, or as part of, the implementation of injury prevention training programs. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Augmented reality and haptic interfaces for robot-assisted surgery.

    PubMed

    Yamamoto, Tomonori; Abolhassani, Niki; Jung, Sung; Okamura, Allison M; Judkins, Timothy N

    2012-03-01

    Current teleoperated robot-assisted minimally invasive surgical systems do not take full advantage of the potential performance enhancements offered by various forms of haptic feedback to the surgeon. Direct and graphical haptic feedback systems can be integrated with vision and robot control systems in order to provide haptic feedback to improve safety and tissue mechanical property identification. An interoperable interface for teleoperated robot-assisted minimally invasive surgery was developed to provide haptic feedback and augmented visual feedback using three-dimensional (3D) graphical overlays. The software framework consists of control and command software, robot plug-ins, image processing plug-ins and 3D surface reconstructions. The feasibility of the interface was demonstrated in two tasks performed with artificial tissue: palpation to detect hard lumps and surface tracing, using vision-based forbidden-region virtual fixtures to prevent the patient-side manipulator from entering unwanted regions of the workspace. The interoperable interface enables fast development and successful implementation of effective haptic feedback methods in teleoperation. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Robust Crossfeed Design for Hovering Rotorcraft

    NASA Technical Reports Server (NTRS)

    Catapang, David R.

    1993-01-01

    Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust'. A new low-order matching method is presented here to design robust crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.

  10. A Real-Time Brain-Machine Interface Combining Motor Target and Trajectory Intent Using an Optimal Feedback Control Design

    PubMed Central

    Shanechi, Maryam M.; Williams, Ziv M.; Wornell, Gregory W.; Hu, Rollin C.; Powers, Marissa; Brown, Emery N.

    2013-01-01

    Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system. PMID:23593130

  11. Investigation of control system of traction electric drive with feedbacks on load

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-03-01

    In the article, by the example of a walking excavator, the results of a study of a control system of traction electric drive with a rigid and flexible feedback on the load are mentioned. Based on the analysis of known works, the calculation scheme has been chosen; the equations of motion of the electromechanical system have been obtained, taking into account the elasticity of the rope and feedbacks on the load in the elastic element. A simulation model of this system has been developed and mathematical modeling of the transient processes to evaluate the influence of feedback on the dynamic characteristics of the mechanism and its efficiency of work was carried out. It is shown that the use of rigid and flexible feedbacks makes it possible to reduce dynamic loads in the traction mechanism and to limit the elastic oscillation of the executive mechanism in transient operating modes in comparison with the standard control system; however, there is some decrease in productivity. It has been also established that the sign-variable of the loading of the electric drive, connected with the opening of the backlashes in the gearbox due to the action of feedbacks on the load in the elastic element, under certain conditions, can lead to undesirable phenomena in the operation of the drive and a decrease in the reliability of its operation.

  12. Self-Verification Strivings in Children Holding Negative Self-Views: The Mitigating Effects of a Preceding Success Experience

    PubMed Central

    Thomaes, Sander; Kamphuis, Jan Henk; de Castro, Bram Orobio; Telch, Michael J.

    2010-01-01

    Research among adults has consistently shown that people holding negative self-views prefer negative over positive feedback. The present study tested the hypothesis that this preference is less robust among pre-adolescents, such that it will be mitigated by a preceding positive event. Pre-adolescents (n = 75) holding positive or negative global self-esteem were randomized to a favorable or unfavorable peer evaluation outcome. Next, preferences for positive versus negative feedback were assessed using an unobtrusive behavioral viewing time measure. As expected, results showed that after being faced with the success outcome children holding negative self-views were as likely as their peers holding positive self-views to display a significant preference for positive feedback. In contrast, children holding negative self-views displayed a stronger preference for negative feedback after being faced with the unfavorable outcome that matched their pre-existing self-views. PMID:21151482

  13. Self-Verification Strivings in Children Holding Negative Self-Views: The Mitigating Effects of a Preceding Success Experience.

    PubMed

    Reijntjes, Albert; Thomaes, Sander; Kamphuis, Jan Henk; de Castro, Bram Orobio; Telch, Michael J

    2010-12-01

    Research among adults has consistently shown that people holding negative self-views prefer negative over positive feedback. The present study tested the hypothesis that this preference is less robust among pre-adolescents, such that it will be mitigated by a preceding positive event. Pre-adolescents (n = 75) holding positive or negative global self-esteem were randomized to a favorable or unfavorable peer evaluation outcome. Next, preferences for positive versus negative feedback were assessed using an unobtrusive behavioral viewing time measure. As expected, results showed that after being faced with the success outcome children holding negative self-views were as likely as their peers holding positive self-views to display a significant preference for positive feedback. In contrast, children holding negative self-views displayed a stronger preference for negative feedback after being faced with the unfavorable outcome that matched their pre-existing self-views.

  14. Homeostasis: Beyond Curt Richter1

    PubMed Central

    Woods, Stephen C.; Ramsay, Douglas S.

    2007-01-01

    Curt Richter introduced behavioral control into the concept of homeostasis, thereby opening entire fields of research. The prevailing dogma, and the techniques he used, conspired to lead Richter and others to interpret regulation in strict negative feedback terms. Although this point of view continues to be embraced by many contemporary biologists, we believe that prevailing sentiment favors a broader view in which organisms integrate anticipatory pre-emptive control over regulated variables whenever possible. PMID:17524521

  15. Combining a leadership course and multi-source feedback has no effect on leadership skills of leaders in postgraduate medical education. An intervention study with a control group

    PubMed Central

    2009-01-01

    Background Leadership courses and multi-source feedback are widely used developmental tools for leaders in health care. On this background we aimed to study the additional effect of a leadership course following a multi-source feedback procedure compared to multi-source feedback alone especially regarding development of leadership skills over time. Methods Study participants were consultants responsible for postgraduate medical education at clinical departments. Study design: pre-post measures with an intervention and control group. The intervention was participation in a seven-day leadership course. Scores of multi-source feedback from the consultants responsible for education and respondents (heads of department, consultants and doctors in specialist training) were collected before and one year after the intervention and analysed using Mann-Whitney's U-test and Multivariate analysis of variances. Results There were no differences in multi-source feedback scores at one year follow up compared to baseline measurements, either in the intervention or in the control group (p = 0.149). Conclusion The study indicates that a leadership course following a MSF procedure compared to MSF alone does not improve leadership skills of consultants responsible for education in clinical departments. Developing leadership skills takes time and the time frame of one year might have been too short to show improvement in leadership skills of consultants responsible for education. Further studies are needed to investigate if other combination of initiatives to develop leadership might have more impact in the clinical setting. PMID:20003311

  16. Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Westberg, J.; Sterczewski, L. A.; Wysocki, G.

    2017-04-01

    Fabry-Pérot (FP) quantum cascade lasers (QCLs) provide purely electronically controlled monolithic sources for broadband mid-infrared (mid-IR) multiheterodyne spectroscopy (MHS), which benefits from the large gain bandwidth of the QCLs without sacrificing the narrowband properties commonly associated with the single mode distributed feedback variant. We demonstrate a FP-QCL based multiheterodyne spectrometer with a short-term noise-equivalent absorption of ˜3 × 10-4/ √{ H z } , a mid-IR spectral coverage of 25 cm-1, and very short acquisition time (10 μs) capability. The broadband potential is demonstrated by measuring the absorption spectra of ammonia and isobutane under atmospheric pressure conditions. The stability of the system is enhanced by a two-stage active frequency inter-locking procedure, where the two QCLs are pre-locked with a slow feedback loop based on an analog frequency discriminator, followed by a high bandwidth optical phase-locked loop. The locking system provides a relative frequency stability in the sub kHz range over seconds of integration time. The strength of the technique lies in the ability to acquire spectral information from all optical modes simultaneously and individually, which bodes for a versatile and cost effective spectrometer for mid-IR chemical gas sensing.

  17. Control of constraint forces and trajectories in a rich sensory and actuation environment.

    PubMed

    Hemami, Hooshang; Dariush, Behzad

    2010-12-01

    A simple control strategy is proposed and applied to a class of non-linear systems that have abundant sensory and actuation channels as in living systems. The main objective is the independent control of constrained trajectories of motion, and control of the corresponding constraint forces. The peripheral controller is a proportional, derivative and integral (PID) controller. A central controller produces, via pattern generators, reference signals that are the desired constrained position and velocity trajectories, and the desired constraint forces. The basic tenet of the this hybrid control strategy is the use of two mechanisms: 1. linear state and force feedback, and 2. non-linear constraint velocity feedback - sliding mode feedback. The first mechanism can be envisioned as a high gain feedback systems. The high gain attribute imitates the agonist-antagonist co-activation in natural systems. The strategy is applied to the control of the force and trajectory of a two-segment thigh-leg planar biped leg with a mass-less foot cranking a pedal that is analogous to a bicycle pedal. Five computational experiments are presented to show the effectiveness of the strategy and the performance of the controller. The findings of this paper are applicable to the design of orthoses and prostheses to supplement functional electrical stimulation for support purposes in the spinally injured cases. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Control techniques to improve Space Shuttle solid rocket booster separation

    NASA Technical Reports Server (NTRS)

    Tomlin, D. D.

    1983-01-01

    The present Space Shuttle's control system does not prevent the Orbiter's main engines from being in gimbal positions that are adverse to solid rocket booster separation. By eliminating the attitude error and attitude rate feedback just prior to solid rocket booster separation, the detrimental effects of the Orbiter's main engines can be reduced. In addition, if angular acceleration feedback is applied, the gimbal torques produced by the Orbiter's engines can reduce the detrimental effects of the aerodynamic torques. This paper develops these control techniques and compares the separation capability of the developed control systems. Currently with the worst case initial conditions and each Shuttle system dispersion aligned in the worst direction (which is more conservative than will be experienced in flight), the solid rocket booster has an interference with the Shuttle's external tank of 30 in. Elimination of the attitude error and attitude rate feedback reduces that interference to 19 in. Substitution of angular acceleration feedback reduces the interference to 6 in. The two latter interferences can be eliminated by atess conservative analysis techniques, that is, by using a root sum square of the system dispersions.

  19. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics.

    PubMed

    Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang

    2014-06-01

    This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.

  20. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.

    PubMed

    Veras, Eduardo J; De Laurentis, Kathryn J; Dubey, Rajiv

    2008-01-01

    This paper describes the design and implementation of a control system that integrates visual and haptic information to give assistive force feedback through a haptic controller (Omni Phantom) to the user. A sensor-based assistive function and velocity scaling program provides force feedback that helps the user complete trajectory following exercises for rehabilitation purposes. This system also incorporates a PUMA robot for teleoperation, which implements a camera and a laser range finder, controlled in real time by a PC, were implemented into the system to help the user to define the intended path to the selected target. The real-time force feedback from the remote robot to the haptic controller is made possible by using effective multithreading programming strategies in the control system design and by novel sensor integration. The sensor-based assistant function concept applied to teleoperation as well as shared control enhances the motion range and manipulation capabilities of the users executing rehabilitation exercises such as trajectory following along a sensor-based defined path. The system is modularly designed to allow for integration of different master devices and sensors. Furthermore, because this real-time system is versatile the haptic component can be used separately from the telerobotic component; in other words, one can use the haptic device for rehabilitation purposes for cases in which assistance is needed to perform tasks (e.g., stroke rehab) and also for teleoperation with force feedback and sensor assistance in either supervisory or automatic modes.

  1. Observer-based output feedback control of networked control systems with non-uniform sampling and time-varying delay

    NASA Astrophysics Data System (ADS)

    Meng, Su; Chen, Jie; Sun, Jian

    2017-10-01

    This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.

  2. A wearable biofeedback control system based body area network for freestyle swimming.

    PubMed

    Rui Li; Zibo Cai; WeeSit Lee; Lai, Daniel T H

    2016-08-01

    Wearable posture measurement units are capable of enabling real-time performance evaluation and providing feedback to end users. This paper presents a wearable feedback prototype designed for freestyle swimming with focus on trunk rotation measurement. The system consists of a nine-degree-of-freedom inertial sensor, which is built in a central data collection and processing unit, and two vibration motors for delivering real-time feedback. Theses devices form a fundamental body area network (BAN). In the experiment setup, four recreational swimmers were asked to do two sets of 4 x 25m freestyle swimming without and with feedback provided respectively. Results showed that real-time biofeedback mechanism improves swimmers kinematic performance by an average of 4.5% reduction in session time. Swimmers can gradually adapt to feedback signals, and the biofeedback control system can be employed in swimmers daily training for fitness maintenance.

  3. Finite-time output feedback stabilization of high-order uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Jiang, Meng-Meng; Xie, Xue-Jun; Zhang, Kemei

    2018-06-01

    This paper studies the problem of finite-time output feedback stabilization for a class of high-order nonlinear systems with the unknown output function and control coefficients. Under the weaker assumption that output function is only continuous, by using homogeneous domination method together with adding a power integrator method, introducing a new analysis method, the maximal open sector Ω of output function is given. As long as output function belongs to any closed sector included in Ω, an output feedback controller can be developed to guarantee global finite-time stability of the closed-loop system.

  4. Robust feedback zoom tracking for digital video surveillance.

    PubMed

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.

  5. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1991-01-01

    Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies have been merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal component that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and a feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nominal feedforward signal.

  6. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1989-01-01

    Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies were merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal componet that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nomical feedforward signal.

  7. The effectiveness of immediate feedback during the objective structured clinical examination.

    PubMed

    Hodder, R V; Rivington, R N; Calcutt, L E; Hart, I R

    1989-03-01

    Using eight different physical examination or technical stations, 400 examinations were conducted to evaluate the effectiveness of immediate feedback during the Objective Structured Clinical Examination (OSCE). The test group comprised 50 medical students who underwent a standard 4-minute examination followed by 2 minutes of feedback. Immediately following feedback the students repeated an identical 4-minute examination scored by the same examiners. The control group consisted of 50 students from the same class who underwent an identical testing sequence, but instead of receiving feedback, they were instructed to continue their examinations for an additional 2 minutes before repeating the stations. Simple repetition of the task did not significantly improve score (mean increase 2.0%, NS). Extending the testing period from 4 to 6 minutes resulted in a small but significant increase in score (mean 6.7%, P less than 0.001). However, there was a much larger increase in the scores obtained following 2 minutes of immediate feedback compared to pre-feedback performance (mean 26.3%, P less than 0.0001). The majority of students and examiners felt that feedback, as administered in this study, was valuable both as a learning and teaching experience. Short periods of immediate feedback during an OSCE are practical and can improve competency in the performance of criterion-based tasks, at least over the short term. In addition, such feedback provides students with valuable self-assessment that may stimulate further learning.

  8. Spelling Instruction in Spanish: A Comparison of Self-Correction, Visual Imagery and Copying

    ERIC Educational Resources Information Center

    Gaintza, Zuriñe; Goikoetxea, Edurne

    2016-01-01

    Two randomised control experiments examined spelling outcomes in a repeated measures design (pre-test, post-tests; 1-day, 1-month follow-up, 5-month follow-up), where students learned Spanish irregular words through (1) immediate feedback using self-correction, (2) visual imagery where children imagine and represent words using movement, and (3)…

  9. Data-driven model reference control of MIMO vertical tank systems with model-free VRFT and Q-Learning.

    PubMed

    Radac, Mircea-Bogdan; Precup, Radu-Emil; Roman, Raul-Cristian

    2018-02-01

    This paper proposes a combined Virtual Reference Feedback Tuning-Q-learning model-free control approach, which tunes nonlinear static state feedback controllers to achieve output model reference tracking in an optimal control framework. The novel iterative Batch Fitted Q-learning strategy uses two neural networks to represent the value function (critic) and the controller (actor), and it is referred to as a mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach. Learning convergence of the Q-learning schemes generally depends, among other settings, on the efficient exploration of the state-action space. Handcrafting test signals for efficient exploration is difficult even for input-output stable unknown processes. Virtual Reference Feedback Tuning can ensure an initial stabilizing controller to be learned from few input-output data and it can be next used to collect substantially more input-state data in a controlled mode, in a constrained environment, by compensating the process dynamics. This data is used to learn significantly superior nonlinear state feedback neural networks controllers for model reference tracking, using the proposed Batch Fitted Q-learning iterative tuning strategy, motivating the original combination of the two techniques. The mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach is experimentally validated for water level control of a multi input-multi output nonlinear constrained coupled two-tank system. Discussions on the observed control behavior are offered. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.

    PubMed

    Ehrampoosh, Shervin; Dave, Mohit; Kia, Michael A; Rablau, Corneliu; Zadeh, Mehrdad H

    2013-01-01

    This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.

  11. Evaluating the parent-adolescent communication toolkit: Usability and preliminary content effectiveness of an online intervention.

    PubMed

    Toombs, Elaine; Unruh, Anita; McGrath, Patrick

    2018-01-01

    This study aimed to assess the Parent-Adolescent Communication Toolkit, an online intervention designed to help improve parent communication with their adolescents. Participant preferences for two module delivery systems (sequential and unrestricted module access) were identified. Usability assessment of the PACT intervention was completed using pre-test and posttest comparisons. Usability data, including participant completion and satisfaction ratings were examined. Parents ( N  =   18) of adolescents were randomized to a sequential or unrestricted chapter access group. Parent participants completed pre-test measures, the PACT intervention and posttest measures. Participants provided feedback for the intervention to improve modules and provided usability ratings. Adolescent pre- and posttest ratings were evaluated. Usability ratings were high and parent feedback was positive. The sequential module access groups rated the intervention content higher and completed more content than the unrestricted chapter access group, indicating support for the sequential access design. Parent mean posttest communication scores were significantly higher ( p  <   .05) than pre-test scores. No significant differences were detected for adolescent participants. Findings suggest that the Parent-Adolescent Communication Toolkit has potential to improve parent-adolescent communication but further effectiveness assessment is required.

  12. Feedback system design with an uncertain plant

    NASA Technical Reports Server (NTRS)

    Milich, D.; Valavani, L.; Athans, M.

    1986-01-01

    A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.

  13. Nonlinear power flow feedback control for improved stability and performance of airfoil sections

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2013-09-03

    A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.

  14. On-coil multiple channel transmit system based on class-D amplification and pre-amplification with current amplitude feedback

    PubMed Central

    Gudino, N.; Heilman, J.A; Riffe, M. J.; Heid, O.; Vester, M.; Griswold, M.A.

    2016-01-01

    A complete high-efficiency transmit amplifier unit designed to be implemented in on-coil transmit arrays is presented. High power capability, low power dissipation, scalability and cost minimization were some of the requirements imposed to the design. The system is composed of a current mode class-D (CMCD) amplifier output stage and a voltage mode class-D (VMCD) preamplification stage. The amplitude information of the radio frequency pulse was added through a customized step-down DC-DC converter with current amplitude feedback that connects to the CMCD stage. Benchtop measurements and imaging experiments were carried out to analyze system performance. Direct control of B1 was possible and its load sensitivity was reduced to less than 10% variation from unloaded to full loaded condition. When using the amplifiers in an array configuration, isolation above 20 dB was achieved between neighboring coils by the amplifier decoupling method. High output current operation of the transmitter was proved on the benchtop through output power measurements and in a 1.5 T scanner through flip angle quantification. Finally, single and multiple channel excitations with the new hardware were demonstrated by receiving signal with the body coil of the scanner. PMID:22890962

  15. On-coil multiple channel transmit system based on class-D amplification and pre-amplification with current amplitude feedback.

    PubMed

    Gudino, Natalia; Heilman, Jeremiah A; Riffe, Matthew J; Heid, Oliver; Vester, Markus; Griswold, Mark A

    2013-07-01

    A complete high-efficiency transmit amplifier unit designed to be implemented in on-coil transmit arrays is presented. High power capability, low power dissipation, scalability, and cost minimization were some of the requirements imposed to the design. The system is composed of a current mode class-D amplifier output stage and a voltage mode class-D preamplification stage. The amplitude information of the radio frequency pulse was added through a customized step-down DC-DC converter with current amplitude feedback that connects to the current mode class-D stage. Benchtop measurements and imaging experiments were carried out to analyze system performance. Direct control of B1 was possible and its load sensitivity was reduced to less than 10% variation from unloaded to full loaded condition. When using the amplifiers in an array configuration, isolation above 20 dB was achieved between neighboring coils by the amplifier decoupling method. High output current operation of the transmitter was proved on the benchtop through output power measurements and in a 1.5T scanner through flip angle quantification. Finally, single and multiple channel excitations with the new hardware were demonstrated by receiving signal with the body coil of the scanner. Copyright © 2012 Wiley Periodicals, Inc.

  16. Ignorance is bliss: general and robust cancellation of decoherence via no-knowledge quantum feedback.

    PubMed

    Szigeti, Stuart S; Carvalho, Andre R R; Morley, James G; Hush, Michael R

    2014-07-11

    A "no-knowledge" measurement of an open quantum system yields no information about any system observable; it only returns noise input from the environment. Surprisingly, performing such a no-knowledge measurement can be advantageous. We prove that a system undergoing no-knowledge monitoring has reversible noise, which can be canceled by directly feeding back the measurement signal. We show how no-knowledge feedback control can be used to cancel decoherence in an arbitrary quantum system coupled to a Markovian reservoir that is being monitored. Since no-knowledge feedback does not depend on the system state or Hamiltonian, such decoherence cancellation is guaranteed to be general and robust, and can operate in conjunction with any other quantum control protocol. As an application, we show that no-knowledge feedback could be used to improve the performance of dissipative quantum computers subjected to local loss.

  17. Identification of the feedforward component in manual control with predictable target signals.

    PubMed

    Drop, Frank M; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus M; Mulder, Max

    2013-12-01

    In the manual control of a dynamic system, the human controller (HC) often follows a visible and predictable reference path. Compared with a purely feedback control strategy, performance can be improved by making use of this knowledge of the reference. The operator could effectively introduce feedforward control in conjunction with a feedback path to compensate for errors, as hypothesized in literature. However, feedforward behavior has never been identified from experimental data, nor have the hypothesized models been validated. This paper investigates human control behavior in pursuit tracking of a predictable reference signal while being perturbed by a quasi-random multisine disturbance signal. An experiment was done in which the relative strength of the target and disturbance signals were systematically varied. The anticipated changes in control behavior were studied by means of an ARX model analysis and by fitting three parametric HC models: two different feedback models and a combined feedforward and feedback model. The ARX analysis shows that the experiment participants employed control action on both the error and the target signal. The control action on the target was similar to the inverse of the system dynamics. Model fits show that this behavior can be modeled best by the combined feedforward and feedback model.

  18. Closed-Loop and Robust Control of Quantum Systems

    PubMed Central

    Wang, Lin-Cheng

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H ∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention. PMID:23997680

  19. Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics.

    PubMed

    Wang, Huanqing; Liu, Peter Xiaoping; Li, Shuai; Wang, Ding

    2017-08-29

    This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.

  20. Coordinated three-dimensional motion of the head and torso by dynamic neural networks.

    PubMed

    Kim, J; Hemami, H

    1998-01-01

    The problem of trajectory tracking control of a three dimensional (3D) model of the human upper torso and head is considered. The torso and the head are modeled as two rigid bodies connected at one point, and the Newton-Euler method is used to derive the nonlinear differential equations that govern the motion of the system. The two-link system is driven by six pairs of muscle like actuators that possess physiologically inspired alpha like and gamma like inputs, and spindle like and Golgi tendon organ like outputs. These outputs are utilized as reflex feedback for stability and stiffness control, in a long loop feedback for the purpose of estimating the state of the system (somesthesis), and as part of the input to the controller. Ideal delays of different duration are included in the feedforward and feedback paths of the system to emulate such delays encountered in physiological systems. Dynamical neural networks are trained to learn effective control of the desired maneuvers of the system. The feasibility of the controller is demonstrated by computer simulation of the successful execution of the desired maneuvers. This work demonstrates the capabilities of neural circuits in controlling highly nonlinear systems with multidelays in their feedforward and feedback paths. The ultimate long range goal of this research is toward understanding the working of the central nervous system in controlling movement. It is an interdisciplinary effort relying on mechanics, biomechanics, neuroscience, system theory, physiology and anatomy, and its short range relevance to rehabilitation must be noted.

  1. Real-time control systems: feedback, scheduling and robustness

    NASA Astrophysics Data System (ADS)

    Simon, Daniel; Seuret, Alexandre; Sename, Olivier

    2017-08-01

    The efficient control of real-time distributed systems, where continuous components are governed through digital devices and communication networks, needs a careful examination of the constraints arising from the different involved domains inside co-design approaches. Thanks to the robustness of feedback control, both new control methodologies and slackened real-time scheduling schemes are proposed beyond the frontiers between these traditionally separated fields. A methodology to design robust aperiodic controllers is provided, where the sampling interval is considered as a control variable of the system. Promising experimental results are provided to show the feasibility and robustness of the approach.

  2. Self-tuning pressure-feedback control by pole placement for vibration reduction of excavator with independent metering fluid power system

    NASA Astrophysics Data System (ADS)

    Ding, Ruqi; Xu, Bing; Zhang, Junhui; Cheng, Min

    2017-08-01

    Independent metering control systems are promising fluid power technologies compared with traditional valve controlled systems. By breaking the mechanical coupling between the inlet and outlet, the meter-out valve can open as large as possible to reduce energy consumptions. However, the lack of damping in outlet causes stronger vibrations. To address the problem, the paper designs a hybrid control method combining dynamic pressure-feedback and active damping control. The innovation resides in the optimization of damping by introducing pressure feedback to make trade-offs between high stability and fast response. To achieve this goal, the dynamic response pertaining to the control parameters consisting of feedback gain and cut-off frequency, are analyzed via pole-zero locations. Accordingly, these parameters are tuned online in terms of guaranteed dominant pole placement such that the optimal damping can be accurately captured under a considerable variation of operating conditions. The experiment is deployed in a mini-excavator. The results pertaining to different control parameters confirm the theoretical expectations via pole-zero locations. By using proposed self-tuning controller, the vibrations are almost eliminated after only one overshoot for different operation conditions. The overshoots are also reduced with less decrease of the response time. In addition, the energy-saving capability of independent metering system is still not affected by the improvement of controllability.

  3. Non-Markovian quantum feedback networks II: Controlled flows

    NASA Astrophysics Data System (ADS)

    Gough, John E.

    2017-06-01

    The concept of a controlled flow of a dynamical system, especially when the controlling process feeds information back about the system, is of central importance in control engineering. In this paper, we build on the ideas presented by Bouten and van Handel [Quantum Stochastics and Information: Statistics, Filtering and Control (World Scientific, 2008)] and develop a general theory of quantum feedback. We elucidate the relationship between the controlling processes, Z, and the measured processes, Y, and to this end we make a distinction between what we call the input picture and the output picture. We should note that the input-output relations for the noise fields have additional terms not present in the standard theory but that the relationship between the control processes and measured processes themselves is internally consistent—we do this for the two main cases of quadrature measurement and photon-counting measurement. The theory is general enough to include a modulating filter which post-processes the measurement readout Y before returning to the system. This opens up the prospect of applying very general engineering feedback control techniques to open quantum systems in a systematic manner, and we consider a number of specific modulating filter problems. Finally, we give a brief argument as to why most of the rules for making instantaneous feedback connections [J. Gough and M. R. James, Commun. Math. Phys. 287, 1109 (2009)] ought to apply for controlled dynamical networks as well.

  4. Adaptive feedback synchronization of a unified chaotic system

    NASA Astrophysics Data System (ADS)

    Lu, Junan; Wu, Xiaoqun; Han, Xiuping; Lü, Jinhu

    2004-08-01

    This Letter further improves and extends the work of Wang et al. [Phys. Lett. A 312 (2003) 34]. In detailed, the linear feedback synchronization and adaptive feedback synchronization with only one controller for a unified chaotic system are discussed here. It is noticed that this unified system contains the noted Lorenz and Chen systems. Two chaotic synchronization theorems are attained. Also, numerical simulations are given to show the effectiveness of these methods.

  5. Feedback-Driven Mode Rotation Control by Electro-Magnetic Torque

    NASA Astrophysics Data System (ADS)

    Okabayashi, M.; Strait, E. J.; Garofalo, A. M.; La Haye, R. J.; in, Y.; Hanson, J. M.; Shiraki, D.; Volpe, F.

    2013-10-01

    The recent experimental discovery of feedback-driven mode rotation control, supported by modeling, opens new approaches for avoidance of locked tearing modes that otherwise lead to disruptions. This approach is an application of electro-magnetic (EM) torque using 3D fields, routinely maximized through a simple feedback system. In DIII-D, it is observed that a feedback-applied radial field can be synchronized in phase with the poloidal field component of a large amplitude tearing mode, producing the maximum EM torque input. The mode frequency can be maintained in the 10 Hz to 100 Hz range in a well controlled manner, sustaining the discharges. Presently, in the ITER internal coils designed for edge localized mode (ELM) control can only be varied at few Hz, yet, well below the inverse wall time constant. Hence, ELM control system could in principle be used for this feedback-driven mode control in various ways. For instance, the locking of MHD modes can be avoided during the controlled shut down of multi hundreds Mega Joule EM stored energy in case of emergency. Feedback could also be useful to minimize mechanical resonances at the disruption events by forcing the MHD frequency away from dangerous ranges. Work supported by the US DOE under DE-AC02-09CH11466, DE-FC-02-04ER54698, DE-FG02-08ER85195, and DE-FG02-04ER54761.

  6. A new approach to approximating the linear quadratic optimal control law for hereditary systems with control delays

    NASA Technical Reports Server (NTRS)

    Milman, M. H.

    1985-01-01

    A factorization approach is presented for deriving approximations to the optimal feedback gain for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the feedback kernels.

  7. Extensions to PIFCGT: Multirate output feedback and optimal disturbance suppression

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1986-01-01

    New control synthesis procedures for digital flight control systems were developed. The theoretical developments are the solution to the problem of optimal disturbance suppression in the presence of windshear. Control synthesis is accomplished using a linear quadratic cost function, the command generator tracker for trajectory following and the proportional-integral-filter control structure for practical implementation. Extensions are made to the optimal output feedback algorithm for computing feedback gains so that the multirate and optimal disturbance control designs are computed and compared for the advanced transport operating system (ATOPS). The performance of the designs is demonstrated by closed-loop poles, frequency domain multiinput sigma and eigenvalue plots and detailed nonlinear 6-DOF aircraft simulations in the terminal area in the presence of windshear.

  8. Delayed feedback control in quantum transport.

    PubMed

    Emary, Clive

    2013-09-28

    Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.

  9. Adaptive integral robust control and application to electromechanical servo systems.

    PubMed

    Deng, Wenxiang; Yao, Jianyong

    2017-03-01

    This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Design of state-feedback controllers including sensitivity reduction, with applications to precision pointing

    NASA Technical Reports Server (NTRS)

    Hadass, Z.

    1974-01-01

    The design procedure of feedback controllers was described and the considerations for the selection of the design parameters were given. The frequency domain properties of single-input single-output systems using state feedback controllers are analyzed, and desirable phase and gain margin properties are demonstrated. Special consideration is given to the design of controllers for tracking systems, especially those designed to track polynomial commands. As an example, a controller was designed for a tracking telescope with a polynomial tracking requirement and some special features such as actuator saturation and multiple measurements, one of which is sampled. The resulting system has a tracking performance comparing favorably with a much more complicated digital aided tracker. The parameter sensitivity reduction was treated by considering the variable parameters as random variables. A performance index is defined as a weighted sum of the state and control convariances that sum from both the random system disturbances and the parameter uncertainties, and is minimized numerically by adjusting a set of free parameters.

  11. The Effects of Feedback on Online Quizzes

    ERIC Educational Resources Information Center

    Butler, Melanie; Pyzdrowski, Laura; Goodykoontz, Adam; Walker, Vennessa

    2008-01-01

    Online homework is unable to provide the detailed feedback of paper and pencil assignments. However, immediate feedback is an advantage that online assessments provide. A research study was conducted that focused on the effects of immediate feedback; students in 5 sections of a Pre-calculus course were participants. Three sections were randomly…

  12. Identification and feedback control in structures with piezoceramic actuators

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.; Wang, Y.

    1992-01-01

    In this lecture we give fundamental well-posedness results for a variational formulation of a class of damped second order partial differential equations with unbounded input or control coefficients. Included as special cases in this class are structures with piezoceramic actuators. We consider approximation techniques leading to computational methods in the context of both parameter estimation and feedback control problems for these systems. Rigorous convergence results for parameter estimates and feedback gains are discussed.

  13. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    PubMed

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  14. Feedforward and Feedback Control in Apraxia of Speech: Effects of Noise Masking on Vowel Production

    ERIC Educational Resources Information Center

    Maas, Edwin; Mailend, Marja-Liisa; Guenther, Frank H.

    2015-01-01

    Purpose: This study was designed to test two hypotheses about apraxia of speech (AOS) derived from the Directions Into Velocities of Articulators (DIVA) model (Guenther et al., 2006): the feedforward system deficit hypothesis and the feedback system deficit hypothesis. Method: The authors used noise masking to minimize auditory feedback during…

  15. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J

    2012-05-06

    The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.

  16. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation

    PubMed Central

    2012-01-01

    Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required. PMID:22559852

  17. Automated Steering Control Design by Visual Feedback Approach —System Identification and Control Experiments with a Radio-Controlled Car—

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yukihiro; Yoshii, Masakazu; Arai, Yasuhito; Adachi, Shuichi

    Advanced safety vehicle(ASV)assists drivers’ manipulation to avoid trafic accidents. A variety of researches on automatic driving systems are necessary as an element of ASV. Among them, we focus on visual feedback approach in which the automatic driving system is realized by recognizing road trajectory using image information. The purpose of this paper is to examine the validity of this approach by experiments using a radio-controlled car. First, a practical image processing algorithm to recognize white lines on the road is proposed. Second, a model of the radio-controlled car is built by system identication experiments. Third, an automatic steering control system is designed based on H∞ control theory. Finally, the effectiveness of the designed control system is examined via traveling experiments.

  18. Acceleration feedback improves balancing against reflex delay

    PubMed Central

    Insperger, Tamás; Milton, John; Stépán, Gábor

    2013-01-01

    A model for human postural balance is considered in which the time-delayed feedback depends on position, velocity and acceleration (proportional–derivative–acceleration (PDA) feedback). It is shown that a PDA controller is equivalent to a predictive controller, in which the prediction is based on the most recent information of the state, but the control input is not involved into the prediction. A PDA controller is superior to the corresponding proportional–derivative controller in the sense that the PDA controller can stabilize systems with approximately 40 per cent larger feedback delays. The addition of a sensory dead zone to account for the finite thresholds for detection by sensory receptors results in highly intermittent, complex oscillations that are a typical feature of human postural sway. PMID:23173196

  19. Impact of web searching and social feedback on consumer decision making: a prospective online experiment.

    PubMed

    Lau, Annie Y S; Coiera, Enrico W

    2008-01-22

    The World Wide Web has increasingly become an important source of information in health care consumer decision making. However, little is known about whether searching online resources actually improves consumers' understanding of health issues. The aim was to study whether searching on the World Wide Web improves consumers' accuracy in answering health questions and whether consumers' understanding of health issues is subject to further change under social feedback. This was a pre/post prospective online study. A convenience sample of 227 undergraduate students was recruited from the population of the University of New South Wales. Subjects used a search engine that retrieved online documents from PubMed, MedlinePlus, and HealthInsite and answered a set of six questions (before and after use of the search engine) designed for health care consumers. They were then presented with feedback consisting of a summary of the post-search answers provided by previous subjects for the same questions and were asked to answer the questions again. There was an improvement in the percentage of correct answers after searching (pre-search 61.2% vs post-search 82.0%, P <.001) and after feedback with other subjects' answers (pre-feedback 82.0% vs post-feedback 85.3%, P =.051). The proportion of subjects with highly confident correct answers (ie, confident or very confident) and the proportion with highly confident incorrect answers significantly increased after searching (correct pre-search 61.6% vs correct post-search 95.5%, P <.001; incorrect pre-search 55.3% vs incorrect post-search 82.0%, P <.001). Subjects who were not as confident in their post-search answers were 28.5% more likely than those who were confident or very confident to change their answer after feedback with other subjects' post-search answers (chi(2) (1)= 66.65, P <.001). Searching across quality health information sources on the Web can improve consumers' accuracy in answering health questions. However, a consumer's confidence in an answer is not a good indicator of the answer being correct. Consumers who are not confident in their answers after searching are more likely to be influenced to change their views when provided with feedback from other consumers.

  20. Practical Loop-Shaping Design of Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the effectiveness of the control design in a methodical and quantifiable way. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs. Unlike conventional ad hoc methodologies of feedback control design, in this approach actuator rates are incorporated into the design right from the start: The relation between actuator speeds and the desired control bandwidth of the system is established explicitly. The technique developed is demonstrated via design examples in a step-by-step tutorial way. Given the actuation system rates and range limits together with design specifications in terms of stability margins, disturbance rejection, and transient response, the procedure involves designing the feedback loop gain to meet the requirements and maximizing the control system effectiveness, without exceeding the actuation system limits and saturating the controller. Then knowing the plant transfer function, the procedure involves designing the controller so that the controller transfer function together with the plant transfer function equate to the designed loop gain. The technique also shows what the limitations of the controller design are and how to trade competing design requirements such as stability margins and disturbance rejection. Finally, the technique is contrasted against other more familiar control design techniques, like PID control, to show its advantages.

  1. ELECTRON EMISSION REGULATING MEANS

    DOEpatents

    Brenholdt, I.R.

    1957-11-19

    >An electronic regulating system is described for controlling the electron emission of a cathode, for example, the cathode in a mass spectrometer. The system incorporates a transformer having a first secondary winding for the above-mentioned cathode and a second secondary winding for the above-mentioned cathode and a second secondary winding load by grid controlled vacuum tubes. A portion of the electron current emitted by the cathode is passed through a network which develops a feedback signal. The system arrangement is completed by using the feedback signal to control the vacuum tubes in the second secondary winding through a regulator tube. When a change in cathode emission occurs, the feedback signal acts to correct this change by adjusting the load on the transformer.

  2. Quadcopter Path Following Control Design Using Output Feedback with Command Generator Tracker LOS Based At Square Path

    NASA Astrophysics Data System (ADS)

    Nugraha, A. T.; Agustinah, T.

    2018-01-01

    Quadcopter an unstable system, underactuated and nonlinear in quadcopter control research developments become an important focus of attention. In this study, following the path control method for position on the X and Y axis, used structure-Generator Tracker Command (CGT) is tested. Attitude control and position feedback quadcopter is compared using the optimal output. The addition of the H∞ performance optimal output feedback control is used to maintain the stability and robustness of quadcopter. Iterative numerical techniques Linear Matrix Inequality (LMI) is used to find the gain controller. The following path control problems is solved using the method of LQ regulators with output feedback. Simulations show that the control system can follow the paths that have been defined in the form of a reference signal square shape. The result of the simulation suggest that the method which used can bring the yaw angle at the expected value algorithm. Quadcopter can do automatically following path with cross track error mean X=0.5 m and Y=0.2 m.

  3. Decoupling feedforward and feedback structures in hybrid active noise control systems for uncorrelated narrowband disturbances

    NASA Astrophysics Data System (ADS)

    Wu, Lifu; Qiu, Xiaojun; Burnett, Ian S.; Guo, Yecai

    2015-08-01

    Hybrid feedforward and feedback structures are useful for active noise control (ANC) applications where the noise can only be partially obtained with reference sensors. The traditional method uses the secondary signals of both the feedforward and feedback structures to synthesize a reference signal for the feedback structure in the hybrid structure. However, this approach introduces coupling between the feedforward and feedback structures and parameter changes in one structure affect the other during adaptation such that the feedforward and feedback structures must be optimized simultaneously in practical ANC system design. Two methods are investigated in this paper to remove such coupling effects. One is a simplified method, which uses the error signal directly as the reference signal in the feedback structure, and the second method generates the reference signal for the feedback structure by using only the secondary signal from the feedback structure and utilizes the generated reference signal as the error signal of the feedforward structure. Because the two decoupling methods can optimize the feedforward and feedback structures separately, they provide more flexibility in the design and optimization of the adaptive filters in practical ANC applications.

  4. Microprocessor based implementation of attitude and shape control of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.

    1984-01-01

    The feasibility of off the shelf eight bit and 16 bit microprocessors to implement linear state variable feedback control laws and assessing the real time response to spacecraft dynamics is studied. The complexity of the dynamic model is described along with the appropriate software. An experimental setup of a beam, microprocessor system for implementing the control laws and the needed generalized software to implement any state variable feedback control system is included.

  5. Feedback coupling in dynamical systems

    NASA Astrophysics Data System (ADS)

    Trimper, Steffen; Zabrocki, Knud

    2003-05-01

    Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.

  6. Cross-entropy optimization for neuromodulation.

    PubMed

    Brar, Harleen K; Yunpeng Pan; Mahmoudi, Babak; Theodorou, Evangelos A

    2016-08-01

    This study presents a reinforcement learning approach for the optimization of the proportional-integral gains of the feedback controller represented in a computational model of epilepsy. The chaotic oscillator model provides a feedback control systems view of the dynamics of an epileptic brain with an internal feedback controller representative of the natural seizure suppression mechanism within the brain circuitry. Normal and pathological brain activity is simulated in this model by adjusting the feedback gain values of the internal controller. With insufficient gains, the internal controller cannot provide enough feedback to the brain dynamics causing an increase in correlation between different brain sites. This increase in synchronization results in the destabilization of the brain dynamics, which is representative of an epileptic seizure. To provide compensation for an insufficient internal controller an external controller is designed using proportional-integral feedback control strategy. A cross-entropy optimization algorithm is applied to the chaotic oscillator network model to learn the optimal feedback gains for the external controller instead of hand-tuning the gains to provide sufficient control to the pathological brain and prevent seizure generation. The correlation between the dynamics of neural activity within different brain sites is calculated for experimental data to show similar dynamics of epileptic neural activity as simulated by the network of chaotic oscillators.

  7. Differential flatness properties and adaptive control of the hypothalamic-pituitary-adrenal axis model

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2016-12-01

    It is shown that the model of the hypothalamic-pituitary-adrenal gland axis is a differentially flat one and this permits to transform it to the so-called linear canonical form. For the new description of the system's dynamics the transformed control inputs contain unknown terms which depend on the system's parameters. To identify these terms an adaptive fuzzy approximator is used in the control loop. Thus an adaptive fuzzy control scheme is implemented in which the unknown or unmodeled system dynamics is approximated by neurofuzzy networks and next this information is used by a feedback controller that makes the state variables (CRH - corticotropin releasing hormone, adenocortocotropic hormone - ACTH, cortisol) of the hypothalamic-pituitary-adrenal gland axis model converge to the desirable levels (setpoints). This adaptive control scheme is exclusively implemented with the use of output feedback, while the state vector elements which are not directly measured are estimated with the use of a state observer that operates in the control loop. The learning rate of the adaptive fuzzy system is suitably computed from Lyapunov analysis, so as to assure that both the learning procedure for the unknown system's parameters, the dynamics of the observer and the dynamics of the control loop will remain stable. The performed Lyapunov stability analysis depends on two Riccati equations, one associated with the feedback controller and one associated with the state observer. Finally, it is proven that for the control scheme that comprises the feedback controller, the state observer and the neurofuzzy approximator, an H-infinity tracking performance can be succeeded.

  8. Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form.

    PubMed

    Jagannathan, Sarangapani; He, Pingan

    2008-12-01

    In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability.

  9. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  10. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy.

    PubMed

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P; Yang, Chen; Hosseini, Nahid; Fantner, Georg E

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  11. Feedback Control of Resistive Wall Modes in Slowly Rotating DIII-D Plasmas

    NASA Astrophysics Data System (ADS)

    Okabayashi, M.; Chance, M. S.; Takahashi, H.; Garofalo, A. M.; Reimerdes, H.; in, Y.; Chu, M. S.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.

    2006-10-01

    In slowly rotating plasmas on DIII-D, the requirement of RWM control feedback have been identified, using a MHD code along with measured power supply characteristics. It was found that a small time delay is essential for achieving high beta if no rotation stabilization exists. The overall system delay or the band pass time constant should be in the range of 0.4 of the RWM growth time. Recently the control system was upgraded using twelve linear audio amplifiers and a faster digital control system, reducing the time-delay from 600 to 100 μs. The advantage has been clearly observed when the RWMs excited by ELMs were effectively controlled by feedback even if the rotation transiently slowed nearly to zero. This study provides insight on stability in the low- rotation plasmasw with balanced NBI in DIII-D and also in ITER.

  12. Fuzzy Adaptive Output Feedback Control of Uncertain Nonlinear Systems With Prescribed Performance.

    PubMed

    Zhang, Jin-Xi; Yang, Guang-Hong

    2018-05-01

    This paper investigates the tracking control problem for a family of strict-feedback systems in the presence of unknown nonlinearities and immeasurable system states. A low-complexity adaptive fuzzy output feedback control scheme is proposed, based on a backstepping method. In the control design, a fuzzy adaptive state observer is first employed to estimate the unmeasured states. Then, a novel error transformation approach together with a new modification mechanism is introduced to guarantee the finite-time convergence of the output error to a predefined region and ensure the closed-loop stability. Compared with the existing methods, the main advantages of our approach are that: 1) without using extra command filters or auxiliary dynamic surface control techniques, the problem of explosion of complexity can still be addressed and 2) the design procedures are independent of the initial conditions. Finally, two practical examples are performed to further illustrate the above theoretic findings.

  13. Framework and Method for Controlling a Robotic System Using a Distributed Computer Network

    NASA Technical Reports Server (NTRS)

    Sanders, Adam M. (Inventor); Strawser, Philip A. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor)

    2015-01-01

    A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.

  14. Study rationale and design of OPTIMISE, a randomised controlled trial on the effect of benchmarking on quality of care in type 2 diabetes mellitus.

    PubMed

    Nobels, Frank; Debacker, Noëmi; Brotons, Carlos; Elisaf, Moses; Hermans, Michel P; Michel, Georges; Muls, Erik

    2011-09-22

    To investigate the effect of physician- and patient-specific feedback with benchmarking on the quality of care in adults with type 2 diabetes mellitus (T2DM). Study centres in six European countries were randomised to either a benchmarking or control group. Physicians in both groups received feedback on modifiable outcome indicators (glycated haemoglobin [HbA1c], glycaemia, total cholesterol, high density lipoprotein-cholesterol, low density lipoprotein [LDL]-cholesterol and triglycerides) for each patient at 0, 4, 8 and 12 months, based on the four times yearly control visits recommended by international guidelines. The benchmarking group also received comparative results on three critical quality indicators of vascular risk (HbA1c, LDL-cholesterol and systolic blood pressure [SBP]), checked against the results of their colleagues from the same country, and versus pre-set targets. After 12 months of follow up, the percentage of patients achieving the pre-determined targets for the three critical quality indicators will be assessed in the two groups. Recruitment was completed in December 2008 with 3994 evaluable patients. This paper discusses the study rationale and design of OPTIMISE, a randomised controlled study, that will help assess whether benchmarking is a useful clinical tool for improving outcomes in T2DM in primary care. NCT00681850.

  15. Study rationale and design of OPTIMISE, a randomised controlled trial on the effect of benchmarking on quality of care in type 2 diabetes mellitus

    PubMed Central

    2011-01-01

    Background To investigate the effect of physician- and patient-specific feedback with benchmarking on the quality of care in adults with type 2 diabetes mellitus (T2DM). Methods Study centres in six European countries were randomised to either a benchmarking or control group. Physicians in both groups received feedback on modifiable outcome indicators (glycated haemoglobin [HbA1c], glycaemia, total cholesterol, high density lipoprotein-cholesterol, low density lipoprotein [LDL]-cholesterol and triglycerides) for each patient at 0, 4, 8 and 12 months, based on the four times yearly control visits recommended by international guidelines. The benchmarking group also received comparative results on three critical quality indicators of vascular risk (HbA1c, LDL-cholesterol and systolic blood pressure [SBP]), checked against the results of their colleagues from the same country, and versus pre-set targets. After 12 months of follow up, the percentage of patients achieving the pre-determined targets for the three critical quality indicators will be assessed in the two groups. Results Recruitment was completed in December 2008 with 3994 evaluable patients. Conclusions This paper discusses the study rationale and design of OPTIMISE, a randomised controlled study, that will help assess whether benchmarking is a useful clinical tool for improving outcomes in T2DM in primary care. Trial registration NCT00681850 PMID:21939502

  16. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  17. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees.

    PubMed

    Strbac, Matija; Isakovic, Milica; Belic, Minja; Popovic, Igor; Simanic, Igor; Farina, Dario; Keller, Thierry; Dosen, Strahinja

    2017-11-01

    Human motor control relies on a combination of feedback and feedforward strategies. The aim of this study was to longitudinally investigate artificial somatosensory feedback and feedforward control in the context of grasping with myoelectric prosthesis. Nine amputee subjects performed routine grasping trials, with the aim to produce four levels of force during four blocks of 60 trials across five days. The electrotactile force feedback was provided in the second and third block using multipad electrode and spatial coding. The first baseline and last validation block (open-loop control) evaluated the effects of long- (across sessions) and short-term (within session) learning, respectively. The outcome measures were the absolute error between the generated and target force, and the number of force saturations. The results demonstrated that the electrotactile feedback improved the performance both within and across sessions. In the validation block, the performance did not significantly decrease and the quality of open-loop control (baseline) improved across days, converging to the performance characterizing closed-loop control. This paper provides important insights into the feedback and feedforward processes in prosthesis control, contributing to the better understanding of the role and design of feedback in prosthetic systems.

  18. Dynamic Sensing Performance of a Point-Wise Fiber Bragg Grating Displacement Measurement System Integrated in an Active Structural Control System

    PubMed Central

    Chuang, Kuo-Chih; Liao, Heng-Tseng; Ma, Chien-Ching

    2011-01-01

    In this work, a fiber Bragg grating (FBG) sensing system which can measure the transient response of out-of-plane point-wise displacement responses is set up on a smart cantilever beam and the feasibility of its use as a feedback sensor in an active structural control system is studied experimentally. An FBG filter is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. For comparison, a laser Doppler vibrometer (LDV) is utilized simultaneously to verify displacement detection ability of the FBG sensing system. An optical full-field measurement technique called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to provide full-field vibration mode shapes and resonant frequencies. To verify the dynamic demodulation performance of the FBG filter, a traditional FBG strain sensor calibrated with a strain gauge is first employed to measure the dynamic strain of impact-induced vibrations. Then, system identification of the smart cantilever beam is performed by FBG strain and displacement sensors. Finally, by employing a velocity feedback control algorithm, the feasibility of integrating the proposed FBG displacement sensing system in a collocated feedback system is investigated and excellent dynamic feedback performance is demonstrated. In conclusion, our experiments show that the FBG sensor is capable of performing dynamic displacement feedback and/or strain measurements with high sensitivity and resolution. PMID:22247683

  19. Position Control of Tendon-Driven Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Hargrave, B.; Pementer, Frank

    2011-01-01

    Conventionally, tendon-driven manipulators implement some force control scheme based on tension feedback. This feedback allows the system to ensure that the tendons are maintained taut with proper levels of tensioning at all times. Occasionally, whether it is due to the lack of tension feedback or the inability to implement sufficiently high stiffnesses, a position control scheme is needed. This work compares three position controllers for tendon-driven manipulators. A new controller is introduced that achieves the best overall performance with regards to speed, accuracy, and transient behavior. To compensate for the lack of tension feedback, the controller nominally maintains the internal tension on the tendons by implementing a two-tier architecture with a range-space constraint. These control laws are validated experimentally on the Robonaut-2 humanoid hand. I

  20. Adaptive positive position feedback control with a feedforward compensator of a magnetostrictive beam for vibration suppression

    NASA Astrophysics Data System (ADS)

    Bian, Leixiang; Zhu, Wei

    2018-07-01

    In this paper, a Fe–Ga alloy magnetostrictive beam is designed as an actuator to restrain the vibration of a supported mass. Dynamic modeling of the system based on the transfer matrix method of multibody system is first shown, and then a hybrid controller is developed to achieve vibration control. The proposed vibration controller combines a multi-mode adaptive positive position feedback (APPF) with a feedforward compensator. In the APPF control, an adaptive natural frequency estimator based on the recursive least-square method is developed to be used. In the feedforward compensator, the hysteresis of the magnetostrictive beam is linearized based on a Bouc–Wen model. The further remarkable vibration suppression capability of the proposed hybrid controller is demonstrated experimentally and compared with the positive position feedback controller. Experiment results show that the proposed controller is applicable to the magnetostrictive beam for improving vibration control effectiveness.

  1. Opposing and following responses in sensorimotor speech control: Why responses go both ways.

    PubMed

    Franken, Matthias K; Acheson, Daniel J; McQueen, James M; Hagoort, Peter; Eisner, Frank

    2018-06-04

    When talking, speakers continuously monitor and use the auditory feedback of their own voice to control and inform speech production processes. When speakers are provided with auditory feedback that is perturbed in real time, most of them compensate for this by opposing the feedback perturbation. But some responses follow the perturbation. In the present study, we investigated whether the state of the speech production system at perturbation onset may determine what type of response (opposing or following) is made. The results suggest that whether a perturbation-related response is opposing or following depends on ongoing fluctuations of the production system: The system initially responds by doing the opposite of what it was doing. This effect and the nontrivial proportion of following responses suggest that current production models are inadequate: They need to account for why responses to unexpected sensory feedback depend on the production system's state at the time of perturbation.

  2. Nonlinear compensation techniques for magnetic suspension systems. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Trumper, David L.

    1991-01-01

    In aerospace applications, magnetic suspension systems may be required to operate over large variations in air-gap. Thus the nonlinearities inherent in most types of suspensions have a significant effect. Specifically, large variations in operating point may make it difficult to design a linear controller which gives satisfactory stability and performance over a large range of operating points. One way to address this problem is through the use of nonlinear compensation techniques such as feedback linearization. Nonlinear compensators have received limited attention in the magnetic suspension literature. In recent years, progress has been made in the theory of nonlinear control systems, and in the sub-area of feedback linearization. The idea is demonstrated of feedback linearization using a second order suspension system. In the context of the second order suspension, sampling rate issues in the implementation of feedback linearization are examined through simulation.

  3. Microfluidic on-chip fluorescence-activated interface control system

    PubMed Central

    Haiwang, Li; Nguyen, N. T.; Wong, T. N.; Ng, S. L.

    2010-01-01

    A microfluidic dynamic fluorescence-activated interface control system was developed for lab-on-a-chip applications. The system consists of a straight rectangular microchannel, a fluorescence excitation source, a detection sensor, a signal conversion circuit, and a high-voltage feedback system. Aqueous NaCl as conducting fluid and aqueous glycerol as nonconducting fluid were introduced to flow side by side into the straight rectangular microchannel. Fluorescent dye was added to the aqueous NaCl to work as a signal representing the interface position. Automatic control of the liquid interface was achieved by controlling the electroosmotic effect that exists only in the conducting fluid using a high-voltage feedback system. A LABVIEW program was developed to control the output of high-voltage power supply according the actual interface position, and then the interface position is modified as the output of high-voltage power supply. At last, the interface can be moved to the desired position automatically using this feedback system. The results show that the system presented in this paper can control an arbitrary interface location in real time. The effects of viscosity ratio, flow rates, and polarity of electric field were discussed. This technique can be extended to switch the sample flow and droplets automatically. PMID:21173886

  4. Replacing the Lab Manual with a Learning Management System in Physics Investigations for K-4 Pre-Service Teachers

    ERIC Educational Resources Information Center

    Sobolewski, Stanley; Numan, Muhammad Z.

    2018-01-01

    The traditional laboratory investigation uses a procedure written on paper; students then record their responses on a supplied data page or laboratory notebook. In an attempt to make this process more efficient, the use of a Learning Management System (in this case D2L) was used to present the material and collect student feedback. Each student…

  5. Output Feedback Distributed Containment Control for High-Order Nonlinear Multiagent Systems.

    PubMed

    Li, Yafeng; Hua, Changchun; Wu, Shuangshuang; Guan, Xinping

    2017-01-31

    In this paper, we study the problem of output feedback distributed containment control for a class of high-order nonlinear multiagent systems under a fixed undirected graph and a fixed directed graph, respectively. Only the output signals of the systems can be measured. The novel reduced order dynamic gain observer is constructed to estimate the unmeasured state variables of the system with the less conservative condition on nonlinear terms than traditional Lipschitz one. Via the backstepping method, output feedback distributed nonlinear controllers for the followers are designed. By means of the novel first virtual controllers, we separate the estimated state variables of different agents from each other. Consequently, the designed controllers show independence on the estimated state variables of neighbors except outputs information, and the dynamics of each agent can be greatly different, which make the design method have a wider class of applications. Finally, a numerical simulation is presented to illustrate the effectiveness of the proposed method.

  6. Delay compensation in integrated communication and control systems. I - Conceptual development and analysis

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    A procedure for compensating for the effects of distributed network-induced delays in integrated communication and control systems (ICCS) is proposed. The problem of analyzing systems with time-varying and possibly stochastic delays could be circumvented by use of a deterministic observer which is designed to perform under certain restrictive but realistic assumptions. The proposed delay-compensation algorithm is based on a deterministic state estimator and a linear state-variable-feedback control law. The deterministic observer can be replaced by a stochastic observer without any structural modifications of the delay compensation algorithm. However, if a feedforward-feedback control law is chosen instead of the state-variable feedback control law, the observer must be modified as a conventional nondelayed system would be. Under these circumstances, the delay compensation algorithm would be accordingly changed. The separation principle of the classical Luenberger observer holds true for the proposed delay compensator. The algorithm is suitable for ICCS in advanced aircraft, spacecraft, manufacturing automation, and chemical process applications.

  7. Adaptive Neural Control for a Class of Pure-Feedback Nonlinear Systems via Dynamic Surface Technique.

    PubMed

    Liu, Zongcheng; Dong, Xinmin; Xue, Jianping; Li, Hongbo; Chen, Yong

    2016-09-01

    This brief addresses the adaptive control problem for a class of pure-feedback systems with nonaffine functions possibly being nondifferentiable. Without using the mean value theorem, the difficulty of the control design for pure-feedback systems is overcome by modeling the nonaffine functions appropriately. With the help of neural network approximators, an adaptive neural controller is developed by combining the dynamic surface control (DSC) and minimal learning parameter (MLP) techniques. The key features of our approach are that, first, the restrictive assumptions on the partial derivative of nonaffine functions are removed, second, the DSC technique is used to avoid "the explosion of complexity" in the backstepping design, and the number of adaptive parameters is reduced significantly using the MLP technique, third, smooth robust compensators are employed to circumvent the influences of approximation errors and disturbances. Furthermore, it is proved that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded. Finally, the simulation results are provided to demonstrate the effectiveness of the designed method.

  8. Microelectromechanical accelerometer with resonance-cancelling control circuit including an idle state

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.; Campbell, David V.

    2001-01-01

    A digital feedback control circuit is disclosed for use in an accelerometer (e.g. a microelectromechanical accelerometer). The digital feedback control circuit, which periodically re-centers a proof mass in response to a sensed acceleration, is based on a sigma-delta (.SIGMA..DELTA.) configuration that includes a notch filter (e.g. a digital switched-capacitor filter) for rejecting signals due to mechanical resonances of the proof mass and further includes a comparator (e.g. a three-level comparator). The comparator generates one of three possible feedback states, with two of the feedback states acting to re-center the proof mass when that is needed, and with a third feedback state being an "idle" state which does not act to move the proof mass when no re-centering is needed. Additionally, the digital feedback control system includes an auto-zero trim capability for calibration of the accelerometer for accurate sensing of acceleration. The digital feedback control circuit can be fabricated using complementary metal-oxide semiconductor (CMOS) technology, bi-CMOS technology or bipolar technology and used in single- and dual-proof-mass accelerometers.

  9. Focused Feedback With Video Tape As An Aid In Counseling Underachieving College Freshmen. Final Report.

    ERIC Educational Resources Information Center

    Valine, Warren J.

    This study examines the relative effectiveness of 3 group counseling techniques and a control group in counseling with underachieving college freshmen. The effectiveness of each method was determined through comparison of grade point averages (GPA) as well as by pre- and post-test scores on selected self concept variables of the Tennessee Self…

  10. Variable structure control of nonlinear systems through simplified uncertain models

    NASA Technical Reports Server (NTRS)

    Sira-Ramirez, Hebertt

    1986-01-01

    A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.

  11. The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control.

    PubMed

    Scheerer, Nichole E; Jones, Jeffery A

    2014-12-01

    Speech production requires the combined effort of a feedback control system driven by sensory feedback, and a feedforward control system driven by internal models. However, the factors that dictate the relative weighting of these feedback and feedforward control systems are unclear. In this event-related potential (ERP) study, participants produced vocalisations while being exposed to blocks of frequency-altered feedback (FAF) perturbations that were either predictable in magnitude (consistently either 50 or 100 cents) or unpredictable in magnitude (50- and 100-cent perturbations varying randomly within each vocalisation). Vocal and P1-N1-P2 ERP responses revealed decreases in the magnitude and trial-to-trial variability of vocal responses, smaller N1 amplitudes, and shorter vocal, P1 and N1 response latencies following predictable FAF perturbation magnitudes. In addition, vocal response magnitudes correlated with N1 amplitudes, vocal response latencies, and P2 latencies. This pattern of results suggests that after repeated exposure to predictable FAF perturbations, the contribution of the feedforward control system increases. Examination of the presentation order of the FAF perturbations revealed smaller compensatory responses, smaller P1 and P2 amplitudes, and shorter N1 latencies when the block of predictable 100-cent perturbations occurred prior to the block of predictable 50-cent perturbations. These results suggest that exposure to large perturbations modulates responses to subsequent perturbations of equal or smaller size. Similarly, exposure to a 100-cent perturbation prior to a 50-cent perturbation within a vocalisation decreased the magnitude of vocal and N1 responses, but increased P1 and P2 latencies. Thus, exposure to a single perturbation can affect responses to subsequent perturbations. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Feedback-controlled heat transport in quantum devices: theory and solid-state experimental proposal

    NASA Astrophysics Data System (ADS)

    Campisi, Michele; Pekola, Jukka; Fazio, Rosario

    2017-05-01

    A theory of feedback-controlled heat transport in quantum systems is presented. It is based on modelling heat engines as driven multipartite systems subject to projective quantum measurements and measurement-conditioned unitary evolutions. The theory unifies various results presented previously in the literature. Feedback control breaks time reversal invariance. This in turn results in the fluctuation relation not being obeyed. Its restoration occurs through appropriate accounting of the gain and use of information via measurements and feedback. We further illustrate an experimental proposal for the realisation of a Maxwell demon using superconducting circuits and single-photon on-chip calorimetry. A two-level qubit acts as a trap-door, which, conditioned on its state, is coupled to either a hot resistor or a cold one. The feedback mechanism alters the temperatures felt by the qubit and can result in an effective inversion of temperature gradient, where heat flows from cold to hot thanks to the gain and use of information.

  13. Fluctuation relations and Maxwell's demon in a circuit QED setup

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    The recent progress in information thermodynamics has resolved the paradox of Maxwell's demon and clarified the relationship between the information and the entropy. Its extension to quantum mechanical systems has also attracted much interest, and experimental demonstrations are awaited. Circuit QED systems offer the following tools suitable for investigating the properties of a quantum system coupled with a controlled environment: (i) a well-controlled qubit with a long coherence time, (ii) dispersive readout allowing high-fidelity quantum nondemolition measurement, and (iii) fast feedback control. We first apply the so-called two-measurement protocol (TMP) to a superconducting transmon qubit in a microwave cavity and study how the decoherence affects the nonequilibrium thermodynamic relations. Next, we implement Maxwell's demon in the circuit QED system by introducing a feedback loop and confirm the fluctuation relation including the effect of the information obtained in the feedback process. These results constitute a first step towards quantum thermodynamics in circuit QED systems.

  14. Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control.

    PubMed

    Mobayen, Saleh

    2018-06-01

    This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Annular suspension and pointing system with controlled DC electromagnets

    NASA Technical Reports Server (NTRS)

    Vu, Josephine Lynn; Tam, Kwok Hung

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.

  16. Effects of Task-Specific Augmented Feedback on Deficit Modification During Performance of the Tuck-Jump Exercise

    PubMed Central

    Stroube, Benjamin W.; Myer, Gregory D.; Brent, Jensen L.; Ford, Kevin R.; Heidt, Robert S.; Hewett, Timothy E.

    2014-01-01

    Context Anterior cruciate ligament (ACL) injuries are prevalent in female athletes. Specific factors have possible links to increasing a female athlete’s chances of suffering an ACL injury. However, it is unclear if augmented feedback may be able to decrease possible risk factors. Objective To compare the effects of task-Specific feedback on a repeated tuck-jump maneuver. Design Double-blind randomized controlled trial. Setting Sports-medicine biodynamics center. Patients 37 female subjects (14.7 ± 1.5 y, 160.9 ± 6.8 cm, 54.5 ± 7.2 kg). Intervention All athletes received standard off-season training consisting of strength training, plyometrics, and conditioning. They were also videotaped during each session while running on a treadmill at a standardized speed (8 miles/h) and while performing a repeated tuck-jump maneuver for 10 s. The augmented feedback group (AF) received feedback on deficiencies present in a 10-s tuck jump, while the control group (CTRL) received feedback on 10-s treadmill running. Main Outcome Measures Outcome measurements of tuck-jump deficits were scored by a blinded rater to determine the effects of group (CTRL vs AF) and time (pre- vs posttesting) on changes in measured deficits. Results A significant interaction of time by group was noted with the task-Specific feedback training (P = .03). The AF group reduced deficits measured during the tuck-jump assessment by 23.6%, while the CTRL training reduced deficits by 10.6%. Conclusions The results of the current study indicate that task-Specific feedback is effective for reducing biomechanical risk factors associated with ACL injury. The data also indicate that Specific components of the tuck-jump assessment are potentially more modifiable than others. PMID:23238301

  17. A fast feedback method to design easy-molding freeform optical system with uniform illuminance and high light control efficiency.

    PubMed

    Hongtao, Li; Shichao, Chen; Yanjun, Han; Yi, Luo

    2013-01-14

    A feedback method combined with fitting technique based on variable separation mapping is proposed to design freeform optical systems for an extended LED source with prescribed illumination patterns, especially with uniform illuminance distribution. Feedback process performs well with extended sources, while fitting technique contributes not only to the decrease of pieces of sub-surfaces in discontinuous freeform lenses which may cause loss in manufacture, but also the reduction in the number of feedback iterations. It is proved that light control efficiency can be improved by 5%, while keeping a high uniformity of 82%, with only two feedback iterations and one fitting operation can improve. Furthermore, the polar angle θ and azimuthal angle φ is used to specify the light direction from the light source, and the (θ,φ)-(x,y) based mapping and feedback strategy makes sure that even few discontinuous sections along the equi-φ plane exist in the system, they are perpendicular to the base plane, making it eligible for manufacturing the surfaces using injection molding.

  18. Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    PubMed Central

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations. PMID:22163788

  19. Optimization of sensing and feedback control for vibration/flutter of rotating disk by PZT actuators via air coupled pressure.

    PubMed

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin's discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  20. [Cardiovascular circulation feedback control treatment instrument].

    PubMed

    Ge, Yu-zhi; Zhu, Xing-huan; Sheng, Guo-tai; Cao, Ping-liang; Liu, Dong-sheng; Wu, Zhi-ting

    2005-07-01

    The cardiovascular circulation feedback control treatment instrument (CFCTI) is an automatic feedback control treatment system, which has the function of monitoring, alarming, trouble self-diagnosis and testing on the line in the closed loop. The instrument is designed based on the successful clinical experiences and the data are inputted into the computer in real-time through a pressure sensor and A/D card. User interface window is set up for the doctor's choosing different medicine. The orders are outputted to control the dose of medicine through the transfusion system. The response to medicine is updated continually. CFCTI can avoid the man-made errors and the long interval of sampling. Its reliability and accuracy in rescuing the critical patients are much higher than the traditional methods.

  1. The Design of an Adaptive Attitude Control System

    DTIC Science & Technology

    1992-09-01

    spacecraft to reorient itself by rotating about the eigenaxis will be executing an optimal maneuver . [Ref. 9: pp. 375-3761 2. Quaternion Feedback Regulator...34% The below program will simulate the CER Control System for Large "% Angle (Slewing) Motion. The Control Law is a Quaternion Feedback "% Regulator...Equipment/Retriever (CER) during autonomous attitude hold and large angle or slewing maneuvers . The CER is a proposed space robot that deploys from

  2. Can Performance Feedback during Instruction Boost Knowledge Acquisition? Contrasting Criterion-Based and Social Comparison Feedback

    ERIC Educational Resources Information Center

    Kollöffel, Bas; de Jong, Ton

    2016-01-01

    Feedback indicating how well students are performing during a learning task can be very stimulating. In this study with a pre- and post-test design, the effects of two types of performance feedback on learning results were compared: feedback during a learning task was either stated in terms of how well the students were performing relative to…

  3. Fluidic Oscillator Array for Synchronized Oscillating Jet Generation

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2017-01-01

    A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.

  4. Fluidic Oscillator Array for Synchronized Oscillating Jet Generation

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.

  5. Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems

    NASA Astrophysics Data System (ADS)

    Xie, Xue-Jun; Zhang, Xing-Hui; Zhang, Kemei

    2016-07-01

    This paper studies the finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems. Based on the stochastic Lyapunov theorem on finite-time stability, by using the homogeneous domination method, the adding one power integrator and sign function method, constructing a ? Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed-loop system finite-time stable in probability.

  6. Entanglement-assisted quantum feedback control

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki; Mikami, Tomoaki

    2017-07-01

    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  7. Comparison of the Performance of Modal Control Schemes for an Adaptive Optics System and Analysis of the Effect of Actuator Limitations

    DTIC Science & Technology

    2012-06-01

    the open-loop path is established, the feedback system can be treated as a set of SISO feedback loops and a single SISO control law can be applied...Zernike polynomials are commonly referred to by the names, such as focus, coma, astigmatism , and etc. Zernike polynomials can be transformed into

  8. Autonomous spacecraft attitude control using magnetic torquing only

    NASA Technical Reports Server (NTRS)

    Musser, Keith L.; Ebert, Ward L.

    1989-01-01

    Magnetic torquing of spacecraft has been an important mechanism for attitude control since the earliest satellites were launched. Typically a magnetic control system has been used for precession/nutation damping for gravity-gradient stabilized satellites, momentum dumping for systems equipped with reaction wheels, or momentum-axis pointing for spinning and momentum-biased spacecraft. Although within the small satellite community there has always been interest in expensive, light-weight, and low-power attitude control systems, completely magnetic control systems have not been used for autonomous three-axis stabilized spacecraft due to the large computational requirements involved. As increasingly more powerful microprocessors have become available, this has become less of an impediment. These facts have motivated consideration of the all-magnetic attitude control system presented here. The problem of controlling spacecraft attitude using only magnetic torquing is cast into the form of the Linear Quadratic Regulator (LQR), resulting in a linear feedback control law. Since the geomagnetic field along a satellite trajectory is not constant, the system equations are time varying. As a result, the optimal feedback gains are time-varying. Orbit geometry is exploited to treat feedback gains as a function of position rather than time, making feasible the onboard solution of the optimal control problem. In simulations performed to date, the control laws have shown themselves to be fairly robust and a good candidate for an onboard attitude control system.

  9. Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: A Functional Approach

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2003-01-01

    In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unsteady aerodynamics are considered linear. The implications of the presence of time delays in the linear/nonlinear feedback control and of geometrical parameters on the aeroelasticity of lifting surfaces are analyzed and conclusions on their implications are highlighted.

  10. Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development.

    PubMed

    van Duijvenvoorde, Anna C K; Zanolie, Kiki; Rombouts, Serge A R B; Raijmakers, Maartje E J; Crone, Eveline A

    2008-09-17

    How children learn from positive and negative performance feedback lies at the foundation of successful learning and is therefore of great importance for educational practice. In this study, we used functional magnetic resonance imaging (fMRI) to examine the neural developmental changes related to feedback-based learning when performing a rule search and application task. Behavioral results from three age groups (8-9, 11-13, and 18-25 years of age) demonstrated that, compared with adults, 8- to 9-year-old children performed disproportionally more inaccurately after receiving negative feedback relative to positive feedback. Additionally, imaging data pointed toward a qualitative difference in how children and adults use performance feedback. That is, dorsolateral prefrontal cortex and superior parietal cortex were more active after negative feedback for adults, but after positive feedback for children (8-9 years of age). For 11- to 13-year-olds, these regions did not show differential feedback sensitivity, suggesting that the transition occurs around this age. Pre-supplementary motor area/anterior cingulate cortex, in contrast, was more active after negative feedback in both 11- to 13-year-olds and adults, but not 8- to 9-year-olds. Together, the current data show that cognitive control areas are differentially engaged during feedback-based learning across development. Adults engage these regions after signals of response adjustment (i.e., negative feedback). Young children engage these regions after signals of response continuation (i.e., positive feedback). The neural activation patterns found in 11- to 13-year-olds indicate a transition around this age toward an increased influence of negative feedback on performance adjustment. This is the first developmental fMRI study to compare qualitative changes in brain activation during feedback learning across distinct stages of development.

  11. SDRE control strategy applied to a nonlinear robotic including drive motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Jeferson J. de, E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Tusset, Angelo M., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Janzen, Frederic C., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br

    A robotic control design considering all the inherent nonlinearities of the robot-engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State-Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case I: For control positioning, it is only used motor voltage; Case II: For control positioning, it is used both motor voltage and torque betweenmore » the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.« less

  12. Memory feedback PID control for exponential synchronisation of chaotic Lur'e systems

    NASA Astrophysics Data System (ADS)

    Zhang, Ruimei; Zeng, Deqiang; Zhong, Shouming; Shi, Kaibo

    2017-09-01

    This paper studies the problem of exponential synchronisation of chaotic Lur'e systems (CLSs) via memory feedback proportional-integral-derivative (PID) control scheme. First, a novel augmented Lyapunov-Krasovskii functional (LKF) is constructed, which can make full use of the information on time delay and activation function. Second, improved synchronisation criteria are obtained by using new integral inequalities, which can provide much tighter bounds than what the existing integral inequalities can produce. In comparison with existing results, in which only proportional control or proportional derivative (PD) control is used, less conservative results are derived for CLSs by PID control. Third, the desired memory feedback controllers are designed in terms of the solution to linear matrix inequalities. Finally, numerical simulations of Chua's circuit and neural network are provided to show the effectiveness and advantages of the proposed results.

  13. Verifying detailed fluctuation relations for discrete feedback-controlled quantum dynamics

    NASA Astrophysics Data System (ADS)

    Camati, Patrice A.; Serra, Roberto M.

    2018-04-01

    Discrete quantum feedback control consists of a managed dynamics according to the information acquired by a previous measurement. Energy fluctuations along such dynamics satisfy generalized fluctuation relations, which are useful tools to study the thermodynamics of systems far away from equilibrium. Due to the practical challenge to assess energy fluctuations in the quantum scenario, the experimental verification of detailed fluctuation relations in the presence of feedback control remains elusive. We present a feasible method to experimentally verify detailed fluctuation relations for discrete feedback control quantum dynamics. Two detailed fluctuation relations are developed and employed. The method is based on a quantum interferometric strategy that allows the verification of fluctuation relations in the presence of feedback control. An analytical example to illustrate the applicability of the method is discussed. The comprehensive technique introduced here can be experimentally implemented at a microscale with the current technology in a variety of experimental platforms.

  14. Grip force control during virtual object interaction: effect of force feedback,accuracy demands, and training.

    PubMed

    Gibo, Tricia L; Bastian, Amy J; Okamura, Allison M

    2014-03-01

    When grasping and manipulating objects, people are able to efficiently modulate their grip force according to the experienced load force. Effective grip force control involves providing enough grip force to prevent the object from slipping, while avoiding excessive force to avoid damage and fatigue. During indirect object manipulation via teleoperation systems or in virtual environments, users often receive limited somatosensory feedback about objects with which they interact. This study examines the effects of force feedback, accuracy demands, and training on grip force control during object interaction in a virtual environment. The task required subjects to grasp and move a virtual object while tracking a target. When force feedback was not provided, subjects failed to couple grip and load force, a capability fundamental to direct object interaction. Subjects also exerted larger grip force without force feedback and when accuracy demands of the tracking task were high. In addition, the presence or absence of force feedback during training affected subsequent performance, even when the feedback condition was switched. Subjects' grip force control remained reminiscent of their employed grip during the initial training. These results motivate the use of force feedback during telemanipulation and highlight the effect of force feedback during training.

  15. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.

    2017-07-01

    We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

  16. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  17. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    NASA Astrophysics Data System (ADS)

    Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras

    2017-11-01

    A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  18. Pre- and post-alpha motoneuronal control of the soleus H-reflex during sinusoidal hip movements in human spinal cord injury

    PubMed Central

    Knikou, Maria; Chaudhuri, Debjani; Kay, Elizabeth; Schmit, Brian D.

    2006-01-01

    The aim of this study was to establish the contribution of hip-mediated sensory feedback to spinal interneuronal circuits during dynamic conditions in people with incomplete spinal cord injury (SCI). Specifically, we investigated the effects of synergistic and antagonistic group I afferents on the soleus H-reflex during imposed sinusoidal hip movements. The soleus H-reflex was conditioned by stimulating the common peroneal nerve (CPN) at short (2, 3, and 4 ms) and long (80, 100, and 120 ms) conditioning test (C-T) intervals to assess the reciprocal and pre-synaptic inhibition of the soleus H-reflex, respectively. The soleus H-reflex was also conditioned by medial gastrocnemius (MG) nerve stimulation at C-T intervals ranging from 4 to 7 ms to assess changes in autogenic Ib inhibition during hip movement. Sinusoidal hip movements were imposed to the right hip joint at 0.2 Hz by the Biodex system while subjects were supine. The effects of sinusoidal hip movement on five leg muscles along with hip, knee, and ankle joint torques were also established during sensorimotor conditioning of the reflex. Phase-dependent modulation of antagonistic and synergistic muscle afferents was present during hip movement, with the reciprocal, pre-synaptic, and Ib inhibition to be significantly reduced during hip extension and reinforced during hip flexion. Reflexive muscle and joint torque responses – induced by the hip movement – were entrained to specific phases of hip movement. This study provides evidence that hip-mediated input acts as a controlling signal of pre- and post-alpha motoneuronal control of the soleus H-reflex. The expression of these spinal interneuronal circuits during imposed sinusoidal hip movements is discussed with respect to motor recovery in humans after SCI. PMID:16782072

  19. Sensory feedback in prosthetics: a standardized test bench for closed-loop control.

    PubMed

    Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario

    2015-03-01

    Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback.

  20. Real-time feedback control of twin-screw wet granulation based on image analysis.

    PubMed

    Madarász, Lajos; Nagy, Zsombor Kristóf; Hoffer, István; Szabó, Barnabás; Csontos, István; Pataki, Hajnalka; Démuth, Balázs; Szabó, Bence; Csorba, Kristóf; Marosi, György

    2018-06-04

    The present paper reports the first dynamic image analysis-based feedback control of continuous twin-screw wet granulation process. Granulation of the blend of lactose and starch was selected as a model process. The size and size distribution of the obtained particles were successfully monitored by a process camera coupled with an image analysis software developed by the authors. The validation of the developed system showed that the particle size analysis tool can determine the size of the granules with an error of less than 5 µm. The next step was to implement real-time feedback control of the process by controlling the liquid feeding rate of the pump through a PC, based on the real-time determined particle size results. After the establishment of the feedback control, the system could correct different real-life disturbances, creating a Process Analytically Controlled Technology (PACT), which guarantees the real-time monitoring and controlling of the quality of the granules. In the event of changes or bad tendencies in the particle size, the system can automatically compensate the effect of disturbances, ensuring proper product quality. This kind of quality assurance approach is especially important in the case of continuous pharmaceutical technologies. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A new decentralised controller design method for a class of strongly interconnected systems

    NASA Astrophysics Data System (ADS)

    Duan, Zhisheng; Jiang, Zhong-Ping; Huang, Lin

    2017-02-01

    In this paper, two interconnected structures are first discussed, under which some closed-loop subsystems must be unstable to make the whole interconnected system stable, which can be viewed as a kind of strongly interconnected systems. Then, comparisons with small gain theorem are discussed and large gain interconnected characteristics are shown. A new approach for the design of decentralised controllers is presented by determining the Lyapunov function structure previously, which allows the existence of unstable subsystems. By fully utilising the orthogonal space information of input matrix, some new understandings are presented for the construction of Lyapunov matrix. This new method can deal with decentralised state feedback, static output feedback and dynamic output feedback controllers in a unified framework. Furthermore, in order to reduce the design conservativeness and deal with robustness, a new robust decentralised controller design method is given by combining with the parameter-dependent Lyapunov function method. Some basic rules are provided for the choice of initial variables in Lyapunov matrix or new introduced slack matrices. As byproducts, some linear matrix inequality based sufficient conditions are established for centralised static output feedback stabilisation. Effects of unstable subsystems in nonlinear Lur'e systems are further discussed. The corresponding decentralised controller design method is presented for absolute stability. The examples illustrate that the new method is significantly effective.

  2. Virtual grasping: closed-loop force control using electrotactile feedback.

    PubMed

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  3. Learned control over spinal nociception: Transfer and stability of training success in a long-term study.

    PubMed

    Bäumler, Maximilian; Feller, Moritz; Krafft, Stefanie; Schiffer, Manuela; Sommer, Jens; Straube, Andreas; Weinges, Fabian; Ruscheweyh, Ruth

    2017-12-01

    Healthy subjects can learn to use cognitive-emotional strategies to suppress their spinal nociception, quantified by the nociceptive flexor reflex (RIII reflex), when given visual RIII feedback. This likely reflects learned activation of descending pain inhibition. Here, we investigated if training success persists 4 and 8 months after the end of RIII feedback training, and if transfer (RIII suppression without feedback) is possible. 18 and 8 subjects who had successfully completed feedback training were investigated 4 and 8 months later. At 4 months, RIII suppression during feedback and transfer was similar to that achieved at the final RIII feedback training session (to 50 ± 22%, 53 ± 21% and 52 ± 21% of baseline, all differences n.s.). At 8 months, RIII suppression was somewhat (not significantly) smaller in the feedback run (to 64 ± 17%) compared to the final training session (56 ± 19%). Feedback and transfer runs were similar (to 64 ± 17% vs. 68 ± 24%, n.s.). Concomitant reductions in pain intensity ratings were stable at 4 and 8 months. RIII feedback training success was completely maintained after 4 months, and somewhat attenuated 8 months after training. Transfer was successful. These results are an important pre-requisite for application of RIII feedback training in the context of clinical pain. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  4. Video feedback for families of hearing impaired children.

    PubMed

    Santos, Ingrid Rafaella Dantas Dos; Brazorotto, Joseli Soares

    2018-03-05

    In order to improve speech-language development in children with hearing impairment, in addition to speech-language therapy, the family should be the modifying agent for a satisfactory therapeutic response. Studies that analyze the effectiveness of speech-language pathology (SLP) intervention programs through video feedback are important, given the positive effects of this tool on the modification of behaviors with families of children with disabilities. Therefore, it is believed that video feedback interventions contribute improve the communicative interactions between the families and children assisted by auditory rehabilitation services. The objectives of this study were to investigate the interaction between families and children with hearing loss and analyze the self-esteem and satisfaction of families before and after the intervention program. This is a non-randomized, clinical trial with case report in two groups: Experimental (n=5) and Control (n=5). The intervention was supported by family-child interaction videos and adapted instruments. Pre- and post-intervention protocols were applied. In the EG, improvement was observed in the interaction between the families and children with hearing loss and in the self-esteem of participants. The EG showed satisfaction with the intervention. We conclude that the SLP intervention program based on video feedback has positive effects on the family/child interaction and on parent self-esteem. Further studies with stricter methodological controls should be conducted to prove the efficacy of video feedback intervention for families of children with hearing loss.

  5. Analytical and flight investigation of the influence of rotor and other high-order dynamics on helicopter flight-control system bandwidth

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Hindson, W. S.

    1985-01-01

    The increasing use of highly augmented digital flight-control systems in modern military helicopters prompted an examination of the influence of rotor dynamics and other high-order dynamics on control-system performance. A study was conducted at NASA Ames Research Center to correlate theoretical predictions of feedback gain limits in the roll axis with experimental test data obtained from a variable-stability research helicopter. Feedback gains, the break frequency of the presampling sensor filter, and the computational frame time of the flight computer were systematically varied. The results, which showed excellent theoretical and experimental correlation, indicate that the rotor-dynamics, sensor-filter, and digital-data processing delays can severely limit the usable values of the roll-rate and roll-attitude feedback gains.

  6. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs.

    PubMed

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  7. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  8. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    PubMed

    Molkov, Yaroslav I; Shevtsova, Natalia A; Park, Choongseok; Ben-Tal, Alona; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2014-01-01

    Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2) exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient ventilation. The model can be used for simulation of closed-loop control of breathing under different conditions including respiratory disorders.

  9. Candidate proof mass actuator control laws for the vibration suppression of a frame

    NASA Technical Reports Server (NTRS)

    Umland, Jeffrey W.; Inman, Daniel J.

    1991-01-01

    The vibration of an experimental flexible space truss is controlled with internal control forces produced by several proof mass actuators. Four candidate control law strategies are evaluated in terms of performance and robustness. These control laws are experimentally implemented on a quasi free-free planar truss. Sensor and actuator dynamics are included in the model such that the final closed loop is self-equilibrated. The first two control laws considered are based on direct output feedback and consist of tuning the actuator feedback gains to the lowest mode intended to receive damping. The first method feeds back only the position and velocity of the proof mass relative to the structure; this results in a traditional vibration absorber. The second method includes the same feedback paths as the first plus feedback of the local structural velocity. The third law is designed with robust H infinity control theory. The fourth strategy is an active implementation of a viscous damper, where the actuator is configured to provide a bending moment at two points on the structure. The vibration control system is then evaluated in terms of how it would benefit the space structure's position control system.

  10. Biocybernetic system evaluates indices of operator engagement in automated task

    NASA Technical Reports Server (NTRS)

    Pope, A. T.; Bogart, E. H.; Bartolome, D. S.

    1995-01-01

    A biocybernetic system has been developed as a method to evaluate automated flight deck concepts for compatibility with human capabilities. A biocybernetic loop is formed by adjusting the mode of operation of a task set (e.g., manual/automated mix) based on electroencephalographic (EEG) signals reflecting an operator's engagement in the task set. A critical issue for the loop operation is the selection of features of the EEG to provide an index of engagement upon which to base decisions to adjust task mode. Subjects were run in the closed-loop feedback configuration under four candidate and three experimental control definitions of an engagement index. The temporal patterning of system mode switching was observed for both positive and negative feedback of the index. The indices were judged on the basis of their relative strength in exhibiting expected feedback control system phenomena (stable operation under negative feedback and unstable operation under positive feedback). Of the candidate indices evaluated in this study, an index constructed according to the formula, beta power/(alpha power + theta power), reflected task engagement best.

  11. Development of adaptive control applied to chaotic systems

    NASA Astrophysics Data System (ADS)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  12. Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient.

    PubMed

    Chen, Juan; Cui, Baotong; Chen, YangQuan

    2018-06-11

    This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2009-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  14. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2010-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  15. Real-time feedback for spatiotemporal field stabilization in MR systems.

    PubMed

    Duerst, Yolanda; Wilm, Bertram J; Dietrich, Benjamin E; Vannesjo, S Johanna; Barmet, Christoph; Schmid, Thomas; Brunner, David O; Pruessmann, Klaas P

    2015-02-01

    MR imaging and spectroscopy require a highly stable, uniform background field. The field stability is typically limited by hardware imperfections, external perturbations, or field fluctuations of physiological origin. The purpose of the present work is to address these issues by introducing spatiotemporal field stabilization based on real-time sensing and feedback control. An array of NMR field probes is used to sense the field evolution in a whole-body MR system concurrently with regular system operation. The field observations serve as inputs to a proportional-integral controller that governs correction currents in gradient and higher-order shim coils such as to keep the field stable in a volume of interest. The feedback system was successfully set up, currently reaching a minimum latency of 20 ms. Its utility is first demonstrated by countering thermal field drift during an EPI protocol. It is then used to address respiratory field fluctuations in a T2 *-weighted brain exam, resulting in substantially improved image quality. Feedback field control is an effective means of eliminating dynamic field distortions in MR systems. Third-order spatial control at an update time of 100 ms has proven sufficient to largely eliminate thermal and breathing effects in brain imaging at 7 Tesla. © 2014 Wiley Periodicals, Inc.

  16. Haptic-based perception-empathy biofeedback system for balance rehabilitation in patients with chronic stroke: Concepts and initial feasibility study.

    PubMed

    Yasuda, Kazuhiro; Saichi, Kenta; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu

    2018-05-01

    Most individuals have sensory disturbances post stroke, and these deficits contribute to post-stroke balance impairment. The haptic-based biofeedback (BF) system appears to be one of the promising tools for balance rehabilitation in patients with stroke, and the BF system can increase the objectivity of feedback and encouragement than that provided by a therapist. Studies in skill science indicated that feedback or encouragement from a coach or trainer enhances motor learning effect. Nevertheless, the optimal BF system (or its concept) which would refine the interpersonal feedback between patients and therapist has not been proposed. Thus, the purpose of this study was to propose a haptic-based perception-empathy BF system which provides information regarding the patient's center-of-foot pressure (CoP) pattern to the patient and the physical therapist to enhance the motor learning effect and validate the feasibility of this balance-training regimen in patients with chronic stroke. This study used a pre-post design without control group. Nine chronic stroke patients (mean age: 64.4 ± 9.2 years) received a balance-training regimen using this BF system twice a week for 4 weeks. Testing comprised quantitative measures (i.e., CoP) and clinical balance scale (Berg Balance Scale, BBS; Functional Reach Test, FRT; and Timed-Up and Go test, TUG). Post training, patients demonstrated marginally reduced postural spatial variability (i.e., 95% confidence elliptical area), and clinical balance performance significantly improved at post-training. Although the changes in FRT and TUG exceeded the minimal detectable change (MDC), changes in BBS did not reach clinical significance (i.e., smaller than MDC). These results may provide initial knowledge (i.e., beneficial effects, utility and its limitation) of the proposed BF system in designing effective motor learning strategies for stroke rehabilitation. More studies are required addressing limitations due to research design and training method for future clinical use. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Stability enhancement of high Prandtl number chaotic convection in an anisotropic porous layer with feedback control

    NASA Astrophysics Data System (ADS)

    Mahmud, M. N.

    2018-04-01

    The chaotic dynamical behaviour of thermal convection in an anisotropic porous layer subject to gravity, heated from below and cooled from above, is studied based on theory of dynamical system in the presence of feedback control. The extended Darcy model, which includes the time derivative has been employed in the momentum equation to derive a low dimensional Lorenz-like equation by using Galerkin-truncated approximation. The classical fourth-order Runge-Kutta method is used to obtain the numerical solution in order to exemplify the dynamics of the nonlinear autonomous system. The results show that stability enhancement of chaotic convection is feasible via feedback control.

  18. Applications of multiple-constraint matrix updates to the optimal control of large structures

    NASA Technical Reports Server (NTRS)

    Smith, S. W.; Walcott, B. L.

    1992-01-01

    Low-authority control or vibration suppression in large, flexible space structures can be formulated as a linear feedback control problem requiring computation of displacement and velocity feedback gain matrices. To ensure stability in the uncontrolled modes, these gain matrices must be symmetric and positive definite. In this paper, efficient computation of symmetric, positive-definite feedback gain matrices is accomplished through the use of multiple-constraint matrix update techniques originally developed for structural identification applications. Two systems were used to illustrate the application: a simple spring-mass system and a planar truss. From these demonstrations, use of this multiple-constraint technique is seen to provide a straightforward approach for computing the low-authority gains.

  19. Decoupling suspension controller based on magnetic flux feedback.

    PubMed

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  20. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    PubMed Central

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced. PMID:23844415

  1. Leader-following control of multiple nonholonomic systems over directed communication graphs

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Djapic, Vladimir

    2016-06-01

    This paper considers the leader-following control problem of multiple nonlinear systems with directed communication topology and a leader. If the state of each system is measurable, distributed state feedback controllers are proposed using neighbours' state information with the aid of Lyapunov techniques and properties of Laplacian matrix for time-invariant communication graph and time-varying communication graph. It is shown that the state of each system exponentially converges to the state of a leader. If the state of each system is not measurable, distributed observer-based output feedback control laws are proposed. As an application of the proposed results, formation control of wheeled mobile robots is studied. The simulation results show the effectiveness of the proposed results.

  2. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.

    PubMed

    Lewis, F L; Vamvoudakis, Kyriakos G

    2011-02-01

    Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.

  3. Suppression of chaos via control of energy flow

    NASA Astrophysics Data System (ADS)

    Guo, Shengli; Ma, Jun; Alsaedi, Ahmed

    2018-03-01

    Continuous energy supply is critical and important to support oscillating behaviour; otherwise, the oscillator will die. For nonlinear and chaotic circuits, enough energy supply is also important to keep electric devices working. In this paper, Hamilton energy is calculated for dimensionless dynamical system (e.g., the chaotic Lorenz system) using Helmholtz's theorem. The Hamilton energy is considered as a new variable and then the dynamical system is controlled by using the scheme of energy feedback. It is found that chaos can be suppressed even when intermittent feedback scheme is applied. This scheme is effective to control chaos and to stabilise other dynamical systems.

  4. Dense Tracking and Mapping with a Quadrocopter

    NASA Astrophysics Data System (ADS)

    Sturm, J.; Bylow, E.; Kerl, C.; Kahl, F.; Cremers, D.

    2013-08-01

    In this paper, we present an approach for acquiring textured 3D models of room-sized indoor spaces using a quadrocopter. Such room models are for example useful for architects and interior designers as well as for factory planners and construction managers. The model is internally represented by a signed distance function (SDF) and the SDF is used to directly track the camera with respect to the model. Our solution enables accurate position control of the quadrocopter, so that it can automatically follow a pre-defined flight pattern. Our system provides live feedback of the acquired 3D model to the user. The final model consisting of a textured 3D triangle mesh can be saved in several standard CAD file formats.

  5. Return Difference Feedback Design for Robust Uncertainty Tolerance in Stochastic Multivariable Control Systems.

    DTIC Science & Technology

    1984-07-01

    34robustness" analysis for multiloop feedback systems. Reference [55] describes a simple method based on the Perron - Frobenius Theory of non-negative...Viewpoint, " Operator Theory : Advances and Applications, 12, pp. 277-302, 1984. - E. A. Jonckheere, "New Bound on the Sensitivity -- of the Solution of...Reidel, Dordrecht, Holland, 1984. M. G. Safonov, "Comments on Singular Value Theory in Uncertain Feedback Systems, " to appear IEEE Trans. on Automatic

  6. New numerical methods for open-loop and feedback solutions to dynamic optimization problems

    NASA Astrophysics Data System (ADS)

    Ghosh, Pradipto

    The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development is that the resulting control law has an algebraic closed-form structure. The proposed method uses an optimal spatial statistical predictor called universal kriging to construct the surrogate model of a feedback controller, which is capable of quickly predicting an optimal control estimate based on current state (and time) information. With universal kriging, an approximation to the optimal feedback map is computed by conceptualizing a set of state-control samples from pre-computed extremals to be a particular realization of a jointly Gaussian spatial process. Feedback policies are computed for a variety of example dynamic optimization problems in order to evaluate the effectiveness of this methodology. This feedback synthesis approach is found to combine good numerical accuracy with low computational overhead, making it a suitable candidate for real-time applications. Particle swarm and universal kriging are combined for a capstone example, a near optimal, near-admissible, full-state feedback control law is computed and tested for the heat-load-limited atmospheric-turn guidance of an aeroassisted transfer vehicle. The performance of this explicit guidance scheme is found to be very promising; initial errors in atmospheric entry due to simulated thruster misfirings are found to be accurately corrected while closely respecting the algebraic state-inequality constraint.

  7. Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints.

    PubMed

    Wang, Huanqing; Chen, Bing; Liu, Xiaoping; Liu, Kefu; Lin, Chong

    2013-12-01

    This paper is concerned with the problem of adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with input saturation. To overcome the design difficulty from nondifferential saturation nonlinearity, a smooth nonlinear function of the control input signal is first introduced to approximate the saturation function; then, an adaptive fuzzy tracking controller based on the mean-value theorem is constructed by using backstepping technique. The proposed adaptive fuzzy controller guarantees that all signals in the closed-loop system are bounded in probability and the system output eventually converges to a small neighborhood of the desired reference signal in the sense of mean quartic value. Simulation results further illustrate the effectiveness of the proposed control scheme.

  8. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    PubMed

    Leving, Marika T; Vegter, Riemer J K; Hartog, Johanneke; Lamoth, Claudine J C; de Groot, Sonja; van der Woude, Lucas H V

    2015-01-01

    It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability.

  9. Effects of Visual Feedback-Induced Variability on Motor Learning of Handrim Wheelchair Propulsion

    PubMed Central

    Leving, Marika T.; Vegter, Riemer J. K.; Hartog, Johanneke; Lamoth, Claudine J. C.; de Groot, Sonja; van der Woude, Lucas H. V.

    2015-01-01

    Background It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. Methods 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. Results The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. Conclusion These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability. PMID:25992626

  10. Robust Feedback Zoom Tracking for Digital Video Surveillance

    PubMed Central

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388

  11. Discrete-time infinity control problem with measurement feedback

    NASA Technical Reports Server (NTRS)

    Stoorvogel, A. A.; Saberi, A.; Chen, B. M.

    1992-01-01

    The paper is concerned with the discrete-time H(sub infinity) control problem with measurement feedback. The authors extend previous results by having weaker assumptions on the system parameters. The authors also show explicitly the structure of H(sub infinity) controllers. Finally, they show that it is in certain cases possible, without loss of performance, to reduce the dynamical order of the controllers.

  12. Comparing the effects of positive and negative feedback in information-integration category learning.

    PubMed

    Freedberg, Michael; Glass, Brian; Filoteo, J Vincent; Hazeltine, Eliot; Maddox, W Todd

    2017-01-01

    Categorical learning is dependent on feedback. Here, we compare how positive and negative feedback affect information-integration (II) category learning. Ashby and O'Brien (2007) demonstrated that both positive and negative feedback are required to solve II category problems when feedback was not guaranteed on each trial, and reported no differences between positive-only and negative-only feedback in terms of their effectiveness. We followed up on these findings and conducted 3 experiments in which participants completed 2,400 II categorization trials across three days under 1 of 3 conditions: positive feedback only (PFB), negative feedback only (NFB), or both types of feedback (CP; control partial). An adaptive algorithm controlled the amount of feedback given to each group so that feedback was nearly equated. Using different feedback control procedures, Experiments 1 and 2 demonstrated that participants in the NFB and CP group were able to engage II learning strategies, whereas the PFB group was not. Additionally, the NFB group was able to achieve significantly higher accuracy than the PFB group by Day 3. Experiment 3 revealed that these differences remained even when we equated the information received on feedback trials. Thus, negative feedback appears significantly more effective for learning II category structures. This suggests that the human implicit learning system may be capable of learning in the absence of positive feedback.

  13. Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser.

    PubMed

    Chhantyal-Pun, Rabi; Valavanis, Alexander; Keeley, James T; Rubino, Pierluigi; Kundu, Iman; Han, Yingjun; Dean, Paul; Li, Lianhe; Davies, A Giles; Linfield, Edmund H

    2018-05-15

    We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0-800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10 -4   cm -1 is resolvable.

  14. Generation of flat-top pulsed magnetic fields with feedback control approach.

    PubMed

    Kohama, Yoshimitsu; Kindo, Koichi

    2015-10-01

    We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of ±0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.

  15. General, database-driven fast-feedback system for the Stanford Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouse, F.; Allison, S.; Castillo, S.

    A new feedback system has been developed for stabilizing the SLC beams at many locations. The feedback loops are designed to sample and correct at the 60 Hz repetition rate of the accelerator. Each loop can be distributed across several of the standard 80386 microprocessors which control the SLC hardware. A new communications system, KISNet, has been implemented to pass signals between the microprocessors at this rate. The software is written in a general fashion using the state space formalism of digital control theory. This allows a new loop to be implemented by just setting up the online database andmore » perhaps installing a communications link. 3 refs., 4 figs.« less

  16. Predicting reading and mathematics from neural activity for feedback learning.

    PubMed

    Peters, Sabine; Van der Meulen, Mara; Zanolie, Kiki; Crone, Eveline A

    2017-01-01

    Although many studies use feedback learning paradigms to study the process of learning in laboratory settings, little is known about their relevance for real-world learning settings such as school. In a large developmental sample (N = 228, 8-25 years), we investigated whether performance and neural activity during a feedback learning task predicted reading and mathematics performance 2 years later. The results indicated that feedback learning performance predicted both reading and mathematics performance. Activity during feedback learning in left superior dorsolateral prefrontal cortex (DLPFC) predicted reading performance, whereas activity in presupplementary motor area/anterior cingulate cortex (pre-SMA/ACC) predicted mathematical performance. Moreover, left superior DLPFC and pre-SMA/ACC activity predicted unique variance in reading and mathematics ability over behavioral testing of feedback learning performance alone. These results provide valuable insights into the relationship between laboratory-based learning tasks and learning in school settings, and the value of neural assessments for prediction of school performance over behavioral testing alone. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.

    PubMed

    Blana, Dimitra; Kirsch, Robert F; Chadwick, Edward K

    2009-05-01

    A functional electrical stimulation controller is presented that uses a combination of feedforward and feedback for arm control in high-level injury. The feedforward controller generates the muscle activations nominally required for desired movements, and the feedback controller corrects for errors caused by muscle fatigue and external disturbances. The feedforward controller is an artificial neural network (ANN) which approximates the inverse dynamics of the arm. The feedback loop includes a PID controller in series with a second ANN representing the nonlinear properties and biomechanical interactions of muscles and joints. The controller was designed and tested using a two-joint musculoskeletal model of the arm that includes four mono-articular and two bi-articular muscles. Its performance during goal-oriented movements of varying amplitudes and durations showed a tracking error of less than 4 degrees in ideal conditions, and less than 10 degrees even in the case of considerable fatigue and external disturbances.

  18. Robust crossfeed design for hovering rotorcraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Catapang, David R.

    1993-01-01

    Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust.' A new low-order matching method is presented here to design robost crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw, and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily-used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.

  19. Sensorless H∞ speed-tracking synthesis for surface-mount permanent magnet synchronous motor.

    PubMed

    Ramírez-Villalobos, Ramón; Aguilar, Luis T; Coria, Luis N

    2017-03-01

    In this paper, a sensorless speed tracking control is proposed for a surface-mount permanent magnet synchronous motor by using a nonlinear H ∞ -controller via stator currents measurements for feedback. An output feedback nonlinear H ∞ -controller was designed such that the undisturbed system is uniformly asymptotically stable around the desired speed reference, while also the effects of external vanishing and non-vanishing disturbances, noise, and input backlash were attenuated locally. The rotor position was calculated from the causal dynamic output feedback compensator and from the desired speed reference. The existence of the proper solutions of the perturbed differential Riccati equations ensures stabilizability and detectability of the control system. The efficiency of the proposed sensorless controller was supported by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Project Management Using Modern Guidance, Navigation and Control Theory

    NASA Technical Reports Server (NTRS)

    Hill, Terry

    2010-01-01

    The idea of control theory and its application to project management is not new, however literature on the topic and real-world applications is not as readily available and comprehensive in how all the principals of Guidance, Navigation and Control (GN&C) apply. This paper will address how the fundamental principals of modern GN&C Theory have been applied to NASA's Constellation Space Suit project and the results in the ability to manage the project within cost, schedule and budget. A s with physical systems, projects can be modeled and managed with the same guiding principles of GN&C as if it were a complex vehicle, system or software with time-varying processes, at times non-linear responses, multiple data inputs of varying accuracy and a range of operating points. With such systems the classic approach could be applied to small and well-defined projects; however with larger, multi-year projects involving multiple organizational structures, external influences and a multitude of diverse resources, then modern control theory is required to model and control the project. The fundamental principals of G N&C stated that a system is comprised of these basic core concepts: State, Behavior, Control system, Navigation system, Guidance and Planning Logic, Feedback systems. The state of a system is a definition of the aspects of the dynamics of the system that can change, such as position, velocity, acceleration, coordinate-based attitude, temperature, etc. The behavior of the system is more of what changes are possible rather than what can change, which is captured in the state of the system. The behavior of a system is captured in the system modeling and if properly done, will aid in accurate system performance prediction in the future. The Control system understands the state and behavior of the system and feedback systems to adjust the control inputs into the system. The Navigation system takes the multiple data inputs and based upon a priori knowledge of the input, will develop a statistical-based weighting of the input to determine where the system currently is located. Guidance and Planning logic of the system with the understanding of where it is (provided by the navigation system) will in turn determine where it needs to be and how to get there. Lastly, the system Feedback system is the right arm of the control system to allow it to affect change in the overall system and therefore it is critical to not only correctly identify the system feedback inputs but also the system response to the feedback inputs. And with any systems project it is critical that the objective of the system be clearly defined for not only planning but to be used to measure performance and to aid in the guidance of the system or project.

Top