Energy Efficient Engine: Control system preliminary definition report
NASA Technical Reports Server (NTRS)
Howe, David C.
1986-01-01
The object of the Control Preliminary Definition Program was to define a preliminary control system concept as a part of the Energy Efficient Engine program. The program was limited to a conceptual definition of a full authority digital electronic control system. System requirements were determined and a control system was conceptually defined to these requirements. Areas requiring technological development were identified and a plan was established for implementing the identified technological features, including a control technology demonstration. A significant element of this program was a study of the potential benefits of closed-loop active clearance control, along with laboratory tests of candidate clearance sensor elements for a closed loop system.
NASA Technical Reports Server (NTRS)
Cheatham, John B., Jr.; Magee, Kevin N.
1991-01-01
The Rice University Department of Mechanical Engineering and Materials Sciences' Robotics Group designed and built an eight degree of freedom redundant manipulator. Fuzzy logic was proposed as a control scheme for tasks not directly controlled by a human operator. In preliminary work, fuzzy logic control was implemented for a camera tracking system and a six degree of freedom manipulator. Both preliminary systems use real time vision data as input to fuzzy controllers. Related projects include integration of tactile sensing and fuzzy control of a redundant snake-like arm that is under construction.
A preliminary 6 DOF attitude and translation control system design for Starprobe
NASA Technical Reports Server (NTRS)
Mak, P.; Mettler, E.; Vijayarahgavan, A.
1981-01-01
The extreme thermal environment near perihelion and the high-accuracy gravitational science experiments impose unique design requirements on various subsystems of Starprobe. This paper examines some of these requirements and their impact on the preliminary design of a six-degree-of-freedom attitude and translational control system. Attention is given to design considerations, the baseline attitude/translational control system, system modeling, and simulation studies.
Preliminary design study of astronomical detector cooling system
NASA Technical Reports Server (NTRS)
Norman, R. H.
1976-01-01
The preliminary design of an astronomical detector cooling system for possible use in the NASA C-141 Airborne Infrared Observatory is presented. The system consists of the following elements: supercritical helium tank, Joule-Thomson supply gas conditioner, Joule-Thomson expander (JTX), optical cavity dewar, optical cavity temperature controller, adjustable J-T discharge gas pressure controller, and vacuum pump.
NASA Technical Reports Server (NTRS)
Jackson, M. E.
1995-01-01
This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.
Preliminary design package for prototype solar heating system
NASA Technical Reports Server (NTRS)
1976-01-01
A preliminary design review on the development of a prototype solar heating system for single family dwellings is presented. The collector, storage, transport, control, and site data acquisition subsystems are described.
Study on the Preliminary Design of ARGO-M Operation System
NASA Astrophysics Data System (ADS)
Seo, Yoon-Kyung; Lim, Hyung-Chul; Rew, Dong-Young; Jo, Jung Hyun; Park, Jong-Uk; Park, Eun-Seo; Park, Jang-Hyun
2010-12-01
Korea Astronomy and Space Science Institute has been developing one mobile satellite laser ranging system named as accurate ranging system for geodetic observation-mobile (ARGO-M). Preliminary design of ARGO-M operation system (AOS) which is one of the ARGO-M subsystems was completed in 2009. Preliminary design results are applied to the following development phase by performing detailed design with analysis of pre-defined requirements and analysis of the derived specifications. This paper addresses the preliminary design of the whole AOS. The design results in operation and control part which is a key part in the operation system are described in detail. Analysis results of the interface between operation-supporting hardware and the control computer are summarized, which is necessary in defining the requirements for the operation-supporting hardware. Results of this study are expected to be used in the critical design phase to finalize the design process.
Preliminary System Design of the SWRL Financial System.
ERIC Educational Resources Information Center
Ikeda, Masumi
The preliminary system design of the computer-based Southwest Regional Laboratory's (SWRL) Financial System is outlined. The system is designed to produce various management and accounting reports needed to maintain control of SWRL operational and financial activities. Included in the document are descriptions of the various types of system…
Preliminary Quality Control System Design for the Pell Grant Program.
ERIC Educational Resources Information Center
Advanced Technology, Inc., Reston, VA.
A preliminary design for a quality control (QC) system for the Pell Grant Program is proposed, based on the needs of the Office of Student Financial Assistance (OSFA). The applicability of the general design for other student aid programs administered by OSFA is also considered. The following steps included in a strategic approach to QC system…
Attitude control/momentum management and payload pointing in advanced space vehicles
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Jayasuriya, Suhada
1990-01-01
The design and evaluation of an attitude control/momentum management system for highly asymmetric spacecraft configurations are presented. The preliminary development and application of a nonlinear control system design methodology for tracking control of uncertain systems, such as spacecraft payload pointing systems are also presented. Control issues relevant to both linear and nonlinear rigid-body spacecraft dynamics are addressed, whereas any structural flexibilities are not taken into consideration. Results from the first task indicate that certain commonly used simplifications in the equations of motions result in unstable attitude control systems, when used for highly asymmetric spacecraft configurations. An approach is suggested circumventing this problem. Additionally, even though preliminary results from the second task are encouraging, the proposed nonlinear control system design method requires further investigation prior to its application and use as an effective payload pointing system design technique.
Multidisciplinary optimization of controlled space structures with global sensitivity equations
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.
1991-01-01
A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.
Automated Iodine Monitoring System Development (AIMS). [shuttle prototype
NASA Technical Reports Server (NTRS)
1975-01-01
The operating principle of the automated iodine monitoring/controller system (AIMS) is described along with several design modifications. The iodine addition system is also discussed along with test setups and calibration; a facsimile of the optical/mechanical portion of the iodine monitor was fabricated and tested. The appendices include information on shuttle prototype AIMS, preliminary prime item development specifications, preliminary failure modes and effects analysis, and preliminary operating and maintenance instructions.
Preliminary design package for solar heating and hot water system
NASA Technical Reports Server (NTRS)
1977-01-01
The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.
Automated iodine monitor system. [for aqueous solutions
NASA Technical Reports Server (NTRS)
1973-01-01
The feasibility of a direct spectrophotometric measurement of iodine in water was established. An iodine colorimeter, was built to demonstrate the practicality of this technique. The specificity of this method was verified when applied to an on-line system where a reference solution cannot be used, and a preliminary design is presented for an automated iodine measuring and controlling system meeting the desired specifications. An Automated iodine monitor/controller system based on this preliminary design was built, tested, and delivered to the Johnson Space Center.
Modular space station phase B extension, preliminary system design. Volume 4: Subsystems analyses
NASA Technical Reports Server (NTRS)
Antell, R. W.
1972-01-01
The subsystems tradeoffs, analyses, and preliminary design results are summarized. Analyses were made of the structural and mechanical, environmental control and life support, electrical power, guidance and control, reaction control, information, and crew habitability subsystems. For each subsystem a summary description is presented including subsystem requirements, subsystem description, and subsystem characteristics definition (physical, performance, and interface). The major preliminary design data and tradeoffs or analyses are described in detail at each of the assembly levels.
Preliminary design of the Space Station internal thermal control system
NASA Technical Reports Server (NTRS)
Herrin, Mark T.; Patterson, David W.; Turner, Larry D.
1987-01-01
The baseline preliminary design configuration of the Internal Thermal Control system (ITCS) of the U.S. Space Station pressurized elements (i.e., the Habitation and U.S. Laboratory modules, pressurized logistics carrier, and resources nodes) is defined. The ITCS is composed of both active and passive components. The subsystems which comprise the ITCS are identified and their functional descriptions are provided. The significant trades and analyses, which were performed during Phase B (i.e., the preliminary design phase) that resulted in the design described herein, are discussed. The ITCS interfaces with the station's central Heat Rejection and Transport System (HRTS), other systems, and externally attached pressurized payloads are described. Requirements on the ITCS with regard to redundancy and experiment support are also addressed.
Multi-Disciplinary Design Optimization Using WAVE
NASA Technical Reports Server (NTRS)
Irwin, Keith
2000-01-01
The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to develop an associative control structure (framework) in the UG WAVE environment enabling multi-disciplinary design of turbine propulsion systems. The capabilities of WAVE were evaluated to assess its use as a rapid optimization and productivity tool. This project also identified future WAVE product enhancements that will make the tool still more beneficial for product development.
Automated longwall guidance and control systems, phase 1
NASA Technical Reports Server (NTRS)
Rybak, S. C.
1978-01-01
Candidate vertical control systems (VCS) and face advancement systems (FAS) required to satisfactorily automate the longwall system were analyzed and simulated in order to develop an overall longwall system configuration for preliminary design.
NASA Technical Reports Server (NTRS)
Singh, Sudeep K.; Lindenmoyer, Alan J.
1989-01-01
Results are presented from a preliminary control/structure interaction study of the Space Station, the Assembly Work Platform, and the STS orbiter dynamics coupled with the orbiter and station control systems. The first three Space Station assembly flight configurations and their finite element representations are illustrated. These configurations are compared in terms of control authority in each axis and propellant usage. The control systems design parameters during assembly are computed. Although the rigid body response was acceptable with the orbiter Primary Reaction Control System, the flexible body response showed large structural deflections and loads. It was found that severe control/structure interaction occurred if the stiffness of the Assembly Work Platform was equal to that of the station truss. Also, the response of the orbiter Vernier Reaction Control System to small changes in inertia properties is examined.
Preliminary design study of a lateral-directional control system using thrust vectoring
NASA Technical Reports Server (NTRS)
Lallman, F. J.
1985-01-01
A preliminary design of a lateral-directional control system for a fighter airplane capable of controlled operation at extreme angles of attack is developed. The subject airplane is representative of a modern twin-engine high-performance jet fighter, is equipped with ailerons, rudder, and independent horizontal-tail surfaces. Idealized bidirectional thrust-vectoring engine nozzles are appended to the mathematic model of the airplane to provide additional control moments. Optimal schedules for lateral and directional pseudo control variables are calculated. Use of pseudo controls results in coordinated operation of the aerodynamic and thrust-vectoring controls with minimum coupling between the lateral and directional airplane dynamics. Linear quadratic regulator designs are used to specify a preliminary flight control system to improve the stability and response characteristics of the airplane. Simulated responses to step pilot control inputs are stable and well behaved. For lateral stick deflections, peak stability axis roll rates are between 1.25 and 1.60 rad/sec over an angle-of-attack range of 10 deg to 70 deg. For rudder pedal deflections, the roll rates accompanying the sideslip responses can be arrested by small lateral stick motions.
Intelligent redundant actuation system requirements and preliminary system design
NASA Technical Reports Server (NTRS)
Defeo, P.; Geiger, L. J.; Harris, J.
1985-01-01
Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed.
Method of preliminary localization of the iris in biometric access control systems
NASA Astrophysics Data System (ADS)
Minacova, N.; Petrov, I.
2015-10-01
This paper presents a method of preliminary localization of the iris, based on the stable brightness features of the iris in images of the eye. In tests on images of eyes from publicly available databases method showed good accuracy and speed compared to existing methods preliminary localization.
A free-piston Stirling engine/linear alternator controls and load interaction test facility
NASA Technical Reports Server (NTRS)
Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.
1992-01-01
A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.
NASA Technical Reports Server (NTRS)
Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.
1979-01-01
Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.
Preliminary design package for solar heating and hot water system
NASA Technical Reports Server (NTRS)
1977-01-01
The preliminary design review on the development of two prototype solar heating and hot water systems is presented. The information contained in this report includes system certification, system functional description, system configuration, system specification, system performance and other documents pertaining to the progress and the design of the system. This system, which is intended for use in the normal single-family residence, consists of the following subsystems: collector, storage, control, transport, and Government-furnished Site Data Acquisition.
Closed-Loop Aeromaneuvering for a Mars Precision Landing
NASA Technical Reports Server (NTRS)
Smith, Roy; Boussalis, Dhemetrios; Hadaegh, Fred Y.
1997-01-01
Controlled aeromaneuvering is considered as a means of achieving a precisely targeted landing on Mars. This paper presents a preliminary study of the control issues. The candidate vehicle is the existing Mars Pathfinder augmented with roll thrusters and a center of mass offset actuator. These allow control of both bank angle and lift force, giving the ability to control the range and cross-track during the aeromaneuvering entry. A preliminary control system structure is proposed and a design simulation illustrates significant targeting improvement under closed-loop control.
NASA Technical Reports Server (NTRS)
Davis, D. J.; Linse, D. J.; Suikat, R.; Entz, D. P.
1986-01-01
The continued investigation of the design of Ride Quality Augmentation Systems (RQAS) for commuter aircraft is described. The purpose of these RQAS is the reduction of the vertical and lateral acceleration response of the aircraft due to atmospheric turbulence by the application of active control. The current investigations include the refinement of the sample data feedback control laws based on the control-rate-weighting and output-weighting optimal control design techniqes. These control designs were evaluated using aircraft time simulations driven by Dryden spectra turbulence. Fixed gain controllers were tested throughout the aircrft operating envelope. The preliminary design of the hardware modifications necessary to implement and test the RQAS on a commuter aircraft is included. These include a separate surface elevator and the flap modifications to provide both direct lift and roll control. A preliminary failure mode investigation was made for the proposed configuration. The results indicate that vertical acceleration reductions of 45% and lateral reductions of more than 50% are possible. A fixed gain controller appears to be feasible with only minor response degradation.
Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design
NASA Technical Reports Server (NTRS)
Harmon, T. J.; Roschak, E.
1993-01-01
A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.
4MOST systems engineering: from conceptual design to preliminary design review
NASA Astrophysics Data System (ADS)
Bellido-Tirado, Olga; Frey, Steffen; Barden, Samuel C.; Brynnel, Joar; Giannone, Domenico; Haynes, Roger; de Jong, Roelof S.; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob; Winkler, Roland
2016-08-01
The 4MOST Facility is a high-multiplex, wide-field, brief-fed spectrograph system for the ESO VISTA telescope. It aims to create a world-class spectroscopic survey facility unique in its combination of wide-field multiplex, spectral resolution, spectral coverage, and sensitivity. At the end of 2014, after a successful concept optimization design phase, 4MOST entered into its Preliminary Design Phase. Here we present the process and tools adopted during the Preliminary Design Phase to define the subsystems specifications, coordinate the interface control documents and draft the system verification procedures.
NASA Technical Reports Server (NTRS)
2005-01-01
This document provides a study of the technical literature related to Command and Control (C2) link security for Unmanned Aircraft Systems (UAS) for operation in the National Airspace System (NAS). Included is a preliminary set of functional requirements for C2 link security.
NASA Technical Reports Server (NTRS)
Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.
1985-01-01
A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.
Preliminary design data package, appendix C. [hybrid electric vehicles
NASA Technical Reports Server (NTRS)
1979-01-01
The data and documentation required to define the preliminary design of a near term hybrid vehicle and to quantify its operational characteristics are presented together with the assumptions and rationale behind the design decisions. Aspects discussed include development requirements for the propulsion system, the chassis system, the body, and the vehicle systems. Particular emphasis is given to the controls, the heat engine, and the batteries.
V/STOL propulsion control analysis: Phase 2, task 5-9
NASA Technical Reports Server (NTRS)
1981-01-01
Typical V/STOL propulsion control requirements were derived for transition between vertical and horizontal flight using the General Electric RALS (Remote Augmented Lift System) concept. Steady-state operating requirements were defined for a typical Vertical-to-Horizontal transition and for a typical Horizontal-to-Vertical transition. Control mode requirements were established and multi-variable regulators developed for individual operating conditions. Proportional/Integral gain schedules were developed and were incorporated into a transition controller with capabilities for mode switching and manipulated variable reassignment. A non-linear component-level transient model of the engine was developed and utilized to provide a preliminary check-out of the controller logic. An inlet and nozzle effects model was developed for subsequent incorporation into the engine model and an aircraft model was developed for preliminary flight transition simulations. A condition monitoring development plan was developed and preliminary design requirements established. The Phase 1 long-range technology plan was refined and restructured toward the development of a real-time high fidelity transient model of a supersonic V/STOL propulsion system and controller for use in a piloted simulation program at NASA-Ames.
Project WISH: The Emerald City
NASA Technical Reports Server (NTRS)
Oz, Hayrani; Slonksnes, Linda (Editor); Rogers, James W. (Editor); Sherer, Scott E. (Editor); Strosky, Michelle A. (Editor); Szmerekovsky, Andrew G. (Editor); Klupar, G. Joseph (Editor)
1990-01-01
The preliminary design of a permanently manned autonomous space oasis (PEMASO), including its pertinent subsystems, was performed during the 1990 Winter and Spring quarters. The purpose for the space oasis was defined and the preliminary design work was started with emphasis placed on the study of orbital mechanics, power systems and propulsion systems. A rotating torus was selected as the preliminary configuration, and overall size, mass and location of some subsystems within the station were addressed. Computer software packages were utilized to determine station transfer parameters and thus the preliminary propulsion requirements. Power and propulsion systems were researched to determine feasible configurations and many conventional schemes were ruled out. Vehicle dynamics and control, mechanical and life support systems were also studied. For each subsystem studied, the next step in the design process to be performed during the continuation of the project was also addressed.
Desiccant humidity control system
NASA Technical Reports Server (NTRS)
Amazeen, J. (Editor)
1973-01-01
A regenerable sorbent system was investigated for controlling the humidity and carbon dioxide concentration of the space shuttle cabin atmosphere. The sorbents considered for water and carbon dioxide removal were silica gel and molecular sieves. Bed optimization and preliminary system design are discussed along with system optimization studies and weight penalites.
An expert system/ion trap mass spectrometry approach for life support systems monitoring
NASA Technical Reports Server (NTRS)
Palmer, Peter T.; Wong, Carla M.; Yost, Richard A.; Johnson, Jodie V.; Yates, Nathan A.; Story, Michael
1992-01-01
Efforts to develop sensor and control system technology to monitor air quality for life support have resulted in the development and preliminary testing of a concept based on expert systems and ion trap mass spectrometry (ITMS). An ITMS instrument provides the capability to identify and quantitate a large number of suspected contaminants at trace levels through the use of a variety of multidimensional experiments. An expert system provides specialized knowledge for control, analysis, and decision making. The system is intended for real-time, on-line, autonomous monitoring of air quality. The key characteristics of the system, performance data and analytical capabilities of the ITMS instrument, the design and operation of the expert system, and results from preliminary testing of the system for trace contaminant monitoring are described.
Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Aziz, H M Abdul; Young, Stan
Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections.more » In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.« less
Overview of the preliminary design of the ITER plasma control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snipes, J. A.; Albanese, R.; Ambrosino, G.
An overview of the Preliminary Design of the ITER Plasma Control System (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemesmore » for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.« less
Overview of the preliminary design of the ITER plasma control system
NASA Astrophysics Data System (ADS)
Snipes, J. A.; Albanese, R.; Ambrosino, G.; Ambrosino, R.; Amoskov, V.; Blanken, T. C.; Bremond, S.; Cinque, M.; de Tommasi, G.; de Vries, P. C.; Eidietis, N.; Felici, F.; Felton, R.; Ferron, J.; Formisano, A.; Gribov, Y.; Hosokawa, M.; Hyatt, A.; Humphreys, D.; Jackson, G.; Kavin, A.; Khayrutdinov, R.; Kim, D.; Kim, S. H.; Konovalov, S.; Lamzin, E.; Lehnen, M.; Lukash, V.; Lomas, P.; Mattei, M.; Mineev, A.; Moreau, P.; Neu, G.; Nouailletas, R.; Pautasso, G.; Pironti, A.; Rapson, C.; Raupp, G.; Ravensbergen, T.; Rimini, F.; Schneider, M.; Travere, J.-M.; Treutterer, W.; Villone, F.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.
2017-12-01
An overview of the preliminary design of the ITER plasma control system (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemes for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.
Overview of the preliminary design of the ITER plasma control system
Snipes, J. A.; Albanese, R.; Ambrosino, G.; ...
2017-09-11
An overview of the Preliminary Design of the ITER Plasma Control System (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemesmore » for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.« less
Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System
NASA Technical Reports Server (NTRS)
Frazzini, R.; Vaughn, D.
1975-01-01
The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.
Automated CPX support system preliminary design phase
NASA Technical Reports Server (NTRS)
Bordeaux, T. A.; Carson, E. T.; Hepburn, C. D.; Shinnick, F. M.
1984-01-01
The development of the Distributed Command and Control System (DCCS) is discussed. The development of an automated C2 system stimulated the development of an automated command post exercise (CPX) support system to provide a more realistic stimulus to DCCS than could be achieved with the existing manual system. An automated CPX system to support corps-level exercise was designed. The effort comprised four tasks: (1) collecting and documenting user requirements; (2) developing a preliminary system design; (3) defining a program plan; and (4) evaluating the suitability of the TRASANA FOURCE computer model.
NASA Technical Reports Server (NTRS)
Gallagher, R. R.
1974-01-01
The respiratory control system, functioning as an independent system, is presented with modifications of the exercise subroutine. These modifications illustrate an improved control of ventilation rates and arterial and compartmental gas tensions. A very elementary approach to describing the interactions of the respiratory and circulatory system is presented.
The engineering design integration (EDIN) system. [digital computer program complex
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Reiners, S. J.
1974-01-01
A digital computer program complex for the evaluation of aerospace vehicle preliminary designs is described. The system consists of a Univac 1100 series computer and peripherals using the Exec 8 operating system, a set of demand access terminals of the alphanumeric and graphics types, and a library of independent computer programs. Modification of the partial run streams, data base maintenance and construction, and control of program sequencing are provided by a data manipulation program called the DLG processor. The executive control of library program execution is performed by the Univac Exec 8 operating system through a user established run stream. A combination of demand and batch operations is employed in the evaluation of preliminary designs. Applications accomplished with the EDIN system are described.
Dielectric cure monitoring: Preliminary studies
NASA Technical Reports Server (NTRS)
Goldberg, B. E.; Semmel, M. L.
1984-01-01
Preliminary studies have been conducted on two types of dielectric cure monitoring systems employing both epoxy resins and phenolic composites. An Audrey System was used for 23 cure monitoring runs with very limited success. Nine complete cure monitoring runs have been investigated using a Micromet System. Two additional measurements were performed to investigate the Micromet's sensitivity to water absorption in a post-cure carbon-phenolic material. While further work is needed to determine data significance, the Micromet system appears to show promise as a feedback control device during processing.
NASA Technical Reports Server (NTRS)
Wells, H. B.
1977-01-01
The preliminary data of the environmental control and life support subsystem for a space construction base manufacturing module was reported. A space processing module, which is capable of performing production biological experiments, was chosen as a baseline configuration. The primary assemblies and components considered for use were humidity and temperature control, ventilation fan, cabin fan, water separator, condensate storage, overboard dumping, distribution system, contaminant monitoring, cabin sensors, and fire and smoke detection.
Matching of energetic, mechanic and control characteristics of positioning actuator
NASA Astrophysics Data System (ADS)
Y Nosova, N.; Misyurin, S. Yu; Kreinin, G. V.
2017-12-01
The problem of preliminary choice of parameters of the automated drive power channel is discussed. The drive of the mechatronic complex divides into two main units - power and control. The first determines the energy capabilities and, as a rule, the overall dimensions of the complex. The sufficient capacity of the power unit is a necessary condition for successful solution of control tasks without excessive complication of the control system structure. Preliminary selection of parameters is carried out based on the condition of providing the necessary drive power. The proposed approach is based on: a research of a sufficiently developed but not excessive dynamic model of the power block with the help of a conditional test control system; a transition to a normalized model with the formation of similarity criteria; constructing the synthesis procedure.
Viking Orbiter 1975 articulation control subsystem design analysis
NASA Technical Reports Server (NTRS)
Horiuchi, H. H.; Vallas, L. J.
1973-01-01
The articulation control subsystem, developed for the Viking Orbiter 1975 spacecraft, is a digital, multiplexed, closed-loop servo system used to control the pointing and positioning of the science scan platform and the high-gain communication antenna, and to position the solar-energy controller louver blades for the thermal control of the propellant tanks. The development, design, and anlaysis of the subsystem is preliminary. The subsystem consists of a block-redundant control electronics multiplexed among eight control actuators. Each electronics block is capable of operating either individually or simultaneously with the second block. This provides the subsystem the capability of simultaneous two-actuator control or a single actuator control with the second block in a stand-by redundant mode. The result of the preliminary design and analysis indicates that the subsystem will perform satisfactorily in the Viking Orbiter 1975 mission. Some of the parameter values used, particularly those in the subsystem dynamics and the error estimates, are preliminary and the results will be updated as more accurate parameter values become available.
Preliminary design package for Sunspot Domestic Hot Water Heating System
NASA Technical Reports Server (NTRS)
1976-01-01
The design review includes a drawing list, auto-control logic, measurement definitions, and other document pertaining to the solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control transport, auxiliary energy, and site data acquisition.
Propulsion/flight control integration technology (PROFIT) design analysis status
NASA Technical Reports Server (NTRS)
Carlin, C. M.; Hastings, W. J.
1978-01-01
The propulsion flight control integration technology (PROFIT) program was designed to develop a flying testbed dedicated to controls research. The preliminary design, analysis, and feasibility studies conducted in support of the PROFIT program are reported. The PROFIT system was built around existing IPCS hardware. In order to achieve the desired system flexibility and capability, additional interfaces between the IPCS hardware and F-15 systems were required. The requirements for additions and modifications to the existing hardware were defined. Those interfaces involving the more significant changes were studied. The DCU memory expansion to 32K with flight qualified hardware was completed on a brassboard basis. The uplink interface breadboard and a brassboard of the central computer interface were also tested. Two preliminary designs and corresponding program plans are presented.
Preliminary design study of the TMT Telescope structure system: overview
NASA Astrophysics Data System (ADS)
Usuda, Tomonori; Ezaki, Yutaka; Kawaguchi, Noboru; Nagae, Kazuhiro; Kato, Atsushi; Takaki, Junji; Hirano, Masaki; Hattori, Tomoya; Tabata, Masaki; Horiuchi, Yasushi; Saruta, Yusuke; Sofuku, Satoru; Itoh, Noboru; Oshima, Takeharu; Takanezawa, Takashi; Endo, Makoto; Inatani, Junji; Iye, Masanori; Sadjadpour, Amir; Sirota, Mark; Roberts, Scott; Stepp, Larry
2014-07-01
We present an overview of the preliminary design of the Telescope Structure System (STR) of Thirty Meter Telescope (TMT). NAOJ was given responsibility for the TMT STR in early 2012 and engaged Mitsubishi Electric Corporation (MELCO) to take over the preliminary design work. MELCO performed a comprehensive preliminary design study in 2012 and 2013 and the design successfully passed its Preliminary Design Review (PDR) in November 2013 and April 2014. Design optimizations were pursued to better meet the design requirements and improvements were made in the designs of many of the telescope subsystems as follows: 1. 6-legged Top End configuration to support secondary mirror (M2) in order to reduce deformation of the Top End and to keep the same 4% blockage of the full aperture as the previous STR design. 2. "Double Lower Tube" of the elevation (EL) structure to reduce the required stroke of the primary mirror (M1) actuators to compensate the primary mirror cell (M1 Cell) deformation caused during the EL angle change in accordance with the requirements. 3. M1 Segment Handling System (SHS) to be able to make removing and installing 10 Mirror Segment Assemblies per day safely and with ease over M1 area where access of personnel is extremely difficult. This requires semi-automatic sequence operation and a robotic Segment Lifting Fixture (SLF) designed based on the Compliance Control System, developed for controlling industrial robots, with a mechanism to enable precise control within the six degrees of freedom of position control. 4. CO2 snow cleaning system to clean M1 every few weeks that is similar to the mechanical system that has been used at Subaru Telescope. 5. Seismic isolation and restraint systems with respect to safety; the maximum acceleration allowed for M1, M2, tertiary mirror (M3), LGSF, and science instruments in 1,000 year return period earthquakes are defined in the requirements. The Seismic requirements apply to any EL angle, regardless of the operational status of Hydro Static Bearing (HSB) system and stow lock pins. In order to find a practical solution, design optimization study for seismic risk mitigation was carried out extensively, including the performing of dynamic response analyses of the STR system under the time dependent acceleration profile of seven major earthquakes. The work is now moving to the final design phase from April 2014 for two years.
Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters
NASA Technical Reports Server (NTRS)
Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith
2016-01-01
NASA is providing preliminary design and requirements for the Space Launch System Exploration Upper Stage (EUS). The EUS will provide upper stage capability for vehicle ascent as well as on-orbit control capability. Requirements include performance of on-orbit burn to provide Orion vehicle with escape velocity. On-orbit attitude control is accommodated by a on-off Reaction Control System (RCS). Paper provides overview of approaches for design and stability of an attitude control system using a RCS.
Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System
NASA Technical Reports Server (NTRS)
Gasbarre, J. F.; Dillman, R. A.
2003-01-01
The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.
PWR PRELIMINARY DESIGN FOR PL-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, G. E.
1962-02-28
The pressurized water reactor preliminary design, the preferred design developed under Phase I of the PL-3 contract, is presented. Plant design criteria, summary of plant selection, plant description, reactor and primary system description, thermal and hydraulic analysis, nuclear analysis, control and instrumentatlon description, shielding description, auxiliary systems, power plant equipment, waste dispusal, buildings and tunnels, services, operation and maintenance, logistics, erection, cost information, and a training program outline are given. (auth)
Markov Chains For Testing Redundant Software
NASA Technical Reports Server (NTRS)
White, Allan L.; Sjogren, Jon A.
1990-01-01
Preliminary design developed for validation experiment that addresses problems unique to assuring extremely high quality of multiple-version programs in process-control software. Approach takes into account inertia of controlled system in sense it takes more than one failure of control program to cause controlled system to fail. Verification procedure consists of two steps: experimentation (numerical simulation) and computation, with Markov model for each step.
NASA Technical Reports Server (NTRS)
1980-01-01
Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.
Application of decomposition techniques to the preliminary design of a transport aircraft
NASA Technical Reports Server (NTRS)
Rogan, J. E.; Mcelveen, R. P.; Kolb, M. A.
1986-01-01
A multifaceted decomposition of a nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.
Design, fabrication and test of a trace contaminant control system
NASA Technical Reports Server (NTRS)
1975-01-01
A trace contaminant control system was designed, fabricated, and evaluated to determine suitability of the system concept to future manned spacecraft. Two different models were considered. The load model initially required by the contract was based on the Space Station Prototype (SSP) general specifications SVSK HS4655, reflecting a change from a 9 man crew to a 6 man crew of the model developed in previous phases of this effort. Trade studies and a system preliminary design were accomplished based on this contaminant load, including computer analyses to define the optimum system configuration in terms of component arrangements, flow rates and component sizing. At the completion of the preliminary design effort a revised contaminant load model was developed for the SSP. Additional analyses were then conducted to define the impact of this new contaminant load model on the system configuration. A full scale foam-core mock-up with the appropriate SSP system interfaces was also fabricated.
NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status
NASA Technical Reports Server (NTRS)
Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.
2009-01-01
This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.
NASA Technical Reports Server (NTRS)
1972-01-01
The overall program background, the various system concepts considered, and the rationale for the selected design are described. The concepts for each subsystem are also described and compared. Details are given for the requirements, boom configuration and dynamics, actuators, man/machine interface and control, visual system, control system, environmental control and life support, data processing, and materials.
A preliminary investigation of the use of throttles for emergency flight control
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.
1991-01-01
A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.
A preliminary look at control augmented dynamic response of structures
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Jewell, R. E.
1983-01-01
The augmentation of structural characteristics, mass, damping, and stiffness through the use of control theory in lieu of structural redesign or augmentation was reported. The standard single-degree-of-freedom system was followed by a treatment of the same system using control augmentation. The system was extended to elastic structures using single and multisensor approaches and concludes with a brief discussion of potential application to large orbiting space structures.
X-48B Preliminary Flight Test Results
NASA Technical Reports Server (NTRS)
Taylor, Brian R.
2009-01-01
This slide presentation reviews the preliminary Flight tests of the X-48B development program. The X-48B is a blended wing body aircraft that is being used to test various features of the BWB concept. The research concerns the following: (1) Turbofan Development, (2) Intelligent Flight Control and Optimization, (3) Airdata Calibration (4) Parameter Identification (i.e., Determination of the parameters of a mathematical model of a system based on observation of the system inputs and response.)
NASA Technical Reports Server (NTRS)
Myers, Thomas T.; Mcruer, Duane T.
1988-01-01
The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design states starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. The FCX expert system as presently developed is only a limited prototype capable of supporting basic lateral-directional FCS design activities related to the design example used. FCX presently supports design of only one FCS architecture (yaw damper plus roll damper) and the rules are largely focused on Class IV (highly maneuverable) aircraft. Despite this limited scope, the major elements which appear necessary for application of knowledge-based software concepts to flight control design were assembled and thus FCX represents a prototype which can be tested, critiqued and evolved in an ongoing process of development.
NASA Technical Reports Server (NTRS)
Howard, D. F.
1976-01-01
The preliminary design and installation of high bypass, geared turbofan engine with a composite nacelle forming the propulsion system for a short haul passenger aircraft are described. The technology required for externally blown flap aircraft with under the wing (UTW) propulsion system installations for introduction into passenger service in the mid 1980's is included. The design, fabrication, and testing of this UTW experimental engine containing the required technology items for low noise, fuel economy, with composite structure for reduced weight and digital engine control are provided.
NASA Technical Reports Server (NTRS)
Piccolo, R.
1979-01-01
The methodology used for vehicle layout and component definition is described as well as techniques for system optimization and energy evaluation. The preliminary design is examined with particular attention given to body and structure; propulsion system; crash analysis and handling; internal combustion engine; DC motor separately excited; Ni-Zn battery; transmission; control system; vehicle auxiliarries; weight breakdown, and life cycle costs. Formulas are given for the quantification of energy consumption and results are compared with the reference vehicle.
Application of decomposition techniques to the preliminary design of a transport aircraft
NASA Technical Reports Server (NTRS)
Rogan, J. E.; Kolb, M. A.
1987-01-01
A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.
The implementation and use of Ada on distributed systems with high reliability requirements
NASA Technical Reports Server (NTRS)
Knight, J. C.
1987-01-01
A preliminary analysis of the Ada implementation of the Advanced Transport Operating System (ATOPS), an experimental computer control system developed at NASA Langley for a modified Boeing 737 aircraft, is presented. The criteria that was determined for the evaluation of this approach is described. A preliminary version of the requirements for the ATOPS is contained. This requirements specification is not a formal document, but rather a description of certain aspects of the ATOPS system at a level of detail that best suits the needs of the research. The survey of backward error recovery techniques is also presented.
Turbulence flight director analysis and preliminary simulation
NASA Technical Reports Server (NTRS)
Johnson, D. E.; Klein, R. E.
1974-01-01
A control column and trottle flight director display system is synthesized for use during flight through severe turbulence. The column system is designed to minimize airspeed excursions without overdriving attitude. The throttle system is designed to augment the airspeed regulation and provide an indication of the trim thrust required for any desired flight path angle. Together they form an energy management system to provide harmonious display indications of current aircraft motions and required corrective action, minimize gust upset tendencies, minimize unsafe aircraft excursions, and maintain satisfactory ride qualities. A preliminary fixed-base piloted simulation verified the analysis and provided a shakedown for a more sophisticated moving-base simulation to be accomplished next. This preliminary simulation utilized a flight scenario concept combining piloting tasks, random turbulence, and discrete gusts to create a high but realistic pilot workload conducive to pilot error and potential upset. The turbulence director (energy management) system significantly reduced pilot workload and minimized unsafe aircraft excursions.
The report is the executive summary for the preliminary design of the dual-alkali system, designed by Combustion Equipment Associates, Inc./Arthur D. Little, Inc. and being installed to control SO2 emissions from Louisville Gas and Electric Company's Cane Run Unit No. 6 boiler. T...
IUSThrust Vector Control (TVC) servo system
NASA Technical Reports Server (NTRS)
Conner, G. E.
1979-01-01
The IUS TVC SERVO SYSTEM which consists of four electrically redundant electromechanical actuators, four potentiometer assemblies, and two controllers to provide movable nozzle control on both IUS solid rocket motors is developed. An overview of the more severe IUS TVC servo system design requirements, the system and component designs, and test data acquired on a preliminary development unit is presented. Attention is focused on the unique methods of sensing movable nozzle position and providing for redundant position locks.
Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)
NASA Technical Reports Server (NTRS)
Folta, David; Hawkins, Albin
2001-01-01
NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.
NASA Technical Reports Server (NTRS)
Saveker, D. R. (Editor)
1973-01-01
The preliminary design of a satellite plus computer earth resources information system is proposed for potential uses in fire prevention and control in the wildland fire community. Suggested are satellite characteristics, sensor characteristics, discrimination algorithms, data communication techniques, data processing requirements, display characteristics, and costs in achieving the integrated wildland fire information system.
NASA Technical Reports Server (NTRS)
Alvarez, L. S.; Moore, M.; Veruttipong, W.; Andres, E.
1994-01-01
The design and implementation of an antenna beam-waveguide (BWG) mirror position control system at the DSS-13 34-m antenna is presented. While it has several potential applications, a positioner on the last flat-plate BWG mirror (M6) at DSS 13 is installed to demonstrate the conical scan (conscan) angle-tracking technique at the Ka-band (32-GHz) operating frequency. Radio frequency (RF) beam-scanning predictions for the M6 mirror, computed from a diffraction analysis, are presented. From these predictions, position control system requirements are then derived. The final mechanical positioner and servo system designs, as implemented at DSS 13, are illustrated with detailed design descriptions given in the appendices. Preliminary measurements of antenna Ka-band beam scan versus M6 mirror tilt made at DSS 13 in December 1993 are presented. After reduction, the initial measurements are shown to be in agreement with the RF predicts. Plans for preliminary conscan experimentation at DSS 13 are summarized.
Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base
NASA Technical Reports Server (NTRS)
Mcruer, Duane T.; Myers, Thomas T.
1988-01-01
The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.
A composite self tuning strategy for fuzzy control of dynamic systems
NASA Technical Reports Server (NTRS)
Shieh, C.-Y.; Nair, Satish S.
1992-01-01
The feature of self learning makes fuzzy logic controllers attractive in control applications. This paper proposes a strategy to tune the fuzzy logic controller on-line by tuning the data base as well as the rule base. The structure of the controller is outlined and preliminary results are presented using simulation studies.
Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.
1993-01-01
A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.
Intelligent Control for the BEES Flyer
NASA Technical Reports Server (NTRS)
Krishnakumar, K.; Gundy-Burlet, Karen; Aftosmis, Mike; Nemec, Marian; Limes, Greg; Berry, Misty; Logan, Michael
2004-01-01
This paper describes the effort to provide a preliminary capability analysis and a neural network based adaptive flight control system for the JPL-led BEES aircraft project. The BEES flyer was envisioned to be a small, autonomous platform with sensing and control systems mimicking those of biological systems for the purpose of scientific exploration on the surface of Mars. The platform is physically tightly constrained by the necessity of efficient packing within rockets for the trip to Mars. Given the physical constraints, the system is not an ideal configuration for aerodynamics or stability and control. The objectives of this effort are to evaluate the aerodynamics characteristics of the existing design, to make recommendaaons as to potential improvements and to provide a control system that stabilizes the existing aircraft for nominal flight and damaged conditions. Towards this several questions are raised and analyses are presented to arrive at answers to some of the questions raised. CART3D, a high-fidelity inviscid analysis package for conceptual and preliminary aerodynamic design, was used to compute a parametric set of solutions over the expected flight domain. Stability and control derivatives were extracted from the database and integrated with the neural flight control system. The Integrated Vehicle Modeling Environment (IVME) was also used for estimating aircraft geometric, inertial, and aerodynamic characteristics. A generic neural flight control system is used to provide adaptive control without the requirement for extensive gain scheduling or explicit system identification. The neural flight control system uses reference models to specify desired handling qualities in the roll, pitch, and yaw axes, and incorporates both pre-trained and on-line learning neural networks in the inverse model portion of the controller. Results are presented for the BEES aircraft in the subsonic regime for terrestrial and Martian environments.
Advanced Control Systems for Aircraft Powerplants
1980-02-01
production of high- integrity software. 1.0 INTRODUCTION Work on full-authority digital control for gas turbines was started at Rolls- Royce Limited... INTRODUCTION In order to fully understand the operation of the Secondary Power System Control Unit - abbreviated SPSCU - we must first take a close look at...Only Memory EPROM -- Erasable Read Only Memory PLA -- Power Lever Angle LVDT -- Linear Variable Differential Transformer INTRODUCTION Preliminary design
The DTIC Review. Hybrid and Electronic Vehicles. Volume 4. Number 1, June 1998.
1998-06-01
ARGONNE NATIONAL LAB KIRTLAND AFB, NM IL (U) Constant-Thrust Orbit-Raising Transfer Charts. • (U) Dynamics and Controls in Maglev Systems DESCRIPTIVE...method to levitated ( MAGLEV ) ground transportation systems has generate minimum-fuel trajectories between coplanar important consequences for safety...satellite designers to control systems must be considered if MAGLEV systems assess preliminary fuel requirements for constant-thrust are to be economically
Preliminary Design of Aerial Spraying System for Microlight Aircraft
NASA Astrophysics Data System (ADS)
Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif
2017-10-01
Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.
Verification hybrid control of a wheeled mobile robot and manipulator
NASA Astrophysics Data System (ADS)
Muszynska, Magdalena; Burghardt, Andrzej; Kurc, Krzysztof; Szybicki, Dariusz
2016-04-01
In this article, innovative approaches to realization of the wheeled mobile robots and manipulator tracking are presented. Conceptions include application of the neural-fuzzy systems to compensation of the controlled system's nonlinearities in the tracking control task. Proposed control algorithms work on-line, contain structure, that adapt to the changeable work conditions of the controlled systems, and do not require the preliminary learning. The algorithm was verification on the real object which was a Scorbot - ER 4pc robotic manipulator and a Pioneer - 2DX mobile robot.
Preliminary analysis of a membrane-based atmosphere-control subsystem
NASA Technical Reports Server (NTRS)
Mccray, Scott B.; Newbold, David D.; Ray, Rod; Ogle, Kathryn
1993-01-01
Controlled ecological life supprot systems will require subsystems for maintaining the consentrations of atmospheric gases within acceptable ranges in human habitat chambers and plant growth chambers. The goal of this work was to develop a membrane-based atmosphere comntrol (MBAC) subsystem that allows the controlled exchange of atmospheric componets (e.g., oxygen, carbon dioxide, and water vapor) between these chambers. The MBAC subsystem promises to offer a simple, nonenergy intensive method to separate, store and exchange atmospheric components, producing optimal concentrations of components in each chamber. In this paper, the results of a preliminary analysis of the MBAC subsystem for control of oxygen and nitrogen are presented. Additionally, the MBAC subsystem and its operation are described.
Heat recovery and seed recovery development project: preliminary design report (PDR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arkett, A. H.; Alexander, K. C.; Bolek, A. D.
1981-06-01
The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)
NASA Technical Reports Server (NTRS)
Shepard, Kyle; Sager, Paul; Kusunoki, Sid; Porter, John; Campion, AL; Mouritzan, Gunnar; Glunt, George; Vegter, George; Koontz, Rob
1993-01-01
Several topics are presented in viewgraph form which together encompass the preliminary assessment of nuclear thermal rocket engine clustering. The study objectives, schedule, flow, and groundrules are covered. This is followed by the NASA groundrules mission and our interpretation of the associated operational scenario. The NASA reference vehicle is illustrated, then the four propulsion system options are examined. Each propulsion system's preliminary design, fluid systems, operating characteristics, thrust structure, dimensions, and mass properties are detailed as well as the associated key propulsion system/vehicle interfaces. A brief series of systems analysis is also covered including: thrust vector control requirements, engine out possibilities, propulsion system failure modes, surviving system requirements, and technology requirements. An assessment of vehicle/propulsion system impacts due to the lessons learned are presented.
Robust Architectures for Complex Multi-Agent Heterogeneous Systems
2014-07-23
establish the tradeoff between the control performance and the QoS of the communications network . We also derived the performance bound on the difference...accomplished within this time period leveraged the prior accomplishments in the area of networked multi-agent systems. The past work (prior to 2011...distributed control of uncertain networked systems [3]. Additionally, a preliminary collision avoidance algorithm has been developed for a team of
Advanced Method of Boundary-Layer Control Based on Localized Plasma Generation
2009-05-01
measurements, validation of experiments, wind-tunnel testing of the microwave / plasma generation system , preliminary assessment of energy required...and design of a microwave generator , electrodynamic and multivibrator systems for experiments in the IHM-NAU wind tunnel: MW generator and its high...equipped with the microwave - generation and protection systems to study advanced methods of flow control (Kiev) Fig. 2.1,a. The blade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)
Review of and preliminary guidelines for integrating transit into transportation management centers
DOT National Transportation Integrated Search
1994-07-01
The advent of intelligent vehicle-highway system (IVHS) : technologies has fostered the development and implementation of : automated systems that control traffic and provide traffic : information to drivers. However, one very important element of : ...
Preliminary design of a radiator shading device for a lunar outpost
NASA Technical Reports Server (NTRS)
Barron, Carlos; Castro, Norma I.; Phillips, Brian
1991-01-01
The National Aeronautics and Space Administration is designing a thermal control system for an outpost to be placed permanently on the Moon. One of the functions of the thermal control system is to reject waste heat, which can be accomplished through a radiator. At the lunar equator and during the lunar midday, an unshaded radiator absorbs more heat than it rejects. This problem can be solved by using a shading device to reduce radiation incident on the radiator. The design team was asked to develop concepts for reducing the radiation incident on the radiator and for deploying the radiator and shade system for a 10 kW and a 25 kW heat rejection system. The design team was also asked to develop the best concepts into preliminary design. From the several alternatives developed by the design team, the best one was selected using a decision matrix. Preliminary design of the best concept include support structure, stress analyses, and thermal performance. In addition, the team developed ideas for removing lunar dust from the shading device. The final design solution consisted of a winged radiator shading system with a rail support structure and a scissors mechanism for deployment. The total radiator area required was calculated to be 389 sq m for the 10 kW heat rejection system and 973 sq m for the 25 kW heat rejection system.
Descent advisor preliminary field test
NASA Technical Reports Server (NTRS)
Green, Steven M.; Vivona, Robert A.; Sanford, Beverly
1995-01-01
A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were to evaluate the accuracy of DA trajectory predictions for conventional- and flight-management-system-equipped jet transports, to identify significant sources of trajectory prediction error, and to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 sec late with a standard deviation of 13.1 sec. This paper describes the field test and presents preliminary results for the commercial flights.
Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)
NASA Technical Reports Server (NTRS)
Weisbrich, R.; Perley, R.; Howes, H.
1977-01-01
The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight.
Analysis, preliminary design and simulation systems for control-structure interaction problems
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.
1991-01-01
Software aspects of control-structure interaction (CSI) analysis are discussed. The following subject areas are covered: (1) implementation of a partitioned algorithm for simulation of large CSI problems; (2) second-order discrete Kalman filtering equations for CSI simulations; and (3) parallel computations and control of adaptive structures.
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.
1982-01-01
The access schema developed to access both individual switch functions as well as automated or semiautomated procedures for the orbital maneuvering system and electrical power and distribution and control system discussed and the operation of the system is described. Feasibility tests and analyses used to define display parameters and to select applicable hardware choices for use in such a system are presented and the results are discussed.
Preliminary design study of a higher harmonic blade feathering control system
NASA Technical Reports Server (NTRS)
Powers, R. W.
1980-01-01
The feasibility to incorporate an active higher harmonic control (HHC) system on an OH-6A rotorcraft was demonstrated. The introduction of continuously modulated low amplitude 4P feathering showed potential for reducing rotor transmitted oscillatory loads. The design implementation of this system on a baseline OH-6A required generation of a hydraulic power system, control actuator placement and design integration of an electronic subsystem comprised of an electronic control unit (ECU) and digital microcomputer. Various placements of the HHC actuators in the primary control system are evaluated. Assembly drawings of the actuator concepts and control rigging are presented. The advantages of generating both hydraulic power and 4F control motions in the nonrotating system is confirmed.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. G.; Wells, Edward A.
1993-01-01
A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies have been followed by flight tests. This paper discusses the principles of throttles-only control, the F-15 airplane, the augmented system, and the flight results including landing approaches with throttles-only control to within 10 ft of the ground.
NASA Technical Reports Server (NTRS)
1976-01-01
Progress in the development of the Atmospheric Cloud Physics Laboratory is outlined. The fluid subsystem, aerosol generator, expansion chamber, optical system, control systems, and software are included.
First Trial of Real-time Poloidal Beta Control in KSTAR
NASA Astrophysics Data System (ADS)
Han, Hyunsun; Hahn, S. H.; Bak, J. G.; Walker, M. L.; Woo, M. H.; Kim, J. S.; Kim, Y. J.; Bae, Y. S.; KSTAR Team
2014-10-01
Sustaining the plasma in a stable and a high performance condition is one of the important control issues for future steady state tokamaks. In the 2014 KSTAR campaign, we have developed a real-time poloidal beta (βp) control technique and carried out preliminary experiments to identify its feasibility. In the control system, the βp is calculated in real time using the measured diamagnetic loop signal (DLM03) with coil pickup corrections, and compared with the target value leading to the change of the neutral beam (NB) heating power using a feedback PID control algorithm. To match the required power of NB which is operated with constant voltage, the duty cycles of the modulation were adjusted as the ratio of the required power to the maximum achievable one. This paper will present the overall procedures of the βp control, the βp estimation process implemented in the plasma control system, and the analysis on the preliminary experimental results. This work is supported by the KSTAR research project funded by the Ministry of Science, ICT & Future Planning of Korea.
Preliminary supersonic flight test evaluation of performance seeking control
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1993-01-01
Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.
Donoso Brown, Elena V; McCoy, Sarah Westcott; Fechko, Amber S; Price, Robert; Gilbertson, Torey; Moritz, Chet T
2014-08-01
To investigate the preliminary effectiveness of surface electromyography (sEMG) biofeedback delivered via interaction with a commercial computer game to improve motor control in chronic stroke survivors. Single-blinded, 1-group, repeated-measures design: A1, A2, B, A3 (A, assessment; B, intervention). Laboratory and participants' homes. A convenience sample of persons (N=9) between 40 and 75 years of age with moderate to severe upper extremity motor impairment and at least 6 months poststroke completed the study. The electromyography-controlled video game system targeted the wrist muscle activation with the goal of increasing selective muscle activation. Participants received several laboratory training sessions with the system and then were instructed to use the system at home for 45 minutes, 5 times per week for the following 4 weeks. Primary outcome measures included duration of system use, sEMG during home play, and pre/post sEMG measures during active wrist motion. Secondary outcomes included kinematic analysis of movement and functional outcomes, including the Wolf Motor Function Test and the Chedoke Arm and Hand Activity Inventory-9. One third of participants completed or exceeded the recommended amount of system use. Statistically significant changes were observed on both game play and pre/post sEMG outcomes. Limited carryover, however, was observed on kinematic or functional outcomes. This preliminary investigation indicates that use of the electromyography-controlled video game impacts muscle activation. Limited changes in kinematic and activity level outcomes, however, suggest that the intervention may benefit from the inclusion of a functional activity component. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Dual-spin attitude control for outer planet missions
NASA Technical Reports Server (NTRS)
Ward, R. S.; Tauke, G. J.
1977-01-01
The applicability of dual-spin technology to a Jupiter orbiter with probe mission was investigated. Basic mission and system level attitude control requirements were established and preliminary mechanization and control concepts developed. A comprehensive 18-degree-of-freedom digital simulation was utilized extensively to establish control laws, study dynamic interactions, and determined key sensitivities. Fundamental system/subsystem constraints were identified, and the applicability of dual-spin technology to a Jupiter orbiter with probe mission was validated.
A Preliminary Data Model for Orbital Flight Dynamics in Shuttle Mission Control
NASA Technical Reports Server (NTRS)
ONeill, John; Shalin, Valerie L.
2000-01-01
The Orbital Flight Dynamics group in Shuttle Mission Control is investigating new user interfaces in a project called RIOTS [RIOTS 2000]. Traditionally, the individual functions of hardware and software guide the design of displays, which results in an aggregated, if not integrated interface. The human work system has then been designed and trained to navigate, operate and integrate the processors and displays. The aim of RIOTS is to reduce the cognitive demands of the flight controllers by redesigning the user interface to support the work of the flight controller. This document supports the RIOTS project by defining a preliminary data model for Orbital Flight Dynamics. Section 2 defines an information-centric perspective. An information-centric approach aims to reduce the cognitive workload of the flight controllers by reducing the need for manual integration of information across processors and displays. Section 3 describes the Orbital Flight Dynamics domain. Section 4 defines the preliminary data model for Orbital Flight Dynamics. Section 5 examines the implications of mapping the data model to Orbital Flight Dynamics current information systems. Two recurring patterns are identified in the Orbital Flight Dynamics work the iteration/rework cycle and the decision-making/information integration/mirroring role relationship. Section 6 identifies new requirements on Orbital Flight Dynamics work and makes recommendations based on changing the information environment, changing the implementation of the data model, and changing the two recurring patterns.
An Astrometric Facility For Planetary Detection On The Space Station
NASA Astrophysics Data System (ADS)
Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.
1987-09-01
An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential Space Station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distances within the Milky Way Galaxy. This paper summarizes the results of a recently completed ATF preliminary systems definition study. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objectives without the development of any new technologies. This preliminary systems study started with the following basic assumptions: 1) the facility will be placed in orbit by a single Shuttle launch, 2) the Space Station will provide a coarse pointing system , electrical power, communications, assembly and checkout, maintenance and refurbishment services, and 3) the facility will be operated from a ground facility. With these assumptions and the science performance requirements a preliminary "strawman" facility was designed. The strawman facility design with a prime-focus telescope of 1.25-m aperture, f-ratio of 13 and a single prime-focus instrument was chosen to minimize random and systemmatic errors. Total facility mass is 5100 kg and overall dimensions are 1.85-m diam by 21.5-m long. A simple straightforward operations approach has been developed for ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the Space Station crew with ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance.
Emerging technology for advancing the treatment of epilepsy using a dynamic control framework.
Stanslaski, Scott; Giftakis, John; Stypulkowski, Paul; Carlson, Dave; Afshar, Pedram; Cong, Peng; Denison, Timothy
2011-01-01
We briefly describe a dynamic control system framework for neuromodulation for epilepsy, with an emphasis on its practical challenges and the preliminary validation of key prototype technologies in a chronic animal model. The current state of neuromodulation can be viewed as a classical dynamic control framework such that the nervous system is the classical "plant", the neural stimulator is the controller/actuator, clinical observation, patient diaries and/or measured bio-markers are the sensor, and clinical judgment applied to these sensor inputs forms the state estimator. Technology can potentially address two main factors contributing to the performance limitations of existing systems: "observability," the ability to observe the state of the system from output measurements, and "controllability," the ability to drive the system to a desired state. In addition to improving sensors and actuator performance, methods and tools to better understand disease state dynamics and state estimation are also critical for improving therapy outcomes. We describe our preliminary validation of key "observability" and "controllability" technology blocks using an implanted research tool in an epilepsy disease model. This model allows for testing the key emerging technologies in a representative neural network of therapeutic importance. In the future, we believe these technologies might enable both first principles understanding of neural network behavior for optimizing therapy design, and provide a practical pathway towards clinical translation.
Synthesis of active controls for flutter suppression on a flight research wing
NASA Technical Reports Server (NTRS)
Abel, I.; Perry, B., III; Murrow, H. N.
1977-01-01
This paper describes some activities associated with the preliminary design of an active control system for flutter suppression capable of demonstrating a 20% increase in flutter velocity. Results from two control system synthesis techniques are given. One technique uses classical control theory, and the other uses an 'aerodynamic energy method' where control surface rates or displacements are minimized. Analytical methods used to synthesize the control systems and evaluate their performance are described. Some aspects of a program for flight testing the active control system are also given. This program, called DAST (Drones for Aerodynamics and Structural Testing), employs modified drone-type vehicles for flight assessments and validation testing.
A Multi-User Remote Academic Laboratory System
ERIC Educational Resources Information Center
Barrios, Arquimedes; Panche, Stifen; Duque, Mauricio; Grisales, Victor H.; Prieto, Flavio; Villa, Jose L.; Chevrel, Philippe; Canu, Michael
2013-01-01
This article describes the development, implementation and preliminary operation assessment of Multiuser Network Architecture to integrate a number of Remote Academic Laboratories for educational purposes on automatic control. Through the Internet, real processes or physical experiments conducted at the control engineering laboratories of four…
A survey of decentralized control techniques for large space structures
NASA Technical Reports Server (NTRS)
Lindner, D. K.; Reichard, K.
1987-01-01
Preliminary results on the design of decentralized controllers for the COFS I Mast are reported. A nine mode finite element model is used along with second order model of the actuators. It is shown that without actuator dynamics, the system is stable with collocated rate feedback and has acceptable performace. However, when actuator dynamics are included, the system is unstable.
Cargo Movement Operations System (CMOS) Preliminary Software Test Description, Increment II
1991-06-26
occurred within this shall statement. CMOS PMO ACCEPTS COMMENT: YES [ ] NO [ ] ERCI ACCEPTS COMMENT: YES [ ] NO [ ] COMMENT DISPOSITION: COMMENT STATUS...COMMENT: YES [ ] NO [ ] COMMENT DISPOSITION: COMMENT STATUS: OPEN [ ] CLOSED ( ] ORIGINATOR CONTROL NUMBER: STD1-0004 PROGRAM OFFICE CONTROL NUMBER...ERCI ACCEPTS COMMENT: YES [ ] NO ( ] COMMENT DISPOSITION: COMMENT STATUS: OPEN ( ] CLOSED [ ] SYSTEM ENVIRONMENT STD The following comment is related
An astrometric facility for planetary detection on the space station
NASA Technical Reports Server (NTRS)
Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.
1987-01-01
An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential space station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distance within the Milky Way Galaxy. The results of a recently completed ATF preliminary systems definition study are summarized. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objective without the development of any new technologies. A simple straightforward operations approach was developed for the ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for the facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the space station crew with the ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance.
NASA Technical Reports Server (NTRS)
1972-01-01
A preliminary design is established for a general purpose manipulator system which can be used interchangeably on the shuttle and station and can be transferred back and forth between them. Control of the manipulator is accomplished by hard wiring from internal control stations in the shuttle or station. A variety of shuttle and station manipulator operations are considered including servicing the Large Space Telescope; however, emphasis is placed on unloading modules from the shuttle and assembling the space station. Simulation studies on foveal stereoscopic viewing and manipulator supervisory computer control have been accomplished to investigate the feasibility of their use in the manipulator system. The basic manipulator system consists of a single 18.3 m long, 7 degree of freedom (DOF), electrically acutated main boom with an auxiliary 3 DOF electrically actuated, extendible 18.3 m maximum length, lighting, and viewing boom. A 3 DOF orientor assembly is located at the tip of the viewing boom to provide camera pan, tilt, and roll.
Uncertainty Modeling for Robustness Analysis of Control Upset Prevention and Recovery Systems
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.; Khong, Thuan H.; Shin, Jong-Yeob; Kwatny, Harry; Chang, Bor-Chin; Balas, Gary J.
2005-01-01
Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems (developed for failure detection, identification, and reconfiguration, as well as upset recovery) need to be evaluated over broad regions of the flight envelope and under extreme flight conditions, and should include various sources of uncertainty. However, formulation of linear fractional transformation (LFT) models for representing system uncertainty can be very difficult for complex parameter-dependent systems. This paper describes a preliminary LFT modeling software tool which uses a matrix-based computational approach that can be directly applied to parametric uncertainty problems involving multivariate matrix polynomial dependencies. Several examples are presented (including an F-16 at an extreme flight condition, a missile model, and a generic example with numerous crossproduct terms), and comparisons are given with other LFT modeling tools that are currently available. The LFT modeling method and preliminary software tool presented in this paper are shown to compare favorably with these methods.
Lockheed laminar-flow control systems development and applications
NASA Technical Reports Server (NTRS)
Lange, Roy H.
1987-01-01
Progress is summarized from 1974 to the present in the practical application of laminar-flow control (LFC) to subsonic transport aircraft. Those efforts included preliminary design system studies of commercial and military transports and experimental investigations leading to the development of the leading-edge flight test article installed on the NASA JetStar flight test aircraft. The benefits of LFC on drag, fuel efficiency, lift-to-drag ratio, and operating costs are compared with those for turbulent flow aircraft. The current activities in the NASA Industry Laminar-Flow Enabling Technologies Development contract include summaries of activities in the Task 1 development of a slotted-surface structural concept using advanced aluminum materials and the Task 2 preliminary conceptual design study of global-range military hybrid laminar flow control (HLFC) to obtain data at high Reynolds numbers and at Mach numbers representative of long-range subsonic transport aircraft operation.
NASA Technical Reports Server (NTRS)
Swinford, G. R.
1976-01-01
The results of an aircraft wing design study are reported. The selected study airplane configuration is defined. The suction surface, ducting, and compressor systems are described. Techniques of manufacturing suction surfaces are identified and discussed. A wing box of graphite/epoxy composite is defined. Leading and trailing edge structures of composite construction are described. Control surfaces, engine installation, and landing gear are illustrated and discussed. The preliminary wing design is appraised from the standpoint of manufacturing, weight, operations, and durability. It is concluded that a practical laminar flow control (LFC) wing of composite material can be built, and that such a wing will be lighter than an equivalent metal wing. As a result, a program of suction surface evaluation and other studies of configuration, aerodynamics, structural design and manufacturing, and suction systems are recommended.
NASA Technical Reports Server (NTRS)
1972-01-01
Laboratory simulations of three concepts, based on maximum use of available off-the-shelf hardware elements, are described. The concepts are a stereo-foveal-peripheral TV system with symmetric steroscopic split-image registration and 90 deg counter rotation; a computer assisted model control system termed the trajectory following control system; and active manipulator damping. It is concluded that the feasibility of these concepts is established.
Aerodynamic preliminary analysis system 2. Part 2: User's manuals
NASA Technical Reports Server (NTRS)
Divan, P.
1981-01-01
An aerodynamic analysis system based on potential theory at subsonic/supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional chracteristics may be generated. The analysis has been implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Typical simulation indicates that program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
Aerodynamic preliminary analysis system 2. Part 1: Theory
NASA Technical Reports Server (NTRS)
Bonner, E.; Clever, W.; Dunn, K.
1991-01-01
An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. The program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
Trade-off results and preliminary designs of Near-Term Hybrid Vehicles
NASA Technical Reports Server (NTRS)
Sandberg, J. J.
1980-01-01
Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.
Survey of CELSS Concepts and Preliminary Research in Japan
NASA Technical Reports Server (NTRS)
Ohya, H.; Oshima, T.; Nitta, K.
1985-01-01
Agricultural and other experiments relating to the development of a controlled ecological life support system (CELSS) were proposed. The engineering feasibility of each proposal was investigated by a CELSS experiment concept met study group. The CELSS experiment concept to clarify the goals of CELSS and to determine three phases to achieve the goals. The resulting phases, or missions, and preliminary proposals and studies needed to develop a CELSS are described.
Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package
NASA Technical Reports Server (NTRS)
1979-01-01
The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.
Preliminary design-lift/cruise fan research and technology airplane flight control system
NASA Technical Reports Server (NTRS)
Gotlieb, P.; Lewis, G. E.; Little, L. J.
1976-01-01
This report presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling qualities levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft interconnecting the three variable pitch fans and three power plants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy.
The preliminary design of a lift-cruise fan airplane flight control system
NASA Technical Reports Server (NTRS)
Gotlieb, P.
1977-01-01
This paper presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling-quality levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a modified T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft that interconnects three variable-pitch fans and three powerplants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy.
Interactive computer graphics system for structural sizing and analysis of aircraft structures
NASA Technical Reports Server (NTRS)
Bendavid, D.; Pipano, A.; Raibstein, A.; Somekh, E.
1975-01-01
A computerized system for preliminary sizing and analysis of aircraft wing and fuselage structures was described. The system is based upon repeated application of analytical program modules, which are interactively interfaced and sequence-controlled during the iterative design process with the aid of design-oriented graphics software modules. The entire process is initiated and controlled via low-cost interactive graphics terminals driven by a remote computer in a time-sharing mode.
Preliminary consideration of CFETR ITER-like case diagnostic system.
Li, G S; Yang, Y; Wang, Y M; Ming, T F; Han, X; Liu, S C; Wang, E H; Liu, Y K; Yang, W J; Li, G Q; Hu, Q S; Gao, X
2016-11-01
Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.
Preliminary consideration of CFETR ITER-like case diagnostic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G. S.; Liu, Y. K.; Gao, X.
2016-11-15
Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basicmore » control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.« less
Description of the Prometheus Program Alternator/Thruster Integration Laboratory (ATIL)
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Birchenough, Arthur G.; Lebron-Velilla, Ramon C.; Gonzalez, Marcelo C.
2005-01-01
The Project Prometheus Alternator Electric Thruster Integration Laboratory's (ATIL) primary two objectives are to obtain test data to influence the power conversion and electric propulsion systems design, and to assist in developing the primary power quality specifications prior to system Preliminary Design Review (PDR). ATIL is being developed in stages or configurations of increasing fidelity and complexity in order to support the various phases of the Prometheus program. ATIL provides a timely insight of the electrical interactions between a representative Permanent Magnet Generator, its associated control schemes, realistic electric system loads, and an operating electric propulsion thruster. The ATIL main elements are an electrically driven 100 kWe Alternator Test Unit (ATU), an alternator controller using parasitic loads, and a thruster Power Processing Unit (PPU) breadboard. This paper describes the ATIL components, its development approach, preliminary integration test results, and current status.
NASA Technical Reports Server (NTRS)
Stahr, J. D.; Auslander, D. M.; Spear, R. C.; Young, G. E.
1982-01-01
Life support systems for manned space missions are discussed. A scenario analysis method was proposed for the initial step of comparing possible partial or total recycle scenarios. The method is discussed in detail.
NASA Astrophysics Data System (ADS)
Howe, Glenn A.; Mendillo, Christopher B.; Hewawasam, Kuravi; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya
2017-09-01
The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around three nearby stars from a high-altitude balloon using a vector vortex coronagraph. We present experimental results of the PICTURE-C low-order wavefront control (LOWFC) system utilizing a Shack-Hartmann (SH) sensor in an instrument testbed. The SH sensor drives both the alignment of the telescope secondary mirror using a 6-axis Hexapod and a surface parallel array deformable mirror to remove residual low-order aberrations. The sensor design and actuator calibration methods are discussed and the preliminary LOWFC closed-loop performance is shown to stabilize a reference wavefront to an RMS error of 0.30 +/- 0.29 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andress, D.; Joy, D.S.; McLeod, N.B.
The Department of Energy has sponsored a number of cask design efforts to define several transportation casks to accommodate the various assemblies expected to be accepted by the Federal Waste Management System. At this time, three preliminary cask designs have been selected for the final design--the GA-4 and GA-9 truck casks and the BR-100 rail cask. In total, this assessment indicates that the current Initiative I cask designs can be expected to dimensionally accommodate 100% of the PWR fuel assemblies (other than the extra-long South Texas Fuel) with control elements removed, and >90% of the assemblies having the control elementsmore » as an integral part of the fuel assembly. For BWR assemblies, >99% of the assemblies can be accommodated with fuel channels removed. This paper summarizes preliminary results of one part of that evaluation related to the ability of the From-Reactor Initiative I casks to accommodate the physical and radiological characteristics of the Spent Nuclear Fuel projected to be accepted into the Federal Waste Management System. 3 refs., 5 tabs.« less
ERIC Educational Resources Information Center
Twitchell, Anne; Sprehn, Mary
An evaluation of the Ohio College Library Center's (OCLC) proposed Serials Control Subsystem was undertaken to determine what effect the system would have on the operation of the Serials Department at the University of South Florida (USF) Library. The system would consist of three components: 1) claiming--identifying missing issues and generating…
Avionics test bed development plan
NASA Technical Reports Server (NTRS)
Harris, L. H.; Parks, J. M.; Murdock, C. R.
1981-01-01
A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, E.R.
1983-09-01
The appendixes for the Saguaro Power Plant includes the following: receiver configuration selection report; cooperating modes and transitions; failure modes analysis; control system analysis; computer codes and simulation models; procurement package scope descriptions; responsibility matrix; solar system flow diagram component purpose list; thermal storage component and system test plans; solar steam generator tube-to-tubesheet weld analysis; pipeline listing; management control schedule; and system list and definitions.
Descent Advisor Preliminary Field Test
NASA Technical Reports Server (NTRS)
Green, Steven M.; Vivona, Robert A.; Sanford, Beverly
1995-01-01
A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were: (1) to evaluate the accuracy of DA trajectory predictions for conventional and flight-management system equipped jet transports, (2) to identify significant sources of trajectory prediction error, and (3) to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 seconds late with a standard deviation of 13.1 seconds. This paper describes the field test and presents preliminary results for the commercial flights.
Development of a preprototype trace contaminant control system. [for space stations
NASA Technical Reports Server (NTRS)
1977-01-01
The steady state contaminant load model based on shuttle equipment and material test programs, and on the current space station studies was revised. An emergency upset contaminant load model based on anticipated emergency upsets that could occur in an operational space station was defined. Control methods for the contaminants generated by the emergency upsets were established by test. Preliminary designs of both steady state and emergency contaminant control systems for the space station application are presented.
An analysis of the Dahl friction model and its effect on a CMG gimbal rate controller
NASA Technical Reports Server (NTRS)
Nurre, G. S.
1974-01-01
The effects of friction, represented by the Dahl model, on a CMG rate control system was investigated by digital simulation. The conclusion from these simulation results is that gimbal pivot friction can be a significant effect on the gimbal rate control system. The magnitude of the problem this presents depends on the characteristics of the actual pivot. It would appear from this preliminary look that one solution is to insure that the control system natural frequency is higher by some prescribed amount than the natural frequency of the friction loop.
Quiet Clean Short-Haul Experimental Engine (QCSEE). Preliminary analyses and design report, volume 2
NASA Technical Reports Server (NTRS)
1974-01-01
The experimental and flight propulsion systems are presented. The following areas are discussed: engine core and low pressure turbine design; bearings and seals design; controls and accessories design; nacelle aerodynamic design; nacelle mechanical design; weight; and aircraft systems design.
Trickling Filters. Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Richwine, Reynold D.
The textual material for a unit on trickling filters is presented in this student manual. Topic areas discussed include: (1) trickling filter process components (preliminary treatment, media, underdrain system, distribution system, ventilation, and secondary clarifier); (2) operational modes (standard rate filters, high rate filters, roughing…
Design and implementation of a robot control system with traded and shared control capability
NASA Technical Reports Server (NTRS)
Hayati, S.; Venkataraman, S. T.
1989-01-01
Preliminary results are reported from efforts to design and develop a robotic system that will accept and execute commands from either a six-axis teleoperator device or an autonomous planner, or combine the two. Such a system should have both traded as well as shared control capability. A sharing strategy is presented whereby the overall system, while retaining positive features of teleoperated and autonomous operation, loses its individual negative features. A two-tiered shared control architecture is considered here, consisting of a task level and a servo level. Also presented is a computer architecture for the implementation of this system, including a description of the hardware and software.
Design requirements for SRB production control system. Volume 4: Implementation
NASA Technical Reports Server (NTRS)
1981-01-01
The implementation plan which is presented was developed to provide the means for the successful implementation of the automated production control system. There are three factors which the implementation plan encompasses: detailed planning; phased implementation; and user involvement. The plan is detailed to the task level in terms of necessary activities as the system is developed, refined, installed, and tested. These tasks are scheduled, on a preliminary basis, over a two-and-one-half-year time frame.
1985-09-01
BSTRACT This study uses a systems analysis approach to determine the communications technical control needs of the Fleet Marine Force as the transition...subsequent analysis and decision. In the acquisi- tion of military systems, it is typical to find these assumptions used to construct various measures of...relatively free from the typical underlying estimates used in cost and operational effective- ness analysis (COEA) type studies which are designed to compare
A pumped, two-phase flow heat transport system for orbiting instrument payloads
NASA Technical Reports Server (NTRS)
Fowle, A. A.
1981-01-01
A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.
Steady-state simulation program for attitude control propulsion systems
NASA Technical Reports Server (NTRS)
Heinmiller, P. J.
1973-01-01
The formulation and the engineering equations employed in the steady state attitude control propulsion system simulation program are presented. The objective of this program is to aid in the preliminary design and development of propulsion systems used for spacecraft attitude control. The program simulates the integrated operation of the many interdependent components typically comprising an attitude control propulsion system. Flexibility, generality, ease of operation, and speed consistent with adequate accuracy were overriding considerations during the development of this program. Simulation modules were developed representing the various types of fluid components typically encountered in an attitude control propulsion system. These modules are basically self-contained and may be arranged by the program user into desired configuration through the program input data.
Components for digitally controlled aircraft engines
NASA Technical Reports Server (NTRS)
Meador, J. D.
1981-01-01
Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.
A Preliminary Analysis of California's New Local Control Funding Formula
ERIC Educational Resources Information Center
Wolf, Rebecca; Sands, Janelle
2016-01-01
California recently overhauled its K-12 public education finance system. Enacted in 2013, the Local Control Funding Formula (LCFF) replaced California's 40-year-old funding formula. The LCFF increases district officials' fiscal flexibility; provides more resources to districts serving larger proportions of low-income, English learner (EL), and…
Preliminary analysis of STS-2 entry flight data
NASA Technical Reports Server (NTRS)
1982-01-01
A preliminary analysis of the data obtained during the entry of the STS-2 flight was completed. The stability and control derivatives from STS-2 were examined. Questions still remain throughout the flight envelope and the area below Mach 3 needs more study. With three controls operating in a high gain feedback system, it is difficult to separate the individual effects of each of the controls. Analysis of the aerothermal data shows that wing structural-temperature measurements are generally repeatable and consistent with the trajectories. The measured wing upper surface temperatures are in reasonable agreement with Dryden predictions but wing lower surface temperatures are higher than Dryden predictions. Heating and heat transfer models will be adjusted to improve the temperature prediction capability for future trajectories.
Planning assistance for the NASA 30/20 GHz program. Network control architecture study.
NASA Technical Reports Server (NTRS)
Inukai, T.; Bonnelycke, B.; Strickland, S.
1982-01-01
Network Control Architecture for a 30/20 GHz flight experiment system operating in the Time Division Multiple Access (TDMA) was studied. Architecture development, identification of processing functions, and performance requirements for the Master Control Station (MCS), diversity trunking stations, and Customer Premises Service (CPS) stations are covered. Preliminary hardware and software processing requirements as well as budgetary cost estimates for the network control system are given. For the trunking system control, areas covered include on board SS-TDMA switch organization, frame structure, acquisition and synchronization, channel assignment, fade detection and adaptive power control, on board oscillator control, and terrestrial network timing. For the CPS control, they include on board processing and adaptive forward error correction control.
Model-Based Design of Air Traffic Controller-Automation Interaction
NASA Technical Reports Server (NTRS)
Romahn, Stephan; Callantine, Todd J.; Palmer, Everett A.; Null, Cynthia H. (Technical Monitor)
1998-01-01
A model of controller and automation activities was used to design the controller-automation interactions necessary to implement a new terminal area air traffic management concept. The model was then used to design a controller interface that provides the requisite information and functionality. Using data from a preliminary study, the Crew Activity Tracking System (CATS) was used to help validate the model as a computational tool for describing controller performance.
Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Mcveigh, M. A.
1976-01-01
The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Strahan, Alan; Tanimoto, Rebekah; Casillas, Arturo
2010-01-01
This paper describes a conceptual design of the Thrust Vector Control (TVC) system and preliminary modeling of propellant slosh, for the Altair Lunar Lander. Altair is a vehicle element of the NASA Constellation Program aimed at returning humans to the moon. Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. One key GN&C function is the commanding of effectors that control attitude and impart delta V on the vehicle, utilizing both reaction control system (RCS) thrusters and throttling and TVC gimbaling of the vehicle main engine. Both the Altair descent and ascent modules carry fuel tanks. During thrusting maneuvers, the sloshing of liquid fuels in partially filled tanks can interact with the controlled system in such a way as to cause the overall system to be unstable. These fuel tanks must be properly placed, relative to the spacecraft's c.m., to avoid any unstable interactions. Following this will be a discussion of propellant slosh modeling work performed for the present vehicle configuration, including slosh frequency and participatory fluid mass predictions. Knowing the range of slosh mode frequencies over mission phases, the TVC bandwidth must be carefully selected so as not to excite the slosh modes at those frequencies. The likely need to increase the damping factor of slosh modes via baffles will also be discussed. To conclude, a discussion of operations procedures aimed at minimizing TVC-slosh interactions will be given.
Preliminary test results from the CELSS Test Facility Engineering Development Unit
NASA Technical Reports Server (NTRS)
Kliss, Mark H.; Macelroy, R. D.; Blackwell, C. C.; Borchers, B. A.; Drews, M. E.; Longabaugh, J. R.; Yendler, B. S.; Zografos, A. I.
1994-01-01
As part of the NASA Controlled Ecological Life Support System (CELSS) Program, a CELSS Test Facility (CTF) is being planned for installation on the Space Station. The CTF will be used to provide data on the productivity and efficiency of a variety of CELSS higher plant crops grown in the microgravity environment of the Space Station. Tight environmental control will be maintained while data on gas exchange rates and biomass accumulation rates are collected. In order to obtain an early realistic determination of the subsystem and system requirements necessary to provide the environmental conditions specified for CTF crop productivity experiments, an Engineering Development Unit (EDU) has been designed, constructed and is in the process of subsystem and system testing at NASA Ames Research Center. The EDU is a ground test-bed which will be used to characterize the integrated performance of major subsystem technologies, to evaluate hardware candidates and control strategies required for the CTF, and to further define the ability to meet CTF requirements within present Space Station constraints. This paper reviews the functional requirements for the EDU, and focuses on the performance evaluation and test results of the various subsystems. Preliminary integrated performance results and control system operation are addressed, and plans for future science and technology testing are discussed.
NASA Technical Reports Server (NTRS)
Jones, A. L.
1972-01-01
Requirements and concepts and the tradeoff analysis leading to the preferred concept are presented. Integrated analyses are given for subsystems and thermal control. Specific tradeoffs and analyses are also given for water management, atmosphere control, energy storage, radiators, navigation, control moment gyros, and system maintenance. The analyses of manipulator concepts and requirements, and supplemental analyses of information management issues are summarized. Subsystem reliability analyses include a detailed discussion of the critical failure analysis.
Concepts for Distributed Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Thomas, Randy; Saus, Joseph
2007-01-01
Gas turbine engines for aero-propulsion systems are found to be highly optimized machines after over 70 years of development. Still, additional performance improvements are sought while reduction in the overall cost is increasingly a driving factor. Control systems play a vitally important part in these metrics but are severely constrained by the operating environment and the consequences of system failure. The considerable challenges facing future engine control system design have been investigated. A preliminary analysis has been conducted of the potential benefits of distributed control architecture when applied to aero-engines. In particular, reductions in size, weight, and cost of the control system are possible. NASA is conducting research to further explore these benefits, with emphasis on the particular benefits enabled by high temperature electronics and an open-systems approach to standardized communications interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None,
1979-01-01
This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailedmore » subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)« less
Cargo Movement Operation Systems (CMOS) Interface Design Document (Preliminary)
1990-04-29
between these versions, each must be individually numbered. CMOS PMO ACCEPTS COMMENT: YES [ ] NO [ ] ERCI ACCEPTS COMMENT: YES [ ] NO [ ] COMMENT DISPOSITION...ACCEPTS COMMENT: YES [ ] NO [ ] COMMENT DISPOSITION: COMMENT STATUS: OPEN [ ] CLOSED [ ] ORIGINATOR CONTROL NUMBER: IDDl-0004 PROGRAM OFFICE CONTROL NUMBER...COMMENT: YES [ ] NO [ ] ERCI ACCEPTS COMMENT: YES [ ] NO [ ] COMMENT DISPOSITION: COMMENT STATUS: OPEN [ ] CLOSED [ ] ORIGINATOR CONTROL NUMBER: IDDl-0006
NASA Technical Reports Server (NTRS)
Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.
1979-01-01
The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.
Preliminary design of the Space Station environmental control and life support system
NASA Technical Reports Server (NTRS)
Reuter, J. L.; Turner, L. D.; Humphries, W. R.
1988-01-01
This paper outlines the current status of the Space Station Enrivonmental Control and Life Support System (ECLSS). The seven subsystem groups which comprise the ECLSS are identified and their functional descriptions are provided. The impact that the nominal and safe haven operating requirements have on the physical distribution, sizing, and number of ECLSS subsystems is described. The role that the major ECLSS interfaces with other Space Station systems and elements play in the ECLSS design is described.
ERIC Educational Resources Information Center
Slivinske, Lee R.; Kosberg, Jordan I.
1984-01-01
Describes a holistic health care program (Personal Health Management System) initiated within several retirement communities. Initial findings suggested that program participants experienced significant increases in their health and well-being while nonequivalent control group subjects did not. Conceptual and methodological issues are discussed.…
Fiber optic control system integration
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Glasheen, W. M.; Russell, J. C.
1987-01-01
A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.
A steering law for a roof-type configuration for a single-gimbal control moment gyro system
NASA Technical Reports Server (NTRS)
Yoshikawa, T.
1974-01-01
Single-Gimbal Control Moment Gyro (SGCMG) systems have been investigated for attitude control of the Large Space Telescope (LST) and the High Energy Astronomy Observatory (HEAO). However, various proposed steering laws for the SGCMG systems thus far have some defects because of singular states of the system. In this report, a steering law for a roof-type SGCMG system is proposed which is based on a new momentum distribution scheme that makes all the singular states unstable. This momentum distribution scheme is formulated by a treatment of the system as a sampled-data system. From analytical considerations, it is shown that this steering law gives control performance which is satisfactory for practical applications. Results of the preliminary computer simulation entirely support this premise.
Issues in the design of an executive controller shell for Space Station automation
NASA Technical Reports Server (NTRS)
Erickson, William K.; Cheeseman, Peter C.
1986-01-01
A major goal of NASA's Systems Autonomy Demonstration Project is to focus research in artificial intelligence, human factors, and dynamic control systems in support of Space Station automation. Another goal is to demonstrate the use of these technologies in real space systems, for both round-based mission support and on-board operations. The design, construction, and evaluation of an intelligent autonomous system shell is recognized as an important part of the Systems Autonomy research program. His paper describes autonomous systems and executive controllers, outlines how these intelligent systems can be utilized within the Space Station, and discusses a number of key design issues that have been raised during some preliminary work to develop an autonomous executive controller shell at NASA Ames Research Center.
A Preliminary Study on the Possibility of Using Ultrasound in Driver Assistance Systems
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Honda, Hirohiko
This paper presents a preliminary study on the possibility of using ultrasound in driver assistance systems. Subjects' lap time in a driving video game was measured as an index of their performance of driving operations under acoustic conditions with and without an ultrasound signal at 23kHz, 70dB. The results show that the performance characteristics of the subjects changed when the ultrasound signal was presented. Ultrasound signal tends to concentrate on handling the vehicle and decreasing an attention to check the over speed driving, as a second task. We prove the possibility to apply ultrasound signal to control operator's attention and behavior.
TACS Central Control Facility.
1981-02-12
PULSE RTC REAL TIME CLOCK -{> I . SIGNAL INVERSION UASC UNIVERSAL ASYNCHRONOUS SERIAL - ---- 4w SPECIAL INTERFACE CONTROLLER Fiq. 2-1. MAC hardware...34 Universal Asynchronous Serial Controller" (UASC) cards. The cards implement an RS-232 standard interface. All controllers are set to operate at a data...Bridwell and I. Richer, "A Preliminary Design of a TDMA System for FLEETSAT," Technical Note 1975-5, Lincoln Laboratory, M.I.T. (12 March 1975), DDC
ALLY: An operator's associate for satellite ground control systems
NASA Technical Reports Server (NTRS)
Bushman, J. B.; Mitchell, Christine M.; Jones, P. M.; Rubin, K. S.
1991-01-01
The key characteristics of an intelligent advisory system is explored. A central feature is that human-machine cooperation should be based on a metaphor of human-to-human cooperation. ALLY, a computer-based operator's associate which is based on a preliminary theory of human-to-human cooperation, is discussed. ALLY assists the operator in carrying out the supervisory control functions for a simulated NASA ground control system. Experimental evaluation of ALLY indicates that operators using ALLY performed at least as well as they did when using a human associate and in some cases even better.
Automated mixed traffic vehicle control and scheduling study
NASA Technical Reports Server (NTRS)
Peng, T. K. C.; Chon, K.
1976-01-01
The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information.
Hybrid Damping System for an Electronic Equipment Mounting Shelf
NASA Technical Reports Server (NTRS)
Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry
1997-01-01
The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-II. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.
Hybrid Damping System for an Electronic Equipment Mounting Shelf
NASA Technical Reports Server (NTRS)
Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry
1997-01-01
The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-11. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.
Adaptive Optimization of Aircraft Engine Performance Using Neural Networks
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Long, Theresa W.
1995-01-01
Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.
NASA Technical Reports Server (NTRS)
Stewart, James F.; Shuck, Thomas L.
1990-01-01
Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.
Aerodynamic preliminary analysis system 2. Part 2: User's manual
NASA Technical Reports Server (NTRS)
Sova, G.; Divan, P.; Spacht, L.
1991-01-01
An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations have multiple nonplanar surfaces of arbitrary planforms and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral-directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis. Computation times on an IBM 3081 are typically less than one minute of CPU/Mach number at subsonic, supersonic, or hypersonic speeds. This is a user manual for the computer programming.
L(sub 1) Adaptive Control Design for NASA AirSTAR Flight Test Vehicle
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira; Zou, Xiaotian
2009-01-01
In this paper we present a new L(sub 1) adaptive control architecture that directly compensates for matched as well as unmatched system uncertainty. To evaluate the L(sub 1) adaptive controller, we take advantage of the flexible research environment with rapid prototyping and testing of control laws in the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. We apply the L(sub 1) adaptive control laws to the subscale turbine powered Generic Transport Model. The presented results are from a full nonlinear simulation of the Generic Transport Model and some preliminary pilot evaluations of the L(sub 1) adaptive control law.
NASA Technical Reports Server (NTRS)
1976-01-01
The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.
Flight software requirements and design support system
NASA Technical Reports Server (NTRS)
Riddle, W. E.; Edwards, B.
1980-01-01
The desirability and feasibility of computer-augmented support for the pre-implementation activities occurring during the development of flight control software was investigated. The specific topics to be investigated were the capabilities to be included in a pre-implementation support system for flight control software system development, and the specification of a preliminary design for such a system. Further, the pre-implementation support system was to be characterized and specified under the constraints that it: (1) support both description and assessment of flight control software requirements definitions and design specification; (2) account for known software description and assessment techniques; (3) be compatible with existing and planned NASA flight control software development support system; and (4) does not impose, but may encourage, specific development technologies. An overview of the results is given.
TEXSYS. [a knowledge based system for the Space Station Freedom thermal control system test-bed
NASA Technical Reports Server (NTRS)
Bull, John
1990-01-01
The Systems Autonomy Demonstration Project has recently completed a major test and evaluation of TEXSYS, a knowledge-based system (KBS) which demonstrates real-time control and FDIR for the Space Station Freedom thermal control system test-bed. TEXSYS is the largest KBS ever developed by NASA and offers a unique opportunity for the study of technical issues associated with the use of advanced KBS concepts including: model-based reasoning and diagnosis, quantitative and qualitative reasoning, integrated use of model-based and rule-based representations, temporal reasoning, and scale-up performance issues. TEXSYS represents a major achievement in advanced automation that has the potential to significantly influence Space Station Freedom's design for the thermal control system. An overview of the Systems Autonomy Demonstration Project, the thermal control system test-bed, the TEXSYS architecture, preliminary test results, and thermal domain expert feedback are presented.
A low cost LST pointing control system
NASA Technical Reports Server (NTRS)
Glaese, J. R.; Kennel, H. F.; Nurre, G. S.; Seltzer, S. M.; Shelton, H. L.
1975-01-01
Vigorous efforts to reduce costs, coupled with changes in LST guidelines, took place in the Fall of 1974. These events made a new design of the LST and its Pointing and Attitude Control System possible. The major design changes are summarized as: an annular Support Systems Module; removal of image motion compensation; reaction wheels instead of CMG's; a magnetic torquer system to also perform the emergency and backup functions, eliminating the previously required mass expulsion system. Preliminary analysis indicates the Low Cost LST concept can meet the newly defined requirements and results in a significantly reduced development cost.
Preliminary study to develop standard acceptance tests for pervious concrete.
DOT National Transportation Integrated Search
2017-05-01
Pervious concrete pavements are permeable pavement systems that are desired for their role in stormwater management and runoff control. Increased popularity in pervious concrete pavement applications has raised the need for the development of quality...
NASA Technical Reports Server (NTRS)
Kuo, B. C.; Singh, G.
1974-01-01
The dynamics of the Large Space Telescope (LST) control system were studied in order to arrive at a simplified model for computer simulation without loss of accuracy. The frictional nonlinearity of the Control Moment Gyroscope (CMG) Control Loop was analyzed in a model to obtain data for the following: (1) a continuous describing function for the gimbal friction nonlinearity; (2) a describing function of the CMG nonlinearity using an analytical torque equation; and (3) the discrete describing function and function plots for CMG functional linearity. Preliminary computer simulations are shown for the simplified LST system, first without, and then with analytical torque expressions. Transfer functions of the sampled-data LST system are also described. A final computer simulation is presented which uses elements of the simplified sampled-data LST system with analytical CMG frictional torque expressions.
Rotor systems research aircraft predesign study. Volume 4: Preliminary draft detail specification
NASA Technical Reports Server (NTRS)
Miller, A. N.; Linden, A. W.
1972-01-01
The RSRA requirements are presented in a detail specification format. Coverage of the requirements includes the following headings: (1) aircraft characteristics, (2) general features of design and construction, (3) aerodynamics, (4) structural design criteria, (5) flight control system, (6) propulsion subsystem, and (7) secondary power and distribution subsystem.
Message Control Intensity: Rationale and Preliminary Findings.
ERIC Educational Resources Information Center
Rogers, L. Edna; And Others
The discussions of four family-related topics by 85 married couples were recorded and analyzed to test the validity of an expanded version of the relational communication coding system developed by L. Edna Rogers and Richard V. Farace. The expanded version of the system is based on the implicit intensity continuum that underlies the communication…
Progress toward hydrogen peroxide micropulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, J C; Dittman, M D; Ledebuhr, A G
1999-07-08
A new self-pressurizing propulsion system has liquid thrusters and gas jet attitude control without heavy gas storage vessels. A pump boosts the pressure of a small fraction of the hydrogen peroxide, so that reacted propellant can controllably pressurize its own source tank. The warm decomposition gas also powers the pump and is supplied to the attitude control jets. The system has been incorporated into a prototype microsatellite for terrestrial maneuvering tests. Additional progress includes preliminary testing of a bipropellant thruster, and storage of unstabilized hydrogen peroxide in small sealed tanks.
The 5-kwe reactor thermoelectric system summary
NASA Technical Reports Server (NTRS)
Vanosdol, J. H. (Editor)
1973-01-01
Design of the 5-kwe reactor thermoelectric system was initiated in February 1972 and extended through the conceptual design phase into the preliminary design phase. Design effort was terminated in January, 1973. This report documents the system and component requirements, design approaches, and performance and design characteristics for the 5-kwe system. Included is summary information on the reactor, radiation shields, power conversion systems, thermoelectric pump, radiator/structure, liquid metal components, and the control system.
Full-scale Transport Controlled Impact Demonstration Program
NASA Technical Reports Server (NTRS)
1987-01-01
The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.
Next Generation Munitions Handler: Human-Machine Interface and Preliminary Performance Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draper, J.V.; Jansen, J.F.; Pin, F.G.
1999-04-25
The Next Generation Munitions Handler/Advanced Technology Demonstrator (NGMI-VATTD) is a technology demonstrator for the application of an advanced robotic device for re-arming U.S. Air Force (USAF) and U.S. Navy (USN) tactical fighters. It comprises two key hardware components: a heavy-lift dexterous manipulator (HDM) and a nonholonomic mobility platform. The NGMWATTD is capable of lifting weapons up to 4400 kg (2000 lb) and placing them on any weapons rack on existing fighters (including the F-22 Raptor). This report describes the NGMH mission with particular reference to human-machine interfaces. It also describes preliminary testing to garner feedback about the heavy-lift manipulator armmore » from experienced fighter load crewmen. The purpose of the testing was to provide preliminary information about control system parameters and to gather feed- back from users about manipulator arm functionality. To that end, the Air Force load crewmen interacted with the NGMWATTD in an informal testing session and provided feedback about the performance of the system. Certain con- trol system parameters were changed during the course of the testing and feedback from the participants was used to make a rough estimate of "good" initial operating parameters. Later, formal testing will concentrate within this range to identify optimal operating parameters. User reactions to the HDM were generally positive, All of the USAF personnel were favorably impressed with the capabilities of the system. Fine-tuning operating parameters created a system even more favorably regarded by the load crews. Further adjustment to control system parameters will result in a system that is operationally efficient, easy to use, and well accepted by users.« less
RTJ-303: Variable geometry, oblique wing supersonic aircraft
NASA Technical Reports Server (NTRS)
Antaran, Albert; Belete, Hailu; Dryzmkowski, Mark; Higgins, James; Klenk, Alan; Rienecker, Lisa
1992-01-01
This document is a preliminary design of a High Speed Civil Transport (HSCT) named the RTJ-303. It is a 300 passenger, Mach 1.6 transport with a range of 5000 nautical miles. It features four mixed-flow turbofan engines, variable geometry oblique wing, with conventional tail-aft control surfaces. The preliminary cost analysis for a production of 300 aircraft shows that flyaway cost would be 183 million dollars (1992) per aircraft. The aircraft uses standard jet fuel and requires no special materials to handle aerodynamic heating in flight because the stagnation temperatures are approximately 130 degrees Fahrenheit in the supersonic cruise condition. It should be stressed that this aircraft could be built with today's technology and does not rely on vague and uncertain assumptions of technology advances. Included in this report are sections discussing the details of the preliminary design sequence including the mission to be performed, operational and performance constraints, the aircraft configuration and the tradeoffs of the final choice, wing design, a detailed fuselage design, empennage design, sizing of tail geometry, and selection of control surfaces, a discussion on propulsion system/inlet choice and their position on the aircraft, landing gear design including a look at tire selection, tip-over criterion, pavement loading, and retraction kinematics, structures design including load determination, and materials selection, aircraft performance, a look at stability and handling qualities, systems layout including location of key components, operations requirements maintenance characteristics, a preliminary cost analysis, and conclusions made regarding the design, and recommendations for further study.
Development of weight and cost estimates for lifting surfaces with active controls
NASA Technical Reports Server (NTRS)
Anderson, R. D.; Flora, C. C.; Nelson, R. M.; Raymond, E. T.; Vincent, J. H.
1976-01-01
Equations and methodology were developed for estimating the weight and cost incrementals due to active controls added to the wing and horizontal tail of a subsonic transport airplane. The methods are sufficiently generalized to be suitable for preliminary design. Supporting methodology and input specifications for the weight and cost equations are provided. The weight and cost equations are structured to be flexible in terms of the active control technology (ACT) flight control system specification. In order to present a self-contained package, methodology is also presented for generating ACT flight control system characteristics for the weight and cost equations. Use of the methodology is illustrated.
The NASA Lewis integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1991-01-01
A new flight simulation facility has been developed at NASA Lewis to allow integrated propulsion-control and flight-control algorithm development and evaluation in real time. As a preliminary check of the simulator facility and the correct integration of its components, the control design and physics models for an STOVL fighter aircraft model have been demonstrated, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The results show that this fixed-based flight simulator can provide real-time feedback and display of both airframe and propulsion variables for validation of integrated systems and testing of control design methodologies and cockpit mechanizations.
Study of the Application of Separation Control by Unsteady Excitation to Civil Transport Aircraft
NASA Technical Reports Server (NTRS)
McLean, J. D.; Crouch, J. D.; Stoner, R. C.; Sakurai, S.; Seidel, G. E.; Feifel, W. M.; Rush, H. M.
1999-01-01
This study provides a preliminary assessment of the potential benefits of applying unsteady separation control to transport aircraft. Estimates are given for some of the costs associated with a specific application to high-lift systems. High-leverage areas for future research were identified during the course of the study. The study was conducted in three phases. Phase 1 consisted of a coarse screening of potential applications within the aerodynamics discipline. Potential benefits were identified and in some cases quantified in a preliminary way. Phase 2 concentrated on the application to the wing high-lift system, deemed to have the greatest potential benefit for commercial transports. A team of experts, including other disciplines (i.e. hydraulic, mechanical, and electrical systems, structures, configurations, manufacturing, and finance), assessed the feasibility, benefits, and costs to arrive at estimates of net benefits. In both phases of the study, areas of concern and areas for future research were identified. In phase 3 of this study, the high-leverage areas for future research were prioritized as a guide for future efforts aimed at the application of active flow control to commercial transport aircraft.
Modeling, simulation and control for a cryogenic fluid management facility, preliminary report
NASA Technical Reports Server (NTRS)
Turner, Max A.; Vanbuskirk, P. D.
1986-01-01
The synthesis of a control system for a cryogenic fluid management facility was studied. The severe demand for reliability as well as instrumentation and control unique to the Space Station environment are prime considerations. Realizing that the effective control system depends heavily on quantitative description of the facility dynamics, a methodology for process identification and parameter estimation is postulated. A block diagram of the associated control system is also produced. Finally, an on-line adaptive control strategy is developed utilizing optimization of the velocity form control parameters (proportional gains, integration and derivative time constants) in appropriate difference equations for direct digital control. Of special concern are the communications, software and hardware supporting interaction between the ground and orbital systems. It is visualized that specialist in the OSI/ISO utilizing the Ada programming language will influence further development, testing and validation of the simplistic models presented here for adaptation to the actual flight environment.
Photoacoustic and ultrasound dual-modality imaging of human peripheral joints
NASA Astrophysics Data System (ADS)
Xu, Guan; Rajian, Justin R.; Girish, Gandikota; Kaplan, Mariana J.; Fowlkes, J. Brian; Carson, Paul L.; Wang, Xueding
2013-01-01
A photoacoustic (PA) and ultrasound (US) dual modality system, for imaging human peripheral joints, is introduced. The system utilizes a commercial US unit for both US control imaging and PA signal acquisition. Preliminary in vivo evaluation of the system, on normal volunteers, revealed that this system can recover both the structural and functional information of intra- and extra-articular tissues. Confirmed by the control US images, the system, on the PA mode, can differentiate tendon from surrounding soft tissue based on the endogenous optical contrast. Presenting both morphological and pathological information in joint, this system holds promise for diagnosis and characterization of inflammatory joint diseases such as rheumatoid arthritis.
Towards Run-time Assurance of Advanced Propulsion Algorithms
NASA Technical Reports Server (NTRS)
Wong, Edmond; Schierman, John D.; Schlapkohl, Thomas; Chicatelli, Amy
2014-01-01
This paper covers the motivation and rationale for investigating the application of run-time assurance methods as a potential means of providing safety assurance for advanced propulsion control systems. Certification is becoming increasingly infeasible for such systems using current verification practices. Run-time assurance systems hold the promise of certifying these advanced systems by continuously monitoring the state of the feedback system during operation and reverting to a simpler, certified system if anomalous behavior is detected. The discussion will also cover initial efforts underway to apply a run-time assurance framework to NASA's model-based engine control approach. Preliminary experimental results are presented and discussed.
Tuner control system of Spoke012 SRF cavity for C-ADS injector I
NASA Astrophysics Data System (ADS)
Liu, Na; Sun, Yi; Wang, Guang-Wei; Mi, Zheng-Hui; Lin, Hai-Ying; Wang, Qun-Yao; Liu, Rong; Ma, Xin-Peng
2016-09-01
A new tuner control system for spoke superconducting radio frequency (SRF) cavities has been developed and applied to cryomodule I of the C-ADS injector I at the Institute of High Energy Physics, Chinese Academy of Sciences. We have successfully implemented the tuner controller based on Programmable Logic Controller (PLC) for the first time and achieved a cavity tuning phase error of ±0.7° (about ±4 Hz peak to peak) in the presence of electromechanical coupled resonance. This paper presents preliminary experimental results based on the PLC tuner controller under proton beam commissioning. Supported by Proton linac accelerator I of China Accelerator Driven sub-critical System (Y12C32W129)
Space-to-earth power transmission system
NASA Technical Reports Server (NTRS)
Stevens, G. H.; Schuh, R.
1976-01-01
A preliminary analysis was conducted to establish the requirements of a space-to-earth microwave power transmission system. The need for accurate phase control on the transmitter was established and methods for assessing the impact of power density and thermal constraints on system performance were demonstrated. Potential radio frequency interference was considered. The sensitivity of transmission system scale to variations in power source, transportation and orbital fabrication and assembly costs was also determined.
NASA Technical Reports Server (NTRS)
Bergmann, E.
1976-01-01
The current baseline method and software implementation of the space shuttle reaction control subsystem failure detection and identification (RCS FDI) system is presented. This algorithm is recommended for conclusion in the redundancy management (RM) module of the space shuttle guidance, navigation, and control system. Supporting software is presented, and recommended for inclusion in the system management (SM) and display and control (D&C) systems. RCS FDI uses data from sensors in the jets, in the manifold isolation valves, and in the RCS fuel and oxidizer storage tanks. A list of jet failures and fuel imbalance warnings is generated for use by the jet selection algorithm of the on-orbit and entry flight control systems, and to inform the crew and ground controllers of RCS failure status. Manifold isolation valve close commands are generated in the event of failed on or leaking jets to prevent loss of large quantities of RCS fuel.
Advanced space engine powerhead breadboard assembly system study
NASA Technical Reports Server (NTRS)
Campbell, R. G.
1978-01-01
The objective of this study was to establish a preliminary design of a Powerhead Breadboard Assembly (PBA) for an 88 964-Newton (20,000-pound) thrust oxygen/hydrogen staged combustion cycle engine for use in orbital transfer vehicle propulsion. Existing turbopump, preburner, and thrust chamber components were integrated with interconnecting ducting, a heat exchanger, and a control system to complete the PBA design. Cycle studies were conducted to define starting transients and steady-state balances for the completed design. Specifications were developed for all valve applications and the conditions required for the control system integration with the facility for system test were defined.
Entry Vehicle Control System Design for the Mars Smart Lander
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Queen, Eric M.
2002-01-01
The NASA Langley Research Center, in cooperation with the Jet Propulsion Laboratory, participated in a preliminary design study of the Entry, Descent and Landing phase for the Mars Smart Lander Project. This concept utilizes advances in Guidance, Navigation and Control technology to significantly reduce uncertainty in the vehicle landed location on the Mars surface. A candidate entry vehicle controller based on the Reaction Control System controller for the Apollo Lunar Excursion Module digital autopilot is proposed for use in the entry vehicle attitude control. A slight modification to the phase plane controller is used to reduce jet-firing chattering while maintaining good control response for the Martian entry probe application. The controller performance is demonstrated in a six-degree-of-freedom simulation with representative aerodynamics.
Head-coupled remote stereoscopic camera system for telepresence applications
NASA Astrophysics Data System (ADS)
Bolas, Mark T.; Fisher, Scott S.
1990-09-01
The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.
Quiet Clean Short-Haul Experimental Engine (QSCEE). Preliminary analyses and design report, volume 1
NASA Technical Reports Server (NTRS)
1974-01-01
The experimental propulsion systems to be built and tested in the 'quiet, clean, short-haul experimental engine' program are presented. The flight propulsion systems are also presented. The following areas are discussed: acoustic design; emissions control; engine cycle and performance; fan aerodynamic design; variable-pitch actuation systems; fan rotor mechanical design; fan frame mechanical design; and reduction gear design.
Failure Mode, Effects, and Criticality Analysis (FMECA)
1993-04-01
Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the Brayton Isotope Power System Ground Demonstration System, Report No. TID 27301...No. TID/SNA - 3015, Aeroject Nuclear Systems Co., Sacramento, California: 1970. 95. Taylor , J.R. A Formalization of Failure Mode Analysis of Control...Roskilde, Denmark: 1973. 96. Taylor , J.R. A Semi-Automatic Method for Oualitative Failure Mode Analysis. Report No. RISO-M-1707. Available from a
NASA Technical Reports Server (NTRS)
Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.
1975-01-01
The efforts and recommendations associated with preliminary design and concept definition for mechanical systems and flight operations are presented. Technical discussion in the areas of mission analysis, antenna structural concept, configuration analysis, assembly and packaging with associated costs are presented. Technology issues for the control system, structural system, thermal system and assembly including cost and man's role in assembly and maintenance are identified. Background and desired outputs for future efforts are discussed.
Simon Fraser University's New Interactive Learning System to Teach French as a Second Language.
ERIC Educational Resources Information Center
Kirchner, Glenn
1988-01-01
Provides an overview of the design, production, and preliminary testing of a microcomputer-controlled interactive learning workstation developed at Simon Fraser University to teach French as a Second Language. Criteria and guidelines are discussed; the authoring system is explained; and field testing with grades four through seven is described.…
THREE-STAGE COMBUSTION (REBURNING) ON A FULL SCALE OPERATING BOILER IN THE U.S.S.R.
The report gives results of a program to complete preliminary design of a three- stage combustion (reburn) system for nitrogen oxide (NOx) emissions control on an operating boiler in the U. S.S. R. he program to design the reburn system consisted of five tasks: visiting the Ladyz...
SMS design review summary report: Preliminary, NASA approval pending, type 1 data
NASA Technical Reports Server (NTRS)
1976-01-01
The minutes of Shuttle Mission Simulator (SMS) design review sessions are presented. Notes concerning design deficiencies of the SMS control panels are listed. The SMS power system, instructor/operator stations, and forward crew station are evalutated.
DOT National Transportation Integrated Search
2010-02-01
It is important for many applications, such as intersection delay estimation and adaptive signal : control, to obtain vehicle turning movement information at signalized intersections. However, : vehicle turning movement information is very time consu...
VSCE technology definition study
NASA Technical Reports Server (NTRS)
Howlett, R. A.; Hunt, R. B.
1979-01-01
Refined design definition of the variable stream control engine (VSCE) concept for advanced supersonic transports is presented. Operating and performance features of the VSCE are discussed, including the engine components, thrust specific fuel consumption, weight, noise, and emission system. A preliminary engine design is presented.
NASA Technical Reports Server (NTRS)
1990-01-01
A review is presented of the literature concerning control and display technology that is applicable to the Orbital Maneuvering Vehicle (OMV), a system being developed by NASA that will enable the user to remotely pilot it during a mission in space. In addition to the general review, special consideration is given to virtual image displays and their potential for use in the system, and a preliminary partial task analysis of the user's functions is also presented.
Murray, Spencer A; Ha, Kevin H; Goldfarb, Michael
2014-01-01
This paper describes a novel controller, intended for use in a lower-limb exoskeleton, to aid gait rehabilitation in patients with hemiparesis after stroke. The controller makes use of gravity compensation, feedforward movement assistance, and reinforcement of isometric joint torques to achieve assistance without dictating the spatiotemporal nature of joint movement. The patient is allowed to self-select walking speed and is able to make trajectory adaptations to maintain balance without interference from the controller. The governing equations and the finite state machine which comprise the system are described herein. The control architecture was implemented in a lower-limb exoskeleton and a preliminary experimental assessment was conducted in which a patient with hemiparesis resulting from stroke walked with assistance from the exoskeleton. The patient exhibited improvements in fast gait speed, step length asymmetry, and stride length in each session, as measured before and after exoskeleton training, presumably as a result of using the exoskeleton.
Man-Machine Communication in Remote Manipulation: Task-Oriented Supervisory Command Language (TOSC).
1980-03-01
ORIENTED SUPERVISORY CONTROL SYSTEM METHODOLOGY 3-1 3.1 Overview 3-1 3.2 Background 3-3 3.2.1 General 3-3 3.2.2 Preliminary Principles of Command Language...Design 3-4 3.2.3 Preliminary Principles of Feedback Display Design 3-9 3.3 Man-Machine Communication Models 3-12 3.3.1 Background 3-12 3.3.2 Adapted...and feedback mode. The work ends with the presentation of a performance prediction model and a set of principles and guidelines, applicable to the
NASA Technical Reports Server (NTRS)
Halverson, Jeffrey B.; Roy, Biswadev; O'CStarr, David (Technical Monitor)
2002-01-01
An overview of mean convective thermodynamic and wind profiles for the Tropical Rainfall Measuring Mission (TRMM) Large Scale Biosphere-Atmosphere Experiment (LBA) and Kwajalein Experiment (KWAJEX) field campaigns will be presented, highlighting the diverse continental and marine tropical environments in which rain clouds and mesoscale convective systems evolved. An assessment of ongoing sounding quality control procedures will be shown. Additionally, we will present preliminary budgets of sensible heat source (Q1) and apparent moisture sink (Q2), which have been diagnosed from the various sounding networks.
NASA Technical Reports Server (NTRS)
Vaisnys, A.
1980-01-01
It is technically feasible to design a satellite communication system to serve the United States electric utility industry's needs relative to load management, real-time operations management, remote meter reading, and to determine the costs of various elements of the system. A definition of distribution control and monitoring functions is given. Associated communications traffic is quantified. A baseline conceptual design in terms of operating capability and equipment is described, important factors to be considered in designing a system are examined, and preliminary cost data are provided. Factors associated with implementation are discussed and conclusions and recommendations are listed.
Preliminary Full-Scale Tests of the Center for Automated Processing of Hardwoods' Auto-Image
Philip A. Araman; Janice K. Wiedenbeck
1995-01-01
Automated lumber grading and yield optimization using computer controlled saws will be plausible for hardwoods if and when lumber scanning systems can reliably identify all defects by type. Existing computer programs could then be used to grade the lumber, identify the best cut-up solution, and control the sawing machines. The potential value of a scanning grading...
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis and conceptual design of a baseline mission and spacecraft are presented. Aspects of the HEAO-C discussed include: baseline experiments with X-ray observations of space, analysis of mission requirements, observatory design, structural analysis, thermal control, attitude sensing and control system, communication and data handling, and space shuttle launch and retrieval of HEAO-C.
NASA Technical Reports Server (NTRS)
Strickland, Mark E.; Bundick, W. Thomas; Messina, Michael D.; Hoffler, Keith D.; Carzoo, Susan W.; Yeager, Jessie C.; Beissner, Fred L., Jr.
1996-01-01
The 'f18harv' six degree-of-freedom nonlinear batch simulation used to support research in advanced control laws and flight dynamics issues as part of NASA's High Alpha Technology Program is described in this report. This simulation models an F/A-18 airplane modified to incorporate a multi-axis thrust-vectoring system for augmented pitch and yaw control power and actuated forebody strakes for enhanced aerodynamic yaw control power. The modified configuration is known as the High Alpha Research Vehicle (HARV). The 'f18harv' simulation was an outgrowth of the 'f18bas' simulation which modeled the basic F/A-18 with a preliminary version of a thrust-vectoring system designed for the HARV. The preliminary version consisted of two thrust-vectoring vanes per engine nozzle compared with the three vanes per engine actually employed on the F/A-18 HARV. The modeled flight envelope is extensive in that the aerodynamic database covers an angle-of-attack range of -10 degrees to +90 degrees, sideslip range of -20 degrees to +20 degrees, a Mach Number range between 0.0 and 2.0, and an altitude range between 0 and 60,000 feet.
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.
1982-01-01
Application of multifunction display and control systems to the NASA Orbiter spacecraft offers the potential for reducing crew workload and improving the presentation of system status and operational data to the crew. A design concept is presented for the application of a multifunction display and control system (MFDCS) to the Orbital Maneuvering System and Electrical Power Distribution and Control System on the Orbiter spacecraft. The MFDCS would provide the capability for automation of procedures, fault prioritization and software reconfiguration of the MFDCS data base. The MFDCS would operate as a stand-alone processor to minimize the impact on the current Orbiter software. Supervisory crew command of all current functions would be retained through the use of several operating modes in the system. Both the design concept and the processes followed in defining the concept are described.
A VLF-based technique in applications to digital control of nonlinear hybrid multirate systems
NASA Astrophysics Data System (ADS)
Vassilyev, Stanislav; Ulyanov, Sergey; Maksimkin, Nikolay
2017-01-01
In this paper, a technique for rigorous analysis and design of nonlinear multirate digital control systems on the basis of the reduction method and sublinear vector Lyapunov functions is proposed. The control system model under consideration incorporates continuous-time dynamics of the plant and discrete-time dynamics of the controller and takes into account uncertainties of the plant, bounded disturbances, nonlinear characteristics of sensors and actuators. We consider a class of multirate systems where the control update rate is slower than the measurement sampling rates and periodic non-uniform sampling is admitted. The proposed technique does not use the preliminary discretization of the system, and, hence, allows one to eliminate the errors associated with the discretization and improve the accuracy of analysis. The technique is applied to synthesis of digital controller for a flexible spacecraft in the fine stabilization mode and decentralized controller for a formation of autonomous underwater vehicles. Simulation results are provided to validate the good performance of the designed controllers.
A Mathematical Model of Marine Diesel Engine Speed Control System
NASA Astrophysics Data System (ADS)
Sinha, Rajendra Prasad; Balaji, Rajoo
2018-02-01
Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.
NASA Technical Reports Server (NTRS)
Barret, C.
1992-01-01
The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Now, as we launch the Mars observer and the Cassini spacecraft, stability and control have become higher priorities. The flight control system design selection process is reviewed using as an example a geostationary communication satellite which is to have a life expectancy of 10 to 14 years. Disturbance torques including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques are assessed to quantify the disturbance environment so that the required compensating torque can be determined. Then control torque options, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, nutation dampers, inertia augmentation techniques, three-axis control, reactions control system (RCS), and RCS sizing, are considered. A flight control system design is then selected and preliminary stability criteria are met by the control gains selection.
Preliminary study, analysis and design for a power switch for digital engine actuators
NASA Technical Reports Server (NTRS)
Beattie, E. C.; Zickwolf, H. C., Jr.
1979-01-01
Innovative control configurations using high temperature switches to operate actuator driving solenoids were studied. The impact on engine control system life cycle costs and reliability of electronic control and (ECU) heat dissipation due to power conditioning and interface drivers were addressed. Various power supply and actuation schemes were investigated, including optical signal transmission and electronics on the actuator, engine driven alternator, and inside the ECU. The use of a switching shunt power conditioner results in the most significant decrease in heat dissipation within the ECU. No overall control system reliability improvement is projected by the use of remote high temperature switches for solenoid drivers.
Use of anomolous thermal imaging effects for multi-mode systems control during crystal growth
NASA Technical Reports Server (NTRS)
Wargo, Michael J.
1989-01-01
Real time image processing techniques, combined with multitasking computational capabilities are used to establish thermal imaging as a multimode sensor for systems control during crystal growth. Whereas certain regions of the high temperature scene are presently unusable for quantitative determination of temperature, the anomalous information thus obtained is found to serve as a potentially low noise source of other important systems control output. Using this approach, the light emission/reflection characteristics of the crystal, meniscus and melt system are used to infer the crystal diameter and a linear regression algorithm is employed to determine the local diameter trend. This data is utilized as input for closed loop control of crystal shape. No performance penalty in thermal imaging speed is paid for this added functionality. Approach to secondary (diameter) sensor design and systems control structure is discussed. Preliminary experimental results are presented.
Zielstorff, R D; Estey, G; Vickery, A; Hamilton, G; Fitzmaurice, J B; Barnett, G O
1997-01-01
A decision support system for prevention and management of pressure ulcers was developed based on AHCPR guidelines and other sources. The system was implemented for 21 weeks on a 20-bed clinical care unit. Fifteen nurses on that unit volunteered as subjects of the intervention to see whether use of the system would have a positive effect on their knowledge about pressure ulcers and on their decision-making skills related to this topic. A similar care unit was used as a control. In addition, the system was evaluated by experts for its instructional adequacy, and by end users for their satisfaction with the system. Preliminary results show no effect on knowledge about pressure ulcers and no effect on clinical decision making skills. The system was rated positively for instructional adequacy, and positively for user satisfaction. User interviews related to satisfaction supplemented the quantitative findings. A discussion of the issues of conducting experiments like this in today's clinical environment is included.
Guidance, navigation, and control subsystem for the EOS-AM spacecraft
NASA Technical Reports Server (NTRS)
Linder, David M.; Tolek, Joseph T.; Lombardo, John
1992-01-01
This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.
A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design
NASA Technical Reports Server (NTRS)
Cotting, M. Christopher; Cox, Timothy H.
2005-01-01
A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.
NASA Technical Reports Server (NTRS)
Williams, Daniel; Consiglio, Maria; Murdoch, Jennifer; Adams, Catherine
2004-01-01
This document provides a preliminary validation of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept for normal conditions. Initial results reveal that the concept provides reduced air traffic delays when compared to current operations without increasing pilot workload. Characteristic to the SATS HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA) which would be activated by air traffic control (ATC) around designated non-towered, non-radar airports. During periods of poor visibility, SATS pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft in the SCA. Using onboard equipment and simple instrument flight procedures, they would then be better able to approach and land at the airport or depart from it. This concept would also require a new, ground-based automation system, typically located at the airport that would provide appropriate sequencing information to the arriving aircraft. Further validation of the SATS HVO concept is required and is the subject of ongoing research and subsequent publications.
A highly articulated robotic surgical system for minimally invasive surgery.
Ota, Takeyoshi; Degani, Amir; Schwartzman, David; Zubiate, Brett; McGarvey, Jeremy; Choset, Howie; Zenati, Marco A
2009-04-01
We developed a novel, highly articulated robotic surgical system (CardioARM) to enable minimally invasive intrapericardial therapeutic delivery through a subxiphoid approach. We performed preliminary proof of concept studies in a porcine preparation by performing epicardial ablation. CardioARM is a robotic surgical system having an articulated design to provide unlimited but controllable flexibility. The CardioARM consists of serially connected, rigid cyclindrical links housing flexible working ports through which catheter-based tools for therapy and imaging can be advanced. The CardioARM is controlled by a computer-driven, user interface, which is operated outside the operative field. In six experimental subjects, the CardioARM was introduced percutaneously through a subxiphoid access. A commercial 5-French radiofrequency ablation catheter was introduced through the working port, which was then used to guide deployment. In all subjects, regional ("linear") left atrial ablation was successfully achieved without complications. Based on these preliminary studies, we believe that the CardioARM promises to enable deployment of a number of epicardium-based therapies. Improvements in imaging techniques will likely facilitate increasingly complex procedures.
NASA Technical Reports Server (NTRS)
Stoughton, R. M.
1990-01-01
A proposed methodology applicable to the design of manipulator systems is described. The current design process is especially weak in the preliminary design phase, since there is no accepted measure to be used in trading off different options available for the various subsystems. The design process described uses Cartesian End-Effector Impedance as a measure of performance for the system. Having this measure of performance, it is shown how it may be used to determine the trade-offs necessary to the preliminary design phase. The design process involves three main parts: (1) determination of desired system performance in terms of End-Effector Impedance; (2) trade-off design options to achieve this desired performance; and (3) verification of system performance through laboratory testing. The design process is developed using numerous examples and experiments to demonstrate the feasability of this approach to manipulator design.
NASA Astrophysics Data System (ADS)
Asokawaty, Ribka; Nugroho, Indra; Satriana, Joshua; Hafidz, Muhamad; Suryantini
2017-12-01
Songa-Wayaua geothermal prospect area is located on Bacan Island, Northern Molluca Province. Geothermal systems in this area associated with three Quartenary volcanoes, such as Mt. Pele-pele, Mt. Lansa, and Mt. Bibinoi. Based on literature study, five surface manifestations such as hot springs and alteration occurred within this area. The active manifestations indicate that Songa-Wayaua area has potential geothermal resource. This study objective is to evaluate Songa-Wayaua geothermal system on preliminary study stage by using volcanostratigraphy and remote sensing analysis to delineate the boundary of geothermal system area. The result of this study showed that Songa-Wayaua prospect area has four heat sources potential (e.g. Pele-pele Hummock, Lansa Hummock, Songa Hummock, and Bibinoi Hummock), controlled by geological structure presented by Pele-pele Normal Fault, and had three places as the recharge and discharge area which are very fulfilling as a geothermal system.
High-Temperature Controlled Redox Crystallization Studies
NASA Technical Reports Server (NTRS)
Williams, R. J.
1985-01-01
The crystallization of silicates containing redox sensitive ions (e.g., Fe, Ti, Ce) must be performed under controlled and known redox conditions in order to obtain the maximum scientific benefit from experimental study. Furthermore, many compositions crystallize dense phases which settle during ground-based experiments. This settling influences the texture and chemical evolution of the crystallizing system. The purpose of this investigation is to develop a test system in which controlled redox experiments can be performed in the microgravity environment. The system will use solid ceramic oxygen electrolyte cells for control, measurements, and production of the required redox conditions. A preliminary design for a prototype is developed, the electrolyte and furnace tested, and a tentative protocol for experiment developed. The control parameter is to be established and a laboratory prototype built.
Preliminary Electrical Designs for CTEX and AFIT Satellite Ground Station
2010-03-01
with additional IO High-Speed Piezo Tip/Tilt Platforms S-340 Platform Recommended Models Mirror Aluminum Aluminum S-340.Ax Invar Zerodur glass S-340...developed by RC Optics that uses internal steer- able mirrors that point the optics without slewing the entire instrument. The imaging system is composed of...Determination System Telescope Assembly CTEx Imaging System DCCU Camera Motor/Encoder Assemby FSM & Control Electronics Dwell Mirror w/ 2
NASA Astrophysics Data System (ADS)
Kerley, Dan; Smith, Malcolm; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi
2016-08-01
The Narrow Field Infrared Adaptive Optics System (NFIRAOS) is the first light Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). A critical component of NFIRAOS is the Real-Time Controller (RTC) subsystem which provides real-time wavefront correction by processing wavefront information to compute Deformable Mirror (DM) and Tip/Tilt Stage (TTS) commands. The National Research Council of Canada - Herzberg (NRC-H), in conjunction with TMT, has developed a preliminary design for the NFIRAOS RTC. The preliminary architecture for the RTC is comprised of several Linux-based servers. These servers are assigned various roles including: the High-Order Processing (HOP) servers, the Wavefront Corrector Controller (WCC) server, the Telemetry Engineering Display (TED) server, the Persistent Telemetry Storage (PTS) server, and additional testing and spare servers. There are up to six HOP servers that accept high-order wavefront pixels, and perform parallelized pixel processing and wavefront reconstruction to produce wavefront corrector error vectors. The WCC server performs low-order mode processing, and synchronizes and aggregates the high-order wavefront corrector error vectors from the HOP servers to generate wavefront corrector commands. The Telemetry Engineering Display (TED) server is the RTC interface to TMT and other subsystems. The TED server receives all external commands and dispatches them to the rest of the RTC servers and is responsible for aggregating several offloading and telemetry values that are reported to other subsystems within NFIRAOS and TMT. The TED server also provides the engineering GUIs and real-time displays. The Persistent Telemetry Storage (PTS) server contains fault tolerant data storage that receives and stores telemetry data, including data for Point-Spread Function Reconstruction (PSFR).
The ITER disruption mitigation trigger: developing its preliminary design
NASA Astrophysics Data System (ADS)
Pautasso, G.; de Vries, P. C.; Humphreys, D.; Lehnen, M.; Rapson, C.; Raupp, G.; Snipes, J. A.; Treutterer, W.; Vergara-Fernandez, A.; Zabeo, L.
2018-03-01
A concept for the generation of the trigger for the ITER disruption mitigation system is described in this paper. The issuing of the trigger will be the result of a complex decision process, taken by the plasma control system, or by the central interlock system, determining that the plasma is unavoidably going to disrupt—or has disrupted—and that a fast mitigated shut-down is required. Given the redundancy of the mitigation system, the plasma control system must also formulate an injection scheme and specify when and how the injectors of the mitigation system should be activated. The parameters and the conceptual algorithms required for the configuration and generation of the trigger are discussed.
A prototype knowledge-based simulation support system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, T.R.; Roberts, S.D.
1987-04-01
As a preliminary step toward the goal of an intelligent automated system for simulation modeling support, we explore the feasibility of the overall concept by generating and testing a prototypical framework. A prototype knowledge-based computer system was developed to support a senior level course in industrial engineering so that the overall feasibility of an expert simulation support system could be studied in a controlled and observable setting. The system behavior mimics the diagnostic (intelligent) process performed by the course instructor and teaching assistants, finding logical errors in INSIGHT simulation models and recommending appropriate corrective measures. The system was programmed inmore » a non-procedural language (PROLOG) and designed to run interactively with students working on course homework and projects. The knowledge-based structure supports intelligent behavior, providing its users with access to an evolving accumulation of expert diagnostic knowledge. The non-procedural approach facilitates the maintenance of the system and helps merge the roles of expert and knowledge engineer by allowing new knowledge to be easily incorporated without regard to the existing flow of control. The background, features and design of the system are describe and preliminary results are reported. Initial success is judged to demonstrate the utility of the reported approach and support the ultimate goal of an intelligent modeling system which can support simulation modelers outside the classroom environment. Finally, future extensions are suggested.« less
Orion Guidance and Control Ascent Abort Algorithm Design and Performance Results
NASA Technical Reports Server (NTRS)
Proud, Ryan W.; Bendle, John R.; Tedesco, Mark B.; Hart, Jeremy J.
2009-01-01
During the ascent flight phase of NASA s Constellation Program, the Ares launch vehicle propels the Orion crew vehicle to an agreed to insertion target. If a failure occurs at any point in time during ascent then a system must be in place to abort the mission and return the crew to a safe landing with a high probability of success. To achieve continuous abort coverage one of two sets of effectors is used. Either the Launch Abort System (LAS), consisting of the Attitude Control Motor (ACM) and the Abort Motor (AM), or the Service Module (SM), consisting of SM Orion Main Engine (OME), Auxiliary (Aux) Jets, and Reaction Control System (RCS) jets, is used. The LAS effectors are used for aborts from liftoff through the first 30 seconds of second stage flight. The SM effectors are used from that point through Main Engine Cutoff (MECO). There are two distinct sets of Guidance and Control (G&C) algorithms that are designed to maximize the performance of these abort effectors. This paper will outline the necessary inputs to the G&C subsystem, the preliminary design of the G&C algorithms, the ability of the algorithms to predict what abort modes are achievable, and the resulting success of the abort system. Abort success will be measured against the Preliminary Design Review (PDR) abort performance metrics and overall performance will be reported. Finally, potential improvements to the G&C design will be discussed.
NASA Technical Reports Server (NTRS)
1972-01-01
Information backing up the key features of the manipulator system concept and detailed technical information on the subsystems are presented. Space station assembly and shuttle cargo handling tasks are emphasized in the concept analysis because they involve shuttle berthing, transferring the manipulator boom between shuttle and station, station assembly, and cargo handling. Emphasis is also placed on maximizing commonality in the system areas of manipulator booms, general purpose end effectors, control and display, data processing, telemetry, dedicated computers, and control station design.
Adaptive tracking control for a class of stochastic switched systems
NASA Astrophysics Data System (ADS)
Zhang, Hui; Xia, Yuanqing
2018-02-01
The problem of adaptive tracking is considered for a class of stochastic switched systems, in this paper. As preliminaries, the criterion of global asymptotical practical stability in probability is first presented by the aid of common Lyapunov function method. Based on the Lyapunov stability criterion, adaptive backstepping controllers are designed to guarantee that the closed-loop system has a unique global solution, which is globally asymptotically practically stable in probability, and the tracking error in the fourth moment converges to an arbitrarily small neighbourhood of zero. Simulation examples are given to demonstrate the efficiency of the proposed schemes.
NASA Technical Reports Server (NTRS)
Bolding, R. M.; Stearman, R. O.
1976-01-01
A low budget flutter model incorporating active aerodynamic controls for flutter suppression studies was designed as both an educational and research tool to study the interfering lifting surface flutter phenomenon in the form of a swept wing-tail configuration. A flutter suppression mechanism was demonstrated on a simple semirigid three-degree-of-freedom flutter model of this configuration employing an active stabilator control, and was then verified analytically using a doublet lattice lifting surface code and the model's measured mass, mode shapes, and frequencies in a flutter analysis. Preliminary studies were significantly encouraging to extend the analysis to the larger degree of freedom AFFDL wing-tail flutter model where additional analytical flutter suppression studies indicated significant gains in flutter margins could be achieved. The analytical and experimental design of a flutter suppression system for the AFFDL model is presented along with the results of a preliminary passive flutter test.
NASA Technical Reports Server (NTRS)
Englander, Jacob
2016-01-01
Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.
NASA Technical Reports Server (NTRS)
Patterson, H. P.; Edmiston, R. P.; Connor, W. K.
1972-01-01
A dynamic preferential runway system (DPRS) was developed for John F. Kennedy International Airport for the purpose of controlling short term noise exposure in the neighboring communities. The DPRS is a computer-aided procedure for optimum selection of runways from the standpoint of noise and is based upon a community disturbance model which takes into account flyover levels, size of exposed populations, time of day and week, and persistence of overflights. A preliminary evaluation of the DPRS is presented on the basis of social survey data and telephone complaint records, for the trial period of August and September, 1971. Comparative use is made of data taken in a previous survey of the same community areas in 1969.
ECLSS advanced automation preliminary requirements
NASA Technical Reports Server (NTRS)
Lukefahr, Brenda D.; Rochowiak, Daniel M.; Benson, Brian L.; Rogers, John S.; Mckee, James W.
1989-01-01
A description of the total Environmental Control and Life Support System (ECLSS) is presented. The description of the hardware is given in a top down format, the lowest level of which is a functional description of each candidate implementation. For each candidate implementation, both its advantages and disadvantages are presented. From this knowledge, it was suggested where expert systems could be used in the diagnosis and control of specific portions of the ECLSS. A process to determine if expert systems are applicable and how to select the expert system is also presented. The consideration of possible problems or inconsistencies in the knowledge or workings in the subsystems is described.
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.
1997-01-01
General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.
Ocean Thermal Energy Conversion power system development. Phase I. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-12-04
This report covers the conceptual and preliminary design of closed-cycle, ammonia, ocean thermal energy conversion power plants by Westinghouse Electric Corporation. Preliminary designs for evaporator and condenser test articles (0.13 MWe size) and a 10 MWe modular experiment power system are described. Conceptual designs for 50 MWe power systems, and 100 MWe power plants are also descirbed. Design and cost algorithms were developed, and an optimized power system design at the 50 MWe size was completed. This design was modeled very closely in the test articles and in the 10 MWe Modular Application. Major component and auxiliary system design, materials,more » biofouling, control response, availability, safety and cost aspects are developed with the greatest emphasis on the 10 MWe Modular Application Power System. It is concluded that all power plant subsystems are state-of-practice and require design verification only, rather than continued research. A complete test program, which verifies the mechanical reliability as well as thermal performance, is recommended and described.« less
NASA Technical Reports Server (NTRS)
Fabiniak, R. C.; Fabiniak, T. J.
1971-01-01
The results of experiments 1, 2, and 10 of the Apollo 14 composite casting demonstration are discussed. The purpose of the demonstration, with regard to samples 1 and 2, was to obtain preliminary data on the liquid phase sintering process in a weightless environment. With regard to sample 10, the purpose was to obtain preliminary information on how to achieve uniform dispersion of dense particles on a metal matrix by employing shaking modes or forces in the system when the metal matrix is molten. Results of the demonstrations were interpreted in a quantitative and qualitative manner. For experiment 1 it was found that the tungsten particles were redistributed more uniformly in the flight sample than in the control sample. Experiment 2 results indicate that complete melting may not have occured and thus a high degree of significance cannot be associated with the qualitative results relating to particle redistribution data. The particle-matrix system of experiment 10 was found to be nonwetting.
Engineering Social Justice into Traffic Control for Self-Driving Vehicles?
Mladenovic, Milos N; McPherson, Tristram
2016-08-01
The convergence of computing, sensing, and communication technology will soon permit large-scale deployment of self-driving vehicles. This will in turn permit a radical transformation of traffic control technology. This paper makes a case for the importance of addressing questions of social justice in this transformation, and sketches a preliminary framework for doing so. We explain how new forms of traffic control technology have potential implications for several dimensions of social justice, including safety, sustainability, privacy, efficiency, and equal access. Our central focus is on efficiency and equal access as desiderata for traffic control design. We explain the limitations of conventional traffic control in meeting these desiderata, and sketch a preliminary vision for a next-generation traffic control tailored to address better the demands of social justice. One component of this vision is cooperative, hierarchically distributed self-organization among vehicles. Another component of this vision is a priority system enabling selection of priority levels by the user for each vehicle trip in the network, based on the supporting structure of non-monetary credits.
Automated Visibility & Cloud Cover Measurements with a Solid State Imaging System
1989-03-01
GL-TR-89-0061 SIO Ref. 89-7 MPL-U-26/89 AUTOMATED VISIBILITY & CLOUD COVER MEASUREMENTS WITH A SOLID-STATE IMAGING SYSTEM C) to N4 R. W. Johnson W. S...include Security Classification) Automated Visibility & Cloud Measurements With A Solid State Imaging System 12. PERSONAL AUTHOR(S) Richard W. Johnson...based imaging systems , their ics and control algorithms, thus they ar.L discussed sepa- initial deployment and the preliminary application of rately
An approach to the mathematical modelling of a controlled ecological life support system
NASA Technical Reports Server (NTRS)
Averner, M. M.
1981-01-01
An approach to the design of a computer based model of a closed ecological life-support system suitable for use in extraterrestrial habitats is presented. The model is based on elemental mass balance and contains representations of the metabolic activities of biological components. The model can be used as a tool in evaluating preliminary designs for closed regenerative life support systems and as a method for predicting the behavior of such systems.
Coupling artificial intelligence and numerical computation for engineering design (Invited paper)
NASA Astrophysics Data System (ADS)
Tong, S. S.
1986-01-01
The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.
Atmosphere Behavior in Gas-Closed Mouse-Algal Systems: An Experimental and Modelling Study
NASA Technical Reports Server (NTRS)
Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.
1985-01-01
A dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere was initiated. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is examined. A mathematical model simulating the atmospheric behavior in these systems was developed and an experimental gas closed system was constructed. These systems are described and preliminary results are presented.
A preliminary study on the development of electronic pump system using Arduino controller
NASA Astrophysics Data System (ADS)
Salleh, Mohd Sharil; Miskon, Azizi; Hashim, Fakroul Ridzuan
2018-02-01
The implications of treatment using hemodialysis machine and equipment remain speculative. Most studies, case reviews and medical surveys have shown statistics of side effects of hypertension while undergo a treatment using hemodialysis machine. Therefore, a specific action must be taken to prevent the effects of hypertension during treatment especially using hemodialysis machine. In order to reduce this matter in terms of frequency of hypertension while undergo hemodialysis treatment, many approach have been undertaken for improvement. For the beginning, this project reviews the technique of controlling instantaneous blood pressure for normal and hypertension stage and describe the challenges faced by a researcher during experiment to match human stability. The methodology used in this project is to develop one electronics pump system using Arduino controller for transferring liquid (a tap water) from a tank to another tank. The liquid flow rate was measured by using flow sensor where it located at input and output part. This project has decided to focus on flow rate range from 300 mL/min to 900 mL/min. Results shows an efficiency for speed 30 is 97.96%, speed 50 is 100.15%, speed 130 is 99.54% and speed 200 is 99.87%. A range of efficiency for this preliminary study on the development of Electronic Pump System are from 97.96% to 100.15%. In addition, analysis and simulation of the system delivers a better performance efficiency.
Control design and performance analysis of a 6 MW wind turbine-generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murdoch, A.; Barton, R.S.; Javid, S.H.
1983-05-01
This paper discusses an approach to the modeling and performance for the preliminary design phase of a large (6.2 MW) horizontal axis wind turbine generator (WTG). Two control philosophies are presented, both of which are based on linearized models of the WT mechanical and electrical systems. The control designs are compared by showing the performance through detailed non-linear time simulation. The disturbances considered are wind gusts, and electrical faults near the WT terminals.
Control design and performance analysis of a 6 MW wind turbine-generator
NASA Technical Reports Server (NTRS)
Murdoch, A.; Winkelman, J. R.; Javid, S. H.; Barton, R. S.
1983-01-01
This paper discusses an approach to the modeling and performance for the preliminary design phase of a large (6.2 MW) horizontal axis wind turbine generator (WTG). Two control philosophies are presented, both of which are based on linearized models of the WT mechanical and electrical systems. The control designs are compared by showing the performance through detailed non-linear time simulation. The disturbances considered are wind gusts, and electrical faults near the WT terminals.
Solar array maximum power tracking with closed-loop control of a 30-centimeter ion thruster
NASA Technical Reports Server (NTRS)
Gruber, R. P.
1977-01-01
A new solar array/ion thruster system control concept has been developed and demonstrated. An ion thruster beam load is used to automatically and continuously operate an unregulated solar array at its maximum power point independent of variations in solar array voltage and current. Preliminary tests were run which verified that this method of control can be implemented with a few, physically small, signal level components dissipating less than two watts.
Active structural acoustic control of noise transmission through double panel systems
NASA Astrophysics Data System (ADS)
Carneal, James P.; Fuller, Chris R.
1995-04-01
A preliminary parametric study of active control of sound transmission through double panel systems has been experimentally performed. The technique used is the active structural acoustic control (ASAC) approach where control inputs, in the form of piezoelectric actuators, were applied to the structure while the radiated pressure field was minimized. Results indicate the application of control inputs to the radiating panel resulted in greater transmission loss due to its direct effect on the nature of the structural-acoustic coupling between the radiating panel and the receiving chamber. Increased control performance was seen in a double panel system consisting of a stiffer radiating panel with a lower modal density. As expected, more effective control of a radiating panel excited on-resonance is achieved over one excited off-resonance. In general, the results validate the ASAC approach for double panel systems and demonstrate that it is possible to take advantage of double panel behavior to enhance control performance, although it is clear that further research must be done to understand the physics involved.
Discovering operating modes in telemetry data from the Shuttle Reaction Control System
NASA Technical Reports Server (NTRS)
Manganaris, Stefanos; Fisher, Doug; Kulkarni, Deepak
1994-01-01
This paper addresses the problem of detecting and diagnosing faults in physical systems, for which suitable system models are not available. An architecture is proposed that integrates the on-line acquisition and exploitation of monitoring and diagnostic knowledge. The focus is on the component of the architecture that discovers classes of behaviors with similar characteristics by observing a system in operation. A characterization of behaviors based on best fitting approximation models is investigated. An experimental prototype has been implemented to test it. Preliminary results in diagnosing faults of the reaction control system of the space shuttle are presented. The merits and limitations of the approach are identified and directions for future work are set.
12 CFR 238.21 - Control proceedings.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Control proceedings. 238.21 Section 238.21... (CONTINUED) SAVINGS AND LOAN HOLDING COMPANIES (REGULATION LL) Control Proceedings § 238.21 Control proceedings. (a) Preliminary determination of control. (1) The Board may issue a preliminary determination of...
12 CFR 238.21 - Control proceedings.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Control proceedings. 238.21 Section 238.21... (CONTINUED) SAVINGS AND LOAN HOLDING COMPANIES (REGULATION LL) Control Proceedings § 238.21 Control proceedings. (a) Preliminary determination of control. (1) The Board may issue a preliminary determination of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetherington Jr, G Randall; Vineyard, Edward Allan; Mahderekal, Isaac
A preliminary evaluation of the performance of a consumer-based control system was conducted by the Oak Ridge National Laboratory (ORNL) and Southwest Gas as part of a cooperative research and development agreement (CRADA) authorized by the Department of Energy (DOE) (Mahderekal et al. (2013). The goal of the research was to evaluate the low-cost approach as a solution for implementing a supervisory control system for a residential gas-operated heat pump. The design incorporated two consumer-based micro-controllers; the Arduino Mega-2650 and the BeagleBone (white). Ten five-ton heat pump systems were designed, fabricated, and operationally tested in the Las Vega NV region.more » A robust data set was produced that allowed detailed assessment of the reliability and the operational perfromance of the newly developed control system. Experiences gained from the test provided important points of improvement for subsequent evolution of the heat pump technology.« less
NASA Technical Reports Server (NTRS)
Lin, C. H.; Meyer, M. S.
1983-01-01
The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.
2016-12-01
i Classification | CG-926 RDC | author | audience | month year Preliminary Marine Safety Risk Assessment, Brandon Road Lock & Dam...No. 4. Title and Subtitle Preliminary Marine Safety Risk Assessment, Brandon Road Lock & Dam Invasive Species Control Measures 5. Report Date...safety due to proposed invasive species control measures located in the vicinity of the Brandon Road Lock and Dam (BRLD) Navigation Project on the
Preliminary ECLSS waste water model
NASA Technical Reports Server (NTRS)
Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.
1991-01-01
A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.
Preliminary results from a shallow water benthic grazing study
Jones, N.L.; Monismith, Stephen G.; Thompson, Janet K.
2005-01-01
Despite great improvements in our knowledge on the effects of benthic grazers on seston concentrations in water columns, the effects of different hydrodynamic conditions on grazing rates has not been formulated. This makes it difficult to assess the system-wide effect of the benthic ecosystem on phytoplankton concentrations. Furthermore, it affects our ability to predict the potential success of a benthic species, such as the invasive clams Corbicula fluminea and Potamocorbula amurensis. This paper presents the preliminary results of a control volume approach to elucidate the effect of different hydrodynamic conditions on the grazing rates of Corbicula fluminea.
Bekele, E; Bian, D; Peterman, J; Park, S; Sarkar, N
2017-06-01
Schizophrenia is a life-long, debilitating psychotic disorder with poor outcome that affects about 1% of the population. Although pharmacotherapy can alleviate some of the acute psychotic symptoms, residual social impairments present a significant barrier that prevents successful rehabilitation. With limited resources and access to social skills training opportunities, innovative technology has emerged as a potentially powerful tool for intervention. In this paper, we present a novel virtual reality (VR)-based system for understanding facial emotion processing impairments that may lead to poor social outcome in schizophrenia. We henceforth call it a VR System for Affect Analysis in Facial Expressions (VR-SAAFE). This system integrates a VR-based task presentation platform that can minutely control facial expressions of an avatar with or without accompanying verbal interaction, with an eye-tracker to quantitatively measure a participants real-time gaze and a set of physiological sensors to infer his/her affective states to allow in-depth understanding of the emotion recognition mechanism of patients with schizophrenia based on quantitative metrics. A usability study with 12 patients with schizophrenia and 12 healthy controls was conducted to examine processing of the emotional faces. Preliminary results indicated that there were significant differences in the way patients with schizophrenia processed and responded towards the emotional faces presented in the VR environment compared with healthy control participants. The preliminary results underscore the utility of such a VR-based system that enables precise and quantitative assessment of social skill deficits in patients with schizophrenia.
Preliminary Design of the Guidance, Navigation, and Control System of the Altair Lunar Lander
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Ely, Todd; Sostaric, Ronald; Strahan, Alan; Riedel, Joseph E.; Ingham, Mitch; Wincentsen, James; Sarani, Siamak
2010-01-01
Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. This paper provides an overview of a preliminary design of the GN&C system of the Lunar Lander Altair. Key functions performed by the GN&C system in various mission phases will first be described. A set of placeholder GN&C sensors that is needed to support these functions is next described. To meet Crew safety requirements, there must be high degrees of redundancy in the selected sensor configuration. Two sets of thrusters, one on the Ascent Module (AM) and the other on the Descent Module (DM), will be used by the GN&C system. The DM thrusters will be used, among other purposes, to perform course correction burns during the Trans-lunar Coast. The AM thrusters will be used, among other purposes, to perform precise angular and translational controls of the ascent module in order to dock the ascent module with Orion. Navigation is the process of measurement and control of the spacecraft's "state" (both the position and velocity vectors of the spacecraft). Tracking data from the Earth-Based Ground System (tracking antennas) as well as data from onboard optical sensors will be used to estimate the vehicle state. A driving navigation requirement is to land Altair on the Moon with a landing accuracy that is better than 1 km (radial 95%). Preliminary performance of the Altair GN&C design, relative to this and other navigation requirements, will be given. Guidance is the onboard process that uses the estimated state vector, crew inputs, and pre-computed reference trajectories to guide both the rotational and the translational motions of the spacecraft during powered flight phases. Design objectives of reference trajectories for various mission phases vary. For example, the reference trajectory for the descent "approach" phase (the last 3-4 minutes before touchdown) will sacrifice fuel utilization efficiency in order to provide landing site visibility for both the crew and the terrain hazard detection sensor system. One output of Guidance is the steering angle commands sent to the 2 degree-of-freedom (dof) gimbal actuation system of the descent engine. The engine gimbal actuation system is controlled by a Thrust Vector Control algorithm that is designed taking into account the large quantities of sloshing liquids in tanks mounted on Altair. In this early design phase of Altair, the GN&C system is described only briefly in this paper and the emphasis is on the GN&C architecture (that is still evolving). Multiple companion papers will provide details that are related to navigation, optical navigation, guidance, fuel sloshing, rendezvous and docking, machine-pilot interactions, and others. The similarities and differences of GN&C designs for Lunar and Mars landers are briefly compared.
Peak Seeking Control for Reduced Fuel Consumption with Preliminary Flight Test Results
NASA Technical Reports Server (NTRS)
Brown, Nelson
2012-01-01
The Environmentally Responsible Aviation project seeks to accomplish the simultaneous reduction of fuel burn, noise, and emissions. A project at NASA Dryden Flight Research Center is contributing to ERAs goals by exploring the practical application of real-time trim configuration optimization for enhanced performance and reduced fuel consumption. This peak-seeking control approach is based on Newton-Raphson algorithm using a time-varying Kalman filter to estimate the gradient of the performance function. In real-time operation, deflection of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of a modified F-18 are directly optimized, and the horizontal stabilators and angle of attack are indirectly optimized. Preliminary results from three research flights are presented herein. The optimization system found a trim configuration that required approximately 3.5% less fuel flow than the baseline trim at the given flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These preliminary results show the algorithm has good performance and is expected to show similar results at other flight conditions and aircraft configurations.
Crew systems and flight station concepts for a 1995 transport aircraft
NASA Technical Reports Server (NTRS)
Sexton, G. A.
1983-01-01
Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Sargusingh, Miriam J.
2015-01-01
The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.
Ultrawideband Electromagnetic Interference to Aircraft Radios
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Fuller, Gerald L.; Shaver, Timothy W.
2002-01-01
A very recent FCC Final Rule now permits marketing and operation of new products that incorporate Ultrawideband (UWB) technology into handheld devices. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This paper provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.
An intelligent system with EMG-based joint angle estimation for telemanipulation.
Suryanarayanan, S; Reddy, N P; Gupta, V
1996-01-01
Bio-control of telemanipulators is being researched as an alternate control strategy. This study investigates the use of surface EMG from the biceps to predict joint angle during flexion of the arm that can be used to control an anthropomorphic telemanipulator. An intelligent system based on neural networks and fuzzy logic has been developed to use the processed surface EMG signal and predict the joint angle. The system has been tested on various angles of flexion-extension of the arm and at several speeds of flexion-extension. Preliminary results show the RMS error between the predicted angle and the actual angle to be less than 3% during training and less than 15% during testing. The technique of direct bio-control using EMG has the potential as an interface for telemanipulation applications.
Pump/Control System Minimum Operating Cost Testing
NASA Technical Reports Server (NTRS)
1977-01-01
A preliminary evaluation of pump performance was initiated to determine the efficiencies of an arbitrary group of small pumps. Trends in factors affecting energy usage in typical prime movers which might be used in liquid transport solar systems were assessed. Comparisons of centrifugal pump efficiencies were made from one manufacturer to another. Tests were also made on two positive-displacement pumps and comparisons with centrifugal pumps were observed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
... Technology, Inc.; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On December 18, 2012, Control Technology, Inc. filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act, proposing to study...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy Cerimele
2011-09-30
This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology andmore » the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.« less
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George
2010-01-01
This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.
Mezzenga, Emilio; D'Errico, Vincenzo; Sarnelli, Anna; Strigari, Lidia; Menghi, Enrico; Marcocci, Francesco; Bianchini, David; Benassi, Marcello
2016-01-01
The purpose of this study was to retrospectively evaluate the results from a Helical TomoTherapy Hi-Art treatment system relating to quality controls based on daily static and dynamic output checks using statistical process control methods. Individual value X-charts, exponentially weighted moving average charts, and process capability and acceptability indices were used to monitor the treatment system performance. Daily output values measured from January 2014 to January 2015 were considered. The results obtained showed that, although the process was in control, there was an out-of-control situation in the principal maintenance intervention for the treatment system. In particular, process capability indices showed a decreasing percentage of points in control which was, however, acceptable according to AAPM TG148 guidelines. Our findings underline the importance of restricting the acceptable range of daily output checks and suggest a future line of investigation for a detailed process control of daily output checks for the Helical TomoTherapy Hi-Art treatment system.
NASA Technical Reports Server (NTRS)
1975-01-01
A detailed description of a video system for controlling space shuttle payloads and experiments is presented in the preliminary design review and critical design review, first and second engineering design reports respectively, and in the final report submitted jointly with the design package. The material contained in the four subsequent sections of the package contains system descriptions, design data, and specifications for the recommended 2-view system. Section 2 contains diagrams relating to the simulation test configuration of the 2-view system. Section 3 contains descriptions and drawings of the deliverable breadboard equipment. A description of the recommended system is contained in Section 4 with equipment specifications in Section 5.
A preliminary estimate of future communications traffic for the electric power system
NASA Technical Reports Server (NTRS)
Barnett, R. M.
1981-01-01
Diverse new generator technologies using renewable energy, and to improve operational efficiency throughout the existing electric power systems are presented. A description of a model utility and the information transfer requirements imposed by incorporation of dispersed storage and generation technologies and implementation of more extensive energy management are estimated. An example of possible traffic for an assumed system, and an approach that can be applied to other systems, control configurations, or dispersed storage and generation penetrations is provided.
Payload isolation and stabilization by a Suspended Experiment Mount (SEM)
NASA Technical Reports Server (NTRS)
Bailey, Wayne L.; Desanctis, Carmine E.; Nicaise, Placide D.; Schultz, David N.
1992-01-01
Many Space Shuttle and Space Station payloads can benefit from isolation from crew or attitude control system disturbances. Preliminary studies have been performed for a Suspended Experiment Mount (SEM) system that will provide isolation from accelerations and stabilize the viewing direction of a payload. The concept consists of a flexible suspension system and payload-mounted control moment gyros. The suspension system, which is rigidly locked for ascent and descent, isolates the payload from high frequency disturbances. The control moment gyros stabilize the payload orientation. The SEM will be useful for payloads that require a lower-g environment than a manned vehicle can provide, such as materials processing, and for payloads that require stabilization of pointing direction, but not large angle slewing, such as nadir-viewing earth observation or solar viewing payloads.
NASA Astrophysics Data System (ADS)
Nikitczuk, Jason; Weinberg, Brian; Mavroidis, Constantinos
2006-03-01
In this paper we present the design and control algorithms for novel electro-rheological fluid based torque generation elements that will be used to drive the joint of a new type of portable and controllable Active Knee Rehabilitation Orthotic Device (AKROD) for gait retraining in stroke patients. The AKROD is composed of straps and rigid components for attachment to the leg, with a central hinge mechanism where a gear system is connected. The key features of AKROD include: a compact, lightweight design with highly tunable torque capabilities through a variable damper component, full portability with on board power, control circuitry, and sensors (encoder and torque), and real-time capabilities for closed loop computer control for optimizing gait retraining. The variable damper component is achieved through an electro-rheological fluid (ERF) element that connects to the output of the gear system. Using the electrically controlled rheological properties of ERFs, compact brakes capable of supplying high resistive and controllable torques, are developed. A preliminary prototype for AKROD v.2 has been developed and tested in our laboratory. AKROD's v.2 ERF resistive actuator was tested in laboratory experiments using our custom made ERF Testing Apparatus (ETA). ETA provides a computer controlled environment to test ERF brakes and actuators in various conditions and scenarios including emulating the interaction between human muscles involved with the knee and AKROD's ERF actuators / brakes. In our preliminary results, AKROD's ERF resistive actuator was tested in closed loop torque control experiments. A hybrid (non-linear, adaptive) Proportional-Integral (PI) torque controller was implemented to achieve this goal.
Gandolla, Marta; Costa, Andrea; Aquilante, Lorenzo; Gfoehler, Margit; Puchinger, Markus; Braghin, Francesco; Pedrocchi, Alessandra
2017-07-01
People with neuromuscular diseases such as muscular dystrophy experience a distributed and evolutive weakness in the whole body. Recent technological developments have changed the daily life of disabled people strongly improving the perceived quality of life, mostly concentrating on powered wheelchairs, so to assure autonomous mobility and respiratory assistance, essential for survival. The key concept of the BRIDGE project is to contrast the everyday experience of losing functions by providing them of a system able to exploit the best their own residual capabilities in arm movements so to keep them functional and autonomous as much as possible. BRIDGE is composed by a light, wearable and powered five degrees of freedom upper limb exoskeleton under the direct control of the user through a joystick or gaze control. An inverse kinematic model allows to determine joints position so to track patient desired hand position. BRIDGE prototype has been successfully tested in simulation environment, and by a small group of healthy volunteers. Preliminary results show a good tracking performance of the implemented control scheme. The interaction procedure was easy to understand, and the interaction with the system was successful.
DOT National Transportation Integrated Search
1980-04-01
In the report, procedures to reduce the propulsion system noise of urban rail transit vehicles on elevated structures are studied. Experiments in a laboratory use a scale model transit vehicle to evaluate the acoustical effectiveness of noise barrier...
A photoacoustic tomography and ultrasound combined system for proximal interphalangeal joint imaging
NASA Astrophysics Data System (ADS)
Xu, Guan; Rajian, Justin R.; Girish, Gandikota; Wang, Xueding
2013-03-01
A photoacoustic (PA) and ultrasound (US) dual modality system for imaging human peripheral joints is introduced. The system utilizes a commercial US unit for both US control imaging and PA signal acquisition. Preliminary in vivo evaluation of the system on normal volunteers revealed that this system can recover both the structural and functional information of intra- and extra-articular tissues. Presenting both morphological and pathological information in joint, this system holds promise for diagnosis and characterization of inflammatory joint diseases such as rheumatoid arthritis.
A spaceborne optical interferometer: The JPL CSI mission focus
NASA Astrophysics Data System (ADS)
Laskin, R. A.
1989-08-01
The JPL Control Structure Interaction (CSI) program is part of the larger NASA-wide CSI program. Within this larger context, the JPL CSI program will emphasize technology for systems that demand micron or sub-micron level control, so-called Micro-Precision Controlled Structures (u-PCS). The development of such technology will make it practical to fly missions with large optical or large precision antenna systems. In keeping with the focused nature of the desired technology, the JPL approach is to identify a focus mission, develop the focus mission CSI system design to a preliminary level, and then use this design to drive out requirements for CSI technology development in the design and analysis, ground test bed, and flight experiment areas.
Cell module and fuel conditioner
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1980-01-01
Stack tests indicate that the discrepancies between calculated and measured temperature profiles are due to reactant cross-over and a lower than expected thermal conductivity of cells. Preliminary results indicate that acceptable contact resistance between cooling plane halves can be achieved without the use of paper. The preliminary design of the enclosure, definition of required labor and equipment for manufacturing repeating components, and the assembly procedures for the benchwork design were developed. Fabrication of components for a second 5-cell stack of the MK-2 design and a second 23-cell stack of the MK-1 design was started. The definition of water and fuel for the reforming subsystem was developed along with a preliminary definition of the control system for the subsystem. The construction and shakedown of the differential catalytic reactor was completed and testing of the first catalyst initiated.
Demiroğlu, H; Barişta, I; Gürsoy, M; Oymak, O; Dündar, S
1996-05-01
Systemic amyloidosis may often be complicated with haemorrhagic tendency. The causes of this manifestation are factor deficiencies, hyperfibrinolysis and vasculopathy. In order to investigate the role of platelets, if any, we performed platelet aggregation tests with different aggregants in 10 patients with systemic amyloidosis due to familial Mediterranean fever and 10 healthy controls. Platelet aggregation was defective with different aggregants (ADP, epinephrine, collagen) in patients compared with controls. Platelet aggregation tests repeated after desmopressin (DDAVP) administration were normalized. These findings may suggest a role of a platelet aggregation defect in haemorrhagic diathesis complicating systemic amyloidosis. DDAVP may benefit patients with this disease in case of bleeding and before surgical interventions.
Making the Hubble Space Telescope servicing mission safe
NASA Technical Reports Server (NTRS)
Bahr, N. J.; Depalo, S. V.
1992-01-01
The implementation of the HST system safety program is detailed. Numerous safety analyses are conducted through various phases of design, test, and fabrication, and results are presented to NASA management for discussion during dedicated safety reviews. Attention is given to the system safety assessment and risk analysis methodologies used, i.e., hazard analysis, fault tree analysis, and failure modes and effects analysis, and to how they are coupled with engineering and test analysis for a 'synergistic picture' of the system. Some preliminary safety analysis results, showing the relationship between hazard identification, control or abatement, and finally control verification, are presented as examples of this safety process.
NASA Technical Reports Server (NTRS)
Daly, J. K.; Torian, J. G.
1979-01-01
Software design specifications for developing environmental control and life support system (ECLSS) and electrical power system (EPS) programs into interactive computer programs are presented. Specifications for the ECLSS program are at the detail design level with respect to modification of an existing batch mode program. The FORTRAN environmental analysis routines (FEAR) are the subject batch mode program. The characteristics of the FEAR program are included for use in modifying batch mode programs to form interactive programs. The EPS program specifications are at the preliminary design level. Emphasis is on top-down structuring in the development of an interactive program.
Preliminary design for a maglev development facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, H.T.; He, J.L.; Chang, S.L.
1992-04-01
A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable ofmore » powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.« less
A Robotic Solution for Assisting People with MCI at Home: Preliminary Tests of the ENRICHME System.
Salatino, Claudia; Pigini, Lucia; Van Kol, Marlies Maria Elisabeth; Gower, Valerio; Andrich, Renzo; Munaro, Giulia; Rosso, Roberto; Castellani, Angelo P; Farina, Elisabetta
2017-01-01
Robots have the potential to support care and independence of older adults. The ENRICHME project is developing an integrated system composed of a robot, sensors and a networking care platform, aiming at assisting older adults with MCI in their home environment. This paper reports findings of the tests performed on a sample of MCI users and their caregivers, with the first version of the ENRICHME system, in a controlled environment.
Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.
Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe
2017-09-01
Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.
Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John
1998-01-01
With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.
PRELIMINARY COST ESTIMATES OF POLLUTION CONTROL TECHNOLOGIES FOR GEOTHERMAL DEVELOPMENTS
This report provides preliminary cost estimates of air and water pollution control technologies for geothermal energy conversion facilities. Costs for solid waste disposal are also estimated. The technologies examined include those for control of hydrogen sulfide emissions and fo...
7 CFR 1942.20 - Community Facility Guides.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (7) Guide 7—Preliminary Engineering Report Water Facility. (8) Guide 8—Preliminary Engineering Report Sewerage Systems. (9) Guide 9—Preliminary Engineering Report Solid Waste Disposal Systems. (10) Guide 10—Preliminary Engineering Report Storm Waste-Water Disposal. (11) Guide 11—Daily Inspection Report. (12) Guide...
Feasibility study of aileron and spoiler control systems for large horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Wentz, W. H., Jr.; Snyder, M. H.; Calhoun, J. T.
1980-01-01
The feasibility of using aileron or spoiler controls as alternates to pitch control for large horizontal axis wind turbines was studied. The NASA Mod-0 100 kw machine was used as the basis for the study. Specific performance studies were conducted for 20% chord ailerons over the outboard 30% span, and for 10% chord spoilers over the same portion of the span. Both control systems utilized control deflections up to 60 deg. Results of the study show that either ailerons or spoilers can provide the control necessary to limit turbine power in high wind conditions. The aileron system, as designed, provides overspeed protection at hurricane wind speeds, low wind speed starting torque of 778 N-m (574 ft. lb) at 3.6 m/sec, and a 1.3 to 1.5% increase in annual energy compared to a fixed pitch rotor. The aileron control system preliminary design study includes aileron loads analysis and the design of a failsafe flyweight actuator for overspeed protection in the event of a hydraulic system failure.
Development of Advanced Robotic Hand System for space application
NASA Technical Reports Server (NTRS)
Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru
1994-01-01
The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.
Preliminary system design study for a digital fly-by-wire flight control system for an F-8C aircraft
NASA Technical Reports Server (NTRS)
Seacord, C. L.; Vaughn, D. K.
1976-01-01
The design of a fly-by-wire control system having a mission failure probability of less than one millionth failures per flight hour is examined. Emphasis was placed on developing actuator configurations that would improve the system performance, and consideration of the practical aspects of sensor/computer and computer/actuator interface implementation. Five basic configurations were defined as appropriate candidates for the F-8C research aircraft. Options on the basic configurations were included to cover variations in flight sensors, redundancy levels, data transmission techniques, processor input/output methods, and servo actuator arrangements. The study results can be applied to fly by wire systems for transport aircraft in general and the space shuttle.
Planner-Based Control of Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott
2005-01-01
The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.
Conceptual Design of the ITER Plasma Control System
NASA Astrophysics Data System (ADS)
Snipes, J. A.
2013-10-01
The conceptual design of the ITER Plasma Control System (PCS) has been approved and the preliminary design has begun for the 1st plasma PCS. This is a collaboration of many plasma control experts from existing devices to design and test plasma control techniques applicable to ITER on existing machines. The conceptual design considered all phases of plasma operation, ranging from non-active H/He plasmas through high fusion gain inductive DT plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture can satisfy the demands of the ITER Research Plan. The PCS will control plasma equilibrium and density, plasma heat exhaust, a range of MHD instabilities (including disruption mitigation), and the non-inductive current profile required to maintain stable steady-state scenarios. The PCS architecture requires sophisticated shared actuator management and event handling systems to prioritize control goals, algorithms, and actuators according to dynamic control needs and monitor plasma and plant system events to trigger automatic changes in the control algorithms or operational scenario, depending on real-time operating limits and conditions.
Study of Thermal Control Systems for orbiting power systems
NASA Technical Reports Server (NTRS)
Howell, H. R.
1981-01-01
Thermal control system designs were evaluated for the 25 kW power system. Factors considered include long operating life, high reliability, and meteoroid hazards to the space radiator. Based on a cost advantage, the bumpered pumped fluid radiator is recommended for the initial 25 kW power system and intermediate versions up to 50 kW. For advanced power systems with heat rejection rates above 50 kW the lower weight of the advanced heat pipe radiator offsets the higher cost and this design is recommended. The power system payloads heat rejection allocations studies show that a centralized heat rejection system is the most weight and cost effective approach. The thermal interface between the power system and the payloads was addressed and a concept for a contact heat exchanger that eliminates fluid transfer between the power system and the payloads was developed. Finally, a preliminary design of the thermal control system, with emphasis on the radiator and radiator deployment mechanism, is presented.
NASA Technical Reports Server (NTRS)
Landis, Kenneth H.; Glusman, Steven I.
1985-01-01
The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of ACAS characteristics; display mode switching logic. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Conclusions drawn from pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.
NASA Technical Reports Server (NTRS)
Nett, C. N.; Jacobson, C. A.; Balas, M. J.
1983-01-01
This paper reviews and extends the fractional representation theory. In particular, new and powerful robustness results are presented. This new theory is utilized to develop a preliminary design methodology for finite dimensional control of a class of linear evolution equations on a Banach space. The design is for stability in an input-output sense, but particular attention is paid to internal stability as well.
1991-09-01
SEVERITY INDEX (PDSI) ................. 116 iv FOREWORD Recent droughts in the United States have caused water management agencies to examine the operation ...detail, and a discussion of reservoir operating procedures, may be found in the Corps’ Engineering Manual on Management of Water Control Systems (U. S...fishery management . The seasonal fluctuation that occurs at many flood control reservoirs, and the daily fluctuations that occur with hydropower operation
Toward agile control of a flexible-spine model for quadruped bounding
NASA Astrophysics Data System (ADS)
Byl, Katie; Satzinger, Brian; Strizic, Tom; Terry, Pat; Pusey, Jason
2015-05-01
Legged systems should exploit non-steady gaits both for improved recovery from unexpected perturbations and also to enlarge the set of reachable states toward negotiating a range of known upcoming terrain obstacles. We present a 4-link planar, bounding, quadruped model with compliance in its legs and spine and describe design of an intuitive and effective low-level gait controller. We extend our previous work on meshing hybrid dynamic systems and demonstrate that our control strategy results in stable gaits with meshable, low-dimension step- to-step variability. This meshability is a first step toward enabling switching control, to increase stability after perturbations compared with any single gait control, and we describe how this framework can also be used to find the set of n-step reachable states. Finally, we propose new guidelines for quantifying "agility" for legged robots, providing a preliminary framework for quantifying and improving performance of legged systems.
Crew Exploration Vehicle Launch Abort Controller Performance Analysis
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Raney, David L.
2007-01-01
This paper covers the simulation and evaluation of a controller design for the Crew Module (CM) Launch Abort System (LAS), to measure its ability to meet the abort performance requirements. The controller used in this study is a hybrid design, including features developed by the Government and the Contractor. Testing is done using two separate 6-degree-of-freedom (DOF) computer simulation implementations of the LAS/CM throughout the ascent trajectory: 1) executing a series of abort simulations along a nominal trajectory for the nominal LAS/CM system; and 2) using a series of Monte Carlo runs with perturbed initial flight conditions and perturbed system parameters. The performance of the controller is evaluated against a set of criteria, which is based upon the current functional requirements of the LAS. Preliminary analysis indicates that the performance of the present controller meets (with the exception of a few cases) the evaluation criteria mentioned above.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, A.M.H.
Poor control of steam generator water level of a nuclear power plant may lead to frequent nuclear reactor shutdowns. These shutdowns are more common at low power where the plant exhibits strong non-minimum phase characteristics and flow measurements at low power are unreliable in many instances. There is need to investigate this problem and systematically design a controller for water level regulation. This work is concerned with the study and the design of a suitable controller for a U-Tube Steam Generator (UTSG) of a Pressurized Water Reactor (PWR) which has time varying dynamics. The controller should be suitable for themore » water level control of UTSG without manual operation from start-up to full load transient condition. Some preliminary simulation results are presented that demonstrate the effectiveness of the proposed controller. The development of the complete control algorithm includes components such as robust output tracking, and adaptively estimating both the system parameters and state variables simultaneously. At the present time all these components are not completed due to time constraints. A robust tracking component of the controller for water level control is developed and its effectiveness on the parameter variations is demonstrated in this study. The results appear encouraging and they are only preliminary. Additional work is warranted to resolve other issues such as robust adaptive estimation.« less
Integration of the instrument control electronics for the ESPRESSO spectrograph at ESO-VLT
NASA Astrophysics Data System (ADS)
Baldini, V.; Calderone, G.; Cirami, R.; Coretti, I.; Cristiani, S.; Di Marcantonio, P.; Mégevand, D.; Riva, M.; Santin, P.
2016-07-01
ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations of the ESO - Very Large Telescope site, is now in its integration phase. The large number of functions of this complex instrument are fully controlled by a Beckhoff PLC based control electronics architecture. Four small and one large cabinets host the main electronic parts to control all the sensors, motorized stages and other analogue and digital functions of ESPRESSO. The Instrument Control Electronics (ICE) is built following the latest ESO standards and requirements. Two main PLC CPUs are used and are programmed through the TwinCAT Beckhoff dedicated software. The assembly, integration and verification phase of ESPRESSO, due to its distributed nature and different geographical locations of the consortium partners, is quite challenging. After the preliminary assembling and test of the electronic components at the Astronomical Observatory of Trieste and the test of some electronics and software parts at ESO (Garching), the complete system for the control of the four Front End Unit (FEU) arms of ESPRESSO has been fully assembled and tested in Merate (Italy) at the beginning of 2016. After these first tests, the system will be located at the Geneva Observatory (Switzerland) until the Preliminary Acceptance Europe (PAE) and finally shipped to Chile for the commissioning. This paper describes the integration strategy of the ICE workpackage of ESPRESSO, the hardware and software tests that have been performed, with an overall view of the experience gained during these project's phases.
A demonstration of an intelligent control system for a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.; Paxson, Daniel E.; Litt, Jonathan S.; Merrill, Walter C.
1992-01-01
An Intelligent Control System for reusable rocket engines is under development at NASA Lewis Research Center. The primary objective is to extend the useful life of a reusable rocket propulsion system while minimizing between flight maintenance and maximizing engine life and performance through improved control and monitoring algorithms and additional sensing and actuation. This paper describes current progress towards proof-of-concept of an Intelligent Control System for the Space Shuttle Main Engine. A subset of identifiable and accommodatable engine failure modes is selected for preliminary demonstration. Failure models are developed retaining only first order effects and included in a simplified nonlinear simulation of the rocket engine for analysis under closed loop control. The engine level coordinator acts as an interface between the diagnostic and control systems, and translates thrust and mixture ratio commands dictated by mission requirements, and engine status (health) into engine operational strategies carried out by a multivariable control. Control reconfiguration achieves fault tolerance if the nominal (healthy engine) control cannot. Each of the aforementioned functionalities is discussed in the context of an example to illustrate the operation of the system in the context of a representative failure. A graphical user interface allows the researcher to monitor the Intelligent Control System and engine performance under various failure modes selected for demonstration.
Concentrating solar collector subsystem: Preliminary design package
NASA Technical Reports Server (NTRS)
1977-01-01
Preliminary design data are presented for a concentrating solar collector including an attitude controller. Provided are schedules, technical status, all documents required for preliminary design, and other program activities.
Evaluation of Aeroservoelastic Effects on Flutter
NASA Technical Reports Server (NTRS)
Nagaraja, K. S.; Felt, Larry R.; Kraft, Raymond
1998-01-01
This report presents work performed by The Boeing Company to satisfy the deliverable "Evaluation of aeroservoelastic Effects on Symmetric Flutter" for Subtask 7 of Reference 1. The objective of this report is to incorporate the improved methods for studying the effects of a closed-loop control system on the aeroservoelastic behavior of the airplane planned under NASA HSR technical Integration Task 20 work. Also, a preliminary evaluation of the existing pitch control laws on symmetric flutter of the TCA configuration was addressed."The goal is to develop an improved modeling methodology and perform design studies that account for the aero-structures-systems interaction effects.
Potential problems relative to TDRS/IUS tilt table elevation with failed VRCS
NASA Technical Reports Server (NTRS)
Bell, J.
1980-01-01
Operational concerns and preliminary solution alternatives related to elevating the inertial upper stage/tracking and data relay satellite (IUS/TDRS) with a failed orbiter vernier reaction control system (VRCS) are presented. Problems arise from the combination of TDRS thermal constraints and tilt table constraints (the primary reaction control system (PRCS) cannot be used to hold attitude while the tilt table is being elevated), and the problems are compounded by the minimum PRCS attitude deadband. The potential solution options are affected by the launch window, flight profile, crew procedures, vehicle capability and constraints, and flight rules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, E.R.
1983-09-01
This volume on specifications for the Saguaro Power Plant includes the following: subsystem interface definition document; solar collector subsystem specification; receiver specification; thermal energy storage specification; solar steam generator specification; and master control system specification.
Preliminary flight results of an adaptive engine control system of an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, Lawrence P.; Walsh, Kevin R.
1987-01-01
Results of the flight demonstration of the adaptive engine control system (ADECS), an integrated flight and propulsion control system, are reported. The ADECS system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power, with the amount of EPR uptrim modulated in accordance with the maneuver requirements, flight conditions, and engine information. As a result of EPR uptrimming, engine thrust has increased by as much as 10.5 percent, rate of climb has increased by 10 percent, and the time to climb from 10,000 to 40,000 ft has been reduced by 12.5 percent. Increases in acceleration of 9.3 and 13 percent have been obtained at intermediate and maximum power, respectively. No engine anomalies have been detected for EPR increases up to 12 percent.
The ac propulsion system for an electric vehicle, phase 1
NASA Astrophysics Data System (ADS)
Geppert, S.
1981-08-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
Cost effective management of space venture risks
NASA Technical Reports Server (NTRS)
Giuntini, Ronald E.; Storm, Richard E.
1986-01-01
The development of a model for the cost-effective management of space venture risks is discussed. The risk assessment and control program of insurance companies is examined. A simplified system development cycle which consists of a conceptual design phase, a preliminary design phase, a final design phase, a construction phase, and a system operations and maintenance phase is described. The model incorporates insurance safety risk methods and reliability engineering, and testing practices used in the development of large aerospace and defense systems.
The ac propulsion system for an electric vehicle, phase 1
NASA Technical Reports Server (NTRS)
Geppert, S.
1981-01-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
Fallback options for airgap sensor fault of an electromagnetic suspension system
NASA Astrophysics Data System (ADS)
Michail, Konstantinos; Zolotas, Argyrios C.; Goodall, Roger M.
2013-06-01
The paper presents a method to recover the performance of an electromagnetic suspension under faulty airgap sensor. The proposed control scheme is a combination of classical control loops, a Kalman Estimator and analytical redundancy (for the airgap signal). In this way redundant airgap sensors are not essential for reliable operation of this system. When the airgap sensor fails the required signal is recovered using a combination of a Kalman estimator and analytical redundancy. The performance of the suspension is optimised using genetic algorithms and some preliminary robustness issues to load and operating airgap variations are discussed. Simulations on a realistic model of such type of suspension illustrate the efficacy of the proposed sensor tolerant control method.
Neural Network Based Modeling and Analysis of LP Control Surface Allocation
NASA Technical Reports Server (NTRS)
Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen
2003-01-01
This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John
2014-01-01
The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research
Environmental Systems Test Stand
NASA Astrophysics Data System (ADS)
Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.
A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.
The NASA Lewis integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1991-01-01
A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.
A preliminary design for a satellite power system
NASA Technical Reports Server (NTRS)
Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor
1991-01-01
Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.
Software requirements flow-down and preliminary software design for the G-CLEF spectrograph
NASA Astrophysics Data System (ADS)
Evans, Ian N.; Budynkiewicz, Jamie A.; DePonte Evans, Janet; Miller, Joseph B.; Onyuksel, Cem; Paxson, Charles; Plummer, David A.
2016-08-01
The Giant Magellan Telescope (GMT)-Consortium Large Earth Finder (G-CLEF) is a fiber-fed, precision radial velocity (PRV) optical echelle spectrograph that will be the first light instrument on the GMT. The G-CLEF instrument device control subsystem (IDCS) provides software control of the instrument hardware, including the active feedback loops that are required to meet the G-CLEF PRV stability requirements. The IDCS is also tasked with providing operational support packages that include data reduction pipelines and proposal preparation tools. A formal, but ultimately pragmatic approach is being used to establish a complete and correct set of requirements for both the G-CLEF device control and operational support packages. The device control packages must integrate tightly with the state-machine driven software and controls reference architecture designed by the GMT Organization. A model-based systems engineering methodology is being used to develop a preliminary design that meets these requirements. Through this process we have identified some lessons that have general applicability to the development of software for ground-based instrumentation. For example, tasking an individual with overall responsibility for science/software/hardware integration is a key step to ensuring effective integration between these elements. An operational concept document that includes detailed routine and non- routine operational sequences should be prepared in parallel with the hardware design process to tie together these elements and identify any gaps. Appropriate time-phasing of the hardware and software design phases is important, but revisions to driving requirements that impact software requirements and preliminary design are inevitable. Such revisions must be carefully managed to ensure efficient use of resources.
Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows
NASA Technical Reports Server (NTRS)
Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.
2009-01-01
A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.
Metallic Rotor Sizing and Performance Model for Flywheel Systems
NASA Technical Reports Server (NTRS)
Moore, Camille J.; Kraft, Thomas G.
2012-01-01
The NASA Glenn Research Center (GRC) is developing flywheel system requirements and designs for terrestrial and spacecraft applications. Several generations of flywheels have been designed and tested at GRC using in-house expertise in motors, magnetic bearings, controls, materials and power electronics. The maturation of a flywheel system from the concept phase to the preliminary design phase is accompanied by maturation of the Integrated Systems Performance model, where estimating relationships are replaced by physics based analytical techniques. The modeling can incorporate results from engineering model testing and emerging detail from the design process.
Hybrid and electric advanced vehicle systems (heavy) simulation
NASA Technical Reports Server (NTRS)
Hammond, R. A.; Mcgehee, R. K.
1981-01-01
A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.
Testing of Safety-Critical Software Embedded in an Artificial Heart
NASA Astrophysics Data System (ADS)
Cha, Sungdeok; Jeong, Sehun; Yoo, Junbeom; Kim, Young-Gab
Software is being used more frequently to control medical devices such as artificial heart or robotic surgery system. While much of software safety issues in such systems are similar to other safety-critical systems (e.g., nuclear power plants), domain-specific properties may warrant development of customized techniques to demonstrate fitness of the system on patients. In this paper, we report results of a preliminary analysis done on software controlling a Hybrid Ventricular Assist Device (H-VAD) developed by Korea Artificial Organ Centre (KAOC). It is a state-of-the-art artificial heart which completed animal testing phase. We performed software testing in in-vitro experiments and animal experiments. An abnormal behaviour, never detected during extensive in-vitro analysis and animal testing, was found.
Sail film materials and supporting structure for a solar sail, a preliminary design, volume 4
NASA Technical Reports Server (NTRS)
Rowe, W. M. (Editor)
1978-01-01
Solar sailing technology was examined in relation to a mission to rendezvous with Halley's Comet. Development of an ultra-light, highly reflecting material system capable of operating at high solar intensity for long periods of time was emphasized. Data resulting from the sail materials study are reported. Topics covered include: basic film; coatings and thermal control; joining and handling; system performance; and supporting structures assessment for the heliogyro.
NASA Technical Reports Server (NTRS)
Murrow, H. N.
1981-01-01
Results from flight tests of the ARW-1 research wing are presented. Preliminary loads data and experiences with the active control system for flutter suppression are included along with comparative results of test and prediction for the flutter boundary of the supercritical research wing and on performance of the flutter suppression system. The status of the ARW-2 research wing is given.
2013-08-01
recommended groin system. ......................... 37 Figure 23. H1% and Hs at the groin toe as a function of storm surge...phases of work. Keep in mind, the recommended groin system design will advance the shoreline; however, without dune and vegetation management, it...will not create a wider dry beach. Since the existing beach is presumably in equili- brium, the dune and vegetation will advance with the shoreline
Preliminary Design of a Modular Unmanned Research Vehicle. Volume 1. System Design Document
1988-12-01
providing con- munications and restraint. 1-5 Tethered unpowered vehicle - an airplane-like body tether-mounted to an automobile , the auto providing...the velocity by towing. Auto-mounted vehicle - an airplane-like body rigidly mounted external to an automobile , the auto providing the velocity. Rail...accordingly. Based on this experiment, the MURV flight control system must be flexible in two ways: it should be reprogrammable for varying experimental
A Preliminary Investigation on the Application of Robotics to Missile Fire Control.
1983-11-01
application. Even this is a broad area, but it is one in which Okhe general theories and concepts of robo - tics and/or artificial intelligence can be...K::. 3. Expert Advisors .J1. %4. Data Assimilation and Access Aids 5. Handling Support Systems 6. Support Systems 7...appears, therefore, that a robo - tic forward observer can be manufactured in quantities for a reasonable cost when compared to the cost of training
Preliminary power train design for a state-of-the-art electric vehicle
NASA Technical Reports Server (NTRS)
Ross, J. A.; Wooldridge, G. A.
1978-01-01
The state-of-the-art (SOTA) of electric vehicles built since 1965 was reviewed to establish a base for the preliminary design of a power train for a SOTA electric vehicle. The performance of existing electric vehicles were evaluated to establish preliminary specifications for a power train design using state-of-the-art technology and commercially available components. Power train components were evaluated and selected using a computer simulation of the SAE J227a Schedule D driving cycle. Predicted range was determined for a number of motor and controller combinations in conjunction with the mechanical elements of power trains and a battery pack of sixteen lead-acid batteries - 471.7 kg at 0.093 MJ/Kg (1040 lbs. at 11.7 Whr/lb). On the basis of maximum range and overall system efficiency using the Schedule D cycle, an induction motor and 3 phase inverter/controller was selected as the optimum combination when used with a two-speed transaxle and steel belted radial tires. The predicted Schedule D range is 90.4 km (56.2 mi). Four near term improvements to the SOTA were identified, evaluated, and predicted to increase range approximately 7%.
NASA Technical Reports Server (NTRS)
Gault, J. W. (Editor); Trivedi, K. S. (Editor); Clary, J. B. (Editor)
1980-01-01
The validation process comprises the activities required to insure the agreement of system realization with system specification. A preliminary validation methodology for fault tolerant systems documented. A general framework for a validation methodology is presented along with a set of specific tasks intended for the validation of two specimen system, SIFT and FTMP. Two major areas of research are identified. First, are those activities required to support the ongoing development of the validation process itself, and second, are those activities required to support the design, development, and understanding of fault tolerant systems.
Inductive Learning Approaches for Improving Pilot Awareness of Aircraft Faults
NASA Technical Reports Server (NTRS)
Spikovska, Lilly; Iverson, David L.; Poll, Scott; Pryor, anna
2005-01-01
Neural network flight controllers are able to accommodate a variety of aircraft control surface faults without detectable degradation of aircraft handling qualities. Under some faults, however, the effective flight envelope is reduced; this can lead to unexpected behavior if a pilot performs an action that exceeds the remaining control authority of the damaged aircraft. The goal of our work is to increase the pilot s situational awareness by informing him of the type of damage and resulting reduction in flight envelope. Our methodology integrates two inductive learning systems with novel visualization techniques. One learning system, the Inductive Monitoring System (IMS), learns to detect when a simulation includes faulty controls, while two others, Inductive Classification System (INCLASS) and multiple binary decision tree system (utilizing C4.5), determine the type of fault. In off-line training using only non-failure data, IMS constructs a characterization of nominal flight control performance based on control signals issued by the neural net flight controller. This characterization can be used to determine the degree of control augmentation required in the pitch, roll, and yaw command channels to counteract control surface failures. This derived information is typically sufficient to distinguish between the various control surface failures and is used to train both INCLASS and C4.5. Using data from failed control surface flight simulations, INCLASS and C4.5 independently discover and amplify features in IMS results that can be used to differentiate each distinct control surface failure situation. In real-time flight simulations, distinguishing features learned during training are used to classify control surface failures. Knowledge about the type of failure can be used by an additional automated system to alter its approach for planning tactical and strategic maneuvers. The knowledge can also be used directly to increase the pilot s situational awareness and inform manual maneuver decisions. Our multi-modal display of this information provides speech output to issue control surface failure warnings to a lesser-used communication channel and provides graphical displays with pilot-selectable !eve!s of details to issues additional information about the failure. We also describe a potential presentation for flight envelope reduction that can be viewed separately or integrated with an existing attitude indicator instrument. Preliminary results suggest that the inductive approach is capable of detecting that a control surface has failed and determining the type of fault. Furthermore, preliminary evaluations suggest that the interface discloses a concise summary of this information to the pilot.
NASA Technical Reports Server (NTRS)
Callantine, Todd J.
2002-01-01
This report describes preliminary research on intelligent agents that make errors. Such agents are crucial to the development of novel agent-based techniques for assessing system safety. The agents extend an agent architecture derived from the Crew Activity Tracking System that has been used as the basis for air traffic controller agents. The report first reviews several error taxonomies. Next, it presents an overview of the air traffic controller agents, then details several mechanisms for causing the agents to err in realistic ways. The report presents a performance assessment of the error-generating agents, and identifies directions for further research. The research was supported by the System-Wide Accident Prevention element of the FAA/NASA Aviation Safety Program.
Structured representation for requirements and specifications
NASA Technical Reports Server (NTRS)
Cohen, Gerald C.; Fisher, Gene; Frincke, Deborah; Wolber, Dave
1991-01-01
This document was generated in support of NASA contract NAS1-18586, Design and Validation of Digital Flight Control Systems suitable for Fly-By-Wire Applications, Task Assignment 2. Task 2 is associated with a formal representation of requirements and specifications. In particular, this document contains results associated with the development of a Wide-Spectrum Requirements Specification Language (WSRSL) that can be used to express system requirements and specifications in both stylized and formal forms. Included with this development are prototype tools to support the specification language. In addition a preliminary requirements specification methodology based on the WSRSL has been developed. Lastly, the methodology has been applied to an Advanced Subsonic Civil Transport Flight Control System.
NASA Technical Reports Server (NTRS)
Prince, R.; Knott, W.; Buchanan, Paul
1987-01-01
Design criteria for the Biomass Production Chamber (BPC), preliminary operating procedures, and requirements for the future development of the Controlled Ecological Life Support System (CELSS) are discussed. CELSS, which uses a bioregenerative system, includes the following three major units: (1) a biomass production component to grow plants under controlled conditions; (2) food processing components to derive maximum edible content from all plant parts; and (3) waste management components to recover and recycle all solids, liquids, and gases necessary to support life. The current status of the CELSS breadboard facility is reviewed; a block diagram of a simplified version of CELSS and schematic diagrams of the BPS are included.
NASA Technical Reports Server (NTRS)
Schunk, R. Gregory; Hunt, Patrick L. (Technical Monitor)
2001-01-01
Preliminary results from a thermal/flow analysis of the Purge Control Pump Assembly (PCPA) indicate that pump performance (mass flow rate) is enhanced via cooling of the housing and lowering of the inlet vapor quality. Under a nominal operational profile (25% duty cycle or less), at the maximum motor dissipation, it appears that the peristaltic tubing temperature will still remain significantly below the expected UPA condenser temperature (78 F max versus approximately 105 F in the condenser) permitting condensation in the pump head.
On discrete control of nonlinear systems with applications to robotics
NASA Technical Reports Server (NTRS)
Eslami, Mansour
1989-01-01
Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.
Preliminary Design and Evaluation of Portable Electronic Flight Progress Strips
NASA Technical Reports Server (NTRS)
Doble, Nathan A.; Hansman, R. John
2002-01-01
There has been growing interest in using electronic alternatives to the paper Flight Progress Strip (FPS) for air traffic control. However, most research has been centered on radar-based control environments, and has not considered the unique operational needs of the airport air traffic control tower. Based on an analysis of the human factors issues for control tower Decision Support Tool (DST) interfaces, a requirement has been identified for an interaction mechanism which replicates the advantages of the paper FPS (e.g., head-up operation, portability) but also enables input and output with DSTs. An approach has been developed which uses a Portable Electronic FPS that has attributes of both a paper strip and an electronic strip. The prototype flight strip system uses Personal Digital Assistants (PDAs) to replace individual paper strips in addition to a central management interface which is displayed on a desktop computer. Each PDA is connected to the management interface via a wireless local area network. The Portable Electronic FPSs replicate the core functionality of paper flight strips and have additional features which provide a heads-up interface to a DST. A departure DST is used as a motivating example. The central management interface is used for aircraft scheduling and sequencing and provides an overview of airport departure operations. This paper will present the design of the Portable Electronic FPS system as well as preliminary evaluation results.
NASA Astrophysics Data System (ADS)
Kondrateva, O. E.; Roslyakov, P. V.; Borovkova, A. M.; Loktionov, O. A.
2017-11-01
Over the past 3 years there have been significant changes in Russian environmental legislation related to the transition to technological regulation based on the principles of the best available technologies (BAT). These changes also imply control and accounting of the harmful impact of industrial enterprises on the environment. Therefore, a mandatory requirement for equipping automatic continuous emission monitoring systems (ACEMS) is established for all large TPPs. For a successful practical solution of the problem of introducing such systems in the whole country there is an urgent need to develop the governing regulatory document for the design and operation of systems for continuous monitoring of TPP emissions into the air, allowing within reasonable limits to unify these systems for their work with the state data fund of state environmental monitoring and make easier the process of their implementation at operating facilities for industrial enterprises. Based on the large amount of research in the field of creation of ACEMS, which conducted in National Research University “MPEI”, a draft guidance document was developed, which includes the following regulatory provisions: goals and objectives of ACEMS, the stages of their introduction rules of carrying out preliminary inspection of energy facilities, requirements to develop technical specifications, general requirements for the operation of ACEMS, requirements to the structure and elements of ACEMS, recommendations on selection of places of measuring equipment installation, rules for execution, commissioning and acceptance testing, continuous measurement method, method for determination of the current gross and specific emissions. The draft guidance document, developed by the National Research University “MPEI”, formed the basis of the Preliminary national standards PNST 187-2017 “Automatic systems for continuous control and metering of contaminants emissions from thermal electric power stations into the atmospheric air. General requirements”. [1
Chaos: Understanding and Controlling Laser Instability
NASA Technical Reports Server (NTRS)
Blass, William E.
1997-01-01
In order to characterize the behavior of tunable diode lasers (TDL), the first step in the project involved the redesign of the TDL system here at the University of Tennessee Molecular Systems Laboratory (UTMSL). Having made these changes it was next necessary to optimize the new optical system. This involved the fine adjustments to the optical components, particularly in the monochromator, to minimize the aberrations of coma and astigmatism and to assure that the energy from the beam is focused properly on the detector element. The next step involved the taking of preliminary data. We were then ready for the analysis of the preliminary data. This required the development of computer programs that use mathematical techniques to look for signatures of chaos. Commercial programs were also employed. We discovered some indication of high dimensional chaos, but were hampered by the low sample rate of 200 KSPS (kilosamples/sec) and even more by our sample size of 1024 (1K) data points. These limitations were expected and we added a high speed data acquisition board. We incorporated into the system a computer with a 40 MSPS (million samples/sec) data acquisition board. This board can also capture 64K of data points so that were then able to perform the more accurate tests for chaos. The results were dramatic and compelling, we had demonstrated that the lead salt diode laser had a chaotic frequency output. Having identified the chaotic character in our TDL data, we proceeded to stage two as outlined in our original proposal. This required the use of an Occasional Proportional Feedback (OPF) controller to facilitate the control and stabilization of the TDL system output. The controller was designed and fabricated at GSFC and debugged in our laboratories. After some trial and error efforts, we achieved chaos control of the frequency emissions of the laser. The two publications appended to this introduction detail the entire project and its results.
Preliminary C3 Loading Analysis for Future High-Altitude Unmanned Aircraft in the NAS
NASA Technical Reports Server (NTRS)
Ho, Yan-Shek; Gheorghisor, Izabela; Box, Frank
2006-01-01
This document provides a preliminary assessment and summary of the command, control, and communications (C(sup 3)) loading requirements of a generic future high-altitude, long-endurance unmanned aircraft (UA) operating at in the National Airspace System. Two principal types of C(sup 3) traffic are considered in our analysis: communications links providing air traffic services (ATS) to the UA and its human pilot, and the command and control data links enabling the pilot to operate the UA remotely. we have quantified the loading requirements of both types of traffic for two different assumed levels of UA autonomy. Our results indicate that the potential use of UA-borne relays for the ATS links, and the degree of autonomy exercised by the UA during the departure and arrival phases of its flight, will be among the key drivers of C(sup 3) loading and bandwidth requirements.
Preliminary study of a possible automatic landing system
NASA Technical Reports Server (NTRS)
Sherman, W. L.; Winfrey, S. W.
1974-01-01
Navigation and control laws for a possible automatic landing system have been investigated. The system makes use of data from an inertial table and either an airborne or ground radar to generate signals that guide the airplane to a landing. All landing maneuvers take place within a zone that extends 6000 m out from the touchdown point, 4000 m on each side of the runway center line, and 540 m high. The results show that the system can adequately control the airplane on steep, curved decelerating approaches to a landing that takes place with small errors from the desired landing point and desired airplane attitude. The system studied would interface well with the scanning beam microwave landing system (MLS). The use of this system with the MLS makes it possible to incorporate an independent landing monitor.
Integrated system for investigating sub-surface features of a rock formation
Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.
2015-08-18
A system for investigating non-linear properties of a rock formation around a borehole is provided. The system includes a first sub-system configured to perform data acquisition, control and recording of data; a second subsystem in communication with the first sub-system and configured to perform non-linearity and velocity preliminary imaging; a third subsystem in communication with the first subsystem and configured to emit controlled acoustic broadcasts and receive acoustic energy; a fourth subsystem in communication with the first subsystem and the third subsystem and configured to generate a source signal directed towards the rock formation; and a fifth subsystem in communication with the third subsystem and the fourth subsystem and configured to perform detection of signals representative of the non-linear properties of the rock formation.
Real-time control of focused ultrasound heating based on rapid MR thermometry.
Vimeux, F C; De Zwart, J A; Palussiére, J; Fawaz, R; Delalande, C; Canioni, P; Grenier, N; Moonen, C T
1999-03-01
Real-time control of the heating procedure is essential for hyperthermia applications of focused ultrasound (FUS). The objective of this study is to demonstrate the feasibility of MRI-controlled FUS. An automatic control system was developed using a dedicated interface between the MR system control computer and the FUS wave generator. Two algorithms were used to regulate FUS power to maintain the focal point temperature at a desired level. Automatic control of FUS power level was demonstrated ex vivo at three target temperature levels (increase of 5 degrees C, 10 degrees C, and 30 degrees C above room temperature) during 30-minute hyperthermic periods. Preliminary in vivo results on rat leg muscle confirm that necrosis estimate, calculated on-line during FUS sonication, allows prediction of tissue damage. CONCLUSIONS. The feasibility of fully automatic FUS control based on MRI thermometry has been demonstrated.
NASA Technical Reports Server (NTRS)
Rowland, John R.; Goldhirsh, Julius; Vogel, Wolfhard J.; Torrence, Geoffrey W.
1991-01-01
An overview and a status description of the planned LMSS mobile K band experiment with ACTS is presented. As a precursor to the ACTS mobile measurements at 20.185 GHz, measurements at 19.77 GHz employing the Olympus satellite were originally planned. However, because of the demise of Olympus in June of 1991, the efforts described here are focused towards the ACTS measurements. In particular, we describe the design and testing results of a gyro controlled mobile-antenna pointing system. Preliminary pointing measurements during mobile operations indicate that the present system is suitable for measurements employing a 15 cm aperture (beamwidth at approximately 7 deg) receiving antenna operating with ACTS in the high gain transponder mode. This should enable measurements with pattern losses smaller than plus or minus 1 dB over more than 95 percent of the driving distance. Measurements with the present mount system employing a 60 cm aperture (beamwidth at approximately 1.7 deg) results in pattern losses smaller than plus or minus 3 dB for 70 percent of the driving distance. Acceptable propagation measurements may still be made with this system by employing developed software to flag out bad data points due to extreme pointing errors. The receiver system including associated computer control software has been designed and assembled. Plans are underway to integrate the antenna mount with the receiver on the University of Texas mobile receiving van and repeat the pointing tests on highways employing a recently designed radome system.
FLASH fly-by-light flight control demonstration results overview
NASA Astrophysics Data System (ADS)
Halski, Don J.
1996-10-01
The Fly-By-Light Advanced Systems Hardware (FLASH) program developed Fly-By-Light (FBL) and Power-By-Wire (PBW) technologies for military and commercial aircraft. FLASH consists of three tasks. Task 1 developed the fiber optic cable, connectors, testers and installation and maintenance procedures. Task 3 developed advanced smart, rotary thin wing and electro-hydrostatic (EHA) actuators. Task 2, which is the subject of this paper,l focused on integration of fiber optic sensors and data buses with cable plant components from Task 1 and actuators from Task 3 into centralized and distributed flight control systems. Both open loop and piloted hardware-in-the-loop demonstrations were conducted with centralized and distributed flight control architectures incorporating the AS-1773A optical bus, active hand controllers, optical sensors, optimal flight control laws in high speed 32-bit processors, and neural networks for EHA monitoring and fault diagnosis. This paper overviews the systems level testing conducted under the FLASH Flight Control task. Preliminary results are summarized. Companion papers provide additional information.
Nonlinear multivariable design by total synthesis. [of gas turbine engine control systems
NASA Technical Reports Server (NTRS)
Sain, M. K.; Peczkowski, J. L.
1982-01-01
The Nominal Design Problem (NDP) is extended to nonlinear cases, and a new case study of robust feedback synthesis for gas turbine control design is presented. The discussion of NDP extends and builds on earlier Total Synthesis Problem theory and ideas. Some mathematical preliminaries are given in which a bijection from a set S onto a set T is considered, with T admitting the structure of an F-vector space. NDP is then discussed for a nonlinear plant, and nonlinear nominal design is defined and characterized. The design of local controllers for a turbojet and the scheduling of these controls into a global control are addressed.
Preliminary Investigation of Workload on Intrastate Bus Traffic Controllers
NASA Astrophysics Data System (ADS)
Yen Bin, Teo; Azlis-Sani, Jalil; Nur Annuar Mohd Yunos, Muhammad; Ismail, S. M. Sabri S. M.; Tajedi, Noor Aqilah Ahmad
2016-11-01
The daily routine of bus traffic controller which involves high mental processes would have a direct impact on the level of workload. To date, the level of workload on the bus traffic controllers in Malaysia is relatively unknown. Excessive workload on bus traffic controllers would affect the control and efficiency of the system. This paper served to study the workload on bus traffic controllers and justify the needs to conduct further detailed research on this field. The objectives of this research are to identify the level of workload on the intrastate bus traffic controllers. Based on the results, recommendations will be proposed for improvements and future studies. The level of workload for the bus traffic controllers is quantified using questionnaire adapted from NASA TLX. Interview sessions were conducted for validation of workload. Sixteen respondents were involved and it was found that the average level of workload based on NASA TLX was 6.91. It was found that workload is not affected by gender and marital status. This study also showed that the level of workload and working experience of bus traffic controllers has a strong positive linear relationship. This study would serve as a guidance and reference related to this field. Since this study is a preliminary investigation, further detailed studies could be conducted to obtain a better comprehension regarding the bus traffic controllers.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... stability control systems,'' a copy of the preliminary regulatory impact analysis for FMVSS No. 126, and... directed NHTSA to develop a dynamic rollover test and to use information obtained in that test to help... policy establishing a ``fishhook'' test as the dynamic rollover test for NCAP. The fishhook test is an...
ERIC Educational Resources Information Center
Zhang, Qing; Brode, Ly; Cao, Tingting; Thompson, J. E.
2017-01-01
We describe the construction and initial demonstration of a new instructional tool called ROXI (Research Opportunity through eXperimental Instruction). The system interfaces a series of electronic sensors to control software via the Arduino platform. The sensors have been designed to enable low-cost data collection in laboratory courses. Data are…
NASA Technical Reports Server (NTRS)
Clausen, O. W.
1976-01-01
Systems design for an initial atmospheric cloud physics laboratory to study microphysical processes in zero gravity is presented. Included are descriptions of the fluid, thermal, mechanical, control and data, and electrical distribution interfaces with Spacelab. Schedule and cost analysis are discussed.
Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration
NASA Technical Reports Server (NTRS)
McQuillen, John; Sankovic, John; Lekan, Jack
2006-01-01
The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.
Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems
NASA Astrophysics Data System (ADS)
Koch, Patrick Nathan
Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.
X-31 high angle of attack control system performance
NASA Technical Reports Server (NTRS)
Huber, Peter; Seamount, Patricia
1994-01-01
The design goals for the X-31 flight control system were: (1) level 1 handling qualities during post-stall maneuvering (30 to 70 degrees angle-of-attack); (2) thrust vectoring to enhance performance across the flight envelope; and (3) adequate pitch-down authority at high angle-of-attack. Additional performance goals are discussed. A description of the flight control system is presented, highlighting flight control system features in the pitch and roll axes and X-31 thrust vectoring characteristics. The high angle-of-attack envelope clearance approach will be described, including a brief explanation of analysis techniques and tools. Also, problems encountered during envelope expansion will be discussed. This presentation emphasizes control system solutions to problems encountered in envelope expansion. An essentially 'care free' envelope was cleared for the close-in-combat demonstrator phase. High angle-of-attack flying qualities maneuvers are currently being flown and evaluated. These results are compared with pilot opinions expressed during the close-in-combat program and with results obtained from the F-18 HARV for identical maneuvers. The status and preliminary results of these tests are discussed.
SmallWorld Behavior of the Worldwide Active Volcanoes Network: Preliminary Results
NASA Astrophysics Data System (ADS)
Spata, A.; Bonforte, A.; Nunnari, G.; Puglisi, G.
2009-12-01
We propose a preliminary complex networks based approach in order to model and characterize volcanoes activity correlation observed on a planetary scale over the last two thousand years. Worldwide volcanic activity is in fact related to the general plate tectonics that locally drives the faults activity, that in turn controls the magma upraise beneath the volcanoes. To find correlations among different volcanoes could indicate a common underlying mechanism driving their activity and could help us interpreting the deeper common dynamics controlling their unrest. All the first evidences found testing the procedure, suggest the suitability of this analysis to investigate global volcanism related to plate tectonics. The first correlations found, in fact, indicate that an underlying common large-scale dynamics seems to drive volcanic activity at least around the Pacific plate, where it collides and subduces beneath American, Eurasian and Australian plates. From this still preliminary analysis, also more complex relationships among volcanoes lying on different tectonic margins have been found, suggesting some more complex interrelationships between different plates. The understanding of eventually detected correlations could be also used to further implement warning systems, relating the unrest probabilities of a specific volcano also to the ongoing activity to the correlated ones. Our preliminary results suggest that, as for other many physical and biological systems, an underlying organizing principle of planetary volcanoes activity might exist and it could be a small-world principle. In fact we found that, from a topological perspective, volcanoes correlations are characterized by the typical features of small-world network: a high clustering coefficient and a low characteristic path length. These features confirm that global volcanoes activity is characterized by both short and long-range correlations. We stress here the fact that numerical simulation carried out in this work seems to agree with geological evidences (eg. the Pacific plate, South America volcanoes activity and so on). However a detailed analysis of numerical correlation pointed out in this work and geological implication requires a lot of effort and is still running. Thus this work represents preliminary contribution to better understand and clarify, from a geophysical point of view, the nature of planetary correlations among active volcanoes. Further work is still needed.
Floating Offshore WTG Integrated Load Analysis & Optimization Employing a Tuned Mass Damper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez Tsouroukdissian, Arturo; Lackner, Matt; Cross-Whiter, John
2015-09-25
Floating offshore wind turbines (FOWTs) present complex design challenges due to the coupled dynamics of the platform motion, mooring system, and turbine control systems, in response to wind and wave loading. This can lead to higher extreme and fatigue loads than a comparable fixed bottom or onshore system. Previous research[1] has shown the potential to reduced extreme and fatigue loads on FOWT using tuned mass dampers (TMD) for structural control. This project aims to reduce maximum loads using passive TMDs located at the tower top during extreme storm events, when grid supplied power for other controls systems may not bemore » available. The Alstom Haliade 6MW wind turbine is modelled on the Glosten Pelastar tension-leg platform (TLP). The primary objectives of this project are to provide a preliminary assessment of the load reduction potential of passive TMDs on real wind turbine and TLP designs.« less
NASA Technical Reports Server (NTRS)
Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.
1992-01-01
The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.
NASA Technical Reports Server (NTRS)
Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.
1987-01-01
A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.
Real-time path planning and autonomous control for helicopter autorotation
NASA Astrophysics Data System (ADS)
Yomchinda, Thanan
Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.
Wang, Mingming; Sun, Yuanxiang; Sweetapple, Chris
2017-12-15
Storage is important for flood mitigation and non-point source pollution control. However, to seek a cost-effective design scheme for storage tanks is very complex. This paper presents a two-stage optimization framework to find an optimal scheme for storage tanks using storm water management model (SWMM). The objectives are to minimize flooding, total suspended solids (TSS) load and storage cost. The framework includes two modules: (i) the analytical module, which evaluates and ranks the flooding nodes with the analytic hierarchy process (AHP) using two indicators (flood depth and flood duration), and then obtains the preliminary scheme by calculating two efficiency indicators (flood reduction efficiency and TSS reduction efficiency); (ii) the iteration module, which obtains an optimal scheme using a generalized pattern search (GPS) method based on the preliminary scheme generated by the analytical module. The proposed approach was applied to a catchment in CZ city, China, to test its capability in choosing design alternatives. Different rainfall scenarios are considered to test its robustness. The results demonstrate that the optimal framework is feasible, and the optimization is fast based on the preliminary scheme. The optimized scheme is better than the preliminary scheme for reducing runoff and pollutant loads under a given storage cost. The multi-objective optimization framework presented in this paper may be useful in finding the best scheme of storage tanks or low impact development (LID) controls. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preliminary studies on SMA embedded wind turbine blades for passive control of vibration
NASA Astrophysics Data System (ADS)
Haghdoust, P.; Cinquemani, S.; Lo Conte, A.
2018-03-01
Wind turbine blades are being bigger and bigger, thus requiring lightweight structures that are more flexible and thus more sensitive to dynamic excitations and to vibration problems. This paper investigates a preliminary architecture of large wind turbine blades, embedding thin sheets of SMA to passively improve their total damping. A phenomenological material model is used for simulation of strain-dependent damping in SMA materials and an user defined material model was developed for this purpose. The response of different architectures of SMA embedded blades have been investigated in the time domain to find an optimal solution in which the less amount of SMA is used while the damping of the system is maximized
Application of advanced technologies to small, short-haul aircraft
NASA Technical Reports Server (NTRS)
Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.
1978-01-01
The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.
Preliminary study of a millimeter wave FMCW InSAR for UAS indoor navigation.
Scannapieco, Antonio F; Renga, Alfredo; Moccia, Antonio
2015-01-22
Small autonomous unmanned aerial systems (UAS) could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3Dmapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved.
Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation
Scannapieco, Antonio F.; Renga, Alfredo; Moccia, Antonio
2015-01-01
Small autonomous unmanned aerial systems (UAS) could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3D mapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved. PMID:25621606
Applications of numerical optimization methods to helicopter design problems: A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1984-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Applications of numerical optimization methods to helicopter design problems - A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1985-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Applications of numerical optimization methods to helicopter design problems - A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1984-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Application of Concurrent Engineering Methods to the Design of an Autonomous Aerial Robot
1991-12-01
power within the system, either airborne or at a ground station, was left to the team’s discretion. Data link from the aerial vehicle to the ground...Design Process 1 4 10 0% Conceptual 100% Preliminary 100% Detailed 100% Design Freedom Kowledge About the Design TIME INTO THE DESIGN PROCESS Figure 15...mission planning and control tasks was accomplished. Key system issues regarding power up and component initialization procedures began to be addressed
Modelling of eddy currents related to large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Foster, Lucas E.
1994-01-01
This report presents a preliminary analysis of the mathematical modelling of eddy current effects in a large-gap magnetic suspension system. It is shown that eddy currents can significantly affect the dynamic behavior and control of these systems, but are amenable to measurement and modelling. A theoretical framework is presented, together with a comparison of computed and experimental data related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center.
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1993-01-01
A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.
Stein, Joel
2009-01-01
Therapy incorporating the repeated practice of motor tasks has been found to enhance motor function after stroke. This type of therapy may be facilitated by robotic devices and several such devices are being developed for use in rehabilitation. The Myomo e100 NeuroRobotic system is a novel device developed to provide assistance during elbow movements in stroke survivors. The device uses surface electromyographic signals to control a powered elbow orthosis. Data from a pilot study reveals that the device can be used successfully by stroke survivors and suggests that it may be effective in helping to restore motor control after stroke. Further studies are needed to confirm these preliminary results.
Applications of the hybrid coordinate method to the TOPS autopilot
NASA Technical Reports Server (NTRS)
Fleischer, G. E.
1978-01-01
Preliminary results are presented from the application of the hybrid coordinate method to modeling TOPS (thermoelectric outer planet spacecraft) structural dynamics. Computer simulated responses of the vehicle are included which illustrate the interaction of relatively flexible appendages with an autopilot control system. Comparisons were made between simplified single-axis models of the control loop, with spacecraft flexibility represented by hinged rigid bodies, and a very detailed three-axis spacecraft model whose flexible portions are described by modal coordinates. While single-axis system, root loci provided reasonable qualitative indications of stability margins in this case, they were quantitatively optimistic when matched against responses of the detailed model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
Preliminary Airworthiness Evaluation of the Rutan Aircraft Factory (RAF) , Inc. LONG-EZ Airplane
1983-06-01
pounds. Unique features include composite construction, a nose mounted canard for pitch control, and a aid-wing high aspect ratio Eppler swept airfoil with...Rear 35 in. Height Front 36 in. Rear 35 in. 51 Table 2. Airfoil Geometry Ave rage Airfoil Measured Tolerance WING ( Eppler 1230) L 0.51: Incidence R 0.48...tests of the wings and control systems and determination of frequencies and modal damping of all airfoil surfaces. These tests were conducted by AVRADCOM
Automated Space Processing Payloads Study. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
1975-01-01
An investigation is described which examined the extent to which the experiment hardware and operational requirements can be met by automatic control and material handling devices; payload and system concepts are defined which make extensive use of automation technology. Topics covered include experiment requirements and hardware data, capabilities and characteristics of industrial automation equipment and controls, payload grouping, automated payload conceptual design, space processing payload preliminary design, automated space processing payloads for early shuttle missions, and cost and scheduling.
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
NASA Technical Reports Server (NTRS)
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
NASA Technical Reports Server (NTRS)
Miller, Thomas B.
2011-01-01
An investigation into the merits of battery powered Electro Hydrostatic Actuation (EHA) for Thrust Vector Control (TVC) of the Ares I and Ares V launch vehicles is described. A top level trade study was conducted to ascertain the technical merits of lithium-ion (Li-ion) and thermal battery performance to determine the preferred choice of an energy storage system chemistry that provides high power discharge capability for a relatively short duration.
NASA Technical Reports Server (NTRS)
Mcgehee, J. R.; Carden, H. D.; Edson, R.
1978-01-01
A three-degree-of-freedom aircraft landing analysis incorporating a series-hydraulic active control main landing gear has been developed and verified using preliminary experimental data from drop tests of a modified main landing gear from a 2722 kg (6000 lbm) class of airplane. The verified analysis was also employed to predict the landing dynamics of a supersonic research airplane with an active control main landing gear system. The results of this investigation have shown that this type of active gear is feasible and indicate a potential for improving airplane dynamic response and reducing structural fatigue damage during ground operations by approximately 90% relative to that incurred with the passive gear.
Thrust vectoring for lateral-directional stability
NASA Technical Reports Server (NTRS)
Peron, Lee R.; Carpenter, Thomas
1992-01-01
The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented.
Crew Exploration Vehicle Environmental Control and Life Support Development Status
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard; Carrasquillo, Robyn; Cross, Cindy; Peterson, Laurie; Tuan, George
2009-01-01
The Orion Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the Moon and back again. This year, the vehicle continued to go through design refinements to reduce weight, meet requirements, and operate reliably. Preliminary Design Review was performed and long lead procurement items were started. The design of the Orion Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is progressing through the design stage into manufacturing. This paper covers the Orion ECLS development from April 2009 to April 2010.
Crew Exploration Vehicle Environmental Control and Life Support Ddevelopment Status
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard A.; Carrasquillo, Robyn; Cross, Cynthia d.; Rains, Ed; Tuan, George C.
2010-01-01
The Orion Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the Moon and back again. This year, the vehicle continued to go through design refinements to reduce weight, meet requirements, and operate reliably. Preliminary Design Review was performed and long lead procurement items were started. The design of the Orion Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is progressing through the design stage into manufacturing. This paper covers the Orion ECLS development from April 2009 to April 2010
Protein crystal growth in microgravity
NASA Technical Reports Server (NTRS)
Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.
1989-01-01
Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.
Loss of Control Prevention and Recovery: Onboard Guidance, Control, and Systems Technologies
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
2012-01-01
Loss of control (LOC) is one of the largest contributors to fatal aircraft accidents worldwide. LOC accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. These LOC hazards include vehicle impairment conditions, external disturbances; vehicle upset conditions, and inappropriate crew actions or responses. Hence, there is no single intervention strategy to prevent these accidents. NASA previously defined a comprehensive research and technology development approach for reducing LOC accidents and an associated integrated system concept. Onboard technologies for improved situation awareness, guidance, and control for LOC prevention and recovery are needed as part of this approach. Such systems should include: LOC hazards effects detection and mitigation; upset detection, prevention and recovery; and mitigation of combined hazards. NASA is conducting research in each of these areas. This paper provides an overview of this research, including the near-term LOC focus and associated analysis, as well as preliminary flight system architecture.
NASA Technical Reports Server (NTRS)
Komendera, Erik E.; Doggett, William R.; Dorsey, John T.; Debus, Thomas J.; Holub, Kris; Dougherty, Sean P.
2015-01-01
Satellite servicing is a high priority task for NASA and the space industry, addressing the needs of a variety of missions, and potentially lowering the overall cost of missions through refurbishment and reuse. However, the ability to service satellites is severely limited by the lack of long reach manipulation capability and inability to launch new devices due the end of the Space Transport System, or Space Shuttle Program. This paper describes the design and implementation of a control system for a Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN), including; defining the forward and inverse kinematics, endpoint velocity to motor velocity, required cable tensions, and a proportional-integral-derivative (PID) controller. The tensions and velocities necessary to maneuver and capture small and large payloads are also discussed. To demonstrate the utility of the TALISMAN for satellite servicing, this paper also describes a satellite servicing demonstration using two TALISMAN prototypes to grasp and inspect a satellite mockup. Potential avenues for improving the control system are discussed.
NASA Technical Reports Server (NTRS)
Defeo, P.; Chen, M.
1987-01-01
Means for evaluating data bus architectures and protocols for highly integrated flight control system applications are needed. Described are the criteria and plans to do this by using the NASA/Ames Intelligent Redundant Actuation System (IRAS) experimental set-up. Candidate bus architectures differ from one another in terms of: topology, access control, message transfer schemes, message characteristics, initialization. data flow control, transmission rates, fault tolerance, and time synchronization. The evaluation criteria are developed relative to these features. A preliminary, analytical evaluation of four candidate busses (MIL-STD-1553B, DATAC, Ethernet, and HSIS) is described. A bus must be exercised in a real-time environment to evaluate its dynamic characteristics. A plan for real-time evaluation of these four busses using a combination of hardware and simulation techniques is presented.
NASA Technical Reports Server (NTRS)
Sandusky, John V.; Jeganathan, M.; Ortiz, G.; Biswas, A.; Lee, S.; Parker, G.; Liu, B.; Johnson, D.; DePew, J.; Lesh, J. R.
2000-01-01
Tlis paper presents an overview of the preliminary design of both the flight and ground systems of the Optical Communication Demonstration and High-Rate Link Facility which will demonstrate optical communication from the International Space Station to ground after its deployment in October 2002. The overview of the preliminary design of the Flight System proceeds by contrasting it with the design of the laboratory-model unit, emphasizing key changes and the rationale behind the design choices. After presenting the preliminary design of the Ground System, the timetable for the construction and deployment of the flight and ground systems is outlined.
NASA Technical Reports Server (NTRS)
Hiser, L. L.; Herrera, W. R.
1973-01-01
A search was made of NASA developed technology and commercial technology for process control sensors and instrumentation which would be applicable to the operation of municipal sewage treatment plants. Several notable items were found from which process control concepts were formulated that incorporated these items into systems to automatically operate municipal sewage treatment plants. A preliminary design of the most promising concept was developed into a process control scheme for an activated sludge treatment plant. This design included process control mechanisms for maintaining constant food to sludge mass (F/M) ratio, and for such unit processes as primary sedimentation, sludge wastage, and underflow control from the final clarifier.
Liu, Nan; Zhang, Hongzhe; Zhang, Shanshan
2014-12-01
Emerging infectious disease is one of the most minatory threats in modern society. A perfect medical building network system need to be established to protect and control emerging infectious disease. Although in China a preliminary medical building network is already set up with disease control center, the infectious disease hospital, infectious diseases department in general hospital and basic medical institutions, there are still many defects in this system, such as simple structural model, weak interoperability among subsystems, and poor capability of the medical building to adapt to outbreaks of infectious disease. Based on the characteristics of infectious diseases, the whole process of its prevention and control and the comprehensive influence factors, three-dimensional medical architecture network system is proposed as an inevitable trend. In this conception of medical architecture network structure, the evolutions are mentioned, such as from simple network system to multilayer space network system, from static network to dynamic network, and from mechanical network to sustainable network. Ultimately, a more adaptable and corresponsive medical building network system will be established and argued in this paper.
Thermal Management Tools for Propulsion System Trade Studies and Analysis
NASA Technical Reports Server (NTRS)
McCarthy, Kevin; Hodge, Ernie
2011-01-01
Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.
340 Facility secondary containment and leak detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendixsen, R.B.
1995-01-31
This document presents a preliminary safety evaluation for the 340 Facility Secondary Containment and Leak Containment system, Project W-302. Project W-302 will construct Building 340-C which has been designed to replace the current 340 Building and vault tank system for collection of liquid wastes from the Pacific Northwest Laboratory buildings in the 300 Area. This new nuclear facility is Hazard Category 3. The vault tank and related monitoring and control equipment are Safety Class 2 with the remainder of the structure, systems and components as Safety Class 3 or 4.
Shuttle crew escape systems (CES) rocket test at Hurricane Mesa, Utah
1987-11-12
Shuttle crew escape systems (CES) tractor rocket tests conducted at Hurricane Mesa, Utah. This preliminary ground test of the tractor rocket will lead up to in-air evaluations. View shows tractor rocket as it is fired from side hatch mockup. The tractor rocket concept is one of two escape methods being studied to provide crew egress capability during Space Shuttle controlled gliding flight. In-air tests of the system, utilizing a Convair-240 aircraft, will begin 11-19-87 at the Naval Weapons Center in China Lake, California.
Commercialization of the Stone and Webster/Conoco SCB technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, R.C.; Johnson, W.B.; Ratliff, B.D.
1982-06-01
Stone and Webster have developed a second generation recirculating fluidized bed boiler system, named Solids Circulation Boiler (SCB). The heart of the system is the recirculating fluidized bed, which is schematized, and explained. In November 1981 Conoco announced plans to construct an SCB at Lake Charles LA. Preliminary plot plan and elevation drawings are provided. The advantages of SCB are its rapid and controlled turn on and turn down capability, high carbon efficiency, simple coal and limestone feed system, high sulphur capture, compact design, and low NOx emission.
Marini, G W; Wellguni, H
2003-01-01
The worsening environmental situation of the Brantas River, East Java, is addressed by a comprehensive basin management strategy which relies on accurate water quantity and quality data retrieved from a newly installed online monitoring network. Integrated into a Hydrological Information System, the continuously measured indicative parameters allow early warning, control and polluter identification. Additionally, long-term analyses have been initiated for improving modelling applications like flood forecasting, water resource management and pollutant propagation. Preliminary results illustrate the efficiency of the installed system.
[Preliminary application of scripting in RayStation TPS system].
Zhang, Jianying; Sun, Jing; Wang, Yun
2013-07-01
Discussing the basic application of scripting in RayStation TPS system. On the RayStation 3.0 Platform, the programming methods and the points should be considered during basic scripting application were explored with the help of utility scripts. The typical planning problems in the field of beam arrangement and plan outputting were used as examples by ironprthon language. The necessary properties and the functions of patient object for script writing can be extracted from RayStation system. With the help of NET controls, planning functions such as the interactive parameter input, treatment planning control and the extract of the plan have been realized by scripts. With the help of demo scripts, scripts can be developed in RayStation, as well as the system performance can be upgraded.
An instrument thermal data base system. [for future shuttle missions
NASA Technical Reports Server (NTRS)
Bartoszek, J. T.; Csigi, K. I.; Ollendorf, S.; Oberright, J. E.
1981-01-01
The rationale for the implementation of an Instrument Thermal Data Base System (ITDBS) is discussed and the potential application of a data base management system in support of future space missions, the design of scientific instruments needed, and the potential payload groupings is described. Two basic data files are suggested, the first containing a detailed narrative information list pertaining to design configurations and optimum performance of each instrument, and the second consisting of a description of the parameters pertinent to the instruments' thermal control and design in the form of a summary record of coded information, and serving as a recall record. The applicability of a data request sheet for preliminary planning is described and is concluded that the proposed system may additionally prove to be a method of inventory control.
PRELIMINARY RESULTS: EVALUATIONS OF THE ALTERNATIVE ASBESTOS CONTROL METHOD FOR BUILDING DEMOLITION
This presentation describes the preliminary results of the evaluations of the alternative asbestos control method for demolishing buildings containing asbestos, and are covered under the regulatory requirements of the Asbestos NESHAP. This abstract and presentation are based, at ...
SPHERES tethered formation flight testbed: application to NASA's SPECS mission
NASA Astrophysics Data System (ADS)
Chung, Soon-Jo; Kong, Edmund M.; Miller, David W.
2005-08-01
This paper elaborates on theory and experiment of the formation flight control for the future space-borne tethered interferometers. The nonlinear equations of multi-vehicle tethered spacecraft system are derived by Lagrange equations and decoupling method. The preliminary analysis predicts unstable dynamics depending on the direction of the tether motor. The controllability analysis indicates that both array resizing and spin-up are fully controllable only by the reaction wheels and the tether motor, thereby eliminating the need for thrusters. Linear and nonlinear decentralized control techniques have been implemented into the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations. The nonlinear control using feedback linearization technique performed successfully in both two SPHERES in-line configuration and three triangular configuration while varying the tether length. The relative metrology system, using the ultra sound metrology system and the inertial sensors as well as the decentralized nonlinear estimator, is developed to provide necessary state information.
Development of optical-electronic system for the separation of cullet
NASA Astrophysics Data System (ADS)
Solovey, Alexey A.; Alekhin, Artem A.
2017-06-01
Broken glass being the waste in many fields of production is usually used as a raw material in the production of construction materials. The purity level of collected and processed glass cullet, as a rule, is quite low. Direct usage of these materials without preliminary processing leads to the emergence of defects in the end product or sometimes even to technological downtime. That's why purity control of cullet should be strictly verified. The study shows the method of construction and requirements for an optical-electronic system designed for cullet separation. Moreover, the author proposes a registration channel scheme and shows a scheme of control exposure area. Also the issues of image processing for the implementation of a typical system are examined.
Hardware Implementation of COTS Avionics System on Unmanned Aerial Vehicle Platforms
NASA Technical Reports Server (NTRS)
Yeh, Yoo-Hsiu; Kumar, Parth; Ishihara, Abraham; Ippolito, Corey
2010-01-01
Unmanned Aerial Vehicles (UAVs) can serve as low cost and low risk platforms for flight testing in Aeronautics research. The NASA Exploration Aerial Vehicle (EAV) and Experimental Sensor-Controlled Aerial Vehicle (X-SCAV) UAVs were developed in support of control systems research at NASA Ames Research Center. The avionics hardware for both systems has been redesigned and updated, and the structure of the EAV has been further strengthened. Preliminary tests show the avionics operate properly in the new configuration. A linear model for the EAV also was estimated from flight data, and was verified in simulation. These modifications and results prepare the EAV and X-SCAV to be used in a wide variety of flight research projects.
Electronic systems for the new multichannel spectrometer at Sacramento Peak.
NASA Technical Reports Server (NTRS)
Hobbs, R. W.; Harris, G. D.; Epstein, G.
1972-01-01
Description of the design features and operation of a new multichannel solar spectrometer to be used for ground-based observations of active regions whose X-ray and EUV emissions are studied by the OSO-H and other satellites. The electronic systems associated with the instrument include (1) an electrooptical guider controlled by a punched paper tape capable of making raster scans of selected portions of the solar disk, (2) a programmer unit that applies paper-tape commands to various portions of the instrument, (3) a closed-loop servosystem for the vacuum heliostat, (4) stepping motor controls for spectral scans, (5) a 40-channel photomultiplier readout, and (6) a magnetometer. Preliminary solar observations indicate satisfactory performance of the system.
Update on the Puerto Rico Electric Power Authority`s spinning reserve battery system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.A.
1996-11-01
The Puerto Rico Electric Power Authority completed start-up testing and began commercial operation of a 20MW/14MWh battery energy storage facility in April 1995. The battery system was installed to provide rapid spinning reserve and frequency control for the utility`s island electrical system. This paper outlines the needs of an island utility for rapid spinning reserve; identifies Puerto Rico`s unique challenges; reviews the technical and economic analyses that justified installation of a battery energy system; describes the storage facility that was installed; and presents preliminary operating results of the facility.
The 727 approach energy management system avionics specification (preliminary)
NASA Technical Reports Server (NTRS)
Jackson, D. O.; Lambregts, A. A.
1976-01-01
Hardware and software requirements for an Approach Energy Management System (AEMS) consisting of an airborne digital computer and cockpit displays are presented. The displays provide the pilot with a visual indication of when to manually operate the gear, flaps, and throttles during a delayed flap approach so as to reduce approach time, fuel consumption, and community noise. The AEMS is an independent system that does not interact with other navigation or control systems, and is compatible with manually flown or autopilot coupled approaches. Operational use of the AEMS requires a DME ground station colocated with the flight path reference.
Flutter suppression control law synthesis for the Active Flexible Wing model
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek; Perry, Boyd, III; Noll, Thomas E.
1989-01-01
The Active Flexible Wing Project is a collaborative effort between the NASA Langley Research Center and Rockwell International. The objectives are the validation of methodologies associated with mathematical modeling, flutter suppression control law development and digital implementation of the control system for application to flexible aircraft. A flutter suppression control law synthesis for this project is described. The state-space mathematical model used for the synthesis included ten flexible modes, four control surface modes and rational function approximation of the doublet-lattice unsteady aerodynamics. The design steps involved developing the full-order optimal control laws, reducing the order of the control law, and optimizing the reduced-order control law in both the continuous and the discrete domains to minimize stochastic response. System robustness was improved using singular value constraints. An 8th order robust control law was designed to increase the symmetric flutter dynamic pressure by 100 percent. Preliminary results are provided and experiences gained are discussed.
Task oriented nonlinear control laws for telerobotic assembly operations
NASA Technical Reports Server (NTRS)
Walker, R. A.; Ward, L. S.; Elia, C. F.
1987-01-01
The goal of this research is to achieve very intelligent telerobotic controllers which are capable of receiving high-level commands from the human operator and implementing them in an adaptive manner in the object/task/manipulator workspace. Initiatives by the authors at Integrated Systems, Inc. to identify and develop the key technologies necessary to create such a flexible, highly programmable, telerobotic controller are presented. The focus of the discussion is on the modeling of insertion tasks in three dimensions and nonlinear implicit force feedback control laws which incorporate tool/workspace constraints. Preliminary experiments with dual arm beam assembly in 2-D are presented.
2009-01-01
Report documents trade studies and preliminary design of the energy storage flywheel and associated motor /generator, the final system topology, high...27 Flywheel Motor /Generator Model ...................................................................30 Controlled Rectifier...0.4 s...........27 Figure 33. One of the two flywheels in the simulation circuit with its motor /generator
Aeroelastic Considerations in the Preliminary Design Aircraft
1983-09-01
system for aeroelastic analysis FINDEX- Lockheed’s DMS for matrices and NASTRAN tables FSD- fully stressed design algorithm Lockheed- Lockheed-California...Company MLC- maneuver load control NASA- National Aeronautics and Space Adminstration NASTRAN - structural finite element program developed by NASA...Computer Program Validation All major computing programs (FAMAS, NASTRAN , etc.), except the weight distribution program, the panel sizing and allowable
ERIC Educational Resources Information Center
Rice, TeKisha M.; McGill, Julianne; Adler-Baeder, Francesca
2017-01-01
Background: Relationship education (RE), often employed for adults, has become increasingly available for teenagers. However, non-romantic relationships are rarely assessed as a potential outcome domain influenced by RE. Objective: Informed by life course theory and the ecological systems perspective, this study examines the influence of RE on…
Douglas-fir container stock grown with fertilizer-amended media: Some preliminary results
Diane L. Haase; John Trobaugh; Robin Rose
2002-01-01
Incorporating fertilizer directly into the container growing media is a very new practice. Previously, it was believed that such a practice would result in toxicity due to direct contact with the root system and/or over fertilization. However, with the improved technology for controlled-release fertilizer, there is renewed interest in this practice. The objective of...
Development and Preliminary Results of CTAS on Airline Operational Control Center Operations
NASA Technical Reports Server (NTRS)
Zelenka, Richard; Beatty, Roger; Falcone, Richard; Engelland, Shawn; Tobias, Leonard (Technical Monitor)
1998-01-01
Continued growth and expansion of air traffic and increased air carrier economic pressures have mandated greater flexibility and collaboration in air traffic management. The ability of airspace users to select their own routes, so called "free-flight", and to more actively manage their fleet operations for maximum economic advantage are receiving great attention. A first step toward greater airspace user and service provider collaboration is information sharing. In this work, arrival scheduling and airspace management data generated by the NASA/FAA Center/TRACON Automation System (CTAS) and used by the FAA service provider is shared with an airline with extensive operations within the CTAS operational domain. The design and development of a specialized airline CTAS "repeater" system is described, as well as some preliminary results of the impact and benefits of this information on the air carrier's operations. FAA controller per aircraft scheduling information, such as that provided by CTAS, has never before been shared in real-time with an airline. Expected airline benefits include improved fleet planning and arrival gate management, more informed "hold-go" decisions, and avoidance of costly aircraft diversions to alternate airports when faced with uncertain airborne arrival delays.
Development and Preliminary Results of CTAS on Airline Operational Control Center Operations
NASA Technical Reports Server (NTRS)
Zelenka, Richard; Beatty, Roger; Engelland, Shawn
2004-01-01
Continued growth and expansion of air traffic and increased air carrier economic pressures have mandated greater flexibility and collaboration in air traffic management. The ability of airspace users to select their own routes, so called "free-flight", and to more actively manage their fleet operations for maximum economic advantage are receiving great attention. A first step toward greater airspace user and service provider collaboration is information sharing. In this work, arrival scheduling and airspace management data generated by the NASA/FAA Center/TRACON Automation System (CTAS) and used by the FAA service provider is shared with an airline with extensive operations within the CTAS operational domain. The design and development of a specialized airline CTAS "repeater" system is described, as well as some preliminary results of the impact and benefits of this information on the air carrier's operations. FAA controller per aircraft scheduling information, such as that provided by CTAS, has never before been shared in real-time with an airline. Expected airline benefits include improved fleet planning and arrival gate management, more informed "hold-go decisions, and avoidance of costly aircraft diversions to alternate airports when faced with uncertain airborne arrival delays.
HSI Guidelines Outline for the Air Vehicle Control Station. Version 2
NASA Technical Reports Server (NTRS)
2006-01-01
This document provides guidance to the FAA and manufacturers on how to develop UAS Pilot Vehicle Interfaces to safely and effectively integrate UASs into the NAS. Preliminary guidelines are provided for Aviate, Communicate, Navigate and Avoid Hazard functions. The pilot shall have information and control capability so that pilot-UA interactions are not adverse, unfavorable, nor compromise safety. Unfavorable interactions include anomalous aircraft-pilot coupling (APC) interactions (closed loop), pilot-involved oscillations (categories I, II or III), and non-oscillatory APC events (e.g., divergence). - Human Systems Integration Pilot-Technology Interface Requirements for Command, Control, and Communications (C3)
Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2004-01-01
This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.
Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2003-01-01
This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.
Preliminary design package for prototype solar heating system
NASA Technical Reports Server (NTRS)
1978-01-01
A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include system candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test.
NASA Technical Reports Server (NTRS)
Hart, S. W.
1982-01-01
A preliminary characterization of Orbital Maneuvering System (OMS) and Reaction Control System (RCS) engine point designs over a range of thrust and chamber pressure for several hydrocarbon fuels is reported. OMS and RCS engine point designs were established in two phases comprising baseline and parametric designs. Interface pressures, performance and operating parameters, combustion chamber cooling and turboprop requirements, component weights and envelopes, and propellant conditioning requirements for liquid to vapor phase engine operation are defined.
Operational calm and the optimum regulation of human working capacity
NASA Technical Reports Server (NTRS)
Ilin, Y. P.
1975-01-01
Muscle hardness measurements in a squeezing dynamometer test are interpreted for expressions of adjustment effects of the central nervous system in rapid response to a starting signal. It is shown that preliminary muscle tension leads to the transmission of inhibiting proprioceptive impulses to the nervous system centers and that the degree of pre-working changes depends on the individual's typological personality characteristics. Concentration of attention during the pre-working adjustment is considered the primary emotional factor that controls sensorimotor performance.
Design of barrier bucket kicker control system
NASA Astrophysics Data System (ADS)
Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li
2018-05-01
The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.
Toxic release consequence analysis tool (TORCAT) for inherently safer design plant.
Shariff, Azmi Mohd; Zaini, Dzulkarnain
2010-10-15
Many major accidents due to toxic release in the past have caused many fatalities such as the tragedy of MIC release in Bhopal, India (1984). One of the approaches is to use inherently safer design technique that utilizes inherent safety principle to eliminate or minimize accidents rather than to control the hazard. This technique is best implemented in preliminary design stage where the consequence of toxic release can be evaluated and necessary design improvements can be implemented to eliminate or minimize the accidents to as low as reasonably practicable (ALARP) without resorting to costly protective system. However, currently there is no commercial tool available that has such capability. This paper reports on the preliminary findings on the development of a prototype tool for consequence analysis and design improvement via inherent safety principle by utilizing an integrated process design simulator with toxic release consequence analysis model. The consequence analysis based on the worst-case scenarios during process flowsheeting stage were conducted as case studies. The preliminary finding shows that toxic release consequences analysis tool (TORCAT) has capability to eliminate or minimize the potential toxic release accidents by adopting the inherent safety principle early in preliminary design stage. 2010 Elsevier B.V. All rights reserved.
ATTDES: An Expert System for Satellite Attitude Determination and Control. 2
NASA Technical Reports Server (NTRS)
Mackison, Donald L.; Gifford, Kevin
1996-01-01
The design, analysis, and flight operations of satellite attitude determintion and attitude control systems require extensive mathematical formulations, optimization studies, and computer simulation. This is best done by an analyst with extensive education and experience. The development of programs such as ATTDES permit the use of advanced techniques by those with less experience. Typical tasks include the mission analysis to select stabilization and damping schemes, attitude determination sensors and algorithms, and control system designs to meet program requirements. ATTDES is a system that includes all of these activities, including high fidelity orbit environment models that can be used for preliminary analysis, parameter selection, stabilization schemes, the development of estimators covariance analyses, and optimization, and can support ongoing orbit activities. The modification of existing simulations to model new configurations for these purposes can be an expensive, time consuming activity that becomes a pacing item in the development and operation of such new systems. The use of an integrated tool such as ATTDES significantly reduces the effort and time required for these tasks.
Preliminary Guidelines For Using Suppression Fires to Control Wildfires in the Southeast
Robert W. Cooper
1969-01-01
Suppression firing is defied as the application of fire to speed or strengthen control action on free-burning wildfires. The key to successful suppression firing is availability of personnel knowledgeable in specific application plus an adequate supply of manpower and equipment to contain the set fire. Preliminary guidelines for the use of this fire-control tool are...
NASA Technical Reports Server (NTRS)
Michal, Todd R.
1998-01-01
This study supports the NASA Langley sponsored project aimed at determining the viability of using Euler technology for preliminary design use. The primary objective of this study was to assess the accuracy and efficiency of the Boeing, St. Louis unstructured grid flow field analysis system, consisting of the MACGS grid generation and NASTD flow solver codes. Euler solutions about the Aero Configuration/Weapons Fighter Technology (ACWFT) 1204 aircraft configuration were generated. Several variations of the geometry were investigated including a standard wing, cambered wing, deflected elevon, and deflected body flap. A wide range of flow conditions, most of which were in the non-linear regimes of the flight envelope, including variations in speed (subsonic, transonic, supersonic), angles of attack, and sideslip were investigated. Several flowfield non-linearities were present in these solutions including shock waves, vortical flows and the resulting interactions. The accuracy of this method was evaluated by comparing solutions with test data and Navier-Stokes solutions. The ability to accurately predict lateral-directional characteristics and control effectiveness was investigated by computing solutions with sideslip, and with deflected control surfaces. Problem set up times and computational resource requirements were documented and used to evaluate the efficiency of this approach for use in the fast paced preliminary design environment.
Robotic-Assisted Knee Arthroplasty: An Overview.
van der List, Jelle P; Chawla, Harshvardhan; Pearle, Andrew D
2016-01-01
Unicompartmental knee arthroplasty and total knee arthroplasty are reliable treatment options for osteoarthritis. In order to improve survivorship rates, variables that are intraoperatively controlled by the orthopedic surgeon are being evaluated. These variables include lower leg alignment, soft tissue balance, joint line maintenance, and tibial and femoral component alignment, size, and fixation methods. Since tighter control of these factors is associated with improved outcomes of knee arthroplasty, several computer-assisted surgery systems have been developed. These systems differ in the number and type of variables they control. Robotic-assisted systems control these aforementioned variables and, in addition, aim to improve the surgical precision of the procedure. Robotic-assisted systems are active, semi-active, or passive, depending on how independently the systems perform maneuvers. Reviewing the robotic-assisted knee arthroplasty systems, it becomes clear that these systems can accurately and reliably control the aforementioned variables. Moreover, these systems are more accurate and reliable in controlling these variables when compared to the current gold standard of conventional manual surgery. At present, few studies have assessed the survivorship and functional outcomes of robotic-assisted surgery, and no sufficiently powered studies were identified that compared survivorship or functional outcomes between robotic-assisted and conventional knee arthroplasty. Although preliminary outcomes of robotic-assisted surgery look promising, more studies are necessary to assess if the increased accuracy and reliability in controlling the surgical variables leads to better outcomes of robotic-assisted knee arthroplasty.
Greenridge Multi-Pollutant Control Project Preliminary Public Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connell, Daniel P
2009-01-12
The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, andmore » HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.« less
Feasibility of satellite interferometry for surveillance, navigation, and traffic control
NASA Technical Reports Server (NTRS)
Gopalapillai, S.; Ruck, G. T.; Mourad, A. G.
1976-01-01
The feasibility of using a satellite borne interferometry system for surveillance, navigation, and traffic control applications was investigated. The evaluation was comprised of: (1) a two part systems analysis (software and hardware); (2) a survey of competitive navigation systems (both experimental and planned); (3) a comparison of their characteristics and capabilities with those of an interferometry system; and (4) a limited survey of potential users to determine the variety of possible applications for the interferometry system and the requirements which it would have to meet. Five candidate or "strawman" interferometry systems for various applications with various capabilities were configured (on a preliminary basis) and were evaluated. It is concluded that interferometry in conjunction with a geostationary satellite has an inherent ability to provide both a means for navigation/position location and communication. It offers a very high potential for meeting a large number of user applications and requirements for navigation and related functions.
Adaptive Strategies for Controls of Flexible Arms. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Yuan, Bau-San
1989-01-01
An adaptive controller for a modern manipulator has been designed based on asymptotical stability via the Lyapunov criterion with the output error between the system and a reference model used as the actuating control signal. Computer simulations were carried out to test the design. The combination of the adaptive controller and a system vibration and mode shape estimator show that the flexible arm should move along a pre-defined trajectory with high-speed motion and fast vibration setting time. An existing computer-controlled prototype two link manipulator, RALF (Robotic Arm, Large Flexible), with a parallel mechanism driven by hydraulic actuators was used to verify the mathematical analysis. The experimental results illustrate that assumed modes found from finite element techniques can be used to derive the equations of motion with acceptable accuracy. The robust adaptive (modal) control is implemented to compensate for unmodelled modes and nonlinearities and is compared with the joint feedback control in additional experiments. Preliminary results show promise for the experimental control algorithm.
NASA Technical Reports Server (NTRS)
Zelkin, Natalie; Henriksen, Stephen
2011-01-01
This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.
Testing of a Microfluidic Sampling System for High Temperature Electrochemical MC&A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Candido; Nichols, Kevin
2013-11-27
This report describes the preliminary validation of a high-temperature microfluidic chip system for sampling of electrochemical process salt. Electroanalytical and spectroscopic techniques are attractive candidates for improvement through high-throughput sample analysis via miniaturization. Further, microfluidic chip systems are amenable to micro-scale chemical processing such as rapid, automated sample purification to improve sensor performance. The microfluidic chip was tested to determine the feasibility of the system for high temperature applications and conditions under which microfluidic systems can be used to generate salt droplets at process temperature to support development of material balance and control systems in a used fuel treatment facility.more » In FY13, the project focused on testing a quartz microchip device with molten salts at near process temperatures. The equipment was installed in glove box and tested up to 400°C using commercial thermal transfer fluids as the carrier phase. Preliminary tests were carried out with a low-melting halide salt to initially characterize the properties of this novel liquid-liquid system and to investigate the operating regimes for inducing droplet flow within candidate carrier fluids. Initial results show that the concept is viable for high temperature sampling but further development is required to optimize the system to operate with process relevant molten salts.« less
NASA Technical Reports Server (NTRS)
Korte, John J.
1990-01-01
A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.
Vibration isolation and dual-stage actuation pointing system for space precision payloads
NASA Astrophysics Data System (ADS)
Kong, Yongfang; Huang, Hai
2018-02-01
Pointing and stability requirements for future space missions are becoming more and more stringent. This work follows the pointing control method which consists of a traditional spacecraft attitude control system and a payload active pointing loop, further proposing a vibration isolation and dual-stage actuation pointing system for space precision payloads based on a soft Stewart platform. Central to the concept is using the dual-stage actuator instead of the traditional voice coil motor single-stage actuator to improve the payload active pointing capability. Based on a specified payload, the corresponding platform was designed to be installed between the spacecraft bus and the payload. The performance of the proposed system is demonstrated by preliminary closed-loop control investigations in simulations. With the ordinary spacecraft bus, the line-of-sight pointing accuracy can be controlled to below a few milliarcseconds in tip and tilt. Meanwhile, utilizing the voice coil motor with the softening spring in parallel, which is a portion of the dual-stage actuator, the system effectively achieves low-frequency motion transmission and high-frequency vibration isolation along the other four degree-of-freedom directions.
NASA Technical Reports Server (NTRS)
Fetheroff, C. W.; Derkacs, T.; Matay, I. M.
1979-01-01
An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.
ERIC Educational Resources Information Center
Hamburg, Morris; And Others
The long-term goal of this investigation is to design and establish a national model for a system of library statistical data. This is a report on The Preliminary Study which was carried out over an 11-month period ending May, 1969. The objective of The Preliminary Study was to design and delimit The Research Investigation in the most efficient…
Decentralization, stabilization, and estimation of large-scale linear systems
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Vukcevic, M. B.
1976-01-01
In this short paper we consider three closely related aspects of large-scale systems: decentralization, stabilization, and estimation. A method is proposed to decompose a large linear system into a number of interconnected subsystems with decentralized (scalar) inputs or outputs. The procedure is preliminary to the hierarchic stabilization and estimation of linear systems and is performed on the subsystem level. A multilevel control scheme based upon the decomposition-aggregation method is developed for stabilization of input-decentralized linear systems Local linear feedback controllers are used to stabilize each decoupled subsystem, while global linear feedback controllers are utilized to minimize the coupling effect among the subsystems. Systems stabilized by the method have a tolerance to a wide class of nonlinearities in subsystem coupling and high reliability with respect to structural perturbations. The proposed output-decentralization and stabilization schemes can be used directly to construct asymptotic state estimators for large linear systems on the subsystem level. The problem of dimensionality is resolved by constructing a number of low-order estimators, thus avoiding a design of a single estimator for the overall system.
Preliminary Study Using Forward Reaction Control System Jets During Space Shuttle Entry
NASA Technical Reports Server (NTRS)
Restrepo, Carolina; Valasek, John
2006-01-01
Failure or degradation of the flight control system, or hull damage, can lead to loss of vehicle control during entry. Possible failure scenarios are debris impact and wing damage that could result in a large aerodynamic asymmetry which cannot be trimmed out without additional yaw control. Currently the space shuttle uses aerodynamic control surfaces and Reaction Control System jets to control attitude. The forward jets are used for orbital maneuvering only, while the aft jets are used for yaw control during entry. This paper develops a controller for using the forward reaction control system jets as an additional control during entry, and assesses its value and feasibility during failure situations. Forward-aft jet blending logic is created, and implemented on a simplified model of the space shuttle entry flight control system. The model is validated and verified on the nonlinear, six degree-of-freedom Shuttle Engineering Simulator. A rudimentary human factors study was undertaken using the forward cockpit simulator at Johnson Space Center, to assess flying qualities of the new system and pilot workload. Results presented in the paper show that the combination of forward and aft jets provides useful additional yaw control, in addition to potential fuel savings and the ability to balance the use of the fuel in the forward and aft tanks to meet availability constraints of both forward and aft fuel tanks. Piloted simulation studies indicated that using both sets of jets while flying a damaged space shuttle reduces pilot workload, and makes the vehicle more responsive.
Preliminary design package for solar heating and hot water system
NASA Technical Reports Server (NTRS)
1976-01-01
Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.
The 30/20 GHz demonstration system SSUS-D/BSE
NASA Technical Reports Server (NTRS)
1981-01-01
The systems consisting of a 30/20 GHz communication satellite featuring a multiple fixed beam and scanning beam antenna, SS-TDMA, onboard processing and high power TWT's and IMPATT amplifiers, a trunking space-diversity Earth station, a customer premise system (CPS) portable Earth station and a Master Control Station. Hardware, software and personnel are included to build and launch one satellite and to carry on a two year experimentation and demonstration period of advanced Ka-band systems concepts and technology. Included are first level plans identifying all tasks, a schedule for system development and an assessment of critical technology and risk and a preliminary experiments plan.
NASA Technical Reports Server (NTRS)
Tewell, J. R.
1974-01-01
A preliminary design of a manipulator system, applicable to a free flying teleoperator spacecraft operating in conjunction with the shuttle or tug, is presented. A new control technique is proposed for application to the manipulator system. This technique, a range/azimuth/elevation rate-rate mode, was selected based upon the results of man-in-the-loop simulations. Several areas are identified in which additional emphasis must be placed prior to the development of the manipulator system. The study results in a manipulator system which will provide an effective method for servicing, maintaining, and repairing satellites to increase their useful life.
ODIN system technology module library, 1972 - 1973
NASA Technical Reports Server (NTRS)
Hague, D. S.; Watson, D. A.; Glatt, C. R.; Jones, R. T.; Galipeau, J.; Phoa, Y. T.; White, R. J.
1978-01-01
ODIN/RLV is a digital computing system for the synthesis and optimization of reusable launch vehicle preliminary designs. The system consists of a library of technology modules in the form of independent computer programs and an executive program, ODINEX, which operates on the technology modules. The technology module library contains programs for estimating all major military flight vehicle system characteristics, for example, geometry, aerodynamics, economics, propulsion, inertia and volumetric properties, trajectories and missions, steady state aeroelasticity and flutter, and stability and control. A general system optimization module, a computer graphics module, and a program precompiler are available as user aids in the ODIN/RLV program technology module library.
Webcam mouse using face and eye tracking in various illumination environments.
Lin, Yuan-Pin; Chao, Yi-Ping; Lin, Chung-Chih; Chen, Jyh-Horng
2005-01-01
Nowadays, due to enhancement of computer performance and popular usage of webcam devices, it has become possible to acquire users' gestures for the human-computer-interface with PC via webcam. However, the effects of illumination variation would dramatically decrease the stability and accuracy of skin-based face tracking system; especially for a notebook or portable platform. In this study we present an effective illumination recognition technique, combining K-Nearest Neighbor classifier and adaptive skin model, to realize the real-time tracking system. We have demonstrated that the accuracy of face detection based on the KNN classifier is higher than 92% in various illumination environments. In real-time implementation, the system successfully tracks user face and eyes features at 15 fps under standard notebook platforms. Although KNN classifier only initiates five environments at preliminary stage, the system permits users to define and add their favorite environments to KNN for computer access. Eventually, based on this efficient tracking algorithm, we have developed a "Webcam Mouse" system to control the PC cursor using face and eye tracking. Preliminary studies in "point and click" style PC web games also shows promising applications in consumer electronic markets in the future.
Automation and Upgrade of Thermal System for Large 38-Year-Young Test Facility
NASA Technical Reports Server (NTRS)
Webb, Andrew T.; Powers, Edward I. (Technical Monitor)
2000-01-01
The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38 years was one of the driving design factors for the size of the equipment. The installation was completed on time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.
Automation and Upgrade of Thermal System for Large 38-Year Young Test Facility
NASA Technical Reports Server (NTRS)
Webb, Andrew
2000-01-01
The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38-years was one of the driving design factors for the size of the equipment. The installation was completed on-time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Shaver, Timothy W.; Fuller, Gerald L.
2002-01-01
On February 14, 2002, the FCC adopted a FIRST REPORT AND ORDER, released it on April 22, 2002, and on May 16, 2002 published in the Federal Register a Final Rule, permitting marketing and operation of new products incorporating UWB technology. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This report provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.
NASA Technical Reports Server (NTRS)
Ostowari, Cyrus
1992-01-01
Preliminary studies have shown that maintenance of laminar flow through active boundary-layer control is viable. Current research activity at NASA Langley and NASA Dryden is utilizing the F-16XL-1 research vehicle fitted with a laminar-flow suction glove that is connected to a vacuum manifold in order to create and control laminar flow at supersonic flight speeds. This experimental program has been designed to establish the feasibility of obtaining laminar flow at supersonic speeds with highly swept wing and to provide data for computational fluid dynamics (CFD) code calibration. Flight experiments conducted as supersonic speeds have indicated that it is possible to achieve laminar flow under controlled suction at flight Mach numbers greater than 1. Currently this glove is fitted with a series of pressure belts and flush mounted hot film sensors for the purpose of determining the pressure distributions and the extent of laminar flow region past the stagnation point. The present mode of data acquisition relies on out-dated on board multi-channel FM analogue tape recorder system. At the end of each flight, the analogue data is digitized through a long laborious process and then analyzed. It is proposed to replace this outdated system with an on board state-of-the-art digital data acquisition system capable of a through put rate of up to 1 MegaHertz. The purpose of this study was three-fold: (1) to develop a simple algorithm for acquiring data via 2 analogue-to-digital convertor boards simultaneously (total of 32 channels); (2) to interface hot-film/wire anemometry instrumentation with a PCAT type computer; and (3) to characterize the frequency response of a flush mounted film sensor. A brief description of each of the above tasks along with recommendations are given.
Preliminary design activities for solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.
Preliminary basic performance analysis of the Cedar multiprocessor memory system
NASA Technical Reports Server (NTRS)
Gallivan, K.; Jalby, W.; Turner, S.; Veidenbaum, A.; Wijshoff, H.
1991-01-01
Some preliminary basic results on the performance of the Cedar multiprocessor memory system are presented. Empirical results are presented and used to calibrate a memory system simulator which is then used to discuss the scalability of the system.
NASA Astrophysics Data System (ADS)
Stavropoulou, Eleni; Briffaut, Matthieu; Dufour, Frédéric; Camps, Guillaume; Boulon, Marc
2017-06-01
A new experimental apparatus is presented for testing the time-dependent behaviour of interfaces, including in particular interfaces of geomaterials, under constant loading. This apparatus allows the application of two orthogonal loads normal and tangential to the mean plane of the interface, as well as the measurement of the axial and tangential relative displacements. The sample is moulded inside two half shear boxes and the system is designed in such a way that the shear force is applied along the mean plane of the interface. Some preliminary testing was carried out on a clay rock/concrete interface, under a controlled temperature environment. Preliminary results are presented, showing the evolution of the delayed displacements.
Thrust vector control algorithm design for the Cassini spacecraft
NASA Technical Reports Server (NTRS)
Enright, Paul J.
1993-01-01
This paper describes a preliminary design of the thrust vector control algorithm for the interplanetary spacecraft, Cassini. Topics of discussion include flight software architecture, modeling of sensors, actuators, and vehicle dynamics, and controller design and analysis via classical methods. Special attention is paid to potential interactions with structural flexibilities and propellant dynamics. Controller performance is evaluated in a simulation environment built around a multi-body dynamics model, which contains nonlinear models of the relevant hardware and preliminary versions of supporting attitude determination and control functions.
Thermal Control Subsystem Design for the Avionics of a Space Station Payload
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
1996-01-01
A case study of the thermal control subsystem development for a space based payload is presented from the concept stage through preliminary design. This payload, the Space Acceleration Measurement System 2 (SAMS-2), will measure the acceleration environment at select locations within the International Space Station. Its thermal control subsystem must maintain component temperatures within an acceptable range over a 10 year life span, while restricting accessible surfaces to touch temperature limits and insuring fail safe conditions in the event of loss of cooling. In addition to these primary design objectives, system level requirements and constraints are imposed on the payload, many of which are driven by multidisciplinary issues. Blending these issues into the overall system design required concurrent design sessions with the project team, iterative conceptual design layouts, thermal analysis and modeling, and hardware testing. Multiple tradeoff studies were also performed to investigate the many options which surfaced during the development cycle.
Some preliminary results from the NWTC direct-drive, variable-speed test bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.; Fingersh, L.J.
1996-10-01
With the remarkable rise in interest in variable-speed operation of larger wind turbines, it has become important for the National Wind Technology Center (NWTC) to have access to a variable-speed test bed that can be specially instrumented for research. Accordingly, a three-bladed, 10-meter, downwind, Grumman Windstream machine has been equipped with a set of composite blades and a direct-coupled, permanent-magnet, 20 kilowatt generator. This machine and its associated control system and data collection system are discussed. Several variations of a maximum power control algorithm have been installed on the control computer. To provide a baseline for comparison, several constant speedmore » algorithms have also been installed. The present major effort is devoted to daytime, semi-autonomous data collection.« less
Laser interferometer space antenna dynamics and controls model
NASA Astrophysics Data System (ADS)
Maghami, Peiman G.; Tupper Hyde, T.
2003-05-01
A 19 degree-of-freedom (DOF) dynamics and controls model of a laser interferometer space antenna (LISA) spacecraft has been developed. This model is used to evaluate the feasibility of the dynamic pointing and positioning requirements of a typical LISA spacecraft. These requirements must be met for LISA to be able to successfully detect gravitational waves in the frequency band of interest (0.1-100 mHz). The 19-DOF model includes all rigid-body degrees of freedom. A number of disturbance sources, both internal and external, are included. Preliminary designs for the four control systems that comprise the LISA disturbance reduction system (DRS) have been completed and are included in the model. Simulation studies are performed to demonstrate that the LISA pointing and positioning requirements are feasible and can be met.
Agile development approach for the observatory control software of the DAG 4m telescope
NASA Astrophysics Data System (ADS)
Güçsav, B. Bülent; ćoker, Deniz; Yeşilyaprak, Cahit; Keskin, Onur; Zago, Lorenzo; Yerli, Sinan K.
2016-08-01
Observatory Control Software for the upcoming 4m infrared telescope of DAG (Eastern Anatolian Observatory in Turkish) is in the beginning of its lifecycle. After the process of elicitation-validation of the initial requirements, we have been focused on preparation of a rapid conceptual design not only to see the big picture of the system but also to clarify the further development methodology. The existing preliminary designs for both software (including TCS and active optics control system) and hardware shall be presented here in brief to exploit the challenges the DAG software team has been facing with. The potential benefits of an agile approach for the development will be discussed depending on the published experience of the community and on the resources available to us.
40 CFR 1045.210 - May I get preliminary approval before I complete my application?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false May I get preliminary approval before I complete my application? 1045.210 Section 1045.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...
40 CFR 1045.210 - May I get preliminary approval before I complete my application?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false May I get preliminary approval before I complete my application? 1045.210 Section 1045.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...
40 CFR 1045.210 - May I get preliminary approval before I complete my application?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false May I get preliminary approval before I complete my application? 1045.210 Section 1045.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...
40 CFR 1045.210 - May I get preliminary approval before I complete my application?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false May I get preliminary approval before I complete my application? 1045.210 Section 1045.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...
40 CFR 1045.210 - May I get preliminary approval before I complete my application?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false May I get preliminary approval before I complete my application? 1045.210 Section 1045.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...
The paper discusses preliminary performance and cost estimates of mercury emission control options for electric utility boilers. Under the Clean Air Act Amendments of 1990, EPA had to determine whether mercury emissions from coal-fired power plants should be regulated. To a...
Second generation experiments in fault tolerant software
NASA Technical Reports Server (NTRS)
Knight, J. C.
1987-01-01
The purpose of the Multi-Version Software (MVS) experiment is to obtain empirical measurements of the performance of multi-version systems. Twenty version of a program were prepared under reasonably realistic development conditions from the same specifications. The overall structure of the testing environment for the MVS experiment and its status are described. A preliminary version of the control system is described that was implemented for the MVS experiment to allow the experimenter to have control over the details of the testing. The results of an empirical study of error detection using self checks are also presented. The analysis of the checks revealed that there are great differences in the ability of individual programmers to design effective checks.
Hubble Space Telescope electrical power system
NASA Technical Reports Server (NTRS)
Whitt, Thomas H.; Bush, John R., Jr.
1990-01-01
The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.
Nonlinear Dynamic Modeling and Controls Development for Supersonic Propulsion System Research
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George; Paxson, Daniel E.; Stuber, Eric; Woolwine, Kyle
2012-01-01
This paper covers the propulsion system component modeling and controls development of an integrated nonlinear dynamic simulation for an inlet and engine that can be used for an overall vehicle (APSE) model. The focus here is on developing a methodology for the propulsion model integration, which allows for controls design that prevents inlet instabilities and minimizes the thrust oscillation experienced by the vehicle. Limiting thrust oscillations will be critical to avoid exciting vehicle aeroelastic modes. Model development includes both inlet normal shock position control and engine rotor speed control for a potential supersonic commercial transport. A loop shaping control design process is used that has previously been developed for the engine and verified on linear models, while a simpler approach is used for the inlet control design. Verification of the modeling approach is conducted by simulating a two-dimensional bifurcated inlet and a representative J-85 jet engine previously used in a NASA supersonics project. Preliminary results are presented for the current supersonics project concept variable cycle turbofan engine design.
A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design
NASA Technical Reports Server (NTRS)
Cox, Timothy H.; Cotting, M. Christopher
2005-01-01
A generic control system framework for both real-time and batch six-degree-of-freedom simulations is presented. This framework uses a simplified dynamic inversion technique to allow for stabilization and control of any type of aircraft at the pilot interface level. The simulation, designed primarily for the real-time simulation environment, also can be run in a batch mode through a simple guidance interface. Direct vehicle-state acceleration feedback is required with the simplified dynamic inversion technique. The estimation of surface effectiveness within real-time simulation timing constraints also is required. The generic framework provides easily modifiable control variables, allowing flexibility in the variables that the pilot commands. A direct control allocation scheme is used to command aircraft effectors. Primary uses for this system include conceptual and preliminary design of aircraft, when vehicle models are rapidly changing and knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and simulated high-performance fighter aircraft are used to demonstrate the flexibility and utility of the control system.
A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design
NASA Technical Reports Server (NTRS)
Cox, Timothy H.; Cotting, Christopher
2005-01-01
A generic control system framework for both real-time and batch six-degree-of-freedom (6-DOF) simulations is presented. This framework uses a simplified dynamic inversion technique to allow for stabilization and control of any type of aircraft at the pilot interface level. The simulation, designed primarily for the real-time simulation environment, also can be run in a batch mode through a simple guidance interface. Direct vehicle-state acceleration feedback is required with the simplified dynamic inversion technique. The estimation of surface effectiveness within real-time simulation timing constraints also is required. The generic framework provides easily modifiable control variables, allowing flexibility in the variables that the pilot commands. A direct control allocation scheme is used to command aircraft effectors. Primary uses for this system include conceptual and preliminary design of aircraft, when vehicle models are rapidly changing and knowledge of vehicle 6-DOF performance is required. A simulated airbreathing hypersonic vehicle and simulated high-performance fighter aircraft are used to demonstrate the flexibility and utility of the control system.
Next generation 9-1-1 system : preliminary concept of operations.
DOT National Transportation Integrated Search
2005-12-01
The purpose of this document is to provide a preliminary Concept of Operations for the : Next Generation (NG9-1-1) system (or system of systems). The U.S. Department of : Transportation (DOT) understands that access to emergency services provid...
Real-Time Payload Control and Monitoring on the World Wide Web
NASA Technical Reports Server (NTRS)
Sun, Charles; Windrem, May; Givens, John J. (Technical Monitor)
1998-01-01
World Wide Web (W3) technologies such as the Hypertext Transfer Protocol (HTTP) and the Java object-oriented programming environment offer a powerful, yet relatively inexpensive, framework for distributed application software development. This paper describes the design of a real-time payload control and monitoring system that was developed with W3 technologies at NASA Ames Research Center. Based on Java Development Toolkit (JDK) 1.1, the system uses an event-driven "publish and subscribe" approach to inter-process communication and graphical user-interface construction. A C Language Integrated Production System (CLIPS) compatible inference engine provides the back-end intelligent data processing capability, while Oracle Relational Database Management System (RDBMS) provides the data management function. Preliminary evaluation shows acceptable performance for some classes of payloads, with Java's portability and multimedia support identified as the most significant benefit.
Design study for LANDSAT-D attitude control system
NASA Technical Reports Server (NTRS)
Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.; Mayo, R. A.; Nakano, H.
1977-01-01
The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse.
Cabasse, C; Marie-Cousin, A; Huet, A; Sixou, J L
2015-03-01
Anesthetizing MIH (Molar and Incisor Hypomineralisation) teeth is one of the major challenges in paediatric dentistry. Computer-assisted IO injection (CAIO) of 4% articaine with 1:200,000 epinephrine (Alphacaine, Septodont) has been shown to be an efficient way to anesthetize teeth in children. The aim of this study was to assess the efficacy of this method with MIH teeth. This preliminary study was performed using the Quick Sleeper system (Dental Hi Tec, Cholet, France) that allows computer-controlled rotation of the needle to penetrate the bone and computer-controlled injection of the anaesthetic solution. Patients (39) of the department of Paediatric Dentistry were included allowing 46 sessions (including 32 mandibular first permanent molars) to be assessed. CAIO showed efficacy in 93.5% (43/46) of cases. Failures (3) were due to impossibility to reach the spongy bone (1) and to achieve anaesthesia (2). This prospective study confirms that CAIO anaesthesia is a promising method to anesthetize teeth with MIH that could therefore be routinely used by trained practitioners.
Space station preliminary design report
NASA Technical Reports Server (NTRS)
1982-01-01
The results of a 3 month preliminary design and analysis effort is presented. The configuration that emerged consists of a very stiff deployable truss structure with an overall triangular cross section having universal modules attached at the apexes. Sufficient analysis was performed to show feasibility of the configuration. An evaluation of the structure shows that desirable attributes of the configuration are: (1) the solar cells, radiators, and antennas will be mounted to stiff structure to minimize control problems during orbit maintenance and correction, docking, and attitude control; (2) large flat areas are available for mounting and servicing of equipment; (3) Large mass items can be mounted near the center of gravity of the system to minimize gravity gradient torques; (4) the trusses are lightweight structures and can be transported into orbit in one Shuttle flight; (5) the trusses are expandable and will require a minimum of EVA; and (6) the modules are anticipated to be structurally identical except for internal equipment to minimize cost.
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Ouzts, Peter J.
1991-01-01
Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented.
Synthesis Methods for Robust Passification and Control
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)
2000-01-01
The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.
Reliability and Maintainability Analysis: A Conceptual Design Model
1972-03-01
Elements For a System I. Research ane Development A. Preliminary design and engineering B. Fabrication of test equipment C. Test operations D...reliability racquiro:wents, little, if any, modu larzation and auto- matic test features would be incorporated in the subsystem design, limited reliability...niaintaina~ility testing and monitoring would be conducted turing dev!qopmcnt, and little Quality Control effort, in the rell ability/’uaintainalility
Hospital acquisition or management contract: a theory of strategic choice.
Morrisey, M A; Alexander, J A
1987-01-01
Differences in the mission of the hospital and the multihospital system are key elements underlying the development of a management contract. Preliminary analysis suggests that the number of potential new acquisitions is severely limited, that contract management is not a stepping stone to acquisition, and that many recent management contracts appear to be attempts to overcome problems beyond the hospital's and the contractor's direct control.
Solid state SPS microwave generation and transmission study. Volume 1: Phase 2
NASA Technical Reports Server (NTRS)
Maynard, O. E.
1980-01-01
The solid state sandwich concept for Solar Power Station (SPS) was investigated. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. The study specifically included definition and math modeling of basic solid state microwave devices, an initial conceptual subsystems and system design, sidelobe control and system selection, an assessment of selected system concept and parametric solid state microwave power transmission system data relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers, and Gaussian tapers. A preliminary assessment of a hybrid concept using tubes and solid state is also included. There is a considerable amount of thermal analysis provided with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.
Experimental and analytical investigation of active loads control for aircraft landing gear
NASA Technical Reports Server (NTRS)
Morris, D. L.; Mcgehee, J. R.
1983-01-01
A series hydraulic, active loads control main landing gear from a light, twin-engine civil aircraft was investigated. Tests included landing impact and traversal of simulated runway roughness. It is shown that the active gear is feasible and very effective in reducing the force transmitted to the airframe. Preliminary validation of a multidegree of freedom active gear flexible airframe takeoff and landing analysis computer program, which may be used as a design tool for active gear systems, is accomplished by comparing experimental and computed data for the passive and active gears.
NASA Technical Reports Server (NTRS)
Bertelsen, W. D.
1979-01-01
A brief report, offered on a wing design, new in geometry, construction, and flight characteristics. Preliminary wind tunnel data on a three-dimensional model was well as some full-scale man-carrying test results are included. There are photos of all phases of the experiments and some figures which serve to illustrate the Bertelsen Effect, a unique focus of aerodynamic forces in the arc wing system which allows the attainment of high lift coefficients with the maintenance of pitch stability and control.
Preliminary design characteristics of a subsonic business jet concept employing laminar flow control
NASA Technical Reports Server (NTRS)
Turriziani, R. V.; Lovell, W. A.; Price, J. E.; Quartero, C. B.; Washburn, G. F.
1978-01-01
Aircraft configurations were developed with laminar flow control (LFC) and without LFC. The LFC configuration had approximately eleven percent less parasite drag and a seven percent increase in the maximum lift-to drag ratio. Although these aerodynamic advantages were partially offset by the additional weight of the LFC system, the LFC aircraft burned from six to eight percent less fuel for comparable missions. For the trans-atlantic design mission with the gross weight fixed, the LFC configuration would carry a greater payload for ten percent fuel per passenger mile.
Holsen, Laura M.; Lee, Jong-Hwan; Spaeth, Sarah B.; Ogden, Lauren A.; Klibanski, Anne; Whitfield-Gabrieli, Susan; Sloan, Richard P.; Goldstein, Jill M.
2012-01-01
The comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) is among the 10th leading cause of morbidity and mortality worldwide. Thus, understanding the co-occurrence of these disorders will have major public health significance. MDD is associated with an abnormal stress response, manifested in brain circuitry deficits, gonadal dysfunction, and autonomic nervous system (ANS) dysregulation. Contribution of the relationships between these systems to the pathophysiology of MDD is not well understood. The objective of this preliminary study was to investigate, in parallel, relationships between HPG-axis functioning, stress response circuitry activation, and parasympathetic reactivity in healthy controls and women with MDD. Using fMRI with pulse oximetry [from which we calculated the high frequency (HF) component of R-R interval variability (HF-RRV), a measure of parasympathetic modulation] and hormone data, we studied eight women with recurrent MDD in remission and six controls during a stress response paradigm. We demonstrated that hypoactivations of hypothalamus, amygdala, hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and subgenual ACC were associated with lower parasympathetic cardiac modulation in MDD women. Estradiol and progesterone attenuated group differences in the effect of HF-RRV on hypoactivation in the amygdala, hippocampus, ACC, and OFC in MDD women. Findings have implications for understanding the relationship between mood, arousal, heart regulation, and gonadal hormones, and may provide insights into MDD and CVD risk comorbidity. PMID:22395084
Finite element based N-Port model for preliminary design of multibody systems
NASA Astrophysics Data System (ADS)
Sanfedino, Francesco; Alazard, Daniel; Pommier-Budinger, Valérie; Falcoz, Alexandre; Boquet, Fabrice
2018-02-01
This article presents and validates a general framework to build a linear dynamic Finite Element-based model of large flexible structures for integrated Control/Structure design. An extension of the Two-Input Two-Output Port (TITOP) approach is here developed. The authors had already proposed such framework for simple beam-like structures: each beam was considered as a TITOP sub-system that could be interconnected to another beam thanks to the ports. The present work studies bodies with multiple attaching points by allowing complex interconnections among several sub-structures in tree-like assembly. The TITOP approach is extended to generate NINOP (N-Input N-Output Port) models. A Matlab toolbox is developed integrating beam and bending plate elements. In particular a NINOP formulation of bending plates is proposed to solve analytic two-dimensional problems. The computation of NINOP models using the outputs of a MSC/Nastran modal analysis is also investigated in order to directly use the results provided by a commercial finite element software. The main advantage of this tool is to provide a model of a multibody system under the form of a block diagram with a minimal number of states. This model is easy to operate for preliminary design and control. An illustrative example highlights the potential of the proposed approach: the synthesis of the dynamical model of a spacecraft with two deployable and flexible solar arrays.
A system level model for preliminary design of a space propulsion solid rocket motor
NASA Astrophysics Data System (ADS)
Schumacher, Daniel M.
Preliminary design of space propulsion solid rocket motors entails a combination of components and subsystems. Expert design tools exist to find near optimal performance of subsystems and components. Conversely, there is no system level preliminary design process for space propulsion solid rocket motors that is capable of synthesizing customer requirements into a high utility design for the customer. The preliminary design process for space propulsion solid rocket motors typically builds on existing designs and pursues feasible rather than the most favorable design. Classical optimization is an extremely challenging method when dealing with the complex behavior of an integrated system. The complexity and combinations of system configurations make the number of the design parameters that are traded off unreasonable when manual techniques are used. Existing multi-disciplinary optimization approaches generally address estimating ratios and correlations rather than utilizing mathematical models. The developed system level model utilizes the Genetic Algorithm to perform the necessary population searches to efficiently replace the human iterations required during a typical solid rocket motor preliminary design. This research augments, automates, and increases the fidelity of the existing preliminary design process for space propulsion solid rocket motors. The system level aspect of this preliminary design process, and the ability to synthesize space propulsion solid rocket motor requirements into a near optimal design, is achievable. The process of developing the motor performance estimate and the system level model of a space propulsion solid rocket motor is described in detail. The results of this research indicate that the model is valid for use and able to manage a very large number of variable inputs and constraints towards the pursuit of the best possible design.
Accurate Sloshing Modes Modeling: A New Analytical Solution and its Consequences on Control
NASA Astrophysics Data System (ADS)
Gonidou, Luc-Olivier; Desmariaux, Jean
2014-06-01
This study addresses the issue of sloshing modes modeling for GNC analyses purposes. On European launchers, equivalent mechanical systems are commonly used for modeling sloshing effects on launcher dynamics. The representativeness of such a methodology is discussed here. First an exact analytical formulation of the launcher dynamics fitted with sloshing modes is proposed and discrepancies with equivalent mechanical system approach are emphasized. Then preliminary comparative GNC analyses are performed using the different models of dynamics in order to evaluate the impact of the aforementioned discrepancies from GNC standpoint. Special attention is paid to system stability.
A Gimbal sizing analysis for an IPACS rotating assembly
NASA Technical Reports Server (NTRS)
Burke, P. R.; Coronato, P. A.
1985-01-01
All major components of an integrated power/attitude control system (IPACS) assembly were analyzed for testing, launch, and operational stresses. The conceptual design for the outer gimbal and mounting ring structures were developed and analyzed along with preliminary designs of the pivot and torquer assemblies. Results from the system response analysis and the thermal analysis are also presented. Gimballing of this rotating assembly should present few difficulties as the maximum gimballing rate is quite low. However, the inner gimbal assembly in its current configuration must be modified to develop the system from a laboratory concept to a realistic flight hardware status.
Dou, Kai; Nie, Yan-Gang; Wang, Yu-Jie; Liu, Yao-Zhong
2016-01-01
Previous studies have demonstrated that self-control is positively related to life satisfaction, but this association in Chinese employees and its underlying mechanism are less commonly investigated. In this preliminary study the relationships between self-control and life satisfaction and the mediating effect of job satisfaction were tested. Participants were 482 full-time employees (188 male, 294 female) from different cities in China. They answered self-report questionnaires online that assessed self-control, job satisfaction, and life satisfaction. Path analyses were conducted and bootstrap technique was used to judge the significance of the mediation. Self-control was positively related to both job and life satisfaction. More importantly, job satisfaction significantly mediated the association between self-control and life satisfaction. Furthermore, there was no significant difference in the size of the mediating effect between intrinsic and extrinsic job satisfaction. Results of this preliminary study provide further evidence of the positive association between self-control and life satisfaction. Job satisfaction is found to mediate this relationship.
Fernández-Lansac, Violeta; Crespo, María
2017-07-26
This study introduces a new coding system, the Coding and Assessment System for Narratives of Trauma (CASNOT), to analyse several language domains in narratives of autobiographical memories, especially in trauma narratives. The development of the coding system is described. It was applied to assess positive and traumatic/negative narratives in 50 battered women (trauma-exposed group) and 50 nontrauma-exposed women (control group). Three blind raters coded each narrative. Inter-rater reliability analyses were conducted for the CASNOT language categories (multirater Kfree coefficients) and dimensions (intraclass correlation coefficients). High levels of inter-rater agreement were found for most of the language domains. Categories that did not reach the expected reliability were mainly those related to cognitive processes, which reflects difficulties in operationalizing constructs such as lack of control or helplessness, control or planning, and rationalization or memory elaboration. Applications and limitations of the CASNOT are discussed to enhance narrative measures for autobiographical memories.
Dose control for noncontact laser coagulation of tissue
NASA Astrophysics Data System (ADS)
Roggan, Andre; Albrecht, Hansjoerg; Bocher, Thomas; Rygiel, Reiner; Winter, Harald; Mueller, Gerhard J.
1995-01-01
Nd:YAG lasers emitting at 1064 nm are often used for coagulation of tissue in a non-contact mode, i.e. the treatment of verrucae, endometriosis, tumor coagulation and hemostasis. During this process an uncontrolled temperature rise of the irradiated area leads to vaporization and, finally, to a carbonization of the tissue surface. To prevent this, a dose controlled system was developed using an on-line regulation of the output laser power. The change of the backscattered intensity (remission) of the primary beam was used as a dose dependent feedback parameter. Its dependence on the temperature was determined with a double integrating sphere system and Monte-Carlo simulations. The remission of the tissue was calculated in slab geometry from diffusion theory and Monte-Carlo simulations. The laser control was realized with a PD-circuit and an A/D-converter, enabling the direct connection to the internal bus of the laser system. Preliminary studies with various tissues revealed the practicability of the system.
Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric; Cottineau, Louis-Marie; Cuomo, Vincenzo; Della Vecchia, Pietro; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric
2010-01-01
The ISTIMES project, funded by the European Commission in the frame of a joint Call "ICT and Security" of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project.
Preliminary analysis of force-torque measurements for robot-assisted fracture surgery.
Georgilas, Ioannis; Dagnino, Giulio; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja
2015-08-01
Our group at Bristol Robotics Laboratory has been working on a new robotic system for fracture surgery that has been previously reported [1]. The robotic system is being developed for distal femur fractures and features a robot that manipulates the small fracture fragments through small percutaneous incisions and a robot that re-aligns the long bones. The robots controller design relies on accurate and bounded force and position parameters for which we require real surgical data. This paper reports preliminary findings of forces and torques applied during bone and soft tissue manipulation in typical orthopaedic surgery procedures. Using customised orthopaedic surgical tools we have collected data from a range of orthopaedic surgical procedures at Bristol Royal Infirmary, UK. Maximum forces and torques encountered during fracture manipulation which involved proximal femur and soft tissue distraction around it and reduction of neck of femur fractures have been recorded and further analysed in conjunction with accompanying image recordings. Using this data we are establishing a set of technical requirements for creating safe and dynamically stable minimally invasive robot-assisted fracture surgery (RAFS) systems.
Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project
Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric.; Cottineau, Louis-Marie; Cuomo, Vincenzo; Vecchia, Pietro Della; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric
2010-01-01
The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project. PMID:22163489
ERIC Educational Resources Information Center
Hesselmark, Eva; Plenty, Stephanie; Bejerot, Susanne
2014-01-01
Although adults with autism spectrum disorder are an increasingly identified patient population, few treatment options are available. This "preliminary" randomized controlled open trial with a parallel design developed two group interventions for adults with autism spectrum disorders and intelligence within the normal range: cognitive…
The Concept and Control Capabilities of Universal Electric Vehicle Prototype using LabView Software
NASA Astrophysics Data System (ADS)
Skowronek, Hubert; Waszczuk, Kamil; Kowalski, Maciej; Karolczak, Paweł; Baral, Bivek
2016-10-01
The concept of drive control prototype electric car designed in assumptions for sales in the markets of developing countries, mainly in South Asia has been presented in the article. The basic requirements for this type of vehicles and the possibility of rapid prototyping onboard equipment for the purpose of preliminary tests have been presented. The control system was composed of a PC and measurement card myRIO and has two operating modes. In the first of them can simulate changes of each components parameters and checking of program proper functioning. In the second mode, instead of the simulation it is possible to control the real object.
Space station thermal control surfaces. [space radiators
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.; Jeffery, J. A.; Scott, R. R.
1979-01-01
Mission planning documents were used to analyze the radiator design and thermal control surface requirements for both space station and 25-kW power module, to analyze the missions, and to determine the thermal control technology needed to satisfy both sets of requirements. Parameters such as thermal control coating degradation, vehicle attitude, self eclipsing, variation in solar constant, albedo, and Earth emission are considered. Four computer programs were developed which provide a preliminary design and evaluation tool for active radiator systems in LEO and GEO. Two programs were developed as general programs for space station analysis. Both types of programs find the radiator-flow solution and evaluate external heat loads in the same way. Fortran listings are included.
Atmosphere behavior in gas-closed mouse-algal systems - An experimental and modelling study
NASA Technical Reports Server (NTRS)
Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.
1984-01-01
A NASA-sponsored research program initiated using mathematical modelling and laboratory experimentation aimed at examining the gas-exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere is studied. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is considered. A mathematical model simulating the behavior of a gas-closed mouse-algal system under varying environmental conditions is described. To verify and validate the model simulations, an analytical system with which algal growth and gas exchange characteristics can be manipulated and measured is designed, fabricated, and tested. The preliminary results are presented.
Common spaceborne multicomputer operating system and development environment
NASA Technical Reports Server (NTRS)
Craymer, L. G.; Lewis, B. F.; Hayes, P. J.; Jones, R. L.
1994-01-01
A preliminary technical specification for a multicomputer operating system is developed. The operating system is targeted for spaceborne flight missions and provides a broad range of real-time functionality, dynamic remote code-patching capability, and system fault tolerance and long-term survivability features. Dataflow concepts are used for representing application algorithms. Functional features are included to ensure real-time predictability for a class of algorithms which require data-driven execution on an iterative steady state basis. The development environment supports the development of algorithm code, design of control parameters, performance analysis, simulation of real-time dataflow applications, and compiling and downloading of the resulting application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastelum, Zoe N.; Cramer, Nicholas O.; Benz, Jacob M.
While international nonproliferation and arms control verification capabilities have their foundations in physical and chemical sensors, state declarations, and on-site inspections, verification experts are beginning to consider the importance of open source data to complement and support traditional means of verification. One of those new, and increasingly expanding, sources of open source information is social media, which can be ingested and understood through social media analytics (SMA). Pacific Northwest National Laboratory (PNNL) is conducting research to further our ability to identify, visualize, and fuse social media data to support nonproliferation and arms control treaty verification efforts. This paper will describemore » our preliminary research to examine social media signatures of nonproliferation or arms control proxy events. We will describe the development of our preliminary nonproliferation and arms control proxy events, outline our initial findings, and propose ideas for future work.« less
Intelligent command and control systems for satellite ground operations
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1994-01-01
The Georgia Tech portion of the Intelligent Control Center project includes several complementary activities. Two major activities entail thesis level research; the other activities are either support activities or preliminary explorations (e.g., task analyses) to support the research. The first research activity is the development of principles for the design of active interfaces to support monitoring during real-time supports. It is well known that as the operator's task becomes less active, i.e., more monitoring and less active control, there is concern that the operator will be less involved and less able to rapidly identify anomalous or failure situations. The research project to design active monitoring interfaces is an attempt to remediate this undesirable side-effect of increasingly automated control systems that still depend ultimately on operator supervision. The second research activity is the exploration of the use of case-based reasoning as a way to accumulate operator experience and make it available in computational form.
The service telemetry and control device for space experiment “GRIS”
NASA Astrophysics Data System (ADS)
Glyanenko, A. S.
2016-02-01
Problems of scientific devices control (for example, fine control of measuring paths), collecting auxiliary (service information about working capacity, conditions of experiment carrying out, etc.) and preliminary data processing are actual for any space device. Modern devices for space research it is impossible to imagine without devices that didn't use digital data processing methods and specialized or standard interfaces and computing facilities. For realization of these functions in “GRIS” experiment onboard ISS for purposes minimization of dimensions, power consumption, the concept “system-on-chip” was chosen and realized. In the programmable logical integrated scheme by Microsemi from ProASIC3 family with maximum capacity up to 3M system gates, the computing kernel and all necessary peripherals are created. In this paper we discuss structure, possibilities and resources the service telemetry and control device for “GRIS” space experiment.
Implementation and control of a 3 degree-of-freedom, force-reflecting manual controller
NASA Astrophysics Data System (ADS)
Kim, Whee-Kuk; Bevill, Pat; Tesar, Delbert
1991-02-01
Most available manual controllers which are used in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size heavy weight high cost low magnitude of reflecting-force lack of smoothness insufficient transparency and simplified architectures. A compact smooth lightweight portable universal manual controller could provide a markedly improved level of transparency and be able to drive a broad spectrum of slave manipulators. This implies that a single stand-off position could be used for a diverse population of remote systems and that a standard environment for training of operators would result in reduced costs and higher reliability. In the implementation presented in this paper a parallel 3 degree-of-freedom (DOF) spherical structure (for compactness and reduced weight) is combined with high gear-ratio reducers using a force control algorithm to produce a " power steering" effect for enhanced smoothness and transparency. The force control algorithm has the further benefit of minimizing the effect of the system friction and non-linear inertia forces. The fundamental analytical description for the spherical force-reflecting manual controller such as forward position analysis reflecting-force transformation and applied force control algorithm are presented. Also a brief description of the system integration its actual implementation and preliminary test results are presented in the paper.
NASA Astrophysics Data System (ADS)
Semerjyan, Vardan; Yuan, Tao
2011-04-01
Sodium (Na) Faraday filters based spectrometer is a relatively new instrument to study sodium nightglow as well as sodium and oxygen chemistry in the mesopause region. Successful spectrometer measurement demands highly accurate control of filter temperature. The ideal, long-term operation site for the Na spectrometer is an isolated location with minimum nocturnal sky background. Thus, the remote control of the filter temperature is a requirement for such operation, whereas current temperature controllers can only be operated manually. The proposed approach is aimed to not only enhance the temperature control, but also achieve spectrometer's remote and autonomous operation. In the meantime, the redesign should relief the burden of the cost for multi temperature controllers. The program will give to the operator flexibility in setting the operation temperatures of the Faraday filters, monitoring the temperature variations, and logging the data during the operation. Research will make diligent efforts to attach preliminary data analysis subroutine to the main control program. The real-time observation results will be posted online after the observation is completed. This approach also can be a good substitute for the temperature control system currently used to run the Lidar system at Utah State University (USU).
New approaches to enhance active steering system functionalities: preliminary results
NASA Astrophysics Data System (ADS)
Serarslan, Benan
2014-09-01
An important development of the steering systems in general is active steering systems like active front steering and steer-by-wire systems. In this paper the current functional possibilities in application of active steering systems are explored. A new approach and additional functionalities are presented that can be implemented to the active steering systems without additional hardware such as new sensors and electronic control units. Commercial active steering systems are controlling the steering angle depending on the driving situation only. This paper introduce methods for enhancing active steering system functionalities depending not only on the driving situation but also vehicle parameters like vehicle mass, tyre and road condition. In this regard, adaptation of the steering ratio as a function of above mentioned vehicle parameters is presented with examples. With some selected vehicle parameter changes, the reduction of the undesired influences on vehicle dynamics of these parameter changes has been demonstrated theoretically with simulations and with real-time driving measurements.
Kahn, Rachel E; Chiu, Pearl H; Deater-Deckard, Kirby; Hochgraf, Anna K; King-Casas, Brooks; Kim-Spoon, Jungmeen
2018-01-08
Within the dual systems perspective, high reward sensitivity and low punishment sensitivity in conjunction with deficits in cognitive control may contribute to high levels of risk taking, such as substance use. The current study examined whether the individual components of effortful control (inhibitory control, attentional control, and activation control) serve as regulators and moderate the association between reward or punishment sensitivity and substance use behaviors. A total of 1,808 emerging adults from a university setting (Mean age = 19.48; 72% female) completed self-report measures of reward and punishment sensitivity, effortful control, and substance use. Findings indicated significant two-way interactions for punishment sensitivity and inhibitory control for alcohol and marijuana use. The form of these interactions revealed a significant negative association between punishment sensitivity and alcohol and marijuana use at low levels of inhibitory control. No significant interactions emerged for reward sensitivity or other components of effortful control. The current findings provide preliminary evidence suggesting the dual systems theorized to influence risk taking behavior interact to make joint contributions to health risk behaviors such as substance use in emerging adults.
Low-cost inflatable lighter-than-air surveillance system for civilian applications
NASA Astrophysics Data System (ADS)
Kiddy, Jason S.; Chen, Peter C.; Niemczuk, John B.
2002-08-01
Today's society places an extremely high price on the value of human life and injury. Whenever possible, police and paramilitary actions are always directed towards saving as many lives as possible, whether it is the officer, perpetrator, or innocent civilians. Recently, the advent of robotic systems has enable law enforcement agencies to perform many of the most dangerous aspects of their jobs from relative safety. This is especially true to bomb disposal units but it is also gaining acceptance in other areas. An area where small, remotely operated machines may prove effective is in local aerial surveillance. Currently, the only aerial surveillance assets generally available to law enforcement agencies are costly helicopters. Unfortunately, most of the recently developed unmanned air vehicles (UAVs) are directed towards military applications and have limited civilian use. Systems Planning and Analysis, Inc. (SPA) has conceived and performed a preliminary analysis of a low-cost, inflatable, lighter- than-air surveillance system that may be used in a number of military and law enforcement surveillance situations. The preliminary analysis includes the concept definition, a detailed trade study to determine the optimal configuration of the surveillance system, high-pressure inflation tests, and a control analysis. This paper will provide the details in these areas of the design and provide an insight into the feasibility of such a system.
The dynamics and control of large flexible space structures - 12, supplement 11
NASA Technical Reports Server (NTRS)
Bainum, Peter M.; Reddy, A. S. S. R.; Li, Feiyue; Xu, Jianke
1989-01-01
The rapid 2-D slewing and vibrational control of the unsymmetrical flexible SCOLE (Spacecraft Control Laboratory Experiment) with multi-bounded controls is considered. Pontryagin's Maximum Principle is applied to the nonlinear equations of the system to derive the necessary conditions for the optimal control. The resulting two point boundary value problem is then solved by using the quasilinearization technique, and the near minimum time is obtained by sequentially shortening the slewing time until the controls are near the bang-bang type. The tradeoff between the minimum time and the minimum flexible amplitude requirements is discussed. The numerical results show that the responses of the nonlinear system are significantly different from those of the linearized system for rapid slewing. The SCOLE station-keeping closed loop dynamics are re-examined by employing a slightly different method for developing the equations of motion in which higher order terms in the expressions for the mast modal shape functions are now included. A preliminary study on the effect of actuator mass on the closed loop dynamics of large space systems is conducted. A numerical example based on a coupled two-mass two-spring system illustrates the effect of changes caused in the mass and stiffness matrices on the closed loop system eigenvalues. In certain cases the need for redesigning control laws previously synthesized, but not accounting for actuator masses, is indicated.
NASA Technical Reports Server (NTRS)
Chin, Jeffrey C.; Csank, Jeffrey T.
2016-01-01
The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.
Toward a Fast-Response Active Turbine Tip Clearance Control
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Kypuros, Javier A.
2003-01-01
This paper describes active tip clearance control research being conducted by NASA to improve turbine engine systems. The target application for this effort is commercial aircraft engines. However, technologies developed for clearance control can benefit a broad spectrum of current and future turbomachinery. The first portion of the paper addresses the research from a programmatic viewpoint. Recent studies that provide motivation for the work, identification of key technologies, and NASA's plan for addressing deficiencies in the technologies are discussed. The later portion of the paper drills down into one of the key technologies by presenting equations and results for a preliminary dynamic model of the tip clearance phenomena.
Application of active controls technology to the NASA Jet Star airplane
NASA Technical Reports Server (NTRS)
Lange, R. H.; Cahill, J. F.; Campion, M. C.; Bradley, E. S.; Macwilkinson, D. G.; Phillips, J. W.
1975-01-01
The feasibility was studied of modifying a Jet Star airplane into a demonstrator of benefits to be achieved from incorporating active control concepts in the preliminary design of transport type aircraft. Substantial benefits are shown in terms of fuel economy and community noise by virtue of reduction in induced drag through use of a high aspect ratio wing which is made possible by a gust alleviation system. An intermediate configuration was defined which helps to isolate the benefits produced by active controls technology from those due to other configuration variables. Also, an alternate configuration which incorporated composite structures, but not active controls technology, was defined in order to compare the benefits of composite structures with those of active controls technology.
40 CFR 161.170 - Preliminary analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Preliminary analysis. (a) If the product is produced by an integrated system, the applicant must provide a preliminary analysis of each technical grade of active ingredient contained in the product to identify all... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Preliminary analysis. 161.170 Section...
Energy efficient engine preliminary design and integration study
NASA Technical Reports Server (NTRS)
Gray, D. E.
1978-01-01
The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.
Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludvigson, Laura D.
2004-01-01
I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease preventionmore » and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.« less