Synthesis of Optimal Constant-Gain Positive-Real Controllers for Passive Systems
NASA Technical Reports Server (NTRS)
Mao, Y.; Kelkar, A. G.; Joshi, S. M.
1999-01-01
This paper presents synthesis methods for the design of constant-gain positive real controllers for passive systems. The results presented in this paper, in conjunction with the previous work by the authors on passification of non-passive systems, offer a useful synthesis tool for the design of passivity-based robust controllers for non-passive systems as well. Two synthesis approaches are given for minimizing an LQ-type performance index, resulting in optimal controller gains. Two separate algorithms, one for each of these approaches, are given. The synthesis techniques are demonstrated using two numerical examples: control of a flexible structure and longitudinal control of a fighter aircraft.
Substructural controller synthesis
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1989-01-01
A decentralized design procedure which combines substructural synthesis, model reduction, decentralized controller design, subcontroller synthesis, and controller reduction is proposed for the control design of flexible structures. The structure to be controlled is decomposed into several substructures, which are modeled by component mode synthesis methods. For each substructure, a subcontroller is designed by using the linear quadratic optimal control theory. Then, a controller synthesis scheme called Substructural Controller Synthesis (SCS) is used to assemble the subcontrollers into a system controller, which is to be used to control the whole structure.
Ergatic dynamic control systems
NASA Technical Reports Server (NTRS)
Pavlov, V. V. (Editor); Drozdova, T. I. (Editor); Antomonov, Y. G. (Editor); Golego, V. N. (Editor); Ivakhnenko, A. G. (Editor); Meleshev, A. M. (Editor)
1977-01-01
Synthesis and analysis of systems containing a man in their control circuits are considered. The concepts of ergonomics and ergatic systems are defined, and tasks and problems of ergonomics are outlined. The synthesis of the structure of an astronautic ergatic organism is presented, as well as the synthesis of nonstationary ergatic systems. Problems of selecting the criteria for complex systems are considered, and the results are presented from a study of ergatic control systems with any degree of human participation.
Continuous performance measurement in flight systems. [sequential control model
NASA Technical Reports Server (NTRS)
Connelly, E. M.; Sloan, N. A.; Zeskind, R. M.
1975-01-01
The desired response of many man machine control systems can be formulated as a solution to an optimal control synthesis problem where the cost index is given and the resulting optimal trajectories correspond to the desired trajectories of the man machine system. Optimal control synthesis provides the reference criteria and the significance of error information required for performance measurement. The synthesis procedure described provides a continuous performance measure (CPM) which is independent of the mechanism generating the control action. Therefore, the technique provides a meaningful method for online evaluation of man's control capability in terms of total man machine performance.
Robust control synthesis for uncertain dynamical systems
NASA Technical Reports Server (NTRS)
Byun, Kuk-Whan; Wie, Bong; Sunkel, John
1989-01-01
This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.
Todorov, I N; Shen, R A; Zheliabovskaia, S M; Galkin, A P
1976-10-01
A drastic inhibition of protein biosynthesis in rat liver in vivo by cycloheximide (CHI) (0.3 mg/100 g of body weight) first caused an increase of RNA synthesis (after 1 hour), which was then followed by its decrease. Partial gradual restoration of the protein synthesis level was shown to be accompanied by a repeated increase of RNA synthesis (12 hs) and its normalisation after 24 hs. The first maximum of RNA synthesis increase in the isolated nuclei system was AU-type RNA synthesis (sensitive to alpha-amanitine), the second one was due to GC-type RNA synthesis (resistant to this toxin). Purified chromatine template activity in the system with E. coli RNA polymerase (by 14%) an hour after CHI treatment, but 3 hrs later was decreased and subsequently restored (12 hrs after CHI injection). The changes of RNA biosynthesis induced by prolonged protein synthesis inhibition suggest the existence of continuous RNA synthesis control in nuclei. This control is realized by translation system using the feed back principle.
ISSYS: An integrated synergistic Synthesis System
NASA Technical Reports Server (NTRS)
Dovi, A. R.
1980-01-01
Integrated Synergistic Synthesis System (ISSYS), an integrated system of computer codes in which the sequence of program execution and data flow is controlled by the user, is discussed. The commands available to exert such control, the ISSYS major function and rules, and the computer codes currently available in the system are described. Computational sequences frequently used in the aircraft structural analysis and synthesis are defined. External computer codes utilized by the ISSYS system are documented. A bibliography on the programs is included.
Spacecraft drag-free technology development: On-board estimation and control synthesis
NASA Technical Reports Server (NTRS)
Key, R. W.; Mettler, E.; Milman, M. H.; Schaechter, D. B.
1982-01-01
Estimation and control methods for a Drag-Free spacecraft are discussed. The functional and analytical synthesis of on-board estimators and controllers for an integrated attitude and translation control system is represented. The framework for detail definition and design of the baseline drag-free system is created. The techniques for solution of self-gravity and electrostatic charging problems are applicable generally, as is the control system development.
Hologlyphics: volumetric image synthesis performance system
NASA Astrophysics Data System (ADS)
Funk, Walter
2008-02-01
This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.
Modal control theory and application to aircraft lateral handling qualities design
NASA Technical Reports Server (NTRS)
Srinathkumar, S.
1978-01-01
A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.
Fault Accommodation in Control of Flexible Systems
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Sparks, Dean W., Jr.; Lim, Kyong B.
1998-01-01
New synthesis techniques for the design of fault accommodating controllers for flexible systems are developed. Three robust control design strategies, static dissipative, dynamic dissipative and mu-synthesis, are used in the approach. The approach provides techniques for designing controllers that maximize, in some sense, the tolerance of the closed-loop system against faults in actuators and sensors, while guaranteeing performance robustness at a specified performance level, measured in terms of the proximity of the closed-loop poles to the imaginary axis (the degree of stability). For dissipative control designs, nonlinear programming is employed to synthesize the controllers, whereas in mu-synthesis, the traditional D-K iteration is used. To demonstrate the feasibility of the proposed techniques, they are applied to the control design of a structural model of a flexible laboratory test structure.
Extended cooperative control synthesis
NASA Technical Reports Server (NTRS)
Davidson, John B.; Schmidt, David K.
1994-01-01
This paper reports on research for extending the Cooperative Control Synthesis methodology to include a more accurate modeling of the pilot's controller dynamics. Cooperative Control Synthesis (CCS) is a methodology that addresses the problem of how to design control laws for piloted, high-order, multivariate systems and/or non-conventional dynamic configurations in the absence of flying qualities specifications. This is accomplished by emphasizing the parallel structure inherent in any pilot-controlled, augmented vehicle. The original CCS methodology is extended to include the Modified Optimal Control Model (MOCM), which is based upon the optimal control model of the human operator developed by Kleinman, Baron, and Levison in 1970. This model provides a modeling of the pilot's compensation dynamics that is more accurate than the simplified pilot dynamic representation currently in the CCS methodology. Inclusion of the MOCM into the CCS also enables the modeling of pilot-observation perception thresholds and pilot-observation attention allocation affects. This Extended Cooperative Control Synthesis (ECCS) allows for the direct calculation of pilot and system open- and closed-loop transfer functions in pole/zero form and is readily implemented in current software capable of analysis and design for dynamic systems. Example results based upon synthesizing an augmentation control law for an acceleration command system in a compensatory tracking task using the ECCS are compared with a similar synthesis performed by using the original CCS methodology. The ECCS is shown to provide augmentation control laws that yield more favorable, predicted closed-loop flying qualities and tracking performance than those synthesized using the original CCS methodology.
A reliable algorithm for optimal control synthesis
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1992-01-01
In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.
DOT National Transportation Integrated Search
1997-06-01
This document provides a synthesis of research results and literature : culminating in specific human factors recommendations for Controller-pilot Data : Link Communications (CPDLC) systems. The report concentrates on two major human : factors top ar...
Tang, Xiaoming; Qu, Hongchun; Wang, Ping; Zhao, Meng
2015-03-01
This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S-A) and controller to actuator (C-A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Microgravity isolation system design: A modern control synthesis framework
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.
1994-01-01
Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. In this paper a general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.
Microgravity isolation system design: A modern control synthesis framework
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.
1994-01-01
Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. A general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.
A Merged IQC/SOS Theory for Analysis and Synthesis of Nonlinear Control Systems
2015-06-23
constraints. As mentioned previously, this enables new applications of IQCs to analyze the robustness of time-varying and nonlinear systems . This...enables new applications of IQCs to analyze the robustness of time-varying and nonlinear systems . This section considers the analysis of nonlinear systems ...AFRL-AFOSR-VA-TR-2016-0008 A Merged IQC/SOS Theory for Analysis and Synthesis of Nonlinear Control Systems Gary Balas REGENTS OF THE UNIVERSITY OF
Automated synthesis and composition of taskblocks for control of manufacturing systems.
Holloway, L E; Guan, X; Sundaravadivelu, R; Ashley, J R
2000-01-01
Automated control synthesis methods for discrete-event systems promise to reduce the time required to develop, debug, and modify control software. Such methods must be able to translate high-level control goals into detailed sequences of actuation and sensing signals. In this paper, we present such a technique. It relies on analysis of a system model, defined as a set of interacting components, each represented as a form of condition system Petri net. Control logic modules, called taskblocks, are synthesized from these individual models. These then interact hierarchically and sequentially to drive the system through specified control goals. The resulting controller is automatically converted to executable control code. The paper concludes with a discussion of a set of software tools developed to demonstrate the techniques on a small manufacturing system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, F. E.
The Chemical Synthesis Pilot Process at the Lawrence Livermore National Laboratory (LLNL) Site 300 827 Complex will be used to synthesize small quantities of material to support research and development. The project will modernize and increase current capabilities for chemical synthesis at LLNL. The primary objective of this project is the conversion of a non-automated hands-on process to a remoteoperation process, while providing enhanced batch process step control, stored recipe-specific parameter sets, process variable visibility, monitoring, alarm and warning handling, and comprehensive batch record data logging. This Statement of Work and Specification provides the industrial-grade process control requirements for themore » chemical synthesis batching control system, hereafter referred to as the “Control System” to be delivered by the System Integrator.« less
Synthesis of active controls for flutter suppression on a flight research wing
NASA Technical Reports Server (NTRS)
Abel, I.; Perry, B., III; Murrow, H. N.
1977-01-01
This paper describes some activities associated with the preliminary design of an active control system for flutter suppression capable of demonstrating a 20% increase in flutter velocity. Results from two control system synthesis techniques are given. One technique uses classical control theory, and the other uses an 'aerodynamic energy method' where control surface rates or displacements are minimized. Analytical methods used to synthesize the control systems and evaluate their performance are described. Some aspects of a program for flight testing the active control system are also given. This program, called DAST (Drones for Aerodynamics and Structural Testing), employs modified drone-type vehicles for flight assessments and validation testing.
Dynamics of multirate sampled data control systems. [for space shuttle boost vehicle
NASA Technical Reports Server (NTRS)
Naylor, J. R.; Hynes, R. J.; Molnar, D. O.
1974-01-01
The effect was investigated of the synthesis approach (single or multirate) on the machine requirements for a digital control system for the space shuttle boost vehicle. The study encompassed four major work areas: synthesis approach trades, machine requirements trades, design analysis requirements and multirate adaptive control techniques. The primary results are two multirate autopilot designs for the low Q and maximum Q flight conditions that exhibits equal or better performance than the analog and single rate system designs. Also, a preferred technique for analyzing and synthesizing multirate digital control systems is included.
The design of multirate digital control systems
NASA Technical Reports Server (NTRS)
Berg, M. C.
1986-01-01
The successive loop closures synthesis method is the only method for multirate (MR) synthesis in common use. A new method for MR synthesis is introduced which requires a gradient-search solution to a constrained optimization problem. Some advantages of this method are that the control laws for all control loops are synthesized simultaneously, taking full advantage of all cross-coupling effects, and that simple, low-order compensator structures are easily accomodated. The algorithm and associated computer program for solving the constrained optimization problem are described. The successive loop closures , optimal control, and constrained optimization synthesis methods are applied to two example design problems. A series of compensator pairs are synthesized for each example problem. The succesive loop closure, optimal control, and constrained optimization synthesis methods are compared, in the context of the two design problems.
The Hermod Behavioral Synthesis System
1988-06-08
LDescription 1 lib tech-independent Transformation & Parser Optimization lib Hardware • g - utSynhesze Generator li Datapath lb Hardware liCotllb...Proc. 22nd Design Automation Conference, ACM/IEEE, June 1985, pp. 475-481. [7] G . De Micheli, "Synthesis of Control Systems", in Design Systems for...VLSI Circuits: Logic Synthesis and Silicon Compilation, G . De Micheli, A. Sangiovanni-Vincentelli, and P. Antognetti, (editor), Martinus Nijhoff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorhouse, Saul J.; Wu, Yue; O’Hare, Dermot, E-mail: dermot.ohare@chem.ox.ac.uk
A newly developed in situ monochromatic high-energy X-ray diffraction setup was used to investigate the synthesis of MOFs using cation-impregnated polymer resin beads as a ion source. The Co–NDC–DMF (NDC=2,6-naphthalenedicarboxylate; DMF=dimethylformamide) system was investigated, a system which is known to produce at least three distinct frameworks. It was found that the resin-assisted synthesis results in the preferential formation of a topology previously impossible to synthesise in bulk, while the comparable nitrate-salt synthesis appeared to form an alternative phases. It was also found that the resin-assisted synthesis is highly diffusion-controlled. - Graphical abstract: In situ monochromatic high-energy X-ray diffraction study ofmore » a MOF synthesis. - Highlights: • Resin-assisted solvothermal MOF synthesis was studied using in situ diffraction. • Full kinetics of reaction can be obtained from in situ data. • Kinetics show that this resin-assisted synthesis is diffusion controlled. • Resin-assisted synthesis enables the production of an alternative bulk phase.« less
Cooperative control theory and integrated flight and propulsion control
NASA Technical Reports Server (NTRS)
Schmidt, David K.; Schierman, John D.
1995-01-01
The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.
Attitude and vibration control of a large flexible space-based antenna
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1982-01-01
Control systems synthesis is considered for controlling the rigid body attitude and elastic motion of a large deployable space-based antenna. Two methods for control systems synthesis are considered. The first method utilizes the stability and robustness properties of the controller consisting of torque actuators and collocated attitude and rate sensors. The second method is based on the linear-quadratic-Gaussian control theory. A combination of the two methods, which results in a two level hierarchical control system, is also briefly discussed. The performance of the controllers is analyzed by computing the variances of pointing errors, feed misalignment errors and surface contour errors in the presence of sensor and actuator noise.
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1991-01-01
Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.
Multirate sampled-data yaw-damper and modal suppression system design
NASA Technical Reports Server (NTRS)
Berg, Martin C.; Mason, Gregory S.
1990-01-01
A multirate control law synthesized algorithm based on an infinite-time quadratic cost function, was developed along with a method for analyzing the robustness of multirate systems. A generalized multirate sampled-data control law structure (GMCLS) was introduced. A new infinite-time-based parameter optimization multirate sampled-data control law synthesis method and solution algorithm were developed. A singular-value-based method for determining gain and phase margins for multirate systems was also developed. The finite-time-based parameter optimization multirate sampled-data control law synthesis algorithm originally intended to be applied to the aircraft problem was instead demonstrated by application to a simpler problem involving the control of the tip position of a two-link robot arm. The GMCLS, the infinite-time-based parameter optimization multirate control law synthesis method and solution algorithm, and the singular-value based method for determining gain and phase margins were all demonstrated by application to the aircraft control problem originally proposed for this project.
Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.
Li, Xianwei; Gao, Huijun
2015-10-01
Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.
Control law synthesis and optimization software for large order aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Pototzky, A.; Noll, Thomas
1989-01-01
A flexible aircraft or space structure with active control is typically modeled by a large-order state space system of equations in order to accurately represent the rigid and flexible body modes, unsteady aerodynamic forces, actuator dynamics and gust spectra. The control law of this multi-input/multi-output (MIMO) system is expected to satisfy multiple design requirements on the dynamic loads, responses, actuator deflection and rate limitations, as well as maintain certain stability margins, yet should be simple enough to be implemented on an onboard digital microprocessor. A software package for performing an analog or digital control law synthesis for such a system, using optimal control theory and constrained optimization techniques is described.
Controller Synthesis for Periodically Forced Chaotic Systems
NASA Astrophysics Data System (ADS)
Basso, Michele; Genesio, Roberto; Giovanardi, Lorenzo
Delayed feedback controllers are an appealing tool for stabilization of periodic orbits in chaotic systems. Despite their conceptual simplicity, specific and reliable design procedures are difficult to obtain, partly also because of their inherent infinite-dimensional structure. This chapter considers the use of finite dimensional linear time invariant controllers for stabilization of periodic solutions in a general class of sinusoidally forced nonlinear systems. For such controllers — which can be interpreted as rational approximations of the delayed ones — we provide a computationally attractive synthesis technique based on Linear Matrix Inequalities (LMIs), by mixing results concerning absolute stability of nonlinear systems and robustness of uncertain linear systems. The resulting controllers prove to be effective for chaos suppression in electronic circuits and systems, as shown by two different application examples.
Robustness and cognition in stabilization problem of dynamical systems based on asymptotic methods
NASA Astrophysics Data System (ADS)
Dubovik, S. A.; Kabanov, A. A.
2017-01-01
The problem of synthesis of stabilizing systems based on principles of cognitive (logical-dynamic) control for mobile objects used under uncertain conditions is considered. This direction in control theory is based on the principles of guaranteeing robust synthesis focused on worst-case scenarios of the controlled process. The guaranteeing approach is able to provide functioning of the system with the required quality and reliability only at sufficiently low disturbances and in the absence of large deviations from some regular features of the controlled process. The main tool for the analysis of large deviations and prediction of critical states here is the action functional. After the forecast is built, the choice of anti-crisis control is the supervisory control problem that optimizes the control system in a normal mode and prevents escape of the controlled process in critical states. An essential aspect of the approach presented here is the presence of a two-level (logical-dynamic) control: the input data are used not only for generating of synthesized feedback (local robust synthesis) in advance (off-line), but also to make decisions about the current (on-line) quality of stabilization in the global sense. An example of using the presented approach for the problem of development of the ship tilting prediction system is considered.
Petri Net controller synthesis based on decomposed manufacturing models.
Dideban, Abbas; Zeraatkar, Hashem
2018-06-01
Utilizing of supervisory control theory on the real systems in many modeling tools such as Petri Net (PN) becomes challenging in recent years due to the significant states in the automata models or uncontrollable events. The uncontrollable events initiate the forbidden states which might be removed by employing some linear constraints. Although there are many methods which have been proposed to reduce these constraints, enforcing them to a large-scale system is very difficult and complicated. This paper proposes a new method for controller synthesis based on PN modeling. In this approach, the original PN model is broken down into some smaller models in which the computational cost reduces significantly. Using this method, it is easy to reduce and enforce the constraints to a Petri net model. The appropriate results of our proposed method on the PN models denote worthy controller synthesis for the large scale systems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Fractional order PIλ controller synthesis for steam turbine speed governing systems.
Chen, Kai; Tang, Rongnian; Li, Chuang; Lu, Junguo
2018-06-01
The current state of the art of fractional order stability theory is hardly to build connection between the time domain analysis and frequency domain synthesis. The existing tuning methodologies for fractional order PI λ D μ are not always satisfy the given gain crossover frequency and phase margin simultaneously. To overcome the drawbacks in the existing synthesis of fractional order controller, the synthesis of optimal fractional order PI λ controller for higher-order process is proposed. According to the specified phase margin, the corresponding upper boundary of gain crossover frequency and stability surface in parameter space are obtained. Sweeping the order parameter over λ∈(0,2), the complete set of stabilizing controller which guarantees both pre-specifying phase frequency characteristic can be collected. Whereafter, the optimal fractional order PI λ controller is applied to the speed governing systems of steam turbine generation units. The numerical simulation and hardware-in-the-loop simulation demonstrate the effectiveness and satisfactory closed-loop performance of obtained fractional order PI λ controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Extended H2 synthesis for multiple degree-of-freedom controllers
NASA Technical Reports Server (NTRS)
Hampton, R. David; Knospe, Carl R.
1992-01-01
H2 synthesis techniques are developed for a general multiple-input-multiple-output (MIMO) system subject to both stochastic and deterministic disturbances. The H2 synthesis is extended by incorporation of anticipated disturbances power-spectral-density information into the controller-design process, as well as by frequency weightings of generalized coordinates and control inputs. The methodology is applied to a simple single-input-multiple-output (SIMO) problem, analogous to the type of vibration isolation problem anticipated in microgravity research experiments.
Robust Hinfinity position control synthesis of an electro-hydraulic servo system.
Milić, Vladimir; Situm, Zeljko; Essert, Mario
2010-10-01
This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Synthesis of Feedback Controller for Chaotic Systems by Means of Evolutionary Techniques
NASA Astrophysics Data System (ADS)
Senkerik, Roman; Oplatkova, Zuzana; Zelinka, Ivan; Davendra, Donald; Jasek, Roman
2011-06-01
This research deals with a synthesis of control law for three selected discrete chaotic systems by means of analytic programming. The novality of the approach is that a tool for symbolic regression—analytic programming—is used for such kind of difficult problem. The paper consists of the descriptions of analytic programming as well as chaotic systems and used cost function. For experimentation, Self-Organizing Migrating Algorithm (SOMA) with analytic programming was used.
Flutter suppression control law synthesis for the Active Flexible Wing model
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek; Perry, Boyd, III; Noll, Thomas E.
1989-01-01
The Active Flexible Wing Project is a collaborative effort between the NASA Langley Research Center and Rockwell International. The objectives are the validation of methodologies associated with mathematical modeling, flutter suppression control law development and digital implementation of the control system for application to flexible aircraft. A flutter suppression control law synthesis for this project is described. The state-space mathematical model used for the synthesis included ten flexible modes, four control surface modes and rational function approximation of the doublet-lattice unsteady aerodynamics. The design steps involved developing the full-order optimal control laws, reducing the order of the control law, and optimizing the reduced-order control law in both the continuous and the discrete domains to minimize stochastic response. System robustness was improved using singular value constraints. An 8th order robust control law was designed to increase the symmetric flutter dynamic pressure by 100 percent. Preliminary results are provided and experiences gained are discussed.
Qiao, Q; So, S S; Goodnow, R A
2001-11-15
[reaction--see text] It is possible to correlate the distribution of stereochemical products produced during a Hantzsch thiazole synthesis according to the Hammett free-energy equation. This analysis confirms the presumed control of the rate of epimerization during thiazole formation due to stabilization of a cationic transition state intermediate during dehydration of the thiazoline ring system. In the chemical system under study, the stereochemical outcome of the reaction also appears to occur according to a kinetically controlled protonation of a thiazoline tautomer.
Gaal, T; Gourse, R L
1990-01-01
rRNA synthesis in Escherichia coli is subject to at least two regulation systems, growth rate-dependent control and stringent control. The inverse correlation between rRNA synthesis rates and guanosine 3'-diphosphate 5'-diphosphate (ppGpp) levels under various physiological conditions has led to the supposition that ppGpp is the mediator of both control mechanisms by inhibiting transcription from rrn P1 promoters. Recently, relA- spoT- strains have been constructed in which both ppGpp synthesis pathways most likely have been removed (M. Cashel, personal communication). We have confirmed that such strains produce no detectable ppGpp and therefore offer a direct means for testing the involvement of ppGpp in the regulation of rRNA synthesis in vivo. Stringent control was determined by measurement of rRNA synthesis after amino acid starvation, while growth rate control was determined by measurement of rRNA synthesis under different nutritional conditions. As expected, the relA- spoT- strain is relaxed for stringent control. However, growth rate-dependent regulation is unimpaired. These results indicate that growth rate regulation can occur in the absence of ppGpp and imply that ppGpp is not the mediator, or at least is not the sole mediator, of growth rate-dependent control. Therefore, growth rate-dependent control and stringent control may utilize different mechanisms for regulating stable RNA synthesis. PMID:2196571
Flight control synthesis for flexible aircraft using Eigenspace assignment
NASA Technical Reports Server (NTRS)
Davidson, J. B.; Schmidt, D. K.
1986-01-01
The use of eigenspace assignment techniques to synthesize flight control systems for flexible aircraft is explored. Eigenspace assignment techniques are used to achieve a specified desired eigenspace, chosen to yield desirable system impulse residue magnitudes for selected system responses. Two of these are investigated. The first directly determines constant measurement feedback gains that will yield a close-loop system eigenspace close to a desired eigenspace. The second technique selects quadratic weighting matrices in a linear quadratic control synthesis that will asymptotically yield the close-loop achievable eigenspace. Finally, the possibility of using either of these techniques with state estimation is explored. Application of the methods to synthesize integrated flight-control and structural-mode-control laws for a large flexible aircraft is demonstrated and results discussed. Eigenspace selection criteria based on design goals are discussed, and for the study case it would appear that a desirable eigenspace can be obtained. In addition, the importance of state-space selection is noted along with problems with reduced-order measurement feedback. Since the full-state control laws may be implemented with dynamic compensation (state estimation), the use of reduced-order measurement feedback is less desirable. This is especially true since no change in the transient response from the pilot's input results if state estimation is used appropriately. The potential is also noted for high actuator bandwidth requirements if the linear quadratic synthesis approach is utilized. Even with the actuator pole location selected, a problem with unmodeled modes is noted due to high bandwidth. Some suggestions for future research include investigating how to choose an eigenspace that will achieve certain desired dynamics and stability robustness, determining how the choice of measurements effects synthesis results, and exploring how the phase relationships between desired eigenvector elements effects the synthesis results.
NASA Astrophysics Data System (ADS)
Pershin, I. M.; Pervukhin, D. A.; Ilyushin, Y. V.; Afanaseva, O. V.
2017-10-01
The paper considers an important problem of designing distributed systems of hydrolithosphere processes management. The control actions on the hydrolithosphere processes under consideration are implemented by a set of extractive wells. The article shows the method of defining the approximation links for description of the dynamic characteristics of hydrolithosphere processes. The structure of distributed regulators, used in the management systems by the considered processes, is presented. The paper analyses the results of the synthesis of the distributed management system and the results of modelling the closed-loop control system by the parameters of the hydrolithosphere process.
NASA Astrophysics Data System (ADS)
Melechko, A. V.; Merkulov, V. I.; McKnight, T. E.; Guillorn, M. A.; Klein, K. L.; Lowndes, D. H.; Simpson, M. L.
2005-02-01
The controlled synthesis of materials by methods that permit their assembly into functional nanoscale structures lies at the crux of the emerging field of nanotechnology. Although only one of several materials families is of interest, carbon-based nanostructured materials continue to attract a disproportionate share of research effort, in part because of their wide-ranging properties. Additionally, developments of the past decade in the controlled synthesis of carbon nanotubes and nanofibers have opened additional possibilities for their use as functional elements in numerous applications. Vertically aligned carbon nanofibers (VACNFs) are a subclass of carbon nanostructured materials that can be produced with a high degree of control using catalytic plasma-enhanced chemical-vapor deposition (C-PECVD). Using C-PECVD the location, diameter, length, shape, chemical composition, and orientation can be controlled during VACNF synthesis. Here we review the CVD and PECVD systems, growth control mechanisms, catalyst preparation, resultant carbon nanostructures, and VACNF properties. This is followed by a review of many of the application areas for carbon nanotubes and nanofibers including electron field-emission sources, electrochemical probes, functionalized sensor elements, scanning probe microscopy tips, nanoelectromechanical systems (NEMS), hydrogen and charge storage, and catalyst support. We end by noting gaps in the understanding of VACNF growth mechanisms and the challenges remaining in the development of methods for an even more comprehensive control of the carbon nanofiber synthesis process.
Lim, Jong-Min; Bertrand, Nicolas; Valencia, Pedro M.; Rhee, Minsoung; Langer, Robert; Jon, Sangyong; Farokhzad, Omid C.; Karnik, Rohit
2014-01-01
Microfluidic synthesis of nanoparticles (NPs) can enhance the controllability and reproducibility in physicochemical properties of NPs compared to bulk synthesis methods. However, applications of microfluidic synthesis are typically limited to in vitro studies due to low production rates. Herein, we report the parallelization of NP synthesis by 3D hydrodynamic flow focusing (HFF) using a multilayer microfluidic system to enhance the production rate without losing the advantages of reproducibility, controllability, and robustness. Using parallel 3D HFF, polymeric poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) NPs with sizes tunable in the range of 13–150 nm could be synthesized reproducibly with high production rate. As a proof of concept, we used this system to perform in vivo pharmacokinetic and biodistribution study of small (20 nm diameter) PLGA-PEG NPs that are otherwise difficult to synthesize. Microfluidic parallelization thus enables synthesis of NPs with tunable properties with production rates suitable for both in vitro and in vivo studies. PMID:23969105
Nonlinear multivariable design by total synthesis. [of gas turbine engine control systems
NASA Technical Reports Server (NTRS)
Sain, M. K.; Peczkowski, J. L.
1982-01-01
The Nominal Design Problem (NDP) is extended to nonlinear cases, and a new case study of robust feedback synthesis for gas turbine control design is presented. The discussion of NDP extends and builds on earlier Total Synthesis Problem theory and ideas. Some mathematical preliminaries are given in which a bijection from a set S onto a set T is considered, with T admitting the structure of an F-vector space. NDP is then discussed for a nonlinear plant, and nonlinear nominal design is defined and characterized. The design of local controllers for a turbojet and the scheduling of these controls into a global control are addressed.
Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis
NASA Astrophysics Data System (ADS)
Kürkçü, Burak; Kasnakoğlu, Coşku
2018-02-01
In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.
Enhanced Attitude Control Experiment for SSTI Lewis Spacecraft
NASA Technical Reports Server (NTRS)
Maghami, Peoman G.
1997-01-01
The enhanced attitude control system experiment is a technology demonstration experiment on the NASA's small spacecraft technology initiative program's Lewis spacecraft to evaluate advanced attitude control strategies. The purpose of the enhanced attitude control system experiment is to evaluate the feasibility of designing and implementing robust multi-input/multi-output attitude control strategies for enhanced pointing performance of spacecraft to improve the quality of the measurements of the science instruments. Different control design strategies based on modern and robust control theories are being considered for the enhanced attitude control system experiment. This paper describes the experiment as well as the design and synthesis of a mixed H(sub 2)/H(sub infinity) controller for attitude control. The control synthesis uses a nonlinear programming technique to tune the controller parameters and impose robustness and performance constraints. Simulations are carried out to demonstrate the feasibility of the proposed attitude control design strategy. Introduction
NASA Astrophysics Data System (ADS)
Jayaraman, Shrisudersan; Baeck, Sung-Hyeon; Jaramillo, Thomas F.; Kleiman-Shwarsctein, Alan; McFarland, Eric W.
2005-06-01
An automated system for high-throughput electrochemical synthesis and screening of fuel cell electro-oxidation catalysts is described. This system consists of an electrode probe that contains counter and reference electrodes that can be positioned inside an array of electrochemical cells created within a polypropylene block. The electrode probe is attached to an automated of X-Y-Z motion system. An externally controlled potentiostat is used to apply the electrochemical potential to the catalyst substrate. The motion and electrochemical control are integrated using a user-friendly software interface. During automated synthesis the deposition potential and/or current may be controlled by a pulse program triggered by the software using a data acquisition board. The screening includes automated experiments to obtain cyclic voltammograms. As an example, a platinum-tungsten oxide (Pt-WO3) library was synthesized and characterized for reactivity towards methanol electro-oxidation.
Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic
NASA Astrophysics Data System (ADS)
Xu, Huan
Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and dynamic state estimation is explored. Given a set placement of sensors on an electric power system, measurements from these sensors can be used in conjunction with control logic to infer the state of the system.
Low Power, Low Mass, Modular, Multi-band Software-defined Radios
NASA Technical Reports Server (NTRS)
Haskins, Christopher B. (Inventor); Millard, Wesley P. (Inventor)
2013-01-01
Methods and systems to implement and operate software-defined radios (SDRs). An SDR may be configured to perform a combination of fractional and integer frequency synthesis and direct digital synthesis under control of a digital signal processor, which may provide a set of relatively agile, flexible, low-noise, and low spurious, timing and frequency conversion signals, and which may be used to maintain a transmit path coherent with a receive path. Frequency synthesis may include dithering to provide additional precision. The SDR may include task-specific software-configurable systems to perform tasks in accordance with software-defined parameters or personalities. The SDR may include a hardware interface system to control hardware components, and a host interface system to provide an interface to the SDR with respect to a host system. The SDR may be configured for one or more of communications, navigation, radio science, and sensors.
Synthesis for Structure Rewriting Systems
NASA Astrophysics Data System (ADS)
Kaiser, Łukasz
The description of a single state of a modelled system is often complex in practice, but few procedures for synthesis address this problem in depth. We study systems in which a state is described by an arbitrary finite structure, and changes of the state are represented by structure rewriting rules, a generalisation of term and graph rewriting. Both the environment and the controller are allowed to change the structure in this way, and the question we ask is how a strategy for the controller that ensures a given property can be synthesised.
Improved approximations for control augmented structural synthesis
NASA Technical Reports Server (NTRS)
Thomas, H. L.; Schmit, L. A.
1990-01-01
A methodology for control-augmented structural synthesis is presented for structure-control systems which can be modeled as an assemblage of beam, truss, and nonstructural mass elements augmented by a noncollocated direct output feedback control system. Truss areas, beam cross sectional dimensions, nonstructural masses and rotary inertias, and controller position and velocity gains are treated simultaneously as design variables. The structural mass and a control-system performance index can be minimized simultaneously, with design constraints placed on static stresses and displacements, dynamic harmonic displacements and forces, structural frequencies, and closed-loop eigenvalues and damping ratios. Intermediate design-variable and response-quantity concepts are used to generate new approximations for displacements and actuator forces under harmonic dynamic loads and for system complex eigenvalues. This improves the overall efficiency of the procedure by reducing the number of complete analyses required for convergence. Numerical results which illustrate the effectiveness of the method are given.
Robust parameter design for automatically controlled systems and nanostructure synthesis
NASA Astrophysics Data System (ADS)
Dasgupta, Tirthankar
2007-12-01
This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor-made to address the unique phenomena associated with nanostructure synthesis. A sequential space filling design called Sequential Minimum Energy Design (SMED) for exploring best process conditions for synthesis of nanowires. The SMED is a novel approach to generate sequential designs that are model independent, can quickly "carve out" regions with no observable nanostructure morphology, and allow for the exploration of complex response surfaces.
NASA Astrophysics Data System (ADS)
Zalogin, Stanislav M.; Zalogin, M. S.
1997-02-01
The problem for construction of control algorithm in OEST the information track of the optical record carrier the realization of which is based on the use of accelerations is considered. Such control algorithms render the designed system the properties of adaptability, feeble sensitivity to the system parameter change and the action of disturbing forces what gives known advantages to information carriers with such system under operation in hard climate conditions as well as at maladjustment, workpieces wear and change of friction in the system. In the paper are investigated dynamic characteristics of a closed OEST, it is shown, that the designed stable system with given quality indices is a high-precision one. The validated recommendations as to design of control algorithms parameters are confirmed by results of mathematical simulation of controlled processes. The proposed methods for OEST synthesis on the basis of the control acceleration principle can be recommended for the use at industrial production of optical information record carriers.
Deductive Glue Code Synthesis for Embedded Software Systems Based on Code Patterns
NASA Technical Reports Server (NTRS)
Liu, Jian; Fu, Jicheng; Zhang, Yansheng; Bastani, Farokh; Yen, I-Ling; Tai, Ann; Chau, Savio N.
2006-01-01
Automated code synthesis is a constructive process that can be used to generate programs from specifications. It can, thus, greatly reduce the software development cost and time. The use of formal code synthesis approach for software generation further increases the dependability of the system. Though code synthesis has many potential benefits, the synthesis techniques are still limited. Meanwhile, components are widely used in embedded system development. Applying code synthesis to component based software development (CBSD) process can greatly enhance the capability of code synthesis while reducing the component composition efforts. In this paper, we discuss the issues and techniques for applying deductive code synthesis techniques to CBSD. For deductive synthesis in CBSD, a rule base is the key for inferring appropriate component composition. We use the code patterns to guide the development of rules. Code patterns have been proposed to capture the typical usages of the components. Several general composition operations have been identified to facilitate systematic composition. We present the technique for rule development and automated generation of new patterns from existing code patterns. A case study of using this method in building a real-time control system is also presented.
Semiconductor nanowires: A platform for nanoscience and nanotechnology
Lieber, Charles M.
2012-01-01
Advances in nanoscience and nanotechnology critically depend on the development of nanostructures whose properties are controlled during synthesis. We focus on this critical concept using semiconductor nanowires, which provide the capability through design and rational synthesis to realize unprecedented structural and functional complexity in building blocks as a platform material. First, a brief review of the synthesis of complex modulated nanowires in which rational design and synthesis can be used to precisely control composition, structure, and, most recently, structural topology is discussed. Second, the unique functional characteristics emerging from our exquisite control of nanowire materials are illustrated using several selected examples from nanoelectronics and nano-enabled energy. Finally, the remarkable power of nanowire building blocks is further highlighted through their capability to create unprecedented, active electronic interfaces with biological systems. Recent work pushing the limits of both multiplexed extracellular recording at the single-cell level and the first examples of intracellular recording is described, as well as the prospects for truly blurring the distinction between nonliving nanoelectronic and living biological systems. PMID:22707850
Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng
2016-03-01
This paper deals with the problem of control synthesis of discrete-time Takagi-Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper.
About development of automation control systems
NASA Astrophysics Data System (ADS)
Myshlyaev, L. P.; Wenger, K. G.; Ivushkin, K. A.; Makarov, V. N.
2018-05-01
The shortcomings of approaches to the development of modern control automation systems and ways of their improvement are given: the correct formation of objects for study and optimization; a joint synthesis of control objects and control systems, an increase in the structural diversity of the elements of control systems. Diagrams of control systems with purposefully variable structure of their elements are presented. Structures of control algorithms for an object with a purposefully variable structure are given.
Progress in multirate digital control system design
NASA Technical Reports Server (NTRS)
Berg, Martin C.; Mason, Gregory S.
1991-01-01
A new methodology for multirate sampled-data control design based on a new generalized control law structure, two new parameter-optimization-based control law synthesis methods, and a new singular-value-based robustness analysis method are described. The control law structure can represent multirate sampled-data control laws of arbitrary structure and dynamic order, with arbitrarily prescribed sampling rates for all sensors and update rates for all processor states and actuators. The two control law synthesis methods employ numerical optimization to determine values for the control law parameters. The robustness analysis method is based on the multivariable Nyquist criterion applied to the loop transfer function for the sampling period equal to the period of repetition of the system's complete sampling/update schedule. The complete methodology is demonstrated by application to the design of a combination yaw damper and modal suppression system for a commercial aircraft.
Robust dynamic inversion controller design and analysis (using the X-38 vehicle as a case study)
NASA Astrophysics Data System (ADS)
Ito, Daigoro
A new way to approach robust Dynamic Inversion controller synthesis is addressed in this paper. A Linear Quadratic Gaussian outer-loop controller improves the robustness of a Dynamic Inversion inner-loop controller in the presence of uncertainties. Desired dynamics are given by the dynamic compensator, which shapes the loop. The selected dynamics are based on both performance and stability robustness requirements. These requirements are straightforwardly formulated as frequency-dependent singular value bounds during synthesis of the controller. Performance and robustness of the designed controller is tested using a worst case time domain quadratic index, which is a simple but effective way to measure robustness due to parameter variation. Using this approach, a lateral-directional controller for the X-38 vehicle is designed and its robustness to parameter variations and disturbances is analyzed. It is found that if full state measurements are available, the performance of the designed lateral-directional control system, measured by the chosen cost function, improves by approximately a factor of four. Also, it is found that the designed system is stable up to a parametric variation of 1.65 standard deviation with the set of uncertainty considered. The system robustness is determined to be highly sensitive to the dihedral derivative and the roll damping coefficients. The controller analysis is extended to the nonlinear system where both control input displacements and rates are bounded. In this case, the considered nonlinear system is stable up to 48.1° in bank angle and 1.59° in sideslip angle variations, indicating it is more sensitive to variations in sideslip angle than in bank angle. This nonlinear approach is further extended for the actuator failure mode analysis. The results suggest that the designed system maintains a high level of stability in the event of aileron failure. However, only 35% or less of the original stability range is maintained for the rudder failure case. Overall, this combination of controller synthesis and robustness criteria compares well with the mu-synthesis technique. It also is readily accessible to the practicing engineer, in terms of understanding and use.
Parametric synthesis of a robust controller on a base of mathematical programming method
NASA Astrophysics Data System (ADS)
Khozhaev, I. V.; Gayvoronskiy, S. A.; Ezangina, T. A.
2018-05-01
Considered paper is dedicated to deriving sufficient conditions, linking root indices of robust control quality with coefficients of interval characteristic polynomial, on the base of mathematical programming method. On the base of these conditions, a method of PI- and PID-controllers, providing aperiodic transient process with acceptable stability degree and, subsequently, acceptable setting time, synthesis was developed. The method was applied to a problem of synthesizing a controller for a depth control system of an unmanned underwater vehicle.
Aircraft noise synthesis system: Version 4 user instructions
NASA Technical Reports Server (NTRS)
Mccurdy, David A.; Sullivan, Brenda M.; Grandle, Robert E.
1987-01-01
A modified version of the Aircraft Noise Synthesis System with improved directivity and tonal content modeling has been developed. The synthesis system is used to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics such as duration or tonal content are independently varied while the remaining characteristics such as broadband content are held constant. The modified version of the system provides improved modeling of noise directivity patterns and an increased number of pure tone components. User instructions for the modified version of the synthesis system are provided.
Chemical environments of submarine hydrothermal systems. [supporting abiogenetic theory
NASA Technical Reports Server (NTRS)
Shock, Everett L.
1992-01-01
The paper synthesizes diverse information about the inorganic geochemistry of submarine hydrothermal systems, provides a description of the fundamental physical and chemical properties of these systems, and examines the implications of high-temperature, fluid-driven processes for organic synthesis. Emphasis is on a few general features, i.e., pressure, temperature, oxidation states, fluid composition, and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.
Synthesis study of Texas signal control systems : technical report.
DOT National Transportation Integrated Search
2012-09-01
In recent years, several versions of traffic control systems have been established across the United States and within the state of Texas. There is a growing need to identify the various versions of these systems that exist, including the system hard...
Multivariable control altitude demonstration on the F100 turbofan engine
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Dehoff, R. L.; Hackney, R. D.
1979-01-01
The F100 Multivariable control synthesis (MVCS) program, was aimed at demonstrating the benefits of LGR synthesis theory in the design of a multivariable engine control system for operation throughout the flight envelope. The advantages of such procedures include: (1) enhanced performance from cross-coupled controls, (2) maximum use of engine variable geometry, and (3) a systematic design procedure that can be applied efficiently to new engine systems. The control system designed, under the MVCS program, for the Pratt & Whitney F100 turbofan engine is described. Basic components of the control include: (1) a reference value generator for deriving a desired equilibrium state and an approximate control vector, (2) a transition model to produce compatible reference point trajectories during gross transients, (3) gain schedules for producing feedback terms appropriate to the flight condition, and (4) integral switching logic to produce acceptable steady-state performance without engine operating limit exceedance.
Combined Optimal Control System for excavator electric drive
NASA Astrophysics Data System (ADS)
Kurochkin, N. S.; Kochetkov, V. P.; Platonova, E. V.; Glushkin, E. Y.; Dulesov, A. S.
2018-03-01
The article presents a synthesis of the combined optimal control algorithms of the AC drive rotation mechanism of the excavator. Synthesis of algorithms consists in the regulation of external coordinates - based on the theory of optimal systems and correction of the internal coordinates electric drive using the method "technical optimum". The research shows the advantage of optimal combined control systems for the electric rotary drive over classical systems of subordinate regulation. The paper presents a method for selecting the optimality criterion of coefficients to find the intersection of the range of permissible values of the coordinates of the control object. There is possibility of system settings by choosing the optimality criterion coefficients, which allows one to select the required characteristics of the drive: the dynamic moment (M) and the time of the transient process (tpp). Due to the use of combined optimal control systems, it was possible to significantly reduce the maximum value of the dynamic moment (M) and at the same time - reduce the transient time (tpp).
Optimal Full Information Synthesis for Flexible Structures Implemented on Cray Supercomputers
NASA Technical Reports Server (NTRS)
Lind, Rick; Balas, Gary J.
1995-01-01
This paper considers an algorithm for synthesis of optimal controllers for full information feedback. The synthesis procedure reduces to a single linear matrix inequality which may be solved via established convex optimization algorithms. The computational cost of the optimization is investigated. It is demonstrated the problem dimension and corresponding matrices can become large for practical engineering problems. This algorithm represents a process that is impractical for standard workstations for large order systems. A flexible structure is presented as a design example. Control synthesis requires several days on a workstation but may be solved in a reasonable amount of time using a Cray supercomputer.
NASA Technical Reports Server (NTRS)
Jones, R. L.
1984-01-01
An interactive digital computer program for modal analysis and gain estimation for eigensystem synthesis was written. Both mathematical and operation considerations are described; however, the mathematical presentation is limited to those concepts essential to the operational capability of the program. The program is capable of both modal and spectral synthesis of multi-input control systems. It is user friendly, has scratchpad capability and dynamic memory, and can be used to design either state or output feedback systems.
Behavior sensitivities for control augmented structures
NASA Technical Reports Server (NTRS)
Manning, R. A.; Lust, R. V.; Schmit, L. A.
1987-01-01
During the past few years it has been recognized that combining passive structural design methods with active control techniques offers the prospect of being able to find substantially improved designs. These developments have stimulated interest in augmenting structural synthesis by adding active control system design variables to those usually considered in structural optimization. An essential step in extending the approximation concepts approach to control augmented structural synthesis is the development of a behavior sensitivity analysis capability for determining rates of change of dynamic response quantities with respect to changes in structural and control system design variables. Behavior sensitivity information is also useful for man-machine interactive design as well as in the context of system identification studies. Behavior sensitivity formulations for both steady state and transient response are presented and the quality of the resulting derivative information is evaluated.
Zeolite Coating System for Corrosion Control to Eliminate Hexavalent Chromium from DoD Applications
2009-08-01
Beving D.; Munoz R.; Yushan Y. 2005, Hydrothermal Synthesis and Corrosion Resistance of Vanadium ZSM-5 Films, The American Institute of Chemical...Engineers National Meeting, October 30 - November 4, Cincinnati, Ohio. 8) Mao Y.; Beving D.; Munoz R.; Yushan Y. 2005, Hydrothermal Synthesis of...directly at the solid-liquid interface from a synthesis solution during the coating formation process (Figure 2-4)12. The synthesis solution used is a
Passivity-based Robust Control of Aerospace Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)
2000-01-01
This report provides a brief summary of the research work performed over the duration of the cooperative research agreement between NASA Langley Research Center and Kansas State University. The cooperative agreement which was originally for the duration the three years was extended by another year through no-cost extension in order to accomplish the goals of the project. The main objective of the research was to develop passivity-based robust control methodology for passive and non-passive aerospace systems. The focus of the first-year's research was limited to the investigation of passivity-based methods for the robust control of Linear Time-Invariant (LTI) single-input single-output (SISO), open-loop stable, minimum-phase non-passive systems. The second year's focus was mainly on extending the passivity-based methodology to a larger class of non-passive LTI systems which includes unstable and nonminimum phase SISO systems. For LTI non-passive systems, five different passification. methods were developed. The primary effort during the years three and four was on the development of passification methodology for MIMO systems, development of methods for checking robustness of passification, and developing synthesis techniques for passifying compensators. For passive LTI systems optimal synthesis procedure was also developed for the design of constant-gain positive real controllers. For nonlinear passive systems, numerical optimization-based technique was developed for the synthesis of constant as well as time-varying gain positive-real controllers. The passivity-based control design methodology developed during the duration of this project was demonstrated by its application to various benchmark examples. These example systems included longitudinal model of an F-18 High Alpha Research Vehicle (HARV) for pitch axis control, NASA's supersonic transport wind tunnel model, ACC benchmark model, 1-D acoustic duct model, piezo-actuated flexible link model, and NASA's Benchmark Active Controls Technology (BACT) Wing model. Some of the stability results for linear passive systems were also extended to nonlinear passive systems. Several publications and conference presentations resulted from this research.
An adaptive robust controller for time delay maglev transportation systems
NASA Astrophysics Data System (ADS)
Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza
2012-12-01
For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.
Synthesis and structure of synthetically pure and deuterated amorphous (basic) calcium carbonates
Wang, Hsiu-Wen; Daemen, Luke L.; Cheshire, Michael C.; ...
2017-02-17
It is generally believed that H 2O and OH - are the key species stabilizing and controlling amorphous calcium carbonate “polyamorph” forms, and may in turn control the ultimate crystallization products during synthesis and in natural systems. Yet, the locations and hydrogen-bonding network of these species in ACC have never been measured directly using neutron diffraction. In this paper, we report a synthesis route that overcomes the existing challenges with respect to yield quantities and deuteration, both of which are critically necessary for high quality neutron studies.
Extensions to PIFCGT: Multirate output feedback and optimal disturbance suppression
NASA Technical Reports Server (NTRS)
Broussard, J. R.
1986-01-01
New control synthesis procedures for digital flight control systems were developed. The theoretical developments are the solution to the problem of optimal disturbance suppression in the presence of windshear. Control synthesis is accomplished using a linear quadratic cost function, the command generator tracker for trajectory following and the proportional-integral-filter control structure for practical implementation. Extensions are made to the optimal output feedback algorithm for computing feedback gains so that the multirate and optimal disturbance control designs are computed and compared for the advanced transport operating system (ATOPS). The performance of the designs is demonstrated by closed-loop poles, frequency domain multiinput sigma and eigenvalue plots and detailed nonlinear 6-DOF aircraft simulations in the terminal area in the presence of windshear.
Organic synthesis during fluid mixing in hydrothermal systems
NASA Astrophysics Data System (ADS)
Shock, Everett L.; Schulte, Mitchell D.
1998-12-01
Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth or Mars. The single largest control on the potential for organic synthesis is the composition of the rock that hosts the hydrothermal system.
Nordahl, Rolf; Turchet, Luca; Serafin, Stefania
2011-09-01
We propose a system that affords real-time sound synthesis of footsteps on different materials. The system is based on microphones, which detect real footstep sounds from subjects, from which the ground reaction force (GRF) is estimated. Such GRF is used to control a sound synthesis engine based on physical models. Two experiments were conducted. In the first experiment, the ability of subjects to recognize the surface they were exposed to was assessed. In the second experiment, the sound synthesis engine was enhanced with environmental sounds. Results show that, in some conditions, adding a soundscape significantly improves the recognition of the simulated environment.
A robust variable sampling time BLDC motor control design based upon μ-synthesis.
Hung, Chung-Wen; Yen, Jia-Yush
2013-01-01
The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach.
A Robust Variable Sampling Time BLDC Motor Control Design Based upon μ-Synthesis
Yen, Jia-Yush
2013-01-01
The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach. PMID:24327804
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1994-01-01
During the first half of the year, the investigators concentrated their efforts on completing the design of control laws for the longitudinal axis of the HARV. During the second half of the year they concentrated on the synthesis of control laws for the lateral-directional axes. The longitudinal control law design efforts can be briefly summarized as follows. Longitudinal control laws were developed for the HARV using mu synthesis design techniques coupled with dynamic inversion. An inner loop dynamic inversion controller was used to simplify the system dynamics by eliminating the aerodynamic nonlinearities and inertial cross coupling. Models of the errors resulting from uncertainties in the principal longitudinal aerodynamic terms were developed and included in the model of the HARV with the inner loop dynamic inversion controller. This resulted in an inner loop transfer function model which was an integrator with the modeling errors characterized as uncertainties in gain and phase. Outer loop controllers were then designed using mu synthesis to provide robustness to these modeling errors and give desired response to pilot inputs. Both pitch rate and angle of attack command following systems were designed. The following tasks have been accomplished for the lateral-directional controllers: inner and outer loop dynamic inversion controllers have been designed; an error model based on a linearized perturbation model of the inner loop system was derived; controllers for the inner loop system have been designed, using classical techniques, that control roll rate and Dutch roll response; the inner loop dynamic inversion and classical controllers have been implemented on the six degree of freedom simulation; and lateral-directional control allocation scheme has been developed based on minimizing required control effort.
Optimization-Based Robust Nonlinear Control
2006-08-01
ABSTRACT New control algorithms were developed for robust stabilization of nonlinear dynamical systems . Novel, linear matrix inequality-based synthesis...was to further advance optimization-based robust nonlinear control design, for general nonlinear systems (especially in discrete time ), for linear...Teel, IEEE Transactions on Control Systems Technology, vol. 14, no. 3, p. 398-407, May 2006. 3. "A unified framework for input-to-state stability in
The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot.
Kitson, Philip J; Glatzel, Stefan; Cronin, Leroy
2016-01-01
An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic 'programs' which can run on similar low cost, user-constructed robotic platforms towards an 'open-source' regime in the area of chemical synthesis.
The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot
Kitson, Philip J; Glatzel, Stefan
2016-01-01
An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms towards an ‘open-source’ regime in the area of chemical synthesis. PMID:28144350
NASA Technical Reports Server (NTRS)
Riedel, S. A.
1979-01-01
A method by which modern and classical control theory techniques may be integrated in a synergistic fashion and used in the design of practical flight control systems is presented. A general procedure is developed, and several illustrative examples are included. Emphasis is placed not only on the synthesis of the design, but on the assessment of the results as well. The first step is to establish the differences, distinguishing characteristics and connections between the modern and classical control theory approaches. Ultimately, this uncovers a relationship between bandwidth goals familiar in classical control and cost function weights in the equivalent optimal system. In order to obtain a practical optimal solution, it is also necessary to formulate the problem very carefully, and each choice of state, measurement and output variable must be judiciously considered. Once design goals are established and problem formulation completed, the control system is synthesized in a straightforward manner. Three steps are involved: filter-observer solution, regulator solution, and the combination of those two into the controller. Assessment of the controller permits and examination and expansion of the synthesis results.
Advanced Control Synthesis for Reverse Osmosis Water Desalination Processes.
Phuc, Bui Duc Hong; You, Sam-Sang; Choi, Hyeung-Six; Jeong, Seok-Kwon
2017-11-01
In this study, robust control synthesis has been applied to a reverse osmosis desalination plant whose product water flow and salinity are chosen as two controlled variables. The reverse osmosis process has been selected to study since it typically uses less energy than thermal distillation. The aim of the robust design is to overcome the limitation of classical controllers in dealing with large parametric uncertainties, external disturbances, sensor noises, and unmodeled process dynamics. The analyzed desalination process is modeled as a multi-input multi-output (MIMO) system with varying parameters. The control system is decoupled using a feed forward decoupling method to reduce the interactions between control channels. Both nominal and perturbed reverse osmosis systems have been analyzed using structured singular values for their stabilities and performances. Simulation results show that the system responses meet all the control requirements against various uncertainties. Finally the reduced order controller provides excellent robust performance, with achieving decoupling, disturbance attenuation, and noise rejection. It can help to reduce the membrane cleanings, increase the robustness against uncertainties, and lower the energy consumption for process monitoring.
Travis, R. L.; Jordan, W. R.; Huffaker, R. C.
1969-01-01
The disappearance of nitrate reductase activity in leaves of Hordeum vulgare L. during darkness was inhibited by cycloheximide, actinomycin D, and low temperature. Thus, protein synthesis was probably required for the disappearance of nitrate reductase in the dark. Since chloramphenicol did not affect the rate of loss of activity, the degradation or inactivation apparently required protein synthesis by the cytoplasmic ribosomal system. Consistent with this observation, nitrate reductase is also reportedly located in the cytoplasm. Thus, the amount of nitrate reductase activity present in leaves of barley may be controlled by a balance between activating and inactivating systems. PMID:16657182
NASA Technical Reports Server (NTRS)
Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.
1981-01-01
The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.
On the control canonical structure of a class of scalar input systems
NASA Technical Reports Server (NTRS)
Teglas, R.
1983-01-01
A discrete finite dimensional system, nonharmonic Fourier series and controllability, reduction to canonical form, and spectral synthesis are considered. The extent to which the eigenvalue associated with a controllable pair of a certain type may be modified via continuous linear state feedback is demonstrated.
Control Augmented Structural Synthesis
NASA Technical Reports Server (NTRS)
Lust, Robert V.; Schmit, Lucien A.
1988-01-01
A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated.
Satellite communication antenna technology
NASA Technical Reports Server (NTRS)
Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)
1983-01-01
A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.
Effect of total parenteral nutrition, systemic sepsis, and glutamine on gut mucosa in rats
NASA Technical Reports Server (NTRS)
Yoshida, S.; Leskiw, M. J.; Schluter, M. D.; Bush, K. T.; Nagele, R. G.; Lanza-Jacoby, S.; Stein, T. P.
1992-01-01
The effect of the combination of total parenteral nutrition (TPN) and systemic sepsis on mucosal morphology and protein synthesis was investigated. Rats were given a standard TPN mixture consisting of glucose (216 kcal.kg-1.day-1), lipid (24 kcal.kg-1.day-1), and amino acids (1.5 g N.kg-1.day-1) for 5 days. On the 5th day the rats (n = 37) were randomized into four groups according to diet as follows: 1) control nonseptic on standard TPN, 2) control nonseptic on TPN with glutamine, 3) septic on standard TPN, and 4) septic with the TPN supplemented with glutamine. Twenty hours after the injection of Escherichia coli, the rats were given a 4-h constant infusion of [U-14C]leucine to determine the mucosal fractional protein synthesis rates. The following results were obtained. 1) Histological examination showed that systemic sepsis caused tissue damage to the ileum and jejunum. 2) Glutamine supplementation attenuated these changes. 3) There were no visible changes to the colon either from glutamine supplementation or sepsis. 4) Sepsis was associated with an increase in mucosal protein synthesis and decreased muscle synthesis. 5) Addition of glutamine to the TPN mix further increased protein synthesis in the intestinal mucosa of septic rats.
NASA Technical Reports Server (NTRS)
1984-01-01
Boeing Commercial Airplane Company's Flight Control Department engineers relied on Langley developed software package known as ORACLS to develop an advanced control synthesis package for both continuous and discrete control system. Package was used by Boeing for computerized analysis of new system designs. Resulting applications include a multiple input/output control system for the terrain-following navigation equipment of the Air Forces B-1 Bomber, and another for controlling in flight changes of wing camber on an experimental airplane. ORACLS is one of 1,300 computer programs available from COSMIC.
Silicon compilation: From the circuit to the system
NASA Astrophysics Data System (ADS)
Obrien, Keven
The methodology used for the compilation of silicon from a behavioral level to a system level is presented. The aim was to link the heretofore unrelated areas of high level synthesis and system level design. This link will play an important role in the development of future design automation tools as it will allow hardware/software co-designs to be synthesized. A design methodology that alllows, through the use of an intermediate representation, SOLAR, a System level Design Language (SDL), to be combined with a Hardware Description Language (VHDL) is presented. Two main steps are required in order to transform this specification into a synthesizable one. Firstly, a system level synthesis step including partitioning and communication synthesis is required in order to split the model into a set of interconnected subsystems, each of which will be processed by a high level synthesis tool. For this latter step AMICAL is used and this allows powerful scheduling techniques to be used, that accept very abstract descriptions of control flow dominated circuits as input, and interconnected RTL blocks that may feed existing logic-level synthesis tools to be generated.
Synthesis of multi-loop automatic control systems by the nonlinear programming method
NASA Astrophysics Data System (ADS)
Voronin, A. V.; Emelyanova, T. A.
2017-01-01
The article deals with the problem of calculation of the multi-loop control systems optimal tuning parameters by numerical methods and nonlinear programming methods. For this purpose, in the paper the Optimization Toolbox of Matlab is used.
The 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, part 2
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr. (Compiler)
1990-01-01
A collection of papers from the workshop are presented. The topics addressed include: the modeling, systems identification, and control synthesis for the Spacecraft Control Laboratory Experiment (SCOLE) configuration.
Hypersonic vehicle model and control law development using H(infinity) and micron synthesis
NASA Astrophysics Data System (ADS)
Gregory, Irene M.; Chowdhry, Rajiv S.; McMinn, John D.; Shaughnessy, John D.
1994-10-01
The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.
Hypersonic vehicle model and control law development using H(infinity) and micron synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.
1994-01-01
The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.
Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis
Murray, Heath; Koh, Alan
2014-01-01
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815
Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.
Murray, Heath; Koh, Alan
2014-10-01
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.
Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle
NASA Technical Reports Server (NTRS)
Adams, Richard J.
1993-01-01
High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.
Application of modern control design methodology to oblique wing research aircraft
NASA Technical Reports Server (NTRS)
Vincent, James H.
1991-01-01
A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.
Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, part 2
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr. (Compiler)
1989-01-01
The Control/Structures Integration Program, a survey of available software for control of flexible structures, computational efficiency and capability, modeling and parameter estimation, and control synthesis and optimization software are discussed.
Digital robust control law synthesis using constrained optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivekananda
1989-01-01
Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.
Computer Simulation of a Multiaxis Air-to-Air Tracking Task Using the Optimal Pilot Control Model.
1982-12-01
v ABSTRACT ........ ............................. .. vi CHAPTER 1 - INTRODUCTION ....... ..................... 1 1.1 Motivation... Introduction ......... . 4 2.2 Optimal Pilot Control Model and Control Synthesis 4 2.3 Pitch Tracking Task ...... ................... 6 2.4 Multiaxis...CHAPTER 3 - SIMULATION SYSTEM ...... .................. 33 3.1 Introduction ........ ....................... 33 3.2 System Hardware
NASA Technical Reports Server (NTRS)
Sevart, F. D.; Patel, S. M.; Wattman, W. J.
1972-01-01
Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.
Choosing Sensor Configuration for a Flexible Structure Using Full Control Synthesis
NASA Technical Reports Server (NTRS)
Lind, Rick; Nalbantoglu, Volkan; Balas, Gary
1997-01-01
Optimal locations and types for feedback sensors which meet design constraints and control requirements are difficult to determine. This paper introduces an approach to choosing a sensor configuration based on Full Control synthesis. A globally optimal Full Control compensator is computed for each member of a set of sensor configurations which are feasible for the plant. The sensor configuration associated with the Full Control system achieving the best closed-loop performance is chosen for feedback measurements to an output feedback controller. A flexible structure is used as an example to demonstrate this procedure. Experimental results show sensor configurations chosen to optimize the Full Control performance are effective for output feedback controllers.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1992-01-01
The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law.
Aircraft noise synthesis system
NASA Technical Reports Server (NTRS)
Mccurdy, David A.; Grandle, Robert E.
1987-01-01
A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.
Survey of adaptive control using Liapunov design
NASA Technical Reports Server (NTRS)
Lindorff, D. P.; Carroll, R. L.
1972-01-01
A survey was made of the literature devoted to the synthesis of model-tracking adaptive systems based on application of Liapunov's second method. The basic synthesis procedure is introduced and a critical review of extensions made to the theory since 1966 is made. The extensions relate to design for relative stability, reduction of order techniques, design with disturbance, design with time variable parameters, multivariable systems, identification, and an adaptive observer.
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1986-01-01
The topics of research in this program include pilot/vehicle analysis techniques, identification of pilot dynamics, and control and display synthesis techniques for optimizing aircraft handling qualities. The project activities are discussed. The current technical activity is directed at extending and validating the active display synthesis procedure, and the pilot/vehicle analysis of the NLR rate-command flight configurations in the landing task. Two papers published by the researchers are attached as appendices.
AMICAL: An aid for architectural synthesis and exploration of control circuits
NASA Astrophysics Data System (ADS)
Park, Inhag
AMICAL is an architectural synthesis system for control flow dominated circuits. A behavioral finite state machine specification, where the scheduling and register allocation were performed, is presented. An abstract architecture specification that may feed existing silicon compilers acting at the logic and register transfer levels is described. AMICAL consists of five main functions allowing automatic, interactive and manual synthesis, as well as the combination of these methods. These functions are a synthesizer, a graphics editor, a verifier, an evaluator, and a documentor. Automatic synthesis is achieved by algorithms that allocate both functional units, stored in an expandable user defined library, and connections. AMICAL also allows the designer to interrupt the synthesis process at any stage and make interactive modifications via a specially designed graphics editor. The user's modifications are verified and evaluated to ensure that no design rules are broken and that any imposed constraints are still met. A documentor provides the designer with status and feedback reports from the synthesis process.
NASA Technical Reports Server (NTRS)
Sevart, F. D.; Patel, S. M.
1973-01-01
Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.
NASA Astrophysics Data System (ADS)
Chupina, K. V.; Kataev, E. V.; Khannanov, A. M.; Korshunov, V. N.; Sennikov, I. A.
2018-05-01
The paper is devoted to a problem of synthesis of the robust control system for a distributed parameters plant. The vessel descent-rise device has a heave compensation function for stabilization of the towed underwater vehicle on a set depth. A sea state code, parameters of the underwater vehicle and cable vary during underwater operations, the vessel heave is a stochastic process. It means that the plant and external disturbances have uncertainty. That is why it is necessary to use the robust theory for synthesis of an automatic control system, but without use of traditional methods of optimization, because this cable has distributed parameters. The offered technique has allowed one to design an effective control system for stabilization of immersion depth of the towed underwater vehicle for various degrees of sea roughness and to provide its robustness to deviations of parameters of the vehicle and cable’s length.
Supervisory control based on minimal cuts and Petri net sub-controllers coordination
NASA Astrophysics Data System (ADS)
Rezig, Sadok; Achour, Zied; Rezg, Nidhal; Kammoun, Mohamed-Ali
2016-10-01
This paper addresses the synthesis of Petri net (PN) controller for the forbidden state transition problem with a new utilisation of the theory of regions. Moreover, as any method of control synthesis based on a reachability graph, the theory of regions suffers from the combinatorial explosion problem. The proposed work minimises the number of equations in the linear system of theory of regions and therefore one can reduce the computation time. In this paper, two different approaches are proposed to select minimal cuts in the reachability graph in order to synthesise a PN controller. Thanks to a switch from one cut to another, one can activate and deactivate the corresponding PNcontroller. An application is implemented in a flexible manufacturing system to illustrate the present method. Finally, comparison with previous works with experimental results in obtaining a maximally permissive controller is presented.
Globally linearized control on diabatic continuous stirred tank reactor: a case study.
Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal
2005-07-01
This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.; Yurkovich, S.; Hill, J. P.; Kingler, T. A.
1983-01-01
The development of models of tensor type for a digital simulation of the quiet, clean safe engine (QCSE) gas turbine engine; the extension, to nonlinear multivariate control system design, of the concepts of total synthesis which trace their roots back to certain early investigations under this grant; the role of series descriptions as they relate to questions of scheduling in the control of gas turbine engines; the development of computer-aided design software for tensor modeling calculations; further enhancement of the softwares for linear total synthesis, mentioned above; and calculation of the first known examples using tensors for nonlinear feedback control are discussed.
Synthesis of aircraft structures using integrated design and analysis methods
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Goetz, R. C.
1978-01-01
A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.
Zhang, Dan; Wei, Bin
2017-01-01
Currently, the uses of robotics are limited with respect to performance capabilities. Improving the performance of robotic mechanisms is and still will be the main research topic in the next decade. In this paper, design and integration for improving performance of robotic systems are achieved through three different approaches, i.e., structure synthesis design approach, dynamic balancing approach, and adaptive control approach. The purpose of robotic mechanism structure synthesis design is to propose certain mechanism that has better kinematic and dynamic performance as compared to the old ones. For the dynamic balancing design approach, it is normally accomplished based on employing counterweights or counter-rotations. The potential issue is that more weight and inertia will be included in the system. Here, reactionless based on the reconfiguration concept is put forward, which can address the mentioned problem. With the mechanism reconfiguration, the control system needs to be adapted thereafter. One way to address control system adaptation is by applying the “divide and conquer” methodology. It entails modularizing the functionalities: breaking up the control functions into small functional modules, and from those modules assembling the control system according to the changing needs of the mechanism. PMID:28075360
Robust Fixed-Structure Controller Synthesis
NASA Technical Reports Server (NTRS)
Corrado, Joseph R.; Haddad, Wassim M.; Gupta, Kajal (Technical Monitor)
2000-01-01
The ability to develop an integrated control system design methodology for robust high performance controllers satisfying multiple design criteria and real world hardware constraints constitutes a challenging task. The increasingly stringent performance specifications required for controlling such systems necessitates a trade-off between controller complexity and robustness. The principle challenge of the minimal complexity robust control design is to arrive at a tractable control design formulation in spite of the extreme complexity of such systems. Hence, design of minimal complexitY robust controllers for systems in the face of modeling errors has been a major preoccupation of system and control theorists and practitioners for the past several decades.
2016-08-16
Force Research Laboratory Space Vehicles Directorate AFRL /RVSV 3550 Aberdeen Ave, SE 11. SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER...Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSV/Richard S. Erwin 1 cy... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0112 TR-2016-0112 SPECIFICATION, SYNTHESIS, AND VERIFICATION OF SOFTWARE-BASED CONTROL PROTOCOLS FOR FAULT-TOLERANT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiu-Wen; Daemen, Luke L.; Cheshire, Michael C.
It is generally believed that H 2O and OH - are the key species stabilizing and controlling amorphous calcium carbonate “polyamorph” forms, and may in turn control the ultimate crystallization products during synthesis and in natural systems. Yet, the locations and hydrogen-bonding network of these species in ACC have never been measured directly using neutron diffraction. We report a synthesis route that overcomes the existing challenges with respect to yield quantities and deuteration, both of which are critically necessary for high quality neutron studies.
Supervisory control of (max,+) automata: extensions towards applications
NASA Astrophysics Data System (ADS)
Lahaye, Sébastien; Komenda, Jan; Boimond, Jean-Louis
2015-12-01
In this paper, supervisory control of (max,+) automata is studied. The synthesis of maximally permissive and just-in-time supervisor, as well as the synthesis of minimally permissive and just-after-time supervisor, are proposed. Results are also specialised to non-decreasing solutions, because only such supervisors can be realised in practice. The inherent issue of rationality raised recently is discussed. An illustration of concepts and results is presented through an example of a flexible manufacturing system.
Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG
Leibfarth, Frank A.; Johnson, Jeremiah A.; Jamison, Timothy F.
2015-01-01
We report a semiautomated synthesis of sequence and architecturally defined, unimolecular macromolecules through a marriage of multistep flow synthesis and iterative exponential growth (Flow-IEG). The Flow-IEG system performs three reactions and an in-line purification in a total residence time of under 10 min, effectively doubling the molecular weight of an oligomeric species in an uninterrupted reaction sequence. Further iterations using the Flow-IEG system enable an exponential increase in molecular weight. Incorporating a variety of monomer structures and branching units provides control over polymer sequence and architecture. The synthesis of a uniform macromolecule with a molecular weight of 4,023 g/mol is demonstrated. The user-friendly nature, scalability, and modularity of Flow-IEG provide a general strategy for the automated synthesis of sequence-defined, unimolecular macromolecules. Flow-IEG is thus an enabling tool for theory validation, structure–property studies, and advanced applications in biotechnology and materials science. PMID:26269573
Shanmugam, Sivaprakash; Boyer, Cyrille
2015-08-12
Nature has developed efficient polymerization processes, which allow the synthesis of complex macromolecules with a perfect control of tacticity as well as molecular weight, in response to a specific stimulus. In this contribution, we report the synthesis of various stereopolymers by combining a photoactivated living polymerization, named photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) with Lewis acid mediators. We initially investigated the tolerance of two different photoredox catalysts, i.e., Ir(ppy)3 and Ru(bpy)3, in the presence of a Lewis acid, i.e., Y(OTf)3 and Yb(OTf)3, to mediate the polymerization of N,N-dimethyl acrylamide (DMAA). An excellent control of tacticity as well as molecular weight and dispersity was observed when Ir(ppy)3 and Y(OTf)3 were employed in a methanol/toluene mixture, while no polymerization or poor control was observed with Ru(bpy)3. In comparison to a thermal system, a lower amount of Y(OTf)3 was required to achieve good control over the tacticity. Taking advantage of the temporal control inherent in our system, we were able to design complex macromolecular architectures, such as atactic block-isotactic and isotactic-block-atactic polymers in a one-pot polymerization approach. Furthermore, we discovered that we could modulate the degree of tacticity through a chemical stimulus, by varying [DMSO]0/[Y(OTf)3]0 ratio from 0 to 30 during the polymerization. The stereochemical control afforded by the addition of a low amount of DMSO in conjunction with the inherent temporal control enabled the synthesis of stereogradient polymer consisting of five different stereoblocks in one-pot polymerization.
NASA Technical Reports Server (NTRS)
Madrid, G. A.; Westmoreland, P. T.
1983-01-01
A progress report is presented on a program to upgrade the existing NASA Deep Space Network in terms of a redesigned computer-controlled data acquisition system for channelling tracking, telemetry, and command data between a California-based control center and three signal processing centers in Australia, California, and Spain. The methodology for the improvements is oriented towards single subsystem development with consideration for a multi-system and multi-subsystem network of operational software. Details of the existing hardware configurations and data transmission links are provided. The program methodology includes data flow design, interface design and coordination, incremental capability availability, increased inter-subsystem developmental synthesis and testing, system and network level synthesis and testing, and system verification and validation. The software has been implemented thus far to a 65 percent completion level, and the methodology being used to effect the changes, which will permit enhanced tracking and communication with spacecraft, has been concluded to feature effective techniques.
A distributed finite-element modeling and control approach for large flexible structures
NASA Technical Reports Server (NTRS)
Young, K. D.
1989-01-01
An unconventional framework is described for the design of decentralized controllers for large flexible structures. In contrast to conventional control system design practice which begins with a model of the open loop plant, the controlled plant is assembled from controlled components in which the modeling phase and the control design phase are integrated at the component level. The developed framework is called controlled component synthesis (CCS) to reflect that it is motivated by the well developed Component Mode Synthesis (CMS) methods which were demonstrated to be effective for solving large complex structural analysis problems for almost three decades. The design philosophy behind CCS is also closely related to that of the subsystem decomposition approach in decentralized control.
Compressed-air flow control system.
Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S
2011-02-21
We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.
2016-07-08
Systems Using Automata Theory and Barrier Certifi- cates We developed a sound but incomplete method for the computational verification of specifications...method merges ideas from automata -based model checking with those from control theory including so-called barrier certificates and optimization-based... Automata theory meets barrier certificates: Temporal logic verification of nonlinear systems,” IEEE Transactions on Automatic Control, 2015. [J2] R
Task planning and control synthesis for robotic manipulation in space applications
NASA Technical Reports Server (NTRS)
Sanderson, A. C.; Peshkin, M. A.; Homem-De-mello, L. S.
1987-01-01
Space-based robotic systems for diagnosis, repair and assembly of systems will require new techniques of planning and manipulation to accomplish these complex tasks. Results of work in assembly task representation, discrete task planning, and control synthesis which provide a design environment for flexible assembly systems in manufacturing applications, and which extend to planning of manipulatiuon operations in unstructured environments are summarized. Assembly planning is carried out using the AND/OR graph representation which encompasses all possible partial orders of operations and may be used to plan assembly sequences. Discrete task planning uses the configuration map which facilitates search over a space of discrete operations parameters in sequential operations in order to achieve required goals in the space of bounded configuration sets.
The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter
NASA Technical Reports Server (NTRS)
Townsend, Barbara K.
1987-01-01
A control-system design method, quadratic optimal cooperative control synthesis (CCS), is applied to the design of a stability and control augmentation system (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design method, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and linear quadratic regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.
The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter
NASA Technical Reports Server (NTRS)
Townsend, Barbara K.
1986-01-01
A control-system design method, Quadratic Optimal Cooperative Control Synthesis (CCS), is applied to the design of a Stability and Control Augmentation Systems (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design model, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing Vertol CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and Linear Quadratic Regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.
Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization
NASA Astrophysics Data System (ADS)
Engelis, Nikolaos G.; Anastasaki, Athina; Nurumbetov, Gabit; Truong, Nghia P.; Nikolaou, Vasiliki; Shegiwal, Ataulla; Whittaker, Michael R.; Davis, Thomas P.; Haddleton, David M.
2017-02-01
Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage.
Eco-friendly Synthesis of Organics and Nanomaterials ...
The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety of name reactions2 are the primary beneficiaries as exemplified by the synthesis of N-aryl azacycloalkanes, isoindoles, and dihydropyrazoles, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,3-dioxanes, pyrazoles, catalyzed by basic water or polystyrene sulfonic acid (PSSA) in conjunction with microwave (MW) irradiation.2 Vitamins B1, B2, C, and tea and wine polyphenols which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water.3a Shape-controlled synthesis of noble nanostructures via MW-assisted spontaneous reduction of noble metal salts using sugars will be presented.3b A general method has been developed for the cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic systems; bimetallic systems,3c and SWNT, MWNT, and C-60.3d The strategy is extended to the formation of biodegradable carboxymethylcellulose (CMC) composite films with noble nanometals;3e such metal decoration and alignment of carbon nanotubes in CMC is possible using MW approach3f which also enables the shape-controlled bulk synthesis of Ag and Fe nanorods in poly (ethylene glycol).3g MW hydrothermal process delivers m
Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, part 1
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr. (Compiler)
1989-01-01
Control/Structures Integration program software needs, computer aided control engineering for flexible spacecraft, computer aided design, computational efficiency and capability, modeling and parameter estimation, and control synthesis and optimization software for flexible structures and robots are among the topics discussed.
Flow microreactor synthesis in organo-fluorine chemistry
Nagaki, Aiichiro
2013-01-01
Summary Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry. PMID:24367443
Flow microreactor synthesis in organo-fluorine chemistry.
Amii, Hideki; Nagaki, Aiichiro; Yoshida, Jun-Ichi
2013-12-05
Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiu-Wen; Daemen, Luke L.; Cheshire, Michael C.
It is generally believed that H 2O and OH - are the key species stabilizing and controlling amorphous calcium carbonate “polyamorph” forms, and may in turn control the ultimate crystallization products during synthesis and in natural systems. Yet, the locations and hydrogen-bonding network of these species in ACC have never been measured directly using neutron diffraction. In this paper, we report a synthesis route that overcomes the existing challenges with respect to yield quantities and deuteration, both of which are critically necessary for high quality neutron studies.
Determination and Control of Optical and X-Ray Wave Fronts
NASA Technical Reports Server (NTRS)
Kim, Young K.
1997-01-01
A successful design of a space-based or ground optical system requires an iterative procedure which includes the kinematics and dynamics of the system in operating environment, control synthesis and verification. To facilitate the task of designing optical wave front control systems being developed at NASA/MSFC, a multi-discipline dynamics and control tool has been developed by utilizing TREETOPS, a multi-body dynamics and control simulation, NASTRAN and MATLAB. Dynamics and control models of STABLE and ARIS were developed for TREETOPS simulation, and their simulation results are documented in this report.
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1984-01-01
A unified control synthesis methodology for complex and/or non-conventional flight vehicles are developed. Prediction techniques for the handling characteristics of such vehicles and pilot parameter identification from experimental data are addressed.
Sonneville, Romain; Guidoux, Céline; Barrett, Lucinda; Viltart, Odile; Mattot, Virginie; Polito, Andrea; Siami, Shidasp; de la Grandmaison, Geoffroy Lorin; Blanchard, Anne; Singer, Mervyn; Annane, Djillali; Gray, Françoise; Brouland, Jean-Philippe; Sharshar, Tarek
2010-05-01
Impaired arginine vasopressin (AVP) synthesis and release by the neurohypophyseal system, which includes the neurohypophysis and magnocellular neurons of the paraventricular and supraoptic nuclei, have been postulated in septic shock, but changes in this system have never been assessed in human septic shock, and only partially experimentally. We investigated AVP synthesis and release by the neurohypophyseal system in 9 patients who died from septic shock and 10 controls, and in 20 rats with fecal peritonitis-induced sepsis and 8 sham-operation controls. Ten rats died spontaneously from septic shock, and the others were sacrificed. In patients with septic shock, as in rats that died spontaneously following sepsis induction, AVP immunohistochemical expression was decreased in the neurohypophysis and supraoptic magnocellular neurons, whereas it was increased in the paraventricular magnocellular neurons. No significant change was observed in AVP messenger RiboNucleic Acid (mRNA) expression assessed by in situ hybridization in either paraventricular or supraoptic magnocellular cells. This study shows that both in human and experimental septic shock, AVP posttranscriptional synthesis and transport are differently modified in the magnocellular neurons of the supraoptic and paraventricular nuclei. This may account for the inappropriate AVP release in septic shock and suggests that distinct pathogenic mechanisms operate in these nuclei.
NASA Astrophysics Data System (ADS)
Franchetti, Franz; Sandryhaila, Aliaksei; Johnson, Jeremy R.
2014-06-01
In this paper we introduce High Assurance SPIRAL to solve the last mile problem for the synthesis of high assurance implementations of controllers for vehicular systems that are executed in today's and future embedded and high performance embedded system processors. High Assurance SPIRAL is a scalable methodology to translate a high level specification of a high assurance controller into a highly resource-efficient, platform-adapted, verified control software implementation for a given platform in a language like C or C++. High Assurance SPIRAL proves that the implementation is equivalent to the specification written in the control engineer's domain language. Our approach scales to problems involving floating-point calculations and provides highly optimized synthesized code. It is possible to estimate the available headroom to enable assurance/performance trade-offs under real-time constraints, and enables the synthesis of multiple implementation variants to make attacks harder. At the core of High Assurance SPIRAL is the Hybrid Control Operator Language (HCOL) that leverages advanced mathematical constructs expressing the controller specification to provide high quality translation capabilities. Combined with a verified/certified compiler, High Assurance SPIRAL provides a comprehensive complete solution to the efficient synthesis of verifiable high assurance controllers. We demonstrate High Assurance SPIRALs capability by co-synthesizing proofs and implementations for attack detection and sensor spoofing algorithms and deploy the code as ROS nodes on the Landshark unmanned ground vehicle and on a Synthetic Car in a real-time simulator.
High-rate synthesis of Cu-BTC metal-organic frameworks.
Kim, Ki-Joong; Li, Yong Jun; Kreider, Peter B; Chang, Chih-Hung; Wannenmacher, Nick; Thallapally, Praveen K; Ahn, Ho-Geun
2013-12-21
The reaction conditions for the synthesis of Cu-BTC (BTC = benzene-1,3,5-tricarboxylic acid) were elucidated using a continuous-flow microreactor-assisted solvothermal system to achieve crystal size and phase control. A high-rate synthesis of Cu-BTC metal-organic frameworks with a BET surface area of more than 1600 m(2) g(-1) (Langmuir surface area of more than 2000 m(2) g(-1)) and with a 97% production yield could be achieved with a total reaction time of 5 minutes.
Feedforward Tracking Control of Flat Recurrent Fuzzy Systems
NASA Astrophysics Data System (ADS)
Gering, Stefan; Adamy, Jürgen
2014-12-01
Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.
Protein Synthesis Inhibition Blocks Consolidation of an Acrobatic Motor Skill
ERIC Educational Resources Information Center
Kaelin-Lang, Alain; Dichgans, Johannes; Schulz, Jorg B.; Luft, Andreas R.; Buitrago, Manuel M.
2004-01-01
To investigate whether motor skill learning depends on de novo protein synthesis, adult rats were trained in an acrobatic locomotor task (accelerating rotarod) for 7 d. Animals were systemically injected with cycloheximide (CHX, 0.5 mg/kg, i.p.) 1 h before sessions 1 and 2 or sessions 2 and 3. Control rats received vehicle injections before…
Changes on protein expression associated with salinity tolerance in Brassica cell cultures.
Martín, J P; Elavummoottil, O C; Moreno, M L
1993-09-01
The synthesis of proteins from salt-tolerant Brassica oleracea L. var. botrytis L. subvar. cauliflora (Gars.) DC. (cauliflower) cell cultures is modified in relation to controls in several features. There are nine newly induced polypeptides in tolerant cultures (absent in control conditions). Some of them are only present under low salt levels (85 mM NaCl). Another group seems to be representative of moderate and high salt levels (170 and 255 mM NaCl), and a third group is present in all the salt conditions tested. On the other hand, the synthesis of most of the polypeptides present in control conditions is modified in salt-tolerant cultures by increasing, decreasing or stopping their synthesis in any of the tested conditions. The relationship between these changes in Brassica and other plant systems is discussed.
Hypersonic vehicle control law development using H(infinity) and micron-synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.
1993-01-01
Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.
Dopamine function in cigarette smokers: an [¹⁸F]-DOPA PET study.
Bloomfield, Michael A P; Pepper, Fiona; Egerton, Alice; Demjaha, Arsime; Tomasi, Gianpaolo; Mouchlianitis, Elias; Maximen, Levi; Veronese, Mattia; Turkheimer, Federico; Selvaraj, Sudhakar; Howes, Oliver D
2014-09-01
Tobacco addiction is a global public health problem. Addiction to tobacco is thought to involve the effects of nicotine on the dopaminergic system. Only one study has previously investigated dopamine synthesis capacity in cigarette smokers. This study, exclusively in male volunteers, reported increased dopamine synthesis capacity in heavy smokers compared with non-smokers. We sought to determine whether dopamine synthesis capacity was elevated in a larger sample of cigarette smokers that included females. Dopamine synthesis capacity was measured in 15 daily moderate smokers with 15 sex- and age-matched control subjects who had never smoked tobacco. Dopamine synthesis capacity (indexed as the influx rate constant K(i)(cer)) was measured with positron emission tomography and 3,4-dihydroxy-6-[(18)F]-fluoro-l-phenylalanine. There was no significant group difference in dopamine synthesis capacity between smokers and non-smoker controls in the whole striatum (t28=0.64, p=0.53) or any of its functional subdivisions. In smokers, there were no significant relationships between the number of cigarettes smoked per day and dopamine synthesis capacity in the whole striatum (r=-0.23, p=0.41) or any striatal subdivision. These findings indicate that moderate smoking is not associated with altered striatal dopamine synthesis capacity.
Robust Stabilization of Uncertain Systems Based on Energy Dissipation Concepts
NASA Technical Reports Server (NTRS)
Gupta, Sandeep
1996-01-01
Robust stability conditions obtained through generalization of the notion of energy dissipation in physical systems are discussed in this report. Linear time-invariant (LTI) systems which dissipate energy corresponding to quadratic power functions are characterized in the time-domain and the frequency-domain, in terms of linear matrix inequalities (LMls) and algebraic Riccati equations (ARE's). A novel characterization of strictly dissipative LTI systems is introduced in this report. Sufficient conditions in terms of dissipativity and strict dissipativity are presented for (1) stability of the feedback interconnection of dissipative LTI systems, (2) stability of dissipative LTI systems with memoryless feedback nonlinearities, and (3) quadratic stability of uncertain linear systems. It is demonstrated that the framework of dissipative LTI systems investigated in this report unifies and extends small gain, passivity, and sector conditions for stability. Techniques for selecting power functions for characterization of uncertain plants and robust controller synthesis based on these stability results are introduced. A spring-mass-damper example is used to illustrate the application of these methods for robust controller synthesis.
Rigatos, Gerasimos G
2016-06-01
It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.
Control of Flexible Systems in the Presence of Failures
NASA Technical Reports Server (NTRS)
Magahami, Peiman G.; Cox, David E.; Bauer, Frank H. (Technical Monitor)
2001-01-01
Control of flexible systems under degradation or failure of sensors/actuators is considered. A Linear Matrix Inequality framework is used to synthesize H(sub infinity)-based controllers, which provide good disturbance rejection while capable of tolerating real parameter uncertainties in the system model, as well as potential degradation or failure of the control system hardware. In this approach, a one-at-a-time failure scenario is considered, wherein no more than one sensor or actuator is allowed to fail at any given time. A numerical example involving control synthesis for a two-dimensional flexible system is presented to demonstrate the feasibility of the proposed approach.
NASA Astrophysics Data System (ADS)
White, R. W.; Parks, D. L.
1985-07-01
A study was conducted to determine potential commercial aircraft flight deck applications and implementation guidelines for voice recognition and synthesis. At first, a survey of voice recognition and synthesis technology was undertaken to develop a working knowledge base. Then, numerous potential aircraft and simulator flight deck voice applications were identified and each proposed application was rated on a number of criteria in order to achieve an overall payoff rating. The potential voice recognition applications fell into five general categories: programming, interrogation, data entry, switch and mode selection, and continuous/time-critical action control. The ratings of the first three categories showed the most promise of being beneficial to flight deck operations. Possible applications of voice synthesis systems were categorized as automatic or pilot selectable and many were rated as being potentially beneficial. In addition, voice system implementation guidelines and pertinent performance criteria are proposed. Finally, the findings of this study are compared with those made in a recent NASA study of a 1995 transport concept.
NASA Technical Reports Server (NTRS)
White, R. W.; Parks, D. L.
1985-01-01
A study was conducted to determine potential commercial aircraft flight deck applications and implementation guidelines for voice recognition and synthesis. At first, a survey of voice recognition and synthesis technology was undertaken to develop a working knowledge base. Then, numerous potential aircraft and simulator flight deck voice applications were identified and each proposed application was rated on a number of criteria in order to achieve an overall payoff rating. The potential voice recognition applications fell into five general categories: programming, interrogation, data entry, switch and mode selection, and continuous/time-critical action control. The ratings of the first three categories showed the most promise of being beneficial to flight deck operations. Possible applications of voice synthesis systems were categorized as automatic or pilot selectable and many were rated as being potentially beneficial. In addition, voice system implementation guidelines and pertinent performance criteria are proposed. Finally, the findings of this study are compared with those made in a recent NASA study of a 1995 transport concept.
Um, Taewoong; Hong, Jiwoo; Im, Do Jin; Lee, Sang Joon; Kang, In Seok
2016-01-01
The dispensing of tiny droplets is a basic and crucial process in a myriad of applications, such as DNA/protein microarray, cell cultures, chemical synthesis of microparticles, and digital microfluidics. This work systematically demonstrates droplet dispensing into immiscible fluids through electric charge concentration (ECC) method. It exhibits three main modes (i.e., attaching, uniform, and bursting modes) as a function of flow rates, applied voltages, and gap distances between the nozzle and the oil surface. Through a conventional nozzle with diameter of a few millimeters, charged droplets with volumes ranging from a few μL to a few tens of nL can be uniformly dispensed into the oil chamber without reduction in nozzle size. Based on the features of the proposed method (e.g., formation of droplets with controllable polarity and amount of electric charge in water and oil system), a simple and straightforward method is developed for microparticle synthesis, including preparation of colloidosomes and fabrication of Janus microparticles with anisotropic internal structures. Finally, a combined system consisting of ECC-induced droplet dispensing and electrophoresis of charged droplet (ECD)-driven manipulation systems is constructed. This integrated platform will provide increased utility and flexibility in microfluidic applications because a charged droplet can be delivered toward the intended position by programmable electric control. PMID:27534580
NASA Technical Reports Server (NTRS)
Heidergott, K. W.
1979-01-01
The computer program known as QR is described. Classical control systems analysis and synthesis (root locus, time response, and frequency response) can be performed using this program. Programming details of the QR program are presented.
Ductile thermoset polymers via controlling network flexibility.
Hameed, N; Salim, N V; Walsh, T R; Wiggins, J S; Ajayan, P M; Fox, B L
2015-06-18
We report the design and synthesis of a polymer structure from a cross-linkable epoxy-ionic liquid system which behaves like a hard and brittle epoxy thermoset, perfectly ductile thermoplastic and an elastomer, all depending on controllable network compositions.
Erosion control for highway applications : phase I, review and synthesis of literature.
DOT National Transportation Integrated Search
2002-05-01
The project described herein has led to a convenient, computer-based expert system for : identifying and evaluating potentially effective erosion- and sedimentation-control : measures for use in roadway construction throughout Iowa and elsewhere in t...
a Real-Time Computer Music Synthesis System
NASA Astrophysics Data System (ADS)
Lent, Keith Henry
A real time sound synthesis system has been developed at the Computer Music Center of The University of Texas at Austin. This system consists of several stand alone processors that were constructed jointly with White Instruments in Austin. These processors can be programmed as general purpose computers, but are provided with a number of specialized interfaces including: MIDI, 8 bit parallel, high speed serial, 2 channels analog input (18 bit A/Ds, 48kHz sample rate), and 4 channels analog output (18 bit D/As). In addition, a basic music synthesis language (Music56000) has been written in assembly code. On top of this, a symbolic compiler (PatchWork) has been developed to enable algorithms which run in these processors to be created graphically. And finally, a number of efficient time domain numerical models have been developed to enable the construction, simulation, control, and synthesis of many musical acoustics systems in real time on these processors. Specifically, assembly language models for cylindrical and conical horn sections, dissipative losses, tone holes, bells, and a number of linear and nonlinear boundary conditions have been developed.
Cosgrove, J W; Brown, I R
1984-05-01
An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of D-lysergic acid diethylamide (LSD) to rabbits resulted in a lesion at the initiation stage of brain protein synthesis. Three inhibitors of initiation, edeine, poly(I), and aurintricarboxylic acid were used to demonstrate a reduction in initiation-dependent amino acid incorporation in the brain cell-free system. One hour after LSD injection, there was also a measurable decrease in the formation of 40S and 80S initiation complexes in vitro, using either [35S]methionine or [35S]Met-tRNAf. Analysis of the methionine pool size after LSD administration indicated there was no change in methionine levels. Analysis of the formation of initiation complexes in the brain cell-free protein synthesis system prepared 6 h after LSD administration indicated that there was a return to control levels at this time. The effects of LSD on steps in the initiation process are thus reversible.
Graeve, Olivia A; Fathi, Hoorshad; Kelly, James P; Saterlie, Michael S; Sinha, Kaustav; Rojas-George, Gabriel; Kanakala, Raghunath; Brown, David R; Lopez, Enrique A
2013-10-01
We present an analysis of reverse micelle stability in four model systems. The first two systems, composed of unstable microemulsions of isooctane, water, and Na-AOT with additions of either iron sulfate or yttrium nitrate, were used for the synthesis of iron oxide or yttrium oxide powders. These oxide powders were of nanocrystalline character, but with some level of agglomeration that was dependent on calcination temperature and cleaning procedures. Results show that even though the reverse micellar solutions were unstable, nanocrystalline powders with very low levels of agglomeration could be obtained. This effect can be attributed to the protective action of the surfactant on the surfaces of the powders that prevents neck formation until after all the surfactant has volatilized. A striking feature of the IR spectra collected on the iron oxide powders is the absence of peaks in the ~1715 cm(-1) to 1750 cm(-1) region, where absorption due to the symmetric C=O (carbonyl) stretching occurs. The lack of such peaks strongly suggests the carbonyl group is no longer free, but is actively participating in the surfactant-precipitate interaction. The final two microemulsion systems, containing CTAB as the surfactant, showed that loss of control of the reverse micelle synthesis process can easily occur when the amount of salt in the water domains exceeds a critical concentration. Both model systems eventually resulted in agglomerated powders of broad size distributions or particles that were large compared to the sizes of the reverse micelles, consistent with the notion that the microemulsions were not stable and the powders were precipitated in an uncontrolled fashion. This has implications for the synthesis of nanopowders by reverse micelle synthesis and provides a benchmark for process control if powders of the highest quality are desired. Copyright © 2013 Elsevier Inc. All rights reserved.
Synthesis of a combined system for precise stabilization of the Spektr-UF observatory: II
NASA Astrophysics Data System (ADS)
Bychkov, I. V.; Voronov, V. A.; Druzhinin, E. I.; Kozlov, R. I.; Ul'yanov, S. A.; Belyaev, B. B.; Telepnev, P. P.; Ul'yashin, A. I.
2014-03-01
The paper presents the second part of the results of search studies for the development of a combined system of high-precision stabilization of the optical telescope for the designed Spectr-UF international observatory [1]. A new modification of the strict method of the synthesis of nonlinear discrete-continuous stabilization systems with uncertainties is described, which is based on the minimization of the guaranteed accuracy estimate calculated using vector Lyapunov functions. Using this method, the synthesis of the feedback parameters in the mode of precise inertial stabilization of the optical telescope axis is performed taking the design nonrigidity, quantization of signals over time and level, and errors of orientation meters, as well as the errors and limitation of control moments of executive engine-flywheels into account. The results of numerical experiments that demonstrate the quality of the synthesized system are presented.
Digital robust active control law synthesis for large order systems using constrained optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1987-01-01
This paper presents a direct digital control law synthesis procedure for a large order, sampled data, linear feedback system using constrained optimization techniques to meet multiple design requirements. A linear quadratic Gaussian type cost function is minimized while satisfying a set of constraints on the design loads and responses. General expressions for gradients of the cost function and constraints, with respect to the digital control law design variables are derived analytically and computed by solving a set of discrete Liapunov equations. The designer can choose the structure of the control law and the design variables, hence a stable classical control law as well as an estimator-based full or reduced order control law can be used as an initial starting point. Selected design responses can be treated as constraints instead of lumping them into the cost function. This feature can be used to modify a control law, to meet individual root mean square response limitations as well as minimum single value restrictions. Low order, robust digital control laws were synthesized for gust load alleviation of a flexible remotely piloted drone aircraft.
NASA Astrophysics Data System (ADS)
Tarkas, Hemant S.; Marathe, Deepak M.; Mahajan, Mrunal S.; Muntaser, Faisal; Patil, Mahendra B.; Tak, Swapnil R.; Sali, Jaydeep V.
2017-02-01
Synthesis of monomorphic, SnS nanoparticles without using a capping agent is a difficult task with chemical route of synthesis. This paper reports on synthesis of tin monosulfide (SnS) nanopartilces with dimension in the quantum-dot regime using surfactant free microemulsion with single microemulsion scheme. This has been achieved by reaction in microreactors in the CME (C: chlorobenzene, M: methanol and E: ethylene glycol) microemulsion system. This is an easy and controllable chemical route for synthesis of SnS nanoparticles. Nanoparticle diameter showed prominent dependence on microemulsion concentration and marginal dependence on microemulsion temperature in the temperature range studied. The SnS nanoparticles formed with this method form stable dispersion in Tolune.
Cooperative control theory and integrated flight and propulsion control
NASA Technical Reports Server (NTRS)
Schmidt, David K.; Schierman, John D.
1994-01-01
This report documents the activities and research results obtained under a grant (NAG3-998) from the NASA Lewis Research Center. The focus of the research was the investigation of dynamic interactions between airframe and engines for advanced ASTOVL aircraft configurations, and the analysis of the implications of these interactions on the stability and performance of the airframe and engine control systems. In addition, the need for integrated flight and propulsion control for such aircraft was addressed. The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multi variable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important non-linear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multi variable techniques, included model-following formulations of LQG and/or H (infinity) methods showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods.
Application of Design Methodologies for Feedback Compensation Associated with Linear Systems
NASA Technical Reports Server (NTRS)
Smith, Monty J.
1996-01-01
The work that follows is concerned with the application of design methodologies for feedback compensation associated with linear systems. In general, the intent is to provide a well behaved closed loop system in terms of stability and robustness (internal signals remain bounded with a certain amount of uncertainty) and simultaneously achieve an acceptable level of performance. The approach here has been to convert the closed loop system and control synthesis problem into the interpolation setting. The interpolation formulation then serves as our mathematical representation of the design process. Lifting techniques have been used to solve the corresponding interpolation and control synthesis problems. Several applications using this multiobjective design methodology have been included to show the effectiveness of these techniques. In particular, the mixed H 2-H performance criteria with algorithm has been used on several examples including an F-18 HARV (High Angle of Attack Research Vehicle) for sensitivity performance.
Microgravity Production of Nanoparticles of Novel Materials Using Plasma Synthesis
NASA Technical Reports Server (NTRS)
Frenklach, Michael; Fernandez-Pello, Carlos
2001-01-01
The research goal is to study the formation in reduced gravity of high quality nanoparticulate of novel materials using plasma synthesis. Particular emphasis will be placed on the production of powders of non-oxide materials like diamond, SiC, SiN, c-BN, etc. The objective of the study is to investigate the effect of gravity on plasma synthesis of these materials, and to determine how the microgravity synthesis can improve the quality and yield of the nanoparticles. It is expected that the reduced gravity will aid in the understanding of the controlling mechanisms of plasma synthesis, and will increase the yield, and quality of the synthesized powder. These materials have properties of interest in several industrial applications, such as high temperature load bearings or high speed metal machining. Furthermore, because of the nano-meter size of the particulate produced in this process, they have specific application in the fabrication of MEMS based combustion systems, and in the development and growth of nano-systems and nano-structures of these materials. These are rapidly advancing research areas, and there is a great need for high quality nanoparticles of different materials. One of the primary systems of interest in the project will be gas-phase synthesis of nanopowder of non-oxide materials.
Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism
Yen, Chi-Liang Eric; Nelson, David W.; Yen, Mei-I
2015-01-01
The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. PMID:25231105
Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism.
Yen, Chi-Liang Eric; Nelson, David W; Yen, Mei-I
2015-03-01
The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.
Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S
2014-10-01
The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.
Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis
Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew
2017-01-01
One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented. PMID:28336884
Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.
Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew
2017-02-23
One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.
Supervision strategies for improved reliability of bus routes. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-01
The synthesis will be of interest to transit agency managers and supervisors, as well as to operating and planning personnel who are concerned with the reliability and scheduling of buses. Information is provided on service monitoring, service supervision and control, and supervision strategies. Reliability of transit service is critical to bus transit ridership. The extent of service supervision has an important bearing on reliability. The report describes the various procedures that are used by transit agencies to monitor and maintain bus service reliability. Most transit systems conduct checks of the number of riders at maximum load points and monitor schedulemore » adherence at these locations. Other supervisory actions include service restoration techniques, and strategies such as schedule control, headway control, load control, extraboard management, and personnel selection and training. More sophisticated technologies, such as automatic passenger counting (APC) systems and automatic vehicle location and control (AVLC), have been employed by some transit agencies and are described in the synthesis.« less
On Problem of Synthesis of Control System for Quadrocopter
NASA Astrophysics Data System (ADS)
Larin, V. B.; Tunik, A. A.
2017-05-01
An algorithm for designing a control for a quadrocopter is given. Two cases of control of the horizontal motion of a vehicle are considered. Terminal location is given in one case, and cruise speed is given in the other case. The results are compared with those obtained by other authors
Listening and Speaking: A Cybernetic Synthesis.
ERIC Educational Resources Information Center
Nord, James R.
1985-01-01
Cybernetic feedback theory sees the individual as a self-organizing feedback control system that generates its own activity to control its own perceptions. Applying the principle of feedback to language use, it appears that speaking as an overt public behavior is controlled by an internally private listening capacity. With that listening capacity,…
Proceedings of the 4th Annual SCOLE Workshop
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr. (Compiler)
1988-01-01
This publication is a collection of papers presented at the Fourth Annual Spacecraft Control Laboratory Experiment (SCOLE) Workshop held at the U.S.A.F. Academy, Colorado Springs, Colorado, November 16, 1987. The papers address the modeling, systems identification, and control synthesis for the Spacecraft Control Laboratory Experiment (SCOLE) configuration.
Robustness of Flexible Systems With Component-Level Uncertainties
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.
2000-01-01
Robustness of flexible systems in the presence of model uncertainties at the component level is considered. Specifically, an approach for formulating robustness of flexible systems in the presence of frequency and damping uncertainties at the component level is presented. The synthesis of the components is based on a modifications of a controls-based algorithm for component mode synthesis. The formulation deals first with robustness of synthesized flexible systems. It is then extended to deal with global (non-synthesized ) dynamic models with component-level uncertainties by projecting uncertainties from component levels to system level. A numerical example involving a two-dimensional simulated docking problem is worked out to demonstrate the feasibility of the proposed approach.
A Dual-Promoter Gene Orchestrates the Sucrose-Coordinated Synthesis of Starch and Fructan in Barley
Jin, Yunkai; Fei, Mingliang; Rosenquist, Sara; ...
2017-11-07
Sequential carbohydrate synthesis is important for plant survival because it guarantees energy supplies for growth and development during plant ontogeny and reproduction. Starch and fructan are two important carbohydrates in many flowering plants and in human diets. Understanding this coordinated starch and fructan synthesis and unraveling how plants allocate photosynthates and prioritize different carbohydrate synthesis for survival could lead to improvements to cereals in agriculture for the purposes of greater food security and production quality. Here, we report a system from a single gene in barley employing two alternative promoters, one intronic/exonic, to generate two sequence-overlapping but functionally opposing transcriptionmore » factors, in sensing sucrose, potentially via sucrose/glucose/fructose/trehalose 6-phosphate signaling. The system employs an autoregulatory mechanism in perceiving a sucrose-controlled trans activity on one promoter and orchestrating the coordinated starch and fructan synthesis by competitive transcription factor binding on the other promoter. As a case in point for the physiological roles of the system, we have demonstrated that this multitasking system can be exploited in breeding barley with tailored amounts of fructan to produce healthy food ingredients. The identification of an intron/exon-spanning promoter in a hosting gene, resulting in proteins with distinct functions, adds to the complexity of plant genomes.« less
A Dual-Promoter Gene Orchestrates the Sucrose-Coordinated Synthesis of Starch and Fructan in Barley
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Yunkai; Fei, Mingliang; Rosenquist, Sara
Sequential carbohydrate synthesis is important for plant survival because it guarantees energy supplies for growth and development during plant ontogeny and reproduction. Starch and fructan are two important carbohydrates in many flowering plants and in human diets. Understanding this coordinated starch and fructan synthesis and unraveling how plants allocate photosynthates and prioritize different carbohydrate synthesis for survival could lead to improvements to cereals in agriculture for the purposes of greater food security and production quality. Here, we report a system from a single gene in barley employing two alternative promoters, one intronic/exonic, to generate two sequence-overlapping but functionally opposing transcriptionmore » factors, in sensing sucrose, potentially via sucrose/glucose/fructose/trehalose 6-phosphate signaling. The system employs an autoregulatory mechanism in perceiving a sucrose-controlled trans activity on one promoter and orchestrating the coordinated starch and fructan synthesis by competitive transcription factor binding on the other promoter. As a case in point for the physiological roles of the system, we have demonstrated that this multitasking system can be exploited in breeding barley with tailored amounts of fructan to produce healthy food ingredients. The identification of an intron/exon-spanning promoter in a hosting gene, resulting in proteins with distinct functions, adds to the complexity of plant genomes.« less
A synthesis theory for self-oscillating adaptive systems /SOAS/
NASA Technical Reports Server (NTRS)
Horowitz, I.; Smay, J.; Shapiro, A.
1974-01-01
A quantitative synthesis theory is presented for the Self-Oscillating Adaptive System (SOAS), whose nonlinear element has a static, odd character with hard saturation. The synthesis theory is based upon the quasilinear properties of the SOAS to forced inputs, which permits the extension of quantitative linear feedback theory to the SOAS. A reasonable definition of optimum design is shown to be the minimization of the limit cycle frequency. The great advantages of the SOAS is its zero sensitivity to pure gain changes. However, quasilinearity and control of the limit cycle amplitude at the system output, impose additional constraints which partially or completely cancel this advantage, depending on the numerical values of the design parameters. By means of narrow-band filtering, an additional factor is introduced which permits trade-off between filter complexity and limit cycle frequency minimization.
EFFECTS OF X IRRADIATION ON ENZYME SYNTHESIS DURING LIVER REGENERATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, D.K.
1962-05-01
Twenty-four different enzymes or enzyme systems were assayed in regenerating rat liver from control and irradiated animals at various times after partial hepatectomy. X irradiation, either of the whole liver region or of an exteriorized liver lobule, interfered with the accumulation of only three of these enzymes: deoxycytidylate deaminase, thymidine phosphorylase, and NAD pyrophosphorylase. Irradiation did not affect the synthesis of related enzymes such as adenosine and guanine deaminases, and inosine and uridine phosphorylases. The effects of irradiation on enzyme synthesis in regenerating liver would appear to be highly selective. (auth)
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan
2017-01-01
This paper presents a new adaptive control approach that involves a performance optimization objective. The problem is cast as a multi-objective optimal control. The control synthesis involves the design of a performance optimizing controller from a subset of control inputs. The effect of the performance optimizing controller is to introduce an uncertainty into the system that can degrade tracking of the reference model. An adaptive controller from the remaining control inputs is designed to reduce the effect of the uncertainty while maintaining a notion of performance optimization in the adaptive control system.
Sensitivity of Space Station alpha joint robust controller to structural modal parameter variations
NASA Technical Reports Server (NTRS)
Kumar, Renjith R.; Cooper, Paul A.; Lim, Tae W.
1991-01-01
The photovoltaic array sun tracking control system of Space Station Freedom is described. A synthesis procedure for determining optimized values of the design variables of the control system is developed using a constrained optimization technique. The synthesis is performed to provide a given level of stability margin, to achieve the most responsive tracking performance, and to meet other design requirements. Performance of the baseline design, which is synthesized using predicted structural characteristics, is discussed and the sensitivity of the stability margin is examined for variations of the frequencies, mode shapes and damping ratios of dominant structural modes. The design provides enough robustness to tolerate a sizeable error in the predicted modal parameters. A study was made of the sensitivity of performance indicators as the modal parameters of the dominant modes vary. The design variables are resynthesized for varying modal parameters in order to achieve the most responsive tracking performance while satisfying the design requirements. This procedure of reoptimization design parameters would be useful in improving the control system performance if accurate model data are provided.
Cell-free protein synthesis in PDMS-glass hybrid microreactor
NASA Astrophysics Data System (ADS)
Yamamoto, Takatoki; Fujii, Teruo; Nojima, Takahiko; Hong, Jong W.; Endo, Isao
2000-08-01
A living cell has numerous kinds of proteins while only thousands of that have been identified as of now. In order to discover and produce various proteins that are applicable to biotechnological, pharmaceutical and medical applications, cell-free protein synthesis is one of the most useful and promising techniques. In this study, we developed an inexpensive microreactor with temperature control capability for protein synthesis. The microreactor consists of a sandwich of glass-based chip and PDMS(polydimethylsiloxane) chip. The thermo control system, which is composed of a heater and a temperature sensor, is fabricated with an ITO (Indium Tin Oxide) resistive material on a glass substrate by ordinary microfabrication method based on photolithography and etching techniques. The reactor chamber and flow channels are fabricated by injection micromolding of PDMS. Since one can use thermo control system on a glass substrate repeatedly by replacing only the easily-fabricated and low-cost PDMS reactor chamber, this microreactor is quite cost effective. As a demonstration, a DNA template of a GFP (Green Fluorescent Protein) is transcribed and translated using cell-free extract prepared from Escherichia coli. As a result, GFP was successfully synthesized in the present microreactor.
Biomimetic synthesis of noble metal nanocrystals
NASA Astrophysics Data System (ADS)
Chiu, Chin-Yi
At the nanometer scale, the physical and chemical properties of materials heavily depend on their sizes and shapes. This fact has triggered considerable efforts in developing controllable nanomaterial synthesis. The controlled growth of colloidal nanocrystal is a kinetic process, in which high-energy facets grow faster and then vanish, leading to a nanocrystal enclosed by low-energy facets. Identifying a surfactant that can selectively bind to a particular crystal facet and thus lower its surface energy, is critical and challenging in shape controlled synthesis of nanocrystals. Biomolecules exhibiting exquisite molecular recognition properties can be exploited to precisely engineer nanostructured materials. In the first part of my thesis, we employed the phage display technique to select a specific multifunctional peptide sequence which can bind on Pd surface and mediate Pd crystal nucleation and growth, achieving size controlled synthesis of Pd nanocrystals in aqueous solution. We further demonstrated a rational biomimetic approach to the predictable synthesis of nanocrystals enclosed by a particular facet in the case of Pt. Specifically, Pt {100} and Pt {111} facet-specific peptides were identified and used to synthesize Pt nanocubes and Pt nano-tetrahedrons, respectively. The mechanistic studies of Pt {111} facet-specific peptide had led us to study the facet-selective adsorption of aromatic molecules on noble metal surfaces. The discoveries had achieved the development of design strategies to select facet-selective molecules which can synthesize nanocrystals with expected shapes in both Pt and Pd system. At last, we exploited Pt facet-specific peptides and controlled the molecular interaction to produce one- and three- dimensional nanostructures composed of anisotropic nanoparticles in synthetic conditions without supramolecular pre-organization, demonstrating the full potential of biomolecules in mediating material formation process. My research on biomimetic synthesis of nanocrystals with shape control and nanostructures with control over the anisotropy are unprecedented, representing a step forward in achieving the goal of producing complex nanostructures with required properties. The fundamental studies on the biomolecule-inorganic interfaces have contributed to advancing the synthesis tool of colloidal nanomaterials and enriching understating of organic-inorganic interface, impacting many applications.
Bentz, Emilie L; Goswami, Rajesh; Moloney, Mark G; Westaway, Susan M
2005-08-07
Bicyclic lactams derived from pyroglutamic acid provide a useful scaffold for synthesis of conformationally restricted analogues of lysine, ornithine and glutamine, as well as an Ala-Ala dipeptide analogue. Amino alcohol and carboxylic acid derivatives are accessible from a common intermediate. In this strategy, the bicyclic lactam system not only controls, but also facilitates the determination of the stereochemistry of the synthetic intermediates.
A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.
Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A
2018-01-23
A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.
VASP- VARIABLE DIMENSION AUTOMATIC SYNTHESIS PROGRAM
NASA Technical Reports Server (NTRS)
White, J. S.
1994-01-01
VASP is a variable dimension Fortran version of the Automatic Synthesis Program, ASP. The program is used to implement Kalman filtering and control theory. Basically, it consists of 31 subprograms for solving most modern control problems in linear, time-variant (or time-invariant) control systems. These subprograms include operations of matrix algebra, computation of the exponential of a matrix and its convolution integral, and the solution of the matrix Riccati equation. The user calls these subprograms by means of a FORTRAN main program, and so can easily obtain solutions to most general problems of extremization of a quadratic functional of the state of the linear dynamical system. Particularly, these problems include the synthesis of the Kalman filter gains and the optimal feedback gains for minimization of a quadratic performance index. VASP, as an outgrowth of the Automatic Synthesis Program, has the following improvements: more versatile programming language; more convenient input/output format; some new subprograms which consolidate certain groups of statements that are often repeated; and variable dimensioning. The pertinent difference between the two programs is that VASP has variable dimensioning and more efficient storage. The documentation for the VASP program contains a VASP dictionary and example problems. The dictionary contains a description of each subroutine and instructions on its use. The example problems include dynamic response, optimal control gain, solution of the sampled data matrix Riccati equation, matrix decomposition, and a pseudo-inverse of a matrix. This program is written in FORTRAN IV and has been implemented on the IBM 360. The VASP program was developed in 1971.
Microfluidic Reactors for the Controlled Synthesis of Nanoparticles
NASA Astrophysics Data System (ADS)
Erdem, Emine Yegan
Nanoparticles have attracted a lot of attention in the past few decades due to their unique, size-dependent properties. In order to use these nanoparticles in devices or sensors effectively, it is important to maintain uniform properties throughout the system; therefore nanoparticles need to have uniform sizes -- or monodisperse. In order to achieve monodispersity, an extreme control over the reaction conditions is required during their synthesis. These reaction conditions such as temperature, concentration of reagents, residence times, etc. affect the structure of nanoparticles dramatically; therefore when the conditions vary locally in the reaction vessel, different sized nanoparticles form, causing polydispersity. In widely-used batch wise synthesis techniques, large sized reaction vessels are used to mix and heat reagents. In these types of systems, it is very hard to avoid thermal gradients and to achieve rapid mixing times as well as to control residence times. Also it is not possible to make rapid changes in the reaction parameters during the synthesis. The other drawback of conventional methods is that it is not possible to separate the nucleation of nanoparticles from their growth; this leads to combined nucleation and growth and subsequently results in polydisperse size distributions. Microfluidics is an alternative method by which the limitations of conventional techniques can be addressed. Due to the small size, it is possible to control temperature and concentration of reagents precisely as well as to make rapid changes in mixing ratios of reagents or temperature of the reaction zones. There have been several microfluidic reactors -- (microreactors) in literature that were designed to improve the size distribution of nanoparticles. In this work, two novel microfluidic systems were developed for achieving controlled synthesis of nanoparticles. The first microreactor was made out of a chemically robust polymer, polyurethane, and it was used for low temperature nanoparticle synthesis. This microreactor was fabricated by using a CO 2-laser printer, which is an inexpensive method for fabricating microfluidic devices and it is a relatively fast way compared to other fabrication techniques. Iron oxide nanoparticle synthesis was demonstrated using this reactor and size distributions with a standard deviation of 10% was obtained. The second microreactor presented in this work was designed to produce monodisperse nanoparticles by utilizing thermally isolated heated and cooled regions for separating nucleation and growth processes. This microreactor was made out of silicon and it was used to demonstrate the synthesis of TiO 2 nanoparticles. Size distributions with less than 10% standard deviation were achieved. This microreactor also provides a platform for studying the effects of temperature and residence times which is very important to understand the reaction kinetics of nanoparticle synthesis. In this work, two microfluidic techniques for retrieving nanoparticles from the microreactors were also discussed. The first method was based on trapping the aqueous droplet phase inside the microchannel and the second method was utilizing a micropost array to direct droplets from the oil solution to the pure water. As a final step, a printing technique was used to print nanoparticles synthesized inside the microreactors for future applications. This ability is important for achieving smart surfaces that can utilize the properties of nanoparticles for sensing applications in the future.
Controlling cell-free metabolism through physiochemical perturbations.
Karim, Ashty S; Heggestad, Jacob T; Crowe, Samantha A; Jewett, Michael C
2018-01-01
Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of biosynthetic systems, we recently reported a new cell-free framework for pathway construction and testing. In this framework, multiple crude-cell extracts are selectively enriched with individual pathway enzymes, which are then mixed to construct full biosynthetic pathways on the time scale of a day. This rapid approach to building pathways aids in the study of metabolic pathway performance by providing a unique freedom of design to modify and control biological systems for both fundamental and applied biotechnology. The goal of this work was to demonstrate the ability to probe biosynthetic pathway performance in our cell-free framework by perturbing physiochemical conditions, using n-butanol synthesis as a model. We carried out three unique case studies. First, we demonstrated the power of our cell-free approach to maximize biosynthesis yields by mapping physiochemical landscapes using a robotic liquid-handler. This allowed us to determine that NAD and CoA are the most important factors that govern cell-free n-butanol metabolism. Second, we compared metabolic profile differences between two different approaches for building pathways from enriched lysates, heterologous expression and cell-free protein synthesis. We discover that phosphate from PEP utilization, along with other physiochemical reagents, during cell-free protein synthesis-coupled, crude-lysate metabolic system operation inhibits optimal cell-free n-butanol metabolism. Third, we show that non-phosphorylated secondary energy substrates can be used to fuel cell-free protein synthesis and n-butanol biosynthesis. Taken together, our work highlights the ease of using cell-free systems to explore physiochemical perturbations and suggests the need for a more controllable, multi-step, separated cell-free framework for future pathway prototyping and enzyme discovery efforts. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Comparative study between two different active flutter suppression systems
NASA Technical Reports Server (NTRS)
Nissim, E.
1978-01-01
An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.
Application of advanced control techniques to aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Lehtinen, B.
1984-01-01
Two programs are described which involve the application of advanced control techniques to the design of engine control algorithms. Multivariable control theory is used in the F100 MVCS (multivariable control synthesis) program to design controls which coordinate the control inputs for improved engine performance. A systematic method for handling a complex control design task is given. Methods of analytical redundancy are aimed at increasing the control system reliability. The F100 DIA (detection, isolation, and accommodation) program, which investigates the uses of software to replace or augment hardware redundancy for certain critical engine sensor, is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, R.J.; Halasyamani, P.S.; Bee, J.S.
Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-,more » and two-dimensional materials.« less
Damage-Mitigating Control of Space Propulsion Systems for High Performance and Extended Life
NASA Technical Reports Server (NTRS)
Ray, Asok; Wu, Min-Kuang
1994-01-01
A major goal in the control of complex mechanical system such as spacecraft rocket engine's advanced aircraft, and power plants is to achieve high performance with increased reliability, component durability, and maintainability. The current practice of decision and control systems synthesis focuses on improving performance and diagnostic capabilities under constraints that often do not adequately represent the materials degradation. In view of the high performance requirements of the system and availability of improved materials, the lack of appropriate knowledge about the properties of these materials will lead to either less than achievable performance due to overly conservative design, or over-straining of the structure leading to unexpected failures and drastic reduction of the service life. The key idea in this report is that a significant improvement in service life could be achieved by a small reduction in the system dynamic performance. The major task is to characterize the damage generation process, and then utilize this information in a mathematical form to synthesize a control law that would meet the system requirements and simultaneously satisfy the constraints that are imposed by the material and structural properties of the critical components. The concept of damage mitigation is introduced for control of mechanical systems to achieve high performance with a prolonged life span. A model of fatigue damage dynamics is formulated in the continuous-time setting, instead of a cycle-based representation, for direct application to control systems synthesis. An optimal control policy is then formulated via nonlinear programming under specified constraints of the damage rate and accumulated damage. The results of simulation experiments for the transient upthrust of a bipropellant rocket engine are presented to demonstrate efficacy of the damage-mitigating control concept.
Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system
Li, Jun; Zhang, Chi; Huang, Poyi; Kuru, Erkin; Forster-Benson, Eliot T. C.; Church, George M.
2017-01-01
ABSTRACT Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ∼6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ∼2/3rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batch systems suffer from low ribosome recycling efficiency when translating proteins from 82 kD to 224 kD. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ∼1.5 to ∼2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion. PMID:28702280
Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Zhang, Chi; Huang, Poyi
Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ~6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ~2/3 rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batchmore » systems suffer from low ribosome recycling efficiency when translating proteins from 82 k D to 224 k D. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ~1.5 to ~2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion.« less
Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system
Li, Jun; Zhang, Chi; Huang, Poyi; ...
2017-05-09
Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ~6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ~2/3 rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batchmore » systems suffer from low ribosome recycling efficiency when translating proteins from 82 k D to 224 k D. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ~1.5 to ~2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion.« less
Design of a broadband active silencer using μ-synthesis
NASA Astrophysics Data System (ADS)
Bai, Mingsian R.; Zeung, Pingshun
2004-01-01
A robust spatially feedforward controller is developed for broadband attenuation of noise in ducts. To meet the requirements of robust performance and robust stability in the presence of plant uncertainties, a μ-synthesis procedure via D- K iteration is exploited to obtain the optimal controller. This approach considers uncertainties as modelling errors of the nominal plant in high frequency and is implemented using a floating point digital signal processor (DSP). Experimental investigation was undertaken on a finite-length duct to justify the proposed controller. The μ- controller is compared to other control algorithms such as the H2 method, the H∞ method and the filtered-U least mean square (FULMS) algorithm. Experimental results indicate that the proposed system has attained 25.8 dB maximal attenuation in the band 250-650 Hz.
Hypersonic vehicle control law development using H infinity and mu-synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.
1992-01-01
Applicability and effectiveness of robust control techniques to a single-stage-to-orbit (SSTO) airbreathing hypersonic vehicle on an ascent accelerating path and their effectiveness are explored in this paper. An SSTO control system design problem, requiring high accuracy tracking of velocity and altitude commands while limiting angle of attack oscillations, minimizing control power usage and stabilizing the vehicle all in the presence of atmospheric turbulence and uncertainty in the system, was formulated to compare results of the control designs using H infinity and mu-synthesis procedures. The math model, an integrated flight/propulsion dynamic model of a conical accelerator class vehicle, was linearized as the vehicle accelerated through Mach 8. Controller analysis was conducted using the singular value technique and the mu-analysis approach. Analysis results were obtained in both the frequency and the time domains. The results clearly demonstrate the inherent advantages of the structured singular value framework for this class of problems. Since payload performance margins are so critical for the SSTO mission, it is crucial that adequate stability margins be provided without sacrificing any payload mass.
Linear-parameter-varying gain-scheduled control of aerospace systems
NASA Astrophysics Data System (ADS)
Barker, Jeffrey Michael
The dynamics of many aerospace systems vary significantly as a function of flight condition. Robust control provides methods of guaranteeing performance and stability goals across flight conditions. In mu-syntthesis, changes to the dynamical system are primarily treated as uncertainty. This method has been successfully applied to many control problems, and here is applied to flutter control. More recently, two techniques for generating robust gain-scheduled controller have been developed. Linear fractional transformation (LFT) gain-scheduled control is an extension of mu-synthesis in which the plant and controller are explicit functions of parameters measurable in real-time. This LFT gain-scheduled control technique is applied to the Benchmark Active Control Technology (BACT) wing, and compared with mu-synthesis control. Linear parameter-varying (LPV) gain-scheduled control is an extension of Hinfinity control to parameter varying systems. LPV gain-scheduled control directly incorporates bounds on the rate of change of the scheduling parameters, and often reduces conservatism inherent in LFT gain-scheduled control. Gain-scheduled LPV control of the BACT wing compares very favorably with the LFT controller. Gain-scheduled LPV controllers are generated for the lateral-directional and longitudinal axes of the Innovative Control Effectors (ICE) aircraft and implemented in nonlinear simulations and real-time piloted nonlinear simulations. Cooper-Harper and pilot-induced oscillation ratings were obtained for an initial design, a reference aircraft and a redesign. Piloted simulation results for the initial LPV gain-scheduled control of the ICE aircraft are compared with results for a conventional fighter aircraft in discrete pitch and roll angle tracking tasks. The results for the redesigned controller are significantly better than both the previous LPV controller and the conventional aircraft.
The dynamics and control of large flexible space structures, 6
NASA Technical Reports Server (NTRS)
Bainum, P. M.
1983-01-01
The controls analysis based on a truncated finite element model of the 122m. Hoop/Column Antenna System focuses on an analysis of the controllability as well as the synthesis of control laws. Graph theoretic techniques are employed to consider controllability for different combinations of number and locations of actuators. Control law synthesis is based on an application of the linear regulator theory as well as pole placement techniques. Placement of an actuator on the hoop can result in a noticeable improvement in the transient characteristics. The problem of orientation and shape control of an orbiting flexible beam, previously examined, is now extended to include the influence of solar radiation environmental forces. For extremely flexible thin structures modification of control laws may be required and techniques for accomplishing this are explained. Effects of environmental torques are also included in previously developed models of orbiting flexible thin platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beale, M.G.; Nash, G.S.; Bertovich, M.J.
1982-01-01
The immunoglobulin synthesizing activities of peripheral mononuclear cells (MNC) from five patients with Henoch-Schonlein purpura (HSP) and eight patients with active systemic lupus erythematosus (SLE) were compared. Cumulative amounts of IgM, IgG, and IgA synthesized and secreted by unstimulated and PWM-stimulated patient cells over a 12-day period were determied in a solid-phase radioimmunoassay. In unstimulated control cultures mean rates of IgM, IgG, and IgA synthesis were less than 250 ng/ml. The synthetic activities of patient MNC were markedly increased. In HSP cultures IgA was the major immunoglobulin class produced (2810 x/divide 1.33 ng/ml) followed by IgG (1754 x/divide 1.32 ng/ml)more » and IgM (404 x/divide 1.16 ng/ml). In SLE cultures IgA and IgG syntheses were equally elevated (4427 x/divide 1.20 and 4438 x/divide 1.49 ng/ml, respectively) whereas IgM synthesis averaged 967 x/divide 1.66 ng/ml. PWM stimulation of pateient MNC caused a sharp decline in the synthesis of all three immunoglobulin classes. After T cell depletion B cell-enriched fractions from HSP and SLE patients maintained high levels of IgA and IgG synthesis that were inhibited by PWM and by normal allogeneic but not autologous T cells. In PWM-stimulted co-cultures, patient T cells nonspecifically suppressed the synthetic activities of autologous and control B cells. in contrast patient B cells achieved normal levels of immunoglobulin synthesis when cultured with control T cells plus PWM. In longitudinal studies patient B and T cell disturbances persisted despite clinical improvement.« less
Ghosh, Abhishek; Rideout, Elizabeth J.; Grewal, Savraj S.
2014-01-01
The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis—a limiting step in ribosome biogenesis—via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2—a secreted factor that binds and inhibits dILP activity—from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis. PMID:25356674
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1983-01-01
Development of a unified control synthesis methodology for complex and/or non-conventional flight vehicles, and prediction techniques for the handling characteristics of such vehicles are reported. Identification of pilot dynamics and objectives, using time domain and frequency domain methods is proposed.
Robust Control Design for Systems With Probabilistic Uncertainty
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2005-01-01
This paper presents a reliability- and robustness-based formulation for robust control synthesis for systems with probabilistic uncertainty. In a reliability-based formulation, the probability of violating design requirements prescribed by inequality constraints is minimized. In a robustness-based formulation, a metric which measures the tendency of a random variable/process to cluster close to a target scalar/function is minimized. A multi-objective optimization procedure, which combines stability and performance requirements in time and frequency domains, is used to search for robustly optimal compensators. Some of the fundamental differences between the proposed strategy and conventional robust control methods are: (i) unnecessary conservatism is eliminated since there is not need for convex supports, (ii) the most likely plants are favored during synthesis allowing for probabilistic robust optimality, (iii) the tradeoff between robust stability and robust performance can be explored numerically, (iv) the uncertainty set is closely related to parameters with clear physical meaning, and (v) compensators with improved robust characteristics for a given control structure can be synthesized.
Model Reduction for Control System Design
NASA Technical Reports Server (NTRS)
Enns, D. F.
1985-01-01
An approach and a technique for effectively obtaining reduced order mathematical models of a given large order model for the purposes of synthesis, analysis and implementation of control systems is developed. This approach involves the use of an error criterion which is the H-infinity norm of a frequency weighted error between the full and reduced order models. The weightings are chosen to take into account the purpose for which the reduced order model is intended. A previously unknown error bound in the H-infinity norm for reduced order models obtained from internally balanced realizations was obtained. This motivated further development of the balancing technique to include the frequency dependent weightings. This resulted in the frequency weighted balanced realization and a new model reduction technique. Two approaches to designing reduced order controllers were developed. The first involves reducing the order of a high order controller with an appropriate weighting. The second involves linear quadratic Gaussian synthesis based on a reduced order model obtained with an appropriate weighting.
Modern CACSD using the Robust-Control Toolbox
NASA Technical Reports Server (NTRS)
Chiang, Richard Y.; Safonov, Michael G.
1989-01-01
The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.
Required technologies for a lunar optical UV-IR synthesis array
NASA Technical Reports Server (NTRS)
Johnson, Stewart W.; Wetzel, John P.
1992-01-01
A Lunar Optical UV-IR Synthesis Array (LOUISA) proposed to take advantage of the characteristics of the lunar environment requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. LOUISA needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for LOUISA operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.
Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L
2002-01-01
As a prelude to detailed flux control analysis of lipid synthesis in plants, we have examined the latter in tissue cultures from two important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). Temperature was used to manipulate the overall rate of lipid formation in order to characterize and validate the system to be used for analysis. With [1-14C]acetate as a precursor, an increase in temperature from 20 to 30 degrees C produced nearly a doubling of total lipid labelling. This increase in total lipids did not change the radioactivity in the intermediate acyl-(acyl carrier protein) or acyl-CoA pools, indicating that metabolism of these pools did not exert any significant constraint for overall synthesis. In contrast, there were some differences in the proportional labelling of fatty acids and of lipid classes at the two temperatures. The higher temperature caused a decrease in polyunsaturated fatty acid labelling and an increase in the proportion of triacylglycerol labelling in both calli. The intermediate diacylglycerol was increased in olive, but not in oil palm. Overall the data indicate the suitability of olive and oil-palm cultures for the study of lipid synthesis and indicate that de novo fatty acid synthesis may exert more flux control than complex lipid assembly. In olive, diacylglycerol acyltransferase may exert significant flux control when lipid synthesis is rapid. PMID:12023881
Practical optimal flight control system design for helicopter aircraft. Volume 1: Technical Report
NASA Technical Reports Server (NTRS)
Hofmann, L. G.; Riedel, S. A.; Mcruer, D.
1980-01-01
A method by which modern and classical theory techniques may be integrated in a synergistic fashion and used in the design of practical flight control systems is presented. A general procedure is developed, and several illustrative examples are included. Emphasis is placed not only on the synthesis of the design, but on the assessment of the results as well.
Synthesis and evaluation of phase detectors for active bit synchronizers
NASA Technical Reports Server (NTRS)
Mcbride, A. L.
1974-01-01
Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.
Flexible aircraft dynamic modeling for dynamic analysis and control synthesis
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1989-01-01
The linearization and simplification of a nonlinear, literal model for flexible aircraft is highlighted. Areas of model fidelity that are critical if the model is to be used for control system synthesis are developed and several simplification techniques that can deliver the necessary model fidelity are discussed. These techniques include both numerical and analytical approaches. An analytical approach, based on first-order sensitivity theory is shown to lead not only to excellent numerical results, but also to closed-form analytical expressions for key system dynamic properties such as the pole/zero factors of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle mass properties, vibrational characteristics, and rigid-body and aeroelastic stability derivatives, thus leading to the underlying causes for critical dynamic characteristics.
Kulkarni, Amol A; Sebastian Cabeza, Victor
2017-12-19
Continuous segmented flow interfacial synthesis of Au nanostructures is demonstrated in a microchannel reactor. This study brings new insights into the growth of nanostructures at continuous interfaces. The size as well as the shape of the nanostructures showed significant dependence on the reactant concentrations, reaction time, temperature, and surface tension, which actually controlled the interfacial mass transfer. The microchannel reactor assisted in achieving a high interfacial area, as well as uniformity in mass transfer effects. Hexagonal nanostructures were seen to be formed in synthesis times as short as 10 min. The wettability of the channel showed significant effect on the particle size as well as the actual shape. The hydrophobic channel yielded hexagonal structures of relatively smaller size than the hydrophilic microchannel, which yielded sharp hexagonal bipyramidal particles (diagonal distance of 30 nm). The evolution of particle size and shape for the case of hydrophilic microchannel is also shown as a function of the residence time. The interfacial synthesis approach based on a stable segmented flow promoted an excellent control on the reaction extent, reduction in axial dispersion as well as the particle size distribution.
Santini, Emanuela; Huynh, Thu N.; Klann, Eric
2018-01-01
The complexity of memory formation and its persistence is a phenomenon that has been studied intensely for centuries. Memory exists in many forms and is stored in various brain regions. Generally speaking, memories are reorganized into broadly distributed cortical networks over time through systems level consolidation. At the cellular level, storage of information is believed to initially occur via altered synaptic strength by processes such as long-term potentiation (LTP). New protein synthesis is required for long-lasting synaptic plasticity as well as for the formation of long-term memory. The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of cap-dependent protein synthesis and is required for numerous forms of long-lasting synaptic plasticity and long-term memory. As such, the study of mTORC1 and protein factors that control translation initiation and elongation have enhanced our understanding of how the process of protein synthesis is regulated during memory formation. Herein we will discuss the molecular mechanisms that regulate protein synthesis as well as pharmacological and genetic manipulations that demonstrate the requirement for proper translational control in long-lasting synaptic plasticity and long-term memory formation. PMID:24484700
Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanatzidis, Mercouri G.
The discovery of new materials and their efficient syntheses is a fundamental goal of chemistry. A related objective is to identify foundational and rational approaches to enhance the art of synthesis by combining the exquisite predictability of organic synthesis with the high yields of solid-state chemistry. In contrast to so-called solid-state methods, inorganic syntheses in liquid fluxes permit bond formation, framework assembly, and crystallization at lower temperatures because of facile diffusion and chemical reactions with and within the flux itself. The fluxes are bona fide solvents similar to conventional organic or aqueous solvents. Such reactions can produce a wide rangemore » of materials, often metastable, from oxides to intermetallics, but typically the formation mechanisms are poorly understood. This article discusses how one can design, perform, observe, understand, and engineer the formation of compounds from inorganic melts. The focus is also design concepts such as "dimensional reduction", "phase homologies", and "panoramic synthesis", and their broad applicability. When well-defined building blocks are present and stable in the reaction, prospects for increased structural diversity and product control increase substantially. Common structural motifs within these materials systems may be related to structural precursors in the melt that may be controlled by tuning reaction conditions and composition. Stabilization of a particular building block is often accomplished with tuning of the flux composition, which controls the Lewis basicity and redox potential. In such tunable and dynamic fluxes, the synthesis can be directed toward new materials. Using complementary techniques of in situ X-ray diffraction, we can create time-dependent maps of reaction space and probe the mobile species present in melts. Lastly, certain thoughts toward the ultimate goal of targeted materials synthesis by controlling inorganic melt chemistry are discussed.« less
Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases
Kanatzidis, Mercouri G.
2017-03-09
The discovery of new materials and their efficient syntheses is a fundamental goal of chemistry. A related objective is to identify foundational and rational approaches to enhance the art of synthesis by combining the exquisite predictability of organic synthesis with the high yields of solid-state chemistry. In contrast to so-called solid-state methods, inorganic syntheses in liquid fluxes permit bond formation, framework assembly, and crystallization at lower temperatures because of facile diffusion and chemical reactions with and within the flux itself. The fluxes are bona fide solvents similar to conventional organic or aqueous solvents. Such reactions can produce a wide rangemore » of materials, often metastable, from oxides to intermetallics, but typically the formation mechanisms are poorly understood. This article discusses how one can design, perform, observe, understand, and engineer the formation of compounds from inorganic melts. The focus is also design concepts such as "dimensional reduction", "phase homologies", and "panoramic synthesis", and their broad applicability. When well-defined building blocks are present and stable in the reaction, prospects for increased structural diversity and product control increase substantially. Common structural motifs within these materials systems may be related to structural precursors in the melt that may be controlled by tuning reaction conditions and composition. Stabilization of a particular building block is often accomplished with tuning of the flux composition, which controls the Lewis basicity and redox potential. In such tunable and dynamic fluxes, the synthesis can be directed toward new materials. Using complementary techniques of in situ X-ray diffraction, we can create time-dependent maps of reaction space and probe the mobile species present in melts. Lastly, certain thoughts toward the ultimate goal of targeted materials synthesis by controlling inorganic melt chemistry are discussed.« less
Control Synthesis for a Class of Hybrid Systems Subject to Configuration-Based Safety Constraints
NASA Technical Reports Server (NTRS)
Heymann, Michael; Lin, Feng; Meyer, George
1997-01-01
We examine a class of hybrid systems which we call Composite Hybrid Machines (CHM's) that consists of the concurrent (and partially synchronized) operation of Elementary Hybrid Machines (EHM's). Legal behavior, specified by a set of illegal configurations that the CHM may not enter, is to be achieved by the concurrent operation of the CHM with a suitably designed legal controller. In the present paper we focus on the problem of synthesizing a legal controller, whenever such a controller exists. More specifically, we address the problem of synthesizing the minimally restrictive legal controller. A controller is minimally restrictive if, when composed to operate concurrently with another legal controller, it will never interfere with the operation of the other controller and, therefore, can be composed to operate concurrently with any other controller that may be designed to achieve liveness specifications or optimality requirements without the need to reinvestigate or reverify legality of the composite controller. We confine our attention to a special class of CHM's where system dynamics is rate-limited and legal guards are conjunctions or disjunctions of atomic formulas in the dynamic variables (of the type x less than or equal to x(sub 0), or x greater than or equal to x(sub 0)). We present an algorithm for synthesis of the minimally restrictive legal controller. We demonstrate our approach by synthesizing a minimally restrictive controller for a steam boiler (the verification of which recently received a great deal of attention).
González, Sergio; Moreno-Delgado, David; Moreno, Estefanía; Pérez-Capote, Kamil; Franco, Rafael; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ortiz, Jordi
2012-01-01
The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D4 receptors. Through α1 B-D4 and β1-D4 receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D4 was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D4 receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs. PMID:22723743
Mission planning for autonomous systems
NASA Technical Reports Server (NTRS)
Pearson, G.
1987-01-01
Planning is a necessary task for intelligent, adaptive systems operating independently of human controllers. A mission planning system that performs task planning by decomposing a high-level mission objective into subtasks and synthesizing a plan for those tasks at varying levels of abstraction is discussed. Researchers use a blackboard architecture to partition the search space and direct the focus of attention of the planner. Using advanced planning techniques, they can control plan synthesis for the complex planning tasks involved in mission planning.
DOT National Transportation Integrated Search
2002-04-01
The Logical Architecture is based on a Computer Aided Systems Engineering (CASE) model of the requirements for the flow of data and control through the various functions included in Intelligent Transportation Systems (ITS). Data Dictionary is the com...
Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice.
Matsuno, Koya; Fujimura, Tatsuhito
2014-03-01
A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA accumulation levels increase with ABA concentration. On the other hand, higher concentrations of sucrose or inorganic phosphorus do not affect PA accumulation. Mutations in the genes RINO1, OsMIK, OsIPK1 and OsLPA1 have each been reported to confer low phytic acid phenotypes in seeds. Each of these genes is upregulated in cells cultured with ABA. OsITPK4 and OsITPK6 are upregulated in cells cultured with ABA and in developing seeds. These results suggest that the regulation of PA synthesis is similar between developing seeds and cells in this suspension culture system. This system will be a powerful tool for elucidating the regulation of PA synthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Analysis of Air Traffic Track Data with the AutoBayes Synthesis System
NASA Technical Reports Server (NTRS)
Schumann, Johann Martin Philip; Cate, Karen; Lee, Alan G.
2010-01-01
The Next Generation Air Traffic System (NGATS) is aiming to provide substantial computer support for the air traffic controllers. Algorithms for the accurate prediction of aircraft movements are of central importance for such software systems but trajectory prediction has to work reliably in the presence of unknown parameters and uncertainties. We are using the AutoBayes program synthesis system to generate customized data analysis algorithms that process large sets of aircraft radar track data in order to estimate parameters and uncertainties. In this paper, we present, how the tasks of finding structure in track data, estimation of important parameters in climb trajectories, and the detection of continuous descent approaches can be accomplished with compact task-specific AutoBayes specifications. We present an overview of the AutoBayes architecture and describe, how its schema-based approach generates customized analysis algorithms, documented C/C++ code, and detailed mathematical derivations. Results of experiments with actual air traffic control data are discussed.
Neutropenia fails to prevent the acute phase stimulation of fibrinogen synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kernoff, L.; Colman, J.
This study evaluates the role of neutrophil granulocytes in mediating acute phase stimulation of fibrinogen synthesis. Turpentine was administered to neutropenic and non-neutropenic rats and fibrinogen synthetic rates measured in an isolated liver perfusion system. Using the (/sup 14/C) carbonate technique for the measurement of the absolute synthetic rates of liver produced plasma proteins it was observed that the rates of fibrinogen synthesis of the neutropenic and non-neutropenic rats were significantly greater (p less than 0.01) than those of normal control animals, but were not significantly different from each other. These results suggest that the neutrophil granulocyte may not bemore » of major importance in mediating acute phase stimulation of fibrinogen synthesis.« less
A System for Cooling inside a Glove Box
ERIC Educational Resources Information Center
Sanz, Martial
2010-01-01
An easy, efficient, reliable, and low-cost method of constructing a cooling system using a simple circulating pump is described. The system is employed in conjunction with an inert atmosphere glove box to achieve the synthesis of air- and moisture-sensitive compounds inside the glove box at controlled, low temperatures without contaminating the…
Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis
Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet
2011-01-01
Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689
Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation
Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; ...
2014-10-19
Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe 2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substratemore » by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe 2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less
Genetic Algorithm-Guided, Adaptive Model Order Reduction of Flexible Aircrafts
NASA Technical Reports Server (NTRS)
Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter; Brenner, Martin J.
2017-01-01
This paper presents a methodology for automated model order reduction (MOR) of flexible aircrafts to construct linear parameter-varying (LPV) reduced order models (ROM) for aeroservoelasticity (ASE) analysis and control synthesis in broad flight parameter space. The novelty includes utilization of genetic algorithms (GAs) to automatically determine the states for reduction while minimizing the trial-and-error process and heuristics requirement to perform MOR; balanced truncation for unstable systems to achieve locally optimal realization of the full model; congruence transformation for "weak" fulfillment of state consistency across the entire flight parameter space; and ROM interpolation based on adaptive grid refinement to generate a globally functional LPV ASE ROM. The methodology is applied to the X-56A MUTT model currently being tested at NASA/AFRC for flutter suppression and gust load alleviation. Our studies indicate that X-56A ROM with less than one-seventh the number of states relative to the original model is able to accurately predict system response among all input-output channels for pitch, roll, and ASE control at various flight conditions. The GA-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The adaptive refinement allows selective addition of the grid points in the parameter space where flight dynamics varies dramatically to enhance interpolation accuracy without over-burdening controller synthesis and onboard memory efforts downstream. The present MOR framework can be used by control engineers for robust ASE controller synthesis and novel vehicle design.
The adaptive observer. [liapunov synthesis, single-input single-output, and reduced observers
NASA Technical Reports Server (NTRS)
Carroll, R. L.
1973-01-01
The simple generation of state from available measurements, for use in systems for which the criteria defining the acceptable state behavior mandates a control that is dependent upon unavailable measurement is described as an adaptive means for determining the state of a linear time invariant differential system having unknown parameters. A single input output adaptive observer and the reduced adaptive observer is developed. The basic ideas for both the adaptive observer and the nonadaptive observer are examined. A survey of the Liapunov synthesis technique is taken, and the technique is applied to adaptive algorithm for the adaptive observer.
Real-time LMR control parameter generation using advanced adaptive synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, R.W.; Mott, J.E.
1990-01-01
The reactor delta T'', the difference between the average core inlet and outlet temperatures, for the liquid-sodium-cooled Experimental Breeder Reactor 2 is empirically synthesized in real time from, a multitude of examples of past reactor operation. The real-time empirical synthesis is based on reactor operation. The real-time empirical synthesis is based on system state analysis (SSA) technology embodied in software on the EBR 2 data acquisition computer. Before the real-time system is put into operation, a selection of reactor plant measurements is made which is predictable over long periods encompassing plant shutdowns, core reconfigurations, core load changes, and plant startups.more » A serial data link to a personal computer containing SSA software allows the rapid verification of the predictability of these plant measurements via graphical means. After the selection is made, the real-time synthesis provides a fault-tolerant estimate of the reactor delta T accurate to {plus}/{minus}1{percent}. 5 refs., 7 figs.« less
Simplified programming and control of automated radiosynthesizers through unit operations.
Claggett, Shane B; Quinn, Kevin M; Lazari, Mark; Moore, Melissa D; van Dam, R Michael
2013-07-15
Many automated radiosynthesizers for producing positron emission tomography (PET) probes provide a means for the operator to create custom synthesis programs. The programming interfaces are typically designed with the engineer rather than the radiochemist in mind, requiring lengthy programs to be created from sequences of low-level, non-intuitive hardware operations. In some cases, the user is even responsible for adding steps to update the graphical representation of the system. In light of these unnecessarily complex approaches, we have created software to perform radiochemistry on the ELIXYS radiosynthesizer with the goal of being intuitive and easy to use. Radiochemists were consulted, and a wide range of radiosyntheses were analyzed to determine a comprehensive set of basic chemistry unit operations. Based around these operations, we created a software control system with a client-server architecture. In an attempt to maximize flexibility, the client software was designed to run on a variety of portable multi-touch devices. The software was used to create programs for the synthesis of several 18F-labeled probes on the ELIXYS radiosynthesizer, with [18F]FDG detailed here. To gauge the user-friendliness of the software, program lengths were compared to those from other systems. A small sample group with no prior radiosynthesizer experience was tasked with creating and running a simple protocol. The software was successfully used to synthesize several 18F-labeled PET probes, including [18F]FDG, with synthesis times and yields comparable to literature reports. The resulting programs were significantly shorter and easier to debug than programs from other systems. The sample group of naive users created and ran a simple protocol within a couple of hours, revealing a very short learning curve. The client-server architecture provided reliability, enabling continuity of the synthesis run even if the computer running the client software failed. The architecture enabled a single user to control the hardware while others observed the run in progress or created programs for other probes. We developed a novel unit operation-based software interface to control automated radiosynthesizers that reduced the program length and complexity and also exhibited a short learning curve. The client-server architecture provided robustness and flexibility.
Simplified programming and control of automated radiosynthesizers through unit operations
2013-01-01
Background Many automated radiosynthesizers for producing positron emission tomography (PET) probes provide a means for the operator to create custom synthesis programs. The programming interfaces are typically designed with the engineer rather than the radiochemist in mind, requiring lengthy programs to be created from sequences of low-level, non-intuitive hardware operations. In some cases, the user is even responsible for adding steps to update the graphical representation of the system. In light of these unnecessarily complex approaches, we have created software to perform radiochemistry on the ELIXYS radiosynthesizer with the goal of being intuitive and easy to use. Methods Radiochemists were consulted, and a wide range of radiosyntheses were analyzed to determine a comprehensive set of basic chemistry unit operations. Based around these operations, we created a software control system with a client–server architecture. In an attempt to maximize flexibility, the client software was designed to run on a variety of portable multi-touch devices. The software was used to create programs for the synthesis of several 18F-labeled probes on the ELIXYS radiosynthesizer, with [18F]FDG detailed here. To gauge the user-friendliness of the software, program lengths were compared to those from other systems. A small sample group with no prior radiosynthesizer experience was tasked with creating and running a simple protocol. Results The software was successfully used to synthesize several 18F-labeled PET probes, including [18F]FDG, with synthesis times and yields comparable to literature reports. The resulting programs were significantly shorter and easier to debug than programs from other systems. The sample group of naive users created and ran a simple protocol within a couple of hours, revealing a very short learning curve. The client–server architecture provided reliability, enabling continuity of the synthesis run even if the computer running the client software failed. The architecture enabled a single user to control the hardware while others observed the run in progress or created programs for other probes. Conclusions We developed a novel unit operation-based software interface to control automated radiosynthesizers that reduced the program length and complexity and also exhibited a short learning curve. The client–server architecture provided robustness and flexibility. PMID:23855995
Dos Santos, Maísa Pavani; Batistela, Emanuele; Pereira, Mayara Peron; Paula-Gomes, Silvia; Zanon, Neusa Maria; Kettelhut, Isis do Carmo; Karatzaferi, Christina; Andrade, Claudia Marlise Balbinotti; de França, Suélem Aparecida; Baviera, Amanda Martins; Kawashita, Nair Honda
2016-08-01
Compared with the extensor digitorum longus (EDL) muscle of control rats (C), the EDL muscle of rats fed a low-protein, high-carbohydrate diet (LPHC) showed a 36% reduction in mass. Muscle mass is determined by the balance between protein synthesis and proteolysis; thus, the aim of this work was to evaluate the components involved in these processes. Compared with the muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in the in vitro basal proteolysis suggesting that the reduction in the mass can be associated with a change in the rate of the two processes. Soon after euthanasia, in the EDL muscles of the rats fed the LPHC diet for 15days, the activity of caspase-3 and that of components of the ubiquitin-proteasome system (atrogin-1 content and chymotrypsin-like activity) were decreased. The phosphorylation of p70(S6K) and 4E-BP1, proteins involved in protein synthesis, was also decreased. We observed an increase in the insulin-stimulated protein content of p-Akt. Thus, the higher insulin sensitivity in the EDL muscle of LPHC rats seemed to contribute to the lower proteolysis in LPHC rats. However, even with the higher insulin sensitivity, the reduction in p-E4-BP1 and p70(S6K) indicates a reduction in protein synthesis, showing that factors other than insulin can have a greater effect on the control of protein synthesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Rosenthal, Sandra J.; McBride, James; Pennycook, Stephen J.; Feldman, Leonard C.
2011-01-01
Nanostructures, with their very large surface to volume ratio and their non-planar geometry, present an important challenge to surface scientists. New issues arise as to surface characterization, quantification and interface formation. This review summarizes the current state of the art in the synthesis, composition, surface and interface control of CdSe nanocrystal systems, one of the most studied and useful nanostructures. PMID:21479151
NASA Astrophysics Data System (ADS)
Pudovkin, A. P.; Panasyuk, Yu N.; Danilov, S. N.; Moskvitin, S. P.
2018-05-01
The problem of improving automated air traffic control systems is considered through the example of the operation algorithm synthesis for a range measurement channel to track the aircraft, using its kinematic and dynamic parameters. The choice of the state and observation models has been justified, the computer simulations have been performed and the results of the investigated algorithms have been obtained.
Modern control techniques in active flutter suppression using a control moment gyro
NASA Technical Reports Server (NTRS)
Buchek, P. M.
1974-01-01
Development of organized synthesis techniques, using concepts of modern control theory was studied for the design of active flutter suppression systems for two and three-dimensional lifting surfaces, utilizing a control moment gyro (CMG) to generate the required control torques. Incompressible flow theory is assumed, with the unsteady aerodynamic forces and moments for arbitrary airfoil motion obtained by using the convolution integral based on Wagner's indicial lift function. Linear optimal control theory is applied to find particular optimal sets of gain values which minimize a quadratic performance function. The closed loop system's response to impulsive gust disturbances and the resulting control power requirements are investigated, and the system eigenvalues necessary to minimize the maximum value of control power are determined.
Indirect synthesis of multidegree-of-freedom transient systems
NASA Technical Reports Server (NTRS)
Chen, Y. H.; Pilkey, W. D.; Kalinowski, A. J.
1976-01-01
The indirect synthesis method is developed and shown to be capable of leading a near-optimal design of multidegree-of-freedom and multidesign-element transient nonlinear dynamical systems. The basis of the approach is to select the open design parameters such that the response of the portion of the system being designed approximates the limiting performances solution. The limiting performance problem can be formulated as one of linear programming by replacing all portions of the system subject to transient disturbances by control forces and supposing that the remaining portions are linear as are the overall kinematic constraints. One then selects the design parameters that respond most closely to the limiting performance solution, which can be achieved by unconstrained curve-fitting techniques.
NASA Astrophysics Data System (ADS)
Thompson, Drew; Leparoux, Marc; Jaeggi, Christian; Buha, Jelena; Pui, David Y. H.; Wang, Jing
2013-12-01
In this study, the synthesis of silicon carbide (SiC) nanoparticles in a prototype inductively coupled thermal plasma reactor and other supporting processes, such as the handling of precursor material, the collection of nanoparticles, and the cleaning of equipment, were monitored for particle emissions and potential worker exposure. The purpose of this study was to evaluate the effectiveness of engineering controls and best practice guidelines developed for the production and handling of nanoparticles, identify processes which result in a nanoparticle release, characterize these releases, and suggest possible administrative or engineering controls which may eliminate or control the exposure source. No particle release was detected during the synthesis and collection of SiC nanoparticles and the cleaning of the reactor. This was attributed to most of these processes occurring in closed systems operated at slight underpressure. Other tasks occurring in more open spaces, such as the disconnection of a filter assembly from the reactor system and the use of compressed air for the cleaning of filters where synthesized SiC nanoparticles were collected, resulted in releases of submicrometer particles with a mode size of 170-180 nm. Observation of filter samples under scanning electron microscope confirmed that the particles were agglomerates of SiC nanoparticles.
Robust nonlinear variable selective control for networked systems
NASA Astrophysics Data System (ADS)
Rahmani, Behrooz
2016-10-01
This paper is concerned with the networked control of a class of uncertain nonlinear systems. In this way, Takagi-Sugeno (T-S) fuzzy modelling is used to extend the previously proposed variable selective control (VSC) methodology to nonlinear systems. This extension is based upon the decomposition of the nonlinear system to a set of fuzzy-blended locally linearised subsystems and further application of the VSC methodology to each subsystem. To increase the applicability of the T-S approach for uncertain nonlinear networked control systems, this study considers the asynchronous premise variables in the plant and the controller, and then introduces a robust stability analysis and control synthesis. The resulting optimal switching-fuzzy controller provides a minimum guaranteed cost on an H2 performance index. Simulation studies on three nonlinear benchmark problems demonstrate the effectiveness of the proposed method.
An IP-Based Software System for Real-time, Closed Loop, Multi-Spacecraft Mission Simulations
NASA Technical Reports Server (NTRS)
Cary, Everett; Davis, George; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis
2003-01-01
This viewgraph presentation provides information on the architecture of a computerized testbest for simulating Distributed Space Systems (DSS) for controlling spacecraft flying in formation. The presentation also discusses and diagrams the Distributed Synthesis Environment (DSE) for simulating and planning DSS missions.
Automatic Design of a Maglev Controller in State Space
1991-12-01
Design of a Maglev Controller in State Space Feng Zhao Richard Thornton Abstract We describe the automatic synthesis of a global nonlinear controller for...the global switching points of the controller is presented. The synthesized control system can stabilize the maglev vehicle with large initial displace...NUMBERS Automation Desing of a Maglev Controller in State Space N00014-89-J-3202 MIP-9001651 6. AUTHOR(S) Feng Zhao and Richard Thornton 7. PERFORMING
Uccelli, Licia; Boschi, Alessandra; Cittanti, Corrado; Martini, Petra; Lodi, Luca; Zappaterra, Elisa; Romani, Simona; Zaccaria, Samanta; Cecconi, Davide; Rambaldi, Ilaria; Santi, Ivan; Panareo, Stefano; Giganti, Melchiore; Bartolomei, Mirco
2018-05-08
The PET Gallium-68 isotope has the advantage of being produced from a generator, so it is also available in nuclear medicine departments without a cyclotron. The preparation of Ga-68 DOTA-labelled compounds is actually performed by remotely controlled automated systems developed in order to assure production efficiency, reproducibility of the results, guarantee fast reaction time, to facilitate the synthesis and minimize the radiation exposure. Many automatic synthesis systems are available on the radiopharmaceutical market, and each of these requires the realization of some technical adaptations for routine use. We reported the Ga-68 DOTATOC production by automated cassette-based theranostic synthesizer system used in combination with a disposable GMP grade cassette system for cationic purification. The synthesizer is integrated with the 68Ge/68Ga generator systems and it allows to perform elution, eluate purification and radiolabeling in about 38 minutes. We have performed between January 2016 and January 2017 over 100 [68Ga]Ga-DOTA-TOC preparation and of these only three have failed. The average synthesis yield of radiopharmaceutical production was 54.4 ± 2.3 % and the average radiochemical purity was 96.94 ± 0.74 %. The methodology and the technical solutions adopted have allowed to obtain a high quality radiopharmaceutical product as required by the European Pharmacopoeia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Precomputed state dependent digital control of a nuclear rocket engine
NASA Technical Reports Server (NTRS)
Johnson, M. R.
1972-01-01
A control method applicable to multiple-input multiple-output nonlinear time-invariant systems in which desired behavior can be expressed explicitly as a trajectory in system state space is developed. The precomputed state dependent control method is basically a synthesis technique in which a suboptimal control law is developed off-line, prior to system operation. This law is obtained by conducting searches at a finite number of points in state space, in the vicinity of some desired trajectory, to obtain a set of constant control vectors which tend to return the system to the desired trajectory. These vectors are used to evaluate the unknown coefficients in a control law having an assumed hyperellipsoidal form. The resulting coefficients constitute the heart of the controller and are used in the on-line computation of control vectors. Two examples of PSDC are given prior to the more detailed description of the NERVA control system development.
An OKQPSK modem incorporating numerically controlled carrier synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oetken, R.E.
1988-04-04
The feasibility of incorporating numerically controlled oscillators (NCO) in communication related applications is evaluated. NCO generation of sinusoids may prove useful in systems requiring precise frequency control, tuning linearity, and orthogonality versus frequency. An OKQPSK modem operating at a data rate of 200 kb/s was fabricated. The modem operates in a back to back hardwired channel and thus does not incorporate carrier or symbol timing recovery. Spectra of the NCO generated sinusoids are presented along with waveforms from the modulation and demodulation process. Generation of sinusoids in the digital domain is a viable alternative to analog oscillators. Implementation of anmore » NCO should be considered when frequency allocation, tuning bandwidth, or frequency hopped transmission requires precise frequency synthesis. 24 figs.« less
Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N
2006-12-01
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, H. M. Abdul; Wang, Hong; Young, Stan
Documenting existing state of practice is an initial step in developing future control infrastructure to be co-deployed for heterogeneous mix of connected and automated vehicles with human drivers while leveraging benefits to safety, congestion, and energy. With advances in information technology and extensive deployment of connected and automated vehicle technology anticipated over the coming decades, cities globally are making efforts to plan and prepare for these transitions. CAVs not only offer opportunities to improve transportation systems through enhanced safety and efficient operations of vehicles. There are also significant needs in terms of exploring how best to leverage vehicle-to-vehicle (V2V) technology,more » vehicle-to-infrastructure (V2I) technology and vehicle-to-everything (V2X) technology. Both Connected Vehicle (CV) and Connected and Automated Vehicle (CAV) paradigms feature bi-directional connectivity and share similar applications in terms of signal control algorithm and infrastructure implementation. The discussion in our synthesis study assumes the CAV/CV context where connectivity exists with or without automated vehicles. Our synthesis study explores the current state of signal control algorithms and infrastructure, reports the completed and newly proposed CV/CAV deployment studies regarding signal control schemes, reviews the deployment costs for CAV/AV signal infrastructure, and concludes with a discussion on the opportunities such as detector free signal control schemes and dynamic performance management for intersections, and challenges such as dependency on market adaptation and the need to build a fault-tolerant signal system deployment in a CAV/CV environment. The study will serve as an initial critical assessment of existing signal control infrastructure (devices, control instruments, and firmware) and control schemes (actuated, adaptive, and coordinated-green wave). Also, the report will help to identify the future needs for the signal infrastructure to act as the nervous system for urban transportation networks, providing not only signaling, but also observability, surveillance, and measurement capacity. The discussion of the opportunities space includes network optimization and control theory perspectives, and the current states of observability for key system parameters (what can be detected, how frequently can it be reported) as well as controllability of dynamic parameters (this includes adjusting not only the signal phase and timing, but also the ability to alter vehicle trajectories through information or direct control). The perspective of observability and controllability of the dynamic systems provides an appropriate lens to discuss future directions as CAV/CV become more prevalent in the future.« less
Control of stochastic sensitivity in a stabilization problem for gas discharge system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashkirtseva, Irina
2015-11-30
We consider a nonlinear dynamic stochastic system with control. A problem of stochastic sensitivity synthesis of the equilibrium is studied. A mathematical technique of the solution of this problem is discussed. This technique is applied to the problem of the stabilization of the operating mode for the stochastic gas discharge system. We construct a feedback regulator that reduces the stochastic sensitivity of the equilibrium, suppresses large-amplitude oscillations, and provides a proper operation of this engineering device.
NASA Astrophysics Data System (ADS)
Olofsson, K. Erik J.; Brunsell, Per R.; Witrant, Emmanuel; Drake, James R.
2010-10-01
Recent developments and applications of system identification methods for the reversed-field pinch (RFP) machine EXTRAP T2R have yielded plasma response parameters for decoupled dynamics. These data sets are fundamental for a real-time implementable fast Fourier transform (FFT) decoupled discrete-time fixed-order strongly stabilizing synthesis as described in this work. Robustness is assessed over the data set by bootstrap calculation of the sensitivity transfer function worst-case H_{\\infty} -gain distribution. Output tracking and magnetohydrodynamic mode m = 1 tracking are considered in the same framework simply as two distinct weighted traces of a performance channel output-covariance matrix as derived from the closed-loop discrete-time Lyapunov equation. The behaviour of the resulting multivariable controller is investigated with dedicated T2R experiments.
Density Control of Multi-Agent Systems with Safety Constraints: A Markov Chain Approach
NASA Astrophysics Data System (ADS)
Demirer, Nazli
The control of systems with autonomous mobile agents has been a point of interest recently, with many applications like surveillance, coverage, searching over an area with probabilistic target locations or exploring an area. In all of these applications, the main goal of the swarm is to distribute itself over an operational space to achieve mission objectives specified by the density of swarm. This research focuses on the problem of controlling the distribution of multi-agent systems considering a hierarchical control structure where the whole swarm coordination is achieved at the high-level and individual vehicle/agent control is managed at the low-level. High-level coordination algorithms uses macroscopic models that describes the collective behavior of the whole swarm and specify the agent motion commands, whose execution will lead to the desired swarm behavior. The low-level control laws execute the motion to follow these commands at the agent level. The main objective of this research is to develop high-level decision control policies and algorithms to achieve physically realizable commanding of the agents by imposing mission constraints on the distribution. We also make some connections with decentralized low-level motion control. This dissertation proposes a Markov chain based method to control the density distribution of the whole system where the implementation can be achieved in a decentralized manner with no communication between agents since establishing communication with large number of agents is highly challenging. The ultimate goal is to guide the overall density distribution of the system to a prescribed steady-state desired distribution while satisfying desired transition and safety constraints. Here, the desired distribution is determined based on the mission requirements, for example in the application of area search, the desired distribution should match closely with the probabilistic target locations. The proposed method is applicable for both systems with a single agent and systems with large number of agents due to the probabilistic nature, where the probability distribution of each agent's state evolves according to a finite-state and discrete-time Markov chain (MC). Hence, designing proper decision control policies requires numerically tractable solution methods for the synthesis of Markov chains. The synthesis problem has the form of a Linear Matrix Inequality Problem (LMI), with LMI formulation of the constraints. To this end, we propose convex necessary and sufficient conditions for safety constraints in Markov chains, which is a novel result in the Markov chain literature. In addition to LMI-based, offline, Markov matrix synthesis method, we also propose a QP-based, online, method to compute a time-varying Markov matrix based on the real-time density feedback. Both problems are convex optimization problems that can be solved in a reliable and tractable way, utilizing existing tools in the literature. A Low Earth Orbit (LEO) swarm simulations are presented to validate the effectiveness of the proposed algorithms. Another problem tackled as a part of this research is the generalization of the density control problem to autonomous mobile agents with two control modes: ON and OFF. Here, each mode consists of a (possibly overlapping) finite set of actions, that is, there exist a set of actions for the ON mode and another set for the OFF mode. We give formulation for a new Markov chain synthesis problem, with additional measurements for the state transitions, where a policy is designed to ensure desired safety and convergence properties for the underlying Markov chain.
Heroven, Ann Kathrin; Böhme, Katja; Rohde, Manfred; Dersch, Petra
2008-06-01
The MarR-type regulator RovA controls expression of virulence genes of Yersinia pseudotuberculosis in response to environmental signals. Using a genetic strategy to discover components that influence rovA expression, we identified new regulatory factors with homology to components of the carbon storage regulator system (Csr). We showed that overexpression of a CsrB- or a CsrC-type RNA activates rovA, whereas a CsrA-like protein represses RovA synthesis. We further demonstrate that influence of the Csr system on rovA is indirect and occurs through control of the LysR regulator RovM, which inhibits rovA transcription. The CsrA protein had also a major influence on the motility of Yersinia, which was independent of RovM. The CsrB and CsrC RNAs are differentially expressed in Yersinia. CsrC is highly induced in complex but not in minimal media, indicating that medium-dependent rovM expression is mediated through CsrC. CsrB synthesis is generally very low. However, overexpression of the response regulator UvrY was found to activate CsrB production, which in turn represses CsrC synthesis independent of the growth medium. In summary, the post-transcriptional Csr-type components were shown to be key regulators in the co-ordinated environmental control of physiological processes and virulence factors, which are crucial for the initiation of Yersinia infections.
Central mechanisms for force and motion--towards computational synthesis of human movement.
Hemami, Hooshang; Dariush, Behzad
2012-12-01
Anatomical, physiological and experimental research on the human body can be supplemented by computational synthesis of the human body for all movement: routine daily activities, sports, dancing, and artistic and exploratory involvements. The synthesis requires thorough knowledge about all subsystems of the human body and their interactions, and allows for integration of known knowledge in working modules. It also affords confirmation and/or verification of scientific hypotheses about workings of the central nervous system (CNS). A simple step in this direction is explored here for controlling the forces of constraint. It requires co-activation of agonist-antagonist musculature. The desired trajectories of motion and the force of contact have to be provided by the CNS. The spinal control involves projection onto a muscular subset that induces the force of contact. The projection of force in the sensory motor cortex is implemented via a well-defined neural population unit, and is executed in the spinal cord by a standard integral controller requiring input from tendon organs. The sensory motor cortex structure is extended to the case for directing motion via two neural population units with vision input and spindle efferents. Digital computer simulations show the feasibility of the system. The formulation is modular and can be extended to multi-link limbs, robot and humanoid systems with many pairs of actuators or muscles. It can be expanded to include reticular activating structures and learning. Copyright © 2012 Elsevier Ltd. All rights reserved.
Relationships between digital signal processing and control and estimation theory
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1978-01-01
Research directions in the fields of digital signal processing and modern control and estimation theory are discussed. Stability theory, linear prediction and parameter identification, system synthesis and implementation, two-dimensional filtering, decentralized control and estimation, and image processing are considered in order to uncover some of the basic similarities and differences in the goals, techniques, and philosophy of the disciplines.
Dependable control systems with Internet of Things.
Tran, Tri; Ha, Q P
2015-11-01
This paper presents an Internet of Things (IoT)-enabled dependable control system (DepCS) for continuous processes. In a DepCS, an actuator and a transmitter form a regulatory control loop. Each processor inside such actuator and transmitter is designed as a computational platform implementing the feedback control algorithm. The connections between actuators and transmitters via IoT create a reliable backbone for a DepCS. The centralized input-output marshaling system is not required in DepCSs. A state feedback control synthesis method for DepCS applying the self-recovery constraint is presented in the second part of the paper. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Nonlinear versus Ordinary Adaptive Control of Continuous Stirred-Tank Reactor
Dostal, Petr
2015-01-01
Unfortunately, the major group of the systems in industry has nonlinear behavior and control of such processes with conventional control approaches with fixed parameters causes problems and suboptimal or unstable control results. An adaptive control is one way to how we can cope with nonlinearity of the system. This contribution compares classic adaptive control and its modification with Wiener system. This configuration divides nonlinear controller into the dynamic linear part and the static nonlinear part. The dynamic linear part is constructed with the use of polynomial synthesis together with the pole-placement method and the spectral factorization. The static nonlinear part uses static analysis of the controlled plant for introducing the mathematical nonlinear description of the relation between the controlled output and the change of the control input. Proposed controller is tested by the simulations on the mathematical model of the continuous stirred-tank reactor with cooling in the jacket as a typical nonlinear system. PMID:26346878
Automation study for space station subsystems and mission ground support
NASA Technical Reports Server (NTRS)
1985-01-01
An automation concept for the autonomous operation of space station subsystems, i.e., electric power, thermal control, and communications and tracking are discussed. To assure that functions essential for autonomous operations are not neglected, an operations function (systems monitoring and control) is included in the discussion. It is recommended that automated speech recognition and synthesis be considered a basic mode of man/machine interaction for space station command and control, and that the data management system (DMS) and other systems on the space station be designed to accommodate fully automated fault detection, isolation, and recovery within the system monitoring function of the DMS.
Donini, Pierluigi
1970-01-01
Starvation for a required amino acid of normal or RCstrEscherichia coli infected with T-even phages arrests further synthesis of phage deoxyribonucleic acid (DNA). This amino acid control over phage DNA synthesis does not occur in RCrelE. coli mutants. Heat inactivation of a temperature-sensitive aminoacyl-transfer ribonucleic acid (RNA) synthetase similarly causes an arrest of phage DNA synthesis in infected cells of RCstr phenotype but not in cells of RCrel phenotype. Inhibition of phage DNA synthesis in amino acid-starved RCstr host cells can be reversed by addition of chloramphenicol to the culture. Thus, the general features of amino acid control over T-even phage DNA synthesis are entirely analogous to those known for amino acid control over net RNA synthesis of uninfected bacteria. This analogy shows that the bacterial rel locus controls a wider range of macromolecular syntheses than had been previously thought. PMID:4914067
Krajina, Brad A.; Proctor, Amy C.; Schoen, Alia P.; ...
2017-08-08
Biomineralization, the process by which biological systems direct the synthesis of inorganic structures from organic templates, is an exquisite example of nanomaterial self-assembly in nature. Its products include the shells of mollusks and the bones and teeth of vertebrates. By comparison, conventional inorganic synthesis techniques provide limited control over inorganic nanomaterial architecture. Inspired by biomineralization in nature, over the last two decades, the field of biotemplating has emerged as a new paradigm for inorganic nanomaterial assembly, wherein researchers seek to design novel nano-structures in which inorganic nanomaterial synthesis is directed from an underlying biomolecular template. Here, we review the motivation,more » mechanistic understanding, progress, and challenges for the field of biotemplating. We highlight the interdisciplinary nature of this field, and survey a broad range of examples of bio-templated engineering: ranging from strategies that exploit the inherent capabilities of proteins in nature, to genetically-engineered systems that unlock new capabilities for self-assembly with biomolecules. Here, we illustrate that the use of biological materials as templates for inorganic self-assembly holds tremendous potential for nanomaterial engineering, with applications that range from electronics and energy to medicine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krajina, Brad A.; Proctor, Amy C.; Schoen, Alia P.
Biomineralization, the process by which biological systems direct the synthesis of inorganic structures from organic templates, is an exquisite example of nanomaterial self-assembly in nature. Its products include the shells of mollusks and the bones and teeth of vertebrates. By comparison, conventional inorganic synthesis techniques provide limited control over inorganic nanomaterial architecture. Inspired by biomineralization in nature, over the last two decades, the field of biotemplating has emerged as a new paradigm for inorganic nanomaterial assembly, wherein researchers seek to design novel nano-structures in which inorganic nanomaterial synthesis is directed from an underlying biomolecular template. Here, we review the motivation,more » mechanistic understanding, progress, and challenges for the field of biotemplating. We highlight the interdisciplinary nature of this field, and survey a broad range of examples of bio-templated engineering: ranging from strategies that exploit the inherent capabilities of proteins in nature, to genetically-engineered systems that unlock new capabilities for self-assembly with biomolecules. Here, we illustrate that the use of biological materials as templates for inorganic self-assembly holds tremendous potential for nanomaterial engineering, with applications that range from electronics and energy to medicine.« less
NASA Astrophysics Data System (ADS)
Sun, Xiao-Hong; Baltimore, David
1989-04-01
To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.
NASA Astrophysics Data System (ADS)
Roberson, Nicole; Denmark, Daniel; Witanachchi, Sarath
Hybrid drug delivery systems composed of thermoresponsive polymers and magnetic nanoparticles have been developed using chemical methods to deliver controlled amounts of a biotherapeutic to target tissue. These methods can be expensive, time intensive, and produce impure composites due to the use of surfactants during polymer synthesis. In this study, UV aerosol photopolymerization is used to synthesize N-isoplopylacrylamide (NIPAM) monomers, N,N-methylenebisacrylamide (MBA) crosslinker, and irgacure 2959 photoinitiator into the transporting microcapsule for drug delivery. The method of UV aerosol photopolymerization allows for the continuous, cost effective, and time efficient synthesis of a high concentration of pure polymers in a short amount of time; toxic surfactants are not necessary. Optimal NIPAM monomer, MBA crosslinker, and irgacure 2959 photoinitiator concentrations were tested and analyzed to synthesize a microcapsule with optimal conditions for controlled drug delivery. Scanning Electron Microscope (SEM) imaging reveals that synthesis of polymer microcapsules of about 30 micrometers in size is effective through UV aerosol photopolymerization. Findings will contribute greatly to the field of emergency medicine. This work was supported by the United States Army (Grant No. W81XWH1020101/3349).
Decision Support Systems for Operational Level Command and Control
1990-04-30
business -based. These definitions still have applicability to military command and control - the business of military operations. A synthesis of the...other hand, there are such studies that were conducted in business environments. An eight week empincal study39 was 37 bd, pp 8-1 I. 38 Ranesh Shada...pp 139-158. 19 conducted and the groups with access to decision support system made significantly more effective decisions :n a business simulation
A Comparison of Wavetable and FM Data Reduction Methods for Resynthesis of Musical Sounds
NASA Astrophysics Data System (ADS)
Horner, Andrew
An ideal music-synthesis technique provides both high-level spectral control and efficient computation. Simple playback of recorded samples lacks spectral control, while additive sine-wave synthesis is inefficient. Wavetable and frequencymodulation synthesis, however, are two popular synthesis techniques that are very efficient and use only a few control parameters.
Peptide synthesis in early earth hydrothermal systems
Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.
2009-01-01
We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.
An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control
NASA Technical Reports Server (NTRS)
Watts, Stephen R.; Garg, Sanjay
1995-01-01
This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.
A Software Architecture for Intelligent Synthesis Environments
NASA Technical Reports Server (NTRS)
Filman, Robert E.; Norvig, Peter (Technical Monitor)
2001-01-01
The NASA's Intelligent Synthesis Environment (ISE) program is a grand attempt to develop a system to transform the way complex artifacts are engineered. This paper discusses a "middleware" architecture for enabling the development of ISE. Desirable elements of such an Intelligent Synthesis Architecture (ISA) include remote invocation; plug-and-play applications; scripting of applications; management of design artifacts, tools, and artifact and tool attributes; common system services; system management; and systematic enforcement of policies. This paper argues that the ISA extend conventional distributed object technology (DOT) such as CORBA and Product Data Managers with flexible repositories of product and tool annotations and "plug-and-play" mechanisms for inserting "ility" or orthogonal concerns into the system. I describe the Object Infrastructure Framework, an Aspect Oriented Programming (AOP) environment for developing distributed systems that provides utility insertion and enables consistent annotation maintenance. This technology can be used to enforce policies such as maintaining the annotations of artifacts, particularly the provenance and access control rules of artifacts-, performing automatic datatype transformations between representations; supplying alternative servers of the same service; reporting on the status of jobs and the system; conveying privileges throughout an application; supporting long-lived transactions; maintaining version consistency; and providing software redundancy and mobility.
Yi, Woelsung; Gupta, Sanjay; Ricker, Edd; Manni, Michela; Jessberger, Rolf; Chinenov, Yurii; Molina, Henrik; Pernis, Alessandra B
2017-08-15
Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (T H ) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (T FH ) cells, is critical as aberrant T FH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1-4E-BP-eIF4E axis, secondary to aberrant assembly of a raptor-p62-TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant T FH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity.Excessive expansion of the T follicular helper (T FH ) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of T FH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.
Feedforward/feedback control synthesis for performance and robustness
NASA Technical Reports Server (NTRS)
Wie, Bong; Liu, Qiang
1990-01-01
Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.
Gehrand, Ashley; Bruder, Eric D.; Hoffman, Matthew J.; Engeland, William C.; Moreno, Carol
2014-01-01
The classic renin-angiotensin system is partly responsible for controlling aldosterone secretion from the adrenal cortex via the peptide angiotensin II (ANG II). In addition, there is a local adrenocortical renin-angiotensin system that may be involved in the control of aldosterone synthesis in the zona glomerulosa (ZG). To characterize the long-term control of adrenal steroidogenesis, we utilized adrenal glands from renin knockout (KO) rats and compared steroidogenesis in vitro and steroidogenic enzyme expression to wild-type (WT) controls (Dahl S rat). Adrenal capsules (ZG; aldosterone production) and subcapsules [zona reticularis/fasciculata (ZFR); corticosterone production] were separately dispersed and studied in vitro. Plasma renin activity and ANG II concentrations were extremely low in the KO rats. Basal and cAMP-stimulated aldosterone production was significantly reduced in renin KO ZG cells, whereas corticosterone production was not different between WT and KO ZFR cells. As expected, adrenal renin mRNA expression was lower in the renin KO compared with the WT rat. Real-time PCR and immunohistochemical analysis showed a significant decrease in P450aldo (Cyp11b2) mRNA and protein expression in the ZG from the renin KO rat. The reduction in aldosterone synthesis in the ZG of the renin KO adrenal seems to be accounted for by a specific decrease in P450aldo and may be due to the absence of chronic stimulation of the ZG by circulating ANG II or to a reduction in locally released ANG II within the adrenal gland. PMID:25394830
Practical colloidal processing of multication ceramics
Bell, Nelson S.; Monson, Todd C.; Diantonio, Christopher; ...
2015-09-07
The use of colloidal processing principles in the formation of ceramic materials is well appreciated for developing homogeneous material properties in sintered products, enabling novel forming techniques for porous ceramics or 3D printing, and controlling microstructure to enable optimized material properties. The solution processing of electronic ceramic materials often involves multiple cationic elements or dopants to affect microstructure and properties. Material stability must be considered through the steps of colloidal processing to optimize desired component properties. This review provides strategies for preventing material degradation in particle synthesis, milling processes, and dispersion, with case studies of consolidation using spark plasma sinteringmore » of these systems. The prevention of multication corrosion in colloidal dispersions can be achieved by utilizing conditions similar to the synthesis environment or by the development of surface passivation layers. The choice of dispersing surfactants can be related to these surface states, which are of special importance for nanoparticle systems. A survey of dispersant chemistries related to some common synthesis conditions is provided for perovskite systems as an example. Furthermore, these principles can be applied to many colloidal systems related to electronic and optical applications.« less
Low-authority control synthesis for large space structures
NASA Technical Reports Server (NTRS)
Aubrun, J. N.; Margulies, G.
1982-01-01
The control of vibrations of large space structures by distributed sensors and actuators is studied. A procedure is developed for calculating the feedback loop gains required to achieve specified amounts of damping. For moderate damping (Low Authority Control) the procedure is purely algebraic, but it can be applied iteratively when larger amounts of damping are required and is generalized for arbitrary time invariant systems.
Systems concept for speech technology application in general aviation
NASA Technical Reports Server (NTRS)
North, R. A.; Bergeron, H.
1984-01-01
The application potential of voice recognition and synthesis circuits for general aviation, single-pilot IFR (SPIFR) situations is examined. The viewpoint of the pilot was central to workload analyses and assessment of the effectiveness of the voice systems. A twin-engine, high performance general aviation aircraft on a cross-country fixed route was employed as the study model. No actual control movements were considered and other possible functions were scored by three IFR-rated instructors. The SPIFR was concluded helpful in alleviating visual and manual workloads during take-off, approach and landing, particularly for data retrieval and entry tasks. Voice synthesis was an aid in alerting a pilot to in-flight problems. It is expected that usable systems will be available within 5 yr.
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1993-01-01
Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The emphasis is on formulating the H-infinity optimal control synthesis problem such that the critical requirements for the flight and propulsion systems are adequately reflected within the linear, centralized control problem formulation and the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objective as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope.
Mapping Phonetic Features for Voice-Driven Sound Synthesis
NASA Astrophysics Data System (ADS)
Janer, Jordi; Maestre, Esteban
In applications where the human voice controls the synthesis of musical instruments sounds, phonetics convey musical information that might be related to the sound of the imitated musical instrument. Our initial hypothesis is that phonetics are user- and instrument-dependent, but they remain constant for a single subject and instrument. We propose a user-adapted system, where mappings from voice features to synthesis parameters depend on how subjects sing musical articulations, i.e. note to note transitions. The system consists of two components. First, a voice signal segmentation module that automatically determines note-to-note transitions. Second, a classifier that determines the type of musical articulation for each transition based on a set of phonetic features. For validating our hypothesis, we run an experiment where subjects imitated real instrument recordings with their voice. Performance recordings consisted of short phrases of saxophone and violin performed in three grades of musical articulation labeled as: staccato, normal, legato. The results of a supervised training classifier (user-dependent) are compared to a classifier based on heuristic rules (user-independent). Finally, from the previous results we show how to control the articulation in a sample-concatenation synthesizer by selecting the most appropriate samples.
Bai, Mingsian R; Wen, Jheng-Ciang; Hsu, Hoshen; Hua, Yi-Hsin; Hsieh, Yu-Hao
2014-10-01
A sound reconstruction system is proposed for audio reproduction with extended sweet spot and reduced reflections. An equivalent source method (ESM)-based sound field synthesis (SFS) approach, with the aid of dark zone minimization is adopted in the study. Conventional SFS that is based on the free-field assumption suffers from synthesis error due to boundary reflections. To tackle the problem, the proposed system utilizes convex optimization in designing array filters with both reproduction performance and acoustic contrast taken into consideration. Control points are deployed in the dark zone to minimize the reflections from the walls. Two approaches are employed to constrain the pressure and velocity in the dark zone. Pressure matching error (PME) and acoustic contrast (AC) are used as performance measures in simulations and experiments for a rectangular loudspeaker array. Perceptual Evaluation of Audio Quality (PEAQ) is also used to assess the audio reproduction quality. The results show that the pressure-constrained (PC) method yields better acoustic contrast, but poorer reproduction performance than the pressure-velocity constrained (PVC) method. A subjective listening test also indicates that the PVC method is the preferred method in a live room.
NASA Astrophysics Data System (ADS)
Zhang, Langwen; Xie, Wei; Wang, Jingcheng
2017-11-01
In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.
Monitoring the synthesis of biomolecules using mass spectrometry.
Miyagi, Masaru; Kasumov, Takhar
2016-10-28
The controlled and selective synthesis/clearance of biomolecules is critical for most cellular processes. In most high-throughput 'omics' studies, we measure the static quantities of only one class of biomolecules (e.g. DNA, mRNA, proteins or metabolites). It is, however, important to recognize that biological systems are highly dynamic in which biomolecules are continuously renewed and different classes of biomolecules interact and affect each other's production/clearance. Therefore, it is necessary to measure the turnover of diverse classes of biomolecules to understand the dynamic nature of biological systems. Herein, we explain why the kinetic analysis of a diverse range of biomolecules is important and how such an analysis can be done. We argue that heavy water ((2)H2O) could be a universal tracer for monitoring the synthesis of biomolecules on a global scale.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).
Monitoring the synthesis of biomolecules using mass spectrometry
2016-01-01
The controlled and selective synthesis/clearance of biomolecules is critical for most cellular processes. In most high-throughput ‘omics’ studies, we measure the static quantities of only one class of biomolecules (e.g. DNA, mRNA, proteins or metabolites). It is, however, important to recognize that biological systems are highly dynamic in which biomolecules are continuously renewed and different classes of biomolecules interact and affect each other's production/clearance. Therefore, it is necessary to measure the turnover of diverse classes of biomolecules to understand the dynamic nature of biological systems. Herein, we explain why the kinetic analysis of a diverse range of biomolecules is important and how such an analysis can be done. We argue that heavy water (2H2O) could be a universal tracer for monitoring the synthesis of biomolecules on a global scale. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644976
NASA Technical Reports Server (NTRS)
Kaminer, Isaac; Benson, Russell A.; Coleman, Edward E.; Ebrahimi, Yaghoob S.
1990-01-01
Two designs are presented for control systems for the NASA Transport System Research Vehicle (TSRV) using integral Linear Quadratic Gaussian (LQG) methodology. The first is an integrated longitudinal autopilot/autothrottle design and the second design is an integrated lateral autopilot/yaw damper/sideslip controller design. It is shown that a systematic top-down approach to a complex design problem combined with proper application of modern control synthesis techniques yields a satisfactory solution in a reasonable period of time.
Synthesis and evaluation on pH- and temperature-responsive chitosan-p(MAA-co-NIPAM) hydrogels.
Rasib, S Z M; Ahmad, Z; Khan, A; Akil, H M; Othman, M B H; Hamid, Z A A; Ullah, F
2018-03-01
In this study, chitosan-poly(methacrylic acid-co-N-isopropylacrylamide) [chitosan-p(MAA-co-NIPAM)] hydrogels were synthesized by emulsion polymerization. In order to be used as a carrier for drug delivery systems, the hydrogels had to be biocompatible, biodegradable and multi-responsive. The polymerization was performed by copolymerize MAA and NIPAM with chitosan polymer to produce a chitosan-based hydrogel. Due to instability during synthesis and complexity of components to produce the hydrogel, further study at different times of reaction is important to observe the synthesis process, the effect of end product on swelling behaviour and the most important is to find the best way to control the hydrogel synthesis in order to have an optimal swelling behaviour for drug release application. Studied by using Fourier transform infra-red (FTIR) spectroscopy found that, the synthesized was successfully produced stable chitosan-based hydrogel with PNIPAM continuously covered the outer surface of hydrogel which influenced much on the stability during synthesis. The chitosan and PMAA increased the zeta potential of the hydrogel and the chitosan capable to control shrinkage above human body temperature. The chitosan-p(MAA-co-NIPAM) hydrogels also responses to pH and temperature thus improved the ability to performance as a drug carrier. Copyright © 2017 Elsevier B.V. All rights reserved.
Taguchi, Takahiko; Kurata, Sumiko; Ohashi, Mochihiko
2002-09-01
Putrescine biosynthesis is elevated before DNA replication, and a stimulation of DNA synthesis by 20 mM putrescine has been found using an in vitro DNA synthesizing system. Furthermore, this stimulation of DNA synthesis by putrescine involves a particular factor (factor PA). This factor PA stimulates DNA polymerases alpha, beta, and gamma, and is present in nuclei and mitochondria but not in cytoplasm. Factor PA loses about 80% of its activity by heating at 45 degrees C for 15 min or by hydrolysis with 100 mg ml(-1) Enzygel trypsin. These properties indicate that factor PA is a protein. Its size is estimated to be about 2.1 S. DNA synthesis in nuclear and mitochondrial DNA polymerase extracts from tumour tissues and host livers of tumour-bearing rats are not stimulated by 20 mM putrescine. However, the addition of excess factor PA to DNA synthesizing systems using DNA polymerase extracts from proliferative tissues again results in a stimulation of DNA synthesis by exogenous putrescine. These findings indicate that the stimulatory effect of DNA synthesis in vitro by exogenous putrescine is controlled by the ratio between factor PA and endogenously synthesized putrescine in proliferative tissues or that sent by the bloodstream from proliferative tissues. These results suggest that a non-stimulatory effect of putrescine on DNA synthesis may be diagnostic in tumour-bearing patients. Copyright 2002 John Wiley & Sons, Ltd.
Modeling, simulation and control for a cryogenic fluid management facility, preliminary report
NASA Technical Reports Server (NTRS)
Turner, Max A.; Vanbuskirk, P. D.
1986-01-01
The synthesis of a control system for a cryogenic fluid management facility was studied. The severe demand for reliability as well as instrumentation and control unique to the Space Station environment are prime considerations. Realizing that the effective control system depends heavily on quantitative description of the facility dynamics, a methodology for process identification and parameter estimation is postulated. A block diagram of the associated control system is also produced. Finally, an on-line adaptive control strategy is developed utilizing optimization of the velocity form control parameters (proportional gains, integration and derivative time constants) in appropriate difference equations for direct digital control. Of special concern are the communications, software and hardware supporting interaction between the ground and orbital systems. It is visualized that specialist in the OSI/ISO utilizing the Ada programming language will influence further development, testing and validation of the simplistic models presented here for adaptation to the actual flight environment.
Robust nonlinear control of vectored thrust aircraft
NASA Technical Reports Server (NTRS)
Doyle, John C.; Murray, Richard; Morris, John
1993-01-01
An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations.
New multirate sampled-data control law structure and synthesis algorithm
NASA Technical Reports Server (NTRS)
Berg, Martin C.; Mason, Gregory S.; Yang, Gen-Sheng
1992-01-01
A new multirate sampled-data control law structure is defined and a new parameter-optimization-based synthesis algorithm for that structure is introduced. The synthesis algorithm can be applied to multirate, multiple-input/multiple-output, sampled-data control laws having a prescribed dynamic order and structure, and a priori specified sampling/update rates for all sensors, processor states, and control inputs. The synthesis algorithm is applied to design two-input, two-output tip position controllers of various dynamic orders for a sixth-order, two-link robot arm model.
A computer-aided approach to nonlinear control systhesis
NASA Technical Reports Server (NTRS)
Wie, Bong; Anthony, Tobin
1988-01-01
The major objective of this project is to develop a computer-aided approach to nonlinear stability analysis and nonlinear control system design. This goal is to be obtained by refining the describing function method as a synthesis tool for nonlinear control design. The interim report outlines the approach by this study to meet these goals including an introduction to the INteractive Controls Analysis (INCA) program which was instrumental in meeting these study objectives. A single-input describing function (SIDF) design methodology was developed in this study; coupled with the software constructed in this study, the results of this project provide a comprehensive tool for design and integration of nonlinear control systems.
NASA Astrophysics Data System (ADS)
Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.
2018-02-01
In order to meet the growing mobility requirements for the wheeled vehicles on all types of terrain the engineers have to develop a large number of specialized control algorithms for the multi-axle wheeled vehicle (MWV) suspension improving such qualities as ride comfort, handling and stability. The authors have developed an adaptive algorithm of the dynamic damping of the MVW body oscillations. The algorithm provides high ride comfort and high mobility of the vehicle. The article discloses a method for synthesis of an adaptive dynamic continuous algorithm of the MVW body oscillation damping and provides simulation results proving high efficiency of the developed control algorithm.
NASA Astrophysics Data System (ADS)
Li, Li-Wei; Yang, Guang-Hong
2017-07-01
The problem of decentralised output feedback control is addressed for Markovian jump interconnected systems with unknown interconnections and general transition rates (TRs) allowed to be unknown or known with uncertainties. A class of decentralised dynamic output feedback controllers are constructed, and a cyclic-small-gain condition is exploited to dispose the unknown interconnections so that the resultant closed-loop system is stochastically stable and satisfies an H∞ performance. With slack matrices to cope with the nonlinearities incurred by unknown and uncertain TRs in control synthesis, a novel controller design condition is developed in linear matrix inequality formalism. Compared with the existing works, the proposed approach leads to less conservatism. Finally, two examples are used to illustrate the effectiveness of the new results.
Shieh, Fa-Kuen; Wang, Shao-Chun; Leo, Sin-Yen; Wu, Kevin C-W
2013-08-19
The ZIF code: ZIF-90 materials were successfully synthesized in an optimized water-based system. The particle size, ranging from micro- to nanoscales, could be controlled by different amounts of polyvinylpyrrolidone (PVP), Zn/imidazole-2-carboxaldehyde ratio and alcohol. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
We report an eco-friendly synthesis of well–controlled, nano-to-micron-size, spherical SiO2 particles using non-hazardous solvent and a byproducts-producing system. It was found that the morphology and size of spherical SiO2 particles are controlled by adjusting the concentration...
Godfrey, Alexander G; Masquelin, Thierry; Hemmerle, Horst
2013-09-01
This article describes our experiences in creating a fully integrated, globally accessible, automated chemical synthesis laboratory. The goal of the project was to establish a fully integrated automated synthesis solution that was initially focused on minimizing the burden of repetitive, routine, rules-based operations that characterize more established chemistry workflows. The architecture was crafted to allow for the expansion of synthetic capabilities while also providing for a flexible interface that permits the synthesis objective to be introduced and manipulated as needed under the judicious direction of a remote user in real-time. This innovative central synthesis suite is herein described along with some case studies to illustrate the impact such a system is having in expanding drug discovery capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biologic Potential of Calcium Phosphate Biopowders Produced via Decomposition Combustion Synthesis
Vollmer, N.; King, K.B.; Ayers, R.
2015-01-01
The aim of this research was to evaluate the biologic potential of calcium phosphate (CaP) biopowders produced with a novel reaction synthesis system. Decomposition combustion synthesis (DCS) is a modified combustion synthesis method capable of producing CaP powders for use in bone tissue engineering applications. During DCS, the stoichiometric ratio of reactant salt to fuel was adjusted to alter product chemistry and morphology. In vitro testing methods were utilized to determine the effects of controlling product composition on cytotoxicity, proliferation, biocompatibility and biomineralization. In vitro, human fetal osteoblasts (ATCC, CRL-11372) cultured with CaP powder displayed a flattened morphology, and uniformly encompassed the CaP particulates. Matrix vesicles containing calcium and phosphorous budded from the osteoblast cells. CaP powders produced via DCS are a source of biologically active, synthetic, bone graft substitute materials PMID:26034341
Solvothermal Synthesis of Magnetic Spinel Ferrites
Rafienia, Mohammad; Bigham, Ashkan; Hassanzadeh-Tabrizi, Seyed Ali
2018-01-01
At present, solvothermal fabrication method has widely been applied in the synthesis of spinel ferrite nanoparticles (SFNs), which is mainly because of its great advantages such as precise control over size, shape distribution, and high crystallinity that do not require postannealing treatment. Among various SFNs, Fe3O4 nanoparticles have attracted tremendous attention because of their favorable physical and structural properties which are advantageous, especially in biomedical applications, among which the vast application of these materials as targeted drug delivery systems, hyperthermia, and imaging agents in cancer therapy can be mentioned. The main focus of this study is to present an introduction to solvothermal method and key synthesis parameters of SFNs through this synthesis route. Moreover, most recent progress on the potential applications of Fe3O4 nanoparticles as the most important compound among the spinel ferrites family members is discussed. PMID:29928636
Flame Synthesis Of Single-Walled Carbon Nanotubes And Nanofibers
NASA Technical Reports Server (NTRS)
Wal, Randy L. Vander; Berger, Gordon M.; Ticich, Thomas M.
2003-01-01
Carbon nanotubes are widely sought for a variety of applications including gas storage, intercalation media, catalyst support and composite reinforcing material [1]. Each of these applications will require large scale quantities of CNTs. A second consideration is that some of these applications may require redispersal of the collected CNTs and attachment to a support structure. If the CNTs could be synthesized directly upon the support to be used in the end application, a tremendous savings in post-synthesis processing could be realized. Therein we have pursued both aerosol and supported catalyst synthesis of CNTs. Given space limitations, only the aerosol portion of the work is outlined here though results from both thrusts will be presented during the talk. Aerosol methods of SWNT, MWNT or nanofiber synthesis hold promise of large-scale production to supply the tonnage quantities these applications will require. Aerosol methods may potentially permit control of the catalyst particle size, offer continuous processing, provide highest product purity and most importantly, are scaleable. Only via economy of scale will the cost of CNTs be sufficient to realize the large-scale structural and power applications on both earth and in space. Present aerosol methods for SWNT synthesis include laser ablation of composite metalgraphite targets or thermal decomposition/pyrolysis of a sublimed or vaporized organometallic [2]. Both approaches, conducted within a high temperature furnace, have produced single-walled nanotubes (SWNTs). The former method requires sophisticated hardware and is inherently limited by the energy deposition that can be realized using pulsed laser light. The latter method, using expensive organometallics is difficult to control for SWNT synthesis given a range of gasparticle mixing conditions along variable temperature gradients; multi-walled nanotubes (MWNTs) are a far more likely end products. Both approaches require large energy expenditures and produce CNTs at prohibitive costs, around $500 per gram. Moreover these approaches do not possess demonstrated scalability. In contrast to these approaches, flame synthesis can be a very energy efficient, low-cost process [3]; a portion of the fuel serves as the heating source while the remainder serves as reactant. Moreover, flame systems are geometrically versatile as illustrated by innumerable boiler and furnace designs. Addressing scalability, flame systems are commercially used for producing megatonnage quantities of carbon black [4]. Although it presents a complex chemically reacting flow, a flame also offers many variables for control, e.g. temperature, chemical environment and residence times [5]. Despite these advantages, there are challenges to scaling flame synthesis as well.
da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira
2010-04-01
Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.
NASA Astrophysics Data System (ADS)
Um, Taewoong; Hong, Jiwoo; Kang, In Seok
2016-11-01
The dispensing of tiny droplets is a basic and crucial process in a myriad of applications, such as DNA/protein microarray, cell cultures, chemical synthesis of microparticles, and digital microfluidics. This work demonstrates the droplet dispensing into immiscible fluids through electric charge concentration (ECC) method. Three main modes (i.e., attaching, uniform and bursting modes) are exhibited as a function of flow rates, applied voltage and gap distance between the nozzle and the oil surface. Through a conventional nozzle with diameter of a few millimeters, charged droplets with volumes ranging from a few μL to a few tens of nL can be uniformly dispensed into the oil chamber without reduction in nozzle size. Based on the features of the proposed method (e.g., formation of droplets with controllable polarity and amount of electric charge in water and oil system), a simple and straightforward method is developed for microparticle synthesis, including preparation for colloidosomes and fabrication of Janus microparticles with anisotropic internal structures. Finally, a combined system consisting of ECC-induced droplet dispensing and electrophoresis of charged droplet (ECD)-driven manipulation systems is constructed. This work was supported by the BK21Plus Program for advanced education of creative chemical engineers of the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozisik, H.; Keltie, R.F.
The open loop control technique of predicting a conditioned input signal based on a specified output response for a second order system has been analyzed both analytically and numerically to gain a firm understanding of the method. Differences between this method of control and digital closed loop control using pole cancellation were investigated as a follow up to previous experimental work. Application of the technique to diamond turning using a fast tool is also discussed.
Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle
NASA Astrophysics Data System (ADS)
Zhang, Han; Zhao, Wanzhong
2018-02-01
To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.
Users manual for flight control design programs
NASA Technical Reports Server (NTRS)
Nalbandian, J. Y.
1975-01-01
Computer programs for the design of analog and digital flight control systems are documented. The program DIGADAPT uses linear-quadratic-gaussian synthesis algorithms in the design of command response controllers and state estimators, and it applies covariance propagation analysis to the selection of sampling intervals for digital systems. Program SCHED executes correlation and regression analyses for the development of gain and trim schedules to be used in open-loop explicit-adaptive control laws. A linear-time-varying simulation of aircraft motions is provided by the program TVHIS, which includes guidance and control logic, as well as models for control actuator dynamics. The programs are coded in FORTRAN and are compiled and executed on both IBM and CDC computers.
NASA Technical Reports Server (NTRS)
Feinreich, B.; Gevaert, G.
1980-01-01
Automatic flare and decrab control laws for conventional takeoff and landing aircraft were adapted to the unique requirements of the powered lift short takeoff and landing airplane. Three longitudinal autoland control laws were developed. Direct lift and direct drag control were used in the longitudinal axis. A fast time simulation was used for the control law synthesis, with emphasis on stochastic performance prediction and evaluation. Good correlation with flight test results was obtained.
Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts
Jones, L. Camille; Rosenbauer, Robert; Goldsmith, Jonas I.; Oze, Christopher
2010-01-01
Serpentinization of forsteritic olivine results in the inorganic synthesis of molecular hydrogen (H2) in ultramafic hydrothermal systems (e.g., mid-ocean ridge and forearc environments). Inorganic carbon in those hydrothermal systems may react with H2 to produce methane (CH4) and other hydrocarbons or react with dissolved metal ions to form carbonate minerals. Here, we report serpentinization experiments at 200°C and 300 bar demonstrating Fe2+ being incorporated into carbonates more rapidly than Fe2+ oxidation (and concomitant H2 formation) leading to diminished yields of H2 and H2-dependent CH4. In addition, carbonate formation is temporally fast in carbonate oversaturated fluids. Our results demonstrate that carbonate chemistry ultimately modulates the abiotic synthesis of both H2 and CH4 in hydrothermal ultramafic systems and that ultramafic systems present great potential for CO2-mineral sequestration.
Acute inhibition of neurosteroid estrogen synthesis suppresses status epilepticus in an animal model
Sato, Satoru M; Woolley, Catherine S
2016-01-01
Status epilepticus (SE) is a common neurological emergency for which new treatments are needed. In vitro studies suggest a novel approach to controlling seizures in SE: acute inhibition of estrogen synthesis in the brain. Here, we show in rats that systemic administration of an aromatase (estrogen synthase) inhibitor after seizure onset strongly suppresses both electrographic and behavioral seizures induced by kainic acid (KA). We found that KA-induced SE stimulates synthesis of estradiol (E2) in the hippocampus, a brain region commonly involved in seizures and where E2 is known to acutely promote neural activity. Hippocampal E2 levels were higher in rats experiencing more severe seizures. Consistent with a seizure-promoting effect of hippocampal estrogen synthesis, intra-hippocampal aromatase inhibition also suppressed seizures. These results reveal neurosteroid estrogen synthesis as a previously unknown factor in the escalation of seizures and suggest that acute administration of aromatase inhibitors may be an effective treatment for SE. DOI: http://dx.doi.org/10.7554/eLife.12917.001 PMID:27083045
Research in robust control for hypersonic aircraft
NASA Technical Reports Server (NTRS)
Calise, A. J.
1993-01-01
The research during the second reporting period has focused on robust control design for hypersonic vehicles. An already existing design for the Hypersonic Winged-Cone Configuration has been enhanced. Uncertainty models for the effects of propulsion system perturbations due to angle of attack variations, structural vibrations, and uncertainty in control effectiveness were developed. Using H(sub infinity) and mu-synthesis techniques, various control designs were performed in order to investigate the impact of these effects on achievable robust performance.
Dynamic wind-tunnel testing of active controls by the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Abel, I.; Doggett, R. V.; Newsom, J. R.; Sandford, M.
1984-01-01
Dynamic wind-tunnel testing of active controls by the NASA Langley Research Center is presented. Seven experimental studies that were accomplished to date are described. Six of the studies focus on active flutter suppression. The other focuses on active load alleviation. In addition to presenting basic results for these experimental studies, topics including model design and construction, control law synthesis, active control system implementation, and wind-tunnel test techniques are discussed.
A VLF-based technique in applications to digital control of nonlinear hybrid multirate systems
NASA Astrophysics Data System (ADS)
Vassilyev, Stanislav; Ulyanov, Sergey; Maksimkin, Nikolay
2017-01-01
In this paper, a technique for rigorous analysis and design of nonlinear multirate digital control systems on the basis of the reduction method and sublinear vector Lyapunov functions is proposed. The control system model under consideration incorporates continuous-time dynamics of the plant and discrete-time dynamics of the controller and takes into account uncertainties of the plant, bounded disturbances, nonlinear characteristics of sensors and actuators. We consider a class of multirate systems where the control update rate is slower than the measurement sampling rates and periodic non-uniform sampling is admitted. The proposed technique does not use the preliminary discretization of the system, and, hence, allows one to eliminate the errors associated with the discretization and improve the accuracy of analysis. The technique is applied to synthesis of digital controller for a flexible spacecraft in the fine stabilization mode and decentralized controller for a formation of autonomous underwater vehicles. Simulation results are provided to validate the good performance of the designed controllers.
H∞ control for switched fuzzy systems via dynamic output feedback: Hybrid and switched approaches
NASA Astrophysics Data System (ADS)
Xiang, Weiming; Xiao, Jian; Iqbal, Muhammad Naveed
2013-06-01
Fuzzy T-S model has been proven to be a practical and effective way to deal with the analysis and synthesis problems for complex nonlinear systems. As for switched nonlinear system, describing its subsystems as fuzzy T-S models, namely switched fuzzy system, naturally is an alternative method to conventional control approaches. In this paper, the H∞ control problem for a class of switched fuzzy systems is addressed. Hybrid and switched design approaches are proposed with different availability of switching signal information at switching instant. The hybrid control strategy includes two parts: fuzzy controllers for subsystems and state updating controller at switching instant, and the switched control strategy contains the controllers for subsystems. It is demonstrated that the conservativeness is reduced by introducing the state updating behavior but its cost is an online prediction of switching signal. Numerical examples are given to illustrate the effectiveness of proposed approaches and compare the conservativeness of two approaches.
Brennan; Biddison; Frauendorf; Schwarcz; Keen; Ecker; Davis; Tinder; Swayze
1998-01-01
An automated, 96-well parallel array synthesizer for solid-phase organic synthesis has been designed and constructed. The instrument employs a unique reagent array delivery format, in which each reagent utilized has a dedicated plumbing system. An inert atmosphere is maintained during all phases of a synthesis, and temperature can be controlled via a thermal transfer plate which holds the injection molded reaction block. The reaction plate assembly slides in the X-axis direction, while eight nozzle blocks holding the reagent lines slide in the Y-axis direction, allowing for the extremely rapid delivery of any of 64 reagents to 96 wells. In addition, there are six banks of fixed nozzle blocks, which deliver the same reagent or solvent to eight wells at once, for a total of 72 possible reagents. The instrument is controlled by software which allows the straightforward programming of the synthesis of a larger number of compounds. This is accomplished by supplying a general synthetic procedure in the form of a command file, which calls upon certain reagents to be added to specific wells via lookup in a sequence file. The bottle position, flow rate, and concentration of each reagent is stored in a separate reagent table file. To demonstrate the utility of the parallel array synthesizer, a small combinatorial library of hydroxamic acids was prepared in high throughput mode for biological screening. Approximately 1300 compounds were prepared on a 10 μmole scale (3-5 mg) in a few weeks. The resulting crude compounds were generally >80% pure, and were utilized directly for high throughput screening in antibacterial assays. Several active wells were found, and the activity was verified by solution-phase synthesis of analytically pure material, indicating that the system described herein is an efficient means for the parallel synthesis of compounds for lead discovery. Copyright 1998 John Wiley & Sons, Inc.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1987-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
Synthesis and Structure of Fully Conjugated Block Copolymers Utilized in Organic Photovoltaics
NASA Astrophysics Data System (ADS)
Lee, Youngmin; Aplan, Melissa; Wang, Qing; Gomez, Enrique D.
2015-03-01
Fully conjugated block copolymers have the potential to overcome many of the limitations of mixtures and blends as photoactive layers in solar cells; furthermore, they may serve as model systems to study fundamental questions regarding optoelectric properties and charge transfer. However, the synthesis of fully conjugated block copolymers remains a challenging issue in the fieldchallenge. We have optimized the two-step synthesis of P3HT-b-PFTBT, which is composed comprised of Grignard metathesis for polymerization of P3HT followed by chain extension through a Suzuki-Miyaura polycondenstation. We find that the concentration of the Grignard reagent is critical for end-group control such that P3HT is terminated by H at one end and Br at the other. Furthermore, we can utilize an asymmetric feed ratio of monomers for the Suzuki-Miyaura reaction to minimize the amount of uncoupled homopolymers and to control the molecular weight of the second block. We investigated the chemical composition, structure and electrical characteristics of the polymers prepared by the different synthetic methods, and demonstrate that we can utilize these strategies for the synthesis of block copolymers beyond P3HT-b-PFTBT.
A Flight Control System for Small Unmanned Aerial Vehicle
NASA Astrophysics Data System (ADS)
Tunik, A. A.; Nadsadnaya, O. I.
2018-03-01
The program adaptation of the controller for the flight control system (FCS) of an unmanned aerial vehicle (UAV) is considered. Linearized flight dynamic models depend mainly on the true airspeed of the UAV, which is measured by the onboard air data system. This enables its use for program adaptation of the FCS over the full range of altitudes and velocities, which define the flight operating range. FCS with program adaptation, based on static feedback (SF), is selected. The SF parameters for every sub-range of the true airspeed are determined using the linear matrix inequality approach in the case of discrete systems for synthesis of a suboptimal robust H ∞-controller. The use of the Lagrange interpolation between true airspeed sub-ranges provides continuous adaptation. The efficiency of the proposed approach is shown against an example of the heading stabilization system.
Hypothermia translocates nitric oxide synthase from cytosol to membrane in snail neurons.
Rószer, Tamás; Kiss-Tóth, Eva; Rózsa, Dávid; Józsa, Tamás; Szentmiklósi, A József; Bánfalvi, Gáspár
2010-11-01
Neuronal nitric oxide (NO) levels are modulated through the control of catalytic activity of NO synthase (NOS). Although signals limiting excess NO synthesis are being extensively studied in the vertebrate nervous system, our knowledge is rather limited on the control of NOS in neurons of invertebrates. We have previously reported a transient inactivation of NOS in hibernating snails. In the present study, we aimed to understand the mechanism leading to blocked NO production during hypothermic periods of Helix pomatia. We have found that hypothermic challenge translocated NOS from the cytosol to the perinuclear endoplasmic reticulum, and that this cytosol to membrane trafficking was essential for inhibition of NO synthesis. Cold stress also downregulated NOS mRNA levels in snail neurons, although the amount of NOS protein remained unaffected in response to hypothermia. Our studies with cultured neurons and glia cells revealed that glia-neuron signaling may inhibit membrane binding and inactivation of NOS. We provide evidence that hypothermia keeps NO synthesis "hibernated" through subcellular redistribution of NOS.
An integrated approach to the optimum design of actively controlled composite wings
NASA Technical Reports Server (NTRS)
Livne, E.
1989-01-01
The importance of interactions among the various disciplines in airplane wing design has been recognized for quite some time. With the introduction of high gain, high authority control systems and the design of thin, flexible, lightweight composite wings, the integrated treatment of control systems, flight mechanics and dynamic aeroelasticity became a necessity. A research program is underway now aimed at extending structural synthesis concepts and methods to the integrated synthesis of lifting surfaces, spanning the disciplines of structures, aerodynamics and control for both analysis and design. Mathematical modeling techniques are carefully selected to be accurate enough for preliminary design purposes of the complicated, built-up lifting surfaces of real aircraft with their multiple design criteria and tight constraints. The presentation opens with some observations on the multidisciplinary nature of wing design. A brief review of some available state of the art practical wing optimization programs and a brief review of current research effort in the field serve to illuminate the motivation and support the direction taken in our research. The goals of this research effort are presented, followed by a description of the analysis and behavior sensitivity techniques used. The presentation concludes with a status report and some forecast of upcoming progress.
Enhanced nanoparticle size control by extending LaMer’s mechanism
Vreeland, Erika C.; Watt, John; Schober, Gretchen B.; ...
2015-08-17
The synthesis of well-defined nanoparticle materials has been an area of intense investigation, but size control in nanoparticle syntheses is largely empirical. Here, we introduce a general method for fine size control in the synthesis of nanoparticles by establishing steady state growth conditions through the continuous, controlled addition of precursor, leading to a uniform rate of particle growth. This approach, which we term the “extended LaMer mechanism” allows for reproducibility in particle size from batch to batch as well as the ability to predict nanoparticle size by monitoring the early stages of growth. We have demonstrated this method by applyingmore » it to a challenging synthetic system: magnetite nanoparticles. To facilitate this reaction, we have developed a reproducible method for synthesizing an iron oleate precursor that can be used without purification. As a result, we then show how such fine size control affects the performance of magnetite nanoparticles in magnetic hyperthermia.« less
Consensus for multi-agent systems with time-varying input delays
NASA Astrophysics Data System (ADS)
Yuan, Chengzhi; Wu, Fen
2017-10-01
This paper addresses the consensus control problem for linear multi-agent systems subject to uniform time-varying input delays and external disturbance. A novel state-feedback consensus protocol is proposed under the integral quadratic constraint (IQC) framework, which utilises not only the relative state information from neighbouring agents but also the real-time information of delays by means of the dynamic IQC system states for feedback control. Based on this new consensus protocol, the associated IQC-based control synthesis conditions are established and fully characterised as linear matrix inequalities (LMIs), such that the consensus control solution with optimal ? disturbance attenuation performance can be synthesised efficiently via convex optimisation. A numerical example is used to demonstrate the proposed approach.
Optimization of the Technological Synthesis of Refractory Compounds
NASA Astrophysics Data System (ADS)
Gaidar, S. M.; Karelina, M. Yu.; Prikhod'ko, V. M.; Volkov, A. A.
2017-12-01
The results of experimental studies, which are related to the regulation of the fractional composition of refractory compounds by roll milling in using controlled roll opening and unbalanced peripheral speeds of rollers, are reported. The content of prepared fine, middle, and coarse fractions is within 50-80%; in this case, the milling time of synthesis products is less than the time of ball milling by an order of magnitude. The application of roll milling for refining the products of self-propagating high-temperature synthesis can be most efficient in using together with heat-generating reactor to solve the main problem of self-propagating synthesis (SHS), which is a problem for recent several decades (the problem is the creation of intense automated production of refractory compounds in using continuous manufacturing cycle within a energotechnological system with the recovery of a great quantity of heat released during SHS).
Zhou, Lan; Suram, Santosh K.; Becerra-Stasiewicz, Natalie; ...
2015-05-27
Recent efforts have demonstrated enhanced tailoring of material functionality with mixed-anion materials, yet exploratory research with mixed-anion chemistries is limited by the sensitivity of these materials to synthesis conditions. In order to synthesize a particular metal oxynitride compound by traditional reactive annealing we require specific, limited ranges of both oxygen and nitrogen chemical potentials in order to establish equilibrium between the solid-state material and a reactive atmosphere. While using Ta-O-N as an example system, we describe a combination of reactive sputter deposition and rapid thermal processing for synthesis of mixed-anion inorganic materials. Heuristic optimization of reactive gas pressures to attainmore » a desired anion stoichiometry is discussed, and the ability of rapid thermal processing to enable amorphous to crystalline transitions without preferential anion loss is demonstrated through the controlled synthesis of nitride, oxide and oxynitride phases.« less
Control of discrete event systems modeled as hierarchical state machines
NASA Technical Reports Server (NTRS)
Brave, Y.; Heymann, M.
1991-01-01
The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.
NASA Technical Reports Server (NTRS)
Leininger, G. G.
1981-01-01
Using nonlinear digital simulation as a representative model of the dynamic operation of the QCSEE turbofan engine, a feedback control system is designed by variable frequency design techniques. Transfer functions are generated for each of five power level settings covering the range of operation from approach power to full throttle (62.5% to 100% full power). These transfer functions are then used by an interactive control system design synthesis program to provide a closed loop feedback control using the multivariable Nyquist array and extensions to multivariable Bode diagrams and Nichols charts.
Design and implementation of highly parallel pipelined VLSI systems
NASA Astrophysics Data System (ADS)
Delange, Alphonsus Anthonius Jozef
A methodology and its realization as a prototype CAD (Computer Aided Design) system for the design and analysis of complex multiprocessor systems is presented. The design is an iterative process in which the behavioral specifications of the system components are refined into structural descriptions consisting of interconnections and lower level components etc. A model for the representation and analysis of multiprocessor systems at several levels of abstraction and an implementation of a CAD system based on this model are described. A high level design language, an object oriented development kit for tool design, a design data management system, and design and analysis tools such as a high level simulator and graphics design interface which are integrated into the prototype system and graphics interface are described. Procedures for the synthesis of semiregular processor arrays, and to compute the switching of input/output signals, memory management and control of processor array, and sequencing and segmentation of input/output data streams due to partitioning and clustering of the processor array during the subsequent synthesis steps, are described. The architecture and control of a parallel system is designed and each component mapped to a module or module generator in a symbolic layout library, compacted for design rules of VLSI (Very Large Scale Integration) technology. An example of the design of a processor that is a useful building block for highly parallel pipelined systems in the signal/image processing domains is given.
Chemistry with spatial control using particles and streams†
Kalinin, Yevgeniy V.; Murali, Adithya
2012-01-01
Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis. PMID:23145348
Treatment of the control mechanisms of light airplanes in the flutter clearance process
NASA Technical Reports Server (NTRS)
Breitbach, E. J.
1979-01-01
It has become more and more evident that many difficulties encountered in the course of aircraft flutter analyses can be traced to strong localized nonlinearities in the control mechanisms. To cope with these problems, more reliable mathematical models paying special attention to control system nonlinearities were established by means of modified ground vibration test procedures in combination with suitably adapted modal synthesis approaches. Three different concepts are presented.
Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry
NASA Astrophysics Data System (ADS)
Pederson, Erik Norman
Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.
Comparison of Three Phytochrome-mediated Processes in the Hypocotyl of Mustard
Kinnersley, Alan M.; Davies, Peter J.
1976-01-01
Anthocyanin synthesis, hair formation, and the synthesis of ascorbic acid oxidase are all phytochrome-mediated reactions occurring in the hypocotyl of mustard (Sinapis alba L.), controlled by phytochrome actually located in the hypocotyl. A comparison of these three reactions showed that in certain respects they differ greatly in their response to light. The ability of the seedling to respond to light by showing the three responses was strongly influenced by the state of development of the seedling. White light given very early after seed imbibition was unable to evoke any of the three reactions. By 50 hours after imbibition, all systems were fully inducible by light. The addition of actinomycin D to a fully competent seedling coincident with illumination strongly inhibited the development of all three responses. In contrast, the addition of cordycepin at this time inhibited the synthesis of anthocyanin and ascorbic acid oxidase but had no effect on hair formation. Cycloheximide inhibited all three responses when given up to several hours after light. This suggests the necessity for RNA and protein synthesis for light-induced expression of these reactions, and that the RNA species involved in the three reactions may have differing degrees of polyadenylation. The lag period between the onset of light and the first display of the response was 3 hours for anthocyanin and ascorbic acid oxidase synthesis, and about 5 hours for hair formation. Amounts of light sufficient to give large increases in the levels of ascorbic acid oxidase and hair formation gave a much smaller increase in anthocyanin synthesis. Hair formation and ascorbic acid oxidase synthesis showed a much greater sensitivity to induction at early stages of seedling development than did anthocyanin synthesis. Following an inductive light period, anthocyanin synthesis was sensitive to far red light inhibition for a period twice as long as the other two reactions. The differences in the response of the three reactions to light suggest that the phytochrome-mediated reactions which control their development also differ. Images PMID:16659765
Nataraj, Shankar; Russek, Steven Lee; Dyer, Paul Nigel
2000-01-01
Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.
Control of nonlinear systems using terminal sliding modes
NASA Technical Reports Server (NTRS)
Venkataraman, S. T.; Gulati, S.
1992-01-01
The development of an approach to control synthesis for robust robot operations in unstructured environments is discussed. To enhance control performance with full model information, the authors introduce the notion of terminal convergence and develop control laws based on a class of sliding modes, denoted as terminal sliders. They demonstrate that terminal sliders provide robustness to parametric uncertainty without having to resort to high-frequency control switching, as in the case of conventional sliders. It is shown that the proposed method leads to greater guaranteed precision in all control cases discussed.
A high yield reverse micelle synthesis of catalysts and catalyst precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linehan, J.C.; Matson, D.W.; Darab, J.G.
1995-04-01
Reverse micelles or water-in-oil microemulsions have been prepared using a mixed AOT/SDS surfactant to increase the stability of the microemulsion and thereby allow a high loading of particle-forming precursors in the aqueous cores. The Modified Reverse Micelles (MRM), as these new binary surfactant microemulsions are called, have proven useful for the laboratory-scale synthesis of nanoscale metals, metal oxides, metal sulfides, and mixed metal materials. The system allows control over the phase and size of the precipitated crystallites and is ideal for producing nanocrystalline powders and suspensions.
Biotechnological synthesis of functional nanomaterials.
Lloyd, Jonathan R; Byrne, James M; Coker, Victoria S
2011-08-01
Biological systems, especially those using microorganisms, have the potential to offer cheap, scalable and highly tunable green synthetic routes for the production of the latest generation of nanomaterials. Recent advances in the biotechnological synthesis of functional nano-scale materials are described. These nanomaterials range from catalysts to novel inorganic antimicrobials, nanomagnets, remediation agents and quantum dots for electronic and optical devices. Where possible, the roles of key biological macromolecules in controlling production of the nanomaterials are highlighted, and also technological limitations that must be addressed for widespread implementation are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fixed-Order Mixed Norm Designs for Building Vibration Control
NASA Technical Reports Server (NTRS)
Whorton, Mark S.; Calise, Anthony J.
2000-01-01
This study investigates the use of H2, mu-synthesis, and mixed H2/mu methods to construct full order controllers and optimized controllers of fixed dimensions. The benchmark problem definition is first extended to include uncertainty within the controller bandwidth in the form of parametric uncertainty representative of uncertainty in the natural frequencies of the design model. The sensitivity of H2 design to unmodeled dynamics and parametric uncertainty is evaluated for a range of controller levels of authority. Next, mu-synthesis methods are applied to design full order compensators that are robust to both unmodeled dynamics and to parametric uncertainty. Finally, a set of mixed H2/mu compensators are designed which are optimized for a fixed compensator dimension. These mixed norm designs recover the H2 design performance levels while providing the same levels of robust stability as the mu designs. It is shown that designing with the mixed norm approach permits higher levels of controller authority for which the H2 designs are destabilizing. The benchmark problem is that of an active tendon system. The controller designs are all based on the use of acceleration feedback.
Applying reliability analysis to design electric power systems for More-electric aircraft
NASA Astrophysics Data System (ADS)
Zhang, Baozhu
The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.
Hormonal control of angiotensinogen production.
Dzau, V J; Herrmann, H C
The renin-angiotensin-aldosterone system appears to be under neural and hormonal control. Plasma angiotensinogen concentration is elevated in Cushing's disease, during pregnancy and in women taking oral contraceptives. An in vitro liver slice system was used to study the hormonal control of angiotensinogen synthesis and release in the rat. Dexamethasone administration in vivo resulted in increase in the in vitro rate of release of angiotensinogen by liver slices into the incubation media. This increase was inhibited by actinomycin D, an inhibitor of protein synthesis and vincristine which blocks secretion. Similarly, ethinyl estradiol treatment resulted in a 50% increase in angiotensinogen production. Hyperthyroid state was achieved by injecting rats with L-thyroxine daily for seven days. Hepatic production rate of angiotensinogen rose 21/2-fold above control and was accompanied by increases in plasma angiotensinogen concentration and plasma renin activity. In contrast, plasma angiotensinogen concentration and plasma renin activity were reduced in thyroidectomized rats. The rate of angiotensinogen production by liver slices of these rats decreased by five-fold below that of intact animals. These changes were largely corrected when thyroidectomized rats were treated with replacement doses of L-thyroxine. We conclude that hepatic angiotensinogen biosynthesis is under hormonal control. Glucocorticoid, estrogen and thyroid hormones all stimulate angiotensinogen production. These results may in part explain the pathogenesis of hypertension associated with certain disease states.
Analysis and Synthesis of Memory-Based Fuzzy Sliding Mode Controllers.
Zhang, Jinhui; Lin, Yujuan; Feng, Gang
2015-12-01
This paper addresses the sliding mode control problem for a class of Takagi-Sugeno fuzzy systems with matched uncertainties. Different from the conventional memoryless sliding surface, a memory-based sliding surface is proposed which consists of not only the current state but also the delayed state. Both robust and adaptive fuzzy sliding mode controllers are designed based on the proposed memory-based sliding surface. It is shown that the sliding surface can be reached and the closed-loop control system is asymptotically stable. Furthermore, to reduce the chattering, some continuous sliding mode controllers are also presented. Finally, the ball and beam system is used to illustrate the advantages and effectiveness of the proposed approaches. It can be seen that, with the proposed control approaches, not only can the stability be guaranteed, but also its transient performance can be improved significantly.
Perez-Sanchez, German; Chien, Szu -Chia; Gomes, Jose R. B.; ...
2016-04-04
A detailed theoretical understanding of the synthesis mechanism of periodic mesoporous silica has not yet been achieved. We present results of a multiscale simulation strategy that, for the first time, describes the molecular-level processes behind the formation of silica/surfactant mesophases in the synthesis of templated MCM-41 materials. The parameters of a new coarse-grained explicit-solvent model for the synthesis solution are calibrated with reference to a detailed atomistic model, which itself is based on quantum mechanical calculations. This approach allows us to reach the necessary time and length scales to explicitly simulate the spontaneous formation of mesophase structures while maintaining amore » level of realism that allows for direct comparison with experimental systems. Our model shows that silica oligomers are a necessary component in the formation of hexagonal liquid crystals from low-concentration surfactant solutions. Because they are multiply charged, silica oligomers are able to bridge adjacent micelles, thus allowing them to overcome their mutual repulsion and form aggregates. This leads the system to phase separate into a dilute solution and a silica/surfactant-rich mesophase, which leads to MCM-41 formation. Before extensive silica condensation takes place, the mesophase structure can be controlled by manipulation of the synthesis conditions. Our modeling results are in close agreement with experimental observations and strongly support a cooperative mechanism for synthesis of this class of materials. Furthermore, this work paves the way for tailored design of nanoporous materials using computational models.« less
2011-12-15
for Retrofit Design of Submarine Actuation Systems 5b. GRANT NUMBER Energy Storage for Electric Actuators NOOO 14-08-1-0424 5c. PROGRAM ELEMENT...are used to derive power and energy storage requirements for control surface actuation during extreme submarine maneuvers, such as emergency...and for initially sizing system components. 15. SUBJECT TERMS Submarines, electromagnetic actuators, energy storage, simulation-based design
A concise review on smart polymers for controlled drug release.
Aghabegi Moghanjoughi, Arezou; Khoshnevis, Dorna; Zarrabi, Ali
2016-06-01
Design and synthesis of efficient drug delivery systems are of critical importance in health care management. Innovations in materials chemistry especially in polymer field allows introduction of advanced drug delivery systems since polymers could provide controlled release of drugs in predetermined doses over long periods, cyclic and tunable dosages. To this end, researchers have taken advantages of smart polymers since they can undergo large reversible, chemical, or physical fluctuations as responses to small changes in environmental conditions, for instance, in pH, temperature, light, and phase transition. The present review aims to highlight various kinds of smart polymers, which are used in controlled drug delivery systems as well as mechanisms of action and their applications.
Micro guidance and control synthesis: New components, architectures, and capabilities
NASA Technical Reports Server (NTRS)
Mettler, Edward; Hadaegh, Fred Y.
1993-01-01
New GN&C (guidance, navigation and control) system capabilities are shown to arise from component innovations that involve the synergistic use of microminiature sensors and actuators, microelectronics, and fiber optics. Micro-GN&C system and component concepts are defined that include micro-actuated adaptive optics, micromachined inertial sensors, fiber-optic data nets and light-power transmission, and VLSI microcomputers. The thesis is advanced that these micro-miniaturization products are capable of having a revolutionary impact on space missions and systems, and that GN&C is the pathfinder micro-technology application that can bring that about.
System identification for modeling for control of flexible structures
NASA Technical Reports Server (NTRS)
Mettler, Edward; Milman, Mark
1986-01-01
The major components of a design and operational flight strategy for flexible structure control systems are presented. In this strategy an initial distributed parameter control design is developed and implemented from available ground test data and on-orbit identification using sophisticated modeling and synthesis techniques. The reliability of this high performance controller is directly linked to the accuracy of the parameters on which the design is based. Because uncertainties inevitably grow without system monitoring, maintaining the control system requires an active on-line system identification function to supply parameter updates and covariance information. Control laws can then be modified to improve performance when the error envelopes are decreased. In terms of system safety and stability the covariance information is of equal importance as the parameter values themselves. If the on-line system ID function detects an increase in parameter error covariances, then corresponding adjustments must be made in the control laws to increase robustness. If the error covariances exceed some threshold, an autonomous calibration sequence could be initiated to restore the error enveloped to an acceptable level.
Synthesis and Control of Flexible Systems with Component-Level Uncertainties
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Lim, Kyong B.
2009-01-01
An efficient and computationally robust method for synthesis of component dynamics is developed. The method defines the interface forces/moments as feasible vectors in transformed coordinates to ensure that connectivity requirements of the combined structure are met. The synthesized system is then defined in a transformed set of feasible coordinates. The simplicity of form is exploited to effectively deal with modeling parametric and non-parametric uncertainties at the substructure level. Uncertainty models of reasonable size and complexity are synthesized for the combined structure from those in the substructure models. In particular, we address frequency and damping uncertainties at the component level. The approach first considers the robustness of synthesized flexible systems. It is then extended to deal with non-synthesized dynamic models with component-level uncertainties by projecting uncertainties to the system level. A numerical example is given to demonstrate the feasibility of the proposed approach.
NASA Astrophysics Data System (ADS)
Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael
2014-06-01
Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.
Age synthesis and estimation via faces: a survey.
Fu, Yun; Guo, Guodong; Huang, Thomas S
2010-11-01
Human age, as an important personal trait, can be directly inferred by distinct patterns emerging from the facial appearance. Derived from rapid advances in computer graphics and machine vision, computer-based age synthesis and estimation via faces have become particularly prevalent topics recently because of their explosively emerging real-world applications, such as forensic art, electronic customer relationship management, security control and surveillance monitoring, biometrics, entertainment, and cosmetology. Age synthesis is defined to rerender a face image aesthetically with natural aging and rejuvenating effects on the individual face. Age estimation is defined to label a face image automatically with the exact age (year) or the age group (year range) of the individual face. Because of their particularity and complexity, both problems are attractive yet challenging to computer-based application system designers. Large efforts from both academia and industry have been devoted in the last a few decades. In this paper, we survey the complete state-of-the-art techniques in the face image-based age synthesis and estimation topics. Existing models, popular algorithms, system performances, technical difficulties, popular face aging databases, evaluation protocols, and promising future directions are also provided with systematic discussions.
Rapid crystallization and morphological adjustment of zeolite ZSM-5 in nonionic emulsions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Ying, E-mail: yingzh1977@163.co; Jin Chao; Research Institute of Petroleum Processing, Beijing 100083
2011-01-15
Zeolite ZSM-5 was synthesized for the first time in a nonionic emulsion composed of polyoxyethylated alkylphenol, butanol, cyclohexane and tetraethylammonium hydroxide (TEAOH)-containing zeolite synthesis mixture. The crystallization kinetics in the emulsion was investigated and the ZSM-5 product was characterized in detail by XRD, SEM, FT-IR, TG, N{sub 2} adsorption and CHN analysis techniques. Compared with the conventionally hydrothermal synthesis with the same structure directing agent TEAOH, the emulsion system allows rapid crystallization of ZSM-5. The ZSM-5 product exhibits unusual agglomerated structure and possesses larger specific surface area. The FT-IR, TG results plus CHN analysis show the encapsulation of a tracemore » of emulsion components in the emulsion ZSM-5. Control experiments show the emulsion system exerts the crystallization induction and morphological adjustment effects mainly during the aging period. The effects are tentatively attributed to the confined space domains, surfactant-water interaction as well as surfactant-growing crystals interaction existing in the emulsion. -- Graphical abstract: The nonionic emulsion synthesis allows rapid crystallization and morphological adjustment of zeolite ZSM-5 compared with the conventional hydrothermal synthesis. Display Omitted« less
Controlling the Internal Heat Transfer Coefficient by the Characteristics of External Flows
NASA Astrophysics Data System (ADS)
Zhuromskii, V. M.
2018-01-01
The engineering-physical fundamentals of substance synthesis in a boiling apparatus are presented. We have modeled a system of automatic stabilization of the maximum internal heat transfer coefficient in such an apparatus by the characteristics of external flows on the basis of adaptive seeking algorithms. The results of operation of the system in the shop are presented.
The Synthesis and Characterization of Gold-Core/LDH-Shell Nanoparticles
NASA Astrophysics Data System (ADS)
Rearick, Colton
In recent years, the field of nanomedicine has progressed at an astonishing rate, particularly with respect to applications in cancer treatment and molecular imaging. Although organic systems have been the frontrunners, inorganic systems have also begun to show promise, especially those based upon silica and magnetic nanoparticles (NPs). Many of these systems are being designed for simultaneous therapeutic and diagnostic capabilities, thus coining the term, theranostics. A unique class of inorganic systems that shows great promise as theranostics is that of layered double hydroxides (LDH). By synthesis of a core/shell structures, e.g. a gold nanoparticle (NP) core and LDH shell, the multifunctional theranostic may be developed without a drastic increase in the structural complexity. To demonstrate initial proof-of-concept of a potential (inorganic) theranostic platform, a Au-core/LDH-shell nanovector has been synthesized and characterized. The LDH shell was heterogeneously nucleated and grown on the surface of silica coated gold NPs via a coprecipitation method. Polyethylene glycol (PEG) was introduced in the initial synthesis steps to improve crystallinity and colloidal stability. Additionally, during synthesis, fluorescein isothiocyanate (FITC) was intercalated into the interlayer spacing of the LDH. In contrast to the PEG stabilization, a post synthesis citric acid treatment was used as a method to control the size and short-term stability. The heterogeneous core-shell system was characterized with scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), dynamic light scattering (DLS), and powder x-ray diffraction (PXRD). A preliminary in vitro study carried out with the assistance of Dr. Kaushal Rege's group at Arizona State University was to demonstrate the endocytosis capability of homogeneously-grown LDH NPs. The DLS measurements of the core-shell NPs indicated an average particle size of 212nm. The PXRD analysis showed that PEG greatly improved the crystallinity of the system while simultaneously preventing aggregation of the NPs. The preliminary in vitro fluorescence microscopy revealed a moderate uptake of homogeneous LDH NPs into the cells.
NASA Astrophysics Data System (ADS)
Gayam, Srivardhan Reddy; Venkatesan, Parthiban; Sung, Yi-Ming; Sung, Shuo-Yuan; Hu, Shang-Hsiu; Hsu, Hsin-Yun; Wu, Shu-Pao
2016-06-01
The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material.The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material. Electronic supplementary information (ESI) available: Synthesis and characterization of the functional molecules and MSNPs is available in the ESI. See DOI: 10.1039/c6nr03525f
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lala, J.H.; Nagle, G.A.; Harper, R.E.
1993-05-01
The Maglev control computer system should be designed to verifiably possess high reliability and safety as well as high availability to make Maglev a dependable and attractive transportation alternative to the public. A Maglev control computer system has been designed using a design-for-validation methodology developed earlier under NASA and SDIO sponsorship for real-time aerospace applications. The present study starts by defining the maglev mission scenario and ends with the definition of a maglev control computer architecture. Key intermediate steps included definitions of functional and dependability requirements, synthesis of two candidate architectures, development of qualitative and quantitative evaluation criteria, and analyticalmore » modeling of the dependability characteristics of the two architectures. Finally, the applicability of the design-for-validation methodology was also illustrated by applying it to the German Transrapid TR07 maglev control system.« less
Advanced rotorcraft control using parameter optimization
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.
Time Varying Compensator Design for Reconfigurable Structures Using Non-Collocated Feedback
NASA Technical Reports Server (NTRS)
Scott, Michael A.
1996-01-01
Analysis and synthesis tools are developed to improved the dynamic performance of reconfigurable nonminimum phase, nonstrictly positive real-time variant systems. A novel Spline Varying Optimal (SVO) controller is developed for the kinematic nonlinear system. There are several advantages to using the SVO controller, in which the spline function approximates the system model, observer, and controller gain. They are: The spline function approximation is simply connected, thus the SVO controller is more continuous than traditional gain scheduled controllers when implemented on a time varying plant; ft is easier for real-time implementations in storage and computational effort; where system identification is required, the spline function requires fewer experiments, namely four experiments; and initial startup estimator transients are eliminated. The SVO compensator was evaluated on a high fidelity simulation of the Shuttle Remote Manipulator System. The SVO controller demonstrated significant improvement over the present arm performance: (1) Damping level was improved by a factor of 3; and (2) Peak joint torque was reduced by a factor of 2 following Shuttle thruster firings.
ERIC Educational Resources Information Center
da Silva, Anderson G. M.; Rodrigues, Thenner S.; Parussulo, Andre´ L. A.; Candido, Eduardo G.; Geonmonond, Rafael S.; Brito, Hermi F.; Toma, Henrique E.; Camargo, Pedro H. C.
2017-01-01
Undergraduate-level laboratory experiments that involve the synthesis of nanomaterials with well-defined/controlled shapes are very attractive under the umbrella of nanotechnology education. Herein we describe a low-cost and facile experiment for the synthesis of Cu(OH)[subscript 2] and CuO nanowires comprising three main parts: (i) synthesis of…
Human Factors and Information Operation for a Nuclear Power Space Vehicle
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Brown-VanHoozer, S. Alenka
2002-01-01
This paper describes human-interactive systems needed for a crewed nuclear-enabled space mission. A synthesis of aircraft engine and nuclear power plant displays, biofeedback of sensory input, virtual control, brain mapping for control process and manipulation, and so forth are becoming viable solutions. These aspects must maintain the crew's situation awareness and performance, which entails a delicate function allocation between crew and automation.
Controlled polymer synthesis--from biomimicry towards synthetic biology.
Pasparakis, George; Krasnogor, Natalio; Cronin, Leroy; Davis, Benjamin G; Alexander, Cameron
2010-01-01
The controlled assembly of synthetic polymer structures is now possible with an unprecedented range of functional groups and molecular architectures. In this critical review we consider how the ability to create artificial materials over lengthscales ranging from a few nm to several microns is generating systems that not only begin to mimic those in nature but also may lead to exciting applications in synthetic biology (139 references).
Keshavan, J; Gremillion, G; Escobar-Alvarez, H; Humbert, J S
2014-06-01
Safe, autonomous navigation by aerial microsystems in less-structured environments is a difficult challenge to overcome with current technology. This paper presents a novel visual-navigation approach that combines bioinspired wide-field processing of optic flow information with control-theoretic tools for synthesis of closed loop systems, resulting in robustness and performance guarantees. Structured singular value analysis is used to synthesize a dynamic controller that provides good tracking performance in uncertain environments without resorting to explicit pose estimation or extraction of a detailed environmental depth map. Experimental results with a quadrotor demonstrate the vehicle's robust obstacle-avoidance behaviour in a straight line corridor, an S-shaped corridor and a corridor with obstacles distributed in the vehicle's path. The computational efficiency and simplicity of the current approach offers a promising alternative to satisfying the payload, power and bandwidth constraints imposed by aerial microsystems.
Severcan, Isil; Geary, Cody; Chworos, Arkadiusz; Voss, Neil; Jacovetty, Erica; Jaeger, Luc
2010-09-01
Supramolecular assembly is a powerful strategy used by nature to build nanoscale architectures with predefined sizes and shapes. With synthetic systems, however, numerous challenges remain to be solved before precise control over the synthesis, folding and assembly of rationally designed three-dimensional nano-objects made of RNA can be achieved. Here, using the transfer RNA molecule as a structural building block, we report the design, efficient synthesis and structural characterization of stable, modular three-dimensional particles adopting the polyhedral geometry of a non-uniform square antiprism. The spatial control within the final architecture allows the precise positioning and encapsulation of proteins. This work demonstrates that a remarkable degree of structural control can be achieved with RNA structural motifs for the construction of thermostable three-dimensional nano-architectures that do not rely on helix bundles or tensegrity. RNA three-dimensional particles could potentially be used as carriers or scaffolds in nanomedicine and synthetic biology.
NASA Technical Reports Server (NTRS)
Yam, Yeung; Johnson, Timothy L.; Lang, Jeffrey H.
1987-01-01
A model reduction technique based on aggregation with respect to sensor and actuator influence functions rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the reduced-order plant model and the neglected plant model are derived. For the special case of collocated actuators and sensors, these expressions lead to the derivation of constraints on the controller gains that are, given the validity of the perturbation technique, sufficient to guarantee the stability of the closed-loop system. A case study demonstrates the derivation of stabilizing controllers based on the present technique. The use of control and observation synthesis in modifying the dimension of the reduced-order plant model is also discussed. A numerical example is provided for illustration.
NASA Technical Reports Server (NTRS)
Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.
1981-01-01
An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability.
Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.
Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau
2015-09-01
The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.
Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures.
Zan, Guangtao; Wu, Qingsheng
2016-03-16
In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Hymer, W. C.; Grindeland, R.; Vale, W.; Sawchenko, P.; Ilyina-Kakueva, E. I.
1994-01-01
Changes in the musculoskeletal, immune, vascular, and endocrine system of the rat occur as a result of short-term spaceflight. Since pituitary gland growth hormone (GH) plays a role in the control of these systems, and since the results of an earlier spaceflight mission (Spacelab 3, 1985) showed that GH cell function was compromised in a number of post-flight tests, we repeated and extended the 1985 experiment in two subsequent spaceflights: the 12.5 day mission of Cosmos 1887 (in 1987) and the 14 day mission of Cosmos 2044 (in 1989). The results of these later two flight experiments are the subject of this report. They document repeatable and significant changes in the GH cell system of the spaceflown rat in several post-flight tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somorjai, Gabor A.; Park, Jeong Y.
2008-02-13
Recent breakthroughs in synthesis in nanosciences have achieved control of size and shapes of nanoparticles that are relevant for catalyst design. In this article, we review the advance of synthesis of nanoparticles, fabrication of two and three dimensional model catalyst system, characterization, and studies of activity and selectivity. The ability to synthesize monodispersed platinum and rhodium nanoparticles in the 1-10 nm range permitted us to study the influence of composition, structure, and dynamic properties of monodispersed metal nanoparticle on chemical reactivity and selectivity. We review the importance of size and shape of nanoparticles to determine the reaction selectivity in multi-pathmore » reactions. The influence of metal-support interaction has been studied by probing the hot electron flows through the metal-oxide interface in catalytic nanodiodes. Novel designs of nanoparticle catalytic systems are discussed.« less
Application of modern control theory to the design of optimum aircraft controllers
NASA Technical Reports Server (NTRS)
Power, L. J.
1973-01-01
The synthesis procedure presented is based on the solution of the output regulator problem of linear optimal control theory for time-invariant systems. By this technique, solution of the matrix Riccati equation leads to a constant linear feedback control law for an output regulator which will maintain a plant in a particular equilibrium condition in the presence of impulse disturbances. Two simple algorithms are presented that can be used in an automatic synthesis procedure for the design of maneuverable output regulators requiring only selected state variables for feedback. The first algorithm is for the construction of optimal feedforward control laws that can be superimposed upon a Kalman output regulator and that will drive the output of a plant to a desired constant value on command. The second algorithm is for the construction of optimal Luenberger observers that can be used to obtain feedback control laws for the output regulator requiring measurement of only part of the state vector. This algorithm constructs observers which have minimum response time under the constraint that the magnitude of the gains in the observer filter be less than some arbitrary limit.
Investigation of Drive-Reinforcement Learning and Application of Learning to Flight Control
1993-08-01
Attachment 1 138 Reprint of: Baird, L. (1991). Learning and Adaptive Hybrid Systems for Nonlinear Control, CSDL Report T-1099, M.S. Thesis , Department of...Aircraft, CSDL Report T-1127, S.M. Thesis , Department of Aeronautics and Astronautics, M.I.T. Attachment 3 351 . iprint of: Atkins, S. (1993...Incremental Synthesis of Optimal Control Laws Using Learning Algorithms, CSDL Report T-1181, S.M. Thesis , Department of Aeronautics and Astronautics, M.I.T
NASA Astrophysics Data System (ADS)
Kirvelis, Dobilas; Beitas, Kastytis
2008-10-01
The aim of this work is to show that the essence of life and living systems is their organization as bioinformational technology on the base of informational anticipatory control. Principal paradigmatic and structural schemes of functional organization of life (organisms and their systems) are constructed on the basis of systemic analysis and synthesis of main phenomenological features of living world. Life is based on functional elements that implement engineering procedures of closed-loop coding-decoding control (CL-CDC). Phenomenon of natural bioinformational control appeared and developed on the Earth 3-4 bln years ago, when the life originated as a result of chemical and later biological evolution. Informatics paradigm considers the physical and chemical transformations of energy and matter in organized systems as flows that are controlled and the signals as means for purposive informational control programs. The social and technical technological systems as informational control systems are a latter phenomenon engineered by man. The information emerges in organized systems as a necessary component of control technology. Generalized schemes of functional organization on levels of cell, organism and brain neocortex, as the highest biosystem with CL-CDC, are presented. CL-CDC concept expands the understanding of bioinformatics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abney, Carter W.; Patterson, Jacob T.; Gilhula, James C.
Precise control over the chemical structure of hard-matter materials is a grand challenge of basic science and a prerequisite for the development of advanced catalyst systems. In this work we report the application of a sacrificial metal-organic framework (MOF) template for the synthesis of a porous supported metal oxide catalyst, demonstrating proof-of-concept for a highly generalizable approach to the preparation new catalyst materials. Application of 2,2’-bipyridine-5,5’-dicarboxylic acid as the organic strut in the Ce MOF precursor results in chelation of Cu 2+ and affords isolation of the metal oxide precursor. Following pyrolysis of the template, homogeneously dispersed CuO nanoparticles aremore » formed in the resulting porous CeO 2 support. By partially substituting non-chelating 1,1’-biphenyl-4,4’-dicarboxylic acid, the Cu 2+ loading and dispersion can be finely tuned, allowing precise control over the CuO/CeO 2 interface in the final catalyst system. Characterization by x-ray diffraction, x-ray absorption fine structure spectroscopy, and in situ IR spectroscopy/mass spectrometry confirm control over interface formation to be a function of template composition, constituting the first report of a MOF template being used to control interfacial properties in a supported metal oxide. Using CO oxidation as a model reaction, the system with the greatest number of interfaces possessed the lowest activation energy and better activity under differential conditions, but required higher temperature for catalytic onset and displayed inferior efficiency at 100 °C than systems with higher Cu-loading. This finding is attributable to greater CO adsorption in the more heavily-loaded systems, and indicates catalyst performance for these supported oxide systems to be a function of at least two parameters: size of adsorption site and extent of interface. In conclusion, optimization of catalyst materials thus requires precise control over synthesis parameters, such as is demonstrated by this MOF-templating method.« less
A decentralized linear quadratic control design method for flexible structures
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1990-01-01
A decentralized suboptimal linear quadratic control design procedure which combines substructural synthesis, model reduction, decentralized control design, subcontroller synthesis, and controller reduction is proposed for the design of reduced-order controllers for flexible structures. The procedure starts with a definition of the continuum structure to be controlled. An evaluation model of finite dimension is obtained by the finite element method. Then, the finite element model is decomposed into several substructures by using a natural decomposition called substructuring decomposition. Each substructure, at this point, still has too large a dimension and must be reduced to a size that is Riccati-solvable. Model reduction of each substructure can be performed by using any existing model reduction method, e.g., modal truncation, balanced reduction, Krylov model reduction, or mixed-mode method. Then, based on the reduced substructure model, a subcontroller is designed by an LQ optimal control method for each substructure independently. After all subcontrollers are designed, a controller synthesis method called substructural controller synthesis is employed to synthesize all subcontrollers into a global controller. The assembling scheme used is the same as that employed for the structure matrices. Finally, a controller reduction scheme, called the equivalent impulse response energy controller (EIREC) reduction algorithm, is used to reduce the global controller to a reasonable size for implementation. The EIREC reduced controller preserves the impulse response energy of the full-order controller and has the property of matching low-frequency moments and low-frequency power moments. An advantage of the substructural controller synthesis method is that it relieves the computational burden associated with dimensionality. Besides that, the SCS design scheme is also a highly adaptable controller synthesis method for structures with varying configuration, or varying mass and stiffness properties.
Virtual decoupling flight control via real-time trajectory synthesis and tracking
NASA Astrophysics Data System (ADS)
Zhang, Xuefu
The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.
2017-06-18
olefins at a much slower rate than its non -reduced analogue which can be harnessed to control polyolefin comonomer incorporation percentages and thus its...opportunities for mechanistic understanding, catalyst control , and polyolefin synthesis that are impossible using heterogeneous 1. REPORT DATE (DD-MM...Advanced Tool for Catalyst Control and Tailored Polyolefin Synthesis The views, opinions and/or findings contained in this report are those of the
High Throughput Spectroscopic Catalyst Screening via Surface Plasmon Spectroscopy
2015-07-15
release. Distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Over the last decade, shape controlled synthesis of nanoparticles (NPs) has...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Over the last decade, shape controlled synthesis of nanoparticles (NPs) has opened up the possibility...i) Specific Aims - Over the last decade, shape controlled synthesis of nanoparticles (NPs) has opened up the possibility to study heterogeneous
Nanoparticle Additives for Multiphase Systems: Synthesis, Formulation and Characterization
2012-01-01
ADDITIVES FOR MULTIPHASE SYSTEMS: SYNTHESIS , FORMULATION AND CHARACTERIZATION Vinod Kanniah University of Kentucky, vinodkanniah@gmail.com This Doctoral...UKnowledge@lsv.uky.edu. Recommended Citation Kanniah, Vinod, "NANOPARTICLE ADDITIVES FOR MULTIPHASE SYSTEMS: SYNTHESIS , FORMULATION AND CHARACTERIZATION...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Nanoparticle Additives for Multiphase Systems: Synthesis , Formulation and Characterization 5a
Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
This paper considers future distribution networks featuring inverter-interfaced photovoltaic (PV) systems, and addresses the synthesis of feedback controllers that seek real- and reactive-power inverter setpoints corresponding to AC optimal power flow (OPF) solutions. The objective is to bridge the temporal gap between long-term system optimization and real-time inverter control, and enable seamless PV-owner participation without compromising system efficiency and stability. The design of the controllers is grounded on a dual ..epsilon..-subgradient method, while semidefinite programming relaxations are advocated to bypass the non-convexity of AC OPF formulations. Global convergence of inverter output powers is analytically established for diminishing stepsize rules formore » cases where: i) computational limits dictate asynchronous updates of the controller signals, and ii) inverter reference inputs may be updated at a faster rate than the power-output settling time.« less
Large space structure damping design
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Haviland, J. K.
1983-01-01
Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.
Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L
2002-01-01
Top-Down (Metabolic) Control Analysis (TDCA) was used to examine, quantitatively, lipid biosynthesis in tissue cultures from two commercially important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). A conceptually simplified system was defined comprising two blocks of reactions: fatty acid synthesis (Block A) and lipid assembly (Block B), which produced and consumed, respectively, a common and unique system intermediate, cytosolic acyl-CoA. We manipulated the steady-state levels of the system intermediate by adding exogenous oleic acid and, using two independent assays, measured the effect of the addition on the system fluxes (J(A) and J(B)). These were the rate of incorporation of radioactivity: (i) through Block A from [1-(14)C]acetate into fatty acids and (ii) via Block B from [U-(14)C]glycerol into complex lipids respectively. The data showed that fatty acid formation (Block A) exerted higher control than lipid assembly (Block B) in both tissues with the following group flux control coefficients (C):(i) Oil palm: *C(J(TL))(BlkA)=0.64+/-0.05 and *C(J(TL))(BlkB)=0.36+/-0.05(ii) Olive: *C(J(TL))(BlkA)=0.57+/-0.10 and *C(J(TL))(BlkB)=0.43+/-0.10where *C indicates the group flux control coefficient over the lipid biosynthesis flux (J(TL)) and the subscripts BlkA and BlkB refer to defined blocks of the system, Block A and Block B. Nevertheless, because both parts of the lipid biosynthetic pathway exert significant flux control, we suggest strongly that manipulation of single enzyme steps will not affect product yield appreciably. The present study represents the first use of TDCA to examine the overall lipid biosynthetic pathway in any tissue, and its findings are of immediate academic and economic relevance to the yield and nutritional quality of oil crops. PMID:12023882
AutoBayes Program Synthesis System System Internals
NASA Technical Reports Server (NTRS)
Schumann, Johann Martin
2011-01-01
This lecture combines the theoretical background of schema based program synthesis with the hands-on study of a powerful, open-source program synthesis system (Auto-Bayes). Schema-based program synthesis is a popular approach toward program synthesis. The lecture will provide an introduction into this topic and discuss how this technology can be used to generate customized algorithms. The synthesis of advanced numerical algorithms requires the availability of a powerful symbolic (algebra) system. Its task is to symbolically solve equations, simplify expressions, or to symbolically calculate derivatives (among others) such that the synthesized algorithms become as efficient as possible. We will discuss the use and importance of the symbolic system for synthesis. Any synthesis system is a large and complex piece of code. In this lecture, we will study Autobayes in detail. AutoBayes has been developed at NASA Ames and has been made open source. It takes a compact statistical specification and generates a customized data analysis algorithm (in C/C++) from it. AutoBayes is written in SWI Prolog and many concepts from rewriting, logic, functional, and symbolic programming. We will discuss the system architecture, the schema libary and the extensive support infra-structure. Practical hands-on experiments and exercises will enable the student to get insight into a realistic program synthesis system and provides knowledge to use, modify, and extend Autobayes.
Ceelen, Judith J M; Schols, Annemie M W J; Thielen, Nathalie G M; Haegens, Astrid; Gray, Douglas A; Kelders, Marco C J M; de Theije, Chiel C; Langen, Ramon C J
2018-05-02
Pulmonary inflammation in response to respiratory infections can evoke muscle wasting. Increased activity of the ubiquitin (Ub)-proteasome system (UPS) and the autophagy lysosome pathway (ALP) have been implicated in inflammation-induced muscle atrophy. Since poly-Ub conjugation is required for UPS-mediated proteolysis and has been implicated in the ALP, we assessed the effect of impaired ubiquitin conjugation on muscle atrophy and recovery following pulmonary inflammation, and compared activation and suppression of these proteolytic systems to protein synthesis regulation. Pulmonary inflammation was induced in mice by an intratracheal instillation of LPS. Proteolysis (UPS and ALP) and synthesis signaling were examined in gastrocnemius muscle homogenates. Ub-conjugation-dependency of muscle atrophy and recovery was addressed using Ub-K48R (K48R) mice with attenuated poly-ubiquitin conjugation, and compared to UBWT control mice. Pulmonary inflammation caused a decrease in skeletal muscle mass which was accompanied by a rapid increase in expression of UPS and ALP constituents and reduction in protein synthesis signaling acutely after LPS. Muscle atrophy was attenuated in K48R mice, while ALP and protein synthesis signaling were not affected. Muscle mass recovery starting 72 h post LPS, correlated with reduced expression of UPS and ALP constituents and restoration of protein synthesis signaling. K48R mice however displayed impaired recovery of muscle mass. Pulmonary inflammation-induced muscle atrophy is in part attributable to UPS-mediated proteolysis, as activation of ALP- and suppression of protein synthesis signaling occur independently of poly-Ub conjugation during muscle atrophy. Recovery of muscle mass following pulmonary inflammation involves inverse regulation of proteolysis and protein synthesis signaling, and requires a functional poly-Ub conjugation.
NASA Astrophysics Data System (ADS)
Lepková, K.; Clohessy, J.; Cunnane, V. J.
2007-09-01
A controlled synthesis of metal nanoparticles co-deposited in a polymer matrix at various pH conditions has been investigated at the interface between two immiscible phases. The pH value of the aqueous phase is modified, resulting in various types of reaction between the gold compound and the monomer. The types of electrochemical processes and their kinetic parameters are determined using both the method of Nicholson and a method based on the Butler-Volmer equation. Cyclic voltammetry is the experimental method used. A material analysis via transmission electron microscopy and particle size distribution calculations confirm that nanoparticles of different sizes can be synthesized by modification of the system pH. The stability of the generated nanocomposite is also discussed.
Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics
Pang, Bo; Yang, Xuan; Xia, Younan
2016-01-01
Gold nanocages are hollow nanostructures with ultrathin, porous walls. They are bio-inert and their surface can be readily modified with functional groups to specifically interact with the biological system of interest. They have remarkable optical properties, including localized surface plasmon resonance peaks tunable to the near-infrared region, strong absorption and scattering, as well as two- and three-photon luminescence. With the establishment of robust protocols for both synthesis and surface functionalization, Au nanocages have been extensively explored for various biomedical applications. In this review, we begin with a brief account of the synthesis and properties of Au nanocages, and then highlight some of the recent developments in applying them to an array of biomedical applications related to optical imaging, controlled release and cancer theranostics. PMID:27348546
Reliable numerical computation in an optimal output-feedback design
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.
USDA-ARS?s Scientific Manuscript database
Knowledge of lethal and sublethal pesticide effects on pollinators allows for prudent decision-making in cropping systems that require pollination. The chitin synthesis inhibitor novaluron is used to control certain coleopteran, lepidopteran, hemipteran, and dipteran pests. Although novaluron is c...
Application of partition technology to particle electrophoresis
NASA Technical Reports Server (NTRS)
Van Alstine, James M.; Harris, J. Milton; Karr, Laurel J.; Bamberger, Stephan; Matsos, Helen C.; Snyder, Robert S.
1989-01-01
The effects of polymer-ligand concentration on particle electrophoretic mobility and partition in aqueous polymer two-phase systems are investigated. Polymer coating chemistry and affinity ligand synthesis, purification, and analysis are conducted. It is observed that poly (ethylene glycol)-ligands are effective for controlling particle electrophoretic mobility.
Weyrich, Andrew S.; Denis, Melvin M.; Schwertz, Hansjorg; Tolley, Neal D.; Foulks, Jason; Spencer, Eliott; Kraiss, Larry W.; Albertine, Kurt H.; McIntyre, Thomas M.
2007-01-01
New activities of human platelets continue to emerge. One unexpected response is new synthesis of proteins from previously transcribed RNAs in response to activating signals. We previously reported that activated human platelets synthesize B-cell lymphoma-3 (Bcl-3) under translational control by mammalian target of rapamycin (mTOR). Characterization of the ontogeny and distribution of the mTOR signaling pathway in CD34+ stem cell–derived megakaryocytes now demonstrates that they transfer this regulatory system to developing proplatelets. We also found that Bcl-3 is required for condensation of fibrin by activated platelets, demonstrating functional significance for mTOR-regulated synthesis of the protein. Inhibition of mTOR by rapamycin blocks clot retraction by human platelets. Platelets from wild-type mice synthesize Bcl-3 in response to activation, as do human platelets, and platelets from mice with targeted deletion of Bcl-3 have defective retraction of fibrin in platelet-fibrin clots mimicking treatment of human platelets with rapamycin. In contrast, overexpression of Bcl-3 in a surrogate cell line enhanced clot retraction. These studies identify new features of post-transcriptional gene regulation and signal-dependant protein synthesis in activated platelets that may contribute to thrombus and wound remodeling and suggest that posttranscriptional pathways are targets for molecular intervention in thrombotic disorders. PMID:17110454
NASA Astrophysics Data System (ADS)
Prinsloo, Gerro; Dobson, Robert; Brent, Alan; Mammoli, Andrea
2016-05-01
Concentrating solar power co-generation systems have been identified as potential stand-alone solar energy supply solutions in remote rural energy applications. This study describes the modelling and synthesis of a combined heat and power Stirling CSP system in order to evaluate its potential performance in small off-grid rural village applications in Africa. This Stirling micro-Combined Heat and Power (micro-CHP) system has a 1 kW electric capacity, with 3 kW of thermal generation capacity which is produced as waste heat recovered from the solar power generation process. As part of the development of an intelligent microgrid control and distribution solution, the Trinum micro-CHP system and other co-generation systems are systematically being modelled on the TRNSYS simulation platform. This paper describes the modelling and simulation of the Trinum micro-CHP configuration on TRNSYS as part of the process to develop the control automation solution for the smart rural microgrid in which the Trinum will serve as a solar powerpack. The results present simulated performance outputs for the Trinum micro-CHP system for a number of remote rural locations in Africa computed from real-time TRNSYS solar irradiation and weather data (yearly, monthly, daily) for the relevant locations. The focus of this paper is on the parametric modelling of the Trinum Stirling micro-CHP system, with specific reference to this system as a TRNSYS functional block in the microgrid simulation. The model is used to forecast the solar energy harvesting potential of the Trinum micro-CHP unit at a number of remote rural sites in Africa.
Mechanism synthesis and 2-D control designs of an active three cable crane
NASA Technical Reports Server (NTRS)
Yang, Li-Farn; Mikulas, Martin M., Jr.
1992-01-01
A Lunar Crane with a suspension system based on a three cable mechanism is investigated to provide a stable end-effector for hoisting, positioning, and assembling large components during construction and servicing of a Lunar Base. The three cable suspension mechanism consists of a structural framework of three cables pointing to a common point that closely coincides with the suspended payload's center of gravity. The vibrational characteristics of this three cable suspension system are investigated by comparing a simple 2-D symmetric suspension model and a swinging pendulum in terms of their analytical natural frequency equations. A study is also made of actively controlling the dynamics of the crane using two different actuator concepts. Also, Lyapunov-based control algorithms are developed to determine two regulator-type control laws performing the system vibrational suppression for both system dynamics. Simulations including initial-valued dynamic responses as well as control performances for two different system dynamics are also presented.
ERIC Educational Resources Information Center
Valiela, Elizaveta N.; Milova, Larisa N.; Dozhdeva, Elena E.; Lukin, Andrey G.; Chapaev, Nikolay K.
2016-01-01
The relevance of the studied problem is determined by the fact that the modern understanding of the essence of the fiscal control is based on the research of specific essential characteristics. As a rule, they are not of system nature and are not connected with studies of other characteristics. The aim of this article is a synthesis of the main…
NASA Technical Reports Server (NTRS)
Hyland, D. C.; Bernstein, D. S.
1987-01-01
The underlying philosophy and motivation of the optimal projection/maximum entropy (OP/ME) stochastic modeling and reduced control design methodology for high order systems with parameter uncertainties are discussed. The OP/ME design equations for reduced-order dynamic compensation including the effect of parameter uncertainties are reviewed. The application of the methodology to several Large Space Structures (LSS) problems of representative complexity is illustrated.
Flutter suppression for the Active Flexible Wing - Control system design and experimental validation
NASA Technical Reports Server (NTRS)
Waszak, M. R.; Srinathkumar, S.
1992-01-01
The synthesis and experimental validation of a control law for an active flutter suppression system for the Active Flexible Wing wind-tunnel model is presented. The design was accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach relied on a fundamental understanding of the flutter mechanism to formulate understanding of the flutter mechanism to formulate a simple control law structure. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in the design model. The flutter suppression controller was also successfully operated in combination with a rolling maneuver controller to perform flutter suppression during rapid rolling maneuvers.
Pilot-optimal augmentation synthesis
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1978-01-01
An augmentation synthesis method usable in the absence of quantitative handling qualities specifications, and yet explicitly including design objectives based on pilot-rating concepts, is presented. The algorithm involves the unique approach of simultaneously solving for the stability augmentation system (SAS) gains, pilot equalization and pilot rating prediction via optimal control techniques. Simultaneous solution is required in this case since the pilot model (gains, etc.) depends upon the augmented plant dynamics, and the augmentation is obviously not a priori known. Another special feature is the use of the pilot's objective function (from which the pilot model evolves) to design the SAS.
Nanoparticle-plant interaction: Implications in energy, environment, and agriculture.
Rai, Prabhat Kumar; Kumar, Vanish; Lee, SangSoo; Raza, Nadeem; Kim, Ki-Hyun; Ok, Yong Sik; Tsang, Daniel C W
2018-06-14
In the recent techno-scientific revolution, nanotechnology has gained popularity at a rapid pace in different sectors and disciplines, specifically environmental, sensing, bioenergy, and agricultural systems. Controlled, easy, economical, and safe synthesis of nanomaterials is desired for the development of new-age nanotechnology. In general, nanomaterial synthesis techniques, such as chemical synthesis, are not completely safe or environmentally friendly due to harmful chemicals used or to toxic by-products produced. Moreover, a few nanomaterials are present as by-product during washing process, which may accumulate in water, air, and soil system to pose serious threats to plants, animals, and microbes. In contrast, using plants for nanomaterial (especially nanoparticle) synthesis has proven to be environmentally safe and economical. The role of plants as a source of nanoparticles is also likely to expand the number of options for sustainable green renewable energy, especially in biorefineries. Despite several advantages of nanotechnology, the nano-revolution has aroused concerns in terms of the fate of nanoparticles in the environment because of the potential health impacts caused by nanotoxicity upon their release. In the present panoramic review, we discuss the possibility that a multitudinous array of nanoparticles may find applications convergent with human welfare based on the synthesis of diverse nanoparticles from plants and their extracts. The significance of plant-nanoparticle interactions has been elucidated further for nanoparticle synthesis, applications of nanoparticles, and the disadvantages of using plants for synthesizing nanoparticles. Finally, we discuss future prospects of plant-nanoparticle interactions in relation to the environment, energy, and agriculture with implications in nanotechnology. Copyright © 2018 Elsevier Ltd. All rights reserved.
2011-01-01
Background Elucidation of molecular mechanism of silver nanoparticles (SNPs) biosynthesis is important to control its size, shape and monodispersity. The evaluation of molecular mechanism of biosynthesis of SNPs is of prime importance for the commercialization and methodology development for controlling the shape and size (uniform distribution) of SNPs. The unicellular algae Chlamydomonas reinhardtii was exploited as a model system to elucidate the role of cellular proteins in SNPs biosynthesis. Results The C. reinhardtii cell free extract (in vitro) and in vivo cells mediated synthesis of silver nanoparticles reveals SNPs of size range 5 ± 1 to 15 ± 2 nm and 5 ± 1 to 35 ± 5 nm respectively. In vivo biosynthesized SNPs were localized in the peripheral cytoplasm and at one side of flagella root, the site of pathway of ATP transport and its synthesis related enzymes. This provides an evidence for the involvement of oxidoreductive proteins in biosynthesis and stabilization of SNPs. Alteration in size distribution and decrease of synthesis rate of SNPs in protein-depleted fractions confirmed the involvement of cellular proteins in SNPs biosynthesis. Spectroscopic and SDS-PAGE analysis indicate the association of various proteins on C. reinhardtii mediated in vivo and in vitro biosynthesized SNPs. We have identified various cellular proteins associated with biosynthesized (in vivo and in vitro) SNPs by using MALDI-MS-MS, like ATP synthase, superoxide dismutase, carbonic anhydrase, ferredoxin-NADP+ reductase, histone etc. However, these proteins were not associated on the incubation of pre-synthesized silver nanoparticles in vitro. Conclusion Present study provides the indication of involvement of molecular machinery and various cellular proteins in the biosynthesis of silver nanoparticles. In this report, the study is mainly focused towards understanding the role of diverse cellular protein in the synthesis and capping of silver nanoparticles using C. reinhardtii as a model system. PMID:22152042
Sunway Medical Laboratory Quality Control Plans Based on Six Sigma, Risk Management and Uncertainty.
Jairaman, Jamuna; Sakiman, Zarinah; Li, Lee Suan
2017-03-01
Sunway Medical Centre (SunMed) implemented Six Sigma, measurement uncertainty, and risk management after the CLSI EP23 Individualized Quality Control Plan approach. Despite the differences in all three approaches, each implementation was beneficial to the laboratory, and none was in conflict with another approach. A synthesis of these approaches, built on a solid foundation of quality control planning, can help build a strong quality management system for the entire laboratory. Copyright © 2016 Elsevier Inc. All rights reserved.
OPUS: Optimal Projection for Uncertain Systems
1988-10-01
November 1986. £ 50. D. C. Hyland, "An Experimental Testbed for Validation of Control Methodologies in Large Space Optical Structures," in Structural...supponed by theDepar’nent of the Air Force and %*s perhorrod at Lincoln Lihoratry. M I TTeauthors are with thu Control % Anal)sis andJ Synthesis Group . Hams...assumption that (Ac, B,. Q~ is controllable and 0=(, CQ*Q (A+B Q-Q* +B ~ observable. Remark 2.3: Since CAis nonnegative semidsimple it has a group
Damage-mitigating control of aerospace systems for high performance and extended life
NASA Technical Reports Server (NTRS)
Ray, Asok; Wu, Min-Kuang; Carpino, Marc; Lorenzo, Carl F.; Merrill, Walter C.
1992-01-01
The concept of damage-mitigating control is to minimize fatigue (as well as creep and corrosion) damage of critical components of mechanical structures while simultaneously maximizing the system dynamic performance. Given a dynamic model of the plant and the specifications for performance and stability robustness, the task is to synthesize a control law that would meet the system requirements and, at the same time, satisfy the constraints that are imposed by the material and structural properties of the critical components. The authors present the concept of damage-mitigating control systems design with the following objectives: (1) to achieve high performance with a prolonged life span; and (2) to systematically update the controller as the new technology of advanced materials evolves. The major challenge is to extract the information from the material properties and then utilize this information in a mathematical form so that it can be directly applied to robust control synthesis for mechanical systems. The basic concept of damage-mitigating control is illustrated using a relatively simplified model of a space shuttle main engine.
Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Peng, Chen
2017-09-01
The augmented multi-indexed matrix approach acts as a powerful tool in reducing the conservatism of control synthesis of discrete-time Takagi-Sugeno fuzzy systems. However, its computational burden is sometimes too heavy as a tradeoff. Nowadays, reducing the conservatism whilst alleviating the computational burden becomes an ideal but very challenging problem. This paper is toward finding an efficient way to achieve one of satisfactory answers. Different from the augmented multi-indexed matrix approach in the literature, we aim to design a more efficient slack variable approach under a general framework of homogenous matrix polynomials. Thanks to the introduction of a new extended representation for homogeneous matrix polynomials, related matrices with the same coefficient are collected together into one sole set and thus those redundant terms of the augmented multi-indexed matrix approach can be removed, i.e., the computational burden can be alleviated in this paper. More importantly, due to the fact that more useful information is involved into control design, the conservatism of the proposed approach as well is less than the counterpart of the augmented multi-indexed matrix approach. Finally, numerical experiments are given to show the effectiveness of the proposed approach.
An emerging platform for drug delivery: aerogel based systems.
Ulker, Zeynep; Erkey, Can
2014-03-10
Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation. Copyright © 2014 Elsevier B.V. All rights reserved.
Shaping carbon nanostructures by controlling the synthesis process
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.; Voelkl, Edgar
2001-08-01
The ability to control the nanoscale shape of nanostructures in a large-scale synthesis process is an essential and elusive goal of nanotechnology research. Here, we report significant progress toward that goal. We have developed a technique that enables controlled synthesis of nanoscale carbon structures with conical and cylinder-on-cone shapes and provides the capability to dynamically change the nanostructure shape during the synthesis process. In addition, we present a phenomenological model that explains the formation of these nanostructures and provides insight into methods for precisely engineering their shape. Since the growth process we report is highly deterministic in allowing large-scale synthesis of precisely engineered nanoscale components at defined locations, our approach provides an important tool for a practical nanotechnology.
NASA Technical Reports Server (NTRS)
Landis, Kenneth H.; Glusman, Steven I.
1985-01-01
The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of ACAS characteristics; display mode switching logic. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Conclusions drawn from pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.
Ethylene Control of Anthocyanin Synthesis in Sorghum
Craker, L. E.; Standley, L. A.; Starbuck, M. J.
1971-01-01
Light-induced anthocyanin synthesis in Sorghum vulgare L. seedlings was both promoted and inhibited by ethylene treatment. The rate of anthocyanin formation in sorghum tissue was dependent upon the time of ethylene treatment in relation to light exposure and the stage of the anthocyanin synthesis process. Those plants receiving ethylene treatment during the early lag phase of anthocyanin synthesis had higher anthocyanin content at 24 hours than control plants receiving no ethylene treatment. Plants receiving ethylene treatment after the lag phase had lower anthocyanin content at 24 hours than control plants receiving no ethylene treatment. PMID:16657796
Type V Collagen is Persistently Altered after Inguinal Hernia Repair.
Lorentzen, L; Henriksen, N A; Juhl, P; Mortensen, J H; Ågren, M S; Karsdal, M A; Jorgensen, L N
2018-04-01
Hernia formation is associated with alterations of collagen metabolism. Collagen synthesis and degradation cause a systemic release of products, which are measurable in serum. Recently, we reported changes in type V and IV collagen metabolisms in patients with inguinal and incisional hernia. The aim of this study was to determine if the altered collagen metabolism was persistent after hernia repair. Patients who had undergone repairs for inguinal hernia (n = 11) or for incisional hernia (n = 17) were included in this study. Patients who had undergone elective cholecystectomy served as controls (n = 10). Whole venous blood was collected 35-55 months after operation. Biomarkers for type V collagen synthesis (Pro-C5) and degradation (C5M) and those for type IV collagen synthesis (P4NP) and degradation (C4M2) were measured by a solid-phase competitive assay. The turnover of type V collagen (Pro-C5/C5M) was slightly higher postoperatively when compared to preoperatively in the inguinal hernia group (P = 0.034). In addition, the results revealed a postoperatively lower type V collagen turnover level in the inguinal hernia group compared to controls (P = 0.012). In the incisional hernia group, the type V collagen turnover was higher after hernia repair (P = 0.004) and the postoperative turnover level was not different from the control group (P = 0.973). Patients with an inguinal hernia demonstrated a systemic and persistent type V collagen turnover alteration. This imbalance of the collagen metabolism may be involved in the development of inguinal hernias.
The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.
O'Reilly, Rachel K; Turberfield, Andrew J; Wilks, Thomas R
2017-10-17
Precise control over reactivity and molecular structure is a fundamental goal of the chemical sciences. Billions of years of evolution by natural selection have resulted in chemical systems capable of information storage, self-replication, catalysis, capture and production of light, and even cognition. In all these cases, control over molecular structure is required to achieve a particular function: without structural control, function may be impaired, unpredictable, or impossible. The search for molecules with a desired function is often achieved by synthesizing a combinatorial library, which contains many or all possible combinations of a set of chemical building blocks (BBs), and then screening this library to identify "successful" structures. The largest libraries made by conventional synthesis are currently of the order of 10 8 distinct molecules. To put this in context, there are 10 13 ways of arranging the 21 proteinogenic amino acids in chains up to 10 units long. Given that we know that a number of these compounds have potent biological activity, it would be highly desirable to be able to search them all to identify leads for new drug molecules. Large libraries of oligonucleotides can be synthesized combinatorially and translated into peptides using systems based on biological replication such as mRNA display, with selected molecules identified by DNA sequencing; but these methods are limited to BBs that are compatible with cellular machinery. In order to search the vast tracts of chemical space beyond nucleic acids and natural peptides, an alternative approach is required. DNA-templated synthesis (DTS) could enable us to meet this challenge. DTS controls chemical product formation by using the specificity of DNA hybridization to bring selected reactants into close proximity, and is capable of the programmed synthesis of many distinct products in the same reaction vessel. By making use of dynamic, programmable DNA processes, it is possible to engineer a system that can translate instructions coded as a sequence of DNA bases into a chemical structure-a process analogous to the action of the ribosome in living organisms but with the potential to create a much more chemically diverse set of products. It is also possible to ensure that each product molecule is tagged with its identifying DNA sequence. Compound libraries synthesized in this way can be exposed to selection against suitable targets, enriching successful molecules. The encoding DNA can then be amplified using the polymerase chain reaction and decoded by DNA sequencing. More importantly, the DNA instruction sequences can be mutated and reused during multiple rounds of amplification, translation, and selection. In other words, DTS could be used as the foundation for a system of synthetic molecular evolution, which could allow us to efficiently search a vast chemical space. This has huge potential to revolutionize materials discovery-imagine being able to evolve molecules for light harvesting, or catalysts for CO 2 fixation. The field of DTS has developed to the point where a wide variety of reactions can be performed on a DNA template. Complex architectures and autonomous "DNA robots" have been implemented for the controlled assembly of BBs, and these mechanisms have in turn enabled the one-pot synthesis of large combinatorial libraries. Indeed, DTS libraries are being exploited by pharmaceutical companies and have already found their way into drug lead discovery programs. This Account explores the processes involved in DTS and highlights the challenges that remain in creating a general system for molecular discovery by evolution.
The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery
2017-01-01
Conspectus Precise control over reactivity and molecular structure is a fundamental goal of the chemical sciences. Billions of years of evolution by natural selection have resulted in chemical systems capable of information storage, self-replication, catalysis, capture and production of light, and even cognition. In all these cases, control over molecular structure is required to achieve a particular function: without structural control, function may be impaired, unpredictable, or impossible. The search for molecules with a desired function is often achieved by synthesizing a combinatorial library, which contains many or all possible combinations of a set of chemical building blocks (BBs), and then screening this library to identify “successful” structures. The largest libraries made by conventional synthesis are currently of the order of 108 distinct molecules. To put this in context, there are 1013 ways of arranging the 21 proteinogenic amino acids in chains up to 10 units long. Given that we know that a number of these compounds have potent biological activity, it would be highly desirable to be able to search them all to identify leads for new drug molecules. Large libraries of oligonucleotides can be synthesized combinatorially and translated into peptides using systems based on biological replication such as mRNA display, with selected molecules identified by DNA sequencing; but these methods are limited to BBs that are compatible with cellular machinery. In order to search the vast tracts of chemical space beyond nucleic acids and natural peptides, an alternative approach is required. DNA-templated synthesis (DTS) could enable us to meet this challenge. DTS controls chemical product formation by using the specificity of DNA hybridization to bring selected reactants into close proximity, and is capable of the programmed synthesis of many distinct products in the same reaction vessel. By making use of dynamic, programmable DNA processes, it is possible to engineer a system that can translate instructions coded as a sequence of DNA bases into a chemical structure—a process analogous to the action of the ribosome in living organisms but with the potential to create a much more chemically diverse set of products. It is also possible to ensure that each product molecule is tagged with its identifying DNA sequence. Compound libraries synthesized in this way can be exposed to selection against suitable targets, enriching successful molecules. The encoding DNA can then be amplified using the polymerase chain reaction and decoded by DNA sequencing. More importantly, the DNA instruction sequences can be mutated and reused during multiple rounds of amplification, translation, and selection. In other words, DTS could be used as the foundation for a system of synthetic molecular evolution, which could allow us to efficiently search a vast chemical space. This has huge potential to revolutionize materials discovery—imagine being able to evolve molecules for light harvesting, or catalysts for CO2 fixation. The field of DTS has developed to the point where a wide variety of reactions can be performed on a DNA template. Complex architectures and autonomous “DNA robots” have been implemented for the controlled assembly of BBs, and these mechanisms have in turn enabled the one-pot synthesis of large combinatorial libraries. Indeed, DTS libraries are being exploited by pharmaceutical companies and have already found their way into drug lead discovery programs. This Account explores the processes involved in DTS and highlights the challenges that remain in creating a general system for molecular discovery by evolution. PMID:28915003
A Study of Fixed-Order Mixed Norm Designs for a Benchmark Problem in Structural Control
NASA Technical Reports Server (NTRS)
Whorton, Mark S.; Calise, Anthony J.; Hsu, C. C.
1998-01-01
This study investigates the use of H2, p-synthesis, and mixed H2/mu methods to construct full-order controllers and optimized controllers of fixed dimensions. The benchmark problem definition is first extended to include uncertainty within the controller bandwidth in the form of parametric uncertainty representative of uncertainty in the natural frequencies of the design model. The sensitivity of H2 design to unmodelled dynamics and parametric uncertainty is evaluated for a range of controller levels of authority. Next, mu-synthesis methods are applied to design full-order compensators that are robust to both unmodelled dynamics and to parametric uncertainty. Finally, a set of mixed H2/mu compensators are designed which are optimized for a fixed compensator dimension. These mixed norm designs recover the H, design performance levels while providing the same levels of robust stability as the u designs. It is shown that designing with the mixed norm approach permits higher levels of controller authority for which the H, designs are destabilizing. The benchmark problem is that of an active tendon system. The controller designs are all based on the use of acceleration feedback.
Investigating the Metastability of Clathrate Hydrates for Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, Carolyn Ann
2014-11-18
Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathratemore » hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate hydrate systems are pivotal in the fundamental understanding of crystalline clathrate hydrates and the discovery of new clathrate hydrate properties and novel materials for a broad spectrum of energy applications, including: energy storage (hydrogen, natural gas); carbon dioxide sequestration; controlling hydrate formation in oil/gas transportation in subsea pipelines. The Project has also enabled the training of undergraduate, graduate and postdoctoral students in computational methods, molecular spectroscopy and diffraction, and measurement methods at extreme conditions of high pressure and low temperature.« less
Brain catechol synthesis - Control by brain tyrosine concentration
NASA Technical Reports Server (NTRS)
Wurtman, R. J.; Larin, F.; Mostafapour, S.; Fernstrom, J. D.
1974-01-01
Brain catechol synthesis was estimated by measuring the rate at which brain dopa levels rose following decarboxylase inhibition. Dopa accumulation was accelerated by tyrosine administration, and decreased by treatments that lowered brain tyrosine concentrations (for example, intraperitoneal tryptophan, leucine, or parachlorophenylalanine). A low dose of phenylalanine elevated brain tyrosine without accelerating dopa synthesis. Our findings raise the possibility that nutritional and endocrine factors might influence brain catecholamine synthesis by controlling the availability of tyrosine.
Fast response of mechatronics module for robotic
NASA Astrophysics Data System (ADS)
Bukhanov, S. S.; Gryzlov, A. A.; Tsirkunenko, A. T.
2018-05-01
The synthesis technique, the mathematical model and results of experimental investigation of the control system of the robotic complex mechatronic module are presented in the article. It is shown that in most cases the dynamic system can be approximated by the serial connection of two first-order aperiodic links, while the speed in the torque control loop can reach 200-300 rad/s. The specified speed of the system was achieved due to improved specific weight and dimensions parameters of the electric drive (element of the mechatronic system) made on the basis of a contactless motor. The obtained results indicate the possibility of successful application of the proposed mechatronic module for objects of robotized systems in which the reference signal changes at a frequency not exceeding 50 Hz.
An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller
ERIC Educational Resources Information Center
Mamdani, E. H.; Assilian, S.
1975-01-01
This paper describes an experiment on the "linguistic" synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. (Author)
Cathcart, Nicole; Kitaev, Vladimir
2011-09-27
Silver nanoprisms of a predominantly hexagonal shape have been prepared using a ligand combination of a strongly binding thiol, captopril, and charge-stabilizing citrate together with hydrogen peroxide as an oxidative etching agent and a strong base that triggered nanoprism formation. The role of the reagents and their interplay in the nanoprism synthesis is discussed in detail. The beneficial role of chloride ions to attain a high degree of reproducibility and monodispersity of the nanoprisms is elucidated. Control over the nanoprism width, thickness, and, consequently, plasmon resonance in the system has been demonstrated. One of the crucial factors in the nanoprism synthesis was the slow, controlled aggregation of thiolate-stabilized silver nanoclusters as the intermediates. The resulting superior monodispersity (better than ca. 10% standard deviation in lateral size and ca. 15% standard deviation in thickness (<1 nm variation)) and charge stabilization of the produced silver nanoprisms enabled the exploration of the rich diversity of the self-assembled morphologies in the system. Regular columnar assemblies of the self-assembled nanoprisms spanning 2-3 μm in length have been observed. Notably, the helicity of the columnar phases was evident, which can be attributed to the chirality of the strongly binding thiol ligand. Finally, the enhancement of Raman scattering has been observed after oxidative removal of thiolate ligands from the AgNPR surface. © 2011 American Chemical Society
NASA Technical Reports Server (NTRS)
Reilly, Charles H.; Walton, Eric K.; Mata, Fernando; Mount-Campbell, Clark A.; Olen, Carl A.
1990-01-01
Consideration is given to the problem of allotting GEO locations to communication satellites so as to maximize the smallest aggregate carrier-to-interference (C/I) ratio calculated at any test point (assumed earth station). The location allotted to each satellite must be within the satellite's service arc, and angular separation constraints are enforced for each pair of satellites to control single-entry EMI. Solutions to this satellite system synthesis problem (SSSP) are found by embedding two heuristic procedures for the satellite location problem (SLP), in a binary search routine to find an estimate of the largest increment to the angular separation values that permits a feasible solution to SLP and SSSP. Numerical results for a 183-satellite, 208-beam example problem are presented.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1988-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
Furmark, Tomas; Marteinsdottir, Ina; Frick, Andreas; Heurling, Kerstin; Tillfors, Maria; Appel, Lieuwe; Antoni, Gunnar; Hartvig, Per; Fischer, Håkan; Långström, Bengt; Eriksson, Elias; Fredrikson, Mats
2016-10-01
It is disputed whether anxiety disorders, like social anxiety disorder, are characterized by serotonin over- or underactivity. Here, we evaluated whether our recent finding of elevated neural serotonin synthesis rate in patients with social anxiety disorder could be reproduced in a separate cohort, and whether allelic variation in the tryptophan hydroxylase-2 (TPH2) G-703T polymorphism relates to differences in serotonin synthesis assessed with positron emission tomography. Eighteen social anxiety disorder patients and six healthy controls were scanned during 60 minutes in a resting state using positron emission tomography and 5-hydroxy-L-[β -(11)C]tryptophan, [(11)C]5-HTP, a substrate of the second enzymatic step in serotonin synthesis. Parametric images were generated, using the reference Patlak method, and analysed using Statistical Parametric Mapping (SPM8). Blood samples for genotyping of the TPH2 G-703T polymorphism were obtained from 16 social anxiety disorder patients (T carriers: n=5, GG carriers: n=11). A significantly elevated [(11)C]5-HTP accumulation rate, indicative of enhanced decarboxylase activity and thereby serotonin synthesis capacity, was detected in social anxiety disorder patients compared with controls in the hippocampus and basal ganglia nuclei and, at a more lenient (uncorrected) statistical threshold, in the amygdala and anterior cingulate cortex. In patients, the serotonin synthesis rate in the amygdala and anterior cingulate cortex was significantly elevated in TPH2 T carriers in comparison with GG homozygotes. Our results support that social anxiety disorder entails an overactive presynaptic serotonergic system that, in turn, seems functionally influenced by the TPH2 G-703T polymorphism in emotionally relevant brain regions. © The Author(s) 2016.
Wilson, Sarah A.; Roberts, Susan C.
2011-01-01
(1) Summary Plant cell culture systems were initially explored for use in commercial synthesis of several high value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation strategies, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field grown crops is significant and therefore processes must be optimized with regards to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes. PMID:22059985
Anytime synthetic projection: Maximizing the probability of goal satisfaction
NASA Technical Reports Server (NTRS)
Drummond, Mark; Bresina, John L.
1990-01-01
A projection algorithm is presented for incremental control rule synthesis. The algorithm synthesizes an initial set of goal achieving control rules using a combination of situation probability and estimated remaining work as a search heuristic. This set of control rules has a certain probability of satisfying the given goal. The probability is incrementally increased by synthesizing additional control rules to handle 'error' situations the execution system is likely to encounter when following the initial control rules. By using situation probabilities, the algorithm achieves a computationally effective balance between the limited robustness of triangle tables and the absolute robustness of universal plans.
Linear Parameter Varying Control for Actuator Failure
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
A robust linear parameter varying (LPV) control synthesis is carried out for an HiMAT vehicle subject to loss of control effectiveness. The scheduling parameter is selected to be a function of the estimates of the control effectiveness factors. The estimates are provided on-line by a two-stage Kalman estimator. The inherent conservatism of the LPV design is reducing through the use of a scaling factor on the uncertainty block that represents the estimation errors of the effectiveness factors. Simulations of the controlled system with the on-line estimator show that a superior fault-tolerance can be achieved.
All-optical transistor based on Rydberg atom-assisted optomechanical system.
Liu, Yi-Mou; Tian, Xue-Dong; Wang, Jing; Fan, Chu-Hui; Gao, Feng; Bao, Qian-Qian
2018-04-30
We study the optical response of a double optomechanical cavity system assisted by two Rydberg atoms. The target atom is only coupled with one side cavity by a single cavity mode, and gate one is outside the cavities. It has been realized that a long-range manipulation of optical properties of a hybrid system, by controlling the Rydberg atom decoupled with the optomechanical cavity. Switching on the coupling between atoms and cavity mode, the original spatial inversion symmetry of the double cavity structure has been broken. Combining the controllable optical non-reciprocity with the coherent perfect absorption/transmission/synthesis effect (CPA/CPT/CPS reported by [ X.-B.Yan Opt. Express 22, 4886 (2014)], we put forward the theoretical schemes of an all-optical transistor which contains functions such as a controllable diode, rectifier, and amplifier by controlling a single gate photon.
Chen, Xue; Tan, Longfei; Meng, Xianwei
2016-03-01
In this study, we have developed the pre-shell-post-core route to synthesize the magnetic rattle-type silica. This method has not only simplified the precursor's process and reduced the reacting time, but also ameliorated the loss of magnetite and made the magnetite content and the inner core size controllable and tunable. The magnetite contents and inner core size can be easily controlled by changing the type and concentration of alkali, reaction system and addition of water. The results show that alkali aqueous solution promotes the escape of the precursor iron ions from the inner space of rattle-type silica and results in the loss of magnetite. In this case, NaOH ethanol solution is better for the formation of magnetite than ammonia because it not only offers an appropriate alkalinity to facilitate the synthesis of. magnetic particles, but also avoids the escape of the iron ions from the mesopores of rattle-type silica. The synthesis process is very simple and efficient, and it takes no more than 2 hours to complete the total preparation and handling of the magnetic rattle-type silica. The end-product Fe3O4@SiO2 nanocomposites also have good magnetic properties which will perform potential application in biomedical science.
Soldano, S; Montagna, P; Villaggio, B; Parodi, A; Gianotti, G; Sulli, A; Seriolo, B; Secchi, M E; Cutolo, M
2009-01-01
Objective: To evaluate the influence of endothelin-1 (ET-1) and sex hormones on cell proliferation and extracellular matrix (ECM) synthesis (ie, fibronectin, laminin) by cultured normal and scleroderma (SSc) human skin fibroblasts (FBs). Methods: Primary cultures of FBs were treated with ET-1 and sex hormones (17β-oestradiol or testosterone) for 24 h. Cell growth was analysed by methiltetrazolium salt test, ECM synthesis was evaluated by immunocytochemistry and western blot, both at 24 h. Results: In normal FBs, ET-1 and 17β-oestradiol, as well as their combination, increased cell growth (p<0.001, p<0.001, p<0.01 vs untreated cells (control), respectively) and fibronectin synthesis (p<0.05, p<0.05, p<0.01 vs control, respectively). By contrast, testosterone either alone or in combination with ET-1 did not influence cell proliferation, but decreased fibronectin synthesis (p<0.05, testosterone vs control). In SSc FBs, ET-1 and 17β-oestradiol alone or their combination induced an increased fibronectin synthesis (p<0.05, p<0.05, p<0.01 vs control, respectively). Unexpectedly, testosterone induced an increase of fibronectin synthesis (p<0.05 vs control). Conclusions: ET-1 and 17β-oestradiol seem to exert a profibrotic effect in normal and SSc culture FBs and might suggest their synergistic effect in the pathogenesis of the fibrotic process in SSc. PMID:18952637
Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems
NASA Astrophysics Data System (ADS)
Wang, Gang; Chen, Changzheng; Yu, Shenbo
2017-07-01
This paper deals with the problem of non-fragile H∞ static output-feedback control of vehicle active suspension systems with finite-frequency constraint. The control objective is to improve ride comfort within the given frequency range and ensure the hard constraints in the time-domain. Moreover, in order to enhance the robustness of the controller, the control gain perturbation is also considered in controller synthesis. Firstly, a new non-fragile H∞ finite-frequency control condition is established by using generalized Kalman-Yakubovich-Popov (GKYP) lemma. Secondly, the static output-feedback control gain is directly derived by using a non-iteration algorithm. Different from the existing iteration LMI results, the static output-feedback design is simple and less conservative. Finally, the proposed control algorithm is applied to a quarter-car active suspension model with actuator dynamics, numerical results are made to show the effectiveness and merits of the proposed method.
Mechanistic Studies of Combustion and Structure Formation During Synthesis of Advanced Materials
NASA Technical Reports Server (NTRS)
Varma, A.; Lau, C.; Mukasyan, A. S.
2001-01-01
Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity (mu-g) experiments lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis (CS) wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The current research is a logic continuation of our previous work on investigations of the fundamental phenomena of combustion and structure formation that occur at the high temperatures achieved in a CS wave. Our research is being conducted in three main directions: 1) Microstructural Transformations during Combustion Synthesis of Metal-Ceramic Composites. The studies are devoted to the investigation of particle growth during CS of intermetallic-ceramic composites, synthesized from nickel, aluminum, titanium, and boron metal reactants. To determine the mechanisms of particle growth, the investigation varies the relative amount of components in the initial mixture to yield combustion wave products with different ratios of solid and liquid phases, under 1g and mu-g conditions; 2) Mechanisms of Heat Transfer during Reactions in Heterogeneous Media. Specifically, new phenomena of gasless combustion wave propagation in heterogeneous media with porosity higher than that achievable in normal gravity conditions, are being studied. Two types of mixtures are investigated: clad powders, where contact between reactants occurs within each particle, and mixtures of elemental powders, where interparticle contacts are important for the reaction; and 3) Mechanistic Studies of Phase Separation in Combustion of Thermite Systems. Studies are devoted to experiments on thermite systems (metal oxide-reducing metal) where phase separation processes occur to produce alloys with tailored compositions and properties. The separation may be either gravity-driven or due to surface forces, and systematic studies to elucidate the true mechanism are being conducted. The knowledge obtained will be used to find the most promising ways of controlling the microstructure and properties of combustion-synthesized materials. Low-gravity experiments are essential to create idealized an environment for insights into the physics and chemistry of advanced material synthesis processes.
Semino, C E; Specht, C A; Raimondi, A; Robbins, P W
1996-05-14
The Xenopus developmental gene DG42 is expressed during early embryonic development, between the midblastula and neurulation stages. The deduced protein sequence of Xenopus DG42 shows similarity to Rhizobium Nod C, Streptococcus Has A, and fungal chitin synthases. Previously, we found that the DG42 protein made in an in vitro transcription/translation system catalyzed synthesis of an array of chitin oligosaccharides. Here we show that cell extracts from early Xenopus and zebrafish embryos also synthesize chitooligosaccharides. cDNA fragments homologous to DG42 from zebrafish and mouse were also cloned and sequenced. Expression of these homologs was similar to that described for Xenopus based on Northern and Western blot analysis. The Xenopus anti-DG42 antibody recognized a 63-kDa protein in extracts from zebrafish embryos that followed a similar developmental expression pattern to that previously described for Xenopus. The chitin oligosaccharide synthase activity found in extracts was inactivated by a specific DG42 antibody; synthesis of hyaluronic acid (HA) was not affected under the conditions tested. Other experiments demonstrate that expression of DG42 under plasmid control in mouse 3T3 cells gives rise to chitooligosaccharide synthase activity without an increase in HA synthase level. A possible relationship between our results and those of other investigators, which show stimulation of HA synthesis by DG42 in mammalian cell culture systems, is provided by structural analyses to be published elsewhere that suggest that chitin oligosaccharides are present at the reducing ends of HA chains. Since in at least one vertebrate system hyaluronic acid formation can be inhibited by a pure chitinase, it seems possible that chitin oligosaccharides serve as primers for hyaluronic acid synthesis.
Synthesis and Characterization of Ionically Crosslinked Elastomers
2015-05-12
SECURITY CLASSIFICATION OF: In this research poly(n-butyl acrylate) (PBA) elastomers were investigated as model systems to study the thermomechanical...subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO...Ionically Crosslinked Elastomers Report Title In this research poly(n-butyl acrylate) (PBA) elastomers were investigated as model systems to study the
Mase, William A; Bickford, Beth; Thomas, Casey L; Jones, Shamika D; Bisesi, Michael
In early 2009, H1N1 influenza was identified within the human population. Centers for Disease Control and Prevention (CDC) officials responded with focused assessment, policy development, and assurances. The response was mobilized through efforts including procurement of adequate vaccine supply, local area span of control, materials acquisition, and facilities and resource identification. Qualitative evaluation of the assurance functions specific to the system's ability to assure safe and healthy conditions are reported. The methodology mirrors the Homeland Security Exercise and Evaluation Program used to assess system capability. Findings demonstrate the effectiveness of community responsive disease prevention efforts in partnership with the public health systems mission to unify traditional public sector systems, for-profit systems, and local area systems was accomplished. As a result of this response pharmaceutical industries, healthcare providers, healthcare agencies, police/safety, colleges, and health and human service agencies were united. Findings demonstrate the effectiveness of community response strategies utilizing feedback from system stakeholders. After-action review processes are critical in all-hazards preparedness. This analysis of local health district response to the H1N1 influenza outbreak informs future public health service delivery. Results provide a synthesis of local health department's emergency response strategies, challenges encountered, and future-focused emergency response strategy implementation. A synthesis is provided as to policy and practice developments which have emerged over the past seven years with regard to lessons learned from the 2009-10 H1N1 influenza outbreak and response.
NASA Astrophysics Data System (ADS)
Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael
2015-11-01
We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b
A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus*♦
Laakso, Holly A.; Marolda, Cristina L.; Pinter, Tyler B.; Stillman, Martin J.; Heinrichs, David E.
2016-01-01
Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD–I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis. PMID:26534960
[Chromosomal proteins: histones and acid proteins].
Salvini, M; Gabrielli, F
1976-01-01
Experimental data about the chemistry and the biology of chromosomal proteins are reviewed. Paragraphs include: aminoacid sequential data and post-translational covalent modications of histones, histone chemical differences in different tissues of the same species and in homologous organs of different species, histone synthesis subcellular localization and its association with DNA synthesis, histone synthesis transcriptional and translational control, histone synthesis during meiosis, oogenesis and early embryogenesis. The possible role of histones as controllers of gene expression is discussed and a model of primary structure of chromatine is proposed. The "acidic proteins" data concern the high tissue eterogenity of these proteins and their role in the steroid-hormon-controlled gene expression. The possible role of acidic proteins as general controllers of gene expression in eucariotic cells is discussed.
Matching of energetic, mechanic and control characteristics of positioning actuator
NASA Astrophysics Data System (ADS)
Y Nosova, N.; Misyurin, S. Yu; Kreinin, G. V.
2017-12-01
The problem of preliminary choice of parameters of the automated drive power channel is discussed. The drive of the mechatronic complex divides into two main units - power and control. The first determines the energy capabilities and, as a rule, the overall dimensions of the complex. The sufficient capacity of the power unit is a necessary condition for successful solution of control tasks without excessive complication of the control system structure. Preliminary selection of parameters is carried out based on the condition of providing the necessary drive power. The proposed approach is based on: a research of a sufficiently developed but not excessive dynamic model of the power block with the help of a conditional test control system; a transition to a normalized model with the formation of similarity criteria; constructing the synthesis procedure.
NASA Astrophysics Data System (ADS)
Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco
2012-04-01
During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.
The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system
NASA Technical Reports Server (NTRS)
Mizutani, H.; Ponnamperuma, C.
1977-01-01
A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.
NASA Astrophysics Data System (ADS)
Sizonenko, O. N.; Grigoryev, E. G.; Pristash, N. S.; Zaichenko, A. D.; Torpakov, A. S.; Lypian, Ye. V.; Tregub, V. A.; Zholnin, A. G.; Yudin, A. V.; Kovalenko, A. A.
2017-09-01
High voltage electric discharge (HVED) in disperse system "hydrocarbon liquid - powder" due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10-6 to 10-7 m) and nanosized (from 10-7 to 10-9 m) composite powders of hardening phases. Spark plasma sintering (SPS) of powder mixtures allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10-20 %), hardness and wear-resistance (by 30-60 %) of obtained materials.
Scheurell, K; Noack, J; König, R; Hegmann, J; Jahn, R; Hofmann, Th; Löbmann, P; Lintner, B; Garcia-Juan, P; Eicher, J; Kemnitz, E
2015-12-07
A synthesis route for the preparation of optically transparent magnesium fluoride sols using magnesium acetate tetrahydrate as precursor is described. The obtained magnesium fluoride sols are stable for several months and can be applied for antireflective coatings on glass substrates. Reaction parameters in the course of sol synthesis are described in detail. Thus, properties of the precursor materials play a crucial role in the formation of the desired magnesium fluoride nanoparticles, this is drying the precursor has to be performed under defined mild conditions, re-solvation of the dried precursor has to be avoided and addition of water to the final sol-system has to be controlled strictly. Important properties of the magnesium fluoride sols like viscosity, particle size distribution, and structural information are presented as well.
NASA Astrophysics Data System (ADS)
Hrin, Tamara N.; Fahmy, Ameen F. M.; Segedinac, Mirjana D.; Milenković, Dušica D.
2016-08-01
Many studies dedicated to the teaching and learning of organic chemistry courses have emphasized that high school students have shown significant difficulties in mastering the concepts of this discipline. Therefore, the aim of our study was to help students to overcome these difficulties by applying systemic synthesis questions, [SSynQs], as the instructional method in our intervention. This work shows that students from the group exposed to the new teaching method achieved higher scores on final testing than students from the control group, who were taught by the traditional method, when students' achievements in conventional, linear questions [LQs] and in [SSynQs] were studied. These results were followed by observation of lower levels of mental effort by students from the intervention group, and higher levels of mental effort in the control group, invested during solving both types of questions. This correlation between achievement and mental effort resulted in high instructional efficiency for the applied method in the intervention group, [SSynQs], and low instructional efficiency for the traditional teaching and learning method applied in the control group. A systemic triangular relation between achievement, mental effort, and instructional efficiency, established by each group and gender, emphasized that the application of [SSynQs] was more suited to female students than for male students because of [SSynQs] characteristics as teaching and learning tools and because of learning style and ability differences between genders.
Optical aperture synthesis: limitations and interest for the earth observation
NASA Astrophysics Data System (ADS)
Brouard, Laurent; Safa, Frederic; Crombez, Vincent; Laubier, David
2017-11-01
For very large telescope diameters, typically above 4 meters, monolithic telescopes can hardly be envisaged for space applications. Optical aperture synthesis can be envisaged in the future for improving the image resolution from high altitude orbits by co-phasing several individual telescopes of smaller size and reconstituting an aperture of large surface. The telescopes can be deployed on a single spacecraft or distributed on several spacecrafts in free flying formation. Several future projects are based on optical aperture synthesis for science or earth observation. This paper specifically discusses the limitations and interest of aperture synthesis technique for Earth observation from high altitude orbits, in particular geostationary orbit. Classical Fizeau and Michelson configurations are recalled, and system design aspects are investigated: synthesis of the Modulation Transfer Function (MTF), integration time and imaging procedure are first discussed then co-phasing strategies and instrument metrology are developed. The discussion is supported by specific designs made at EADS Astrium. As example, a telescope design is presented with a surface of only 6.6 m2 for the primary mirror for an external diameter of 10.6 m allowing a theoretical resolution of 1.2 m from geostationary orbit with a surface lower than 10% of the overall surface. The impact is that the integration time is increasing leading to stringent satellite attitude requirements. Image simulation results are presented. The practical implementation of the concept is evaluated in terms of system impacts in particular spacecraft attitude control, spacecraft operations and imaging capability limitations.
Heinmets, F; Leary, R H
1991-06-01
A model system (1) was established to analyze purine and pyrimidine metabolism. This system has been expanded to include macrosimulation of DNA synthesis and the study of its regulation by terminal deoxynucleoside triphosphates (dNTPs) via a complex set of interactions. Computer experiments reveal that our model exhibits adequate and reasonable sensitivity in terms of dNTP pool levels and rates of DNA synthesis when inputs to the system are varied. These simulation experiments reveal that in order to achieve maximum DNA synthesis (in terms of purine metabolism), a proper balance is required in guanine and adenine input into this metabolic system. Excessive inputs will become inhibitory to DNA synthesis. In addition, studies are carried out on rates of DNA synthesis when various parameters are changed quantitatively. The current system is formulated by 110 differential equations.
Emergence of Fundamental Limits in Spatially Distributed Dynamical Networks and Their Tradeoffs
2017-05-01
It is shown that the resulting non -convex optimization problem can be equivalently reformulated into a rank-constrained problem. We then...display a current ly valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM- YYYY) ,2. REPORT TYPE 3...robustness in distributed control and dynamical systems. Our research re- sults are highly relevant for analysis and synthesis of engineered and natural
NASA Astrophysics Data System (ADS)
Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng
2017-10-01
Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.
Spherical Lu2O2S:Eu3+ micro/nano-structure: Controlled synthesis and luminescence properties
NASA Astrophysics Data System (ADS)
Zhang, Bowen; Zou, Haifeng; Dai, Yunzhi; Guan, Hongxia; Song, Yanhua; Zheng, Keyan; Zhou, Xiuqing; Shi, Zhan; Sheng, Ye
2017-02-01
Monodisperse and uniform Lu2O2S:Eu3+ luminescent spheres have been successfully synthesized through a facile hydrothermal method followed by a subsequent calcination process. The sizes of the spheres can be tuned in the range of 65 nm-295 nm by only changing the pH value of the system. It is indicated that the luminescence properties of the spherical phosphors were strongly influenced by size of the spheres. Such a size-sensitive luminescence property was interpreted from the structures of the spheres, including the degree of crystallinity, band gap energy, crystal field symmetry around Eu3+. We expected that this study not only can provide important information for size-controlled synthesis of spherical phosphors, but also can give a reference for exploration of size-dependent luminescence.
Atomic engineering of mixed ferrite and core-shell nanoparticles.
Morrison, Shannon A; Cahill, Christopher L; Carpenter, Everett E; Calvin, Scott; Harris, Vincent G
2005-09-01
Nanoparticulate ferrites such as manganese zinc ferrite and nickel zinc ferrite hold great promise for advanced applications in power electronics. The use of these materials in current applications requires fine control over the nanoparticle size as well as size distribution to maximize their packing density. While there are several techniques for the synthesis of ferrite nanoparticles, reverse micelle techniques provide the greatest flexibility and control over size, crystallinity, and magnetic properties. Recipes for the synthesis of manganese zinc ferrite, nickel zinc ferrite, and an enhanced ferrite are presented along with analysis of the crystalline and magnetic properties. Comparisons are made on the quality of nanoparticles produced using different surfactant systems. The importance of various reaction conditions is explored with a discussion on the corresponding effects on the magnetic properties, particle morphology, stoichiometry, crystallinity, and phase purity.
Water-in-Water Emulsion Based Synthesis of Hydrogel Nanospheres with Tunable Release Kinetics
NASA Astrophysics Data System (ADS)
Aydın, Derya; Kızılel, Seda
2017-07-01
Poly(ethylene glycol) (PEG) micro/nanospheres have several unique advantages as polymer based drug delivery systems (DDS) such as tunable size, large surface area to volume ratio, and colloidal stability. Emulsification is one of the widely used methods for facile synthesis of micro/nanospheres. Two-phase aqueous system based on polymer-polymer immiscibility is a novel approach for preparation of water-in-water (w/w) emulsions. This method is promising for the synthesis of PEG micro/nanospheres for biological systems, since the emulsion is aqueous and do not require organic solvents or surfactants. Here, we report the synthesis of nano-scale PEG hydrogel particles using w/w emulsions using phase separation of dextran and PEG prepolymer. Dynamic light scattering (DLS) and scaning electron microscopy (SEM) results demonstrated that nano-scale hydrogel spheres could be obtained with this approach. We investigated the release kinetics of a model drug, pregabalin (PGB) from PEG nanospheres and demonstrated the influence of polymerization conditions on loading and release of the drug as well as the morphology and size distribution of PEG nanospheres. The experimental drug release data was fitted to a stretched exponential function which suggested high correlation with experimental results to predict half-time and drug release rates from the model equation. The biocompatibility of nanospheres on human dermal fibroblasts using cell-survival assay suggested that PEG nanospheres with altered concentrations are non-toxic, and can be considered for controlled drug/molecule delivery.
A New Look at NASA: Strategic Research In Information Technology
NASA Technical Reports Server (NTRS)
Alfano, David; Tu, Eugene (Technical Monitor)
2002-01-01
This viewgraph presentation provides information on research undertaken by NASA to facilitate the development of information technologies. Specific ideas covered here include: 1) Bio/nano technologies: biomolecular and nanoscale systems and tools for assembly and computing; 2) Evolvable hardware: autonomous self-improving, self-repairing hardware and software for survivable space systems in extreme environments; 3) High Confidence Software Technologies: formal methods, high-assurance software design, and program synthesis; 4) Intelligent Controls and Diagnostics: Next generation machine learning, adaptive control, and health management technologies; 5) Revolutionary computing: New computational models to increase capability and robustness to enable future NASA space missions.
NASA Astrophysics Data System (ADS)
HUSEJKO, Michal; EVANS, John; RASTEIRO DA SILVA, Jose Carlos
2015-12-01
High-Level Synthesis (HLS) for Field-Programmable Logic Array (FPGA) programming is becoming a practical alternative to well-established VHDL and Verilog languages. This paper describes a case study in the use of HLS tools to design FPGA-based data acquisition systems (DAQ). We will present the implementation of the CERN CMS detector ECAL Data Concentrator Card (DCC) functionality in HLS and lessons learned from using HLS design flow. The DCC functionality and a definition of the initial system-level performance requirements (latency, bandwidth, and throughput) will be presented. We will describe how its packet processing control centric algorithm was implemented with VHDL and Verilog languages. We will then show how the HLS flow could speed up design-space exploration by providing loose coupling between functions interface design and functions algorithm implementation. We conclude with results of real-life hardware tests performed with the HLS flow-generated design with a DCC Tester system.
Radical-initiated controlled synthesis of homo- and copolymers based on acrylonitrile
NASA Astrophysics Data System (ADS)
Grishin, D. F.; Grishin, I. D.
2015-07-01
Data on the controlled synthesis of polyacrylonitrile and acrylonitrile copolymers with other (meth)acrylic and vinyl monomers upon radical initiation and metal complex catalysis are analyzed. Primary attention is given to the use of metal complexes for the synthesis of acrylonitrile-based (co)polymers with defined molecular weight and polydispersity in living mode by atom transfer radical polymerization. The prospects for using known methods of controlled synthesis of macromolecules for the preparation of acrylonitrile homo- and copolymers as carbon fibre precursors are estimated. The major array of published data analyzed in the review refers to the last decade. The bibliography includes 175 references.
Synthesis of robust nonlinear autopilots using differential game theory
NASA Technical Reports Server (NTRS)
Menon, P. K. A.
1991-01-01
A synthesis technique for handling unmodeled disturbances in nonlinear control law synthesis was advanced using differential game theory. Two types of modeling inaccuracies can be included in the formulation. The first is a bias-type error, while the second is the scale-factor-type error in the control variables. The disturbances were assumed to satisfy an integral inequality constraint. Additionally, it was assumed that they act in such a way as to maximize a quadratic performance index. Expressions for optimal control and worst-case disturbance were then obtained using optimal control theory.
Shukla, Chinmay A
2017-01-01
The implementation of automation in the multistep flow synthesis is essential for transforming laboratory-scale chemistry into a reliable industrial process. In this review, we briefly introduce the role of automation based on its application in synthesis viz. auto sampling and inline monitoring, optimization and process control. Subsequently, we have critically reviewed a few multistep flow synthesis and suggested a possible control strategy to be implemented so that it helps to reliably transfer the laboratory-scale synthesis strategy to a pilot scale at its optimum conditions. Due to the vast literature in multistep synthesis, we have classified the literature and have identified the case studies based on few criteria viz. type of reaction, heating methods, processes involving in-line separation units, telescopic synthesis, processes involving in-line quenching and process with the smallest time scale of operation. This classification will cover the broader range in the multistep synthesis literature. PMID:28684977
Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw
2005-02-01
This paper describes the simulations and results obtained when applying optimal control to progressive sound-field reproduction (mainly for audio applications) over an area using multiple monopole loudspeakers. The model simulates a reproduction system that operates either in free field or in a closed space approaching a typical listening room, and is based on optimal control in the frequency domain. This rather simple approach is chosen for the purpose of physical investigation, especially in terms of sensing microphones and reproduction loudspeakers configurations. Other issues of interest concern the comparison with wave-field synthesis and the control mechanisms. The results suggest that in-room reproduction of sound field using active control can be achieved with a residual normalized squared error significantly lower than open-loop wave-field synthesis in the same situation. Active reproduction techniques have the advantage of automatically compensating for the room's natural dynamics. For the considered cases, the simulations show that optimal control results are not sensitive (in terms of reproduction error) to wall absorption in the reproduction room. A special surrounding configuration of sensors is introduced for a sensor-free listening area in free field.
Attractive manifold-based adaptive solar attitude control of satellites in elliptic orbits
NASA Astrophysics Data System (ADS)
Lee, Keum W.; Singh, Sahjendra N.
2011-01-01
The paper presents a novel noncertainty-equivalent adaptive (NCEA) control system for the pitch attitude control of satellites in elliptic orbits using solar radiation pressure (SRP). The satellite is equipped with two identical solar flaps to produce control moments. The adaptive law is based on the attractive manifold design using filtered signals for synthesis, which is a modification of the immersion and invariance (I&I) method. The control system has a modular controller-estimator structure and has separate tunable gains. A special feature of this NCEA law is that the trajectories of the satellite converge to a manifold in an extended state space, and the adaptive law recovers the performance of a deterministic controller. This recovery of performance cannot be obtained with certainty-equivalent adaptive (CEA) laws. Simulation results are presented which show that the NCEA law accomplishes precise attitude control of the satellite in an elliptic orbit, despite large parameter uncertainties.
Interface-Assisted Synthesis of 2D Materials: Trend and Challenges.
Dong, Renhao; Zhang, Tao; Feng, Xinliang
2018-06-18
The discovery of graphene one decade ago has triggered enormous interest in developing two-dimensional materials (2DMs)-that is 2D allotropes of various elements or compounds (consisting of two or more covalently bonded elements) or molecular frameworks with periodic structures. At present, various synthesis strategies have been exploited to produce 2DMs, such as top-down exfoliation and bottom-up chemical vapor deposition and solution synthesis methods. In this review article, we will highlight the interfacial roles toward the controlled synthesis of inorganic and organic 2DMs with varied structural features. We will summarize the state-of-the-art progress on interfacial synthesis strategies and address their advancements in the structural, morphological, and crystalline control by the direction of the arrangement of the molecules or precursors at a confined 2D space. First, we will provide an overview of the interfaces and introduce their advantages and uniqueness for the synthesis of 2DMs, followed by a brief classification of inorganic and organic 2DMs achieved by interfacial synthesis. Next, the currently developed interfacial synthesis strategies combined with representative inorganic and organic 2DMs are summarized, including the description of method details, the corresponding structural features, and the insights into the advantages and limitations of the synthesis methods, along with some recommendable characterization methods for understanding the interfacial assembly of the precursors and crystal growth of 2DMs. After that, we will discuss several classes of emerging organic 2DMs with particular emphasis on the structural control by the interfacial synthesis strategies. Note that, inorganic 2DMs will not be categorized separately due to the fact that a number of review articles have covered the synthesis, structure, processing, and applications. Finally, the challenges and perspectives are provided regarding the future development of interface-assisted synthesis of 2DMs with diverse structural and functional control.
Zhou, Bo; Ren, Jianan; Han, Gang; Chen, Yu; A, Jiye; Gu, Guosheng; Chen, Jun; Wang, Gefei; Li, Jieshou
2014-04-01
Low serum albumin concentration is a predictor of failure of source control for intra-abdominal infection. However, data on dynamics of albumin synthesis in these patients and to what extent these changes contribute to hypoalbuminemia are relatively scarce. We investigated in a group of patients with gastrointestinal fistula the dynamic response of liver albumin synthesis to intra-abdominal abscess and how these related to hypoalbuminemia and circulating endocrine hormone profiles. Eight gastrointestinal fistula patients scheduled to undergo percutaneous abscess sump drainage were enrolled prospectively to measure albumin synthesis rates at different stages of the inflammatory response (immediately after diagnosis and 7 d following sump drainage when clinical signs of intra-abdominal sepsis had been eradicated). Eight age-, sex-, and body mass index-matched intestinal fistula patients were studied as control patients. Consecutive arterial blood samples were drawn during a primed-constant infusion (priming dose: 4 micromol·kg(-1), infusion rate: 6 micromol·kg(-1)·min(-1)) to determine the incorporation rate of L-[ring-(2)H5]-phenylalanine directly into plasma albumin using gas chromatography/mass spectrometry analysis. Patients suffering from intra-abdominal infection had reduced plasma albumin and total plasma protein concentrations, compared with control patients. Albumin fractional synthesis rates in patients with intra-abdominal abscess were decreased, compared with those in the control group. When the source of infection was removed, albumin synthesis rates returned to control values, whereas albumin concentrations did not differ significantly from the corresponding concentrations in control subjects and patients with intra-abdominal abscess. Despite nutritional intervention, albumin synthesis rate is decreased in intestinal fistula patients with intra-abdominal abscess; albumin synthesis returns to control values during convalescence.
Zhou, Bo; Han, Gang; Chen, Yu; A, Jiye; Gu, Guosheng; Chen, Jun; Wang, Gefei; Li, Jieshou
2014-01-01
Abstract Background: Low serum albumin concentration is a predictor of failure of source control for intra-abdominal infection. However, data on dynamics of albumin synthesis in these patients and to what extent these changes contribute to hypoalbuminemia are relatively scarce. We investigated in a group of patients with gastrointestinal fistula the dynamic response of liver albumin synthesis to intra-abdominal abscess and how these related to hypoalbuminemia and circulating endocrine hormone profiles. Methods: Eight gastrointestinal fistula patients scheduled to undergo percutaneous abscess sump drainage were enrolled prospectively to measure albumin synthesis rates at different stages of the inflammatory response (immediately after diagnosis and 7 d following sump drainage when clinical signs of intra-abdominal sepsis had been eradicated). Eight age-, sex-, and body mass index–matched intestinal fistula patients were studied as control patients. Consecutive arterial blood samples were drawn during a primed-constant infusion (priming dose: 4 micromol·kg−1, infusion rate: 6 micromol·kg−1·min−1) to determine the incorporation rate of L-[ring-2H5]-phenylalanine directly into plasma albumin using gas chromatography/mass spectrometry analysis. Results: Patients suffering from intra-abdominal infection had reduced plasma albumin and total plasma protein concentrations, compared with control patients. Albumin fractional synthesis rates in patients with intra-abdominal abscess were decreased, compared with those in the control group. When the source of infection was removed, albumin synthesis rates returned to control values, whereas albumin concentrations did not differ significantly from the corresponding concentrations in control subjects and patients with intra-abdominal abscess. Conclusion: Despite nutritional intervention, albumin synthesis rate is decreased in intestinal fistula patients with intra-abdominal abscess; albumin synthesis returns to control values during convalescence. PMID:24460539
Direct carrier-envelope phase control of an amplified laser system.
Balčiūnas, Tadas; Flöry, Tobias; Baltuška, Andrius; Stanislauskas, Tomas; Antipenkov, Roman; Varanavičius, Arūnas; Steinmeyer, Günter
2014-03-15
Direct carrier-envelope phase stabilization of an Yb:KGW MOPA laser system is demonstrated with a residual phase jitter reduced to below 100 mrad, which compares favorably with previous stabilization reports, both of amplified laser systems as well as of ytterbium-based oscillators. This novel stabilization scheme relies on a frequency synthesis scheme and a feed-forward approach. The direct stabilization of a sub-MHz frequency comb from a CPA amplifier not only reduces the phase noise but also greatly simplifies the stabilization setup.
NASA Technical Reports Server (NTRS)
Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance
2007-01-01
Volume I of this report presents a new method for synthesizing hybrid systems directly from design requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, fli ght dynamics and control. and formal logic. Major design goals are (1) system desi g n integrity based on proof of correctness at the design level, (2), significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.
NASA Technical Reports Server (NTRS)
Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance
2007-01-01
Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.
NASA Astrophysics Data System (ADS)
Lin, Tsung-Chih
2010-12-01
In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.
Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo
2017-09-01
The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Attitude guidance and simulation with animation of a land-survey satellite motion
NASA Astrophysics Data System (ADS)
Somova, Tatyana
2017-01-01
We consider problems of synthesis of the vector spline attitude guidance laws for a land-survey satellite and an in-flight support of the satellite attitude control system with the use of computer animation of its motion. We have presented the results on the efficiency of the developed algorithms.
Reck, Michael; Tomasch, Jürgen; Wagner-Döbler, Irene
2015-01-01
Two small quorum sensing (QS) peptides regulate competence in S. mutans in a cell density dependent manner: XIP (sigX inducing peptide) and CSP (competence stimulating peptide). Depending on the environmental conditions isogenic S. mutans cells can split into a competent and non-competent subpopulation. The origin of this population heterogeneity has not been experimentally determined and it is unknown how the two QS systems are connected. We developed a toolbox of single and dual fluorescent reporter strains and systematically knocked out key genes of the competence signaling cascade in the reporter strain backgrounds. By following signal propagation on the single cell level we discovered that the master regulator of competence, the alternative sigma factor SigX, directly controls expression of the response regulator for bacteriocin synthesis ComE. Consequently, a SigX binding motif (cin-box) was identified in the promoter region of comE. Overexpressing the genetic components involved in competence development demonstrated that ComRS represents the origin of bimodality and determines the modality of the downstream regulators SigX and ComE. Moreover these analysis showed that there is no direct regulatory link between the two QS signaling cascades. Competence is induced through a hierarchical XIP signaling cascade, which has no regulatory input from the CSP cascade. CSP exclusively regulates bacteriocin synthesis. We suggest renaming it mutacin inducing peptide (MIP). Finally, using phosphomimetic comE mutants we show that unimodal bacteriocin production is controlled posttranslationally, thus solving the puzzling observation that in complex media competence is observed in a subpopulation only, while at the same time all cells produce bacteriocins. The control of both bacteriocin synthesis and competence through the alternative sigma-factor SigX suggests that S. mutans increases its genetic repertoire via QS controlled predation on neighboring species in its natural habitat. PMID:26158727
Connecting the nucleolus to the cell cycle and human disease.
Tsai, Robert Y L; Pederson, Thoru
2014-08-01
Long known as the center of ribosome synthesis, the nucleolus is connected to cell cycle regulation in more subtle ways. One is a surveillance system that reacts promptly when rRNA synthesis or processing is impaired, halting cell cycle progression. Conversely, the nucleolus also acts as a first-responder to growth-related stress signals. Here we review emerging concepts on how these "infraribosomal" links between the nucleolus and cell cycle progression operate in both forward and reverse gears. We offer perspectives on how new cancer therapeutic designs that target this infraribosomal mode of cell growth control may shape future clinical progress. © FASEB.
High-pressure-assisted X-ray-induced damage as a new route for materials synthesis
Evlyukhin, Egor; Kim, Eunja; Goldberger, David; ...
2018-01-01
X-ray radiation induced damage has been known for decades and has largely been viewed as a tremendous nuisance; e.g., most X-ray-related studies of organic and inorganic materials suffer X-ray damage to varying degrees. Although, recent theoretical and experimental investigation of the response of simple chemical systems to X-rays offered better understanding of the mechanistic details of X-ray induced damage, the question about useful applicability of this technique is still unclear. Furthermore we experimentally demonstrate that by tuning pressure and X-ray energy, the radiation induced damage can be controlled and used for synthesis of novel materials.
Zhang, Zichun; Li, Yuanhe; Zhao, Dandan; He, Yingdong; Gong, Jianxian; Yang, Zhen
2017-01-26
The synthesis of strained polycyclic systems from readily available precursors with a minimum number of steps and with regio- and stereochemical control constitutes an important synthetic challenge. Herein, we report a tandem reaction comprising Co-TMTU (tetramethyl thiourea)-catalyzed Pauson-Khand (PK) and 6π-electrocyclization reactions for the formation of the highly strained core of presilphiperfolanols. The developed chemistry has been applied to the total syntheses of 4-epi-presilphiperfolan-8-ol and 7-epi-presilphiperfolan-1-ol. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.
1981-01-01
Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.
Unni, Mythreyi; Uhl, Amanda M; Savliwala, Shehaab; Savitzky, Benjamin H; Dhavalikar, Rohan; Garraud, Nicolas; Arnold, David P; Kourkoutis, Lena F; Andrew, Jennifer S; Rinaldi, Carlos
2017-02-28
Decades of research focused on size and shape control of iron oxide nanoparticles have led to methods of synthesis that afford excellent control over physical size and shape but comparatively poor control over magnetic properties. Popular synthesis methods based on thermal decomposition of organometallic precursors in the absence of oxygen have yielded particles with mixed iron oxide phases, crystal defects, and poorer than expected magnetic properties, including the existence of a thick "magnetically dead layer" experimentally evidenced by a magnetic diameter significantly smaller than the physical diameter. Here, we show how single-crystalline iron oxide nanoparticles with few defects and similar physical and magetic diameter distributions can be obtained by introducing molecular oxygen as one of the reactive species in the thermal decomposition synthesis. This is achieved without the need for any postsynthesis oxidation or thermal annealing. These results address a significant challenge in the synthesis of nanoparticles with predictable magnetic properties and could lead to advances in applications of magnetic nanoparticles.
Salgotra, Aprajita; Pan, Somnath
2018-05-01
This paper explores a two-level control strategy by blending local controller with centralized controller for the low frequency oscillations in a power system. The proposed control scheme provides stabilization of local modes using a local controller and minimizes the effect of inter-connection of sub-systems performance through a centralized control. For designing the local controllers in the form of proportional-integral power system stabilizer (PI-PSS), a simple and straight forward frequency domain direct synthesis method is considered that works on use of a suitable reference model which is based on the desired requirements. Several examples both on one machine infinite bus and multi-machine systems taken from the literature are illustrated to show the efficacy of the proposed PI-PSS. The effective damping of the systems is found to be increased remarkably which is reflected in the time-responses; even unstable operation has been stabilized with improved damping after applying the proposed controller. The proposed controllers give remarkable improvement in damping the oscillations in all the illustrations considered here and as for example, the value of damping factor has been increased from 0.0217 to 0.666 in Example 1. The simulation results obtained by the proposed control strategy are favourably compared with some controllers prevalent in the literature. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Advanced Materials and Processing for Drug Delivery: The Past and the Future
Zhang, Ying; Chan, Hon Fai; Leong, Kam W.
2012-01-01
Design and synthesis of efficient drug delivery systems are of vital importance for medicine and healthcare. Materials innovation and nanotechnology have synergistically fueled the advancement of drug delivery. Innovation in material chemistry allows the generation of biodegradable, biocompatible, environment-responsive, and targeted delivery systems. Nanotechnology enables control over size, shape and multi-functionality of particulate drug delivery systems. In this review, we focus on the materials innovation and processing of drug delivery systems and how these advances have shaped the past and may influence the future of drug delivery. PMID:23088863
Emerging Tools for Synthetic Genome Design
Lee, Bo-Rahm; Cho, Suhyung; Song, Yoseb; Kim, Sun Chang; Cho, Byung-Kwan
2013-01-01
Synthetic biology is an emerging discipline for designing and synthesizing predictable, measurable, controllable, and transformable biological systems. These newly designed biological systems have great potential for the development of cheaper drugs, green fuels, biodegradable plastics, and targeted cancer therapies over the coming years. Fortunately, our ability to quickly and accurately engineer biological systems that behave predictably has been dramatically expanded by significant advances in DNA-sequencing, DNA-synthesis, and DNA-editing technologies. Here, we review emerging technologies and methodologies in the field of building designed biological systems, and we discuss their future perspectives. PMID:23708771
Self-tuning control of attitude and momentum management for the Space Station
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.
1992-01-01
This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.
Controlled synthesis of titania using water-soluble titanium complexes: A review
NASA Astrophysics Data System (ADS)
Truong, Quang Duc; Dien, Luong Xuan; Vo, Dai-Viet N.; Le, Thanh Son
2017-07-01
The development of human society has led to the increase in energy and resources consumption as well as the arising problems of environmental damage and the toxicity to the human health. The development of novel synthesis method which tolerates utilization of toxic solvents and chemicals would fulfill the demand of the society for safer, softer, and environmental friendly technologies. For the past decades, a remarkable progress has been attained in the development of new water-soluble titanium complexes (WSTC) and their use for the synthesis of nanocrystalline titanium dioxide materials by aqueous solution-based approaches. The progress of synthesis of nanocrystalline titanium dioxide using such WSTCs is reviewed in this work. The key structural features responsible for the successfully controlled synthesis of TiO2 are discussed to provide guidelines for the morphology-controlled synthesis. Finally, this review ends with a summary and some perspectives on the challenges as well as new directions in this fascinating research.
Overview of computational control research at UT Austin
NASA Technical Reports Server (NTRS)
Bong, Wie
1989-01-01
An overview of current research activities at UT Austin is presented to discuss certain technical issues in the following areas: (1) Computer-Aided Nonlinear Control Design: In this project, the describing function method is employed for the nonlinear control analysis and design of a flexible spacecraft equipped with pulse modulated reaction jets. INCA program has been enhanced to allow the numerical calculation of describing functions as well as the nonlinear limit cycle analysis capability in the frequency domain; (2) Robust Linear Quadratic Gaussian (LQG) Compensator Synthesis: Robust control design techniques and software tools are developed for flexible space structures with parameter uncertainty. In particular, an interactive, robust multivariable control design capability is being developed for INCA program; and (3) LQR-Based Autonomous Control System for the Space Station: In this project, real time implementation of LQR-based autonomous control system is investigated for the space station with time-varying inertias and with significant multibody dynamic interactions.
Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen
2017-10-01
This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.
Jones, P H; Shakdher, S; Singh, P
2017-04-01
Salient findings and interpretations from the canimpact clinical cancer research study are visually represented in two synthesis maps for the purpose of communicating an integrated presentation of the study to clinical cancer researchers and policymakers. Synthesis maps integrate evidence and expertise into a visual narrative for knowledge translation and communication. A clinical system synthesis map represents the current Canadian primary care and cancer practice systems, proposed as a visual knowledge translation from the mixed-methods canimpact study to inform Canadian clinical research, policy, and practice discourses. Two synthesis maps, drawn together from multiple canimpact investigations and sources, were required to articulate critical differences between the clinical system and patient perspectives. The synthesis map of Canada-wide clinical cancer systems illustrates the relationships between primary care and the full cancer continuum. A patient-centred map was developed to represent the cancer (and primary care) journeys as experienced by breast and colorectal cancer patients.
JPRS report: Science and technology. Central Eurasia
NASA Astrophysics Data System (ADS)
1994-05-01
Translated articles cover the following topics: optimal systems to detect and classify moving objects; multiple identification of optical readings in multisensor information and measurement system; method of first integrals in synthesis of optimal control; study of the development of turbulence in the region of a break above a triangular wing; electroerosion machining in aviation engine construction; and cumulation of a flat shock wave in a tube by a thin parietal gas layer of lower density.
Parametric robust control and system identification: Unified approach
NASA Technical Reports Server (NTRS)
Keel, Leehyun
1994-01-01
Despite significant advancement in the area of robust parametric control, the problem of synthesizing such a controller is still a wide open problem. Thus, we attempt to give a solution to this important problem. Our approach captures the parametric uncertainty as an H(sub infinity) unstructured uncertainty so that H(sub infinity) synthesis techniques are applicable. Although the techniques cannot cope with the exact parametric uncertainty, they give a reasonable guideline to model the unstructured uncertainty that contains the parametric uncertainty. An additional loop shaping technique is also introduced to relax its conservatism.
Robust stabilization of the Space Station in the presence of inertia matrix uncertainty
NASA Technical Reports Server (NTRS)
Wie, Bong; Liu, Qiang; Sunkel, John
1993-01-01
This paper presents a robust H-infinity full-state feedback control synthesis method for uncertain systems with D11 not equal to 0. The method is applied to the robust stabilization problem of the Space Station in the face of inertia matrix uncertainty. The control design objective is to find a robust controller that yields the largest stable hypercube in uncertain parameter space, while satisfying the nominal performance requirements. The significance of employing an uncertain plant model with D11 not equal 0 is demonstrated.
Stochastic Control Synthesis of Systems with Structured Uncertainty
NASA Technical Reports Server (NTRS)
Padula, Sharon L. (Technical Monitor); Crespo, Luis G.
2003-01-01
This paper presents a study on the design of robust controllers by using random variables to model structured uncertainty for both SISO and MIMO feedback systems. Once the parameter uncertainty is prescribed with probability density functions, its effects are propagated through the analysis leading to stochastic metrics for the system's output. Control designs that aim for satisfactory performances while guaranteeing robust closed loop stability are attained by solving constrained non-linear optimization problems in the frequency domain. This approach permits not only to quantify the probability of having unstable and unfavorable responses for a particular control design but also to search for controls while favoring the values of the parameters with higher chance of occurrence. In this manner, robust optimality is achieved while the characteristic conservatism of conventional robust control methods is eliminated. Examples that admit closed form expressions for the probabilistic metrics of the output are used to elucidate the nature of the problem at hand and validate the proposed formulations.
Intelligent sensor in control systems for objects with changing thermophysical properties
NASA Astrophysics Data System (ADS)
Belousov, O. A.; Muromtsev, D. Yu; Belyaev, M. P.
2018-04-01
The control of heat devices in a wide temperature range given thermophysical properties of an object is a topical issue. Optimal control systems of electric furnaces have to meet strict requirements in terms of accuracy of production procedures and efficiency of energy consumption. The fulfillment of these requirements is possible only if the dynamics model describing adequately the processes occurring in the furnaces is used to calculate the optimal control actions. One of the types of electric furnaces is the electric chamber furnace intended for heat treatment of various materials at temperatures from thousands of degrees Celsius and above. To solve the above-mentioned problem and to determine its place in the system of energy-efficient control of dynamic modes in the electric furnace, we propose the concept of an intelligent sensor and a method of synthesizing variables on sets of functioning states. The use of synthesis algorithms for optimal control in real time ensures the required accuracy when operating under different conditions and operating modes of the electric chamber furnace.
[Calciotropic actions of parathyroid hormone and vitamin D-endocrine system].
Avila, Euclides; Barrera, David; Díaz, Lorenza
2007-01-01
Parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D [1,25-(OH)zD] participate in systemic regulation of calcium homeostasis through endocrine effects mediated via the specific receptors PTHR1 and VDR, expressed in bone, kidney, intestine and parathyroid glands. In bone, both hormones PTH and 1,25-(OH)2D promote calcium release into the circulation; however, they also have anabolic effects in this tissue. In kidney, PTH controls 1,25-(OH)2D synthesis, and together both hormones stimulate calcium reabsorption. The most important calciotropic action of 1,25-(OH)2D is stimulation of intestinal calcium absorption. In the parathyroid glands, 1,25-(OH)2D regulates PTH synthesis through a negative feedback mechanism, while modulating the gland growth. Finally, a general overview of the maternal adaptations regarding calcium homeostasis during pregnancy and lactation is presented.
The Role of Ontologies in Schema-based Program Synthesis
NASA Technical Reports Server (NTRS)
Bures, Tomas; Denney, Ewen; Fischer, Bernd; Nistor, Eugen C.
2004-01-01
Program synthesis is the process of automatically deriving executable code from (non-executable) high-level specifications. It is more flexible and powerful than conventional code generation techniques that simply translate algorithmic specifications into lower-level code or only create code skeletons from structural specifications (such as UML class diagrams). Key to building a successful synthesis system is specializing to an appropriate application domain. The AUTOBAYES and AUTOFILTER systems, under development at NASA Ames, operate in the two domains of data analysis and state estimation, respectively. The central concept of both systems is the schema, a representation of reusable computational knowledge. This can take various forms, including high-level algorithm templates, code optimizations, datatype refinements, or architectural information. A schema also contains applicability conditions that are used to determine when it can be applied safely. These conditions can refer to the initial specification, to intermediate results, or to elements of the partially-instantiated code. Schema-based synthesis uses AI technology to recursively apply schemas to gradually refine a specification into executable code. This process proceeds in two main phases. A front-end gradually transforms the problem specification into a program represented in an abstract intermediate code. A backend then compiles this further down into a concrete target programming language of choice. A core engine applies schemas on the initial problem specification, then uses the output of those schemas as the input for other schemas, until the full implementation is generated. Since there might be different schemas that implement different solutions to the same problem this process can generate an entire solution tree. AUTOBAYES and AUTOFILTER have reached the level of maturity where they enable users to solve interesting application problems, e.g., the analysis of Hubble Space Telescope images. They are large (in total around 100kLoC Prolog), knowledge intensive systems that employ complex symbolic reasoning to generate a wide range of non-trivial programs for complex application do- mains. Their schemas can have complex interactions, which make it hard to change them in isolation or even understand what an existing schema actually does. Adding more capabilities by increasing the number of schemas will only worsen this situation, ultimately leading to the entropy death of the synthesis system. The root came of this problem is that the domain knowledge is scattered throughout the entire system and only represented implicitly in the schema implementations. In our current work, we are addressing this problem by making explicit the knowledge from Merent parts of the synthesis system. Here; we discuss how Gruber's definition of an ontology as an explicit specification of a conceptualization matches our efforts in identifying and explicating the domain-specific concepts. We outline the dual role ontologies play in schema-based synthesis and argue that they address different audiences and serve different purposes. Their first role is descriptive: they serve as explicit documentation, and help to understand the internal structure of the system. Their second role is prescriptive: they provide the formal basis against which the other parts of the system (e.g., schemas) can be checked. Their final role is referential: ontologies also provide semantically meaningful "hooks" which allow schemas and tools to access the internal state of the program derivation process (e.g., fragments of the generated code) in domain-specific rather than language-specific terms, and thus to modify it in a controlled fashion. For discussion purposes we use AUTOLINEAR, a small synthesis system we are currently experimenting with, which can generate code for solving a system of linear equations, Az = b.
Bacterial cell-free expression technology to in vitro systems engineering and optimization.
Caschera, Filippo
2017-06-01
Cell-free expression system is a technology for the synthesis of proteins in vitro . The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.
Vetrini, Francesco; Auricchio, Alberto; Du, Jinyan; Angeletti, Barbara; Fisher, David E.; Ballabio, Andrea; Marigo, Valeria
2004-01-01
Melanogenesis is the process that regulates skin and eye pigmentation. Albinism, a genetic disease causing pigmentation defects and visual disorders, is caused by mutations in genes controlling either melanin synthesis or melanosome biogenesis. Here we show that a common transcriptional control regulates both of these processes. We performed an analysis of the regulatory region of Oa1, the murine homolog of the gene that is mutated in the X-linked form of ocular albinism, as Oa1's function affects melanosome biogenesis. We demonstrated that Oa1 is a target of Mitf and that this regulatory mechanism is conserved in the human gene. Tissue-specific control of Oa1 transcription lies within a region of 617 bp that contains the E-box bound by Mitf. Finally, we took advantage of a virus-based system to assess tissue specificity in vivo. To this end, a small fragment of the Oa1 promoter was cloned in front of a reporter gene in an adeno-associated virus. After we injected this virus into the subretinal space, we observed reporter gene expression specifically in the retinal pigment epithelium, confirming the cell-specific expression of the Oa1 promoter in the eye. The results obtained with this viral system are a preamble to the development of new gene delivery approaches for the treatment of retinal pigment epithelium defects. PMID:15254223
Increased Striatal Dopamine Synthesis Capacity in Gambling Addiction.
van Holst, Ruth J; Sescousse, Guillaume; Janssen, Lieneke K; Janssen, Marcel; Berry, Anne S; Jagust, William J; Cools, Roshan
2018-06-15
The hypothesis that dopamine plays an important role in the pathophysiology of pathological gambling is pervasive. However, there is little to no direct evidence for a categorical difference between pathological gamblers and healthy control subjects in terms of dopamine transmission in a drug-free state. Here we provide evidence for this hypothesis by comparing dopamine synthesis capacity in the dorsal and ventral parts of the striatum in 13 pathological gamblers and 15 healthy control subjects. This was achieved using [ 18 F]fluoro-levo-dihydroxyphenylalanine dynamic positron emission tomography scans and striatal regions of interest that were hand-drawn based on visual inspection of individual structural magnetic resonance imaging scans. Our results show that dopamine synthesis capacity was increased in pathological gamblers compared with healthy control subjects. Dopamine synthesis was 16% higher in the caudate body, 17% higher in the dorsal putamen, and 17% higher in the ventral striatum in pathological gamblers compared with control subjects. Moreover, dopamine synthesis capacity in the dorsal putamen and caudate head was positively correlated with gambling distortions in pathological gamblers. Taken together, these results provide empirical evidence for increased striatal dopamine synthesis in pathological gambling. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Baila-Rueda, Lucía; Cenarro, Ana; Lamiquiz-Moneo, Itziar; Perez-Calahorra, Sofía; Bea, Ana M; Marco-Benedí, Victoria; Jarauta, Estíbaliz; Mateo-Gallego, Rocío; Civeira, Fernando
2018-03-01
Primary hypercholesterolemia of genetic origin, negative for mutations in LDLR, APOB, PCSK9 and APOE genes (non-FH GH), and familial combined hyperlipidemia (FCHL) are polygenic genetic diseases that occur with hypercholesterolemia, and both share a very high cardiovascular risk. In order to better characterize the metabolic abnormalities associated with these primary hypercholesterolemias, we used noncholesterol sterols, as markers of cholesterol metabolism, to determine their potential differences. Hepatic cholesterol synthesis markers (desmosterol and lanosterol) and intestinal cholesterol absorption markers (sitosterol and campesterol) were determined in non-FH GH (n=200), FCHL (n=100) and genetically defined heterozygous familial hypercholesterolemia subjects (FH) (n=100) and in normolipidemic controls (n=100). FCHL subjects had lower cholesterol absorption and higher cholesterol synthesis than non-FH GH, FH and controls (P<.001). When noncholesterol sterols were adjusted by body mass index (BMI), FCHL subjects had higher cholesterol synthesis than non-FG GH, FH and controls (P<.001). An increase in BMI was accompanied by increased cholesterol synthesis and decreased cholesterol absorption in non-FH GH, FH and controls. However, this association between BMI and cholesterol synthesis was not observed in FCHL. Non-high-density-lipoprotein cholesterol showed a positive correlation with cholesterol synthesis markers similar to that of BMI in non-FH GH, FH and normolipemic controls, but there was no correlation in FCHL. These results suggest that FCHL and non-FH GH have different mechanisms of production. Cholesterol synthesis and absorption are dependent of BMI in non-FH GH, but cholesterol synthesis is increased as a pathogenic mechanism in FCHL independently of age, gender, APOE and BMI. Copyright © 2017 Elsevier Inc. All rights reserved.
Controlled Synthesis and Utilization of Metal and Oxide Hybrid Nanoparticles
NASA Astrophysics Data System (ADS)
Crane, Cameron
This dissertation reports the development of synthetic methods concerning rationally-designed, hybrid, and multifunctional nanomaterials. These methods are based on a wet chemical, solution phase approach that utilizes the knowledge of synthetic organic and inorganic chemistry to generate building blocks in solution for the growth of nanocrystals and hybrid nanostructures. This work builds on the prior knowledge of shape-controlled synthesis of noble metal nanocrystals and expands into the challenging realm of the more reactive first row transition metals. Specifically, a microemulsion sol-gel method was developed to synthesize Au-SiO2 dimers as precursors for the synthesis of segmented heterostructures of noble metals that can be used for catalysis. This microemulsion sol-gel method was modified to synthesize an aqueous suspension of oxidation-resistant Cu-SiO2 core-shell nanoparticles that can be used for sensing and catalysis. A thermal decomposition approach was developed, wherein zero-valence metal precursor complexes in the presence of seed nanoparticles produced metal-metal oxide core-shell structures with well-controlled shell thickness. This method was demonstrated on AuCu 3-Fe3O4, AuCu3-NiO, and AuCu3 -MnO core-shell systems. Switching the core from AuCu3 alloy to pure Cu, this method could extend to Cu-Fe3O4 and Cu-MnO systems. Further etching the Cu core in these core-shell structures led to the formation of the hollow metal oxides which provides a versatile route to hollow nanostructures of metal oxides. This work develops the synthetic library of tools for the production of hybrid nanostructures with multiple functionalities.
Simplified adaptive control of an orbiting flexible spacecraft
NASA Astrophysics Data System (ADS)
Maganti, Ganesh B.; Singh, Sahjendra N.
2007-10-01
The paper presents the design of a new simple adaptive system for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexible appendages. A moment generating device located on the central rigid body of the spacecraft is used for the attitude control. It is assumed that the system parameters are unknown and the truncated model of the spacecraft has finite but arbitrary dimension. In addition, only the pitch angle and its derivative are measured and elastic modes are not available for feedback. The control output variable is chosen as the linear combination of the pitch angle and the pitch rate. Exploiting the hyper minimum phase nature of the spacecraft, a simple adaptive control law is derived for the pitch angle control and elastic mode stabilization. The adaptation rule requires only four adjustable parameters and the structure of the control system does not depend on the order of the truncated spacecraft model. For the synthesis of control system, the measured output error and the states of a third-order command generator are used. Simulation results are presented which show that in the closed-loop system adaptive output regulation is accomplished in spite of large parameter uncertainties and disturbance input.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Newsom, J. R.; Abel, I.
1981-01-01
A method of synthesizing reduced-order optimal feedback control laws for a high-order system is developed. A nonlinear programming algorithm is employed to search for the control law design variables that minimize a performance index defined by a weighted sum of mean-square steady-state responses and control inputs. An analogy with the linear quadractic Gaussian solution is utilized to select a set of design variables and their initial values. To improve the stability margins of the system, an input-noise adjustment procedure is used in the design algorithm. The method is applied to the synthesis of an active flutter-suppression control law for a wind tunnel model of an aeroelastic wing. The reduced-order controller is compared with the corresponding full-order controller and found to provide nearly optimal performance. The performance of the present method appeared to be superior to that of two other control law order-reduction methods. It is concluded that by using the present algorithm, nearly optimal low-order control laws with good stability margins can be synthesized.
Host-guest interaction of ZnBDC-MOF + doxorubicin: A theoretical and experimental study
NASA Astrophysics Data System (ADS)
Vasconcelos, Iane B.; Wanderley, Kaline A.; Rodrigues, Nailton M.; da Costa, Nivan B.; Freire, Ricardo O.; Junior, Severino A.
2017-03-01
The incorporation of drugs in biodegradable polymeric particles is one of many processes that controllably and significantly increase their release and action. In this paper, we describe the synthesis and physicochemical characterization of ZnBDC-MOF + doxorubicin (DOXO@ZnBDC) and the system's effectiveness in the sustained release of the drug doxorubicin. An experimental and theoretical study is presented of the interaction between the [Zn(BDC)(H2O)2]n MOF and the drug doxorubicin (DOXO). The synthesis was characterized by elemental analysis and X-ray powder diffraction (XRPD). The experimental incorporation was accomplished and analyzed by Fourier transform infrared spectroscopy (FTIR), XRPD and UV-Vis (ultraviolet-visible) spectrophotometry. Based on an analysis of the doxorubicin release profile, our results suggest that the drug delivery system showed slower release than other systems under development. Studies of cytotoxicity by the MTT method showed good results for the system developed with antineoplastic doxorubicin, and together with the other results of this study, suggest the successful development of a MOF-based drug delivery system.
NASA Astrophysics Data System (ADS)
Singh, R. K.; Kim, W.-S.; Ollinger, M.; Craciun, V.; Coowantwong, I.; Hochhaus, G.; Koshizaki, N.
2002-09-01
There is an urgent need to develop controlled drug release systems for the delivery of drugs via the pulmonary route. A key issue in pulmonary dry delivery systems is to reduce the amount of biodegradable polymers that are added to control the drug release. We have synthesized nanofunctionalized drug particles using the pulsed laser deposition on particles (PLDP) (e.g. budesonide) in an effort to control the architecture and thickness of a nanoscale polymer coating on the drug particles. In vitro studies indicated that the dry half-life release for budesonide can be enhanced from 1.2 to over 60 min by a nanoscale coating on the drug particle. Extensive studies have been conducted to characterize the bonding and composition of the polymer film deposited on drug particles.
Optimization of removal function in computer controlled optical surfacing
NASA Astrophysics Data System (ADS)
Chen, Xi; Guo, Peiji; Ren, Jianfeng
2010-10-01
The technical principle of computer controlled optical surfacing (CCOS) and the common method of optimizing removal function that is used in CCOS are introduced in this paper. A new optimizing method time-sharing synthesis of removal function is proposed to solve problems of the removal function being far away from Gaussian type and slow approaching of the removal function error that encountered in the mode of planet motion or translation-rotation. Detailed time-sharing synthesis of using six removal functions is discussed. For a given region on the workpiece, six positions are selected as the centers of the removal function; polishing tool controlled by the executive system of CCOS revolves around each centre to complete a cycle in proper order. The overall removal function obtained by the time-sharing process is the ratio of total material removal in six cycles to time duration of the six cycles, which depends on the arrangement and distribution of the six removal functions. Simulations on the synthesized overall removal functions under two different modes of motion, i.e., planet motion and translation-rotation are performed from which the optimized combination of tool parameters and distribution of time-sharing synthesis removal functions are obtained. The evaluation function when optimizing is determined by an approaching factor which is defined as the ratio of the material removal within the area of half of the polishing tool coverage from the polishing center to the total material removal within the full polishing tool coverage area. After optimization, it is found that the optimized removal function obtained by time-sharing synthesis is closer to the ideal Gaussian type removal function than those by the traditional methods. The time-sharing synthesis method of the removal function provides an efficient way to increase the convergence speed of the surface error in CCOS for the fabrication of aspheric optical surfaces, and to reduce the intermediate- and high-frequency error.
Sensorless H∞ speed-tracking synthesis for surface-mount permanent magnet synchronous motor.
Ramírez-Villalobos, Ramón; Aguilar, Luis T; Coria, Luis N
2017-03-01
In this paper, a sensorless speed tracking control is proposed for a surface-mount permanent magnet synchronous motor by using a nonlinear H ∞ -controller via stator currents measurements for feedback. An output feedback nonlinear H ∞ -controller was designed such that the undisturbed system is uniformly asymptotically stable around the desired speed reference, while also the effects of external vanishing and non-vanishing disturbances, noise, and input backlash were attenuated locally. The rotor position was calculated from the causal dynamic output feedback compensator and from the desired speed reference. The existence of the proper solutions of the perturbed differential Riccati equations ensures stabilizability and detectability of the control system. The efficiency of the proposed sensorless controller was supported by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
The Effect of Gravity on the Combustion Synthesis of Porous Biomaterials
NASA Technical Reports Server (NTRS)
Castillo, M.; Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.
2003-01-01
Production of highly porous composite materials by traditional materials processing is limited by difficult processing techniques. This work investigates the use of self propagating high temperature (combustion) synthesis (SHS) to create porous tricalcium phosphate (Ca3(PO4)2), TiB-Ti, and NiTi in low and microgravity. Combustion synthesis provides the ability to use set processing parameters to engineer the required porous structure suitable for bone repair or replacement. The processing parameters include green density, particle size, gasifying agents, composition, and gravity. The advantage of the TiB-Ti system is the high level of porosity achieved together with a modulus that can be controlled by both composition (TiB-Ti) and porosity. At the same time, NiTi exhibits shape memory properties. SHS of biomaterials allows the engineering of required porosity coupled with resorbtion properties and specific mechanical properties into the composite materials to allow for a better biomaterial.
Sun, Zhijian; Zhang, Guoqing; Lu, Yu; Zhang, Weidong
2018-01-01
This paper studies the leader-follower formation control of underactuated surface vehicles with model uncertainties and environmental disturbances. A parameter estimation and upper bound estimation based sliding mode control scheme is proposed to solve the problem of the unknown plant parameters and environmental disturbances. For each of these leader-follower formation systems, the dynamic equations of position and attitude are analyzed using coordinate transformation with the aid of the backstepping technique. All the variables are guaranteed to be uniformly ultimately bounded stable in the closed-loop system, which is proven by the distribution design Lyapunov function synthesis. The main advantages of this approach are that: first, parameter estimation based sliding mode control can enhance the robustness of the closed-loop system in presence of model uncertainties and environmental disturbances; second, a continuous function is developed to replace the signum function in the design of sliding mode scheme, which devotes to reduce the chattering of the control system. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Modeling and Analysis of Power Processing Systems (MAPPS), initial phase 2
NASA Technical Reports Server (NTRS)
Yu, Y.; Lee, F. C.; Wangenheim, H.; Warren, D.
1977-01-01
The overall objective of the program is to provide the engineering tools to reduce the analysis, design, and development effort, and thus the cost, in achieving the required performances for switching regulators and dc-dc converter systems. The program was both tutorial and application oriented. Various analytical methods were described in detail and supplemented with examples, and those with standardization appeals were reduced into computer-based subprograms. Major program efforts included those concerning small and large signal control-dependent performance analysis and simulation, control circuit design, power circuit design and optimization, system configuration study, and system performance simulation. Techniques including discrete time domain, conventional frequency domain, Lagrange multiplier, nonlinear programming, and control design synthesis were employed in these efforts. To enhance interactive conversation between the modeling and analysis subprograms and the user, a working prototype of the Data Management Program was also developed to facilitate expansion as future subprogram capabilities increase.
A class of stabilizing controllers for flexible multibody systems
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.; Kelkar, Atul G.; Maghami, Peiman G.
1995-01-01
The problem of controlling a class of nonlinear multibody flexible space systems consisting of a flexible central body to which a number of articulated appendages are attached is considered. Collocated actuators and sensors are assumed, and global asymptotic stability of such systems is established under a nonlinear dissipative control law. The stability is shown to be robust to unmodeled dynamics and parametric uncertainties. For a special case in which the attitude motion of the central body is small, the system, although still nonlinear, is shown to be stabilized by linear dissipative control laws. Two types of linear controllers are considered: static dissipative (constant gain) and dynamic dissipative. The static dissipative control law is also shown to provide robust stability in the presence of certain classes of actuator and sensor nonlinearities and actuator dynamics. The results obtained for this special case can also be readily applied for controlling single-body linear flexible space structures. For this case, a synthesis technique for the design of a suboptimal dynamic dissipative controller is also presented. The results obtained in this paper are applicable to a broad class of multibody and single-body systems such as flexible multilink manipulators, multipayload space platforms, and space antennas. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems.
Harnessing Intracellular Biochemical Pathways for In Vitro Synthesis of Designer Tellurium Nanorods.
Xiong, Ling-Hong; Cui, Ran; Zhang, Zhi-Ling; Tu, Jia-Wei; Shi, Yun-Bo; Pang, Dai-Wen
2015-10-28
Synthesizing nanomaterials of desired properties is a big challenge, which requires extremely harsh conditions and/or use of toxic materials. More recently developed in vivo methods have brought a different set of problems such as separation and purification of nanomaterials made in vivo. Here, a novel approach that harnesses cellular pathways for in vitro synthesis of high-quality tellurium nanorods with tunable lengths and optical properties is reported. It is first demonstrated that in vivo biochemical pathways could be used to synthesize Te nanorods via the intracellular reduction of TeO3(2-) in living Staphylococcus aureus cells. The pathways to set up a quasi-biological system for Te precursor formation are then utilized, which could further synthesize Te nanorods in vitro. This allows to successfully synthesize in vitro, under routine laboratory conditions, Te nanorods with uniform and tunable lengths, ranging from about 10 to 200 nm, and controllable optical properties with high molar extinction coefficients. The approach here should open new avenues for controllable, facile, and efficient synthesis of designer nanomaterials for diverse industrial and biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Meza-Basso, Luis; Alberdi, Miren; Raynal, Monique; Ferrero-Cadinanos, Maria-Luz; Delseny, Michel
1986-01-01
Changes induced by cold treatment in young rapeseed (Brassica napus) seedlings were investigated at the molecular level. Following germination at 18°C for 48 hours, one half of the seedlings was transferred to 0°C for another 48 hour period, the other half being kept at 18°C as a control. Newly synthesized proteins were labeled for the last 6 hours of incubation with [35S]methionine. The different polypeptides were separated by two-dimensional electrophoresis in polyacrylamide gels. Newly synthesized proteins were revealed by fluorography. Protein synthesis clearly continues at 0°C and some polypeptides preferentially accumulate at this temperature. On the other hand, synthesis of several others is repressed while many are insensitive to cold treatment. Similar changes are also observed when mRNA is prepared from cold treated seedlings, translated in vitro in a reticulocyte cell free system and compared with the products of mRNA extracted from control samples. Among the genes which are repressed we identified the small subunit of ribulose 1,6-bisphosphate carboxylase. These changes are also detectable after shorter treatments. Images Fig. 1 Fig. 2 Fig. 3 PMID:16665102
The Regulatory Networks That Control Clostridium difficile Toxin Synthesis
Martin-Verstraete, Isabelle; Peltier, Johann; Dupuy, Bruno
2016-01-01
The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection. PMID:27187475
Mikami, Satoshi; Kobayashi, Tominari; Machida, Kodai; Masutani, Mamiko; Yokoyama, Shigeyuki; Imataka, Hiroaki
2010-07-01
Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.
Digital microfluidics – a new paradigm for radiochemistry
Keng, Pei Yuin; van Dam, R. Michael
2016-01-01
The emerging technology of digital microfluidics is opening up the possibility to perform radiochemistry at the microliter scale to produce tracers for positron emission tomography (PET) labeled with fluorine-18 or other isotopes. Working at this volume scale not only reduces reagent costs, but also improves specific activity (SA) by reduction of contamination by the stable isotope. This technology could provide a practical means to routinely prepare high SA tracers for applications such as neuroimaging, and could make it possible to routinely achieve high SA using synthesis strategies such as isotopic exchange. Reagent droplets are controlled electronically, providing high reliability, a compact control system, and flexibility for diverse syntheses with a single chip design. The compact size may enable the development of a self-shielded synthesizer that does not require a hot cell. This article reviews the progress of this technology and its application to the synthesis of PET tracers. PMID:26650206
Generation of single-cycle mid-infrared pulses via coherent synthesis.
Ma, Fen; Liu, Hongjun; Huang, Nan; Sun, Qibing
2012-12-17
A new approach for the generation of single-cycle mid-infrared pulses without complicated control systems is proposed, which is based on direct coherent synthesis of two idlers generated by difference frequency generation (DFG) processes. It is found that the waveform of synthesized pulses is mainly determined by the spectra superposition, the carrier-envelope phase (CEP) difference, the relative timing and the chirp ratio between the idlers. The influences of these parameters on the synthesized waveform are also numerically calculated and analyzed via second-order autocorrelation, which offers general guidelines for the waveform optimization. The single-cycle synthesized mid-infrared pulses, which are centered at 4233 nm with the spectrum spanning from 3000 nm to 7000 nm, are achieved by carefully optimizing these parameters. The single-cycle mid-infrared laser source presents the possibility of investigating and controlling the strong field light-matter interaction.
Recent Developments on Autonomous Corrosion Protection Through Encapsulation
NASA Technical Reports Server (NTRS)
Li, W.; Buhrow, J. W.; Calle, L. M.; Gillis, M.; Blanton, M.; Hanna, J.; Rawlins, J.
2015-01-01
This paper concerns recent progress in the development of a multifunctional smart coating, based on microencapsulation, for the autonomous detection and control of corrosion. Microencapsulation has been validated and optimized to incorporate desired corrosion control functionalities, such as early corrosion detection and inhibition, through corrosion-initiated release of corrosion indicators and inhibitors, as well as self-healing agent release triggered by mechanical damage. While proof-of-concept results have been previously reported, more recent research and development efforts have concentrated on improving coating compatibility and synthesis procedure scalability, with a targeted goal of obtaining easily dispersible pigment-grade type microencapsulated materials. The recent progress has resulted in the development of pH-sensitive microparticles as a corrosion-triggered delivery system for corrosion indicators and inhibitors. The synthesis and early corrosion indication results obtained with coating formulations that incorporate these microparticles are reported. The early corrosion indicating results were obtained with color changing and with fluorescent indicators.
Hayashi, Nobuyoshi; Sugawara, Tohru; Shintani, Motoaki; Kato, Shinji
1989-01-01
A versatile automated apparatus, equipped with an artificial intelligence has been developed which may be used to prepare and isolate a wide variety of compounds. The prediction of the optimum reaction conditions and the reaction control in real time, are accomplished using novel kinetic equations and substituent effects in an artificial intelligence software which has already reported [1]. This paper deals with the design and construction of the fully automated system, and its application to the synthesis of a substituted N-(carboxyalkyl)amino acid. The apparatus is composed of units for perfoming various tasks, e.g. reagent supply, reaction, purification and separation, each linked to a control system. All synthetic processes including washing and drying of the apparatus after each synthetic run were automatically performed from the mixing of the reactants to the isolation of the products as powders with purities of greater than 98%. The automated apparatus has been able to run for 24 hours per day, and the average rate of synthesis of substituted N-(carboxyalkyl)amino acids has been three compounds daily. The apparatus is extremely valuable for synthesizing many derivatives of one particular compound structure. Even if the chemical yields are low under the optimum conditions, it is still possible to obtain a sufficient amount of the desired product by repetition of the reaction. Moreover it was possible to greatly reduce the manual involvement of the many syntheses which are a necessary part of pharmaceutical research. PMID:18924679
Controlled droplet microfluidic systems for multistep chemical and biological assays.
Kaminski, T S; Garstecki, P
2017-10-16
Droplet microfluidics is a relatively new and rapidly evolving field of science focused on studying the hydrodynamics and properties of biphasic flows at the microscale, and on the development of systems for practical applications in chemistry, biology and materials science. Microdroplets present several unique characteristics of interest to a broader research community. The main distinguishing features include (i) large numbers of isolated compartments of tiny volumes that are ideal for single cell or single molecule assays, (ii) rapid mixing and negligible thermal inertia that all provide excellent control over reaction conditions, and (iii) the presence of two immiscible liquids and the interface between them that enables new or exotic processes (the synthesis of new functional materials and structures that are otherwise difficult to obtain, studies of the functions and properties of lipid and polymer membranes and execution of reactions at liquid-liquid interfaces). The most frequent application of droplet microfluidics relies on the generation of large numbers of compartments either for ultrahigh throughput screens or for the synthesis of functional materials composed of millions of droplets or particles. Droplet microfluidics has already evolved into a complex field. In this review we focus on 'controlled droplet microfluidics' - a portfolio of techniques that provide convenient platforms for multistep complex reaction protocols and that take advantage of automated and passive methods of fluid handling on a chip. 'Controlled droplet microfluidics' can be regarded as a group of methods capable of addressing and manipulating droplets in series. The functionality and complexity of controlled droplet microfluidic systems can be positioned between digital microfluidics (DMF) addressing each droplet individually using 2D arrays of electrodes and ultrahigh throughput droplet microfluidics focused on the generation of hundreds of thousands or even millions of picoliter droplets that cannot be individually addressed by their location on a chip.
Adaptive Control Model Reveals Systematic Feedback and Key Molecules in Metabolic Pathway Regulation
Moffitt, Richard A.; Merrill, Alfred H.; Wang, May D.
2011-01-01
Abstract Robust behavior in metabolic pathways resembles stabilized performance in systems under autonomous control. This suggests we can apply control theory to study existing regulation in these cellular networks. Here, we use model-reference adaptive control (MRAC) to investigate the dynamics of de novo sphingolipid synthesis regulation in a combined theoretical and experimental case study. The effects of serine palmitoyltransferase over-expression on this pathway are studied in vitro using human embryonic kidney cells. We report two key results from comparing numerical simulations with observed data. First, MRAC simulations of pathway dynamics are comparable to simulations from a standard model using mass action kinetics. The root-sum-square (RSS) between data and simulations in both cases differ by less than 5%. Second, MRAC simulations suggest systematic pathway regulation in terms of adaptive feedback from individual molecules. In response to increased metabolite levels available for de novo sphingolipid synthesis, feedback from molecules along the main artery of the pathway is regulated more frequently and with greater amplitude than from other molecules along the branches. These biological insights are consistent with current knowledge while being new that they may guide future research in sphingolipid biology. In summary, we report a novel approach to study regulation in cellular networks by applying control theory in the context of robust metabolic pathways. We do this to uncover potential insight into the dynamics of regulation and the reverse engineering of cellular networks for systems biology. This new modeling approach and the implementation routines designed for this case study may be extended to other systems. Supplementary Material is available at www.liebertonline.com/cmb. PMID:21314456
Fillingame, R H; Jorstad, C M; Morris, D R
1975-01-01
There are large increases in cellular levels of the polyamines spermidine and spermine in lymphocytes induced to transform by concanavalin A. The anti-leukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) blocks synthesis of these polyamines by inhibiting S-adenosylmethionine decarboxylase. Previous results showed that when cells are activated in the presence of MGBG the synthesis and processing of RNA, as well as protein synthesis, proceed as in the absence of the drug. In contrast, the incorporation of [methyl-3H]thymidine into DNA and the rate of entry of the cells into mitosis are inhibited by 60% in the presence of MGBG. Several experiments suggest that MGBG inhibits cell proliferation by directly blocking polyamine synthesis and not by an unrelated pharmacological effect: (1) the inhibitory action of MGBG is reversed by exogenously added spermidine or spermine; (2) inhibition of DNA synthesis by MGBG shows the same dose-response curve as does inhibition of spermidine and spermine synthesis; and (3) if MGBG is added to cells which have been allowed to accumulate their maximum complement of polyamines, there is no inhibition of thymidine incorporation. MGBG-treated and control cultures initiate DNA synthesis at the same time and show the same percentage of labeled cells by autoradiography. Therefore, it appears that in the absence of increased cellular levels of polyamines, lymphocytes progress normally from G0 through G1 and into S-phase. Furthermore, these experiments suggest that the increased levels of spermidine and spermine generally seen in rapidly proliferating eukaryotic systems are necessary for enhanced rates of DNA replication. PMID:1060087
NASA Technical Reports Server (NTRS)
Craig, R. R., Jr.
1985-01-01
A component mode synthesis method for damped structures was developed and modal test methods were explored which could be employed to determine the relevant parameters required by the component mode synthesis method. Research was conducted on the following topics: (1) Development of a generalized time-domain component mode synthesis technique for damped systems; (2) Development of a frequency-domain component mode synthesis method for damped systems; and (3) Development of a system identification algorithm applicable to general damped systems. Abstracts are presented of the major publications which have been previously issued on these topics.
Han, Longtao; Irle, Stephan; Nakai, Hiromi
2018-01-01
We performed nanosecond timescale computer simulations of clusterization and agglomeration processes of boron nitride (BN) nanostructures in hot, high pressure gas, starting from eleven different atomic and molecular precursor systems containing boron, nitrogen and hydrogen at various temperatures from 1500 to 6000 K. The synthesized BN nanostructures self-assemble in the form of cages, flakes, and tubes as well as amorphous structures. The simulations facilitate the analysis of chemical dynamics and we are able to predict the optimal conditions concerning temperature and chemical precursor composition for controlling the synthesis process in a high temperature gas volume, at high pressure. We identify the optimal precursor/temperature choices that lead to the nanostructures of highest quality with the highest rate of synthesis, using a novel parameter of the quality of the synthesis (PQS). Two distinct mechanisms of BN nanotube growth were found, neither of them based on the root-growth process. The simulations were performed using quantum-classical molecular dynamics (QCMD) based on the density-functional tight-binding (DFTB) quantum mechanics in conjunction with a divide-and-conquer (DC) linear scaling algorithm, as implemented in the DC-DFTB-K code, enabling the study of systems as large as 1300 atoms in canonical NVT ensembles for 1 ns time. PMID:29780513
Berte, C; Sels, A
1979-04-17
A mutant of Saccharomyces cerevisiae which displays catalase activity when grown under strictly anaerobic conditions has been selected on solid media. Although some preformed holoenzyme has accumulated in anaerobic cells, a sharp increase of activity is still measured during adaptation to oxygen in glucose-buffer; however, a striking difference with the wild-type strain is that in the mutant, catalase formation is observed in the presence of cycloheximide that totally inhibits cytoplasmic translation. It is concluded that kat 80 mutant has lost the regulatory control by oxygen of apocatalase synthesis; the later precursor, characterized as apocatalase synthesis; the latter precursor, characterized as apocatalase T, is thought to be activated in vivo, under aerobic conditions, by inclusion of prosthetic group. Regulation of enzyme synthesis by catabolite repression (glucose erfect) persists, unmodified by reference to the wild-type parental strain. Mutation kat 80 specifically hits catalase anabolism, as no significant variations were observed for the edification of the respiratory system and (apo)cytochrome c peroxidase production. Genetic analysis shows that kat 80 phenotype, recessive in heterozygotes, results from a single nuclear mutation.
Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants
Liang, Yan; Richardson, Sarah; Yan, Jingwei; ...
2017-01-17
Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less
Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Yan; Richardson, Sarah; Yan, Jingwei
Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less
Casper, Andrew; Liu, Dalong; Ebbini, Emad S
2012-01-01
A system for the realtime generation and control of multiple-focus ultrasound phased-array heating patterns is presented. The system employs a 1-MHz, 64-element array and driving electronics capable of fine spatial and temporal control of the heating pattern. The driver is integrated with a realtime 2-D temperature imaging system implemented on a commercial scanner. The coordinates of the temperature control points are defined on B-mode guidance images from the scanner, together with the temperature set points and controller parameters. The temperature at each point is controlled by an independent proportional, integral, and derivative controller that determines the focal intensity at that point. Optimal multiple-focus synthesis is applied to generate the desired heating pattern at the control points. The controller dynamically reallocates the power available among the foci from the shared power supply upon reaching the desired temperature at each control point. Furthermore, anti-windup compensation is implemented at each control point to improve the system dynamics. In vitro experiments in tissue-mimicking phantom demonstrate the robustness of the controllers for short (2-5 s) and longer multiple-focus high-intensity focused ultrasound exposures. Thermocouple measurements in the vicinity of the control points confirm the dynamics of the temperature variations obtained through noninvasive feedback. © 2011 IEEE
Alcohol synthesis in a high-temperature slurry reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, G.W.; Marquez, M.A.; McCutchen, M.S.
1995-12-31
The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system canmore » be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.« less
Particulate Matter Resuspension in Mississippi Bight Evaluated with CONCORDE's Synthesis Model
NASA Astrophysics Data System (ADS)
O'Brien, S. J.; Quas, L. M.; Miles, T. N.; Pan, C.; Cambazoglu, M. K.; Soto Ramos, I. M.; Greer, A. T.; Church, I.; Wiggert, J. D.
2017-12-01
The CONsortium for oil spill exposure pathways in COastal River-Dominated Ecosystems (CONCORDE) was established to investigate the complex fine-scale biological, chemical and physical interactions in a marine system controlled by pulsed-river plume dynamics. During CONCORDE's spring 2016 field campaign, the In Situ Ichthyoplankton Imaging System (ISIIS) on the R/V Point Sur and the Scanfish on the R/V Pelican comprehensively characterized the physical and biological structure in the region. Increased suspended particulate matter was observed by the ISIIS, with concentrations at depth sufficient to completely occlude the in situ images of planktonic organisms. Data was also collected on the continental shelf during the spring cruise by the RU31 glider in the proximity of the Mississippi River Delta, east of the ISIIS / Scanfish transects. Backscatter and salinity observed by the Scanfish and glider showed elevated suspended particulate matter and increased salinity, suggesting a linkage to shoreward advection from the continental shelf of oceanic waters that are sufficiently energetic to drive sediment resuspension. As part of the CONCORDE research effort, a four-dimensional biogeochemical/lower trophic level synthesis model for Mississippi Sound and Bight has been developed, based on the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. This study utilizes CONCORDE's synthesis model to investigate the physical forcing mechanisms affecting the increased suspended particulate matter concentration observed in the Mississippi Bight during spring 2016, and advection pathways between estuarine and shelf waters in the northern Gulf of Mexico. The results show that episodic, advection-driven resuspension is a critical aspect controlling suspended sediment distributions in Mississippi Bight, which has implications for observed spatio-temporal patterns of planktonic species.
Wang, Wei; Lester, John M; Amorosa, Anthony E; Chance, Deborah L; Mossine, Valeri V; Mawhinney, Thomas P
2015-06-19
Synthetic glycopolymers are instrumental and versatile tools used in various biochemical and biomedical research fields. An example of a facile and efficient synthesis of well-controlled fluorescent statistical glycopolymers using reversible addition-fragmentation chain-transfer (RAFT)-based polymerization is demonstrated. The synthesis starts with the preparation of β-galactose-containing glycomonomer 2-lactobionamidoethyl methacrylamide obtained by reaction of lactobionolactone and N-(2-aminoethyl) methacrylamide (AEMA). 2-Gluconamidoethyl methacrylamide (GAEMA) is used as a structural analog lacking a terminal β-galactoside. The following RAFT-mediated copolymerization reaction involves three different monomers: N-(2-hydroxyethyl) acrylamide as spacer, AEMA as target for further fluorescence labeling, and the glycomonomers. Tolerant of aqueous systems, the RAFT agent used in the reaction is (4-cyanopentanoic acid)-4-dithiobenzoate. Low dispersities (≤1.32), predictable copolymer compositions, and high reproducibility of the polymerizations were observed among the products. Fluorescent polymers are obtained by modifying the glycopolymers with carboxyfluorescein succinimidyl ester targeting the primary amine functional groups on AEMA. Lectin-binding specificities of the resulting glycopolymers are verified by testing with corresponding agarose beads coated with specific glycoepitope recognizing lectins. Because of the ease of the synthesis, the tight control of the product compositions and the good reproducibility of the reaction, this protocol can be translated towards preparation of other RAFT-based glycopolymers with specific structures and compositions, as desired.
ERIC Educational Resources Information Center
Corcoran, Jacqueline; Berry, Amber; Hill, Stephanie
2015-01-01
Current US statistics indicate that 1 in 68 children is diagnosed with an autistic spectrum disorder (Centers for Disease Control (2014) Prevalence of autism spectrum disorder among children aged 8 years--autism and developmental disabilities monitoring network, 11 Sites, United States, 2010. "Morbidity and Mortality Weekly Report"…